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Chapter 1: Introduction

1.1 Motivation

Precision motion planning is important for enabling robots to autonomously

perform work that requires low position error. Applications of these robots include

construction for above and below ground, underwater, and in space. Also, precision

motion planning is beneficial to self-driving cars and general autonomous work of

robotic systems. In this dissertation, precision motion planning focused on tracking

accumulated position uncertainty is applied to a parallel robot known as a Stewart

platform.

Parallel robots present interesting challenges for motion planning because of

the complexity associated with their forward kinematics. For reference, a serial

manipulator or robot is able to have well-defined forward kinematics equations so

that a given set of joint inputs results in a single known position of the end effector.

A parallel robot’s forward kinematics require much more work and effort to derive

and in some cases can be impossible. For instance, a Stewart platform’s forward

kinematics solutions can result in up to 40 positions for a single set of joint inputs.

Instead, inverse kinematics are well known and easily derived for parallel robots,

unlike serial robots. Therefore, developing a method for motion planning on a
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parallel robot provided a unique challenge.

Additional motivation behind this work centers on the research in In-Space

Assembly being performed at NASA Langley Research Center (LaRC). This work

aims to further the use of Stewart platforms as viable robotic end effectors and preci-

sion manipulators for in-space use as well as improve the knowledge and application

of motion planning algorithms for parallel robots.

The higher level functions and approach discussed here are applicable to mo-

tion planning of any system such as a serial manipulator or vehicle. The low level,

problem specific functions implemented can easily be interchanged for a different

system.

1.2 Background and Overview

The field of motion planning is based on solving a very simple problem: given

a starting state, move to a goal state while avoiding obstacles within a given en-

vironment. It’s originally formulated as The Piano Mover’s Problem, in which the

idea is to move a piano into a home without damaging it or the home. This original

problem is well defined and, as noted in [2], is known to be P-Space Hard when

defined in three-dimensional space.

The general motion planning problem came to be clearly defined in the 1970s

[3]. Then, in the 1980s, “perfect, combinatorial solutions, which are ideal in some

settings, but not practical in most” were developed [3]. In the 1990s, sampling-based

methods were developed offering a more practical method for solving these problems
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by trading the algorithmic properties of completeness for a slightly less satisfying

notion of probabilistic completeness [3].

The combinatorial motion planning methods developed in the 1980s, offer

complete solutions for motion planning for a very specific problem: given a robot

modeled as a point that can only translate [3] in two-dimensional space and where

no sampling error or approximations are used. This combinatorial method plans in

the configuration space, C, of the robot. C is the set of all possible states of a robot

in a given environment, or workspace, W . W is the projection of the configuration

space onto the subspace of C that is defined by (only) position. Combinatorial

motion planning offers a map of the entire C that can show every possible position

of the robot since it is easy to compute the topological space in which the robot can

move. The main issue with this method is that when this space is extended into

higher dimensions, this method breaks down into extremely complicated functions

in order to model C. For further information on this, consult [3].

The topology of C can vary greatly depending on both the robot being used

andW because it must represent both spaces. Since C represents all transformations

a robot can have, it can also be used to map out the obstacle spaces or regions where

the robot cannot move to. This can create a very interesting and unique space that

can be very hard to visualize once above three dimensions.

Sampling-based motion planning methods, developed in the 1990s, are far more

common in higher dimensional spaces as they do not require the entire C to be known

at the start of the algorithm. Instead, the algorithm plans by randomly checking

states in C in order to map out regions in which it can or cannot move to. Specifically,
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planning in C involves planning around two types of obstacle regions. The first type

of region is where the robot would intersect obstacles inW . The second region, and

the more important reason for planning in C, contains unsafe states for the robot to

be in. These unsafe states include velocity limits, self intersections, physical limits,

or any other constraint that may be enforced on the robot.

When planning in C the main concern is whether or not a sampled state is

within an obstacle region. In a simple sampling-based motion planning algorithm, a

starting state and a goal region are pulled from a givenW . The algorithm randomly

explores C, incrementally moving a set distance throughout the space to random

states with the hope of eventually randomly finding a state within the goal region.

With each movement it adds a new possible state to what is called a tree or graph

structure. This tree is rooted at the starting state and is called such because, when

graphed in a 2D environment, the paths resemble a tree. Subsection 1.3.1 goes into

more detail of the motion planning algorithms used within this work and why they

were chosen.

When using a Stewart platform, C can be represented using one of three meth-

ods: First, a six-dimensional space where each axis represents an actuator’s position

or length. This space is unique in that each point in this space can represent multiple

configurations of position and rotation for the moving plate of the Stewart platform.

Solving which configuration is correct for the current time involves having a method

of forward kinematics that can produce a single solution. Another solution is a

method of forward kinematics that produces multiple solutions combined with the

history of states that the Stewart platform has been in so that the correct one can

4



be estimated.

The second method is to represent C using a six-dimensional space where each

axis represents the position or rotation of the moving plate of the Stewart platform.

This space is unique in that each point in this space corresponds to a single set

of joint inputs which can easily be found using inverse kinematics. For Stewart

platforms, and in general parallel robots, inverse kinematics are easily calculated

based on some physical properties of the robot. This can be implemented with little

computational effort, thus allowing the algorithm to easily calculate each state it is

moving to.

The last method of representing C is a combination of the two prior methods.

A twelve-dimensional space where each axis is either represented by the actuators’

positions or the moving plate’s position and rotation. This space offers a consider-

able challenge in mapping but would allow for the easiest implementation of motion

planning. The entirety of the Stewart platform would be known and therefore no

additional calculations would be needed to calculate either the joint inputs or cur-

rent state of the robot. The space containing all valid states the Stewart platform

can actually reach forms a six-dimensional manifold that is embedded in this twelve-

dimensional space.

For ease of use and computational effort, the second method was chosen for

representing C, even though this method offers some unique challenges for motion

planning. First, the motion must be planned forward, this would be easy with

implementing forward kinematics; however this is not easy with Stewart platforms.

Second, since this work is meant for a real world system, velocity limitations on the
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actuators must be adhered to in order to be implemented properly. This results in

having to check the actuators for their velocity, which results in having to calculate

the actuator velocity at every single step of the motion planning to make sure they

are not exceeded, on top of checking the actuator lengths to make sure they are not

exceeded.

Additional challenges of implementing the motion planning algorithm to track

error for the Stewart platform is that the error is weighted differently depending

on the function being used. Since the rotation area is so small in comparison to

the position area, a weighting factor must be placed on the rotation area so that it

could have a comparable effect on the error in the system. This weighting value can

be changed in order to focus more on the position or orientation but is necessary so

that the algorithm does not produce a highly precise position path and an extremely

imprecise rotation path. Also, plotting the data of the algorithm in a meaningful

way produces some complexities, mainly in trying to show a six degree of freedom

configuration space.

For this work, the decision was made to plot the system in two separate three

dimensional graphs, the first of which is the position of the moving plate of the

Stewart platform in the workspace. The second is the orientation of the moving

plate in the workspace. This tended to produce interesting graphs as generally the

algorithms were able to only go to one position but could go to the same orientation

at multiple positions.

Since this work is focused on tracking and minimizing the error in the state

of the Stewart platform at the end of its motion path, an Extended Kalman Filter
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(EKF) was implemented within subroutines of the motion planning algorithms. An

EKF was chosen as it allowed for the application of the kinematics to drive the

Stewart platform as well as tracking of the error of the Stewart platform within a

single framework. Subsection 1.3.2 explains the background and creation of the EKF

used within this work as well as other implementations of the EKF on a Stewart

platform.

The Stewart platform was first developed in 1965 by D. Stewart as a robotic

platform for simulating aircraft as shown in [4]. D. Stewart’s design of the Stew-

art platform focused on providing six-degrees of motion to a platform fixed to the

ground using three actuators. When the Stewart platform started to be adapted

to other applications, new configurations were designed. Some of these different

configurations are discussed in [5]. The design that represents this work’s Stewart

platform is the 6-UPS (universal prismatic-spherical) Stewart platform. This de-

sign is based on six prismatic actuators attached to spherical joints on both the

moving platform and the base platform. Within this work, the moving platform is

considered the “top plate” and the base platform is considered the “base plate.”

Since its development, the Stewart platform has been adapted into an ex-

tremely useful robotic platform outside of use in simulations. Specifically in this

work, due to its capability for high strength and precise movements, the Stewart

platform was chosen as a manipulator for use in In-Space Assembly. Work in the

field of In-Space Assembly is focused on developing robotic methods for assembling

satellites, space stations, and other structures in space and on other planets. More

details on the Stewart platform and its use in In-Space Assembly are discussed in
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Figure 1.1: LSMS with a Stewart Platform as shown in [1]

subsection 1.3.2.

This work aims to aid in the Robotic Assembly of Modular Space Exploration

Systems (RAMSES) project as described in [1]. The RAMSES project was devised to

find new approaches to In-Space Assembly by creating smart structures assembled,

verified, and characterized on the ground prior to launch. These structures would

then be assembled in space with the use of a combination of long-reach manipulators

and precision pointers. The Stewart platform is being used as a precision pointer

which will grab the structures, and attach them to each other. The structures are

built to include capture mechanisms and some alignment features, shown at the

bottom of figure 1.1 as shown in [1], leaving the Stewart platform to only apply the

force needed to trip the capture mechanisms as the structures attach to each other.

The use of Stewart platforms for In-Space Assembly has been previously re-
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searched before within [6]. The Stewart platform described in [6] is used in a similar

fashion as described in [1] as a precision pointer, picking and placing objects in

desired locations while being connected to the end of a long reach manipulator.

Additionally, tests were performed in [6] where a Stewart platform was controlled

along a prescribed linear path in order to guide objects into place.

1.3 Related Work

The contributions of this dissertation to the advancement of sampling based

motion planning applied for error reduction in parallel robots come from the lack

of work within this specific area. Described in the following sections are the related

literature discussing motion planning algorithms used in this dissertation, in section

1.3.1. Also described is the related literature discussing the application motion

planning algorithms as well as the application of EKF for error tracking on Stewart

platforms in section 1.3.2.

1.3.1 Motion Planning Algorithms

The first sampling based motion planning algorithms were only concerned

with finding a valid path between start and goal, and thus were known as feasible

path planning algorithms. An early feasible path planning algorithm that is still

widely used today is known as Rapidly-exploring Random Trees, RRT [7]. The RRT

algorithm used is described as being “specifically designed to handle nonholonomic

constraints and high degrees of freedom” in [7] and shown in algorithm 1.
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The RRT algorithm, follows the principals of sampling based motion planning.

Given a starting node, the algorithm searches through C while avoiding obstacles in

order to find a node within the goal region. The algorithm continues to run until

either a node within the goal region is connected to the graph, or the maximum

number of nodes in the graph is reached. The RRT algorithm is included within

this work as a stepping stone for algorithmic development and to verify that a viable

path to the goal can be found for the problems described within. This viability is

needed initially to ensure that the two main algorithms used, RRT* and RRT#,

can perform as intended. These algorithms are described in detail below.

Both RRT* and RRT# build off of RRT by not only finding a viable path

to the goal, but continually optimizing this path until they meet a certain stopping

criteria. This is due to both algorithms having properties of asymptotic optimality

for motion planning problems where the optimal solution meets certain robustness

criteria. In the case of this work, the stopping criteria is run time. Both of these

algorithms were designed to optimize based on a cost function and they both are

guaranteed to work for any metric set as the cost function. Also, they will work for

any cost function in which the triangle inequality holds.

The cost function is most commonly used to optimize distance, either distance

to the goal state or distance from the starting state. Within this work, the cost

function is the cumulative error at each state, the calculation of which is discussed

later in section 2.3. In both algorithms, the cost of each state is saved and when a

new state is found, the state is checked for whether it is a more viable state for the

path based on this cost. Both algorithms handle this viability differently.
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The RRT* algorithm, described in [8] is used as an initial anytime solution

algorithm. RRT* is a variant of both RRG (Rapidly-exploring Random Graph) and

RRT that incrementally builds a tree, providing anytime solutions, and provably

converges to an optimal solution with minimal computational and memory require-

ments. The RRT* algorithm modifies RRG to remove “redundant edges, i.e. edges

that are not part of a shortest path from the root of the tree to a vertex” [8]. RRT*

creates a rewiring of the RRT search tree that ensures the minimum-cost path is

used to reach a vertex.

RRT# is the main algorithm being tested along with RRT*. RRT# guaran-

tees asymptotic optimality and ensures that the constructed spanning tree rooted

at the initial state contains lowest-cost path information for vertices which have

the potential to be part of the optimal solution as described in [9]. Similar to

RRT*, RRT# creates a rewiring of the RRT search tree; however, unlike RRT*, it

propagates new cost short-cut information from the neighborhood in which it was

discovered to any nodes in the graph that can benefit from that information. This

can lead to slightly longer run times but also more optimal results.

1.3.2 Motion Planning with Stewart Platforms

Path planning in Stewart platforms has been researched before as is shown

in [10], though the planning involved was to establish a path from a given start

position to a given end position without encountering any singularities in the Stewart

platform. Singularities are positions in the workspace where the Stewart platform
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is uncontrollable and it loses some degree of constraint. Within this dissertation,

the Stewart platform’s environment is constrained which reduces the number of

singularities encountered; however they are not completely removed.

The main focus of this dissertation was error reduction, not singularity avoid-

ance. In [11] trajectory planning for a straight line path of a Stewart platform was

researched. Additionally the Stewart platform was used to apply a force to make

a connection for a given space-rated connector; however there is not a focus on the

error seen by the Stewart platform and the trajectory planner does not allow it to

move in a non-linear direction. The work being discussed in this dissertation aims

to allow the Stewart platform to move as necessary, not just in a straight line, while

also minimizing error.

Since motion planning algorithms are being used in combination with a Stew-

art platform to provide a path of motion, some form of kinematics needs to be

implemented to produce the required motion for the Stewart platform. Generally

in motion planning, forward kinematics are used to define the motion of the robot.

In the case of Stewart platforms, and other parallel platforms in general, clear solu-

tions of forward kinematics tend to be quite difficult to derive. A tractable solution

to forward kinematics on parallel platforms is differential kinematics, which is per-

formed in this work. In order to integrate the differential kinematics into the motion

planning algorithm, as well as have a method for tracking error in the system, an

Extended Kalman Filter (EKF) is used. A detailed explanation of differential kine-

matics is explained in section 2.3.3. While direct methods for forward kinematics

exists they are computationally complex, as seen in [12], [13], and [14], and this
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method was not pursued.

The application of the Kalman filter used within this work started with the

explanations given in [15] and [16] in which the application and implementation of

Kalman filters and EKF were explained in great detail. In general, a Kalman filter

can be applied to any linear system in which some form of state estimation is used as

well as some form of observation can be made, an EKF is applied when the system

is non-linear. For the EKF used in this work, the state estimation was made based

on the use of differential kinematics combined with noise. Additionally the method

of observation used within this work was the application of differential kinematics

without noise, giving a true state in the simulation. The notation used within the

EKF comes from a variety of sources including, [15], [16], and [17].

The application of an EKF on a Stewart platform has been used before, as

shown in [18]. In this application, the noises for the EKF were based on data trans-

mission deviation between the host computer and the robot as well as measurement

errors. The EKF was based on a direct kinematic method for real-time movement

of the Stewart platform.

1.4 Nomenclature and Problem Formulation

This section will discuss the nomenclature and variables being used throughout

this dissertation in 1.4.1. Then, the formal definition of the problem being attempted

in this work is presented in section 1.4.3. Tables 1.1 and 1.2 offer a basic description

of all the variables used here and are presented as a means of easy reference if needed.
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1.4.1 Nomenclature

All of the variables used within this work are introduced in tables 1.1 and

1.2. These tables are presented as a reference for the variables in the work, all of

which will be explained in further detail as they are introduced throughout this

dissertation. For additional reference in later equations, a vector surrounded by

brackets, such as [~c ], represents the skew-symmetric matrix of the vector as shown

in equation 1.1.

[~c ] =


0 −c3 c2

c3 0 −c1

c2 c1 0

 (1.1)

1.4.2 Assumptions

The Stewart platform represented within this work comes from the design of

a Stewart platform built at NASA Langley Research Center (LaRC). Additionally,

when describing the workspace of the Stewart platform for motion planning pur-

poses, the assumption was made that it would not be using any obstacles; however,

functionality was built into the algorithm to account for obstacles in the future.

1.4.3 Problem Formulation

The problem of using sampling based motion planning for minimizing position

uncertainty with Stewart platforms is defined as follows. Given a configuration
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Variable Description Variable Description

T Tree x A Node

G Graph Structure xstart Starting Node

V Set of Vertices xrand Random Node

E Set of Edges xnear Near Node

E ′ Placeholder Edge Set xmin Minimum Node

E Error of Robot xnearest Nearest Node

P Path of the Robot xnew New Node

C Configuration Space Xgoal Goal Region

∆
Maximum Distance to
Extend

Xnear Set of Nearest Nodes

q Priority Queue s Successor Node

d Number of Dimensions cmin Minimum Cost

γRRT Ball Constant u Control Input

k Indexing Variable K
Maximum Indexing
Variable

Table 1.1: Motion Planning Variables
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Variable Description Variable Description

~xstart Starting State Vector P Error Covariance Matrix

~xgoal Goal State Vector Q
Process Noise Covariance
Matrix

xtrue Set of Vertices R
Observation Noise
Covariance Matrix

xtrue Array of True States J Kinematics Jacobian

x Array of States H Observation Jacobian

ctol Tolerance for Goal Region S
Innovation Covariance
Matrix

~z Observed State K Kalman Gain

~y Innovation Residual ~v Observation Noise

d Distance to Goal D Actuator Input in 2D Case

w Weighting Variable t Incremental move Distance

{B} Base Frame of the Robot Rz′y′x′ Rotation Matrix

{T} Top Frame of the Robot G
BT

Transformation Matrix
from {B} to {G}

{G} Base Frame of the Robot G~pdiff
Difference in Position in
{G}

B~qi
Vector Pointing to Joint i
in {B}

G~p∆
Small Amount of Position
Change in {G}

Gn̂i
Vector Pointing along
Actuator i in {G}

G~̇p
Velocity of Position
Change in {G}

B~qi
Vector Pointing to joint i
in {B}

Gθ
Amount of Rotation in
{G}

Li
Vector form of Actuator i
of the Stewart Platform

Gφ̇
Velocity of Rotation
Change

~̇L Velocity of Actuators G~ω Axis Angle Velocity in {G}

~V
Total Velocity Vector in
{G}

G~ω0

Combined Axis-angle
Representation of Rotation
in {G}

∆t Time Step G~ωe Axis of Rotation in {G}

Table 1.2: Problem Specific Variables
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space, C, a starting state, xstart, a goal region, Xgoal, find a valid path, P , such that

the state error along the path, E, is minimized. The path is valid if and only if it

is fully contained within the free space of C and therefore it is not intersecting the

obstacle space.
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Chapter 2: Algorithms

This chapter will explain the algorithms that were developed and implemented

in this work. Section 2.2 will explain the motion planning algorithms implemented

in this work, these algorithms will be shown in an unaltered form. Following this,

in section 2.3, the specific subroutines created for this work as well as the main

contributions of this dissertation will be introduced. Additionally, any changes to

the motion planning algorithm’s implementation of the subroutines are discussed in

2.3.

2.1 Overview of Algorithmic Contributions

As described in section 1.3, sampling based motion planning algorithms work

based on the optimization of a cost function. Often, this cost function is based on

distance to the goal or distance from the start; however within this work the motion

planning algorithms listed in section 2.2 are using a metric based on accuracy. This

accuracy is defined by the cumulative error at a given state. A unique feature of

using this metric is that the most optimal path can result in being a longer path

than may be found using distance based metrics.

Another interesting problem that can occur by using this metric is that mul-
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tiple paths can result in the same ending cost value. Currently this is not being

addressed by this algorithm as the main purpose was to develop a working solution;

however this can become more rare with a more contoured topological space.

Since this algorithm would be tracking error, a method for calculating that

error was needed. That is where the Extended Kalman Filter (EKF) was introduced.

The EKF is used as the steering function plug-in to the motion planning algorithms,

it is shown on section 2.3.1. The specific variable of interest is the error covariance

matrix, P, which can be used to track the error at each step of the motion planning

algorithm; however the motion planning algorithms are often designed to find the

optimal solution with respect to a particular objective or cost value. This is how

the error functions came to be used.

The first error function tested is the Trace function which is simply the sum

of the diagonal terms of P. The second error function tested is the Volumetric

Ellipsoid function. This function calculates the volume of the ellipsoid of error at

each node of the motion planning algorithm. Both of these functions are explained

in more detail in section 2.3.4.

In order to apply the Stewart platform to the motion planning function, a kine-

matics function representing the Stewart platform must be implemented within the

EKF. Normally in the EKF this would be the forward kinematics function, though as

previously stated, the Stewart platform’s forward kinematics are extremely compu-

tation expensive and not well known. Therefore, a Differential kinematics algorithm

was written in order to simulate forward kinematics using only inverse kinematics

and some estimation on the next step based on velocities of the system. A full
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description of this function is shown below in section 2.3.3.

In order to learn more about implementing the EKF within the motion plan-

ning algorithms listed below, a simple 2D toy problem was created to test the func-

tions as well as learn more about what simple changes could do to the functions.

The full description of the problem is in section 3.2. The kinematics functions for

this problem are shown in section 2.3.2.

Lastly, the implementation of this problem along with the Stewart platform

problem shows that with a change in the kinematics function as well as adjustments

to some variables, the algorithms listed below can work for a range of robots. A full

list of the algorithms and a simple description of these algorithms is shown in table

2.1.

2.2 Existing Motion Planning Algorithms

The algorithms described in this section are the motion planning algorithms

used within this work and can be applied in general to other problems, not solely

those described in this dissertation. Algorithms 1,2 and, 3 are based on their original

formulations and any variations from the originally published algorithms will be

noted in section 2.3.

2.2.1 Existing RRT Algorithm

Algorithm 1 shows the RRT algorithm being used, a slight variation of the

original RRT algorithm described in [7]. RRT is used as a means of verifying a
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Algorithm Description Section

Existing Algorithms

RRT Initial sampling based motion planning algorithm
used to ensure a viable path exists in the configu-
ration space

2.2.1

RRT* Sampling based motion planning algorithm used
to optimize a viable path

2.2.2

RRT# Sampling based motion planning algorithm used
to optimize a viable path, improves upon RRT*

2.2.3

Extend Procedure RRT# procedure used to create new nodes and
update graph

2.2.3.1

Replan Procedure RRT# Procedure used to propagate effects of
newly added nodes in graph

2.2.3.2

Auxiliary Procedures Auxiliary procedures used in RRT# 2.2.3.3

Modified/Created Algorithms

Steering Function General Steering Function used by all motion plan-
ning algorithms

2.3.1

2D Kinematics Kinematics for 2D Toy Problem 2.3.2

SP Kinematics Kinematics used for Stewart Platform Problem 2.3.3

Table 2.1: Algorithms

solution exists in the configuration space, C, for the problem it is applied to. RRT

will randomly branch out from a starting region in order to find a node within the

goal region.

The algorithm initiates the tree structure with the starting position (line 1).

Lines 2-8 show the main loop of the algorithm. First, the random state function

is called returning a random node, xrand, from C. xrand is also checked for being

reachable by the robot based on user created check functions (line 2). Next, the

nearest neighbor function is called returning the nearest node, xnear, from the tree

21



that is closest in distance to xrand (line 3). Using xnear, the steering function creates

a new state, xnew, some distance, ∆, toward xrand and also returns the input, u, to

get from xnear to xnew (line 5). The steering function takes the place of what would

normally be the input and new state functions in RRT. xnew is then added to the

set of vertices in the tree and an edge is created using the input from the steering

function (lines 6,7).

These steps repeat until one of two ending conditions are met, either the

maximum number of iterations is met (i.e. K) or a node within the goal region,

Xgoal, is found. The goal region is defined as a N-ball region around a specific goal

state with a radius equal to the tolerance set by the user for the algorithm. For this

work, the number of iterations is set as the maximum number of nodes in the tree

structure and the tolerance is changed depending on the problem being run.

An example run of the RRT algorithm is shown in figure 2.1. This figure shows

the entire search tree on the left side and the corresponding path of lowest error on

the right side. The search tree is small as the algorithm only ran until it added a

node in the goal region to the graph structure.

Starting with the RRT algorithm is necessary to ensure that a given problem

has a possible solution, otherwise the RRT* and RRT# functions would not work.

Once a possible solution is found the RRT algorithm is no longer needed as, with

probability one, RRT will not return the most optimal solution. This is stated in

Theorem 33 of [8] and proven in Appendix B of the same paper.
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Algorithm 1: RRT

1 T .init(xstart);
2 for k = 1...K do
3 xrand ← RandomState();
4 xnear ← NearestNeighbor(xrand, T );
5 (xnew, u)← Steer(xnear, xrand,∆);
6 T .add vertex(xnew);
7 T .add edge(xnear, xnew, u);

8 return T ;

Figure 2.1: Example RRT Tree Progression

2.2.2 Existing RRT* Algorithm

The RRT* algorithm builds off of RRT by continuing to optimize the path

found at the end of RRT. RRT* continues to optimize this path by continually

searching for new nodes and adding these new nodes if they reduce the overall error

of the path. RRT* will run this optimization until the run time is reached.

Algorithm 2 shows the RRT* algorithm that is being implemented. The algo-

rithm is initiated with the vertex, V , and edge, E , sets that will store the components
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of the graph structure, G (Line 1). In RRT* a graph structure is used rather than

a tree structure as in RRT. E is initiated to zero, or empty and V is initiated with

the starting position, xstart. In this algorithm lines 2-5 are similar to lines 2-5 in

algorithm 1 with the only difference being the nearest neighbor function returning

xnearest rather than xnear.

Starting at line 6 is the beginning of the improvements of RRT* on RRT.

First, the algorithm checks if xnearest and xnew are collision free then it locates all

the neighboring nodes within a specified distance of xnew (line 7). This distance is

the minimum between ∆, the distance moved during the steering function to create

xnew, and a ratio based on the number of nodes in the graph raised to the inverse of

the number of dimensions and multiplied by a ball constant γ. This factor shrinks

as the number of nodes increases. Then xnew is added into V (line 8). Additionally,

to set the evaluation conditions used later, xnearest is saved as the minimum node,

xmin and the cost of xnearest plus the cost of the trajectory from xnearest to xnew is

saved as the minimum cost, cmin (line 9). Using the initial evaluation conditions,

each xnear within the set of Xnear is checked to see if the trajectory from it to xnew

is collision free and the current cost of xnear plus the cost of the path from xnear to

xnew is less than cmin. If this is true, xnear becomes the new xmin and the new cmin

is set as this lower cost (lines 10-12).

Once all the nodes within Xnear have been checked, the edge from xmin to xnew

is added to E (line 13). Then, RRT* cycles through all of the nodes in Xnear to check

if xnew would fit as a better parent state than the current parent. This is done by

calculating the new cost based on xnew and comparing it to the current cost at each
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xnear (line 15). If xnew is a more fitting parent, then the edge dictating the path

from the parent to a xnear is updated to reflect this (line 16).

An example run of the RRT* algorithm is shown in figure 2.2. This figure

shows the progression of the RRT* algorithm from early path creation to a more

filled-in configuration space.

Algorithm 2: RRT*

1 V ← {xstart}; E ← 0;
2 for i = 1,...,n do
3 xrand ← RandomState();
4 xnearest ← NearestNeighbor(G = (V , E), xrand);
5 xnew ← Steer(xnearest, xrand);
6 if CollisionFree(xnearest, xnew) then
7 Xnear ← Near(G =

(V , E), xnew,min{γRRT ∗ (log(card(V))/card(V))
1
d ,∆});

8 V ← V ∪ {xnew};
9 xmin ← xnearest; cmin ← Cost(xnearest) + c(Line(xnearest, xnew));

10 foreach xnear ∈ Xnear do
11 if (CollisionFree(xnear, xnew) and Cost(xnear) +

c(Line(xnear, xnew))) < cmin then
12 xmin ← xnear; cmin ← Cost(xnear) + c(Line(xnear, xnew));

13 E ← E ∪ {(xmin, xnew)};
14 foreach xnear ∈ Xnear do
15 if (CollisionFree(xnew, xnearest) and Cost(xnew) +

c(Line(xnew, xnearest))) < Cost(xnear) then
16 xparent ← Parent(xnear);

E ← (E{(xparent, xnear)}) ∪ {(xnew, xnear)}

17 return G = (V , E);

2.2.3 Existing RRT# Algorithm

Algorithm 3 shows the body of the RRT# algorithm being implemented, this

algorithm has not been changed from the original published within [9]. The entire
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Figure 2.2: Example RRT* Tree Progression

RRT# algorithm and its additional algorithms/functions are shown between algo-

rithm 3-6. A priority queue is used within the algorithm to keep track of vertices.

RRT# performs the same operations as RRT* however with slight differences in the

way error information is updated within the graph, as explained in section 1.3.1.

The body of the RRT# algorithm begins in the same fashion as RRT*, first

the graph, G, is created from the initiated sets of vertices, V , and edges, E (lines

2-3). Beginning on line 4, for a set iteration amount defined by K the following

three steps are done: First, a random node, xrand, is found (line 5). Second, the

extend function is called, adding a new node and rewiring the graph structure (line

6), which will be explained in detail in section 2.2.3.1. Third, the Replan function is

called, propagating any effects of topological changes caused by adding a new node

to the graph structure (line 7). This function is also explained in detail in section

2.2.3.2. Following these steps, E and V are updated and another set of edges, E ′,

herein referred to as edge prime, is created (line 8). Next, for each node within V ,

the edge prime set, E ′, collects the edge between each node and its parent (lines

9-10). Lastly, G is returned containing V and E ′ (line 11).
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An example run of the RRT# algorithm is shown in figure 2.3. As in the

RRT* figure, this figure shows the progression of the path created by RRT# as the

run time of the algorithm passes.

Algorithm 3: Body of RRT#

1 RRT#(xstart,Xgoal,X )
2 V ← {xstart}; E ← 0;
3 G(V , E);
4 for k = 1...K do
5 xrand ← RandomState();
6 G ← Extend(G, xrand);
7 Replan(G,Xgoal);
8 (V , E)← G; E ′ ← 0;
9 foreach x ∈ V do

10 E ′ ← E ′ ∪ {(Parent(x), x)};
11 return G = (V , E ′);

Figure 2.3: Example RRT# Tree Progression

2.2.3.1 RRT# Extend Procedure

The Extend procedure shown in algorithm 4 is used to first extend the graph

towards a random node, creating a new node, then update the entire graph structure

based on the new node. The extend procedure is called with inputs of G and xrand.
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The extend procedure initiates by creating a copy of the graph structure in

a local set of vertices, V , and edges, E , and creating a secondary set of edges, E ′

(line 2). Then using the near function, the nearest node, xnearest, is found (line 3).

Using xnearest and xrand the steering function finds a new node, xnew (line 4). Given

this new node, as long as the path from xnew to xnearest is collision free the following

begins: First, each of the nodes are sent through the Initialize function (line 6),

explained in section 2.2.3.3. Following this, the near function returns all of the

nodes in the graph within a certain distance of xnew to the set, Xnear (line 7). Then,

for each xnear in Xnear, as long as the path between xnear and xnew is free, the local

minimum cost (lmc) of xnew is checked to see if xnear would make a better parent

to xnew (lines 8-10). The lmc of a node is the best or lowest cost associated with a

neighboring node of the node. Normally the lmc is associated with the parent node.

If xnear is a better parent, the lmc of xnew is set to the cost of xnear plus the cost

of the path from xnear to xnew and xnear is set as the parent of xnew (lines 11-12).

After checking each xnear, the edge both to and from xnew is added to E ′ (line 13).

Next, xnew is added to V and E is updated to include all of the edges added from

E ′ (lines 14-15). Then the update Queue function is called, which is explained in

section 2.2.3.3 (line 16). Finally, a new graph structure, G ′, is returned to the main

body of RRT# (line 17).
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Algorithm 4: Extend Function

1 Extend(G, x)
2 (V , E)← G; E ′ ← 0;
3 xnearest ← Near(G, x);
4 xnew ← Steer(xnearest, x);
5 if CollisionFree(xnearest, xnew) then
6 Initialize(xnew, xnearest);
7 Xnear ← Near(G, xnew, |V|);
8 foreach xnear ∈ Xnear do
9 if CollisionFree(xnear, xnew) then

10 if lmc(xnew) > Cost(xnear) + c(xnear, xnew) then
11 lmc(xnew) = Cost(xnear) + c(xnear, xnew);
12 Parent(xnew) = xnear;

13 E ′ ← E ′ ∪ {(xnear, xnew), (xnew, xnear)};

14 V ← V ∪ {xnew};
15 E ← E ∪ E ′;
16 UpdateQueue(xnew);

17 return G ′ = (V , E);

2.2.3.2 RRT# Replan Procedure

Algorithm 5 shows the Replan procedure used within the main body of RRT#.

The Replan procedure is used to propagate the effects of the topological changes to

the graph as new vertices are added. Note that although this procedure is called

Replan, this function is not doing re-planning in the sense of re-planning in response

to changes in the environment. The Replan procedure is re-planning in the sense

that there are nodes being added to the graph and the graph must be re-planned

to propagate these changes. This naming convention holds over from the original

publication of the RRT# algorithm in [9].

The procedure starts by going through the queue and returning the vertex of

minimum key value, x, while it precedes the key value of the lowest cost vertex,
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v∗goal, in the goal set (line 2). Within this while loop, it takes this minimum key and

sets the corresponding node’s cost value to its lmc value then deletes the node from

the queue (lines 3-5). Then, for each node that is a successor, s, to a node, x, in

G the procedure updates the minimum cost of the s. The minimum cost is based

on the cost of x plus the cost of the path from x to s. Also, the parent of s to x is

updated as long ass has a higher minimum cost than this new cost plus edge cost

(lines 6-9). Finally, using this new cost and parent, s is sent to the Update Queue

function (line 10).

Algorithm 5: Replan Function

1 Replan(G,Xgoal)
2 while q.findmin() ≺ Key(v∗goal) do
3 x = q.findmin() ;
4 Cost(x) = lmc(x);
5 q.delete(x);
6 foreach s ∈ succ(G, x) do
7 if lmc(s) > Cost(x) + c(x, s) then
8 lmc(s) = Cost(x) + c(x, s);
9 Parent(s) = x;

10 UpdateQueue(s);

2.2.3.3 RRT# Auxiliary Procedures

The Initialize procedure takes the first input and sets its cost to infinity (line

2). Then, if the second input has not been created, it sets the first input’s lmc to

infinity and its parent node to zero (lines 4,5). Otherwise, it sets the first input’s

lmc to the cost of the first input plus the cost of the edge between the first and

second input, as well as sets the parent of the first input as the second input (lines
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7,8). These changes are saved within the node itself and each node is returned after

being called.

The Update Queue function takes in a node and updates its place within the

queue depending on a few factors. If the cost of the node is not equal to its lmc and

the node is in the queue, then the node is updated with a new Key (lines 10,11).

Otherwise, if the the cost of the node is not equal to its lmc and the node is not in

the queue, it is inserted into the queue with a set key value (lines 12-14). Lastly, if

the cost and lmc of the node are equal and it is in the queue, the node is deleted

from the queue (lines 15-17).

For the Key function, this simply returns a vector of costs where the first

element is a heuristic value of the optimal cost from the node to the goal and the

second is the lmc of the node. The heuristic value used in this paper is a choice of

the minimum of either the current node cost or the lmc of the node.

2.3 Problem Specific Subroutines

All functions and procedures listed within this section were created or used

specifically for the two problems tested within this dissertation. The first problem

is a 2D Toy problem. This problem is specified as two actuators attached to each

other at a 90◦ angle, and then the entire system is rotated 45◦ from the horizontal.

This problem will be expanded upon in section 3.2. The second problem is the main

focus of this work, the Stewart platform problem which will be expanded upon in

section 3.3. Both problems are designed to minimize error in their movements from
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Algorithm 6: Auxiliary Functions

1 Initialize(x, x′) Cost(x)←∞;
2 if x′ = 0 then
3 lmc(x)←∞;
4 Parent(x)← 0;

5 else
6 lmc(x) = Cost(x′) + c(x′, x);
7 Parent(x) = x′;

8 UpdateQueue(x) if Cost(x) 6= lmc(x) and x ∈ q then
9 q.update(x,Key(x));

10 else
11 if Cost(x) 6= lmc(x) and x 6∈ q then
12 q.insert(x,Key(x));
13 else
14 if Cost(x) = lmc(x) and x ∈ q then
15 q.delete(x);

16 Key(x) return k = [h(x), lmc(x)];

a given starting position to a given goal position.

For both of these problems, two different error functions were created. These

error functions are used as the cost functions of the motion planning algorithms.

Using these error functions still keeps the motion planning algorithm within a Eu-

clidean space as the error at each node is found in a way that still obeys the triangle

inequality and it never decreases. The error is continually increasing as each path

between nodes in the motion planning algorithm adds error to the system when

using either error function. This method of error propagation and tracking is what

is novel and of interest for this work.
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2.3.1 Steering Function

The steering function used in each of the aforementioned motion planning al-

gorithms previously discussed is shown in algorithm 7. The steering function follows

the format of an Extended Kalman Filter (EKF) in order to use the error covari-

ance matrix, P, as a method of tracking error in the system as well as calculate the

movements of the robot throughout the environment. It is initialized with a starting

node, ~xstart, and a random state, ~xgoal, that it is steering towards. Additionally, a

tolerance, ctol, weighting value, w, initial P, and process noise covariance matrix,

Q, are initialized outside the algorithm and fed into it. The tolerance is used to

define the region around ~xgoal in which the algorithm assumes it is at ~xgoal. w is

available, if necessary, as a means of weighting certain components of the state dur-

ing goal distance checking. The number of iterations is set prior to the algorithm

being started as a way of changing how much the robot moves during each loop of

the function.

The steering function begins by initiating the arrays of the true state, xtrue,

and the predicted state, x, with ~xstart (line 2). Additionally, the iterative distance,

t, is set by dividing the total distance to extend, ∆, by the maximum number

of iterations allowed, K (line 3). Next, the algorithm loops for a set number of

iterations, K (line 4). Within the loop, the algorithm follows the basic set up of an

EKF with a few additions. An EKF occurs in three basic steps, the prediction step,

the observation step, and the update step. In this algorithm the prediction step

occurs in lines 6-11, the observation step occurs in line 12, and the update steps
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occur in lines 13-19.

Starting with the prediction step, the algorithm makes three predictions. First

is the prediction of the true state, ~xtrue (line 5). This step is needed as the model is

not running in real time and therefore cannot take any inputs from outside sensors,

if it were connected to a real time system or simulation, this step would be not be

necessary. The next prediction is that of the state of the robot, ~x (line 6), also

known as the a priori state estimate. This comes from the kinematics function,

Kinematics(), which uses a problem specific kinematics function to find where the

robot will be based on where it was at the last time step, ~xk−1, where it is headed,

~xgoal, and how far it should move, t. Then, P is found based on the Jacobian of the

robot’s kinematics, J, and Q (line 7).

The next step is the observation step. Within this step the current true state,

~xtrue, is taken as a measurement and with it random observation noise, ~v, is added

based on a Gaussian distribution of the observation noise covariance matrix, R, in

order to find the observed location of the robot, ~z (line 8). The update step then be-

gins by finding the pre-fit residual, ~y, given ~z and ~xtrue (line 9). Also the innovation

covariance matrix, S, is found based on the measurement Jacobian matrix, H, as

well as P, and R (line 10). Next, the Kalman gain, K, is found given P,H, and ~y

(line 11). K is then used to update the predicted state, ~xk, based on the amount of

pre-fit residual found earlier as well as updating P (lines 12,13). The updated state

and error covariance matrix are known as the a posteriori estimates.

At the end of the algorithm, the distance to the goal position, d, is calculated

based on the current position and a weighting factor, w, if it is used. d is compared

34



to the set tolerance level for closeness, ctol, to the goal and if it falls within that

tolerance, the algorithm is exited so that it does not overshoot the desired goal

position (lines 14-16).

Algorithm 7: Steering Function

1 Steer(~xstart, ~xgoal, ctol, w,∆,P,Q);
2 ~x0 = ~xstart, ~xtrue,0 = ~xstart; % Initialize State Vectors
3 t = ∆/K; % Calculate the Distance to Move Each Step
4 for k = 1...K do
5 ~xtrue,k = Kinematics(~xtrue,k−1, ~xgoal, t); % Find True State for Observation
6 ~xk = Kinematics(~xk−1, ~xgoal, t); % Find A Priori State Estimate
7 P = J ∗P ∗ J + Q; % Find A Priori Error Covariance Estimate
8 ~zk = ~xtrue,k + ~v; % Make an Observation
9 ~y = ~zk + ~xtrue,k; % Find Innovation

10 S = H ∗P ∗HT + R; % Find Innovation Covariance

11 K = (P ∗HT )/S; % Find Kalman Gain
12 ~xk = ~xk + K ∗ ~y; % Find A Posteriori State Estimate
13 P = (I−K ∗H) ∗P; % Find A Posteriori Error Covariance Estimate
14 d = GoalDist(~xk, ~xgoal, w); % Calculate Current Distance to Goal State
15 if d < ctol then
16 exit

17 % Check if Current State is Within Goal Region

18 return ~x,P

2.3.2 2D Toy Kinematics

The kinematics function used in the 2D Toy problem is shown in algorithm

8. This algorithm plugs into the steering function to allow it to be used by the

motion planning algorithms. The algorithm starts by initializing the Jacobian, J,

previously found by a hand derivation (line 2). Then, the distance between the start

and goal nodes is normalized using equation A.1 to give a unit distance movement.

That unit distance is multiplied by the velocity change in position, t, and divided

35



by the Jacobian, creating the actuator input variable D (line 3). Lastly, the new

position is found by multiplying J by D and then adding the initial starting node

(line 4).

Algorithm 8: 2D Kinematics Function

1 Kinematics(~xstart, ~xgoal,∆);

2 J =

[
cos(45) sin(45)
sin(45) cos(45)

]
3 D = J−1 ∗∆ ∗ Normalize(~xgoal − ~xstart);
4 return ~x = J ∗D + ~xstart;

2.3.3 Stewart Platform Kinematics

The Stewart platform problem requires a more complex kinematics function

than the 2D Toy problem due to the Stewart platform being a parallel manipula-

tor. Since the 2D Toy problem is simple and its forward kinematics are simple, the

Jacobian can easily be found and used in the kinematics equation. Parallel manip-

ulators tend to have complicated derivations of forward kinematics that are very

computationally intensive. In order to bypass using such an intensive function, dif-

ferential kinematics are employed here as a means of making forward movements of

the Stewart platform. Differential kinematics uses inverse kinematics and a desired

motion to calculate velocities for how the actuators will move and how the plates

will move.

The inverse Kinematics of the Stewart platform is summarized with equation

2.1. Given the locations of the ith ball joint in the top frame, {T}, and the locations

of the ith ball joint in the base frame, {B}, the length of actuator i, Li, can be

36



Figure 2.4: Frame Locations on Stewart Platform

found. Each ball joint location is transformed from its local frame to the global

frame so that all measurements are made in a common frame as shown in figure 2.4.

The location and sizes of the Stewart platform were taken from CAD files of the

Stewart platform used at NASA LaRC. These locations were only approximations

as manufacturing tolerances were large and defects in production of parts added to

the error in exact locations of the joints in the physical system.

Li = ||GTTT ~qi −GB TB~qi|| (2.1)

The Differential Kinematics algorithm, shown in algorithm 9, begins by cre-

ating a transformation matrix from the starting state. The transformation matrix

consists of a rotation matrix in the first three rows and columns, the starting loca-
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tion in the fourth column, and a row of zeros and a one in the fourth row, as shown

in line 2 of the algorithm. This transformation matrix is in the ground frame, {G},

of the Stewart platform as shown in figure 2.4.

The rotation matrix used is shown in equation 2.2, where c represents the cos()

function and s represents the sin() function. Next, the total difference in position is

found via the difference between the starting position, ~xstart, and the goal position,

~xgoal (line 3).

Rz′y′x′(α, β, γ) =


cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ

sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ

−sβ cβsγ cβcγ

 (2.2)

Next the total amount of rotation and the axis of that rotation from ~xstart to

~xgoal can be found by using the Rodrigues’ Rotation Formula, shown in equation

A.2 in appendix A. Rearranging this equation to solve for [~ω]θ where [~ω] is the skew

symmetric matrix for ~ω, results in the vector, ~ω0 (line 4). ~ω0 can then be normalized

to find the axis of rotation ~ωe and the norm of ~ω0 is the resulting amount of rotation,

θ (lines 5,6). Then the actuator velocity, ~̇L, is set to infinity. This is done to set

the while loop on line 7 to run at least one loop in order to calculate the actuator

velocities of the movement.

The while loop will continue to run until the actuator velocities are set below

a predetermined maximum velocity, ~Lmax (line 8). This velocity is dependent on

the actuators being used in the system and for this research it was set to 3.5 mm/s.

The while loop begins by calculating the position change, ~p∆, based on a fraction of
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the total difference in position (line 9). Next, the velocity of that position change

is calculated by dividing the change by a generic time step, ∆t (line 10). In this

work, a time step of 1 second was used as it allowed for scaling of the movements

if necessary. Both the angular velocity, φ̇, and the angular position, ~θ∆, change

are calculated in a similar manner as the position (lines 11,12). φ̇ must then be

converted into the axis-angle velocity, ~ω, to get the rotation in the correct frame

(line 13). Then, the rotation matrix for the angular position change, R∆, can be

calculated using equation A.2 (line 14). Next, the total velocity vector, ~V , for all six

dimensions can be calculated with a slight change in that the angular terms are the

first three elements and the position terms are the second three elements (line 15).

After this, the inverse Jacobian, based on the starting position, can be calculated

using the set of equations 2.3-2.6 (line 16).

Equation 2.3 calculates the inverse transpose of the Jacobian based on the

starting position. G~qi represents a transform pointing to the ith base joint in the

global frame, {G}, as seen in 2.5. Gn̂i represents a vector starting at the ith base

joint of an actuator and pointing to the corresponding top joint and can be found

using 2.6. Equation 2.4 shows that the Jacobian is returned as just the inverse

rather than the inverse transpose.

Using InvJac and ~V , ~̇L can be calculated for the current movement (line 17).

If ~̇L is calculated to be above ~Lmax, then the loop is ran again with ∆ halved

(lines 18,19). Lastly, the new position, ~x is returned by first adding ~p∆ to the

position terms of ~xstart (line 20). Then, the new orientation is calculated from a

conversion from rotation matrix back to Euler angles based on a rotation created
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by R∆ multiplied by Rz′y′x′(~xstart) (line 21).

sJ−T =

 [G~q1]Gn̂1 . . . [G~q6]Gn̂6

Gn̂1 . . . Gn̂6

 (2.3)

GJ−1 = (GJ−T )T (2.4)

G~qi = G
ji,B

T (2.5)

Gn̂i =
G

ji,T
T− G

ji,B
T

|| G
ji,T

T− G
ji,B

T||
(2.6)

2.3.4 Error Functions

The functions listed below are the error functions used in RRT to find the cost

at each node. The first function is shown in equation 2.7. This is simply just using

the trace of the error covariance matrix as a cost value.

c = Trace(P) (2.7)

The second function is shown in equation 2.8. This is the Volumetric Ellipsoid

function which calculates the volume of an N-degree ellipsoid based on the eigenval-

ues of P. ai represents the semi-axis lengths of the ellipsoid and n is the number of

dimensions of P. This equation scales with the number of dimensions of a problem;

however the source for this equation, reference [19], states that after the volume

reaches a maximum at five dimensions after which it asymptotically approaches

zero. Therefore it is still useful within the six dimensions of the Stewart platform,
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but higher dimensions may prove to be unsuitable for this equation.

V =
n∏
i=1

ai ∗
2

n

π
n
2

Γ(n
2
)

(2.8)

Algorithm 9: Stewart platform Differential Kinematics

1 Kinematics(~xstart, ~xgoal,∆)

2 Tstart =

 Rz′y′x′(~xstart) ~xstart

0 0 0 1


3
G~pdiff = ~xgoal − ~xstart % Total Position Difference

4
G~ω0 = RodVec(Rz′y′x′(~xgoal) ∗Rz′y′x′(~xstart)) % Total Rotation about an Axis

5
G~ωe = Normalize(G~ω0) % Single Axis of Rotation

6
Gθ = ||G~ω0|| % Amount of Rotation about Axis

7 ~̇L =∞ % Initialize Actuator Velocity to be Large

8 while ||~̇L|| > ~Lmax do
9

G~p∆ = ∆ ∗ ~pdiff % Desired Position Change

10
G~̇p = ~p∆

∆t
% Desired Linear Velocity

11
G~θ∆ = ∆ ∗ θ % Desired Angular Change

12
Gφ̇ =

~θ∆
∆t

% Desired Angular Velocity

13
G~ω = ~ωe ∗ φ̇ % Desired Angular Velocity in Vector Form

14
GR∆ = e[~ωe]~θ∆ % Desired Angular Change in Matrix Form

15
G~V =

[
G~ω

G~̇p− [~ω]Gp

]
% Vector Form of Linear and Angular Velocity

16 J−1 = InvJac(Tstart) % Inverse Jacobian for Current Movement

17 ~̇L = J−1~V % Actuator Velocity for Current Movement

18 if ||~̇L|| > ~Lmax then
19 ∆ = ∆

2
% Check if Actuator Velocity over Maximum Possible

20 ~x =

[
~p∆ + ~xstart

MatrixToEuler(R∆ ∗Rz′y′x′(~xstart))

]
% New State After Movement

21 return ~x,J = (J−1)−1
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Chapter 3: Experiments

All experiments conducted were run using MATLAB scripts and functions.

Each experiment was set up by setting the parameters shown in table 3.1.

Once all the starting parameters are set, the graph structure and a KD-Tree

are initiated. The KD-Tree is used as a means of speeding up the search for nearest

neighbors within the motion planning algorithms which allows the algorithm to

search a smaller set of nodes rather than through all of the nodes in order to find

neighboring nodes. After this, the program will run until the stopping criteria for

the corresponding motion planning algorithm is met, for RRT this is when the

maximum number of nodes in the graph is reached and for RRT* and RRT# this is

when the run time is reached. The program follows the algorithm laid out in section

2.2 and 2.3.

3.1 Experimental Set-Up

The following subsections will go into greater detail on how the parameters are

set for the motion planning algorithms. Specifically shown are the variables marked

with a § in table 3.1.
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Parameter Parameter Range Description

Algorithm
RRT, RRT*, or

RRT#
The Algorithm to be Used
for Planning

Problem N/A
Either the 2D Toy Problem
or Stewart platform Problem

Error Function
Trace or Volumetric

Ellipsoid
The error function being
used

ctol Varies∗ Tolerance Setting

Goal Bias 0.5%
How Often to Sample the
Goal Node

Max Number of
Nodes

3000
Stopping criteria used by
RRT

Run time Varies†
Stopping criteria used by
RRT* and RRT#

∆ 10
How far the algorithm will
extend each iteration

γRRT Varies‡ Ball constant for RRT#

xstart Varies§ Starting Position

xgoal Varies§ Goal Position

P Varies§
Initial Error Covariance
Matrix

Q Varies§ Process Noise Matrix

R Varies§ Observation Noise Matrix

Min and Max
Dimensions

Varies§
Dimension Boundaries for
each Degree of Freedom

w Varies§ Weighting value, if necessary

∗ctol = 0.1 for 2D, ctol = 1.0 for SP

†2D run time was 10 min, SP run time was 30 min

‡γRRT = 200 for 2D, γRRT = 25 for SP

§Explained in Detail Below

Table 3.1: Initial Parameters
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3.1.1 Goal Tolerance

For both problems, the algorithm, problem, and error function are user inputs

and are mainly used for comparison. The tolerance setting, ctol, used for the 2D Toy

problem is 0.1 mm and for the Stewart platform problem is 1 mm. Both of these

values were found through trial and error. When testing smaller values for ctol, the

motion planning algorithm would tend to oscillate around the goal position as it

had an extremely hard time getting within the tolerance values required. The goal

bias parameter is a simple heuristic that has the effect of causing the the motion

planning tree to grow toward the goal position. It is set so that there is a 0.5%

chance that a randomly sampled point will be the goal position thus always pushing

the algorithm to search and extend towards the goal position.

3.1.2 Stopping Criteria

When setting the stopping criteria of the motion planning algorithms there

are two variables that can be adjusted: maximum number of nodes and run time.

The maximum number of nodes is only used by the RRT algorithm as a worst

case stopping criteria. The RRT algorithm will stop before reaching the maximum

number of nodes if the goal is found, otherwise it will continue to run until the

maximum number of nodes is reached. The maximum number of nodes was set to

3000 for both cases.

For the 2D Toy problem this equates to having the entire configuration space

being broken down into 3000 N-dimensional spheres with an approximate radius
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of 1.3 mm; however only approximately 46% of the configuration space is actually

reachable by the robot, limiting the space in which a node can be pulled from.

This translates to actually having the usable configuration space broken down into

spheres of radius approximately 0.9 mm.

For the Stewart platform problem this equates to having the entire configura-

tion space being broken down into 3000 N-dimensional spheres with an approximate

radius of 2 mm, the exact percentage of the six dimensional usable configuration

space for the Stewart platform was not calculated; however when comparing the

euclidean workspace volumes, the usable space is approximately 66% of the total

space.

3.1.3 Parameter Selection

For both tests, the run time can be set based on user preference but should

take into account ∆. If ∆ is small, e.g. 1 mm, then it can take the algorithm a long

time to extend towards the goal and not leave a lot of time for optimization of the

path. Conversely if ∆ is large, e.g. 100 mm, then the algorithm could reach the goal

quickly; however its search radius for neighboring nodes would be extremely large

and could take a long time to search through all of them. Therefore, a ∆ of 10 was

used for both problems. This allowed for the algorithms to find an initial path to

the goal in a relatively short amount of time while keeping the search neighborhood

size manageable. Additionally, the ball constant value, γRRT , value plays a critical

role in keeping the neighborhood size manageable.

45



Within both RRT* and RRT#, γRRT is used as a constant multiplier to a

shrinking radius value, based on the number of nodes in the graph, used to set the

neighborhood search radius. This value shrinks as the number of nodes in the graph

increases. This is done so that as the configuration space becomes more densely

populated with nodes, the amount of nodes in the neighborhood search radius does

not increase drastically. Since a ∆ value of 10 is used for both problems, the point

at which the radius provided by γRRT is equal to ∆ was calculated and is shown in

figure 3.1 for the 2D problem and 3.2 for the Stewart platform problem.

Figure 3.1: Graph Size at which γRRT Radius = ∆ for 2D Problem

In the case of the 2D problem, γRRT was set to 200 as it is able to reach the

point at which the neighbor will start shrinking in about 3 minutes and the tests were

run for 10 minutes. This gives the algorithm just over two-thirds of the run time to

optimize with a shrinking radius. In the case of the Stewart platform problem, γRRT
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Figure 3.2: Graph Size at which γRRT Radius = ∆ for SP Problem

was set to 25 as in testing the algorithm could reach the corresponding ∼1800 nodes

in ∼15 minutes and the tests were run for 30 minutes, again giving the algorithm

two-thirds of the run time to optimize with a shrinking radius. Additionally, these

run times allow for the algorithm to run long enough to obtain the most optimal

path. In testing, the optimization tends to have the most optimal path it will achieve

within half the run-time given.

For both problems, the actuators used were modeled after 200 mm stroke

length P-16P linear actuators made by Actuonix [20]. Using the information pro-

vided by the manufacturer, such as a repeatability of 0.8 mm and mechanical back-

lash of 0.3 mm, it was found that a Gaussian distribution with µ = 0 and σ = 0.2904

mm would provide similar results as shown in figure 3.3. Additionally, the actuators

used are driven by stepper motors and have 1024 steps. Therefore the step size can
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Figure 3.3: Linear Actuator Sampling Distribution

be found from dividing the stroke length by the number of steps and is calculated

to be 0.1953 mm.

For each test of the two experiments, the start and goal positions were ran-

domly found. These positions were kept constant when varying other values, such

as P, Q, and R, so that they can be compared using as similar set-ups as possible.

The min and max dimensions of each problem were found prior to the problems

being tested and stayed constant throughout all testing.

In the case of the 2D Toy problem, the boundary dimensions were set at the

limits meaning the full movement of the actuator could be tested. This boundary

limit includes large areas that would be incapable for the system to reach but it

allowed for all the possible locations to be tested. For the Stewart platform case,

the boundaries were set based on the limits of the entire physical system, these

limits were found after doing some initial testing on the physical Stewart platform
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system located at NASA LaRC. The system was driven to various positions to see

how it would react and it resulted in occasionally breaking an actuator or popping

a ball joint out of socket. Therefore, the limits were implemented so that these

events would be less likely to occur. Additionally, within these limits the Stewart

platform is limited by the maximum stroke length the actuators are set to achieve.

This results in a similar situation as the 2D Toy problem where only a percentage

of the configuration space is available for planning in and not the entirety of the

dimensions given.

3.2 2D Toy Experiments

The 2D Toy problem was done as a way of gaining insight into the motion

planning algorithms being used as well as a test bed for implementing new ideas.The

setup for this problem is shown in figure 3.4. For the 2D Toy problem the Jacobian

used as seen on line 2 of algorithm 8, was found based on a hand derivation from

the kinematics equation. Also within algorithm 8, ∆ value used is a single step size

for the actuator which is different from ∆ used within the EKF. Within the steering

function of the 2D Toy problem, the number of iterations used was found by dividing

the inputted variable ∆ by the step size of the actuator and then rounding up if it

was not a whole number. This was done as the kinematics only moved one step at a

time. The observation Jacobian matrix, H, used in the steering function was set to

the identity matrix, I, as it was assumed both actuators would be observable as well

as their states. The observation noise matrix, R, and the process noise covariance
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Figure 3.4: 2D Toy Problem Setup

matrix, Q, was found by the process shown in algorithm 10. R could have been

found at each iteration of the steering function; however that was tested to be very

time intensive and slowed the algorithm down, instead an average R was found and

used. This process was only done once prior to the experiments being run. A two

element vector, ~l, randomly samples from the linear actuator Gaussian distribution.

The variance of ~l is found at each loop and saved in ~V . The covariance of ~V in

each loop is saved in A. ~V is then multiplied by the Jacobian to find the variance

in the state of each actuator represented by B. Then, the covariance of B is found

and stored in C. Lastly, in order to get a single matrix to use for Q, the average

of C was found and the single matrix for R is found by taking the average of A.

The observation noise, v, comes from a random number generated from a Gaussian

distribution of the observation noise matrix.

Lastly, many variations can be made during the experimentation of the 2D Toy
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Algorithm 10: Method of Solving for Q and R

1 Noise Matrix(J)
2 for k = 1...10000 do

3 ~l ∼ N (0, σ2)

4 ~V = var(~l)

5 A = cov(~V )

6 B = J ∗ ~V
7 C = cov(B)

8 R = 1
N

∑N
i=1 A

9 Q = 1
N

∑N
i=1 C

10 return Q,R

problem. A few that were done within this research include the following: variations

on the amount of process noise Q, R, and starting P were tested. The dimensions

of the 2D Toy problem are set based on the limitations of the actuators being used.

These dimensions are shown in table 3.2.

Dimension [x,y]
Minimum [-145 mm, 490 mm]
Maximum [145 mm, 790 mm]

Table 3.2: Dimensions of 2D Space

3.3 Stewart Platform Experiments

For the Stewart platform experiment, the Jacobian is found at each iteration

in algorithm 9 and returned to the steering function. The observation noise, v, is

generated in the same fashion as in the 2D Toy problem. The observation noise

matrix, R, was found using the process laid out in algorithm 11.

This process starts by finding the inverse kinematic based actuator lengths

for a given state (Line 2). Then, using algorithm 9 in combination with inverse
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kinematics, a calculated actuator length and Jacobian is found at a distance ∆ =

0.1 away (Line 3). Then, in a loop of 5000 trials, using the normal distribution of

the error as explained in section 3.2, a random sampling of actuator error is saved

to a vector, ~lk (Line 5). This actuator error is added to the difference in actuator

lengths between the two previously calculated versions in order to find ~̇L (Line 6).

This is then multiplied by the Jacobian to give the velocity change, ∆V , for the

movement (Line 7). This ∆V can then be used to find the change in position in

an inverse of the method shown on line 15 of algorithm 9 (Line 8). Outside of the

loop, the average ∆X is found (Line 9). Then in another loop of the same length

as before, the difference in ∆X from its average is found (Line 11). This is saved as

∆XC and is used to take the covariance of ∆XC to find R (Line 12).

Algorithm 11: Method for Calculating R for SP

1 Noise Matrix(~x, ~xgoal,∆)

2 ~LAact = IK(~x)

3 ( ~LAcalc,J) = Kinematics(~x, ~xgoal,∆)
4 for k = 1...N do

5 ~lk ∼ N (0, σ2)

6 ~̇L = ~LAcalc − ~LAact +~lk

7 ∆V = J ∗ ~̇L

8 ∆X =

[
∆V 4:6 + [∆V 1:3]~x1:3

∆V 1:3

]
9 ∆X = 1

N

∑N
i=1 ∆X

10 for k = 1...N do
11 ∆XC = ∆X −∆X

12 R = cov(∆XC)

For the Q error used, the matrix was set up as a diagonal matrix where the

first three diagonal terms are assumed to be position error of 2 mm and the second
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three diagonal terms are assumed to be angular error of 2◦. Since the observation

Jacobian matrix is the derivative of each measurement with respect to the state and

these states cannot be found easily, H is found numerically using a finite differences

method. My assumption is that H follows the format shown in equation 3.1 and

therefore for each derivative term, equation 3.2 can be applied. Wherein equation

3.2 adds a small h value to each state in order to calculate the change in actuator

lengths through inverse kinematics because of that addition. This method is applied

in each iteration of the steering function and H is saved and averaged with each

iteration as it is likely to change based on the changing state of the system.

H =


δl1
δx

δl1
δy

δl1
δz

δl1
δγ

δl1
δβ

δl1
δα

...

δl6
δx

δl6
δy

δl6
δz

δl6
δγ

δl6
δβ

δl6
δα

 (3.1)

δli
δx

=
IK([x− h, y, z, γ, β, α])− IK([x+ h, y, z, γ, β, α])

δh
(3.2)

In addition to the aforementioned variables, the weight, w, variable is used in

the Stewart platform problem. The weight variable is used as means of equalizing

the effect the rotation and position error has on the system. As far as variations

in the experiment go, like the 2D problem there are quite a range of variables to

change. Some chosen here are variations in the amount of process noise Q, R, and

starting P were tested. The dimensions of the space in which the top plate of the

Stewart platform are shown in table 3.3.
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Dimension [X,Y,Z,γ,β,α]
Minimum [-100 mm, -100 mm, 327 mm,-15◦,-15◦,-15◦]
Maximum [100 mm, 100 mm, 527 mm, 15◦, 15◦, 15◦]

Table 3.3: Dimensions of Stewart Platform Space
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Chapter 4: Discussion of Results and Conclusions

Within this chapter the results of the experiments for both problems will be

shown. Starting with the 2D Toy problem results of running RRT# and RRT* in

sections 4.1 and 4.2. Following this is the results of running RRT# and RRT* for

the Stewart platform problem in sections 4.3 and 4.4. Additional Stewart platform

tests with varying starting positions are shown in section 4.5.

4.1 Discussion of 2D Toy Problem Results

Within this section, the results of using both the Trace function and the Volu-

metric Ellipsoid function are discussed along with a comparison of RRT* and RRT#

for the 2D Toy problem. The discussion on both error functions highlights the dif-

ferences the starting error covariance matrices have on the resulting error, both in

the total error at the end of a test and the total error increase from start to finish

of the test. Following the summary of results in section 4.1.1 for the Trace function

are the tests results for each variable, in sections 4.1.1.1-4.1.1.3. Similarly, following

the summary of results for the Volumetric Ellipsoid function in section 4.1.2 are the

test results of each variable in sections 4.1.2.1-4.1.2.3.

All of the results discussed in sections 4.1.1 to 4.1.2 are using RRT# as the
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motion planning algorithm of choice. The discussion of RRT* versus RRT# is in

section 4.2.

4.1.1 Noise Variation Using Trace Function

Varying the initial error covariance matrix, P, produces the greatest effect on

the ending error of the 2D Toy problem as shown in table 4.1. This is to be expected

as the initial P represents how well known the initial state is. If the initial state is

highly unknown, it is to be expected that the ending error will be highly unknown as

well. In terms of error addition from the initial error, the P cases had the smallest

average increase by a small margin. Thus showing that the initial P has less effect

on the quality of the motion planning algorithm than the Q and R values.

Case Initial Error Error Addition Ending Error
P 0.2, 2, 20 0.9501 8.3501
Q 2 0.9132 2.9132
R 2 1.8886 3.8886

Total N/A 1.2507 5.0507

Table 4.1: Initial Error, Average Error Addition and Ending Value

The process noise covariance matrix, Q, and the observation noise matrix,

R, are intertwined in their effect on the algorithm. It is known, and specifically

referenced in [15], that a higher Q value results in the EKF filter trusting the

measurement received more so than the a priori estimation it makes and therefore

corrects the estimation more. Additionally, a higher R value results in the EKF

filter trusting the measurement less and instead relying on the a priori estimate

more, therefore correcting less with it.
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These known properties are reflected well in the Q and R test cases. Figure

4.1 shows that the highest ending error of the Q cases, a value of 3.3909, was still

relatively low compared to that of the R cases. This is believed to be caused by the

fact that the measurement coming into the system is one calculated directly from

the forward kinematics equations of the 2D Toy problem with some noise added to

them. Since this observation is so precise, the algorithm is able to correct more for

this and produce a very small amount of error addition on average, as shown in

table 4.1.

Figure 4.1: Box Plot of Ending Errors using Trace Function

An interesting observation from this test is that when R is higher than Q,

there is a higher ending error and higher total error change across each trial since

the algorithm is relying more heavily on the estimated value being correct. This

shows that the algorithm itself is not a great method of estimation; however when
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combined with a relatively small initial error, decent results can still be achieved.

An example of the way the error growth occurs for the case in which R is highest

is shown in figure 4.2. Within this figure, © marks the starting position, × marks

the goal position, and the dashed line is the path taken from start to goal.

Figure 4.2: Error Growth for R = 10*R

In all of the graphs, the trees expanded at a fairly consistent rate. Within

the first approximately 100 seconds the graphs expanded in a logarithmic fashion,

after which they expanded linearly. On average, the variables ended with 7,085

nodes in the graph, with R tests averaging the most nodes in the graph with 7,101.

Specifically, R = 10 ∗R having the peak at 7,627 nodes.
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4.1.1.1 Varying P

For the 0.1*P case, shown in figure 4.3, the initial error value was 0.2, the

lowest value of any of the test cases. This resulted in the lowest ending error seen

in any of the test cases for the 2D Toy problem. The 1*P case had an initial error

value of 2 which matches all of the R and Q cases as they used 1*P also. Lastly, the

10*P case started with an error value of 20, the highest value and the driving factor

in why the average ending of the P cases is so high. This is shown graphically in

figure 4.1 as the box plot of the 10*P case is approximately triple that of the next

highest plot, 10*R.

Figure 4.3: P = 0.1 ∗P Test Data

Figure 4.4: P = 1 ∗P Test Data
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Figure 4.5: P = 10 ∗P Test Data

4.1.1.2 Varying Q

Varying Q with the Trace function had two interesting results. First, the

average error only increased by approximately 0.5 between each step. A very linear

rise compared to the P and R cases. Second, besides the Q = 0.1∗Q case, the tests

converged to the exact same error anywhere from halfway to two-thirds of the way

through the test. The only other case in which this was seen during the use of the

Trace function in the 2D Toy problem was during the R = 10 ∗R.

Figure 4.6: Q = 0.1 ∗Q Test Data
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Figure 4.7: Q = 1 ∗Q Test Data

Figure 4.8: Q = 10 ∗Q Test Data

4.1.1.3 Varying R

In varying the R values, one effect stands out as was previously above. The

average error increase of the R tests is almost double that of any of the other tests.

This results in the ending error being so large in comparison to the results of Q.

The ending error increased by a factor of 5 between the R = 1∗R. This shows that

the a priori estimate of the EKF is less reliable than the observation, even when

adding more error to the observation.

Interestingly, even though R encounters the most error addition, it is able to

include the most nodes in the graph and as the error gets worse, the number of
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nodes in the graph increases. This could be caused by the error getting worse in the

graph and therefore more nodes are added to the graph but are not affecting the

path itself, which would take up more computation time in the algorithm.

Figure 4.9: R = 0.1 ∗R Test Data

Figure 4.10: R = 1 ∗R Test Data

Figure 4.11: R = 10 ∗R Test Data
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4.1.2 Noise Variation Using Volumetric Ellipsoid Function

The use of the Volumetric Ellipsoid function was not meant for the 2D Toy

problem, rather it was meant for the Stewart platform problem. It was applied to

the 2D Toy problem in order to work out any bugs or errors in its code as well as

check to see if it performs similarly to the trace function.

When using the Volumetric Ellipsoid function the resulting error values are

larger than that of the Trace function but follow the same patterns as that of the

Trace function. The P values have the highest average ending error and the R

values have the highest average increase in error; again double that of the P and Q

values. This is shown in both numeric form in table 4.2 and graphic form in figure

4.12.

Case Initial Error Error Addition Ending Error
P 0.3142, 3.1416, 31.4159 1.5652 13.1891
Q 3.1416 1.4345 4.5761
R 3.1416 2.9612 6.1028

Total N/A 1.987 7.9560

Table 4.2: Average Error Addition and Ending Value
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Figure 4.12: Box Plot of Ending Errors using Volumetric Ellipsoid Function

Even though the same results can be seen in the Volumetric Ellipsoid function

as in the Trace function, the Volumetric Ellipsoid function was used as a way of

measuring the volume of the error ellipsoid at each node in the graph. Additionally,

this would be able to give an idea of the way in which the error was growing, or

which axis it would grow along. Unfortunately, the error ball was quite small and

unable to show up on plots in a meaningful way. However, as in the Trace function

cases, an example plot of the way in which the error grows from the starting position

is seen in figure 4.13. This shows the error growth pattern is similar to that of the

Trace function. Within this figure,© marks the starting position, × marks the goal

position, and the dashed line is the path taken from start to goal.

A noticeable change when using the Volumetric Ellipsoid function is that the

tests tend to converge on the same error point quickly, as shown in figures 4.14, 4.15,
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Figure 4.13: Error Growth for R = 10*R

and 4.19. Another noticeable change when using the Volumetric Ellipsoid function

is the average number of nodes in the graph is higher than the Trace function with

7,313, an increase of 228 nodes in the same amount of run time. The Q tests

achieved the highest average number of nodes in the graph at 7,384 even though the

highest single test value was 7,607 for the R = 10 ∗R test.

4.1.2.1 Varying P

Varying P produced the same effects on the error in the graph as in the

Trace function tests, though this error was noticeably higher. Specifically, the error

resulted in multiples of π as the starting P = I2x2, thus when entered into the

Volumetric Ellipsoid equation, the volume produced is π.
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Figure 4.14: P = 0.1 ∗P Test Data

Figure 4.15: P = 1 ∗P Test Data

Figure 4.16: P = 10 ∗P Test Data

4.1.2.2 Varying Q

The Q tests achieved the lowest ending error and error increase while also

achieving the highest average number of nodes in the graph. These two attributes
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are intertwined as figures 4.18 and 4.19 show. All three trials reached the same

ending error and never improved, resulting in the test being able to add more nodes

to the graph without spending computation time adding the nodes to the path.

Additionally, figure 4.17 shows the graph was able to get a tight grouping of ending

errors and still maintain a high number of nodes in the graph.

Figure 4.17: Q = 0.1 ∗Q Test Data

Figure 4.18: Q = 1 ∗Q Test Data

Figure 4.19: Q = 10 ∗Q Test Data
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4.1.2.3 Varying R

R tests again produced the highest error increase from the initial given error

as well as the second highest ending error, only being eclipsed by the already highly

set P error. Similarly to the Trace function case, the error increased non-linearly

as the R increased. Also similarly to the Trace function case, the R = 10 ∗R tests

found was the only R test in which each trial came to the exact same ending error

value.

Figure 4.20: R = 0.1 ∗R Test Data

Figure 4.21: R = 1 ∗R Test Data
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Figure 4.22: R = 10 ∗R Test Data

4.2 RRT* and RRT# Comparison for 2D Toy Problem

This section will be describing the comparison between the RRT* and RRT#

motion planning algorithms. For comparison, RRT* was run with the same param-

eters as RRT#, including the same start and goal position, and run for the same

amount of time. Also, RRT* was run for all of the R cases for both error functions,

thus allowing a decent comparison for a variable.

One major difference across all of the tests is that RRT* was able to add more

nodes to the graph. The specific differences are noted in the following subsections as

they will be compared to the corresponding RRT# data. Additionally, RRT* was

able to calculate its first solution more quickly than RRT#, which will be expanded

upon in the following sections. The summary of the ending errors of all the test

results for the RRT* tests are shown in figure 4.23.

This figure shows the end results for each of the test cases for both the Trace

function, noted with a TR in the figure, and the Volumetric Ellipsoid function,

noted with a VE in the figure. Both groupings of results match the same pattern
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Figure 4.23: Ending Error of RRT* Tests

of a non-linear rise with the increasing multiplier to R. Also, this graph shows that

as the multiplier increased, the range of error values also increased, leading to the

assumption that with higher input error there will be a wider range of ending error

making it harder to predict.

4.2.1 Algorithm Comparison Using Trace Function

RRT* runs in a much quicker method than that of RRT#, with less compu-

tation time dedicated to propagating effects of new additions to the path, it allows

the algorithm to add more nodes to the graph. In these tests, RRT* obtained an

average of 12,534 nodes in the graph, an increase of 76.51% from RRT#. When

running the trace error function, RRT* was able to obtain its first solution in an

average time of 0.43 seconds. RRT# was only able to reach its first solution in an
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average of 0.74 seconds, thus giving RRT* an improvement of 41.59% in reaching

the first solution.

Comparison of the ending error of each test with the corresponding RRT#

test is shown in table 4.3. This shows that RRT# performs slightly better or equal

to RRT* for all of the cases, but only by a slim margin of 2.5% in total.

Case Average RRT* Error Average RRT# Error
R = 0.1 ∗R 2.1391 2.1339
R = 1 ∗R 2.9733 2.9733
R = 10 ∗R 6.8826 6.5587

Total 3.9917 3.8886

Table 4.3: Average Ending Error

Figure 4.24: R = 0.1 ∗R Test Data

Figure 4.25: R = 1 ∗R Test Data
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Figure 4.26: R = 10 ∗R Test Data

4.2.2 Algorithm Comparison Using Volumetric Ellipsoid Function

For comparing the Volumetric Ellipsoid function, again RRT* proves faster

than RRT# in reaching its first solution in an average time of 0.45 seconds. RRT#

was only able to reach its first solution in an average of 0.51 seconds; a slightly

worse improvement of only 10.92% when compared to the Trace function. Also,

RRT* again is able to grow to a larger size than RRT# with an average of 12,673

nodes in the graph, a greater expansion of 73.27% compared to RRT#’s 7,314 nodes

on average.

In comparison of ending error, table 4.4 shows that RRT* performed a very

miniscule 0.23% better than RRT# in total average only because RRT# performed

so poorly in the R = 10∗R case. However, figure 4.29 shows that some trials of the

error were able to perform better than the average, reaching a lower value of 9.5863

which is a much better 6.95% improvement of the RRT# average.
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Case Average RRT* Error Average RRT# Error
R = 0.1 ∗R 3.3682 3.3358
R = 1 ∗R 4.8342 4.6704
R = 10 ∗R 10.0636 10.3023

Total 6.0887 6.1028

Table 4.4: Average Ending Error

Figure 4.27: R = 0.1 ∗R Test Data

Figure 4.28: R = 1 ∗R Test Data

Figure 4.29: R = 10 ∗R Test Data
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In summary of the 2D Toy problem comparison of RRT* and RRT#, RRT*

runs more quickly than RRT# and is able to reach an initial solution faster than

RRT#; however, when given a longer amount of time to run, RRT# is able to reach

a better more consistent solution based on the testing done in this work.

4.3 Discussion of Stewart Platform Problem Results

Within this section, the results of using both the Trace function and the Volu-

metric Ellipsoid function are discussed along with a comparison of RRT* and RRT#

for the Stewart platform problem. These results highlight the difference in the ap-

plication of the motion planning algorithms as well as the error functions on the

Stewart platform compared to the 2D Toy problem.

Following the summary of results in section 4.3.1 for the Trace function are

the tests results for each variable, in sections 4.3.1.1-4.3.1.3. Similarly, following the

summary of results in section 4.3.2 for the Volumetric Ellipsoid function are the test

results of each variable, in sections 4.1.2.1-4.1.2.3. Lastly, a comparison of RRT*

and RRT# when used on the Stewart platform is shown in section 4.4.

4.3.1 Noise Variation Using Trace Function

Table 4.5 shows that the test cases in which the process noise covariance

matrix, Q, is varied corresponds to the highest average ending error as well as the

highest change in error from the starting value. The observation noise covariance

matrix, R, corresponds to the lowest average ending error and total error addition,
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a change in the results shown in the 2D Toy problem. Also, the error covariance

matrix, P, responded approximately as expected when it was varied, this will be

expanded upon below.

Case Initial Error Error Addition Ending Error
P 0.6, 6, 60 40.6265 62.8265
Q 6 166.7978 173.7978
R 6 37.6207 43.6207

Total N/A 81.6817 93.0817

Table 4.5: Average Error Addition and Ending Error

Since Q error is highest and since using a higher Q value means the algorithm

trusts the measurement more, either the measurement being taken is more inaccu-

rate than the estimate or the algorithm is very susceptible to process noise; skewing

results more. This point is strengthened when looking at the data of the R value

test cases shown in figure 4.30. As the R value is increased, the average ending error

actually goes down rather than increases as in other tests. This shows that when

the algorithm relies on its own estimate more than observations being taken it has

better performance.
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Figure 4.30: Box Plot of Ending Errors using Trace Function

An example plot of the path is shown in figure 4.31 where the path taken is

represented in two different spaces. The left side is the position space in units of

millimeters and the right side is the rotation space in units of degrees. The light blue

spheres shown in the orientation space are the representation of the error ellipsoids

associated with each movement. These ellipsoids grow with the error at each stage

but are relatively small. Within both of these figures,©marks the starting position,

× marks the goal position, and the blue line is the path taken from start to goal.

In all of the Trace cases, the trees expanded in a somewhat non-linear fashion,

more noticeably so in the R = 10 ∗R and Q = 10 ∗Q cases. Theses two cases were

also the only two that averaged significantly less nodes in the graph than the other

cases with 3,063 and 3,402, respectively. These values are roughly half the average

of all the other cases which comes to 6,552 nodes in the graph.

76



Figure 4.31: Example Trajectory Using Trace Function

4.3.1.1 Varying P

Varying P produced some interesting results, with the P = 0.1∗P and P = 1∗

P cases producing almost the same ending error at 39.915 and 43.3491, respectively.

This was an increase of only 8.6% between the two cases whereas the increase from

P = 1∗P to P = 10∗P was 142.7%. This was a massive jump, but can be attributed

to the starting error being 60 for the P = 10 ∗P case.

Figure 4.32: P = 0.1 ∗P Test Data
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Figure 4.33: P = 1 ∗P Test Data

Figure 4.34: P = 10 ∗P Test Data

4.3.1.2 Varying Q

One of the most surprising results was the ending error increase of Q across

the trials. From an increase of 333.7% between Q = 0.1 ∗ Q to Q = 1 ∗ Q to an

astonishing increase of 972.9% between Q = 1 ∗Q to Q = 10 ∗Q. This is quite a

deviation from the results seen in the 2D problem but can possibly be explained by

the functions being used. Since a larger Q than R corresponds to a higher correction

of the estimate, the steering function is correcting the state estimate more than it

needs to. On top of this is that since the Q is quite large in the Q = 10 ∗Q case,

much more noise is being added into the system resulting in a much higher error.
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Figure 4.35: Q = 0.1 ∗Q Test Data

Figure 4.36: Q = 1 ∗Q Test Data

Figure 4.37: Q = 10 ∗Q Test Data

4.3.1.3 Varying R

Another surprising result is that the R tests actually decreased in ending error

as R increased in size. Specifically, R = 1 ∗R to R = 10 ∗R resulted in a 18.11%
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decrease in error. A reason for this decrease could be the same effect that caused

the massive spike in the Q yet with opposite results. With an increase in R the

steering function corrects the a priori estimate less based on the observation being

taken, thus relying more on the initial estimate.

Figure 4.38: R = 0.1 ∗R Test Data

Figure 4.39: R = 1 ∗R Test Data

Figure 4.40: R = 10 ∗R Test Data
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4.3.2 Noise Variation Using Volumetric Ellipsoid Function

Using the Volumetric Ellipsoid function with a six dimensional problem causes

extremely small error, on the order of 10−7 of total error increase over the entire

length of the path. Node to node error increase is minimal to the point that MAT-

LAB rounding error in the solution of some functions plays a part. Specifically, in

the case of the steering function when calculating P and the innovation covariance,

S. When initially ran, these matrices would come out to be non-symmetric which

is not what is supposed to occur. When investigated further, the difference in sym-

metry was on the order of 10−16. This was attributed to MATLAB rounding error

in the calculation of the matrices. In order to fix this problem, a simple solution

was used as shown in equation 4.1.

P =
P + P′

2
(4.1)

This turned out to not be a good method of tracking error for the Stewart

platform as the little amount of error deviation was not useful in producing decent

results. As can be seen in table 4.6 where the error addition is extremely small

resulting in very little change from the initial error.

Case Initial Error Error Addition Ending Error
P 5.167 ∗ 10−3, 5.1677, 5167 6.8889 ∗ 10−8 1.7243 ∗ 103

Q 5.1677 9.6 ∗ 10−7 5.1677
R 5.1677 7.9222 ∗ 10−7 5.1677

Total N/A 6.0704 ∗ 10−7 578.2102

Table 4.6: Average Error Addition and Ending Error
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Figure 4.41: Box Plot of Ending Errors using Ellipsoid Function

4.3.2.1 Varying P

Using the Volumetric Ellipsoid function caused the error of the P = 10 ∗ P

case to dwarf that of the rest of the test cases. This error averaged at 5,168 and is

entirely due to the way the Volumetric Ellipsoid function handles P when calculating

error. By taking the eigenvalues of a 10*I6x6 matrix and taking the product of all

six eigenvalues, it multiplies the rest of the equation by 1,000. Besides this high

ending error value, the P test cases resulted in the lowest error increase from the

initial error.
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Figure 4.42: P = 0.1 ∗P Test Data

Figure 4.43: P = 1 ∗P Test Data

Figure 4.44: P = 10 ∗P Test Data

4.3.2.2 Varying Q

Unlike the Trace function results for Q testing, the Volumetric Ellipsoid func-

tion did not produce a high change in error across the range of multipliers because
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the error values were so small the change was not that noticeable. However the

difference in change between the Q = 0.1 ∗ Q to Q = 1 ∗ Q and Q = 1 ∗ Q to

Q = 10 ∗ Q was a 59.7% increase. The similarity of this test with the 2D Toy

problem test was that the Q = 10 ∗Q resulted in the lowest average tree expansion

of only 2,944 nodes.

Figure 4.45: Q = 0.1 ∗Q Test Data

Figure 4.46: Q = 1 ∗Q Test Data

Figure 4.47: Q = 10 ∗Q Test Data
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4.3.2.3 Varying R

The R tests for the Volumetric Ellipsoid function produced very similar results

as the Q tests. The R tests had an increase in ending error with each successive

raise in the multiplier applied to R, unlike the 2D Toy problem tests. Similarly to

the Trace function tests, the R = 10 ∗R test also expanded less than other tests,

to only an average of 3,351 nodes. The total average of all tests outside of this test

and the Q = 10 ∗Q test was 6,639 nodes, meaning only half as many nodes were

visited compared to other testing.

Figure 4.48: R = 0.1 ∗R Test Data

Figure 4.49: R = 1 ∗R Test Data
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Figure 4.50: R = 10 ∗R Test Data

4.4 RRT* and RRT# Comparison for Stewart Platform Problem

Within this section is the discussion of the comparisons of the RRT* and

RRT# motion planning algorithms using both error functions. The method for

testing this comparison is equivalent to the method used for the 2D Toy problem.

The same starting position, goal position, parameters, and run time are used for

the RRT* algorithm. Also like the 2D Toy problem, the algorithm was over the

variations of the R case.

Also similar to the 2D Toy problem was the fact that RRT* was able to add

more nodes to the graph in the same run time. With a total average of 8,415 nodes

compared to only 5,863 nodes for RRT#. The summarized results of the tests are

shown in figure 4.51. This figure shows similar results as experienced in the RRT#

tests where a very tiny error deviation occurred when using the Volumetric Ellipsoid

function. Each error function will be individually analyzed in the sections below.
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Figure 4.51: Ending Error of RRT* Tests

4.4.1 Algorithm Comparison Using Trace Function

RRT* is a quicker running algorithm than RRT#, again being able to reach a

first solution faster than RRT# and obtain more nodes in the graph than RRT#.

For quickness, RRT* was able to obtain the first solution in an average of 14.61

seconds whereas RRT# took 31.22 seconds, giving RRT* a 53.2% faster time to

first solution. As mentioned earlier, RRT* was able to grow to a larger size than

RRT#, with it being able to grow to an average of 8,475 nodes using the Trace

function. An increase in size of 53.2% compared to RRT# reaching only 5,532

nodes.

Comparison of the ending error of each test with the corresponding RRT# test

is shown in table 4.7. This table shows that RRT# performed worse than RRT*

by only 1.54%. This was mainly due to the R = 1 ∗R tests of RRT# performing
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so poorly. Without these tests performing poorly, RRT# would have shown to be

better as it outperformed RRT* in both the R = 0.1 ∗R and R = 10 ∗R tests.

Case Average RRT* Error Average RRT# Error
R = 0.1 ∗R 39.5196 37.7273
R = 1 ∗R 39.4137 51.2036
R = 10 ∗R 49.9151 41.9312

Total 42.9494 43.6207

Table 4.7: Average Ending Error

Figure 4.52: R = 0.1 ∗R Test Data

Figure 4.53: R = 1 ∗R Test Data
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Figure 4.54: R = 10 ∗R Test Data

4.4.2 Algorithm Comparison Using Volumetric Ellipsoid Function

For comparing the Volumetric Ellipsoid function, again RRT* proves faster

than RRT# reaching its first solution in an average time of 12.39 seconds whereas

RRT# was only able to reach its first solution in an average time of 27.33 seconds,

an improvement upon the Trace function time of 15.14%. Again RRT* was able to

reach more nodes than RRT#, with an average of 8,355 nodes compared to 5,608

nodes for RRT#. Table 4.8 shows that RRT# is minimally better than RRT* with

a total average ending error difference of 9 ∗ 10−8. This shows that the Volumetric

Ellipsoid function is not well suited for use with the RRT* algorithm, as was the

case with the RRT# algorithm. The error itself is minuscule compared to the error

values seen in the Trace function and is slightly more computationally expensive

but able to reach the first solution slightly quicker than the Trace function.

Case Average RRT* Error Average RRT# Error
R = 0.1 ∗R 5.16771278 5.16771278
R = 1 ∗R 5.16771285 5.16771285
R = 10 ∗R 5.16771535 5.167715090

Total 5.16771366 5.16771357

Table 4.8: Average Ending Error
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Figure 4.55: R = 0.1 ∗R Test Data

Figure 4.56: R = 1 ∗R Test Data

Figure 4.57: R = 10 ∗R Test Data

In final comparison of the RRT* and RRT# motion planning algorithms,

RRT# performs better for accuracy when used on a Stewart platform, keeping the

same result as in the 2D Toy problem case.
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4.5 Additional RRT# Testing on the Stewart Platform

Within this platform is additional testing done on the Stewart platform at

various locations of the workspace. A total of ten different starting and goal cases

were tested. Cases 1-5 were randomly selected and cases 6-10 were hand picked

based on certain aspects or to create certain paths for the Stewart platform to move

through. The full list is shown in table 4.9. For each of these cases, five trials

were run using the Volumetric Ellipsoid function, available in section 4.5.1, and five

trials were run using the Trace function, available in section 4.5.2. In the setup

of these tests, the error covariance matrix, P, was set to P = 1 ∗ P. Similarly,

the observation noise covariance matrix, R, and process noise covariance matrix, Q,

were set to R = 1∗R and Q = 1∗Q, respectively. This allowed for a simple common

testing setting for all cases. Additionally, the runtime was set at 30 minutes, similar

to the previously run cases. All other values were kept consistent with the previously

run RRT# cases.

The positions for case 6 were chosen to test how the algorithm would handle

a large movement from the bottom of its space to the top of the opposite side

along with some rotation of the moving plate. This gives an idea of how well the

algorithm works with large movements as this is one of the largest movements the

Stewart platform could see. Case 7 was picked for a similar reason as case 6; however

the start and goal sides were inverted, meaning the start is at the top of the region

and the goal is at the bottom. Case 8 was chosen to see how the algorithm handles

a purely vertical movement with some rotation added in. Case 9 was chosen to see
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Case
#

Start Position Goal Position

1
[-78.05, 28.41, 447.63, -13.33◦,

6.46◦, 4.98◦]
[ 79.43, -11.12, 434.12, -9.03◦,

6.05◦, 12.77◦]

2
[24.8, 8.04, 473.2, -8.98◦, 13.44◦,

-14.12◦]
[13.64, -64.57, 347.92, -8.16◦,

-8.45◦, -7.58◦]

3
[66.73, -65.85, 476.99, -7.55◦,

-11.44◦, 8.44◦]
[-58.94, 80.32, 389.53, 11.78◦,

-14.92◦, 13.23◦]

4
[16.47, 11.46, 422.55, 8.69◦,

-14.38◦, 3.85◦]
[38.35, .72.13, 523.54, -10.68◦,

9.95◦, 4.86◦]

5
[37.84, 91.48, 354.33, 0.44◦, 7.16◦,

2.46◦]
[76.07, -29.19, 470.6, -10.72◦,

13.28◦, -1.37◦]

6 [-100, -100, 332, 5◦, 5◦, 5◦] [100, 100, 487, -5◦, -5◦, -5◦]

7 [-100, 100, 487, 5◦, 5◦, 5◦] [100, -100, 332, -10◦, 5◦, -10◦]

8 [0, 0, 377, -15◦, -15◦, -15◦] [0, 0, 527, 0◦, 0◦, 0◦]

9 [100, -100, 427, 15◦, -15◦, 15◦] [-100, 100, 427, -15◦, 15◦, -15◦]

10 [0, -100, 427, 0◦, 0◦, 0◦] [0, 100, 427, 0◦, 0◦, 0◦]

Table 4.9: Additional Test States

how the algorithm handles large changes in rotation along with straight line motion

as this path is all within the same Z-axis. Case 10 was chosen to show how the

algorithm handles no rotation and a pure straight line motion along the Y-axis.

4.5.1 Testing with Volumetric Ellipsoid Function

Figure 4.58 shows the range and average error accumulation of the additional

Volumetric Ellipsoid based tests. The accumulated error stated fairly consistent on

average between 6 ∗ 10−8 and 10 ∗ 10−8 with outliers being cases 4, 8, and 9. Case

8 had a smaller amount of average error than most other cases as the linear motion

was purely within the Z direction and the rotation motion was about all three axes,
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thus meaning there would be less error about the other two linear directions. Case

9 had the highest average error as it was a combination of long travel distance in

the X and Y direction combined with the largest change in rotation of 30◦ about all

three axes.

Figure 4.58: Ending Error of Additional Tests

Figures 4.59-4.68 show example paths taken within all ten cases. These paths

were chosen to represent these cases because they were the best result of each of

the trials ran. Within all of the Stewart platform testing of the motion planning

algorithms, it was noticed that the produced error accumulation is extremely small

compared to that of the trace function and it did not follow the same increase as

the 2D case. Initially, this error was believed to come from the Volumetric Ellipsoid

function performing poorly in higher dimensions; however with further investigation

this was found not to be the case. The reasoning behind this error comes from the
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adjusted error estimate within the steering function. The amount of error being

added because of a measurement is most likely too small for a real life scenario.

This small amount of error, especially small for the rotation elements, causes the

Kalman gain to become quite small. In turn, meaning that the steering function

is saying that there is very little error being added within each step of the steering

function.

Figures 4.59 to 4.63 show the running of the motion planning algorithm within

the five random cases. Within all of these figures,© marks the starting position, ×

marks the goal position, and the blue line is the path taken from start to goal. An

interesting observation is that in most of the cases, there is quite a deviation from

what may be the intuitive path, i.e. a straight line from start to goal. Specifically

within the orientation portion of these plots the graphs show quite sharp changes

in orientation.

Figure 4.59: Case #1 Using Volumetric Ellipsoid Function
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Figure 4.60: Case #2 Using Volumetric Ellipsoid Function

Figure 4.61: Case #3 Using Volumetric Ellipsoid Function

Figure 4.62: Case #4 Using Volumetric Ellipsoid Function
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Figure 4.63: Case #5 Using Volumetric Ellipsoid Function

Within figures 4.64 to 4.68 are the best paths taken for the hand picked states.

Case 8, shown in figure 4.66, in particular shows a very nice straight line path within

the position space and a fairly straight path in the orientation space, showing a

quite simple path to the goal. Interestingly for case 10, in figure 4.68, when the

Stewart platform has no rotation component necessary for movement, it still has

some movement in the rotation space due to the error provided by the steering

function.

Figure 4.64: Case #6 Using Volumetric Ellipsoid Function
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Figure 4.65: Case #7 Using Volumetric Ellipsoid Function

Figure 4.66: Case #8 Using Volumetric Ellipsoid Function

Figure 4.67: Case #9 Using Volumetric Ellipsoid Function
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Figure 4.68: Case #10 Using Volumetric Ellipsoid Function

4.5.1.1 Position Only Volumetric Ellipsoid Function Testing

Within this subsection, a variation of the calculation of error when using the

Volumetric Ellipsoid function is tested. This variation uses only the component of

the error covariance matrix, P, that deals with error in position (the top left 3x3

matrix). This is done to test how only looking into position error affects the path

calculated by the motion planning algorithm. Figure 4.69 shows the summary results

of this test, both the number of trials taken and the range of error values calculated.

This summary shows the range of errors experienced as well as the tracking of each

trial individually.

Figure 4.70 shows the best case path created and figure 4.71 shows the worst

path created, based on the error in the system. In the best case scenario, the path

is still not a very smooth point from start to goal but still does not double back

on itself at least, unlike in the worst case scenario. In the worst case scenario, the

path doubled back on itself prior to heading to the goal position, even doing this
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within the orientation space. Using the position only values for calculating error

did address the creation of such small error at the goal as shown in table 4.10.

This shows that with using the Volumetric Ellipsoid function, where the ellipsoid is

projected into a subspace only about position, the error accumulation comes to a

more meaningful amount.

Figure 4.69: Position Only Error Tracking Summary

Trial Initial Error Error Addition Ending Error
1 4.188 1.643 5.831
2 4.188 1.461 5.649
3 4.188 1.278 5.466
4 4.188 1.643 5.831
5 4.188 1.278 5.466

Total 4.188 1.461 5.649

Table 4.10: Average Error Addition and Ending Error

Figure 4.70: Trial #5, Lowest Error Trial
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Figure 4.71: Trial #4, Highest Error Trial

4.5.2 Testing with Trace Function

Figure 4.72 shows the range and average accumulated error within the Trace

function tests. Compared to the Volumetric Ellipsoid results, it can be seen that

case 6 produced some of the highest error whereas this fell within the average in the

Volumetric Ellipsoid function tests. Interestingly, case 9 caused approximately the

same highest error but also had the highest range of all the tests, this case was also

a heavy outlier in the Volumetric Ellipsoid function tests.

Figures 4.73-4.82 represent the best trials for all ten cases when using the Trace

function. Within this, figures 4.73 to 4.82 show how the trace function calculates

a different path to the goal for the random cases when compared to the Volumet-

ric Ellipsoid function. Again, these cases show sharp turns within the orientation

space and occasionally within the position space. Overall, this shows some of the

characteristics about the motion of the Stewart platform, specifically that it can im-

mediately switch from going in one rotation direction to the exact opposite rotation
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direction. This allows the motion planning algorithm to plan for sharp movements

around possible obstacles or around singularities within the workspace.

Figure 4.72: Ending Error of Additional Tests

Figure 4.73: Case #1 Using Trace Function
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Figure 4.74: Case #2 Using Trace Function

Figure 4.75: Case #3 Using Trace Function

Figure 4.76: Case #4 Using Trace Function
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Figure 4.77: Case #5 Using Trace Function

Comparing the results of the hand picked positions with the same results in

the Volumetric Ellipsoid function, there are some key differences. For case 6, as

seen in figure 4.78, the position path is far more abrupt in changes than that of

the Volumetric Ellipsoid function whereas the orientation path is linear. This could

be due to the error in the system being more in the position side rather than in

the orientation side when this path was calculated. Another key difference is in the

orientation space of case 7. The Volumetric Ellipsoid function shows a far greater

range of changes occurring along the path than the Trace function case in figure

4.79. Another key difference is in case 9, shown in figure 4.81, where the position

and orientation paths are smoother and follow what may be considered the most

optimal length path between the start and goal states. Within the Volumetric

Ellipsoid function, the paths are quite a bit more jagged with a greater range of

change occurring in both the position and orientation spaces. Lastly, case 10 shows

that in both the Volumetric Ellipsoid and Trace function trials, there is enough

error to cause movement within the orientation space even though there was to be
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no movement within that space.

Figure 4.78: Case #6 Using Trace Function

Figure 4.79: Case #7 Using Trace Function

Figure 4.80: Case #8 Using Trace Function
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Figure 4.81: Case #9 Using Trace Function

Figure 4.82: Case #10 Using Trace Function

4.6 Conclusions and Summary

4.6.1 Conclusions

In conclusion, the following takeaways should be noted: First, RRT# performs

better than RRT* in most cases when given a long enough time to run. RRT*

performs better if a solution is needed quickly as it is more likely to give a solution

in a short amount of time. Second, the Trace function worked as a better metric in

high dimensions for the cost function of the motion planning algorithms compared

105



to the Volumetric Ellipsoid function. It was comparable to the Volumetric Ellipsoid

function in lower dimensions as it produced similar results, so it may be a better

overall metric function. Third, when using the steering function for the Stewart

platform, a high R to Q ratio gives some of the best results for error analysis.

Combining this with a well-known starting position, e.g. a low initial P, gives the

best chance of a low error solution. Lastly, computationally MATLAB is limited in

size to the arrays that it can handle and therefore limits the capability of testing in

some cases to shorter run-times. It should be avoided when longer run times and

larger data handling capabilities are necessary.

4.6.2 Summary

The work described in this dissertation provides a unique approach to error

based motion planning for a Stewart platform as well as a 2D Toy problem. Using

RRT# motion planning algorithm combined with a Trace function for error tracking

was shown to work best as a solution for tracking and planning for low cumulative

error along the path found by the motion planning algorithm. and can be extended

to a more general case of any well-defined robotic platform. It was also shown that

RRT*, while not as efficient as RRT#, can be used if necessary for this approach.
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Appendix A: Additional Equations

Within this section are all of the additional non-essential auxiliary equations

used within the algorithms and subroutines. Equation A.1 is the normalize function

used in algorithm 8 and 9.

~xnorm =
~x

||~x||
(A.1)

Equation A.2 is the Rodrigues Rotation formula used during the Stewart plat-

form kinematics. This formula was used to calculate a rotation vector [~ω]θ where

[~ω] is the skew-symmetric matrix of ~ω. This rotation vector represented the axis of

rotation from one point to another and the amount of rotation in each of the axes.

e[~ω]θ = R = I + sin θ[~ω] + (1− cos θ)[~ω]2 (A.2)
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