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Viscoelastic behavior is frequently observed in dynamical flexible multibody

systems. In the simplest form it is manifested in one dimensional revolute and

prismatic joints. Beyond which more complex force elements such as six degree

of freedom flexible joints can also be found. Finally, beams, plates and shells are

found to exhibit viscoelastic behavior too. In the past extensive work has been

done on analyzing the dynamic response of three dimensional beams by performing

cross-sectional analysis through finite element methods and subsequently solving

the reduced beam problem. The approach is particularly relevant for the analysis

of complex cross sections and helps improve computational efficiency significantly.

A formulation which incorporates a viscoelastic model of the generalized Maxwell

type with a solution of the three dimensional beam theory which gives an exact

solution of static three dimensional elasticity problems is presented. Multiple exam-

ples incorporating the use of the aforementioned model in the context of viscoelastic

beams and joints are presented. Shortcomings of the Kelvin-Voigt model, which is



often used for flexible multibody systems, are underlined.
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Chapter 1: Introduction

1.1 Literature Review

A beam is a structural element whose cross-sectional dimensions are much

smaller than the length of the element. The area of solid mechanics which specifi-

cally deal with the behaviour of beams is known as beam theory. For beam problems

a number of theories have been proposed, depending on the nature of the problem

that is required to be solved. We are looking to deal with beams having complex

cross sections. Such beams are commonly observed in the case of rotor craft, like

helicopters, wind turbines etc. In such beams viscoelastic damping due to the nature

of materials that are used can be observed. While a full fledged three dimensional

finite element analysis can be performed for the same it is much more expensive

computationally. Especially during early design stages, it is useful to have reduced

models for analyzing various structural components. The analysis of complex cross

sections in linear elastic beams was first done by Giavotto et al. [1]. The approach

presented a formulation to relate the sectional strains and curvatures with the sec-

tional forces and moments using a sectional stiffness matrix. The sectional strains

and curvatures can be used to recover the three dimensional stresses across the

beam. Simo et al. [2] formulated sectional-level visco-plastic constitutive laws for
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geometrically exact rods without resorting to local, three dimensional constitutive

laws. Mata et al. [3] developed a nonlinear constitutive model for the analysis of the

dynamic behavious of beams based on the formulation by Simo [4]. They introduced

viscoelasticity in the material model by incorporating it in the first Piola-Kirchhoff

stress tensor. In the paper by Abdel-Nasser and Shabana [5] viscous damping was

incorporated using a three dimensional Kelvin-Voigt model into a geometrically non-

linear beam formulation using absolute nodal co-ordinates. The formulation was was

inapplicable to incompressible materials and was seen to suffer from Poisson locking.

A Kelvin-Voigt model was also proposed by Antman [6] as a source of numerical

dissipation overcome problems of shock wave formation in the undamped, nonlinear

coupled system of PDEs in Cosserat rods. Ribe [7] studied the coiling of fluid flows,

the coiling was found to be fundamentally similar to simultaneous folding of vis-

cous sheets and coiling of an elastic rope. It was shown that the three dimensional

Navier-Stokes equations for fluid flow could be reduced to the dynamic equilibrium

equations of a Kirchhoff/Love rod having a Maxwell type constitutive equation for

the viscous forces and moments. An incompressible fluid flow model was used to

model the extensional flow of the fluid with lateral contraction where the experi-

mental findings from Trouton [8] on the shear and extensional viscosity being η and

3η respectively were incorporated. Extensions to the work done by Ribe [7] can be

found in Panda et al. [9] who presented a asymptotic model to describe the spinning

of a slender curved inertial viscous Newtonian fiber with a free boundary condition

at the end. Marheineke and Wegener [10] further generalized the model presented

in [9] by incorporating the effect of surface tension and deducing the boundary con-
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dition for the free end. Klar et al. [11] and Arne et al. [12] developed a furmulation

for the simulation of viscous fiber for the application to woven and unwoven textiles

using Ribe’s Maxwell-type constitutive laws. Lang et al. [13] used a Cosserat rod

model to simulate a the dynamical behavior of viscoelastic rods with quaternions

being used to parameterize rotations. In these formulations the sectional stiffness

matrix is used to relate the sectional stresses to the sectional strains. Additionally,

viscous stress resultants were introduced which were considered to be proportional

to the sectional strain rates using effective damping parameters. The model pre-

scribed in this paper was used to simulate the 5MW NREL wind turbine by Schulze

et al. [14] trough a fully integrated multibody dynamics formulation. Lang et al. [15]

also used the model detailed in [13] to study both purely viscous and fully dynamic

effects. Critical values of shear and extensional viscosity were evaluated and were

later used to damp out the unwanted high frequency modes in fully nonlinear com-

putations. Finally Linn et al. [16] added Kelvin-Voigt type viscous damping to the

Cosserat rod model for homogeneous and isotropic materials. It was observed that a

slight damping of oscillation amplitudes can be seen for a clamped cantilever beam.

Cross sectional warping deformation was neglected for their study and the damp-

ing parameters were corrected in an ad-hoc manner as per Cowper [17]. Due to

the limitations imposed on the model they could not be extended to complex cross

sections or more complex viscoelastic models like the generalized Maxwell model.

The aim of this paper is to incorporate the well known generalized Maxwell model

for viscoelasticity with already existing beam theories. A detailed formulation of

the the solution techniques employed for viscoelastic beams is presented. It can be
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easily extended to elements like elastomeric dampers and flexible joints made out of

viscoelastic material, numerical examples for both are presented.
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Chapter 2: Review of Classical Viscoelasticity

Viscoelastic behavior is commonly represented with the help of springs and

dashpots associated in a variety of ways. Using different combinations a variety of

viscoelastic models can be represented. For a detailed presentation of viscoelastic

constitutive laws the reader is referred to Flügge [18]. Our work is limited to the

application of the generalized Maxwell model for viscoelasticity. It will be briefly

discussed in this section.

2.1 The Generalized Maxwell model

In all models the springs are used to represent the elastic behavior of the ma-

terial while dashpots are used to characterize the energy dissipation in the material.

The generalized Maxwell model consists of an elastic branch coupled with one or

more Maxwell fluid branches in parallel. A Maxwell fluid branch is simply a com-

bination of an elastic spring and a dashpot connected in series. A Zener model one

where the elastic branch is coupled with one Maxwell fluid branch. A schematic

model of the generalized Maxwell model is presented in fig. 2.1.

The elastic branch has a Young’s modulus E∞ while the springs in the Maxwell

fluid branches have a Young’s modulus En. The stresses in the elastic springs in
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η1
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Fig. 2.1: Schematic representation of a generalized Maxwell model.

the Maxwell fluid branches can be given as σn = Enεn. An internal state parameter

αn is associated with each dashpot and this gives the strain in the elastic springs as

εn = ε− αn. The total stress in the Maxwell Model is given as

σ = E∞ε+
N∑
n=1

En(ε− αn) (2.1)

Each Maxwell fluid element is also associated with a relaxation time, τn =

ηn/En. The relaxation time relates the internal state parameters of the dashpots

with the total stain in the element given as

τnα̇n + αn = ε (2.2)

The evolution equation can be recast in differential form as d[e(t/τn)αn]/dt =

(1/τn)e(t/τn)ε, which can be expressed in the form of a convolution integral αn(t) =

(1/τn)
∫ t
−∞ e

−(t−s)/τnε(s)ds. On integration by parts we have

6



αn(t) = ε(t)−
∫ t

−∞
e

−(t−s)
τn ε̇(s)ds (2.3)

Which leads to a stress convolution integral consisting of a relaxation function,

G(t) given as

σn(t) =

∫ t

−∞
G(t− s)ε̇(s)ds (2.4)

G(t) = E∞ +
N∑
n=1

Ene
(−t/τn) (2.5)

Clearly, in the absence of viscoelasticity, when either En or τn vanish, linearly

elastic constitutive relations can be recovered from the above expression. In the

special case where a periodic strain is applied to the viscoelastic material another

commonly accepted way to represent viscoelasticity relations is in the frequency

domain in terms of the storage and loss modulus. The strain can be replaced with

ε = ε0e
iωt, which gives us a stress-strain relation of the form

σ(t) = (E∞ +
N∑
n=1

En
iωτn

1 + iωτn
)ε(t) (2.6)

The viscoelastic modulus in this case can be separated into the storage and

the loss moduli, Gs and Gl, which are given as

σ(t) = (Gs(ω) + iGl(ω))ε(t) (2.7)

7



η

Viscous branches

Elastic branch

ε

σ

Fig. 2.2: Kelvin-Voigt model

Gs(ω) = E∞ +
N∑
n=1

En
(ωτn)2

1 + (ωτn)2
(2.8)

Gl(ω) =
N∑
n=1

En
ωτn

1 + (ωτn)2
(2.9)

Clearly, we can say that the resulting stress is going to have a phase difference

with the strain. The component of the stress which is in phase with the applied

strain is defined using the storage modulus while the component of the stress that

is out of phase with the strain is prescribed using the loss modulus. The phase

difference between the stress and the strain can be given as δ = arctan(Gl/Gs). For

a more detailed presentation the reader is referred to Ferry [19].

2.2 Why Generalized Maxwell model?

In the past researchers have extensively used the Kelvin-Voigt model for mod-

eling viscoelastic materials. However, there is a shortcoming that has not been

accounted for. The Kelvin-Voigt model, as shown in fig. 2.2, is a special case of

a Generalized Maxwell model with The following properties Nb = 1, E∞ = E,

τ1 = 0 and E1 → ∞. This results in an increasing non-dimensional loss modulus,
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Fig. 2.3: Loss modulus as a function of non dimensional frequency. In the comparison ’—’
is for the Generalized Maxwell model and ’- -’ is for the Kelvin-Voigt model

Ḡd = Gd/(E∞ + E1), with an increasing non-dimensional frequency as shown in

fig. 2.3. This is unreasonable because normally materials are not found to dissipate

large amounts of energy at high excitation frequencies. On the other hand, trends

for the Generalized Maxwell model are more realistic. The non-dimensional loss

modulus is seen to increase with increasing excitation frequency until it reaches a

peak, thereafter it tapers off asymptotically as shown in fig. 2.3. For the General-

ized Maxwell model the non-dimensional loss modulus varies depending on the ratio

E1/(E∞ + E1). This results in multiple plots for the Generalized Maxwell case. A

comparison of the Kelvin-Voigt and Generalized Maxwell model is presented in the

bottommost polt. We find that the Kelvin-Voigt model indeed increases at a faster
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rate than the Generalized-Maxwell model.
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Chapter 3: Beam Theory

The viscoelastic formulation presented in this paper are based on the three-

dimensional beam theory developed by Baucahu and Han [20]. The 3-D beam theory

is used to reduce the problem of analyzing a fully three dimensional beam into an

equivalent one dimensional beam where all the 3D stress and strain states can be

recovered and the warping deformations are accounted for. The beam theory pro-

vides an exact solution of the static Saint-Venant problem. This has some important

implications. It is assumed that the beam has infinite length and is loaded at the

ends. The cross- section to be analyzed itself, should be sufficiently far away from

the boundaries to avoid end effects. The warping displacements and strains are as-

sumed to remain small. The cross-section itself can be composed of heterogeneous

and anisotropic materials. Their formulation used a Hamiltonian formalism to ob-

tain the solution of the St. Venant problem. The formulation of this beam theory

is presented in this chapter.

3.1 Kinematics

A typical beam cross sectional setup for our problem is shown in fig. 3.1. An

arbitrarily twisted beam, of length L and cross sectional area A is considered. A

11



curve C can be prescribed as a reference line passing through the center of the

beam’s cross section at every location. An intrinsic parameterization of the curve

is defined as α1 and a unit tangent vector to the curve C, is found as t̄ = ∂rB/∂α1,

where rB defines the position of center of a given cross section of the beam defined

in the inertial frame of reference F = [O, I = (̄ı1, ı̄2, ı̄3)]. In the reference frame for

the undeformed beam cross sections are defined as F∗ = [B,B∗ = (b̄1, b̄2, b̄3)]. The

vectors b̄2, b̄3 necessarily lie on the cross-section of the beam but the vector b̄1 does

not necessarily point in the unit tangential direction. The co-ordinates α1, α2andα3

are used to represent the material co-ordinates of the beam, the last two co-ordinates

represent the lengths in the b̄2, b̄3 directions respectively. It is preferable to work

with non-dimensional co-ordinates in the three directions. It is preferrable to work

with non-dimensional co-ordinates. For the remainder of this paper we assume that

all length measurements have been normalized. The orientation of the sectional

plane changes as it slides along the curve C, making the basis B∗ a function of the

spanwise variable α1. A rotation tensor R(α1) brings the basis I to the basis B∗.

Subsequently the motion tensor C(r̄B, R) can be defined.

C(r̄B, R) =

R ˜̄rBR

0 R

 (3.1)

The curvature tensor of the beam is defined as

˜̄K∗ = C−1C ′ (3.2)
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Fig. 3.1: Representation of a beam cross section.

Where (′) represents a derivative with respect to ᾱ1 and K̄∗T = {t̄+T , k̄∗T},

with k̄
∗

= axial(RTR′) being the curvature vector. A detailed formulation of the

above equations can be found in Bauchau [21].

3.1.1 Strain components

The formulation presented here is meant for large displacement and rotation

problems however the strains are assumed to be small. We chose to work with

the Green-Lagrange strain tensor partitioned into out-of-plane and in-plane strain

components, γ∗T
O

= {γ∗11, 2γ
∗
12, 2γ

∗
13} and γ∗T

I
= {γ∗22, γ

∗
33, 2γ

∗
23}, respectively, defined

as

√
g γ∗

O
= ū∗′ + D̄

O
ū∗ (3.3a)

√
g γ∗

I
= D̄

I
ū∗ (3.3b)

13



Where
√
g = t̄∗1 − k̄∗3ᾱ2 + k̄∗2ᾱ3 and the following differential operators can be

defined

D̄
O

=


d̄ −k̄∗3 k̄∗2

k̄∗3 +
√
g
∂

∂ᾱ2

d̄ −k̄∗1

−k̄∗2 +
√
g
∂

∂ᾱ3

k̄∗1 d̄

 (3.4)

D̄
I

=


0
√
g
∂

∂ᾱ2

0

0 0
√
g
∂

∂ᾱ3

0
√
g
∂

∂α3

√
g
∂

∂ᾱ2

 (3.5)

Where d̄ = −(t̄∗2 − k̄∗1ᾱ3)∂(·)/∂ᾱ2 − (t̄∗3 + k̄∗1ᾱ2)∂(·)/∂ᾱ3. Eq. (3.3) can be

consolidated as

γ∗ =


γ∗
O

γ∗
I

 = Ā ū∗′ + B̄ ū∗ (3.6)

Where,

Ā =
1
√
g

I
0

 , B̄ =
1
√
g

D̄O

D̄
I

 (3.7)

3.2 Semi-discretization of the displacement field

Beam theory is essentially used to recast fully three-dimensional problems

to a simpler one dimensional problem when standard underlying assumptions are

14



satisfied. We intend to do the same for our problem using a well known semi-

discretization technique

ū∗(ᾱ1, ᾱ2, ᾱ3) = N(ᾱ2, ᾱ3)û(ᾱ1), (3.8)

Using the technique prescribed in eq. (3.8) we can recast our problem such

that the displacement field for the governing equations for the structural dynamics

of the system be a function of the parameter ᾱ1 exclusively. The matrix N(ᾱ2, ᾱ3)

discretizes the cross section of the beam using two-dimensional shape functions

used in the discretization whereas the vector û(ᾱ1) stores the nodal values of the

displacement field. Once the displacement field û(ᾱ1) has been obtained we can

recover cross sectional deformations and stresses using the formulations developed

in the subsequent sections. As per standard nodal discretization for a problem

containing N nodes the total number of degrees of freedom are 3N . A graphical

representation of the semi-discretization process can be seen in fig. 3.2.

O

I

B
*

B

b2

_

b3

_

b1

_

i1

_
i2

_
i3

_

f_

m_

C

u (α1)_̂

P(α1)_^

Fig. 3.2: Semi-discretization of the beam.
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The given discretization yields the components of the Green-Lagrange strain

tensor as

γ∗ = ĀN û′ + B̄ N û (3.9)

For a rigid body motion the displacement field can be written as u = uR− q̃φR

where uR and φ
R

are components of rigid body translation and rotation respectively.

For convenience the following non-dimensional motion array, ŪTR = {ūTR, φ
T

R
}, can

be identified and at a specific point of the cross section.


ū∗1

ū∗2

ū∗3


= ū∗R − ˜̄q∗φ∗

R
=


1 0 0 0 ᾱ3 −ᾱ2

0 1 0 −ᾱ3 0 0

0 0 1 ᾱ2 0 0



ū∗R

φ∗
R


= z̄ Ū∗R = N Z̄ Ū∗R

(3.10)

Where Ū∗R = C−1ŪR and matrix Z̄ stacks the rows of matrix z̄ for each of the

nodes of the model.

3.3 The central solution

The central solution is an exact solution of the linear theory of three dimen-

sional elasticity for beams presenting uniform geometric and material characteristics

along the span and is valid far away from the ends of the beam, where the effects

due to the end conditions become negligible. The kinematic assumptions underpin-

ning beam theories are eliminated and yet exact solutions for the central behavior
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of the beam can be obtained. The only source of error is due to the discretization

of problem using finite elements. The three-dimensional strains at any point can

be recovered using the sectional forces and moments F∗Tc = {F ∗T ,M∗T}, evaluated

at a given cross section, resolved in the basis B∗. The three dimensional strain is

recovered as

γ∗
c

=

[
(ĀN) (B̄ N)

]
L̄∗
c
F̄∗c = M̄

c
(ᾱ2, ᾱ3)F̄∗c (3.11)

L̄∗
c

=

 Ḡc

W̄
c

 =

Z̄ S̄
∗
c

+ W̄
c

˜̄K∗T

W̄
c

 (3.12)

F̄∗c is an array of the non-dimensionalized sectional stress resultants and the

notation (·)c indicates quantities pertaining to the central solution. Matrix W̄
c
,

of size n × 6, stores the nodal warping field; the columns of this matrix represent

the warping induced by unit sectional stress resultants. Matrix Ḡ
c
, of size n × 6,

stores the nodal displacements derivatives. Symmetric matrix S̄∗
c

is the sectional

compliance matrix for the central solution, i.e.,

Ē∗c = S̄∗
c
F̄∗c (3.13)

Where array Ē∗c stores the sectional strains consisting of the axial strain and

two transverse shear strains, and the sectional curvatures consisting of the twist

rate and two bending curvatures, all resolved in basis B∗. Detailed derivations of

the same can be found in Bauchau and Han [20, 22]. Thereafter, the components

17



of the Cauchy stress tensor can be evaluated using the material constitutive laws.

Given a material stiffness tensor D∗∞, of size 6× 6, resolved the material basis.

τ ∗ = D∗∞γ
∗ (3.14)
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Chapter 4: Viscoelasticity for beams and joints

4.1 Viscoelastic theory for joints

As a precursor to the discussion on beams it is useful to go over the theory

of viscoelastic joints and the solution techniques used to model their behavior. One

dimensional rectilinear or torsional joints can be considered. More complicated joints

such as flexible joints having all six degrees of freedom may also be considered. For

a rectilinear/torsional joint the generalized Maxwell model can be designed simply

as an arrangement of elastic springs and dashpots as shown in fig. 2.1. A stiffness

value can be defined for the exclusively elastic branch and additional Maxwell fluid

branches can be defined having elastic stiffnesses and a relaxation time. If a torsional

damper is considered the total moment in the element is given as

M = k∞θ +
N∑
n=1

kn(θ − αi) (4.1)

As stated earlier quantities such as the storage modulus, the loss modulus and

the phase difference can be evaluated as well. The solution for viscoelasticity can be

generated by solving the evolution equation. The evolution equation for a Maxwell

fluid branch of the torsional damper is given as
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τnα̇n + αn = θ (4.2)

The subscript n is dropped in the subsequent formulation for the sake of

simplicity. The evolution equation can be recast in terms of a non-dimensional

time quantity, η. Over a given time step, [t : ti ≤ t ≤ tf ] the quantity η is given as

η = (t− ti)/h where h = tf − ti and subscripts, (.)i and (.)f represent the state at

the initial and final time of the time step. This changes our equation to the form

α′ + h̄α = h̄θ(η), where (.)′ is a derivative with respect to η, h̄ = h/τ . For a small

enough time step we can assume a linear evolution of the angular displacement θ.

This gives us θ(η) = θi + η(θf − θi). Multiplying the equation in terms of η with

eh̄η, it can be recast as

[αeh̄η]′ = h̄eh̄η[θi + η(θf − θi)] (4.3)

Integrating the equation form time ti to tf gives us

αf − θf = (αi − θi)Γ1 − (θf − θi)Γ2 (4.4)

Where the parameters Γ1 and Γ2 are defined as

Γ1 = e−h̄,Γ2 =
1− e−h̄

h̄
(4.5)
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4.2 Flexible joint

A simple flexible joint can be represented as shown in fig. 4.1. The two ends

of the joint are denoted K and L. To evaluate the effect on a system due to a

flexible joint we will need to evaluate the relative motion between the two end. A

complete formulation for a flexible joint from a flexible joint is presented in Bauchau

and Han [23]. If we consider the two handles as represented in the figure the main

quantity that is required to be known is the relative motion between the two joints.

The relative motion can be defined as

S = (C∗
k
R∗

0
)−1(C∗

l
R∗

0
) (4.6)

The forces acting on the two handles resolved in the material frames are given

as Ak and Al respectively.

STAk +Al = 0 (4.7)

The differential work done by the applied loading is given as

dW = ATk (R∗−1

0
dUk) +ATl (R∗−1

0
dU l) = ATl [R∗−1

0
dU l − (R

0
S)∗−1dUk] = ATdU r

(4.8)

Where dUk, dU l and dU r are the displacements of the two handles separately

and the relative displacement between them in the material frame respectively. We
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Fig. 4.1: Representation of a flexible joint.

also consider Al = A since the two forces are essentially equal and opposite when

resolved in the same frame of reference. We now look to model the formulation

within a multibody dynamics framework. The differential work can be rewritten as

dW = ATT (−E)dE = FTdE (4.9)

Where T is the required tangent tensor and E the parameterized measure of

deformation given by the relation dU r = T (−E)dE . Hence, the generalized forces

associated with the generalized deformation measure E , F are given as

FT = ATT (−E),

E =


ε

κ

 (4.10)

Where ε and κ give us the required strains and curvatures respectively. If we
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assume that the flexible joint is made of an elastic material th generalized forces can

be derived from a potential function, A. Hence we have

F =
∂A(E)

∂E
(4.11)

Naturally the variation of the potential function, equivalent to a strain energy

function, can be represented in the variational for as follows

δA = δETKeE = δETF e (4.12)

Ke represents the flexible joint’s elastic stiffness matrices and F e the elastic

forces. The deformation measure E and the relative displacement vector can be

related as follows

δE = T −1(−E)δU r = T −1(−E)G(E)R−1

0
δU = B δU (4.13)

Where

G =

[
−S−1 I

]

R
0

=

R∗k0
0

0 R∗
l0
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δU =


δUk

δU l



B =

[
−T −1(E) T −1(−E)

]
R−1

0

The tangent tensor T −1(E) is given as

T −1(E) = χ0I −
1

2
Ẽ + χ2Ẽ Ẽ (4.14)

With parameters χ0 and χ2 given as

χ0 = E ′

χ2 =
1

E2
(E ′ − 1

ε
)

ε =
2tan(φ/2)

E
(4.15)

The generalized elastic forces in the flexible joint can now be written as

F e = BT F e (4.16)

Eq. (4.16) can finally now be linearized to obtain the equations that would

need to be solved in order to solve the dynamic simulation.

∆F e = Ke ∆U (4.17)
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The stiffness matrix written in terms of the strain interpolation matrix, B and

the tangent tensor, H is given as

Ke = BT (E)KeB(E) +HT (F e)B(E) (4.18)

Where H is a tangent tensor given as

H(F e) =

[
−L[T (E ,F e) L[T (−E ,F e)

]
R−1

0
(4.19)

Where the operator L[T (E ,F e) is given as

L[(E ,F) = (χ̂0 + χ̂2Ẽ Ẽ)TP [ − 1

2
F̃ [ + 2(χ2Ẽ)T F̃ [ + F̃ [(χ2Ẽ) (4.20)

Where P [ is given as

P [ =

 0 f oeT

f oeT feT + f oeoT

 (4.21)

The formulation discussed in the previous section can be modified to work for

problems involving viscoelasticity in flexible joints. The generalized Maxwell model

for the flexible joint can be shown as in fig. 4.2.

The internal state parameters for each viscoelastic branch, b are given as Sb.

The force in each viscoelastic branch is then given as F b = Kb(E − Sb), where Kb

gives us the stiffness matrix of the elastic elements in every Maxwell fluid branch.

25



Viscous branches

Elastic branch

ε
. . .

F

KN=

K
e

=

K1=

Fig. 4.2: Generalized Maxwell model for a flexible joint.

An additional parameter τ b is also defined for each branch, which relates the internal

state parameters with the deformation measure for each branch as follows

τ bṠb + Sb = E (4.22)

The given evolution equation can be solved as was done in the previous section.

If the forces in the Maxwell fluid can be given as

F bf = Γb1F bi + Γb2Kb(Ef − E i) (4.23)

Where the subscripts i and f represent the initial and final states over a given

time step. The total force acting on the flexible joint is given as F tf = F ef+
∑N

b=1F
b
f .

The total stiffness is given as a sum of the stiffnesses arising out of the Maxwell fluid

branches.

∆F b
f = Kb∆Uf

Kb = BT (Ef )Γb2KbB(Ef ) +HT (F bf )B(Ef ) (4.24)
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Kt = BT (Ef )KtB(Ef ) +HT (F tf )B(Ef ) (4.25)

and

Kt = Ke +
N∑
b=1

Γb2Kb

4.3 Viscoelastic beam theory

In this section viscoelastic formulations that can be used alongside the 3-D

beam theory discussed in the previous chapter are presented. We notice that the

general structure of the viscoelastic relations are similar to those obtained for joints.

For viscoelastic beams the sectional stress resultants, F∗ can be expressed as

F∗ =

∫
A
zT τ ∗odA =

∫
A

[
zT 0

]
τ ∗dA (4.26)

Where z was described earlier and τ ∗o and τ ∗ represent the out-of-plane and

the combined in-plane and out-of-plane stresses in the cross section respectively.

Introducing the convolution form of the generalized Maxwell model we have

F∗ =

∫
A

[
zT 0

] [∫ t
−∞G

∗(t− s)γ̇∗(s)ds
]
dA (4.27)

Using the relationship given in eq. (3.11) we can express the sectional stresses

in terms of the recovery relationships as we had done for regular problems without

viscoelasticity. We have
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F∗ =

∫ t

−∞

[∫
A

[
zT 0

]
G∗(t− s)M∗

c
dA
]
Ḟ∗cds

=

∫ t

−∞
H∗(t− s)Ė∗cds

(4.28)

Where E∗c are the sectional strains in the system and for a generalized Maxwell

Viscoelastic material with N branches, H∗ is a sectional relaxation function given

as

H∗ = C∗∞ +
N∑
b=1

C∗
b

exp−t/τb

C∗∞ = [

∫
A

[
zT 0

]
D∗∞M

∗
c
dA]C∗

c

C∗
b

= [

∫
A

[
zT 0

]
D∗
b
M∗

c
dA]C∗

c

(4.29)

Where C∗
c

is the sectional stiffness matrix as derived in earlier sections. If we

assign six internal states, J
b

corresponding to the six sectional deformations for

each Maxwell fluid branch we can prescribe an evolution equation for a Maxwell

fuid branch of the form

τbJ̇ b
+ J

b
= E∗c (4.30)

The evolution equations can be solved as we had done earlier

F t = F∞ +

Nb∑
Nb=1

F b

F∗bf = Γb1F∗bi + Γb2C
∗
b
(E∗cf − E∗ci)

(4.31)
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4.3.1 Prediction of stresses

Having done a one- dimensional beam analysis we will be interested to predict

accurately, the stresses appearing on any given location on the beam. This can be

done easily using the recovery relationships we have developed earlier. They can

be used to obtain exact values of three dimensional stresses at any given location.

Thereafter the evolution equation of the stresses can be solved to obtain the three

dimensional stresses. Assuming we ave six internal states, νb associated with the

three dimensional strains for every Maxwell fluid branch we have

τ bν̇b + νb = γ∗
c

(4.32)

The stresses can be obtained by solving the above equation. The stresses can

be easily obtained in terms of the sectional stress resultants for the elastic branch

as follows

D∗
b
(γ∗

cf
− νb∗f ) = Γb1D

∗
b
(γ∗

ci
− νb∗i ) + Γb2D

∗
b
(γ∗

cf
− γ∗

ci
)

σbf = Γb1σ
b
i + Γb2D

∗
b
M∗

c
(F∗f −F∗i )

(4.33)

4.3.2 Important assumptions

There are some important assumptions that have to be kept in mind while

using the above formulation. The problem we are looking to solve must be (1) a

low frequency problem and (2) the structure must be lightly damped. Fundamen-

tally beam theory is a ”low-frequency approximation” for a fully three dimensional

problem. The same was concluded by Volovoi et al. [24] and Han and Bauchau [25].
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An important assumption associated with beam-theory is that the kinetic energy

associated with the warping field is low. However for a high-frequency dynamical

problem the effects manifest in the form of vibrations at characteristic length scales

smaller or comparable to the cross sectional dimensions. This will lead to signif-

icant warping effects which will have to be considered separately. Secondly, the

forces associated with damping for our problem have to be small. This is important

for predicting the resulting viscous stresses correctly, using the elastic counterparts

as shown previously. These assumptions do not impose any additional restrictions

on our ability to solve a given problem because beam theory in the absence of vis-

coelasticity is inherently a low frequency problem. The low-frequency assumption

can be cast in mathematical terms using the strain recovery relationships as follows

γ̇∗
c

= M∗
c
Ḟ∗c (4.34)
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Chapter 5: Numerical Examples

5.1 Torsional viscoelastic damper

5.1.1 Mathematical formulation

Torsional viscoelactic damper

M

R

Point mass

Fig. 5.1: 1-dimensional problem modeled using Dymore.

As an initial example problem we consider a one-dimensional torsional

viscoelastic damper is connected to a point mass at point R as shown in fig. 5.1 A

Zener element is used to model the damper. The damper has the following parame-

ters, stiffness of the elastic branch, k∞ = 1000N−m/rad whereas the Maxwell fluid

branch has a stiffness k1 = 400N − m/rad and relaxation time τ1 = 0.1s. Subse-

quently, an element having two additional Maxwell fluid branches with parameters,

k2 = 200N −m/rad, τ2 = 0.05s and k3 = 300N −m/rad, τ3 = 0.075s is considered

as well. A sinusoidally varying moment, M was applied at the fixed end R having

an amplitude 40N −m and a varying frequency. The natural frequencies that were

selected for the excitation function were 0.5, 0.75, 1, 2.5, 5, 7.5, 10, 25, 50, 75, 100,
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250, 500 rad/sec. Analytical expressions presented earlier can be used to evaluate

the storage modulus, the loss modulus, the rotation amplitude and the phase differ-

ence. The analytical solutions of the loss and storage modulus for the problem can

be given as

Gs(ω) = k∞ +
N∑
n=1

kn
(ωτn)2

1 + (ωτn)2
(5.1)

Gl(ω) =
N∑
n=1

kn
ωτn

1 + (ωτn)2
(5.2)

|G(ω)| =
√
Gl(ω)2 +Gs(ω)2 (5.3)

An analytical solution for the rotation amplitude θ(ωi)max and the phase dif-

ference, φ(ωi) at the joint for a given frequency ω can be obtained as

θ(ω)max =
Mmax√

Gl(ω)2 +Gs(ω)2
(5.4)

φ(ω) = tan−1(
Gl(ω)

Gs(ω)
) (5.5)

To get numerical solutions, this solution for the amplitude can be used to get a

reference energy level which can be used as a convergence criterion. An approximate

reference energy level, Eref for a given ω for our problem can be given as
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Eref =
1

2
(k1 + k2)(θ(ω)max)

2 (5.6)

So for ω = 50 rad/sec, Eref = .5 ∗ (1400) ∗ (0.0286)2 ≈ 0.57Nm. Dynamic

analysis was done for the selected excitation frequencies. Once a harmonic solution

is obtained for the rotation in the damper, the displacement profile is extracted for

one cycle of the time period. The amplitude of the response over this time period

gives us the response amplitude, (θDymoreamplitude). The phase difference is evaluated as

the inverse sine of the ratio of the first observed response in the extracted response

cycle (θDymorenT+h ), where nT is the elapsed time after n excitation cycles and h the

time step size being used by the iterative solver.

φ = sin−1(
θnT+h

θmax
) (5.7)

From which we get

G(ω) =
Mmax

θmax
(5.8)

Gl(ω) = G(ω)sin(φ) (5.9)

Gs(ω) = G(ω)cos(φ) (5.10)

The analytically obtained results were compared with the results obtained
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using Dymore. They are presented in fig. 5.2 Additionally other quantities, like the

stroke rates in the viscous dampers, α̇, the dissipative force, F d, the viscous power,

P d and the energy dissipation, Ed can be obtained analytically as well. Whe have

α̇bi =
1

τb
(θi − αbi) (5.11)

F d
bi

= kbτb(θi − αbi) (5.12)

P d
bi

= F d
bi
α̇bi (5.13)

Ed
bi

=
1

2
(P d

bi
+ P d

bi−1
)h (5.14)

Where a subscript b is an index for a given Maxwell fluid branch of the elas-

tomeric damper. The results obtained for the given quantities is

5.1.2 Discussion

• The number of cycles for which the dynamic analysis needs to be run has

to be carefully selected. Depending on the value of the relaxation time, τ

we have selected, the time it takes for our solution to become periodic will

vary. In order to be sure about weather the solution had indeed become

periodic we can take the help of the parameter α. If we observe the evolution

of the parameter, α we find that it attains periodicity only after a certain
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Fig. 5.2: Excitation frequency based variations in viscoelastic model properties.

number of excitation cycles. The number of cycles it takes for α to become

periodic depends on the excitation frequency. Intuitively, we know that the

parameter τ can be looked at as a characteristic time that tells us how long

it would take for a viscoelastic element to regain its original shape after it

has been deformed. For a harmonically applied loading, depending on time

period of the excitation, the actual time it takes for the viscoelastic element

to begin to behave periodically may vary because of the interplay between

the viscoelastic element trying to relax and the harmonic excitation working
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Fig. 5.3: Validation of quantities for an elastomeric damper element with a analytical
results.

to further deform the element. Clearly, the interaction of these two effects is

much more pronounced for high frequency excitations. This is exactly what

we find for high excitation frequencies like 250 rad/sec. While 10 excitation

cycles might be enough to attain periodicity in the case of lower excitation

frequencies, 50 cycles are needed for an excitation frequency of 250 rad/sec.

The response of the parameter α and associated quantities like α̇ and the

dissipative moment generated Md for an excitation of 250 rad/sec are plotted
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in the results section.

• An exact comparison was also found for the evolution equation with respect

top the discretized solution worked out earlier. To get an exact solution we can

use the ODE45 solver in MATLAB. Assuming linear evolution of the overall

strain over a small time step we can set up the evolution equation over a time

step t ∈ [ti, tf ] as

τnα̇n + αn = εi +
t− ti
tf − ti

(εf − εi) (5.15)

A comparison of the exact solution obtained using the ODE45 solver and the

discretized solution obtained in the previous sections is also compared in the

results.

5.2 Flexible joint

5.2.1 Mathematical formulation

The flexible joint provides us the possibility of introducing displacements in

all six degrees of freedom. As the simplest case, a flexible joint can be modeled

as a set of six decoupled springs, acting along each of the six degrees of freedom,

which presents us with a diagonal stiffness matrix. The complexity of the structural

model of the joint can be progressively increased. For starters flexible joint can be

assumed to be made out of an isotropic material which would simply provide us with

coupling amongst the direct stresses and fully decoupled shear stresses. Anisotropy
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can be progressively added to the material until we have a fully anisotropic stiffness

matrix for the most general cases.

Flexible joint
M

R S T

Fig. 5.4: Flexible joint problem modeled in Dymore.

As a validation problem, two beams RS and ST joined at point S with the help

of a flexible joint were considered as shown in fig. 5.4. Within Dymore, viscoelasticity

can be introduced in a flexible joint by addition of Maxwell fluid branches. A

torsional moment M equal to 40N − m was applied on the vertex S of the beam

ST, as was done in the earlier problem. In order to validate the flexible joint model

with the one dimensional spring problem we chose to set up the stiffness matrix

of the flexible joint element as a diagonal matrix. All the elements of the stiffness

matrix except for the torsional degree of freedom are set to high values in order to

effectively constrain those degrees of freedom. The elastic stiffness of the flexible

joint in the torsional degree of freedom is set to k1 = 1000N −m/rad and that of

the Maxwell fluid branches set to k2 = 400N − m/rad, k3 = 200N − m/rad and

k4 = 300N−m/rad with a relaxation times of τ2 = 0.1s, τ3 = 0.05s and τ4 = 0.075s.

The stiffness matrix of the flexible joint is defined as

Kt = Ke +

Nb∑
b=1

Γb2Kb (5.16)

Where Kt is the matrix of the total stiffness of the flexible joint, Ke is the

stiffness matrix of the elastic branch and Kb is the stiffness matrix for each of the
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viscoelastic branches of the flexible joint.

The total force in the flexible joint is given as

F t = F e +

Nb∑
b=1

F b (5.17)

F b = Kb(E − Ab) (5.18)

Where F t, F e and F b represent the forces in the flexible joint, the elastic

branch and the Maxwell fluid branches respectively. E is used to represent the total

displacement of the flexible joint and Ab the displacement of the viscous element

in a Maxwell fluid branch. As was done for the elastomeric damper an evolution

equation can be prescribed for Maxwell fluid branches in the flexible joint.

τ bȦb +Ab = E (5.19)

τ b is the relaxation time for a given Maxwell fluid branch. The evolution

equation can also be integrated in a similar manner which gives us

Abf − Ef = Γ1
b(Abi − E i)− Γ2

b(Ef − E i) (5.20)

We use the results obtained for the elastomeric damper with three Maxwell

fluid branches in the previous to validate the results for the flexible joint. The stroke

of the flexible joint was compared to that obtained for the elastomeric damper and

we find that they match exactly as do other quantities such as the stroke rates in
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the viscous elements of the Maxwell fluid branches, Ȧ, the viscous forces in the

branches, Fd, the total viscous power, P d and the total energy dissipation, Ed.

They are obtained as

Ȧbi =
1

τ b
(E i −Abi) (5.21)

F bi = Kb(E i −Abi) (5.22)

P b
di

= F bTi Ȧ
b

i (5.23)

Eb
di

=
1

2
(P b

di
+ P b

di−1
)h (5.24)

The results can be found in fig. 7 and 8.
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Fig. 5.5: Rotation in elastomeric bearing and flexible joint.
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Fig. 5.6: Validation of quantities for an elastomeric damper element with a flexible joint
element.

5.3 Tip loaded cantilever beam with homogeneous cross section

5.3.1 Problem statemant

The final application of viscoelastic material properties we look to investigate

is for the case of elastic beams. The standard procedure for dealing with such

problems is using a full scale three dimensional model. However the approach is very

time consuming. A novel approach for the purpose of investigating such problems
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is presented in [1]. The basic idea is to reduce the full scale three dimensional

problem into a two-dimensional cross sectional analysis problem and thereafter a

one dimensional elastic beam problem along the length of the beam. The approach

for resolving the effects of viscoelasticity is similar to the problems solved earlier.

The only difference is that we are looking to solve for the curvature in the beam at

every time step instead strains or displacements. The beam model that was used is

presented in fig. 5.7. The beam we have considered is 0.5m in length ans the cross

sectional dimensions are 0.05 m and 0.0375 m. A time varying sinusoidal force is

applied at the tip of the beam with an amplitude of 100 N and a time period of

0.6 sec. The model was validated with the help of full scale three dimensional finite

element models built using ANSYS.

R S

F

Fig. 5.7: Tip loaded cantilever beam modelled in Dymore.

5.3.2 Cross sectional properties and finite element model

The first case we look at is that of a beam with a homogeneous viscoelastic

cross section. The Young’s modulus for the elastic section is 1.456 ∗ 1010N/m2. The

sectional matrices obtained using section builder for the elastic branch was
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C∞ =



2.730 ∗ 107

8.731 ∗ 106

8.607 ∗ 106

2.665 ∗ 103

3.199 ∗ 103

5.687 ∗ 103


(5.25)

A quick sanity check for the obtained matrix would be to check the value

of the term C∞
55

which should be the same as the bending stiffness, H33 of the

beam. The off-diagonal terms are small. The subsequent sectional stiffness matrices

for the viscous branches are easily obtained as the damping ratio times the given

matrix for the simple case of a homogeneous viscoelastic cross section. Two cases

of one and three viscoelastic branches are considered. The model consisting of one

branch has a damping ratio, µ1 = 0.4 and a relaxation time τ1 = 0.1 sec whereas

the model consisting of three branches has damping ratios µ1 = 0.025, µ2 = 0.05

and µ3 = 0.075 and relaxation times τ1 = 0.1 sec, τ2 = 0.05 sec and τ3 = 0.075 sec.

For the purpose of cross sectional analysis the model has 8 and 6 elements in the

cross-sectional dimensions. For the beam problem we have 80 third order elements

along the length. For the three dimensional analysis using ANSYS we have brick

elements of 6.25 ∗ 10−3m in all dimensions which makes a total of 3840 elements of

the 20 node SOLID186 type.
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ANSYS Dymore % error
Frequency (Hz) 1.6312 1.6351 0.24
Amplitude (mm) 1.1915 1.2098 1.54

Tab. 5.1: FFT analysis for one viscoelastic branch

ANSYS Dymore % error
Frequency (Hz) 1.6312 1.6316 0.02
Amplitude (mm) 1.1915 1.2400 4.07

Tab. 5.2: FFT analysis for three viscoelastic branches

5.3.3 Results

The tip displacements were compared for ANSYS & Dymore. A good com-

parison of the results is seen for the different cases. An FFT analysis of the tip

displacements was done and the dominant frequency and its amplitude are pre-

sented in tables 5.1 & 5.2. The frequencies show very good correlation, however

the amplitudes do not show the same quality of agreement. It can be attributed to

the quantity of damping present in the beam. This phenomenon will be clarified in

the subsequent example.

5.3.4 Computational efficiency

Using the sectional stiffness matrices coupled with a one dimensional solution

for dealing with the beam dynamics can give us to significant gains in computational

efficiency. The solution time for different approaches is is given in table 1.

Cross section 3-D FEM
SectionBuilder
and Dymore

1 branch homogeneous viscoelastic 2hr 52mins 21.89 sec
3 branches homogeneous viscoelastic 3hr 24mins 35.53 sec

Tab. 5.3: Solution times for the different computational approaches
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5.4 Tip loaded cantilever beam with composite section

5.4.1 Problem statement

In structural components viscoelastic layers are added as a sandwich layer

as a source of damping. In this section we consider a tip loaded cantilever beam

made out of aluminum with a sandwich layer of viscoelastic rubber in between. A

representative diagram of the same is shown in the fig. 5.8

Rubber

Aluminum

Aluminum

i3

_

i2

_

h
w

t

Fig. 5.8: Cross sectional representation of sandwich composite beam.

The external dimensions of the beam and its cross section are the same as

the homogeneous cross-section considered previously. The beam now consists of a

viscoelastic rubber layer sandwiched between two layers of aluminum, each having a

thickness, t of 0.0125 m. The material properties of the aluminum and viscoelastic

rubber layers consisting of a single viscous Maxwell fluid branch used for the section

are given table 5.4.

Property Aluminum Viscoelastic rubber
Young’s modulus (GPa) 73 20
Poisson’s ratio 0.3 0.42
Material density (kg/m3) 2770 1000
Damping ratio (µ) N/A 0.01, 0.02, 0.05, 0.1
Relaxation time (sec) N/A 0.1

Tab. 5.4: Solution times for the different computational approaches
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µ σ11,max(Pa) σerror11 (Pa) σerror11 (%) σv,max11 /σe,max11 (%)
0.01 164200 22.3373 0.0136 0.7299
0.02 165160 108.1643 0.0655 1.4596
0.05 168020 352.0861 0.2096 3.6498
0.1 172800 794.7212 0.4599 7.3044

Tab. 5.5: σ11 solutions obtained for various viscoelastic damping ratios.

5.4.2 Results

We would like to predict the stresses at any given point of the beam cross

section using the formulation we have developed. This entails using the recovery

relationships and the solution of the stress evolution equation described in previous

sections. For as long as the recovery relationships work robustly, our formulation

allows us to accurately evaluate both the elastic and viscous stresses in the rubber,

a feature that is not commonly found in most commercial codes. This feature can

be particularly useful when we look to model viscoelasticity for real world applica-

tion, for example in case a specific level of damping is required for any application,

having done this we can experimentally work backwards and select the appropriate

viscoelastic material. For the given problem, the total stress results were obtained

using the evolution equation and they are compared with the results obtained using

the fully three dimensional finite element analysis done using ANSYS. With this

study our target is to develop a measure of viscoelasticity which can be accurately

modeled using the recovery relationships.

For the given cross-section various values of the viscoelastic damping ratio

were considered and the solutions for stresses, σ11, σ22 and τ13, were obtained at

different span-wise locations, η equal to 0.25, 0.50 and 0.75. The other three stress
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µ ANSYS DYMORE Error (%)
0.01 162322 162190 0.08
0.02 163240 163030 0.13
0.05 166008 165570 0.26
0.1 170682 169876 0.47

Tab. 5.6: FFT results for σ11 solutions.

µ τmax13 (Pa) τ error13 (Pa) τ error13 (%) τ v,max13 /τ e,max13 (%)
0.01 71812 607.0571 0.8453 0.7308
0.02 71806 810.3594 1.1285 1.4618
0.05 71771 1438.490 2.0043 3.6558
0.1 71734 2470.052 3.4433 7.2912

Tab. 5.7: τ13 solutions obtained for various viscoelastic damping ratios.

µ ANSYS DYMORE Error (%)
0.01 70470 71034 0.80
0.02 70460 71232 1.10
0.05 70428 71826 1.99
0.1 70374 72822 3.48

Tab. 5.8: FFT results for τ13 solutions.

µ σmax22 (Pa) σerror22 (Pa) σerror22 (%) σv,max22 /σe,max22 (%)
0.01 16919 179.6451 1.0618 0.7299
0.02 17086 257.5153 1.5072 1.4596
0.05 17574 478.7824 2.7244 3.6498
0.1 18389 851.5489 4.6308 7.3044

Tab. 5.9: σ22 solutions obtained for various viscoelastic damping ratios.
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(d) µ = 0.10

Fig. 5.9: σ11 at various span-wise locations of the beam where the DYMORE results and
the respective symbols are η = 0.25 (©), η = 0.50 (3), η = 0.75 (�) while
the ANSYS results are generated using continuous lines using η = 0.25 (−•),
η = 0.50 (−−), η = 0.75 (−)

µ ANSYS DYMORE Error (%)
0.01 16724 16536 1.12
0.02 16884 16622 1.55
0.05 17368 16880 2.81
0.1 18176 17320 4.71

Tab. 5.10: FFT results for σ22 solutions.

solutions were negligible and are not shown. The stress solutions obtained are given

in fig. 5.9, 5.10 and 5.11. The solutions compare favorably with the results obtained
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(b) µ = 0.02
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(c) µ = 0.05
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(d) µ = 0.10

Fig. 5.10: σ22 at various span-wise locations of the beam where the DYMORE results and
the respective symbols are η = 0.25 (©), η = 0.50 (3), η = 0.75 (�) while
the ANSYS results are generated using continuous lines using η = 0.25 (−•),
η = 0.50 (−−), η = 0.75 (−)

using fully three dimensional finite element solutions. Naturally, the normal stress

σ11 at a span-wise location closest to the fixed end would be the most critical. The

maximum of the three stresses σ11, σ22 and τ13 are presented in tables 5.5, 5.7 and 5.9.

The percentage errors along with the proportion of viscoelastic stress to the elastic

stress increases as the damping ratio is increased. The errors on the normal stress

σ11 are extremely small, less than one percent, as presented in table 5.5. Since,
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Fig. 5.11: τ13 at various span-wise locations of the beam where the DYMORE results and
the respective symbols are η = 0.25 (©), η = 0.50 (3), η = 0.75 (�) while
the ANSYS results are generated using continuous lines using η = 0.25 (−•),
η = 0.50 (−−), η = 0.75 (−)

values of viscous stresses as high as seven percent of elastic stresses are rarely, if at

all found real structural materials, simulations for higher values of damping ratios

are not presented. We also look to avoid the end effects in our solutions, hence they

are obtained at a safe distance away from the fixed end. Finally an FFT analysis of

the stress responses presented in tables 5.6, 5.8 and 5.10 was done. All the results
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5.5 Hydraulic line reinforced with steel wires

Rubber

Layers of

steel wires

Ri

Ro

Rm

tp

i2

_

i3

_

i1

_

Fig. 5.12: Cross-sectional representation of the hydraulic line.

Fig. 5.13: Location of sensors on hydraulic line.

Having established the robustness of the proposed approach, we look to extend

the application to the problem of a hydraulic line reinforced with six layers of steel

wires. Such cross sections are generally found in heavy mechanical equipment The
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tube has a inner and outer radii, Ri and Ro, of 10 mm and 25 mm respectively and

a mean radius, Rm equal to (Ri+Ro)/2. Each layer of steel wire has a thickness

tp equal to 1 mm and they are wound around the tube at alternating ±45o angles.

The material properties properties of the steel wires and the viscoelastic rubber are

presented in table 5.11.

Property Steel wires Viscoelastic rubber
Longitudinal Young’s modulus (GPa) 126 0.01
Transverse Young’s modulus (GPa) 10 0.01
Poisson’s ratio 0.38 (ν13 = ν12), 0.3 (ν23) 0.42
Shear modulus (GPa) 8 0.0035
Material density (kg/m3) 2770 1000
Relaxation time (sec) N/A 0.1

Tab. 5.11: Material properties for the hydraulic line

µ
(I)
max(σrub,e11 )

(II)
max(σrub,v11 )

(III)
max(σrub,t11 )

(IV)
max(σstl,e11 )

(V)
max(σstl,e11 ) −
max(σstl,e11|µ=0.01)

(VI)
max(σrub,t11 ) −
max(σrub,t11|µ=0.01)

0.01 3273.560 24.154 3297.714 7503304 0.00E+00 0.00E+00
0.02 3273.509 48.308 3321.817 7503186 -1.18E+02 18.2697
0.05 3273.350 120.768 3394.118 7502823 -4.81E+02 73.0781
0.1 3273.091 241.533 3514.624 7502226 -1.08E+03 165.2290

Tab. 5.12: Stress results for the hydraulic line

5.5.1 Results

The locations where stress measurements are made are presented in fig. 5.13.

”Sensor1STR” and ”Sensor3STR” are placed over the steel wires while ”Sensor2STR”

were placed on the viscoelastic rubber, all the results were obtained at one-fourth

span-wise distance from the root of the beam. The results for the maximum ax-

ial stresses in bending are presented in table 5.12. Columns (I) to (VI) present

the maximum stresses in the various sensors, (I) is the maximum elastic stress at
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”Sensor2STR”, (II) the maximum viscous stress at ”Sensor2STR”, (III) the total

stress at ”Sensor2STR”, (IV) the maximum stress at ”Sensor3STR” and columns

(V) and (VI) the difference of the total stresses on the sensors ”Sensor2STR” and

”Sensor3STR” from the values of stress obtained for damping ratio µ = 0.01. The

validity of the results can be simply analyzed by observing the increments in the

viscous rubber and the steel wires respectively. From a basic understanding of solid

mechanics we know that the total bending moment at the span-wise location should

be a constant. Hence the integral sum of the moments produced by these internal

stresses about the neutral axis over the cross section of the beam should be a con-

stant. We find that while the overall change in the total stress in the steel wires

is much higher than in case of rubber, a larger proportion of the rubber is present

over the cross-section and is associated with larger moment arms.
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Chapter 6: Future Work

6.1 Introduction & Assumptions

The formulations presented in the previous sections can be leveraged to set

up a simple experiment that can be used to study viscoelasticity in beams. We

look to set up a simple beam experiment with a uniform cross-section to simulate

viscoelastic behavior experimentally. We have to keep in mind that the assumptions

made previously continue to apply, ie. we are working with low damping & low

frequency problems. This in turn implies that we are dealing with problems where

viscous stresses & warping motions are small. These assumptions are reasonable for

for modeling an Euler-Bernoulli(EB) beam as well. The main kinematic assumptions

associated with an EB beam are that the cross-section is infinitely rigid in its own

plane, the cross-section of a beam remains plane after deformation and the cross-

section remains normal to the deformed axis of the beam [26].

6.2 Experimental Setup

A relevant objective of such an experiment can be to determine viscoelastic

bending stiffness of a material. The simplest type of experiment, the four point
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Fig. 6.1: Four point bending test diagram

bending experiment, to study bending in beams is considered. The four point bend-

ing experiment is based on the Euler Bernoulli beam theory as given in [26]. This

is reasonable based on the assumptions we made to model viscoelasticity using the

three dimensional beam theory in [20]. An experimental setup similar to fig. 6.1 can

be set up. We consider a simply supported beam with a homogeneous viscoelas-

tic cross section having a single M.F. branch. We assume that the elastic bending

stiffness of the material, He
33, & the relaxation time, τ ν , associated with the M.F.

branch are known. These can be determined from quasi-static tests. The relaxation

time for a viscoelastic material is defined as the time in which the instantaneous

stress σ(t) reduced to 37% of the initial stress σ0 [27]. Having done this the four

point bending experiment will have to be set up as shown in fig 6.1. A dynamic,

time varying, preferably periodic load, P can be applied to the beam. The time

varying strains εb & εt are to be recorded to evaluate the total curvature, κt using

eq. 6.1.

κt =
εb − εt
h

(6.1)
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The instantaneous internal states, βν , can now be determined using the evo-

lution equation as shown in eq. 6.2.

τ ν β̇ν + βν = κt (6.2)

Finally, using the known applied moment the viscoelastic bending stiffness can

be measured using eq.6.3.

M = He
33κ

t +Hv
33(κt − βν) (6.3)
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Chapter 7: Conclusion

A solution procedure for the analysis of viscoelastic beams and joints was

presented for the generalized Maxwell model of viscoelasticity. The method was

integrated with flexible multi body dynamics solution techniques. The response

observed in joints showed an exact comparison with analytical solutions. For the

case of beams using a sectional level approach it was shown that robust results can

be obtained for complex cross sections. Lastly while running the analysis for beams

it was shown that the it must comply with the basic assumptions made in order to

implement these simplifications. The first being that the structure being studied is

subjected to low frequency excitations. The second being that the damping forces

encountered should be low. Both assumptions are valid for most practical problems,

particularly structural problems in aerospace engineering. It is understood that

wherever these conditions are not met, the given problem should be treated as a

fully three dimensional one instead. A practical example of a hydraulic line with

viscoelastic rubber was presented and the cross sectional analysis for the same was

done.
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