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CFD/CSD coupling to create a computational aeroacoustic framework to investigate

the effect of aerodynamic interactions on the acoustic prediction of a compound

coaxial helicopter. The full vehicle CFD/CSD was accomplished by using a high-

fidelity computational fluid dynamics framework, HPCMP CREATETM-AV Helios,

combined with an in-house computational structural dynamics solver to simulate

the helicopter in steady forward flight. A notional X2TD helicopter consisting of a

coaxial rotor, airframe and pusher propeller was used and split into three simulation

cases: isolated coaxial and propeller, airframe and full helicopter configuration to

investigate each component’s affect on the others noise as well as the total noise.

The primary impact on the acoustic prediction was the inclusion of the airframe in

the CFD simulation as it affected both coaxial rotors as well as the propeller. It was

found that the propeller and coaxial rotors had negligible impact on each other.
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Chapter 1: Introduction

1.1 Motivation

Future Vertical Lift (FVL) vehicles currently have increased interest from both

civilian and defense companies. This increased interest can be attributed to the de-

sire to expand the capabilities of vertical take-off and landing (VTOL) aircraft by

examining compound configurations outside of the standard main and tail rotor

configuration. Compound configurations rely on additional components to augment

the lift or thrust of the main rotor seen in typical helicopter configurations. Multiple

companies have developed and researched different compound configurations in an

attempt to overcome the limitations inherent in the traditional helicopter designs. In

2009, the Secretary of Defense established the FVL Initiative to focus on technology

development with the goal to replace all current Department of Defense (DOD) he-

licopters with next-generation FVL vehicles [1]. The strategy is to examine multiple

configurations that are capable of fulfilling myriad roles within the missions for the

DOD. One such configuration under review is the compound contra-rotating coax-

ial helicopter with an auxiliary propeller, specifically the Sikorsky X2 Technology

DemonstratorTM (X2TD).

The compound coaxial helicopter overcomes the traditional helicopter forward
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Figure 1.1: Sikorsky Advanced Blade Concept (XH-59)

flight limitation by using the Advanced Blade Concept (ABCTM), discussed further

in Ref. [2]. The ABCTM (Figure 1.1) maximizes the lift on the advancing side

of each rotor disk to offload the lift reduction on the retreating side. Single rotor

configurations achieve roll moment equilibrium from the advancing and retreating

side of the same rotor disk; however, the ABCTM configuration achieves roll moment

equilibrium from the advancing sides of the different rotor disks. Lateral lift offset

(LOS) is used to meet the thrust requirements while balancing the roll moment and

reducing the blade loads using differential cyclic controls on each disk. Because most

of the lift is now carried on the advancing side, the retreating side can be offloaded

which will reduce the impacts of retreating blade stall.

The Sikorsky X2 Technology DemonstratorTM expands upon the ABCTM by

improving the aerodynamic efficiency of the main rotor at high speeds. This is
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Figure 1.2: Sikorsky Advanced Blade Concept

accomplished by incorporating both positive and negative twist gradients as well as a

non-uniform planform and modern airfoils [3]. Furthermore, the X2TD incorporates

an auxiliary propeller to provide enhanced thrust at higher speeds to counteract the

increased drag from the fuselage (Figure 1.2).

All the performance benefits of the X2TD do not come without drawbacks. In

order to reduce drag in forward flight, the X2TD main rotor disks must be placed

close to one another which forces the blades to have stiffer flap response to main-

tain the required blade clearance. The proximity of the main rotor disks will also

result in interference between the rotors and their wakes. Furthermore, in forward

flight the combined wakes from both rotors will interfere with the propeller and

the fuselage. Overall, these interactions will produce a complicated flow field with

the different aerodynamic bodies all affecting one another. As further research is

conducted into more complicated designs to fulfill the FVL initiative, it is impor-

tant to understand how aerodynamic interactions between different bodies affect the
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acoustic predictions.

1.2 Background

A brief background on the sources of noise and how this noise can be mea-

sured is provided below. An understanding of the sources of aeroacoustic noise is

important to understand the effects of aerodynamic interactions on measured noise

discussed in this thesis.

The main sources of noise considered in this thesis were thickness and loading

noise.

1.2.1 Thickness Noise

Thickness noise is the noise that results from the pressure fluctuation created

by the air displaced from a moving body. Thickness noise is directly related to rotor

blade geometry properties such as airfoil shape and geometric twist. Thickness noise

is represented as a monopole surface source (discussed in Section 2.3). The thickness

noise is generally small compared to loading noise but can equal in magnitude at

high tip speeds [4]. The nominal thickness noise distribution can be seen in Figure

1.3a.

1.2.2 Loading Noise

Loading noise is the noise that results from the thrust and torque forces acting

along the blade from the pressure distribution along the surface. Loading noise is
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(a) Thickness Noise (b) Loading Noise

Figure 1.3: Polar Plots of Nominal Noise Patterns

represented by a dipole surface source [5] and is directly related to the magnitude

of aerodynamic forces and loads along the blade. Loading noise is the dominant

contributor to total noise at low to moderate speeds, which is the focus of this

thesis. Loading noise is highest out of plane of rotation as seen in Figure 1.3b. The

loading noise prediction is contingent upon accurate aerodynamic modeling.

1.2.3 Other Sources of Noise

A major source of noise, outside of the rotor and propeller blades, would be the

engines used for the nominal X2TD configuration. At a moderate flight speed of 150

knots the engine noise might not be negligible; however, the focus is on interactional

aerodynamic effects on acoustics so this source of noise was not considered.

Another source of noise is broadband noise which exists at a wide range of

frequencies. Broadband noise is normally a product of rotor blade interactions with

turbulence within the flow around the rotor. This is considered broadband noise

because the pressure fluctuations are randomly located in time and space as the

rotor blades ingest and cut through turbulent eddies. At low harmonics, this source
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of noise can be considered important as the elongation of large turbulent eddies

allow them to be cut multiple times resulting in greater pressure fluctuations [6].

However, this source of noise is difficult to predict and not a dominant source of noise

for forward flight. Therefore, broadband noise was not included in the analysis of the

interactional effects and the total noise experienced by the observers is a summation

of thickness and loading noise.

Furthermore, true observers would also be experiencing noise present in their

environment and the operating environment of the helicopter. This thesis does not

attempt to quantify the total noise that an observer is experiencing but instead how

the expected noise of the X2 will change when simulating for the entire configuration

versus isolated components.

1.2.4 Measuring Noise

This thesis contains three different measurements for noise experienced by an

observer: sound pressure level, overall sound pressure level, and A-weighted decibels.

The sound pressure level (SPL) is defined as the logarithmic ratio of root

mean square (RMS) pressure to reference pressure and is commonly expressed in

the decibel (dB) scale. This measurement of noise is commonly used across multiple

industries and is the method most people are familiar with. The reference pressure

(pref ) is defined as the minimum pressure difference heard by humans (∼ 20 µPa)

and the RMS pressure (pRMS) is used to quantify the pressure fluctuation from

6



ambient conditions, as seen in Equation 1.1.

dB = 20log10

(
pRMS

pref

)
(1.1)

Figure 1.4 shows the dB values for commons sounds that people normally experience.

Normal conversation is approximately 60 dB and noise-induced hearing loss (NIHL)

can be caused by noises above 85 dB depending upon exposure time [7].

Figure 1.4: Decibel Scale of Common Sounds

The SPL occurs at particular frequencies so overall average sound pressure

level (OASPL) is used to show the overall energy contained within the entire spec-

trum. OASPL takes into account all frequencies that contribute to the pressure-time

history from a source. This is calculated using the Fast Fourier Transform (FFT)
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discussed in greater detail in Section 2.3. Once the SPL is calculated at each fre-

quency, the summation of those values gives the OASPL. The OASPL is equivalent

to the SPL received by integrating across all frequencies.

The final measurement used is A-Weighted Decibels (dBA) which is used to

measure the human perception of sound. The measured dB value is corrected to

account for relative loudness by weighting frequencies based on the annoyance to

the human ear. The detailed calculation and weighting function for OASPL and

dBA will be discussed in greater detail in Section 2.3.

1.3 Thesis Contributions

The purpose of this thesis was to investigate the effects modeling aerodynamic

interactions have on acoustic predictions. The Sikorsky X2TD was modeled at a

moderate forward flight speed of 150 knots in various configurations to evaluate the

effect on aeroacoustic predictions. This thesis examines how modeling the fuselage

and full helicopter configurations change the acoustic predictions versus modeling

the coaxial rotor system and propeller in isolation.

There have also been multiple studies that examine the aerodynamic inter-

actions between coaxial rotors using various models. One such study is conducted

by Klimchenko et al ([8] and [9]) and is discussed in greater detail later in this

thesis (Chapter 4). Another such study couples Viscous Vortex Particle Method

(VVPM) with CFD [10]. Singh and Friedmann approximate loads from a CFD

database combined with the VVPM to evaluate performance and wake evolution for
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a coaxial rotor system in hover. This study found that the coaxial rotor loads are

influenced significantly by the rotor wake which supports the need of examining the

wake interactions with the full helicopter components.

Aeroacoustic analysis and prediction of FVL vehicles has become a focal point

within the vertical flight community especially with the surge of compound and novel

configurations. The sources of noise had been thoroughly studied in the 1990s by

NASA Langley [6], but it is necessary to expand this understanding to create better

prediction tools for acoustic performance for complex compound configurations.

There has been some previous research into the acoustic prediction of coaxial

rotors. In 2006, a study attempted to find acoustic trends by modeling a coaxial

rotor and varying certain design parameters. This study was able to conclude that

coaxial rotors on average were louder than conventional rotors of equivalent solidity

[11].

Another major coaxial rotor noise study was conducted in 2009 at the Uni-

versity of Glasgow [12]. This study used the Vortex Transport Model to analyze a

teetering two-bladed coaxial system with varying flap stiffness. The paper concluded

that the main noise contribution comes from the retreating upper and advancing

lower blade interactions but this noise can be reduced by incorporating greater lift

offset. However, this study assumes that the structural flap of the blades can be

captured with an equivalent flap spring and rigid blades instead of a more detailed

structural dynamics model.

A similar study using CFD/CSD coupling with Helios was conducted by Jia

et al [13], which examines the effect of lift offset, flight speed, and rotor-to-rotor
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separation distance on the acoustics of the coaxial rotor. This study used the XH-

59A rotor blades at flight speeds of 100, 150, and 200 knots. Jia et al found that

the magnitude of mid-frequency sound pressure level increases significantly with

increasing flight speed and lift offset. While this study does account for the propeller

and fuselage in the CSD solver, it does not include their effects in the CFD.

Most recently, there was a study from Penn State University that examined

the acoustic predictive capabilities of different fidelity aerodynamic models on a lift-

offset coaxial rotor system (XH-59 Figure 1.1). The study used Free Wake, Vortex

Particle Method and Computational Fluid Dynamics to calculate the blade loads

[14]. This paper focused on the aerodynamic differences between the different solvers

and how those aerodynamic differences contribute to varying acoustic predictions.

However, this study used an isolated coaxial rotor system without the effects of

other bodies within the simulation.

The data from this thesis aims to further the understanding of the acoustic

prediction ability of simulation and modeling for FVL configurations. This the-

sis contributes to the vertical flight community by understanding the impacts of

modeling full configuration and aerodynamics on acoustic prediction abilities from

complex configurations. Specifically, this thesis will analyze the effects of interac-

tional aerodynamics on the acoustic predictability of the nominal Sikorsky X2TD

configuration. Establishing these effects will help gain understanding in the vertical

lift community for the acoustic impacts compound configurations as companies seek

to expand to new and novel vertical lift designs.

10



1.4 Outline of Thesis

This thesis focuses on how interactions between different aerodynamic bodies

will effect the noise of the overall helicopter. Specifically, it examines how the noise

prediction changes when using aerodynamic data from isolated systems (rotors or

propeller) and data from a full configuration (helicopter). The rest of the thesis is

organized as follows:

• Chapter 2 discusses the methodology used for the aerodynamic and acoustic

solvers. It covers in detail the computational fluid dynamics (CFD) solver

chosen and simulation details as well as an overview of the coupling with a

computational structural dynamics (CSD). The acoustic solver and chosen

observer locations are presented. Chapter 2 details the overall computational

aeroacoustic framework used for this thesis.

• Chapter 3 discusses the aerodynamic and acoustic results from the models

included in the comprehensive analysis tool PRASADUM. These models are

low fidelity and are intended to serve as a baseline to examine the affect CFD

has on acoustic results.

• Chapter 4 discusses the aerodynamic results from all CFD simulations. The

isolated systems are presented first, followed by airframe case and finished

with the full helicopter simulation. The aerodynamic results are not the focus

of this thesis and are meant to provide a detailed background.

• Chapter 5 discusses the acoustic results from all CFD aerodynamic cases fo-
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cused on in this thesis. The specific SPL for each rotor and propeller as well

as the OASPL and A-weighted SPL are presented. The difference between

aerodynamic configurations is identified and analyzed.

• Chapter 6 summarizes all of the work included in this study and identifies

interactional aerodynamic effects on acoustic predictions. This chapter also

discusses the recommendations for future analysis.
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Chapter 2: Methodology

2.1 Overview of Computational Aeroacoustic Framework

The pressure distribution along both main rotor blades and the propeller

blades was calculated using two different CFD solvers: OVERFLOW and FUN3D.

This pressure distribution was input into the acoustic solver for the Ffowcs Williams

Hawkings (FWH) equation to calculate pressure fluctuations and then output the

sound pressure levels. The sound pressure levels were separated into different sur-

faces of the upper rotor, lower rotor and propeller to understand the contributions

from the different surfaces to the overall loudness. This computational aeroacous-

tic framework is discussed in greater detail below starting with the different CFD

solvers used followed by the acoustic solver.

2.2 Aerodynamic Simulations

The overlying aerodynamic framework is CREATETM-AV Helios which sup-

ports OVERFLOW and FUN3D as near-body solvers and a Cartesian background

grid for the off-body. All CFD simulations were run using the Spalart-Allmaras

Reynolds-Averaged Navier-Stokes (SA-RANS) turbulence model in OVERFLOW
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and FUN3D near-body solvers as well as the SAMCART off-body solver. The sim-

ulations were run with a time step equivalent to a .25 degree step of the main rotor.

In order to examine the interaction effects, the simulations were split into three

categories: isolated, airframe, and full configuration. The isolated category exam-

ines both the coaxial rotor system and the propeller without the influence of the

fuselage and stabilizers. The entire coaxial system was examined together because

the upper and lower rotors are analyzed and trimmed together for the comprehen-

sive CSD/CFD coupling (discussed further in Section 2.2.4). The airframe category

examines how the presence of the fuselage and stabilizers affect the aerodynamics

and thereby the acoustics of the coaxial rotors and propeller independently. Finally,

the full configuration category performs a comprehensive analysis of the combined

coaxial, airframe, and propeller systems.

2.2.1 Main Rotor Grid and Near-Body Solver

The coaxial rotor blade grids were generated using an in-house algebraic struc-

tured grid generator to create the O-O viscous meshes for the notional X2TD blades,

shown in Figure 2.1. The surface geometry of the blade grid was discretized into

125 wrap-around points, 129 spanwise points and 55 points in the normal direction

which results in .88 million points per blade mesh and 7.1 million points for the

coaxial system.

The near-body solver chosen for the main rotor blades was OVERFLOW-D

(v2.2n), developed by NASA. The OVERFLOW-D modification to the base OVER-

14



Figure 2.1: O-O Blade Mesh for notional X2 rotor

FLOW code allows for elastic blade motion and grid deformation. This allows for

loose CFD/CSD coupling which improves the capture of rotor-rotor, rotor-fuselage,

and rotor-propeller interactions [8]. For this research, the simulations were per-

formed using a second-order backward differentiation (BDF2) time-stepping scheme

with 20 subiterations with Roe’s scheme used for the inviscid fluxes and fourth-

order space differencing used to capture the viscous fluxes. The Eddy viscosity was

computed using the Spalart-Allmaras turbulence model.

Table 2.1: X2TD Main Rotor Blade Parameters

Parameter Value
Blade Radius 13.2 ft 4.02336 m

Rotor Tip Speed 620 ft/s 189 m/s
Blade Aspect Ratio 19.2

Blades per rotor 4
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2.2.2 Fuselage and Propeller Grids and Near-Body Solver

The near-body solver chosen for the fuselage and propeller was FUN3D (v13.3)

which is an unstructured NASA CFD solver. The unstructured airframe and pro-

peller grids were generated using CREATETM-AV Capstone software. The boundary

layer is made of prismatic cells and the height of the first layer was chosen so the

y+ < 1 at the Reynolds number of 2.6M based on the main rotor blade root chord

length. There is limited information available on the specific geometry of the X2TD

auxiliary propeller so a notional propeller was implemented shown in Table 2.2.

The notional propeller has six rigid blades with a linear twist, constant chord, and

a constant NACA0012 airfoil.

Table 2.2: Nominal Propeler Blade Parameters

Parameter Value
Number of Blades 6

Blade Radius 3.33 ft 1.015 m
Rotor Tip Speed 882 ft/s 269 m/s

Root Cutout 20 %RMR

Chord 15 %RMR

Twist -30 deg/span

2.2.3 Off-body solver and Connectivity

The background grid is a Cartesian mesh with seven nested levels of refinement

that was generated within the Helios framework. The finest level of refinement was

chosen to closely correspond with the cell size of the different near-body grids to

promote good interpolation along the boundaries between the near-body and off-
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body grids. As seen in Figure 2.2, the finest refinement level is fixed around the

blades with a greater emphasis below and behind the blades to ensure that transients

in the wake are properly captured.

Figure 2.2: Background Cartesian Mesh

Table 2.3: Grid spacing per level for off-body cartesian mesh

Off-Body Refinement Level Grid Spacing
Level 1 7
Level 2 3.5
Level 3 1.75
Level 4 .875
Level 5 .4375
Level 6 .21875
Level 7 .109375

The coarsest refinement level defines the boundaries of the computational do-
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main. The connectivity between the off-body and near-body computational domains

is handled by a parallel connectivity module, PUNDIT which is an inherent part of

the Helios framework.

2.2.4 CFD/CSD Coupling Methodology

The CSD comprehensive analysis tool used to perform the trim and model the

elastic blade deformation of the main rotors was an in-house University of Maryland

rotorcraft comprehensive analysis tool, PRASADUM. The main rotor blades were

modeled as 1D isotropic Euler-Bernoulli beams undergoing flap, lag, and torsion.

Euler-Bernoulli assumes that plane cross-sections of the beam remain planar and the

shear deformations can be neglected. A Galerkin based finite element discretization

is used to transform the original blade deflection partial differential equations into

a system of ordinary differential equations in time. The CSD sectional airloads on

the main rotor blades were calculated using 2D airfoil tables, uniform inflow, and

unsteady aerodynamics. This use of a simplified lift model was deemed sufficient

since these loads are corrected with the high-fidelity CFD airloads [9].

The full vehicle coupling starts with a wind tunnel trim of the propeller to

receive the propeller collective for the CFD simulation and match the calculated

power with flight test data [15]. Next a full vehicle propulsive trim is performed

within PRASADUM to receive the main rotor blade deformations and the vehicle

pitch attitude. All of these variables are then included in the CFD simulation and

the full configuration is run for two complete main rotor revolutions. The unsteady
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main rotor airloads, mean airframe airloads, and propeller yaw moment are extracted

from the CFD to correct the values for the next trim iteration. The cumulative delta

difference is calculated for the propeller yaw moment and is applied to the CSD yaw

moment before re-trimming the propeller to target power [9]. A conventional delta

approach is used to calculate the difference between the main rotor CFD airloads

and the CSD airloads seen in Equation 2.1.

CSDi+1 = LOi+1 + (CFDi − LOi) = LOi+1 + δi (2.1)

The CSD/CFD coupling was performed by Klimchenko and is discussed in further

detail in [8] and [9].

2.2.5 Aerodynamic Post Processing

Once all of the isolated, airframe and full configuration cases were run out to

24 rotor revolutions (12 coupling iterations) for convergence, the near-body surface

solutions for the main rotor and propeller were extracted to process the conserved

variables. The conserved variables were then used to calculate the pressure coeffi-

cient (Equation 2.2) at each node in the wrap-around direction (j) and then along

the span (k) at set radial stations.

cPj,k
=

2.0(pjk − p∞)

1/2ρ∞v2tip
=

2
(

p
p∞

− 1
)

γM2
tip

(2.2)

19



The pressure coefficient was then used to find the normal (CNM
2) and chord (CCM

2)

airloads at 40 spanwise locations to properly represent the variation of forces along

the blade and the deflection points used for the CSD solver (Equation 2.3).

CNk
M2 =

∑
j

[(cPj−1,k
+ cPj,k

2

) (
n̂j · N̂k

)]M2
tip

ck
(2.3)

These airloads were calculated at 1440 azimuth locations for the main rotor (every

0.25 degrees) and 254 azimuth locations for the propeller (every 1.42 degrees). The

actual time step for all simulations was kept constant, the azimuth step discrepancy

is due to the different rotational speeds. A deflection file was then written con-

taining the radial station points used as well as the axial, lag, and flap angles and

displacements at each radial station per azimuth (calculated from the CSD). These

three files were the required inputs for the acoustics solver.

2.3 Acoustic Solver

The Acoustic Code of the University of Maryland (ACUM) is an in-house

acoustic solver that uses compact chord airloads to solve the impermeable surface

form of the FWH to obtain the resulting pressure fluctuations. The FWH equation

is well known in the aeroacoustic community and requires enclosing the blade near-

field information in a computational surface [5].
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Figure 2.3: Differential Form of Ffowcs Williams and Hawkings Equation

Furthermore, if the computational surface also includes all transonic flow re-

gions then the volume quadrupole term can be neglected. The differential form of

the FWH equation and explanation of components is shown in Figure 2.3.

The generation and propagation of sound from a rotor blade is determined

by the surface monopole, dipole and volume quadrupole sources (Figure 2.3). The

pressure fluctuations calculated from the FWH equation were then converted into

SPLs in dB given in Equation 1.1 in Section 1.2.4. Polar observer plots were gen-

erated to show the SPL in dB at microphone locations stationed 360o around the

rotor and 6 rotor radii away (∼ 80 ft). The observer locations were chosen to be

at varying elevation and azimuthal angles below the rotor because the majority of

observers will be concentrated below the helicopter during most flight conditions.

Moreover, the hemisphere below the rotor should also contain the highest levels of
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Figure 2.4: Observer Locations in 6R Hemisphere

noise which will provide a greater understanding of the overall helicopter acoustics.

The locations were discretized as 15o in azimuth and 10o in elevation to form a

hemisphere below the rotor as seen in Figure 2.4.

For the full helicopter simulation discussed above (Section 2.2.4), the surface

pressure fluctuations are unsteady due to the forward flight speed and presence

of fuselage and propeller. Therefore, the expected location of the maximum SPL

should change in both azimuth and elevation between the isolated and combined

simulations. Therefore, once the SPLs were calculated for all observer locations, the

maximum SPL was found for each simulation. As expected, the isolated simulation
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had a different maximum SPL location from the airframe and helicopter simulations.

For consistency, the overall maximum SPL was chosen to be the full helicopter

configuration’s maximum SPL at azimuth 90o (ψ) and elevation 60o (θ) below the

rotor (also shown as a red circle in Figure 2.4). This observer location was used

to analyze the pressure-time history in more detail for all of the simulations. The

pressure-time history at this location was also used to perform an FFT analysis. As

mentioned in Section 1.2.4, the pressure-time history signal at the maximum SPL

was broken into multiple frequencies so the SPL at each frequency can be summed

into the OASPL.

Figure 2.5: Sample Pressure Time History

A sample pressure-time history signal is shown in Figure 2.5. The FFT analysis

transforms the time-based pressure signal (measured in Pascals) into the frequency

domain. Once in the frequency domain, the pressure signal is changed from Pa to
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Figure 2.6: Sample Pressure Time History Split Into Frequencies by FFT

dB using Equation 1.1. This gives the final SPL spectrum which shows the dB levels

at various frequencies are shown in Figure 2.6. These frequency-based dB levels are

then transformed into A-weighted dB (dBA) in the frequency domain.

The A-weighting function is an attempt to correct dB to account for the loud-

ness of different frequencies as heard by the human ear. This is accomplished by

applying a dB weighting along the frequency curve shown in Figure 2.7. The A-

weighting function is equivalent to 0 dB at 1000 Hertz (Hz) because a human ear is

not sensitive one way or the other at this frequency. The dBA scale has a large neg-

ative dB weighting for low frequencies to account for the lower sensitivity of human

ears. On the other hand, the scale has a slight positive dB weight for frequencies

greater than 1k Hz and lower than 6K Hz to account for the greater sensitivity to
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Figure 2.7: A,B,C,D dB Weighting Curves

these frequencies. The A-weighting function, RA(f) is shown in Equation 2.4 and

the actual A weight applied to the dB level is calculated in Equation 2.5.

RA(f) =
121942f 2

(f 2 + 20.62)
√

(f 2 + 107.72)(f 2 + 737.92)(f 2 + 121942)
(2.4)

AWeight = 20log10 (RA(f)) + 2.00 (2.5)

The dB value at each frequency is then added with the A weight above to calculate

the dBA:

dBA = dB + AWeight (2.6)
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After all dB and dBA values are found at all frequencies, they are summed to

calculate the OASPL in both dB and dBA:

OASPL(dB) = 10log10
∑

10dB/10 (2.7)

OASPL(dBA) = 10log10
∑

10dBA/10 (2.8)

The OASPL in dB and dBA is used to compare the overall loudness of the

different simulation configurations. In order to have a greater understanding of the

interactional effects, it is more beneficial to examine the noise at each observer loca-

tion in both dB and dBA for each of the configurations. Therefore, a greater amount

of analysis is focused on the observer hemispheres and examining any differences or

trends that can be found.

26



Chapter 3: Comprehensive Analysis Results

The coaxial rotor system airloads and acoustics were first calculated using

the aerodynamic solvers within the comprehensive analysis tool PRASADUM to

have a greater understanding of the impact of CFD/CSD coupling on aerodynamics

and acoustics. The aerodynamics for the coaxial rotor trim were calculated within

PRASADUM using uniform inflow and free wake at various azimuthal resolutions

(∆ψ) of 10, 5 and 2.5 degrees. The uniform inflow is calculated as a function of the

trim process but the free wake is a separate module within the comprehensive anal-

ysis and functions as a loose coupling with the CSD portion of PRASADUM. The

free wake module within PRASADUM is based on the Maryland Free Wake (MFW)

developed by Bhagat and Leishman and is discussed in more detail in Ref. [16]. The

time-accurate solver remains unchanged but the input and output formats were op-

timized for PRASADUM integration. These simulations account for the fuselage

and propeller within the CSD trim but do not include any aerodynamic contribu-

tion from the fuselage or propeller. This chapter will go investigate the aerodynamic

and acoustic results from the comprehensive analysis tool PRASADUM.
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3.1 Uniform Inflow

The uniform inflow simulations were calculated exclusively within PRASADUM

without any coupling. These simulations only include the coaxial rotor system and

are equivalent to the propulsive trim portion of the CFD/CSD coupling method-

ology (Section 2.2.4). This low fidelity model was used to trim the coaxial rotor

system using the same inputs as the CFD/CSD coupling except the delta airloads

were neglected.

3.1.1 Upper Rotor with Uniform Inflow

This section will focus on the aerodynamic and acoustic results of the upper

rotor simulated with uniform inflow. Figure 3.1 shows the variations in airloads

and noise between the different azimuthal resolutions. The normal and chordwise

force distributions are smooth across the entire disk as anticipated from uniform

inflow. The advancing side of the disk displays a normal force tip loss characteristic

of the simple inflow model. The retreating side displays a loss in normal force along

the root portion of the blade due to retreating blade stall. These effects should be

lessened compared to a typical configuration due to the lift offset mechanism within

PRASADUM. Similarly, the chordwise force presents the optimal distribution as

expected for a uniform inflow model.

Overall, there is little noticeable difference between the different azimuthal

resolutions. Each simulation displays smooth spanwise and azimuth-wise airloads.

Table 3.1 shows the control angles for both rotors in the simulations which show
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(a) Normal Force

(b) Chordwise Force

(c) SPL Hemisphere in dB

Figure 3.1: Upper Rotor Aerodynamics and SPL from Uniform Inflow

little change between the different azimuthal resolutions. These small, practically

negligible, angle fluctuations predictably lead to little change in airloads and there-

fore little change in the predicted noise as seen in Figure 3.1c.
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Table 3.1: Control Angles from Uniform Inflow for Varying Azimuthal Resolutions

∆ψ=10 deg ∆ψ=5 deg ∆ψ=2.5 deg

Collective (deg)
5.35 (CCW) 5.35 (CCW) 5.34 (CCW)
5.33 (CW) 5.33 (CW) 5.34 (CW)

Cyclic θ1C (deg)
-0.28 (CCW) -0.28 (CCW) -0.28 (CCW)
-0.28 (CW) -0.28 (CW) -0.28 (CW)

Cyclic θ1S (deg)
-3.69 (CCW) -3.70 (CCW) -3.71 (CCW)
3.67 (CW) 3.67 (CW) 3.68 (CW)

The SPL contours shown in Figure 3.1c display a large amount of noise consid-

ering the smooth airloads. The smooth airloads would signify this model calculates

less pressure fluctuations both spanwise and azimuth-wise across the rotor disk. In

order to understand the cause of the high noise, the pressure-time history can be

examined along with the FFT analysis of the signal. The pressure azimuth his-

Figure 3.2: Azimuth Pressure History
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Figure 3.3: SPL of Coaxial Rotors by Frequency for Uniform Inflow

tory in Figure 3.2 is completely smooth for both rotors with seemingly zero high

frequency content with a greater contribution from the upper rotor. This difference

in contribution is due to the location of the pressure signal and will differ across the

observer hemisphere. The FFT analysis in Figure 3.3 confirms that the SPL from

uniform inflow is dominated by the low frequency main rotor harmonics of 4/rev

and 8/rev signals.

3.1.2 Lower Rotor with Uniform Inflow

This section will focus on the aerodynamic and acoustic results of the lower

rotor simulated with uniform inflow. Figure 3.4 shows the variations in airloads and
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noise between the different azimuthal resolutions. From the pressure azimuth history

and FFT analysis conducted above, it is expected that the lower rotor airloads and

SPL will mirror those on the upper rotor. This is indeed the case as the lower rotor

(a) Normal Force

(b) Chordwise Force

(c) SPL Hemisphere in dB

Figure 3.4: Lower Rotor Aerodynamics and SPL from Uniform Inflow
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normal force shows little variation between the different azimuth resolutions and is

similar in distribution and magnitude to the upper rotor. The only difference is the

lower rotor rotates clockwise meaning that the advancing side is now on the bottom

of the contour. The chordwise force on the other hand is weaker in magnitude

towards the end of the retreating side of the rotor disk (ψ=315). This decrease in

chordwise force should cause a weaker thickness noise which is indeed evident in

Figure 3.4c. The SPL contour of the lower rotor has a low region ahead of the rotor

as well as a greater low noise region behind the rotor.

Overall, there is little noticeable difference between the different azimuthal

resolutions for both the upper and lower rotors. This is further supported by Table

3.1 which shows the control angles for both rotors in the simulations. The con-

trol angles show little fluctuation between the different azimuthal resolutions which

would indicate for this low fidelity model, the 10-degree resolution is enough. The

pressure-time history and FFT analysis demonstrate that the simple uniform in-

flow model can not capture any high-frequency content. The frequencies with large

acoustic content are the main rotor frequencies of 4/rev and 8/rev.

3.2 Free Wake

The free wake simulations were calculated within PRASADUM with a varying

wake discretization of 10, 5, and 2.5 degrees. The simulations held the wake turns

and bound vortex segments constant between simulations at 6 and 40 respectively.

The free wake solver is a part of the PRASADUM framework but is treated as
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a coupling solver similar to the CFD/CSD coupling. For these simulations, the

free wake solver replaces the CFD in the coupling algorithm. This provides a closer

simulation framework to the CFD/CSD coupling for the coaxial rotor system except

with a lower fidelity aerodynamic solver. The results for the individual coaxial rotors

is discussed in detail below.

3.2.1 Upper Rotor with Free Wake

The free wake solution for the upper rotor shows a greater deviation in re-

sults between the different azimuthal resolutions compared to the uniform inflow

model. The normal force has a similar profile compared to the linear inflow on

the retreating side of the blade but shows an increase in the reverse flow region as

azimuthal resolution increases. The more important difference is the presence of

higher frequency content along the advancing side as evidenced by the azimuthal

and spanwise fluctuations in Figure 3.5a. These fluctuations become sharper as the

azimuth resolution increases and could be a result of the free wake capturing the

interactions of the upper and lower rotor blade passage.

The chordwise force in Figure 3.5b also demonstrates fluctuations on the ad-

vancing side as well as an increase along the entire rotor disk. These pressure

fluctuations and increase in airloads has a noticeable effect on the SPL hemispheres

in Figure 3.5c. Nearly all observers experience 115 dB of noise with some hearing

a maximum of 120 dB. The number of observers that experience of the maximum

noise increases as the resolution increases.
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(a) Normal Force

(b) Chordwise Force

(c) SPL Hemisphere in dB

(d) SPL Hemisphere in dBA

Figure 3.5: Upper Rotor Aerodynamics and SPL from Free Wake
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While the dB SPL contours show similar trends, the A-weighted dB contours

(Figure 3.5d) are similar for the ∆ψ=5 and 2.5 degree cases but vastly different for

the ∆ψ=10 degree case. This would indicate that the 10 degree case does not capture

the higher frequency content compared to the 5 and 2.5 degree cases. Comparing the

pressure time histories and FFT analyses of the ∆ψ=10 and 2.5 will demonstrate

the captured frequencies with greater clarity. Figure 3.6 shows that the upper rotor

noise is a strong 4/rev signal for the 10 degree case but the 2.5 degree case not only

has a greater magnitude but also posses higher frequency content. The presence of

these higher frequencies would decrease the A-weighting and explain the increase in

dBA noise. This is also evidence that the free wake model is capable of capturing

some interaction effects from the lower rotor onto the upper rotor.

3.2.2 Lower Rotor with Free Wake

The more noticeable change in Figures 3.6 and 3.7 are in the lower rotor signal.

The 10 degree resolution provides some evidence of high-frequency content but the

2.5 degree resolution calculates the lower rotor contributing more noise across almost

all frequencies. The FFT analysis for the ∆ψ = 2.5 degree case shows that the lower

rotor dominates all frequencies higher than 12/rev. This provides further evidence

that the free wake model is capable of capturing some interaction effects on the

lower rotor from the upper rotor.

The normal force distribution on the lower rotor has a slightly larger magnitude

compared to the upper rotor. This is most noticeable along the outboard section of
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(a) ∆ψ=10 deg

(b) ∆ψ=2.5 deg

Figure 3.6: Azimuth Pressure History for Free Wake
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(a) ∆ψ=10 deg

(b) ∆ψ=2.5 deg

Figure 3.7: SPL of Coaxial Rotors by Frequency for Free Wake
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the blades on the advancing and retreating side. The blade crossing fluctuations

in Figure 3.8a are more pronounced on the lower rotor than the upper rotor. The

fluctuations also exhibit a higher normal force peak at the finer resolutions which

coincides with the magnitude increase seen in the pressure azimuth signal.

The chordwise force in Figure 3.8b also demonstrates the advancing side blade

crossings. Furthermore, the chordwise force is much stronger on the retreating side

of the lower rotor than the upper rotor with a large area maximum magnitude.

Despite the larger airloads along the lower rotor disk, the dB SPL in Figure 3.8c is

quieter than the upper rotor SPL. The SPL increases as the azimuth resolution gets

finer which matches the trend seen in the upper rotor.

The most drastic difference from the upper rotor is the A-weighted SPL con-

tours as expected based on the FFT analysis and pressure signal. The maximum

dBA noise occurs for the ∆ψ =. 5 degree case which does not match the trends ob-

served for the dB for either rotor. This is unexpected as any high-frequency content

should become more refined as the resolution increases. This could indicate that

the 5 degree case is calculating frequency content that the 2.5 degree case is then

filtering out.

The increase in aerodynamic forces on the both rotors has a noticeable impact

on the predicted acoustics. Both rotors exhibit an increase in SPL from free wake

across the entire hemisphere compared to the uniform inflow model. The increase is

partially caused by a similar increase in rotor airloads on both the upper and lower

rotors. The other cause is the capturing of the blade crossing interactions within

the free wake model which causes pressure fluctuations along the blades.

39



(a) Normal Force

(b) Chordwise Force

(c) SPL Hemisphere in dB

(d) SPL Hemisphere in dBA

Figure 3.8: Lower Rotor Aerodynamics and SPL from Free Wake
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Overall, the free wake model demonstrates improvements over the uniform in-

flow model by capturing the airloads and acoustics in greater detail. The free wake

model demonstrates the ability to capture some higher frequency content, most no-

table the blade crossing interactions between rotors. However, due to the proximity

of the rotors and the flight speed it is expected to see a greater unsteadiness in the

airloads and therefore acoutsics from BVI and rotor-wake interactions. The free

wake model within PRASADUM does not seem capable of capturing these effects;

therefore, it is necessary to use a higher fidelity model to solve for the aerodynamics

in order to accurately capture the effect aerodynamic interactions have on acoustics.
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Chapter 4: Aerodynamic Results

The following sections will describe the aerodynamic results done in preceding

work by Klimchenko et al. ([8],[9]). The acoustic results discussed in detail in this

thesis are derived from the aerodynamic work in these papers. The focus of this

thesis is on the full helicopter acoustic analysis for the 150-knot forward flight speed

case so the primary reference is Klimchenko and Baeder [9]. The grid system and

CFD/CSD coupling used in these references are the same used for the following

acoustic results and are discussed in further detail in Chapter 2. The specific case

parameters for the 150-knot forward flight speed results are shown in Table 4.1.

Table 4.1: CFD Interactional Aerodynamics Case

V∞(knots) µ MR RPM Madv. tip LOS(%) Blade Modes Harmonics
150 0.41 446 0.79 11.3 6 8

4.1 Full Helicopter CFD/CSD Coupling

This section summarizes the effects of the full CFD/CSD coupling on con-

trol angles for the coaxial rotors and airframe attitude. Nine coupling iterations

were performed for the full configuration CFD/CSD case to ensure that the trim
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parameters did not vary significantly with consecutive iterations. For the vehicle

to be in trim, the force and moment equilibrium must be enforced at the center of

gravity (CG) for each rotor revolution. The force and moment contributions from

the various components are closely tied to the control angles and airframe attitude.

Moreover, the force contributions from the rotors and propeller will affect the acous-

tics. Therefore, this section will focus on the changing main rotor controls and the

subsequent effect on the forces and moments. The changes in control angles and

pitch attitude is summarized in Table 4.2.

Table 4.2: Control Angles for Coaxial and Full Configuration Coupling at 150 knots

Coaxial CFD/CSD Full Vehicle CFD/CSD

Collective (deg)
6.02 (CCW) 5.76 (CCW)
5.95 (CW) 7.04 (CW)

Cyclic θ1C (deg)
0.96 (CCW) 2.43 (CCW)
0.96 (CW) 2.43 (CW)

Cyclic θ1S (deg)
-5.49 (CCW) -5.63 (CCW)
5.16 (CW) 6.54 (CW)

Fuselage Pitch (deg) 2.01 2.85

The collective angles for the upper and lower rotor trimmed to relatively similar

values in the isolated coaxial system. However, when the airframe and propeller

were included the upper rotor collective was reduced while the lower rotor collective

increased. The collective difference is caused by the change in the airframe yaw

moment. In the isolated coaxial case, the CSD solver assumes the airframe roll and

yaw moments are zero at the CG and calculates a nose-down pitching moment due

to the horizontal stabilizers. In the full configuration case, the roll, pitch, and yaw

moments are non-zero due to CFD calculating loads on the airframe. Namely, the
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airframe produces a clockwise yaw moment requiring the coaxial rotors to introduce

a yaw moment to oppose the airframe. Therefore, the upper rotor collective is

reduced and the lower rotor collective is increased to provide a counter-clockwise

moment that balances the airframe yaw moment [9].

Similarly, the cyclic angles θ1C and θ1S increase from the isolated case to the

full configuration case. The nose-down pitching moment of the fuselage decreases

drastically from the CSD prediction to the full vehicle CFD [9]. Therefore, the

increase in θ1C control angle subsequently reduces the pitching moment of the rotors

so that the airframe and rotors stay in equilibrium. The full vehicle CFD/CSD

produces a port side down roll moment at the CG from the airframe. In response,

the magnitude θ1S is increased for both rotors with the lower rotor θ1S trimmed to

a higher value. This produces a starboard side down roll moment to counteract the

airframe roll moment.

The full vehicle CFD/CSD also demonstrates an increase in propeller thrust

compared to the isolated case. For the coaxial CFD/CSD coupling, the propeller

thrust is approximated using P = TV , where P is propeller power for the X2TD

given in Ref. [17]. Conversely, the full vehicle CFD/CSD the propeller thrust

is obtained from the actual CFD airloads for the propeller trimmed to the given

power in Ref. [17].

44



4.2 Interactional Aerodynamics Affecting the Upper Rotor

This section will focus on the aerodynamic interactions affecting the upper

rotor that arise when analyzing the coaxial rotor in isolation as well as in conjunction

with the airframe and full vehicle.

Figure 4.1a shows the non-dimensional azimuthal normal force distribution

for the various configurations (ψ=0 on right side). For the coaxial rotor system in

(a) Normal Force

(b) Chordwise Force

Figure 4.1: Aerodynamic Interaction Effects on Upper Rotor

isolation, the presence of the lower rotor results in an unsteadiness in the normal

force along the upper rotor and a drop off in normal force every 45 degrees when
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the rotor blades cross. Including the airframe in the CFD simulations results in an

increase in normal force along the advancing side due to the increase in θ1C. The

inclusion of the propeller shows a slight decrease in normal force along the entire

disk.

Figure 4.1b shows the non-dimensional azimuthal chordwise force distribution,

in the airfoil frame, for the various configurations. The chordwise force is defined as

positive from trailing edge to leading edge in the airfoil frame. Note the unsteadiness

seen in the normal force is also found in the chordwise force with distinct lines

every 45 degrees on the retreating side. This unsteadiness is due to the proximity

between the upper rotor blades and the lower rotor wake [9]. At this forward flight

speed, the rotor disk is tilted aft increasing wake interactions as evidenced in Figure

4.3. Including the airframe in the CFD simulation results in the chordwise force

increasing along the entire disk, most notably near 0 degrees when the blades cross

the tail. The presence of the propeller in the full configuration slightly decreases the

aft chordwise force but does not show significant effect elsewhere.

4.3 Interactional Aerodynamics Affecting the Lower Rotor

This section will focus on the aerodynamic interactions affecting the lower rotor

that arise when analyzing the coaxial rotor in isolation as well as in conjunction with

the airframe and full vehicle.

Figure 4.2a shows the non-dimensional azimuthal normal force distribution for

the various configurations (ψ=0 on right side). Note that the lower rotor rotates in

46



(a) Normal Force

(b) Chordwise Force

Figure 4.2: Aerodynamic Interaction Effects on Lower Rotor

a clockwise manner. The presence of the upper rotor in the CFD simulation causes

a loss in normal force every 45 degrees along the advancing side starting at midspan

of the blade and extending to the tip [9]. This decrease in normal force is a function

of the blade crossing because the pressure on the top side of the lower rotor blade

increases as the upper rotor passes the lower rotor. When the airframe is included in

the CFD simulation, the normal force along the front of the rotor disk is increased

due to the upwash from the fuselage [9]. Moreover, there is an increase in normal

force at the aft portion of the rotor disk as the lower rotor blades pass over the

fuselage. Including the propeller in the CFD simulation reduces the effect of the
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fuselage tail on the aft portion of the rotor disk but has little effect elsewhere.

Figure 4.2b shows the non-dimensional azimuthal chordwise force distribution,

in the airfoil frame, for the various configurations. The chordwise force is defined

as positive from trailing edge to leading edge in the airfoil frame. Including the

airframe in the CFD simulation results in not only decreased chordwise force along

the entire rotor disk but also an increased unsteadiness along the aft portion of the

disk. This unsteadiness is a result of the lower rotor interacting with the wake from

the mast [9]. The addition of the propeller does not result in a significant difference

from the airframe case.

Both coaxial rotors experience greater fluctuations in airloads using CFD to

model the aerodynamics compared to MFW. The free wake model is capable of

capturing some blade crossing interactions but does not capture any of the high

airloads near the tail that are seen in the CFD results. Figure 4.3 presents a side

view of the predicted wake propagation for both models to better understand this

discrepancy in airloads. Note that the fuselage and propeller were not modeled in

the free wake but were included in the figure to provide context for the propagation

of the wake.

The MFW results show that the wake trailers stay in the plane of their produc-

ing rotor due to the high flight speed. This would be the cause of the unsteadiness

along the advancing side of the free wake airloads. Furthermore, the wake from both

rotors has a slight vertical velocity down which causes the upper rotor wake (blue)

to interact with the lower rotor. This would lead to the higher airloads on the lower

rotor for the free wake model.
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(a) MFW

(b) CFD

Figure 4.3: Side View of Coaxial Rotor Wake Propagation

Conversely, the wake in the CFD model has a slight vertical velocity up which

is evident in the tip vortex from the leading lower blade. This is caused by the slight

shaft tilt backwards from the trim condition. This means that the upper rotor will

partially slice through the wake of the lower rotor which would explain the peaking

around ψ=0 on the upper rotor airloads. These wake interactions create a messy

flowfield around the coaxial rotors and unsteady wake that is partially ingested by

the propeller.

4.4 Interactional Aerodynamics Affecting the Pusher Propeller

This section will examine the effects of the helicopter components on the

pusher propeller aerodynamic forces. The pusher propeller rotates counter-clockwise,
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with ψ=0 degrees at the top and ψ=90 degrees on the starboard side of the heli-

copter (left side of the plot).

Figure 4.4a shows the non-dimensional azimuthal normal force distribution for

the various configurations. The propeller in isolation produces smooth asymmetrical

normal force over the disk with the advancing side generating more normal force

than the retreating side. This imbalance of normal force is caused by the vehicle

pitch which is nose up at 150 knots. The incoming flow comes at a slight angle of

attack instead of normal to the propeller disk. On the advancing side of the disk,

(a) Normal Force

(b) Chordwise Force

Figure 4.4: Aerodynamic Interaction Effects on Pusher Propeller
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the edgewise velocity of the propeller disk is compounded with rotational velocity

resulting in greater normal force. Conversely on the retreating side, the edgewise

velocity of the propeller disk is subtracted from the rotational velocity, lowering the

normal force.

Including the airframe in the CFD simulation results in an increase in normal

force over the entire propeller disk with the most prominent change occurring at

0 degrees azimuth. The increase along the inboard sections of the disk is a result

of the propeller ingesting the wake from the fuselage. The angle of attack on the

inboard stations of an isolated propeller is low due to the high inflow velocity which

is approximately the forward flight speed. The wake from the fuselage lowers the

inflow velocity at these inboard stations; thereby, increasing the angle of attack

and normal force. The four distinct spikes in normal force correspond to the wake

from the pylon/mast (ψ =0o), horizontal (ψ =90o and (ψ =270o) and vertical (ψ

=180o) tails interacting with the propeller. Furthermore, when the entire helicopter

configuration is modeled there is an even greater increase in normal force along the

outboard sections of the propeller disk, particularly the upper half. The coaxial

rotor wake is now propagating backward across the fuselage and then ingested by

the propeller. The ingestion of the coaxial rotor wake causes the large unsteadiness

observed around ψ=0o. The increase in normal force is due to a phenomenon known

as boundary layer ingestion, which has been studied extensively by Min et al. in

Ref. [18].
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Chapter 5: Acoustic Results

5.1 Isolated Components Case

The normal and chordwise forces, CNM
2, and CCM

2 were obtained from the

surface data in Helios at 40 spanwise locations along the blade which were then

used as inputs into ACUM then converted to pressure fluctuations through the

FWH equation. Each component (upper rotor, lower rotor, and propeller) was ana-

lyzed in ACUM individually at the same observer locations so they could accurately

be compared. As seen in Section 4, there are significant aerodynamic interactions

between components. In order to quantify these interactional effects on the acous-

tic predictions, the isolated case serves as a baseline. As discussed in Chapter 2,

observer locations were placed in a 80 ft hemisphere below the rotor at ∆10o in

elevation and ∆15o in azimuth.

Figure 5.1 shows the pressure signals for one revolution of the main rotor at

the maximum noise observer (ψ = 90o, θ = 60o). As expected for a four-bladed

rotor, an obvious 4/rev signal can be seen in Figure 5.1a; however, an 8/rev signal

should be similarly noticeable due to the coaxial rotors. It is difficult to analyze the

combined signal further because the higher frequencies are seemingly dominated by

noise. The components were analyzed in ACUM separately for this reason allowing
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for analysis of the independent signals and noise as seen in Figure 5.1b.

(a) Combined Signal

(b) Independent Components

Figure 5.1: Isolated Azimuth Pressure History at Maximum Noise
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Figure 5.1b demonstrates the 4/rev signal as well as showing the main rotors

are nearly in-phase which explains the lack of a clear 8/rev in the combined signal.

The upper rotor is the maximum contributor for pressure at this location, which

is unsurprising since this maximum location is at the advancing side of the upper

rotor with an expected large loading noise. Moreover, the apparent signal noise is

high-frequency contributions from the propeller which spins at an RPM 5.67 times

greater than that of the main rotor.

For more detailed spectral analysis, it is necessary to transform the time signal

into the frequency domain using FFT. Figure 5.2 shows the dominant frequency is

the 8/rev signal from the blade passage of the upper and lower rotors. The propeller

Figure 5.2: SPL of Isolated Components by Frequency
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has substantial noise contributions at higher frequency content, namely 250 Hz and

500 Hz or 34 and 68/rev. The /rev x-axis is in terms of the coaxial rotor revolutions

so the 34/rev would be the 1st frequency for the propeller when considering the 6

blades and an RPM ratio of 5.67 compared to the coaxial rotors. Overall, the FFT

analysis confirms that the main rotors dominate the low frequencies; however, it

also shows that at higher frequencies the propeller provides substantial noise contri-

butions which are not immediately evident in the time and pressure domain. This

discrepancy in dominant frequencies is evidence that examining the A-weighting is

crucial. It is critical to examine the observer hemispheres from not only the dB SPL

but also the dBA SPL to have a greater understanding of the overall noise.

Figure 5.3: Hemisphere of Isolated Total SPL

The observer hemispheres provide a more complete understanding of the dis-

tribution of noise. The observer hemispheres are three dimensional which allows for
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different vantage points as seen in Figure 5.3. The isometric view provides greater

detail of the vertical depth of the observer bowl but the top view shows azimuthal

variations in greater clarity. Because there is more azimuth clarity, the top down

view will be used extensively in this thesis with the understanding that it extends

in the z dimension.

Figures 5.4 and 5.5 show the SPL in dB and A-weighted dB (dBA) respectively

of the upper rotor, lower rotor, and propeller individually as well as the combined

total noise. Figure 5.4a and 5.4b focus on the noise solely from the pressure fluctua-

tions on the upper rotor blades and lower rotor blades. Due to the flight conditions

Figure 5.4: SPL of Isolated Components and Total SPL in dB
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and tip mach, it is expected that the main rotors would be dominated by loading

noise. This would be supported by the increase in noise on the advancing side of

both blades. Another area of interest would be ψ=0, where a quieter pocket can be

observed on both rotor disks.

This low point is observed in both main rotors as well as the total rotor noise.

This could simply be a function of the trim state; however, as discussed in Section

4.2, the wake is nearly parallel to the rotor disk at this flight condition. Therefore,

this could be an effect of blade interactions with each other or the wake.

On the other hand, the propeller contour (Figure 5.4c) shows a single band

of noise directly under the propeller that gets drastically weaker as the observer

gets out from underneath the helicopter. Unlike the main rotors, this banding effect

would suggest that the propeller is dominated by thickness noise instead of loading.

The lack of loading noise is largely dependent upon the chosen flight condition and

the proposed use of the propeller. The purpose of this flight condition is to provide

a greater forward thrust to counter-act the fuselage drag. This amount of thrust

is going to be less than the vertical thrust needed to counter the weight of the

helicopter. Furthermore, the propeller is receiving nearly axisymmetric undisturbed

inflow which creates a near steady-state environment. The large thickness noise

coincides with the large twist present in the nominal propeller blades.

As expected from the time history and FFT analysis, the total noise (Figure

5.4d) is dominated by the main rotors with little evidence of any propeller influence.

The total noise hemisphere shows a simple combination of the high advancing side

noise from both rotors causing most observers to experience nearly 120 dB of noise.
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The propeller max is around 110 dB meaning it would be heard half as loud as the

main rotors. However, the main rotors command over total noise does not extend

to the A-weighted dB.

Figure 5.5: SPL of Isolated Components and Total SPL in dBA

The dBA contours shown in Figure 5.5 vastly differ from those shown above.

The primary differences are in the main rotor and total noise contours. The main

rotors principal frequencies are less than 100 Hz resulting in a -20 to -40 dB change

from the A-weighting curve (Figure 2.7). This results in a much softer SPL from

the main rotors and also highlights the high-frequency noise sources of the propeller.

The propeller’s dominant frequencies are all greater than 250 Hz resulting in a much
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lower dB reduction. This is confirmed in Table 5.1, which shows the OASPL in both

dB and dBA. This would indicate that the observers might hear a smaller amount

of noise from the propeller but would find it more irritating based on the frequency

of the noise.

Table 5.1: OASPL for Isolated Components

Component OASPL (dB) OASPL (dBA)
Upper Rotor 117.4 92.7
Lower Rotor 113.9 91.4

Propeller 111.2 108.9
Total 121.33 109.0

Overall, the trends seen for the main rotors are consistent between the dB and

dBA contours. However, the lower rotor shows a louder spot on its retreating side

(Figure 5.5b). This signals the presence of higher frequency content along portions

of the lower rotor that has a greater effect on thickness noise based on the high

elevation of the observers. The high-frequency content could indicate an increase in

blade-vortex interactions (BVI) between the advancing upper rotor and retreating

lower rotor.

There is little change in the propeller contour which is expected as it operates

at a much higher frequency than the main rotor resulting in a lower dB adjustment.

Moreover, the propeller for the isolated case operates in a clean flow environment so

there should not be any hidden frequency content as observed with the main rotors.

The isolated components simulations were able to capture some aerodynamic

interaction effects between the main rotors which was anticipated because the main
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rotor system was simulated in CFD together. However, the propeller demonstrated

nominal thickness dominated acoustics. While this could provide a baseline predic-

tion of the acoustics, it is expected that the propeller acoustic contour will change

when including the airframe and full configuration as the interactions upstream of

the propeller will remove the clean inflow.

5.2 Airframe Components Case

The airframe simulations were conducted in Helios with the same parameters

as the isolated simulations above except including the nominal fuselage within the

CFD simulation. The simulations were split into the main rotor system and nominal

fuselage, and the propeller and nominal fuselage. The inputs into the ACUM code

were kept constant in between the different cases except that normal and chordwise

forces were pulled from the airframe simulations.

Figure 5.6 shows the pressure signals for one revolution of the main rotor at

the maximum noise observer (ψ=90o, θ=60o). It is unclear from Figure 5.6a whether

adding the fuselage altered the pressure fluctuations of the main rotor. Comparing

Figures 5.1b and 5.6b, it can be seen that there is a noticeable amplitude decrease for

the upper and lower rotors. However, the signal in both Figure 5.6a and 5.6b shows

an amplitude increase in the high-frequency propeller pressure fluctuations which

was expected based on the aerodynamic impact seen in Section 4.4. The pressure

signal only examines the maximum noise observer location so to understand the full

effect of the fuselage it is necessary to investigate the entire observer hemisphere.
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(a) Combined Signal of Isolated and Airframe

(b) Independent Components of Airframe

Figure 5.6: Airframe Azimuth Pressure History at Maximum Noise
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Figure 5.7: SPL of Airframe Case Components and Total in dB

When examining the observer hemispheres in Figure 5.7, the most obvious

effect from the airframe is on the propeller. The isolated propeller was entirely

dominated by thickness noise directly underneath with bands of decreasing noise

outwards. The airframe propeller noise still has the prominent thickness noise under-

neath the propeller but the presence of the fuselage has diffused the noise throughout

the entire hemisphere. A surprising effect of the fuselage on the propeller noise is

the propagation of noise further upstream. From the upper half of the hemisphere

(Quadrant 2-3), it would seem that observers in of front the fuselage and propeller

would hear a greater amount of noise than those behind the propeller. In order

to see this effect more clearly, the isometric view of the airframe propeller noise is
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shown in Figure 5.8. The observers proceeding the propeller hear a greater portion

Figure 5.8: Isometric View of Airframe Propeller Hemisphere

of the noise compared to those following. This diffusion of noise from the propeller

would indicate that the presence of the airframe upstream is having a drastic impact

on the loading noise of the propeller. This is further supported by the noticeable

increase in normal force along the propeller as a consequence of the boundary layer

ingestion phenomena discussed in Section 4.4 and shown in the propeller airloads

(Figure 4.4). However, the increased loading noise is expected to have a greater

effect behind the propeller rather than in front unlike what is being observed. It is

unclear the exact cause of the diffusion of propeller noise but including the fuselage

in the propeller simulation causes a greater number of observers to experience a
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considerable increase in high-frequency noise.

Unlike the propeller, the fuselage effects on the main rotors are less pro-

nounced. The SPL difference between the airframe and isolated cases was calculated

for all observers and shown in Figure 5.9 to provide greater clarity. Similar to the

airloads, the upper rotor shows little difference in noise between the isolated and air-

frame cases. However, the lower rotor is showing a greater effect from the airframe

with an increase on the retreating side compared to the isolated case. The changes

seem relatively minor (+3-6 dB) compared to the total noise of 120 dB but this is a

large enough that observers would notice the increase in noise. Note the difference

at the forward and backward extremes for the propeller is +40dB; however, Figure

Figure 5.9: SPL of Difference between Airframe and Isolated Cases in
dB
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5.8 shows these locations ∼100 dB. The isolated propeller SPL at these extremes

was much lower than 80 dB in the isolated case (∼ 60 dB). The airframe case raised

the SPL of the propeller in these locations into the comparable threshold of the

main rotors. Between the lower rotor noise increase and the drastic propeller noise

change, the total noise from the helicopter rises between 2 and 6 dB for observers

underneath and downstream as seen in Figure 5.9d.

Figure 5.10: SPL of Airframe Components and Total in dBA

The fuselage had an even greater effect on A-weighted dB for all of the compo-

nents as seen in Figure 5.10 and 5.11 (Note: color scale is larger for dBA difference).

Figure 5.10 shows a similar trend to the isolated case with the propeller dominating

the total rotor noise except that the noise is less banded; thereby, affecting a greater
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Figure 5.11: SPL of Difference Between Airframe and Isolated in dBA

amount of observers. The propeller difference (Figure 5.11c) follows the same trend

between dB and dBA which is expected considering the frequency content of the

propeller which causes it to be weighted less heavily. The main trend difference is

total rotor noise which shows a greater number of observers experiencing an increase

between 5 and 10 dBA compared to the 3 to 6 dB increase in Figure 5.9d. This can

be mostly attributed to the diffusion of propeller noise but there is a significant in-

crease in portions of the lower rotor hemisphere. The large area of 10 dBA increase

would indicate observers in this area would experience a doubling of high-frequency

noise compared to the isolated case.

The presence of the fuselage had a pronounced effect on the propeller and lower
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rotor with negligible changes to the upper rotor acoustic hemisphere. The fuselage

caused the noise from the propeller to diffuse within the entire observer hemisphere

instead of being concentrated in thickness bands seen in the Isolated case. This

Table 5.2: OASPL for Airframe Components with Difference from Isolated Case

Component OASPL (dB) [∆] OASPL (dBA) [∆]
Upper Rotor 118.0 [+0.6] 92.9 [+0.2]
Lower Rotor 115.3 [+1.4] 93.9 [+2.5]

Propeller 111.8 [+0.6] 109.9 [+1.0]
Total 122.2 [+0.9] 110.3 [+1.3]

effect is seen clearly in both dB (Figure 5.7c) and dBA (Figure 5.11c). Conversely,

the fuselage does not have a drastic effect on the OASPL experience at the maximum

observer point as indicated in Table 5.2. This is because that the maximum observer

location is underneath the coaxial rotors and within the propeller noise bands. While

the noise increase heard from the maximum observer is negligible, Figures 5.9 and

5.11 show that a larger number of observers are experiencing an increase in noise

when the fuselage is included in the CFD analysis. While the dB increase seems

small enough that it might be unnoticeable, an increase of 3 dB is noticeable and

an increase of 10 dB is perceived twice as loud to the human ear. Therefore, the

increase in total rotor noise is detectable by the majority of observers and almost

twice as loud for those downstream of the helicopter. It is unclear whether the

difference in noise will be significant when the full configuration is included in the

CFD simulation.
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5.3 Full Helicopter Configuration

The helicopter configuration simulation was conducted in Helios with the same

parameters as the isolated simulation following the full CSD/CFD coupling de-

scribed in Section 2.2.4. The main rotor, fuselage, and propeller were all analyzed

within the simulation to examine the full aerodynamic interactions between them.

Figure 5.12: Helicopter Azimuth Pressure History at Maximum Noise

There is little difference between the azimuth pressure history of the fuselage

and full helicopter at the maximum noise location as seen in Figure 5.12. Both the

main rotor low frequencies and the propeller high-frequencies are nearly identical

between the helicopter and airframe signals. While it is expected that the full
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configuration will have an impact on the propeller, the main impact on the main

rotors was the presence of the fuselage which was already captured in the previous

airframe simulation.

Figure 5.13: SPL of Helicopter Components and Total in dB

Similar to the azimuth pressure history, the hemispheres closely resemble the

fuselage simulation except for the propeller (Figure 5.13). The propeller hemi-

sphere displays more banding comparable to the isolated components versus the

more diffused noise seen in the airframe case. This greater banding compared to

the airframe case results in a total noise hemisphere almost entirely of 120 dB noise

(Figure 5.13d). For a clearer view, it is necessary to examine the hemisphere noise

differences between both helicopter and isolated as well as helicopter and fuselage
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cases. The helicopter-isolated differences (Figure 5.14) presents similar trends as

the airframe-isolated differences (Figure 5.9) except with differing magnitudes. The

full configuration actually has a slightly lower effect (∼ 1dB) on the upper rotor

compared to the pure fuselage (Figure 5.14a and Figure 5.15a) . This could indicate

the presence of the propeller reduces the fuselage effect on the upper rotor; however,

it is difficult to tell because the effect is so small in magnitude. Overall, the total

noise of the full helicopter configuration shows a slight decrease in dB compared to

the airframe case; however, this change is so small that it is negligible.

The propeller noise difference between the full helicopter configuration and the

airframe, shown in Figure 5.15c, presents peaks at the relative 45o location in each

Figure 5.14: SPL of Difference of Full Helicopter v. Isolated in dB
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Figure 5.15: SPL of Difference of Full Helicopter v. Airframe in dB

quadrant (ψ=45 deg, 135 deg, 225 deg, 315 deg). The location of these peaks could

indicate an increase in loading noise from the propeller as the shape models that of

the nominal loading noise. This is most likely caused by the unsteady wake from

the main rotor system getting ingested by the propeller. This results in portions of

the propeller disk producing a greater amount of normal force than before causing

an increase in some observer noise and portions producing less force reducing the

noise heard by certain observers.

The dBA hemispheres of the full helicopter configuration shown in Figure 5.16

display little difference in the coaxial rotors compared to the airframe configuration

as seen in Figure 5.18. The propeller dBA has less banding than that seen in
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the full configuration dB especially near ψ = 90 deg. The total rotor noise in

dBA is dominated by the propeller as expected but demonstrates less noise directly

upstream and downstream of the helicopter compared to the airframe case. This

is further supported by the dBA decrease in the propeller and total rotor noise

upstream and downstream of the helicopter shown in Figure 5.18c and 5.18d.

Figure 5.16: SPL of Helicopter Components and Total in dBA
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Figure 5.17: SPL of Difference of Full Helicopter v. Isolated in dBA

Figure 5.18: SPL of Difference of Full Helicopter v. Airframe in dBA
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The upper rotor hemispheres in Figures 5.17a and 5.18a shows little change

from the isolated case and negates some of the observer noise changes originally

seen in the airframe case. The changes between the helicopter and airframe case

are small enough to be neglected compared to the differences in the lower rotor and

propeller. The lower rotor shows a greater increase over the isolated case but still

negates some of the noise changes from the airframe case except around ψ=0 where

there is a small increase. These changes in the lower rotor noise mimic those seen

in airloads; however, the changes between the airframe case and full configuration

are negligible.

As seen with the airframe case, the inclusion of the full helicopter configuration

within the CFD and acoustics modifies which observer locations experience a greater

amount of noise. The primary effect is on the propeller which experiences a noise

increase close to 40 dB for observers for at the upstream and downstream edges

of the hemisphere compared to the isolated case. This amounts to a maximum

fluctuation of 3 dB (6 dBA) for some observers compared to the airframe case. The

difference between the helicopter and airframe cases is large enough to be noticeable

to these observers but would not be perceived as twice as loud. The OASPL for

Table 5.3: OASPL for Helicopter Components with Difference from Airframe

Component OASPL (dB) [∆] OASPL (dBA) [∆]
Upper Rotor 117.7 [-0.3] 94.0 [+1.0]
Lower Rotor 114.9 [-0.4] 92.9 [-1.0]

Propeller 111.6 [-0.2] 109.5 [-0.4]
Total 121.8 [-0.4] 109.7 [-0.6]

74



the maximum observer location decreases slightly compared to the airframe case as

seen in Table 5.3. This decrease would not be noticeable to the human ear but does

provide further support that the presence of the airframe has a greater affect on all

components than the full helicopter configuration.

Overall, there were some small differences in noise between the full helicopter

configuration and the airframe configuration. These differences were largely negli-

gible especially for the coaxial rotors coinciding with the lack of effect the propeller

had on the coaxial rotor aerodynamics. Conversely, the coaxial rotors had a greater

effect on the propeller aerodynamics than on the propeller acoustics.
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Chapter 6: Conclusions and Future Work

6.1 Interactional Effects on Coaxial Rotor Acoustics

There were only slight changes in the acoustic predictions of the coaxial rotor

system between the different cases. This is due, in large part, to the isolated case

including both coaxial rotors within the same CFD simulation. Therefore, the ma-

jority of the interactions caused by the coaxial rotor system were already included

in the isolated case. This resulted in little change in the upper rotor noise between

the three configurations. This is evidenced by the acoustic hemisphere for the up-

per rotor as shown in Figure 6.1. The upper rotor experiences a decent amount of

azimuthal change in normal and chordwise forces with the greatest change observed

with the inclusion of the airframe. However, these changes do not translate to noise

for the upper rotor as the acoustic hemisphere exhibits minimal changes between

the different cases.

The lower rotor also shows airload differences between configurations with

the greatest change resulting from the addition of the airframe within the CFD

simulation (Figure 6.2). Unlike the upper rotor, this has a noticeable impact on the

noise experienced by the observers. The observers on the retreating side of the lower

rotor experience an increase in noise of about 6 dB. While not quite loud enough
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to double the noise, this increase is large enough to be obvious to all of the affected

observers.

(a) Normal Force

(b) Chordwise Force

(c) SPL Hemisphere in dB

Figure 6.1: Interaction Effects on Upper Rotor Aerodynamics and
Acoustics
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(a) Normal Force

(b) Chordwise Force

(c) SPL Hemisphere in dB

Figure 6.2: Interaction Effects on Lower Rotor Aerodynamics and Acous-
tics

It can be concluded that the primary interactions affecting the upper rotor

are from the lower rotor resulting in little aerodynamic and acoustic change when

including the airframe or full configuration in the CFD simulation. Conversely, the
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lower rotor experiences a greater magnitude increase in both normal and chordwise

force on the rotor disk from the inclusion of the airframe resulting in a greater

amount of noise heard by observers. The full helicopter configuration does not have

a substantial impact on the aerodynamics or acoustics compared to the airframe

simulation. Therefore, the inclusion of the airframe within the CFD simulation

has a non-negligible impact on the acoustic prediction for the lower rotor but the

inclusion of the propeller does not have an impact on the coaxial rotor system.

6.2 Interactional Effects on Propeller Acoustics

The propeller experienced the greatest interactional impacts on both aerody-

namics and acoustics. The propeller in isolation received nearly steady axisymmetric

inflow which resulted in a thickness dominated observer hemisphere shown in Fig-

ure 6.3c. The inclusion of the airframe drastically altered both the normal and

chordwise forces resulting in a similarly dramatic increase in propeller noise along

the upstream and downstream extremes of the observer hemisphere. This increase

was between 20-40 dB at these observer locations causing the propeller noise to no

longer be negligible compared to the coaxial rotor system. Not only are observers

hearing a greater amount of noise than before but they are also subject to the higher

frequency of the propeller noise which would cause greater irritation than the coax-

ial rotor system. Including the full configuration within the CFD simulation causes

another ± 3 dB shift in noise for multiple observers around the hemisphere. The

inclusion of the coaxial rotor system with the propeller in the CFD actually lowers
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(a) Normal Force

(b) Chordwise Force

(c) SPL Hemisphere in dB

Figure 6.3: Interaction Effects on Propeller Aerodynamics and Acoustics

the chordwise force at the tip and inboard stations. This could be the cause of the

dB reduction downstream of the propeller. While this 3 dB change is large enough
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to be noticeable, it is negligible compared to the noise increase across the hemisphere

due to the presence of the airframe.

6.3 Conclusions

A computational aeroacoustic framework was developed and implemented suc-

cessfully for the various helicopter component configurations. The configurations

were solved computationally in the CREATETM-AV Helios framework coupled with

PRASADUM to provide a more accurate trim state. The aerodynamic forces were

then used as inputs into ACUM to be evaluated in the FWH equation. Observer

locations were chosen in a 6 rotor radii (∼ 80 ft) hemisphere underneath the coaxial

rotor system and the sources of noise were calculated as pressure fluctuations at

each of these locations. An FFT analysis was conducted to break down the pres-

sure time histories into their component frequencies to be summed together. Using

the FFT results, an A-weighting analysis was conducted to report noise levels that

compensate for the relative loudness of certain frequencies to the human ear.

These calculations were done for three configurations: isolated, airframe, and

full helicopter. The isolated configuration analyzed the coaxial rotor system and

propeller alone. The airframe configuration analyzed the coaxial rotor system and

propeller along with the fuselage, horizontal and vertical stabilizers, pylon, and mast.

Finally, the full helicopter configuration analyzed all three components together in

a CFD simulation. The primary conclusions drawn from this thesis are:

1. The low fidelity models investigated do not sufficiently capture aerodynamic
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interactions between the coaxial rotors.

2. The propeller had a negligible effect on the acoustics of the coaxial rotor

system. The difference in coaxial rotor noise between the full helicopter and

airframe configurations was less than 1 dB.

3. The airframe had a negligible effect on the acoustics of the upper coaxial rotor

(∼ 2 dB) but caused an increase of approximately 6 dB (10 dBA) for the lower

rotor. This would indicate the upwash from the fuselage and proximity of the

tail cause a non-negligible increase in noise.

4. The airframe had a significant impact on the propeller acoustics. The observers

far upstream and downstream (ψ=180 deg and ψ=0 deg) saw an increase of

40dB while those underneath the helicopter saw a decrease of 10 dB. However,

the propeller noise is still a magnitude (10 dB) below the main rotor in this

configuration.

5. The full helicopter had a slight impact on the propeller acoustics. Some ob-

servers at similar elevations with the helicopter (θ <=10 deg) would experience

a 3 dB increase. Most observers underneath the helicopter would experience

a 3 dB decrease or no noticeable change. Overall, the impact is negligible

compared to the airframe impact on the propeller.

6. The airframe has a small impact on the total noise of approximately 6 dB

(10 dBA). Based on the location (ψ=0 deg, θ <10 deg) and A-weighting, the

propeller is the primary contributor to this increase. This causes a greater
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number of observers to experience 120 dB noise.

7. The total rotor noise in dB is dominated by the coaxial rotor system. The

coaxial rotors are approximately 5-10 dB louder than the propeller at all ob-

server locations. The majority of observers hear the coaxial rotors twice as

loud as the propeller. This was observed in all configurations.

8. The total rotor noise in dBA is dominated by the propeller. The propeller’s

primary frequencies (250 and 500 Hz) are 10x higher than the coaxial rotor

system. This results in a -40 dB weighting for the coaxial rotors and less than

-10 dB weighting for the propeller. This results in a maximum noise for some

observers of 110 dBA.

6.4 Future Work

The predicted noise examined in this thesis is greater in magnitude than typi-

cally expected for helicopters. This is likely caused by the proximity of the analyzed

observer hemisphere to the rotor disks compared to other studies (∼ 80 ft). Previous

studies, such as Sharma et al. ([14]), have predicted similar magnitudes of noise for

a coaxial rotor system in isolation. However, it is uncertain whether the magnitude

of the sound pressure level observed in this thesis is realistic. Therefore, it is neces-

sary to conduct wind tunnel or flight tests to validate and verify the acoustic data

in this thesis.

While this thesis provides a framework for the analysis of the interactional

effects on acoustic prediction for a coaxial compound helicopter, the observed trends
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might only apply for this flight condition. The 150-knot forward flight speed is a

moderate speed that still has a relatively high main rotor RPM and low propeller

thrust. This framework should be used to analyze different forward flight speeds

to observe the effect on the trends observed in this thesis. It would be useful to

quantify at which flight speed if any, the propeller begins to dominate the total

rotor noise. Furthermore, the coaxial rotors’ RPM changes based on forward flight

speed as well. This would not only alter the blade loading and airloads but also how

and where the rotor wakes interact with the fuselage and propeller. Therefore, it is

recommended to expand this framework to different forward flight speeds to provide

a greater understanding of the airframe and coaxial rotor effects on the propeller.

Along these same lines, the airframe was analyzed in the CFD but was not

directly analyzed in the acoustic code, ACUM. The presence of the airframe would

affect the propagation of noise from both coaxial rotors as well as the propeller.

This could change the amount of noise observers hear as well as the shape of the

observer contours. The pressure fluctuations on the fuselage itself would also change

per configuration and flight speed as the rotor wake propagation changes. It is rec-

ommended to dive deeper into the acoustics code to enable the analysis of stationary

objects and their effect on the noise.

Furthermore, this thesis calculates the compact chord airloads from the CFD

surface pressure as the input into the acoustics code. The compact chord assumption

is a simplification that somewhat reduces the fidelity of the acoustic analysis. It is

recommended to expand ACUM to use the complete surface pressure data directly

from CFD. This would not only increase the accuracy of the rotating blade solutions
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but could also simplify the addition of stationary objects within the acoustics code.

This thesis proves that simulating multiple aerodynamic bodies and capturing

the accompanying aerodynamic interactions will affect the acoustic prediction of

the vehicle. This becomes increasingly important as the FVL community turns

towards more advanced compound configurations. There is more research to be

done not only for the compound coaxial configuration but for other novel compound

configurations. This thesis provides a good framework for future investigations on

the impact of aerodynamic interactions on acoustics.
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