
ABSTRACT

Title of thesis: OPTIMIZATION OF EXPANDING TURNING
VANES BY BEZIER CURVE
PARAMETERIZATION
Collin Schirf, Master of Science, 2019

Thesis directed by: Dr. Jewel Barlow
A James Clark Clark School of Engineering
Department of Aerospace Engineering

The development of a new process for optimizing wind tunnel turning vanes

for use in expanding corners is described. This process uses MATLAB tools to

operate the infinite airfoil cascade solver MISES in order to take advantage of the

powerful optimization tools already present in MATLAB. Airfoils are defined using

four Bezier curves of fifth order to limit the number of design variables and take

advantage of simple smoothness constraints. A parameter sweep is performed to

verify the tool’s operation and gain insight into the impacts of airfoil thickness,

airfoil camber, cascade solidity, and expansion ratio before several optimization

cases using various MATLAB optimization functions were used to show the ability

of the optimizer to reduce total pressure loss and flow separation in turning vane

cascades. Optimizer outputs were shown to reduce total pressure losses by up to

18% and separation magnitude by up to 53% over initial designs. Comparison with

STAR-CCM+ models verified applicability of MISES cases to more accurate wind

tunnel flows.

OPTIMIZATION OF EXPANDING TURNING
VANES BY BEZIER CURVE

PARAMETERIZATION

by

Collin J. Schirf

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2019

Advisory Committee:
Dr. Jewel Barlow, Chair/Advisor
Dr. James Baeder
Dr. Roberto Celi

c© Copyright by
Collin J. Schirf

2019

Acknowledgments

I would like to acknowledge all those who helped me to complete this project.

Firstly, I would like to thank my advisor Dr. Jewel Barlow for his suggestion of this

topic and encouragement to pursue a graduate degree. Second, I would like to thank

Dr. James Baeder and Dr. Roberto Celi for agreeing to serve on my committee and

provide feedback. Third, I would like to thank Dr. Mark Drela for his permission

to use and assistance with the MISES software. Fourth I would like to thank all the

personnel at the Glenn L. Martin Wind Tunnel who assisted me at many points of

this project.

Beyond those directly involved with the project, I would like to thank the

SMART Scholarship program for providing me with the means to pursue this degree.

I would also like to thank my coworkers at the Firing Tables and Ballistics Division

whose advice on work-related matters ended up being crucial to my completion of

this project.

Finally, I would like to thank my parents, my brother, and all my other friends

who supported me during my schooling and gave me wonderful advice and encour-

agement. I would especially like to thank Madeleine Dwyer for proofreading, moral

support, distraction, and care packages along the way. I would also like to give spe-

cial thanks Shayne Suban for introducing me to Dr. Barlow many years ago–sending

me down the path to reach this point.

ii

Table of Contents

Acknowledgements ii

Table of Contents iii

List of Tables v

List of Figures vi

List of Abbreviations viii

1 Introduction 1
1.1 Background and Motivation . 3
1.2 Prior Work . 4

1.2.1 Theoretical treatment of flow about airfoil cascades 4
1.2.2 General turning vane design 6
1.2.3 Expanding turning vane design 7
1.2.4 Bezier curve parameterization 7

1.3 Scope of Present Research . 8
1.4 Contributions of Present Research . 9

2 Methodology 10
2.1 Airfoil Definition . 10

2.1.1 Bezier curve definition . 11
2.1.2 Smoothness constraints . 13
2.1.3 Additional constraints . 13
2.1.4 Expansion ratio representation 14
2.1.5 Solidity definition . 16

2.2 MISES Operation . 16
2.3 Optimization Functions . 19
2.4 MATLAB Operation . 19

2.4.1 Bezier curve functions . 20
2.4.2 File setup functions . 20
2.4.3 Program operation functions 21
2.4.4 Optimization functions . 22
2.4.5 Miscellaneous functions . 24

2.5 Flow Similarity Parameters . 25

iii

2.6 Data Acquisition . 26
2.7 Verification . 28

2.7.1 Model generation . 28
2.7.2 Meshing . 29
2.7.3 Simulation setup . 31
2.7.4 Data collection . 31

3 Results 32
3.1 MISES Results . 32

3.1.1 Parameter sweep . 33
3.1.2 Constant solidity optimizations 40
3.1.3 Variable solidity optimizations 45
3.1.4 Additional designs of note . 48

3.2 STAR-CCM+ Results . 51
3.2.1 Original vane, no expansion 51
3.2.2 Original vane, ER=1.2 . 54
3.2.3 Optimized vane, ER=1.2 . 58

4 Conclusions and Future Work 61
4.1 Optimization Efficacy . 61
4.2 Possible Improvements . 62
4.3 Future Work . 63

A MATLAB code 65

B Sample Files 93
B.1 Sample MatLAB Commands . 93
B.2 Input Files . 94

B.2.1 blade.BFGnu3 (Truncated) . 94
B.2.2 ises.BFGnu3 . 95
B.2.3 spec.BFGnu3 . 95

B.3 Output . 96
B.3.1 MatLAB command line output 96
B.3.2 polar.BFGnu3 . 96
B.3.3 field.BFGnu3 (Truncated) . 97

C Installation of Necessary Software 98

iv

List of Tables

2.1 Demonstration of Bernstein matrix creation 12
2.2 ISES variables and constraints for program operation 17
2.3 Non-default meshing parameters . 30

3.1 Fitness comparisons for constant vane gap cases 44
3.2 Fitness comparisons for variable vane gap cases 48
3.3 Fitness comparisons for cases of note. Fitness values in parantheses

are using original weighting. 48
3.4 Comparison of MISES and STAR-CCM+ loss values 54

v

List of Figures

1.1 Turning vanes in the Glenn L. Martin Wind Tunnel [1] 1
1.2 Turning vane designs and associated loss values [2] 2
1.3 Blueprints of the GLMWT circuit . 2
1.4 Dimensioned sketch illustrating possible test section expansion. 4
1.5 Original (solid line) and optimized (dashed line) vanes from Ref. [10] 7

2.1 Example bezier curve displaying control points and generated curve. . 10
2.2 Illustration of geometric analysis for expansion ratio 14
2.3 Vanes used in parameter sweeps . 27
2.4 Tunnel models used in STAR-CCM+. Top left is non-expanding, top

right is expanding, bottom center is detail view of the vanes. 29
2.5 Mesh view of the non-expanding model 30
2.6 Detail views of the mesh at the trailing edge to illustrate prism layers 30

3.1 Parameter sweep plots for camber. Alpha indicates distance along
interpolation from current GLMWT vane to modified version. 34

3.2 MISES plot of maximum camber vane solution 34
3.3 Parameter sweep plots for thickness 35
3.4 Parameter sweep plots for solidity . 36
3.5 MISES plot of 0.7 vane gap solution 36
3.6 Solidity sweep for max camber vane 37
3.7 MISES plot of maximum thickness vane at 0.8 vane gap 38
3.8 Solidity sweep for max thickness vane 38
3.9 Expansion ratio sweep . 39
3.10 Comparison of ER=1.2 and ER=1.5 case MISES solutions 40
3.11 Comparison of MOptiUncon constant solidity output to current GLMWT

vane and MISES solution . 41
3.12 Comparison of MOptiSearch constant solidity output to current GLMWT

vane and MISES solution . 42
3.13 Total pressure loss contours for optimized vane. Blue areas indicate

larger total pressure loss. 42
3.14 Function value monitor from MOptiSearch 43

vi

3.15 Comparison of MOptiGA constant solidity output to current GLMWT
vane and MISES solution . 43

3.16 Comparison of MOptiUncon variable solidity output to current GLMWT
vane and MISES solution . 45

3.17 Comparison of MOptiSearch variable solidity output to current GLMWT
vane and MISES solution . 46

3.18 Comparison of MOptiGA variable solidity output to current GLMWT
vane and MISES solution . 47

3.19 Comparison of MOptiUncon maximum thickness, 0.8 vane gap output
to initial design and solution of MISES case 49

3.20 Comparison of alternate weighting solutions to initial designs 50
3.21 Comparison of MOptiUncon() ER=1.5 output to current GLMWT

vane and solution of MISES case . 50
3.22 STAR-CCM+ solution of non-expanding case with current GLMWT

turning vane . 51
3.23 Detail of pressure coefficient from STAR-CCM+ solution of non-

expanding case compared to MISES contours 53
3.24 STAR-CCM+ solution of expanding case with current GLMWT turn-

ing vane . 55
3.25 Detail of pressure coefficient from STAR-CCM+ solution of expand-

ing case compared to MISES contours 57
3.26 STAR-CCM+ solution of expanding case using optimized turning vane 58
3.27 Detail of pressure coefficient from STAR-CCM+ solution of optimized

expanding case compared to MISES contours 59

vii

List of Abbreviations

CAD Computer Aided Design
CFD Computational Fluid Dynamics
ER Expansion Ratio
GA Genetic Algorithm
GLMWT Glenn L. Martin Wind Tunnel
M.I.T. Massachusets Institute of Technology
NACA National Advisory Committee for Aeronautics
Pa Pascals
LE Leading Edge
STAR STAR-CCM+
TE Trailing Edge

viii

Chapter 1: Introduction

Figure 1.1: Turning vanes in the Glenn L. Martin Wind Tunnel [1]

When designing a wind tunnel for aerodynamic research, there are a near

infinite number of decisions to be made. The choice of returning or non-returning

tunnel is one of the most important of these decisions. Closed return wind tunnels

have lower power requirements than non-returning tunnels as the flow must only be

kept moving by overcoming losses rather than accelerated from stationary. These

benefits, however, come at the cost of significantly increased complexity. Much of

this complexity is related to the need to maintain flow uniformity around corners.

In order to preserve uniform flow and prevent losses in corners, it is necessary to

create turning vanes for each corner. Turning vanes are cascades of airfoils designed

to turn the flow in sections and minimize energy losses. The design of these airfoils

1

Figure 1.2: Turning vane designs and
associated loss values [2]

can vary from a simple circular arc to a

complex highly cambered airfoil. As with

most aerospace applications, a carefully

considered design can result in improved

performance. The book “Low-Speed Wind

Tunnel Testing” provides data for such an

example where a simple bent plate generates a loss nearly double that of a specially

designed high camber airfoil [2]. For a small amateur tunnel, the larger loss may be

an acceptable alternative to a lengthy design process, but for a dedicated research

tunnel, this loss represents significant increases to operating costs.

Thus, the development of tools for the design of turning vanes is useful to any

who desire to create their own tunnel or improve an existing tunnel. Furthermore,

creating tools which are simple to use could improve the ability of those with less

experience and resources to create effective and efficient closed-return tunnels.

Figure 1.3: Blueprints of the GLMWT circuit

2

1.1 Background and Motivation

The Glenn L. Martin Wind Tunnel (GLMWT) was constructed in 1949 as a

gift to the University of Maryland. The design of the GLMWT was tailored largely

to facilitate aircraft testing [1]. Since its completion, though, the facility has been

used for a variety of applications beyond aircraft. Notably, the GLMWT currently

does extensive automotive testing. To better characterize flows in the wake of these

automobiles and other bluff body type flows, the director of the wind tunnel desired

to extend the test section.

Given that the GLMWT stands on the campus of the University of Maryland,

College Park and is surrounded by other buildings, an extension of the building

to accommodate a longer test section would not be possible. Instead, it was de-

cided that replacing the first corner with an expanding corner could be investigated.

This alteration would allow the first diffuser to be shortened and the test section to

be lengthened without alterations to other portions of the tunnel. Even a modest

expansion ratio would allow significant lengthening of the test section. Basic calcu-

lations using the current diffuser’s area ratios show that an expansion ratio of 1.2

in the corner would allow about 17 feet to be added to the test section . Figure 1.4

demonstrates this alteration graphically.

Unfortunately, the design of turning vanes for use in expanding corners is not

an extensively studied or documented field. For this reason, the research presented

in this thesis was necessary to bridge the gap and assist in the investigation of a

potential redesign.

3

Figure 1.4: Dimensioned sketch illustrating possible test section expansion.

1.2 Prior Work

Though expanding cascades have not been extensively studied, a few papers

have been written on designs for use in non-expanded corners. This research has also

been supplemented by research in separate areas with results applicable to turning

vanes such as the design of turbomachinery and general flow simulation though

Computational Fluid Dynamics (CFD).

1.2.1 Theoretical treatment of flow about airfoil cascades

In 1944, the National Advisory Committee for Aeronautics (NACA) published

research describing the use of potential flow theory to predict the flow about a lattice

of airfoils with the aid of conformal mapping. This method allowed the pressure

distributions about the airfoils to be calculated for incompressible, irrotational flows

4

[3]. Originally intended for application to any infinite cascade of airfoils, this work is

cited in later works dealing with the optimization of vanes for use in turbomachinery

such as the paper “Analysis of Transonic Cascade Flow Using Conformal Mapping

and Relaxation Techniques” from 1977 [4]. A 1947 paper by Spurr extended the

capabilities of this type of analysis with the use of thin airfoil theory. In this

work, a method for calculating the cascade properties of an airfoil are related to

the properties of a lone airfoil [5]. Both the 1944 and 1947 works were primarily

concerned with the pressure distribution along the airfoil in these cascades rather

than the flow properties behind the cascade.

In the 1970’s, the increasing computational power and refinement of compu-

tational methods led to the development of CFD solvers tailored to airfoil cascades.

The development of one such solver is described in the paper “A New Approach in

Cascade Flow Analysis Using the Finite Element Method.” These methods eschewed

the explicit use of conformal mapping for the solution of the potential flow about

airfoil cascades. Instead the author used a finite element method more common

in modern CFD [6]. With this type of solver, a more accurate picture of the flow

properties ahead of and behind turning vane cascades could be generated.

In the late 2000’s, Dr. Mark Drela of M.I.T. developed the MISES flow solver

for use in turbomachinery applications. This flow solver utilizes a Newton method

to solve for the flow about a single airfoil and uses periodic boundary conditions

to extend this flow to an infinite cascade. Included in the solver are tools for grid

generation, flow property specifications, flow visualization, and optimization tools.

This suite has tremendous capabilities and the specialization in infinite cascades

5

allows the options to be tailored to suit the needs of those designing for a number

of applications [7].

1.2.2 General turning vane design

As previously discussed, there is some difficulty in finding research directly

related to turning vane design. Much of this design work was performed as a matter

of necessity based on the aerodynamic research available at the time and was not

documented publicly. Despite this, some design processes can be seen in the pa-

per “Wind Tunnel Turning Vanes of Modern Design” published by NASA in 1986.

In this paper, an inverse technique was used to generate an airfoil to create a de-

sired pressure distribution whose performance was verified with an inviscid CFD

code. Using this process, a modest improvement in corner loss was achieved over a

previously-used arc-shaped vane [8].

More modern design procedures can be found in a paper from the Polytechnic

University of Madrid. This paper is notable as it describes a somewhat simpler opti-

mization process using the tools provided by MISES. To facilitate easy construction,

the shape of the airfoil was assumed to be defined by a quarter circle on the lower

surface and a parabolic arc on the upper surface. Based on this assumption, pa-

rameter sweeps were performed on the maximum thickness and leading edge radius

to find the design with the lowest pressure loss across the corner. Following this,

MISES was used to manually optimize the vanes. Also described in the article is

the use of MATLAB to set up required files quickly and accurately [9].

6

1.2.3 Expanding turning vane design

Figure 1.5: Original (solid line) and optimized (dashed line) vanes from Ref. [10]

The lack of solid information about designing turning vanes for expanding

flows was breached somewhat by a paper from the Royal Institute of Technology in

Sweden. This paper by Björn Lindgren and Arne Johansson describes the redesign

of a small-scale subsonic tunnel to include an expanding corner. As a part of this

redesign, the turning vanes in the first corner of this tunnel were optimized for use

in the new corner. The inverse design features of MISES were utilized to alter the

previous vane design to work with a two dimensional expansion ratio of 4/3. The

resulting turning vanes had a pressure-loss coefficient of 0.041 which is only slightly

worse than the original vane [10].

1.2.4 Bezier curve parameterization

While there are many ways to define an airfoil, for the sake of optimization it

is beneficial to find a method which reduces the number of design variables required

to fully define the shape. Bezier curves present one such method which has been

described in a number of papers. The paper “A Survey of Shape Parameterization

7

Techniques”, for instance, describes the use of Bezier control points in airfoil opti-

mization as a way to reduce the number of design variables while still covering a

large amount of design space. The paper also notes the benefits of this method over

similar spline techniques due to the fairly close relation between the control points

and the position of the defined curves [11].

The usefulness and versatility of this form of parameterization are expanded

upon by “Optimum aerofoil parameterization for aerodynamic design”. This pa-

per demonstrated the ability of various configurations of multiple low order Bezier

curves with positions calculated by airfoil parameters to replicate existing NACA

airfoils. Though there was some discrepancy for all configurations, the close match-

ing indicated a good ability to represent a wide array of geometries with few control

points [12].

1.3 Scope of Present Research

The research discussed in this thesis will focus primarily on the development of

a tool for use in the process of optimizing turning vanes for expanding corners. For

this reason, simplifying assumptions will be made and the vane designs presented

will not be claimed to be the ideal vanes for use in the GLMWT. For instance,

the expansion will be assumed to occur only in the two-dimensional plane. This

ignores some features of the GLMWT, but is sufficient to demonstrate the efficacy

of the design process and simplifies the analysis to work with the primarily two

dimensional solver used by MISES. Possible amendments to this process which may

8

overcome this limitation will be discussed in the further work section.

In addition, due to time and resource constraints, results will be verified only

by comparing to the MISES model of the current vane design to a more robust

commercial CFD code. Though this will not entirely guarantee the accuracy of the

results gained with MISES, agreement between the two solvers should give some

proof that optimizations made using this design tool will reflect improvements in

real flows.

1.4 Contributions of Present Research

This work will generate a tool with which flow conditions incident at a corner

may be used to optimize a design for turning vanes to use in that corner. The

aim of this work is to simplify the optimization process by eliminating the need for

inverse designs and intimate knowledge of MISES so that less experienced designers

can achieve reasonable designs. The research additionally aims to allow optimized

designs to be less reliant on the initial design.

9

Chapter 2: Methodology

2.1 Airfoil Definition

The geometry for each airfoil design was defined using Bezier curves. The

usage of Bezier curves to define the airfoil provides three distinct advantages. First,

the relatively small number of control points used to describe the airfoil drastically

reduce the number of design variables in optimization problems and thus reduces

computational cost. This is especially pertinent to derivative based optimizers since

finite differencing requires at least one additional function evaluation per design

variable for each iteration.

Figure 2.1: Example bezier curve displaying control points and generated curve.

10

Second, the nature of these curves allows large changes over the entire length

of a curve to be made with the movement of a single control point. This gross

alteration helps to prevent some of the strange design features that can arise in

airfoil optimization.

Finally, the use of multiple Bezier curves allows fine optimization to be per-

formed in a number of different ways by pinning or relating certain control points.

Pinning the endpoints of a curve near the leading edge, for instance could allow

the leading edge curve to be more finely tuned by increasing the density of control

points in the area. This is of particular import in the design of turning vanes where

the leading edge can define the sensitivity to incoming flow alterations [2].

2.1.1 Bezier curve definition

As discussed previously, Bezier curves are a parameterization method for defin-

ing curved lines through the use of a small number of control points. The distance

from these control points is then interpolated to generate the necessary curves.

Mathematically, this interpolation can be described for a curve of (N − 1)th order

using the equation:

X(t) =

(
N

1

)
Cx1(1 − t)N +

(
N

2

)
Cx2(1 − t)N−1t+ ...

(
N

N

)
CxN ; 0 ≤ t ≤ 1 (2.1)

An equation of the same form may be used to describe an arbitrary number of addi-

tional coordinates in other dimensions, though for this research only two dimensions

will be used.

11

Helpfully, this operation may be converted to a matrix form by expanding the

polynomial terms. For N = 2, this formula becomes:

X(t) = (1 t t2)

1 0 0

−1 2 0

1 −2 1

Cx1

Cx2

Cx3

 (2.2)

The matrix needed to perform this operation can be defined by populating the

main diagonal with the correct row of Pascal’s triangle for the number of control

points then populating each Kth diagonal with the Kth value of the correct row

multiplied by the Kth row of the triangle and −1K . For clarity, a sample execution

of this procedure is shown in table 2.1.

1
1 1

1 2 1
1 3 3 1

First four rows of Pascal’s
triangle, final row repre-
sents main diagonal.

1 ∗ [1 3 3 1]
−3 ∗ [1 2 1]

3 ∗ [1 1]
−1 ∗ [1]

Definition of each diagonal
starting with main diagonal
and heading toward the cor-
ner.

1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1

 Final matrix.

Table 2.1: Demonstration of Bernstein matrix creation

More information on Bezier curves is available from Ref. [14].

12

2.1.2 Smoothness constraints

Another useful mathematical feature of Bezier curves is that the curve becomes

tangent to the slope between the endpoint and previous control point at the endpoint

of the curve. This makes enforcing smoothness between two curves simple. Noting

that the endpoint for one curve will be the first control point of the next, this

relationship may be written:

y2 − y1
x2 − x1

=
y3 − y2
x3 − y2

(2.3)

Assumng that the point x3 will be altered, a value for y3 enforcing smoothness

can be found:

y3 = y2 +
(x3 − x2)(y2 − y1)

x2 − x1
(2.4)

Using these types of constraints, it is possible to generate smooth airfoils with

multiple curves of smaller orders. In practice, this was necessary because the matrix

needed to generate a curve with more than 35 control points creates large truncation

errors and does not generate the desired airfoil.

2.1.3 Additional constraints

For these optimizations, the airfoils were defined by four Bezier curves of

fifth order. The endpoints of each curve were shared to ensure continuity, and

the smoothness constraint discussed in the previous section was used to ensure

13

smoothness. In theory, it would be possible to generate an infinitely sharp leading

edge at a specified point by omitting this constraint, but due to the ability of a

blunt leading edge to mitigate sensitivity to variance in the incident flow conditions

this configuration was not investigated [2].

Additional constraints were placed to ensure that the vane was feasible. Most

important of these was the constraint on self-intersection. A MATLAB program

written by Antoni Canos was used to check each airfoil curve for self-intersection

[15]. Whenever a vane with intersecting upper and lower surfaces is created, an error

is thrown. Using try and catch functions allows this error to act as a sort of penalty

function by assigning a poor fitness value to any such cases. A similar process was

used to prevent situations where the upper surface of one vane would intersect the

lower surface of the next vane due to high thickness, high camber, or low vane gap

distance.

2.1.4 Expansion ratio representation

Figure 2.2: Illustration of geometric
analysis for expansion ratio

Once the airfoil has been defined, it

is necessary to have a parameter denoting

the expansion ratio being applied to the

cascade. The geometric analysis shown in

figure 2.2 demonstrates that the inlet and

outlet angles are sufficient to describe the

expansion ratio. This geometric analysis

14

takes the centerline of the cascade as the straight line between the inner and outer

corner of the wind tunnel walls and uses the expansion ratio to set a relation between

the width of the tunnel at the inlet of the turn and the width at the outlet. Using

trigonometric functions to solve for the flow angle incident on the turning vanes

gives the following definition:

β1 =
π

2
− β2 (2.5)

A2 =
A1

sin(π
2
− β1)

(2.6)

A2 =
A3

sin(π
2
− β2)

(2.7)

A1

sin(π
2
− β1)

=
A3

sin(β1)
(2.8)

A3

A1

= ER (2.9)

A3

A1

=
sin(β1)

cos(β1)
(2.10)

ER = tan(β1) (2.11)

This definition is expedient given that MISES defines its inlet angle in the same

tangent form. Thus, the specification of the expansion ratio can be accomplished

within the standard setup of the program.

15

2.1.5 Solidity definition

Solidity is an important parameter in any study of airfoil cascades as it defines

how close the airfoils are to one another, thus affecting their impact on one another.

This parameter has a number of definitions depending on the aerodynamic context,

but in general, a high solidity indicates a small distance between airfoils and a low

solidity indicates a large distance. For the purposes of this study, the solidity of the

cascades investigated will be defined by the vane gap. This is taken as the vertical

distance between one vane and the next.

2.2 MISES Operation

Analysis with the MISES software occurs in four steps, the first of which steps

is file setup. In order to run, MISES requires a file defining the airfoil geometry

and a file defining the flow constraints and initial values. These files are defined as

blade.xxx and ises.xxx where xxx is an arbitrary case name.

The second step is grid generation, which occurs within the subprogram ISET.

In a traditional case, ISET is used to define grid parameters and inspect the gener-

ated grid before writing to a file. Calling ISET loads the blade.xxx file and uses a

panel code to initialize stagnation streamlines which help to define the boundaries of

the grid. From here, user inputs initialize a grid between these boundaries and alter

any parameters that affect point distribution along the airfoil. Fortunately, much

of this process may be streamlined using a gridpar.xxx file containing parameter

values. Within the context of this optimizer, the ideal value of these grid parame-

16

ters should stay relatively constant, and the operation of ISET can be streamlined

in this manner. Elliptical grid smoothing is also provided to increase the quality of

the mesh. The generated grid with an initial condition defined by the panel code is

output to a file idat.xxx.

Variable Number Definition
1 Inlet flow slope
2 Exit flow slope
5 LE stagnation point
6 Grid exit static pressure
15 Inlet Mach number

Constraint Number Definition
1 Drive inlet slope to SINLin
3 Set LE Kutta condition
4 Set TE Kutta condition
6 Drive inlet POa to 1

γ

15 Drive inlet mach to MINLin

Table 2.2: ISES variables and constraints for program operation

Following the creation of the grid, the subprogram ISES must be called to

complete the third step of the flow solution. ISES iterates the solution to satisfy the

user-specified constraints by altering the user-specified variables. The constraints

used for this paper may be seen in table 2.2. These constraints allow for the pressure

ratio behind the cascade to be found for a given set of upstream flow parameters.

The solver runs the first iteration as an inviscid case before including viscous effects.

This efficiency measure and the use of a Newton flow solver result in convergence

after relatively few iterations, usually less than 15 for the cases investigated. This

step may also be performed by the subprogram POLAR. This program is generally

used to sweep through flow parameters to investigate the operation of a cascade

beyond its design point. Use of this program was determined to be necessary for

17

the procurement of a value for total pressure loss.

The final step of the flow solution is performed by running the subprogram

IPLOT. In standard operation, this program is used to generate and format plots

of flow quantities. While this was used for debugging and testing, the primary use

of IPLOT within this thesis was the creation of field.xxx files. These files contain

data for a number of flow quantities along each streamline. This file simplified the

transfer of data from the idat.xxx file into MATLAB.

These operations are run from the command line and primarily operate through

user inputs to menu prompts. This makes the software difficult to use from within

MATLAB as the command line interactions allowed by the system() function do not

permit the software to input information during program operation. Additionally,

the complexity of the software largely precludes the creation of a MEX file which

would allow operation entirely from within MATLAB. Instead, the packages TCL

and Expect are used to automate the usage of MISES. These packages streamline

the piping process commonly used in batch files to simulate user input. Due to the

similarity of the cases presented during optimization, a single Expect file may be

used to run through each step of the MISES simulation with a single command from

MATLAB. For this research, a file MISExpect was written which sets up the grid,

iterates using POLAR, then outputs the data to a field.xxx file.

Samples of each of these file types can be found in the Appendix to this report,

and further information on MISES is available from Ref. [7].

18

2.3 Optimization Functions

The field of optimization is quite broad and contains a number of techniques

and methods. To find the best method for optimizing this particular problem,

a number of methods were explored. For the purposes of this investigation, un-

constrained optimization was deemed to be the most useful. This is due to the

fact that mathematically determining the existence of non-feasible designs, such as

those where the turning vane surfaces intersect themselves, would be unnecessar-

ily complex. Instead, a penalty function was added to unconstrained optimization

techniques to discourage non-feasible designs.

The fitness function used in this optimization was a weighted sum of three

parameters. These parameters are the total pressure loss, separation magnitude,

and the difference between the turning angle and a right angle. These parameters

were selected as the pressure loss and lack of separation are the primary needs of

turning vanes. The turning angle parameter is included as a turning angle too high

or too low would likely cause difficulties as the flow propagated through the rest of

the straight tunnel section behind the corner.

2.4 MATLAB Operation

As discussed in prior sections, a number of MATLAB functions were generated

to assist in the optimization presented. Though not all functions were ultimately

used, they will all be presented for the purposes of future work.

19

2.4.1 Bezier curve functions

Two functions were used to define the curves for use in the turning vanes. The

first of these functions was BernMat(). This function automatically generated the

necessary matrix for the calculation of a Bezier curve of order n− 1. This function

was called by a separate function Bez(). Bez() takes two vectors of control points,

the number of points to be plotted in the curve, a string signifying whether multiple

curves are to be used, and an optional vector containing the order of each curve.

Using these inputs, the program uses for loops to generate the specified curves and

outputs a vector of x values and a vector of y values.

2.4.2 File setup functions

As most MISES operations require the file they reference to be generated

before the program will operate, creating functions that allow automatic creation of

these files was one of the most important steps of this research.

The first of these functions is V aneBuild(). This function takes the control

points, normalized vane gap distance, and an input structure containing flow data

specified by the user. The function calls Bez() with the given inputs and writes the

results to a file blade.xxx. The file name and additional parameters are taken from

the input structure.

The second of these functions is InputSetup(). This function creates the file

ises.xxx for a given file name using both data specified in an input structure and

values coded into the function. Though hard-coding values is a less than ideal

20

manner of specifying them, the values handled in this way were determined to be

unlikely to change for any case handled by the program. If necessary, these values

could be added to the input structure and the function altered to accommodate the

new format.

DataRead() reads the field.xxx file for a specified file name and outputs an

average pressure loss, mean separation distance, and outlet flow angle. A similar

file DataReadFit() performs the same process, but uses user-specified weights to

calculate a fitness value from these three values. These files also call SepV al() which

reads the field.xxx and blade.xxx files to compare the locations of the blade surfaces

and stagnation streamlines. These distances are averaged over the vane to create an

approximate measure of the magnitude of separation present on the given airfoil.

2.4.3 Program operation functions

Of equal import to the functions which set up the files are the functions which

operate the MISES program. The most vital of these is MISESEval which uses the

system() function to run the Expect file MISExpect from the command line. If the

command is not carried out, an error is thrown.

To simplify other codes, the file MISES() was written. This file takes the

same inputs as V aneBuild() and runs V aneBuild(), InputSetup(), MISESEval(),

and DataRead(). As with DataRead(), a similar program MISESFit() is used to

output a fitness value directly rather than the three values output by DataRead().

21

2.4.4 Optimization functions

With the ability to run and gather results from MISES handled by the func-

tions described previously, functions for optimizing vanes within this environment

were simple to create. Similar to Lindgren and Johansson [10], the normalized drop

in total pressure across the vane was the main value being queried by the optimizer.

MISES outputs this value with the definition:

ω̄ =
piseno2 − p̄o2
po1 − p1

(2.12)

This definition, output by the POLAR function, compares the isentropic total

pressure to the mean total pressure and normalizes by the inlet conditions. This

provides a convenient value to minimize to ensure good vane operation. Addition-

ally, this value should be relatively simple to obtain from the StarCCM+ models.

During early testing of some of the optimization functions, it was found that the

method of calculating loss being used at the time only considered flow between the

stagnation streamlines. This allowed large separations to form as the losses due

to these separations were not impacting the fitness values. To counteract this, the

mean separation value was added to the fitness function and highly prioritized by

the weighting. Though the loss calculation was later altered to the one specified

above, this parameter remains useful to ensure as little separation occurs as pos-

sible. Additionally, adding minimal deviation from a specified turning angle as an

additional optimization goal could help to prevent designs which drastically over-

22

turned or under-turned the flow. With these goals and parameters set, the functions

could be created and tweaked.

The first of these functions is MOptiUncon. This function performs a Broyden-

Fletcher-Goldfarb-Shanno (BFGS) optimization aimed at minimizing the fitness

function calculated by MISESFit. This function takes an initial design configuration

and a few run parameters such as tolerance and finite differencing calculation step

size and outputs a new design and the final design’s fitness value. The smoothness

constraint discussed in section 2.1.2 was applied within this function as it effectively

reduces the number of design variables and the smooth transitions were deemed to

result in a better quality of vane.

Two more functions were created to perform the same task with different opti-

mization functions. One, MOptiSearch.m, used fminsearch() to optimize the turning

vane while the other, MOptiGA.m, used ga(). The fminsearch() function uses a form

of simplex algorithm to optimize a given function. Conversely, ga() operates a ge-

netic algorithm to optimize the problem. Due to the nature of the penalty function,

it is necessary to provide all three functions with a feasible initial design to achieve

a feasible result. In testing, non-feasible designs were unable to provide a reasonable

direction for the optimizers within the design space that pushed the altered designs

to become feasible. MOptiGA was particularly susceptible to this difficulty as stan-

dard operation allows the function to generate the initial population without regard

to feasibility. As such, an expression to generate the initial population by adding

bounded random values to each of the parameters was added to this function.

23

2.4.5 Miscellaneous functions

In addition to the functions described above, a few functions were written

for convenience or written and subsequently determined to be unnecessary. The

function InStructSet(), for instance, is a function that automatically creates the

necessary input structure for the file setup and MISES operation functions from a

set of hard-coded values. This function is useful to ensure that element names within

the structure are consistent with those used in the functions as well as to quickly

generate many structures with similar values to accommodate slightly varied cases.

The functions V aneCalc() and V aneF it() were used early in testing to find

values of the Bezier Parameters similar to those of the current turning vane. These

functions used fminsearch() and a distance calculation to optimize the parameters

such that the curve generated by Bez() passed through a given set of points along

the current GLMWT turning vane design. The generation of these parameters

was useful for creating an initial, feasible design for later optimizations as well as

providing good practice with the MATLAB optimization toolbox.

The function GridPar() was written to automatically generate a gridpar.xxx

file for use in ISET operation. It was quickly determined that adding a pause

function to the optimization programs and allowing a manual setup of the first

parameter set was more advantageous, and this program was not utilized.

24

2.5 Flow Similarity Parameters

To ensure the applicability of the flows found using MISES to those generated

in the real world, it was necessary to match flow parameters. For this flow, chord

Reynold’s matching and Mach number matching were used to achieve this. Using

standard sea level conditions taken from Ref. [16] for viscosity and density, the flow

speed and characteristic length were calculated by using the flow speed at the first

corner corresponding to the tunnel’s top speed and the chord length of the original

vane. Likewise, the flow speed at the first corner was used to calculate the Mach

number. Noting that the desired setup of the expansion ratio would result in a

decreased area at the corner, a relation between both similarity parameters and the

expansion ratio was generated. This process, largely predicated on the continuity

equation, can be seen below where the subscript c denotes a value at the corner

entrance, ts denotes a value at the test section, and the notation A′c denotes the

original area at the corner:

Re =
ρvcl

µ
(2.13)

vc = vts
Ats
Ac

(2.14)

Ac = A′c · ER (2.15)

Ats
Ac

= 0.3269 · ER (2.16)

Re =
1.204kg/m3(103m/s(0.3269 · ER))(0.6515m)

1.789 · 10−5Pa · s
(2.17)

25

Re = 1.476 · 106 · ER (2.18)

A similar process can be used for Mach number:

M =
vc
a

(2.19)

a = 343m/s (2.20)

M = 0.0982 · ER (2.21)

Additionally, for simplicity, all design dimensions were scaled by the chord

length of the current GLMWT turning vane.

2.6 Data Acquisition

Once the functions were created, data for this research was gathered in a

few steps. The first of these steps was a simple parameter sweep similar to the one

performed by Lopez et al. in Ref. [9]. This process served a few purposes. First, the

sweep demonstrated the ability to operate MISES from within MATLAB on valid

vane geometries. Second, the results of the sweep gave some understanding of the

effects of these parameters on the pressure loss associated with these blunt turning

vanes. To this end, camber, thickness, and cascade solidity were all investigated for

a simply modified version of the current GLMWT first corner vane. The vanes can

be seen in figure 2.3. Finally, the sweep helps to bridge some gaps left by Lopez et

al.[9] in terms of camber and cascade solidity.

26

Figure 2.3: Vanes used in parameter sweeps

Following the parameter sweep, a number of optimization cases were per-

formed. First, each optimizer was run using the GLMWT vane as an initial con-

dition and constraining the vane gap to a constant value. This process used an

expansion ratio of 1.2, but cases with other expansion ratios were also performed to

test the functions. Second, the same optimization was performed using a variable

solidity to determine if the added design parameter would alter the vane design

significantly. During this process, alterations and fixes to each of the solvers were

made to ensure acceptable performance.

Finally, the lessons from the parameter sweep and the many optimization cases

were taken and used to experiment with new starting points and parameters. These

cases spanned a wide range of investigations and had a large number of outcomes,

so a select few with notable outputs were included in this report.

27

2.7 Verification

The results of this optimization were verified using the CFD software STAR-

CCM+. The vane design for both the current GLMWT first corner design and the

newly optimized design were modeled in the CAD package SolidWorks and imported

into STAR.

2.7.1 Model generation

The models for verification were generated using the tools provided in Solid-

works. First, the blade.xxx file is imported into Excel and the Cartesian coordinates

of the vane are prepared for import into SolidWorks. This preparation involves scal-

ing by the original vane chord to ensure flow similarity and placing the data in

the correct format. Next, the vane is loaded into SolidWorks and used to create

a 2-D curve. This curve is copied using the pattern tool to generate the correct

number of vanes for the present case with the correct cascade angle to generate the

necessary expansion ratio. Straight and parallel tunnel walls are then created to

allow for proper wake propagation. These walls were made to be roughly 5 chord

lengths ahead of the corner and 10 chord lengths behind the corner. Finally, a semi-

arbitrary curve was generated at the tunnel wall using a four point style spline. This

spline was constrained to be tangent to the inlet and outlet walls and dimensioned

to appear similar to the vane shape. Given that MISES has no way of handling wall

geometries, the primary point of interest in this verification will be away from the

wall and wall geometry is thus less influential. Figure 2.4 shows the models used.

28

Figure 2.4: Tunnel models used in STAR-CCM+. Top left is non-expanding, top
right is expanding, bottom center is detail view of the vanes.

2.7.2 Meshing

To ensure proper handling of boundary layers, the mesh generated within

STAR-CCM+ was generated such that the maximum wall y+ was between 1 and

5 to fit within the bounds of the wall functions used. To achieve this, prism layers

with a controlled thickness at the wall and defined total thickness were added. For

simplicity, a triangular mesh was used in all other regions with wake refinement

controls added to the vane geometry. The mesh for the non-expanding case using

the GLMWT vane can be seen in figure 2.5 with detail views in figure 2.6. Major

meshing parameters can be seen in table 2.3.

29

Variable Number Definition
Parameter Value
Minimum Surface Size 1.0e-4
Number of Prism Layers 15
Prism Layer Near Wall Thickness 1.0e-5
Prism Layer Total Thickness 0.01m
Vane Surface Controls
Target Surface Size 0.05m
Isotropic Wake Size 0.05m
Wake Growth Rate 1.25

Table 2.3: Non-default meshing parameters

Figure 2.5: Mesh view of the non-expanding model

Figure 2.6: Detail views of the mesh at the trailing edge to illustrate prism layers

30

2.7.3 Simulation setup

To properly model the conditions in the tunnel, the similarity parameters used

in the MISES file are related to the conditions of the tunnel modelled in STAR-

CCM+. To do this, it was necessary to alter the properties of air in the simulation

to have the same dynamic viscosity as the one used to calculate the Reynold’s

number in the simulation. By setting the inlet velocity to match the specified inlet

Mach number and ensuring static temperature and the chord length of the model

were correct, the correct Reynold’s number was achieved naturally.

In selecting the models, the problem was assumed to be steady and the air

was assumed to act as an ideal gas. Turbulence was modelled with a Realizable

K-Epsilon solver. All other models were selected as the STAR defaults for a two

dimensional steady problem.

2.7.4 Data collection

To assess the similarity in solutions between MISES and STAR, three monitors

were considered. First, a visual assessment of pressure and velocity contours was

used to verify that no apparent errors had occurred within the simulation. Second,

the pressure contours around the vane were examined and compared to the plot

generated for the identical case using MISES. Last, a line probe was generated

parallel to the cascade about one chord length away and not reaching the walls.

This probe was used to calculate the mean pressure loss and to compare with these

values from MISES.

31

Chapter 3: Results

3.1 MISES Results

On operating the MATLAB wrapper for MISES, there are a number of ob-

servations to be made. First, the speed of operation should be noted. As expected

from the typically quick convergence and relatively low computational requirements

of MISES, operation was relatively quick. For reference, the parameter sweep rou-

tine generates and solves 60 MISES cases and takes roughly ten minutes to complete

on a personal desktop with a 6-core i7 processor and 16 GB of RAM. Unfortunately,

the nature of optimizers prevents the same from being true for full optimization

cases. Dependent on the method used and tolerances specified, the optimizers took

between thirty minutes and multiple hours to output a converged value. Compared

to an optimizer using a different CFD solver, this is fairly quick. Additionally, the

quick convergence of each case indicates that methods with better convergence could

speed this total process in future iterations.

Second, the need for good engineering judgment in the operation of these

programs must be noted. Though the optimization process requires less knowl-

edge of the aerodynamics than an optimization within MISES, the ability of im-

proper weighting specifications, initial vane definitions, and other issues to cause

32

non-convergence or to generate vanes with poor performance indicates a need for

careful consideration of these parameters. Further, a basic understanding of MISES

operation and aerodynamics is needed to verify the results of any optimization.

Certain functions generated designs with non-viable streamlines or which did not

converge and had questionable pressure profiles warranting additional scrutiny.

3.1.1 Parameter sweep

The results of the parameter sweep confirmed some theories about the effects

of the parameters while also contributing some new insights. It should be noted that

a larger value for loss represents a worse vane as does a larger value for separation.

Additionally, the turning angle is defined as the angle of the outer corner of the wind

tunnel. As such, smaller values represent sharper turns and a value of 90 degrees

represents a perfectly right-angled turn. Values below 90 degrees will be referred to

as over-turning and values above as under-turning.

Sweeping from the current vane to a modified, high-camber version showed

that increasing this camber generated increased pressure losses and increased over-

turning. This is generally not surprising as the higher camber will result in an

effectively larger angle on the latter portion of the vane and flow tangency will

encourage a larger turning angle due to this. Despite the larger losses, the higher

turning angle could prove beneficial in cascades with a larger vane gap. Depending

on what flow features are generating the largest pressure losses, having fewer vanes

spaced further apart with a higher turning angle could help to turn the flow with

33

Figure 3.1: Parameter sweep plots for camber. Alpha indicates distance along
interpolation from current GLMWT vane to modified version.

less overall pressure loss. Also notable is the gradual increase in mean separation

distance. This seems to stem from the fact that the larger camber induced a larger

Figure 3.2: MISES plot of maximum camber
vane solution

adverse pressure gradient along the

leading edge of the lower surface and

trailing edge of the upper surface

which caused a larger separation to

form. This can be demonstrated in

figure 3.2 which shows the stagnation

streamlines generated by MISES for

the maximum camber vane.

34

Figure 3.3: Parameter sweep plots for thickness

Performing a sweep from the current vane to a thickened version provided

similar results. Adding material and constraining the channels between the vanes

appears to have increased losses within the cascade but also limited separation. As

with the camber sweep, these results could have implications for high vane gap cas-

cades as the turning angle is slightly sharpened and the slightly reduced separation

could be beneficial when the space between vanes is larger. To gather further data

about these possibilities, both the highest camber and highest thickness vanes were

subjected to a sweep of cascade solidity.

Sweeping through the solidity provided some more interesting results. Sweep-

ing from slightly below the current vane gap to almost four times this value showed

a gradual decrease in losses and over-turning with a gradual increase in separation.

35

Figure 3.4: Parameter sweep plots for solidity

It seems that a vane gap that is too high induces larger separation as the larger

distance between vanes limits the propagation of the flow information imparted by

the vanes. Thus, a large vane gap limits the ability of the upper surface of one

Figure 3.5: MISES plot of 0.7 vane gap solution

vane to prevent separation on the

lower surface of the next vane by

imposing a flow direction and vice

versa. This effect can be seen

in the stagnation streamline shape

of figure 3.5. It is unclear what

causes the convergence failure at

0.9, but the most likely culprit is

36

instability in the separation causing an unsteady problem that MISES cannot con-

verge.

Figure 3.6: Solidity sweep for max camber vane

Repeating the solidity sweep with the high camber and high thickness vanes

shows similar results, but demonstrates the effects of the altered designs. Overall,

as the distance between the vanes increased, the losses incurred decreased, but the

separation caused increased. Many of the solidity values for camber did not converge,

likely for similar reasons to the non-convergence in the camber sweep. Due to this

lack of data, it is unclear what effect the solidity had on the high camber vane, but

the general trend and inability to solve the problem indicates that high camber,

intermediate vane gap designs are not the best to pursue. The maximum thickness

vane presents an enticing case around a normalized vane gap of 0.8 where the loss

37

Figure 3.7: MISES plot of maximum thick-
ness vane at 0.8 vane gap

is lower than that of the standard

vane at a low vane gap and the turn-

ing is near 90, though the mean sep-

aration distance is higher. This case

can be seen in figure 3.7. As specu-

lated in the discussion of the thick-

ness sweep, the added material limits

the size of the separation. Based on the contours shown, an adjustment to fur-

ther thicken the vane and alter the angle of the trailing edge could overcome this

separation even at a high vane gap.

Figure 3.8: Solidity sweep for max thickness vane

38

Figure 3.9: Expansion ratio sweep

Finally, sweeping through a number of expansion ratios demonstrates some

unexpected phenomena. The decrease in both losses and separation seem to run

counter to what one could expect from increasing the expansion ratio for a vane

not optimized to that expansion. It is possible that this is the result of effectively

pitching the airfoil because of the definition of expansion ratio in the parameters.

Running two cases at ER=1.3 and ER=1.5 returns the plots in figure 3.10. These

plots are very similar, but the differences in the parameters may help to explain some

of the strange results seen in the sweep. The difference in inlet pressure ratio, for

instance, could be altering the loss calculation as the formula used may be converted

to the form seen in equation 3.1 by presuming that po1 = piseno2 .

39

ω̄ = (
1

1 − p1
po1

)(1 − p̄o2
po1

) (3.1)

Because the ratio in the denominator decreases as expansion ratio increases, it

is possible that the actual loss in static pressure was greater for the larger expansion

case but inflated by the normalization for the other cases.

Figure 3.10: Comparison of ER=1.2 and ER=1.5 case MISES solutions

3.1.2 Constant solidity optimizations

Setting up the optimization functions was a difficult process, but ultimately

resulted in some decent optimization tools. The main difficulties in setting up these

functions were determining what file formats and function syntaxes would work with

the prebuilt optimization functions. Once this process was complete, finding proper

option values and fitness function weights took more experimentation. Despite this,

the speed of operation made experimentation less odious. The following vanes were

generated using the weighting vector [10, 5, 0.1, 0.4].

40

Figure 3.11: Comparison of MOptiUncon constant solidity output to current
GLMWT vane and MISES solution

Understandably, MOptiUncon() was the fastest of the optimizers. With rea-

sonably high tolerances, a single optimization case usually took around an hour to

complete. Additionally, the optimizations were generally pushed towards cases with

quick convergences indicating little to no separation or major viscous effects. One

such case can be seen in figure 3.11. This optimization was run with an expansion

ratio of 1.2 using the original turning vane as the initial design. The results in this

case illustrate some of the features common in MOptiUncon() cases. The slight

indent on the upper surface near the leading edge, for instance, is a feature that

appeared in many cases. This feature appears to counteract some of the adverse

pressure gradients that can appear and create separation. As such, very little sepa-

ration appears in this design. It must be noted that in the process of testing these

functions, the MOptiUncon() function had a tendency to fail to alter the design

if not given the correct tolerance parameters. Troubleshooting this optimizer was

also more difficult than the others due to the lack of visualization tools provided

to observe the current state of any optimization case. Additionally, final designs

were very similar to the initial designs, showing that the optimizer had difficulties

41

moving away from local minima.

Figure 3.12: Comparison of MOptiSearch constant solidity output to current
GLMWT vane and MISES solution

MOptiSearch() took longer to converge. With a similar tolerance, this opti-

mizer took roughly one to three hours to complete. A characteristic design generated

with this function can be seen in figure 3.12. This design illustrates the tendency

of this optimizer to grossly alter the trailing edge as well as the mid-airfoil fea-

tures. The features demonstrated in this design are also much different than those

gained with MOptiUncon(). The strange indent seems to interact with the pressure

gradients to help minimize separation on the lower surface. Plotting a contour of

Figure 3.13: Total pressure loss contours for optimized

vane. Blue areas indicate larger total pressure loss.

total pressure losses as

in figure 3.13 illustrates

the possible benefit of

this method as the most

prevalent losses were those

experienced at the lower

surface separation bound-

ary. An unfortunate fea-

42

ture of this optimizer is its tendency to query a large number of infeasible designs.

Because ISES is being run from within POLAR, it is not possible to directly con-

strain the allowed number of iterations. This combination is largely responsible for

the lengthy optimization. This length was helped by the in-built visualization as it

was more apparent when cases were not running correctly. If all initial values were

the penalty function value, for example, it was immediately clear that an error was

occuring and the optimization should be stopped.

Figure 3.14: Function value monitor from MOptiSearch

Figure 3.15: Comparison of MOptiGA constant solidity output to current GLMWT
vane and MISES solution

43

As with most genetic algorithms, MOptiGA() took a long time to run. This

optimizer could take close to eight hours to complete a single case. Though it

sometimes reaches a value much sooner, these values were often due to the initial

population all being of poor fitness or luck to find a particularly good design early.

Regardless, this long convergence time may be worthwhile as genetic algorithms

help to avoid local minima. The relative similarity between the starting and ending

profiles of the other two optimizers indicate that there are numerous local minima to

be found and the overall design could suffer by using these solvers without accounting

for this fact. The output of a MOptiGA() case can be seen in figure 3.15. Though

this case was relatively similar in shape to the original design, the slightly extended

chord length was a feature not seen in any of the other optimizers. The chord length

was not constrained in any way, but it is likely that the many control points defining

each curve diminished the effects of any one point moving to alter this parameter.

The results of a single optimization case beginning from the GLMWT vane for

each solver can be seen in table 3.1. This table illustrates some of the differences in

the solvers.

Case Fitness Pressure
Loss

Mean Separation
Distance

Turning
Angle

GLMWT Vane 3.3566 0.1284 0.0218 75.3624
MOptiUncon 3.0599 0.1046 0.0156 75.64
MOptiUncon 3.0599 0.1046 0.0156 75.64
MOptiUncon 3.0599 0.1046 0.0156 75.64

Table 3.1: Fitness comparisons for constant vane gap cases

For the cases presented, each of the solvers arrived at similar values despite

the drastically different designs. Each of the new designs demonstrates a decreased

44

total pressure loss and separation distance, though MOptiSearch() increased the

amount of overturning. This likely has to do with the weighting parameters used

which heavily favored pressure loss and separation as optimization targets. Differ-

ent weighting parameters or initial designs would likely result in even better vane

designs.

3.1.3 Variable solidity optimizations

Repeating the optimization process with no constraints on the solidity provides

similar results. Though it was theorized that allowing variation in vane gap distance

would create major changes in the designs, actual alterations were usually minor.

This lends more credence to the idea that many designs were being pushed to local

minima. Additionally, computation times for these optimizations were similar to

those with constant solidity as only one more design variable was being considered.

Figure 3.16: Comparison of MOptiUncon variable solidity output to current
GLMWT vane and MISES solution

Figure 3.16 shows the output of one such optimization using MOptiUncon().

The vane created looks similar to the vane shown in figure 3.11. The solidity for

this case was altered slightly which helped to decrease the pressure loss by 2.5%

45

compared to the constant solidity case. This comes at the cost of a minor increase

in mean separation and in real design cases, altering the solidity may impact the

way the vanes are placed in the corner. For this reason, if major improvements are

not made, it may be beneficial to hold solidity constant.

Figure 3.17: Comparison of MOptiSearch variable solidity output to current
GLMWT vane and MISES solution

Running a variable solidity case using MOptiSearch() gives another vane sim-

ilar to the constrained solidity case. Shown in figure 3.17, this case has an almost

identical shape to the one shown in figure 3.12. As seen in the MOptiUncon op-

timization, the resultant case has a similar pressure loss at the cost of very minor

additional separation. Again, this result encourages consideration as to whether the

design benefits of allowing the vane gap to vary outweigh the added complexity later

in the design process.

The most intriguing result of this round of optimizations was given by the

genetic algorithm in MoptiGA(). The vane, seen in figure 3.18, had a dramatically

altered vane gap distance close to 1.0. This extreme vane gap was complimented

by a dramatically altered leading edge shape. The shape seen appears to be almost

sharp. It is unclear whether this is the result of a failure in the smoothness constraint

46

Figure 3.18: Comparison of MOptiGA variable solidity output to current GLMWT
vane and MISES solution

or merely a very small radius curve that still mathematically satisfies the constraint

while being sampled out by the number of points used to plot. Regardless, the

fitness values and flow parameters seen in this case were fantastic. A 70% decrease

in pressure loss and a turning angle of almost exactly 90 degrees was associated

with only a small increase in separation. These results warranted further study, so

a STAR case was performed which will be discussed later.

Comparing the values gained from these cases in table 3.2 shows the possible

power of the genetic algorithm. If the correct configuration is generated, drastic

improvements can be made. Likewise, the ability of the optimizers to alter solidity

seems to have created a slight benefit in terms of fitness values. As mentioned

previously, this benefit must be weighed against possible complications that could

arise from slight alterations.

47

Case Fitness Pressure
Loss

Mean Separation
Distance

Turning
Angle

GLMWT Vane 3.3566 0.1284 0.0218 75.3624
MOptiUncon 3.0292 0.1019 0.0157 75.6838
MOptiSearch 3.2481 0.1013 0.0101 73.1568

MoptiGA 0.6714 0.0382 0.0341 90.2386

Table 3.2: Fitness comparisons for variable vane gap cases

3.1.4 Additional designs of note

Using the information gained in this process, more optimizations were per-

formed with alternate initial designs and weighting parameters. The results of these

optimizations can be seen in table 3.2. Parameters not specified are identical to

those used in the constant solidity cases.

Case Fitness
Pressure
Loss

Mean Separation
Distance

Turning
Angle

GLMWT Vane 3.3566 0.1284 0.0218 75.3624
MOptiUncon,
max thickness,
0.8 vane gap

1.8805 0.0408 0.0220 81.3803

MOptiSearch,
max thickness,
W=[8,1,2,5]

37.4946
(3.1158)

0.2542 0.0072 67.2733

MOptiUncon,
0.4 vane gap,
W=[10,1,2,5]

29.8180
(2.4543)

0.0854 0.0290 80.4471

MoptiUncon,
ER=1.5

2.4955 -8.2e-4 0.0018 70.1867

Table 3.3: Fitness comparisons for cases of note. Fitness values in parantheses are
using original weighting.

The results shown in this table demonstrate that alterations made to the initial

conditions and weighting functions made significant impacts to the operation of the

program. Two cases optimized using the maximum thickness vane, for instance were

48

able to take advantage of the lower separation values seen in the parameter sweep.

The first case used MOptiUncon() to alter the vane at a large vane gap. Despite

the vane gap, the losses experienced are one third those of the current vane, though

this value should be taken with skepticism for reasons discussed in ??. This design

is shown in figure 3.19.

Figure 3.19: Comparison of MOptiUncon maximum thickness, 0.8 vane gap output
to initial design and solution of MISES case

In one of the functions where the parameter weights was altered, the separation

distance was significantly lowered despite having less importance ascribed to it. It

is possible that this happened by chance, but could also indicate that the new

weighting altered the gradients in a manner that led designs to be pushed towards

lower separation as a means of obtaining the other quantities. Other cases support

this thought as ignored parameters were seen to improve despite not being queried

directly. More exhaustive experimentation would be required to determine whether

this is true or more coincidence. Both designs generated with alternate weighting

functions are shown in figure 3.20.

49

MOptiUncon(), W=[8,1,2,5] MOptiSearch(), W=[10,1,2,5]

Figure 3.20: Comparison of alternate weighting solutions to initial designs

A final design worthy of note was a case using MOptiUncon() to optimize a

case with an expansion ratio of 1.5. The design resulting from this case appears

to have a negative pressure loss. It is not clear how this occurred, but it may be

related to the trend seen in the expansion ratio sweep performed in section 3.1.1.

Regardless of the cause, this negative value is almost certainly not physical, though

it likely still corresponds to reduced losses.

Figure 3.21: Comparison of MOptiUncon() ER=1.5 output to current GLMWT
vane and solution of MISES case

50

3.2 STAR-CCM+ Results

Setting up the STAR cases proved to be somewhat difficult given the size of the

cascades. Though the simulations were run on the computer cluster at the GLMWT

with 48 cores and 256GB RAM, meshing procedures took roughly twenty minutes

and simulations took at least 2 hours to converge when using a residual drop of

four orders of magnitude. Despite this, the low number of simulations required for

verification made the increased fidelity of the large mesh desirable.

The results from these simulations provide some insight into the feasibility of

using this design technique.

3.2.1 Original vane, no expansion

Creating a simulation for the original vane in a configuration similar to how

it is used in the wind tunnel currently resulted in the solution shown in figure 3.22.

Figure 3.22: STAR-CCM+ solution of non-expanding case with current GLMWT
turning vane

51

This solution acts as one might expect from the vanes being used in roughly

their intended configuration. There are no apparent detached flows, but a slight

velocity defect does form in the wake. These results run somewhat contrary to

the results found using MISES. Namely, MISES appears to predict a moderate

separation along the lower surface of the vane and higher losses than are predicted by

the STAR model. In fact, the losses predicted by STAR simulation were 0.066 which

is a little less than half of those predicted by MISES. Many possible explanations

exist for this discrepancy including possible difficulties with the mesh refinement of

the simulation, differences in the calculation of the flow properties used in the loss

calculation, or non-intuitive interactions between the tunnel walls and the flow. To

investigate, flow contours were compared in figure 3.23.

Though it is difficult to compare values due to the difference in formats, the

contours shown in the MISES plot seem to reflect those in the STAR solution. The

location of the stagnation point and various flow features such as the low pressure

area stretching along the upper surface of the vane are very similar. It is also

somewhat likely that the bubble of high pressure in the center of the lower surface

corresponds to the separation seen in the MISES case. Noting these similarities,

the suggestion that flow interactions with the wall may impact losses by imposing

a new flow direction is also supported. Further research is necessary to determine

the exact cause.

52

Figure 3.23: Detail of pressure coefficient from STAR-CCM+ solution of non-
expanding case compared to MISES contours

53

3.2.2 Original vane, ER=1.2

Creating another simulation to represent the same vanes in an expanding cor-

ner helps to clarify some of the issues seen in the first simulation. Figure 3.24 shows

the velocity profile of the expanded tunnel with the location of the line probe and

inlet probe highlighted. Results of this simulation also follow the expected patterns

of a vane in this configuration. The flow behind the corner has been decelerated by

the expansion and contains some velocity defects in the wake. As with the losses

predicted in the previous case, MISES predicts losses more than twice that of those

predicted with STAR-CCM+. Comparison of these values gave a promising sign,

however, as the ratio between the Star and MISES values were nearly the same for

both cases and the percentage difference between the MISES values was extremely

similar. This similarity in change gives a good indication that though the losses are

not the same, the trends in losses likely are. Additionally, this change supports the

veracity of the trend seen during the parameter sweep where fewer losses were in-

curred by larger expansions. Thus, the conclusions that this result is either physical

or a quirk of the pressure loss measurement have additional credence.

Case MISES Losses STAR-CCM+ Losses
Expanded 0.1776 0.066

Non-Expanded 0.1148 0.042
Percent Change 35.4% 36.4%

Table 3.4: Comparison of MISES and STAR-CCM+ loss values

54

Figure 3.24: STAR-CCM+ solution of expanding case with current GLMWT turn-
ing vane

55

Also similar to the previous case is the resemblance of the pressure contours.

Figure 3.25 demonstrates these similarities. The approximate locations of the stag-

nation point are close, however it should be noted that MISES predicts a stagnation

point further towards the upper surface of the turning vane. This distinction may

be exacerbated by more extreme expansions, but further research is again needed

to determine an exact cause.

56

Figure 3.25: Detail of pressure coefficient from STAR-CCM+ solution of expanding
case compared to MISES contours

57

3.2.3 Optimized vane, ER=1.2

Simulating the vane with the best fit provides an excellent warning for fu-

ture users of this tool. The vane obtained with the MOptiGA() function during the

constant solidity optimization at an expansion ratio of 1.2 had excellent flow param-

eters that pushed the bounds of credibility. Simulating the vane with StarCCM+

proves this skepticism to be warranted. Figure 3.26 illuminates the difficulty with

the optimized vane.

Figure 3.26: STAR-CCM+ solution of expanding case using optimized turning vane

Though the MISES prediction of this vane indicates little to no separation, the

separation was so great that the STAR solution could not converge properly. Where

the first two cases were iterated until their residuals dropped by four to five orders

of magnitude, the residuals for this case only dropped three orders of magnitude

before beginning to oscillate.

58

Figure 3.27: Detail of pressure coefficient from STAR-CCM+ solution of optimized
expanding case compared to MISES contours

59

Though the contours shown in figure 3.27 seem to roughly match, the param-

eters queried by the optimizer give no indication of the large shedding phenomena

that occur. This shedding results in a predicted loss of 0.214. Assuming that the

trends from the other two cases remain true, this corresponds to a loss of 0.579 in

MISES, much higher than what MISES actually predicted. For this reason, any

users attempting to optimize cascades with large vane gaps should be wary of the

results they obtain. It is possible that this phenomena could be predicted with

another parameter in MISES, but no such parameter is known at present.

60

Chapter 4: Conclusions and Future Work

Overall the results of this research were promising. The short simulation time

and relatively simple operation of the program achieved most of the goals set out at

the beginning of this paper. The vanes generated, though certainly not the finalized

configuration for use in the tunnel, show the ability of this optimization process to

contribute to a design process. Furthermore, most of the problems encountered in

the application of this tool could be overcome with further testing and more careful

usage.

4.1 Optimization Efficacy

As discussed in the results section, the vane designs output by each of the

optimizers improved on the initial designs they were given for each particular case.

With proper weighting, this improvement created vanes that largely avoided sep-

aration and lowered total pressure losses. In some cases, the optimizers reduced

pressure losses by as much as 18%. In addition, mean separation distance was re-

duced by as much as 53%. While most cases could not alter the turning angle of

the flow significantly, STAR-CCM+ modelling suggests that the interactions with

the tunnel walls may reduce the impact of this parameter.

61

Despite this demonstration of ability, the optimizers were still fairly slow. This

lack of speed could be partially offset by running multiple cases at once, but this

increases the likelihood of errors caused by both instances altering the same files. To

avoid the need for this, the efficiency of the optimizers stands to be improved. Addi-

tionally, the manner in which variables are assigned in MATLAB caused numerous

errors at the end of runs which lost significant computational time. Though fur-

ther operation with the programs created for this thesis should avoid most of these

errors, any further alterations or attempts to improve the program may encounter

these frustrating setbacks.

4.2 Possible Improvements

Even with the success of many portions of this work, numerous improvements

could be made. Primary among these is an alteration of the penalty function. As

the penalty function was effectively of zeroth order, optimizers relying on derivatives

to generate directions will be unable to escape from non-feasible design spaces. This

drawback can also affect directed optimizers operating in the feasible design space as

the finite difference used in the definition of direction can hit one of these boundaries

and push the design in an undesirable direction. Additionally, genetic algorithms

and other non-directed optimizers can be fooled into thinking an optimum has been

reached when they are given a non-feasible starting point and do not happen to find

a viable design.

Other improvements include ease of use features such as a graphical vane

62

creation tool. This would allow more initial designs to be considered, especially

designs not based on a current design. Though the current GLMWT turning vane

provided a good starting point, having the ability to quickly generate radically

different vanes could improve the ability of the optimizer to be agnostic of the

initial design. Further alterations of airfoil definition could come from methods

similar to the Bezier-PARSEC method described in ??. Tying control points to

airfoil geometry parameters like leading edge thickness or trailing edge angle could

avoid some of the strange design features seen in the optimizations presented here.

In a simpler alteration, converting the airfoil definitions to a single high order curve

could allow more gross alteration of characteristics like chord length, pitch, and

camber.

Finally, new optimization codes could be tested for their viability. The three

functions used in this research provided good results, but the MATLAB optimization

suite is broad and contains a plethora of additional options. Further experimentation

could produce a significantly faster or more effective optimizer than the one detailed

here. In fact, simply altering the existing codes to take advantage of parallelism

could drastically reduce optimization times.

4.3 Future Work

Beyond improvements to the program, many possibilities exist for future works

to build on this research. Most apparent is an extension to three dimensions.

Though a two dimensional expansion will be sufficient for many wind tunnels, the

63

GLMWT requires a more three dimensional expansion to limit the amount of al-

terations needed to implement an expanding corner. It is likely that a modification

of the ISES parameters to include non-axial flow could replicate the action of 3D

wind tunnel turning vanes. As such, optimizing the vanes with various amounts of

this non-planar flow could create an optimal vane profile for all stations along the

height of the corner or a number of profiles to be used as cross sections at different

stations.

Even more ambitious related works could replace MISES altogether. If a new

code were found or created, the geometry of the entire corner could be investigated.

This would allow the corner geometry to be better incorporated and investigated

with the vane geometry, but would also require a much larger simulation as periodic

boundaries could no longer be used to limit cell count.

Finally, a full expanding corner redesign using the tool in its current state

could further solidify the usefulness of such a design tool. This work would require

significantly more study of the flow features within the expanding corner their repre-

sentation in MISES, but would ultimately lead to an improvement that could make

a tangible change to any aerodynamic research institution.

64

Appendix A: MATLAB code

function M=BernMat(n)

%This function generates a Bernstein Matrix for a polynomial of n values

in

%order to use with a Bezier curve formulation. The matrix is created by

%applying coefficients from ascending levels of pascal’s triangle to the

%values from the nth level along the diagonals.

M=zeros(n); %Initialize the matrix

%Write Pascal’s triangle to a matrix

tri=zeros(n,n); tri(1,1)=1;

for i=2:n

tri(i,1)=1;

for j=2:i

tri(i,j)=tri(i-1,j-1)+tri(i-1,j);

end

end

%Sweep through matrix to apply proper elements

for k=0:n-2 %Sweep diagonals

for i=1:n %Sweep rows

for j=1:i %Sweep columns

if j==1 %Load left side

M(i,j)=(-1)^(i+1)*tri(n,i);

elseif j==i-k %Load diagonals

M(i,j)=M(k+1,1)*tri(n-k,j);

end

end

end

end

end

65

function [X,Y]=Bez(xp,yp,n,Type,Split)

%This function converts bezier curve control points to the corresponding

%cartesian curves.

%Check Inputs

switch nargin

case 5

%Accept all inputs

case 4

%Generate generic splits

Split=[4,4,4];

case 3

Type=’Smooth’; %Default to smooth

%Generate generic splits

Split=[4,4,4];

case 2

%Set default values if not specified

n=100;

Type=’Smooth’; %Default to smooth

%Generate generic splits

Split=[4,4,4];

otherwise

error(’Not enough arguments’)

end

%Convert to column vectors if not already

if iscolumn(xp)~=1

xp=xp’;

end

if iscolumn(yp)~=1

yp=yp’;

end

if strcmp(Type,’Split’)

%Split curve into a number of curves of order Split(i)-1

v=1; %Initialize index variable to prevent point doubling

%Populate segment matrix based on split order matrix

S2(1)=1;

for k=2:length(Split)+1

S2(k)=S2(k-1)+Split(k-1)-1;

end

%Find point scaling

Order=Split./length(xp);

for k=1:length(Split) %Calculate line segments

clear T t %Reset size of T and t

t=linspace(0,1,Order(k)*n); %Define t

B=BernMat(Split(k)); %Define Bernstein Matrix

66

for i=1:length(t)

for j=0:Split(k)-1

T(1,j+1)=t(i)^j; %Populate interpolation matrix

end

if k~=1 && i==1 %Check for segment start to avoid repeat point

v=v-1;

end

X(v)=T*B*xp(S2(k):S2(k+1)); %Find vth value of X

Y(v)=T*B*yp(S2(k):S2(k+1)); %Find vth value of Y

v=v+1;

end

end

else %Default to single smooth curve (not ideal, breaks above ~35 points)

t=linspace(0,1,n); %Define t

B=BernMat(length(xp)); %Define Bezier Matrix

for i=1:n

for j=0:length(xp)-1

T(1,j+1)=t(i)^j; %Populate interpolation matrix

end

X(i)=T*B*xp; %Find ith value of X

Y(i)=T*B*yp; %Find ith value of Y

end

end

end

67

function Input=InStructSet(Name)

%This is a convenience function to correctly set up the input structure

%required by other functions. Hard-coded values can be easily changeed

%within the function to ensure proper run parameters.

%Expansion ratio

er=1.2; %Equivalent to tan(alpha)

%Curve parameters

Input.n=250;

Input.Type=’Split’;

Input.Split=[6 6 6 6];

Input.FileName=Name;

%ISES parameters (Named as in MISES user guide)

Input.MINLin=0.0982*er;

Input.MOUTin=0.0;

Input.P1PTin=((1+0.2*Input.MINLin^2)^(-1.4/0.4));

Input.SINLin=er; %Inlet angle equivalent to ER

Input.SOUTin=tan(atan(er)+pi/2); %Calculate desired tangent of outlet

Input.CHINL=1.0;

Input.CHOUT=1.0;

Input.PITCH=0.3;

Input.XINLin=-0.5;

Input.XOUTin=1.5;

Input.REYNin=1.476e6*er;

Input.NCrit=4;

end

68

function VaneBuild(xp,yp,c,Input)

%This function takes a filename and a structure. The structure contains

%two vectors, a number of points, and a specification of the type of

%curve desired (Split or not), inlet tangent, outlet tangent, inlet and

%outlet locations. The fuction then calculates the proper curves and

%writes to a blade.xxx file with the proper structure.

%Calculate the shape

[X,Y]=Bez(xp,yp,Input.n,Input.Type,Input.Split);

%Check for self intersection

[xint,~,~]=selfintersect(X,Y);

if length(xint)>1

%Throw error if intersecting

error(’Vane is self intersecting’)

end

%Check for vane intersection by traversing backwards across first vane to

%see if upper surface intersects lower surface of next vane.

if max(fliplr(Y)>Y+c)==1

%Throw error if solidity too low

error(’Solidity too low for vane’)

end

%Open file if valid vane

F=fopen([’blade.’,Input.FileName],’w’);

%Print name and flow parameters

fprintf(F,[Input.FileName,’\n’,num2str(Input.SINLin,’%1.4f’),’ ’,...

num2str(Input.SOUTin,’%1.4f’),’ ’,num2str(Input.CHINL,’%1.4f’),’ ’,...

num2str(Input.CHOUT,’%1.4f’),’ ’,num2str(c,’%1.4f’),’\n’]);

%Print coordinates to file

for i=1:length(X)

fprintf(F,[num2str(X(i),’%1.5f’),’ ’,num2str(Y(i),’%1.5f’),’\n’]);

end

%Close file

fclose(F);

end

69

function InputSetup(Input)

%This function sets up the parameter file for Mises runs. The function

%requires a filename and an input structure. The Input must have fields

%for inlet mach, inlet static pressure, inlet angle (tan(theta)), inlet

%distance, outlet mach, outlet angle, outlet distance, reynolds number,

%and Ncrit.

%Open Input File

f=fopen([’ises.’,Input.FileName],’w’);

%Select between sharp and non sharp leading edge

%Print variable constants line

%Line currently represents inlet angle, exit slope, exit pressure, and

%inlet mach

fprintf(f,’ 1 2 15 6 5\n’);

%Print constraint constants line

%Line currently represents inlet angle, outlet slope, TE Kutta, inlet

%Mach, inlet pressure ratio, inlet Reynold’s number

fprintf(f,’ 1 4 15 6 3\n’);

%Print inputs

%Inlet conditions (Mach, pressure ratio, angle, distance)

fprintf(f,[’ ’,num2str(Input.MINLin,’%1.4f’),’ ’,...

num2str(Input.P1PTin,’%1.4f’),’ ’,num2str(Input.SINLin,’%1.4f’),...

’ ’,num2str(Input.XINLin,’%1.4f’),’\n’]);

%Outlet conditions (Mach, pressure ratio, angle, distance)

fprintf(f,[’ ’,num2str(Input.MOUTin,’%1.4f’),’ 0.0 ’,...

num2str(Input.SOUTin,’%1.4f’),’

’,num2str(Input.XOUTin,’%1.4f’),’\n’]);

%Splitter parameters

fprintf(f,[’ 0.0 1.0\n’]);

%Viscous parameters (Reynold’s, ncrit for transition model)

Rey=num2str(Input.REYNin,’%1.3E’);%Eliminate illegal character

fprintf(f,[’ 0.’,Rey(1),Rey(3:6),Rey(8:end),’ ’,...

num2str(Input.NCrit,’%1.4f’),’\n’]); %ncrit is freestream turbulence

if negative

%Forced transition locations (ignored if >=1)

fprintf(f,[’ 1.0 1.0\n’]);

%Isentropy and dissipation (model selection 1-4, critical mach, artificial

%dissipation)

fprintf(f,[’ 3 0.970 1.00\n’]);

%Close file

fclose(f);

%Write spec File for use by POLAR

f=fopen([’spec.’,Input.FileName],’w’);

70

fprintf(f,[’ 1\n ’,num2str(Input.SINLin)]);

fclose(f);

end

71

function [Ploss,Sep,Turn]=DataRead(FileName)

%This function reads the output files of a Mises run to output the needed

%data.

%Open Blade File

fb=fopen([’blade.’,FileName],’r’);

%Open Polar File

fp=fopen([’polar.’,FileName],’r’);

%Load inlet angle

for i=1:2

line=fgetl(fb);

if i==2

Inlet=atand(str2double(line(1:7)));

end

end

%Read loss and outlet angle from polar file

for i=1:8

line=fgetl(fp);

if i==8

Sout=atand(str2double(line(12:20)));

Ploss=str2double(line(75:84));

end

end

%Calculate total turning angle (degrees)

Turn=180-(Inlet-Sout);

%Call SepVal to output mean separation distance

Sep=SepVal(FileName);

%Close files

fclose(fp); fclose(fb);

end

72

function Fit=DataReadFit(FileName,w)

%This function reads the output file of a Mises run to output the needed

%data then converts data to fitness value using given weighting vector.

%Open blade file

fb=fopen([’blade.’,FileName],’r’);

%Open Polar File

fp=fopen([’polar.’,FileName],’r’);

%Load inlet angle

for i=1:2

line=fgetl(fb);

if i==2

Inlet=atand(str2double(line(1:7)));

end

end

%Read loss and outlet angle from polar file

for i=1:8

line=fgetl(fp);

if i==8

Sout=atand(str2double(line(12:20)));

Ploss=str2double(line(75:84));

end

end

%Calculate total turning angle (degrees)

Turn=180-(Inlet-Sout);

%Call SepVal to output mean separation distance

Sep=SepVal(FileName);

%Calculate fitness function

if isnan(Ploss)==1

Fit=500;

elseif Turn<=90 %prioritize overturning to 95 degrees

Fit=w(1)*Ploss+w(2)*Sep+w(3)*abs(95-Turn);

else %Punish underturning (disabled if w(4)=0)

Fit=w(1)*Ploss+w(2)*Sep+(w(3)+w(4))*abs(90-Turn);

end

%Close files

fclose(fb); fclose(fp);

end

73

function [sepdis]=SepVal(FileName)

%This function reads the blade and field files for a given case and uses

%interpolation to determine the average distance from the stagnation

%streamlines to the blade surface. This provides a quantitative measure of

%separation.

%Read blade coordinates from blade file

bfi=fopen([’blade.’,FileName],’r’);

i=1;

while ~feof(bfi)

line=fgetl(bfi);

if i==2

c=str2double(line(30:end));

elseif i>=3

Bx(i-2,1)=str2double(line(1:7));

By(i-2,1)=str2double(line(9:end));

end

i=i+1;

end

%Split surfaces and invert upper surface to correct orientation

dx=Bx(2:end)-Bx(1:end-1);

le=find(dx>0,1);

Ux=flipud(Bx(1:le-2)); Uy=flipud(By(1:le-2));

Lx=Bx(le+2:end); Ly=By(le+2:end);

%Close file

fclose(bfi);

%Read field file to place streamline coordinates into matrix

k=1; i=1; j=0; check=0;

f=fopen([’field.’,FileName],’r’);

while ~feof(f)

line=fgetl(f);

if k==1 %Skip header

k=k+1;

elseif isempty(line) %Find start of new streamline

check=1;

j=j+1; i=1;

else %Read values into matrix

Sx(i,j)=str2double(line(1:14)); Sy(i,j)=str2double(line(15:27));

i=i+1; check=0;

end

end

%Close file

fclose(f);

74

%Interpolate y distance between stream and blade for first and last

%streamlines (Upper and lower stagnation streamlines)

%Find approximate blade coordinates within streamline

les=find(Sx(:,1)>0.1);

tes=find(Sx(:,1)>0.9);

%Find vertical distance for upper surface

dyu=abs(Sy(les:tes,1)-interp1(Ux,Uy-c,Sx(les:tes,1)));

%Find approximate blade coordinates within streamline

les=find(Sx(:,end)>0.1);

tes=find(Sx(:,end)>0.9);

%Find vertical distance for lower surface

dyl=abs(Sy(les:tes,end)-interp1(Lx,Ly,Sx(les:tes,end)));

%Average values and sum

sepdis=mean(dyu)+mean(dyl);

end

75

function [ploss,sep,turn]=MISES(X,Y,c,Input)

%This function is a simple wrapper for the other functions which allows

%them to be called within Matlab’s optimization functions. The function

%checks if an input file has been prepared to prevent function

%repetition.

try

% Clear any previous field and polar files to prevent unwanted

% data carryover on failed runs

delete([’field.’,Input.FileName]);

delete([’polar.’,Input.FileName]);

delete([’idat.’,Input.FileName]);

% Build vane

VaneBuild(X,Y,c,Input);

% Set up ises if it doesn’t exist

if ~isfile([’ises.’,Input.FileName])

InputSetup(Input);

end

% Run Mises Solver

MISESEval(Input);

% Pull values from outputs

[ploss,sep,turn]=DataRead(Input.FileName);

catch %Check for errors and allow larger operation to continue

% Set values to NaN to indicate failure

ploss=NaN;

sep=NaN;

turn=NaN;

end

end

76

function fit=MISESFit(X,Y,c,Input,w)

%This function is a simple wrapper for the other functions which allows

%them to be called within Matlab’s optimization functions. The function

%assumes that an input file has been prepared to prevent function

%repetition.

try

% Clear any previous data files to prevent unwanted data

% carryover in failed runs

delete([’field.’,Input.FileName]);

delete([’polar.’,Input.FileName]);

delete([’idat.’,Input.FileName]);

%Build the Vane

VaneBuild(X,Y,c,Input);

% Set up ises if it doesn’t exist

if ~isfile([’ises.’,Input.FileName])

InputSetup(Input);

end

% Run Mises Solver

MISESEval(Input);

% Pull fitness value from output

fit=DataReadFit(Input.FileName,w);

catch %Check for errors to allow larger functions to continue

% Set loss to large value as a form of penalty function

fit=500;

end

end

77

function fit=MISESFit2(In,Input,fixc,w,Xin,Yin,Cin,Xend,Ybeg,Yend)

%This function is a simple wrapper for the other functions which allows

%them to be called within Matlab’s optimization functions. The function

%assumes that an input file has been prepared to prevent function

%repetition. This function is used when optimization functions allow

%additional inputs to be passed directly to the output function

%Parse inputs

X=[Xin(1),In(1:Xend),Xin(end)]’;

Y=[Yin(1),In(Ybeg:Yend),Yin(end)]’;

if fixc==1

c=Cin;

else

c=In(end);

end

%Apply Smoothness Constraint

for i=1:length(Input.Split)-1

if i==1

S=Input.Split(i);

else

S=sum(Input.Split(1:i))-(i-1);

end

Y(S+1)=Y(S)+(X(S+1)-X(S))*(Y(S)-Y(S-1))/(X(S)-X(S-1));

end

try

% Clear any previous data files to prevent unwanted data

% carryover in failed runs

delete([’field.’,Input.FileName]);

delete([’polar.’,Input.FileName]);

delete([’idat.’,Input.FileName]);

%Build the Vane

VaneBuild(X,Y,c,Input);

% Set up ises if it doesn’t exist

if ~isfile([’ises.’,Input.FileName])

InputSetup2(Input);

end

% Set up Grip Parameters if it doesn’t exist

if ~isfile([’gridpar.’,Input.FileName])

GridPar(Input);

end

% Run Mises Solver

78

MISESEval(Input);

% Pull value from output

fit=DataReadFit(Input.FileName,w);

catch %Check for errors to allow larger functions to continue

% Set loss to large value as a form of penalty function

fit=500;

end

end

79

function [Xout,Yout,cout,fit]=MOptiUncon(Xin,Yin,Cin,Input,tol,h,fixc,w)

%This function performs an optimization using the fminuncon() function to

%generate a vane design which best satisfies the fitness conditions given

%by DataReadFit(). Solidity may be fixed using fixc=1 and a weighting

%vector w of length 4 is required. tol and h set convergence tolerance and

%finite difference step size respectively.

%Build First vane

VaneBuild(Xin,Yin,Cin,Input);

%Set up ises file

InputSetup(Input);

%Pause to allow Gridpar generation with ISET (if necessary)

pause

%Set initial guess

In=[Xin(2:end-1);Yin(2:end-1);Cin];

%Determine beginning and end points for variables in vector

Xend=length(Xin)-2; Ybeg=Xend+1; Yend=Xend+length(Yin)-2;

%Set optimization options

Opt=optimoptions(’fminunc’,’DiffMaxChange’,5,’FiniteDifferenceStepSize’,h,...

’MaxFunctionEvaluations’,1e3*Xend*2,’OptimalityTolerance’,tol);

%Perform optimization

[Out,fit]=fminunc(@Call,In,Opt);

%Output data and plot new vane

Xout=[Xin(1);Out(1:Xend);Xin(end)];

Yout=[Yin(1);Out(Ybeg:Yend);Yin(end)];

if fixc==1

cout=Cin;

else

cout=Out(end);

end

%Apply smoothness constraint

for i=1:length(Input.Split)-1

if i==1

S=Input.Split(i);

else

S=sum(Input.Split(1:i))-(i-1);

end

Yout(S+1)=Yout(S)+(Xout(S+1)-Xout(S))*(Yout(S)-Yout(S-1))/(Xout(S)-Xout(S-1));

end

%Display optimized vane

[X,Y]=Bez(Xout,Yout,Input.n,Input.Type,Input.Split);

[Xor,Yor]=Bez(Xin,Yin,Input.n,Input.Type,Input.Split);

figure

80

plot(X,Y,’b-’,Xor,Yor,’r--’,X,Y+cout,’b-’,’LineWidth’,2.0)

if fixc==1

title([’Optimized turning vane for ER=’,num2str(Input.SINLin),...

’, constant solidity’])

else

title([’Optimized turning vane for ER=’,num2str(Input.SINLin),...

’, variable solidity’])

end

xlabel(’X/c’)

ylabel(’Y/c’)

legend(’Optimized Vane’,’Initial Vane’)

%Embed function to allow easier handling of variables

function fit=Call(Var)

%Parse inputs

Xp=[Xin(1);Var(1:Xend);Xin(end)];

Yp=[Yin(1);Var(Ybeg:Yend);Yin(end)];

%Enforce smoothness

for i=1:length(Input.Split)-1

if i==1

S=Input.Split(i);

else

S=sum(Input.Split(1:i))-(i-1);

end

Yp(S+1)=Yp(S)+(Xp(S+1)-Xp(S))*(Yp(S)-Yp(S-1))/(Xp(S)-Xp(S-1));

end

%Perform run and calculate fitness

if fixc==1

fit=MISESFit(Xp,Yp,Cin,Input,w);

else

fit=MISESFit(Xp,Yp,Var(end),Input,w);

end

end

end

81

function

[Xnu,Ynu,c,fval,exitflag]=MOptiSearch(Xin,Yin,Cin,Input,tol,fixc,w)

%This function performs an optimization using the fminsearch() function to

%generate a vane design which best satisfies the fitness conditions given

%by DataReadFit(). Solidity may be fixed using fixc=1 and a weighting

%vector w of length 4 is required. tol sets a convergence tolerance.

%Build First vane

VaneBuild(Xin,Yin,Cin,Input);

%Set up ises file

InputSetup(Input);

%Pause to allow Gridpar generation with iset (if necessary)

pause

%Define input vector

if isrow(Xin)==1

In=[Xin(2:end-1),Yin(2:end-1),Cin];

else

In=[Xin(2:end-1);Yin(2:end-1);Cin]’;

end

%Determine beginning and end points for variables in vector

Xend=length(Xin)-2; Ybeg=Xend+1; Yend=Xend+length(Yin)-2;

%Set options

Opt=optimset(’MaxFunEvals’,5e4,’TolX’,tol,’PlotFcns’,@optimplotfval);

%Call optimization function

[Out,fval,exitflag]=fminsearch(@MISESFit2,In,Opt,Input,fixc,w,Xin,Yin,Cin,Xend,Ybeg,Yend);

%Find Output

Xnu=[Xin(1),Out(1:length(Xin)-2),Xin(end)]’;

Ynu=[Yin(1),Out(length(Xin)-1:end-1),Yin(end)]’;

if fixc==1

c=Cin;

else

c=Out(end);

end

%Enforce smoothness

for i=1:length(Input.Split)-1

if i==1

S=Input.Split(i);

else

S=sum(Input.Split(1:i))-(i-1);

end

Ynu(S+1)=Ynu(S)+(Xnu(S+1)-Xnu(S))*(Ynu(S)-Ynu(S-1))/(Xnu(S)-Xnu(S-1));

end

%Display optimized vane

[X,Y]=Bez(Xnu,Ynu,Input.n,Input.Type,Input.Split);

82

[Xor,Yor]=Bez(Xin,Yin,Input.n,Input.Type,Input.Split);

figure

plot(X,Y,’b-’,Xor,Yor,’r--’,X,Y+c,’b-’,’LineWidth’,2.0)

if fixc==1

title([’Optimized turning vane for ER=’,num2str(Input.SINLin),...

’, constant solidity’])

else

title([’Optimized turning vane for ER=’,num2str(Input.SINLin),...

’, variable solidity’])

end

xlabel(’X/c’)

ylabel(’Y/c’)

legend(’Optimized Vane’,’Initial Vane’)

end

83

function [Xnu,Ynu,c,fval,exitflag]=MOptiGA(N,Xin,Yin,Cin,Input,fixc,w)

%This function performs an optimization using the ga() function to

%generate a vane design which best satisfies the fitness conditions given

%by DataReadFit(). Solidity may be fixed using fixc=1 and a weighting

%vector w of length 4 is required.

%Set correct number of variables

if fixc==1

Nvar=N*2;

IMat(1,:)=[Xin(2:end-1)’,Yin(2:end-1)’];

else

Nvar=N*2+1;

IMat(1,:)=[Xin(2:end-1)’,Yin(2:end-1)’,Cin];

end

%Generate initial population with bounded random alterations

for i=2:(N*5)

if fixc==1

IMat(i,:)=[Xin(2:end-1)’-0.01+0.02.*rand(1,N),...

Yin(2:end-1)’-0.01+0.02.*rand(1,N)];

else

IMat(i,:)=[Xin(2:end-1)’-0.01+0.02.*rand(1,N),...

Yin(2:end-1)’-0.01+0.02*rand(1,N),Cin+rand(1)];

end

end

%Set up ises file

InputSetup(Input);

%Set options

Opt=optimoptions(’ga’,’InitialPopulationMatrix’,IMat,’PlotFcn’,...

’gaplotbestf’);

%Call fitting function

[Out,fval,exitflag]=ga(@Call,Nvar,Opt);

%Find Output

Xnu=[Xin(1),Out(1:N),Xin(end)]’;

if fixc==1

c=Cin;

Ynu=[Yin(1),Out(N+1:end),Yin(end)]’;

else

c=Out(end);

Ynu=[Yin(1),Out(N+1:end-1),Yin(end)]’;

end

%Enforce Smoothness

for i=1:length(Input.Split)-1

if i==1

S=Input.Split(i);

84

else

S=sum(Input.Split(1:i))-(i-1);

end

Ynu(S+1)=Ynu(S)+(Xnu(S+1)-Xnu(S))*(Ynu(S)-Ynu(S-1))/(Xnu(S)-Xnu(S-1));

end

%Display optimized vane

[X,Y]=Bez(Xnu,Ynu,Input.n,Input.Type,Input.Split);

[Xor,Yor]=Bez(Xin,Yin,Input.n,Input.Type,Input.Split);

figure

plot(X,Y,’b-’,Xor,Yor,’r--’,X,Y+c,’b-’,’LineWidth’,2.0)

if fixc==1

title([’Optimized turning vane for ER=’,num2str(Input.SINLin),...

’, constant solidity’])

else

title([’Optimized turning vane for ER=’,num2str(Input.SINLin),...

’, variable solidity’])

end

xlabel(’X/c’)

ylabel(’Y/c’)

legend(’Optimized Vane’,’Initial Vane’)

%Embed function to allow easier handling of variables

function fit=Call(In)

%Parse inputs

X=[Xin(1),In(1:N),Xin(end)]’;

Y=[Yin(1),In(N+1:N*2),Yin(end)]’;

if fixc==1

c=Cin;

else

c=In(end);

end

%Enforce Smoothness

for i=1:length(Input.Split)-1

if i==1

S=Input.Split(i);

else

S=sum(Input.Split(1:i))-(i-1);

end

Y(S+1)=Y(S)+(X(S+1)-X(S))*(Y(S)-Y(S-1))/...

(Y(S)-Y(S-1));

end

%Perform run and calculate fitness

fit=MISESFit(X,Y,c,Input,w);

end

end

85

function [Xnu,Ynu,fval,exitflag]=VaneCalc(Xdes,Ydes,Xin,Yin,Input,tol)

%This function performs an optimization using the VaneFit function to

%generate a vane design which best approximates the control points

required

%to make a curve which passes through the given coordinates.

%Define input vector

if isrow(Xin)==1

In=[Xin(2:end-1),Yin(2:end-1)];

else

In=[Xin(2:end-1);Yin(2:end-1)]’;

end

%Set options

Opt=optimset(’MaxFunEvals’,1e5,’TolX’,tol,’PlotFcns’,@optimplotfval);

%Call fitting function

[Out,fval,exitflag]=fminsearch(@VaneFit2,In,Opt,Xdes,Ydes,Input,1);

%Find Output

Xnu=[Xdes(1),Out(1:length(Xin)-2),Xdes(end)]’;

Ynu=[Ydes(1),Out(length(Xin)-1:end),Ydes(end)]’;

%Enforce smoothness

for i=1:length(Input.Split)-1

if i==1

S=Input.Split(i);

else

S=sum(Input.Split(1:i))-(i-1);

end

Ynu(S+1)=Ynu(S)+(Xnu(S+1)-Xnu(S))*(Ynu(S)-Ynu(S-1))/(Xnu(S)-Xnu(S-1));

end

end

86

function VaneBuild(xp,yp,c,Input)

%This function takes a filename and a structure. The structure contains

%two vectors, a number of points, and a specification of the type of

%curve desired (Split or not), inlet tangent, outlet tangent, inlet and

%outlet locations. The fuction then calculates the proper curves and

%writes to a blade.xxx file with the proper structure.

%Calculate the shape

[X,Y]=Bez(xp,yp,Input.n,Input.Type,Input.Split);

%Check for self intersection

[xint,~,~]=selfintersect(X,Y);

if length(xint)>1

%Throw error if intersecting

error(’Vane is self intersecting’)

end

%Check for vane intersection by traversing backwards across first vane to

%see if upper surface intersects lower surface of next vane.

if max(fliplr(Y)>Y+c)==1

%Throw error if solidity too low

error(’Solidity too low for vane’)

end

%Open file if valid vane

F=fopen([’blade.’,Input.FileName],’w’);

%Print name and flow parameters

fprintf(F,[Input.FileName,’\n’,num2str(Input.SINLin,’%1.4f’),’ ’,...

num2str(Input.SOUTin,’%1.4f’),’ ’,num2str(Input.CHINL,’%1.4f’),’ ’,...

num2str(Input.CHOUT,’%1.4f’),’ ’,num2str(c,’%1.4f’),’\n’]);

%Print coordinates to file

for i=1:length(X)

fprintf(F,[num2str(X(i),’%1.5f’),’ ’,num2str(Y(i),’%1.5f’),’\n’]);

end

%Close file

fclose(F);

end

87

function GridPar(Input)

%This function writes a grid parameter file for a given input. Parameters

%are currently hard coded, but may be changed with additions to the Input

%parameter and variable definitions within this program.

%Open grid parameter file

f=fopen([’gridpar.’,Input.FileName],’w’);

%Print parameters:

%Grid Type: first letter is inlet, second is outlet. F for low speed

%(periodic H grid), T for supersonic or possible shocks (offset I grid)

fprintf(f,’t t\n’);

%Grid points: first number for inlet, second for outlet

fprintf(f,’30 30\n’);

%Stream Lines:

fprintf(f,’28\n’);

%X-spacing Parameter

fprintf(f,’1.5\n’);

%Cell aspect ratio at stagnation point

fprintf(f,’0.8\n’);

%Additional data

fprintf(f,’0.8\n’);

end

88

% This script runs a parameter sweep of solidity, camber, and thickness

clear

close all

%Set up input parameters

Input=InStructSet(’Test’);

%Set initial ISES file

InputSetup(Input);

%Set original vane

xo=[0.998260468936824;0.848220983111959;0.607545266882477;...

0.565550982506851;0.382451992576048;0.220742379895922;...

0.124082372790477;0.0884215889499774;0.0142653913612633;...

-0.0139077061338826;-0.000155079169895315;0.00309238216483985;...

0.00889717165950690;0.0538700718446630;0.0840117802842175;...

0.126921595862059;0.197413108131486;0.305726160100718;...

0.468481478520226;0.663875348116633;0.998260468936824];

yo=[-0.0767000000000000;0.187330000000000;0.400920000000000;...

0.393380000000000;0.467090000000000;0.318370000000000;...

0.232050000000000;0.202670000000000;0.0531700000000000;...

0.0331500000000000;-0.00117000000000000;-0.00351000000000000;...

-0.00767000000000000;0.0347100000000000;0.0750100000000000;...

0.121160000000000;0.200850000000000;0.274300000000000;...

0.384410000000000;0.338130000000000;-0.0767000000000000];

c=0.3;

%Set vane for camber sweep

ycam=yo.*1.3; ycam(1)=yo(1); ycam(end)=yo(end);

%Set vane for thickness sweep

ythi=yo; ythi(2:10)=yo(2:10).*1.15; ythi(11:end-1)=yo(11:end-1)./1.15;

%Plot vanes

[Xor,Yor]=Bez(xo,yo,Input.n,Input.Type,Input.Split);

[Xcam,Ycam]=Bez(xo,ycam,Input.n,Input.Type,Input.Split);

[Xthi,Ythi]=Bez(xo,ythi,Input.n,Input.Type,Input.Split);

figure %vane shape comparisons

plot(Xor,Yor,’b-’,Xcam,Ycam,’r--’,Xthi,Ythi,’g-.’,’LineWidth’,2.0)

title(’Vane Comparisons for Parameter Sweeps’)

xlabel(’X/c’)

ylabel(’Y/c’)

axis([-0.1 1 -0.1 0.7])

legend(’GLMWT’,’Max Camber’,’Max Thickness’)

grid on

figure %Solidity comparison

plot(Xor,Yor,’b-’,Xor,Yor+1.3,’r--’,Xor,Yor+0.3,’b-’,’LineWidth’,2.0)

title(’Vane Comparisons for Solidity Sweep’)

xlabel(’X/c’)

ylabel(’Y/c’)

legend(’Lowest \Delta Y/c’,’Highest \Delta Y/c’)

89

grid on

%Sweep for camber

S=ycam-yo;

for i=0:10

alf(i+1)=i.*0.1;

Ynu=yo+alf(i+1).*S;

[CPcam(i+1),Sep(i+1),Turn(i+1)]=MISES(xo,Ynu,c,Input);

end

figure

plot(alf,CPcam,’b-’,’LineWidth’,2.0)

title(’Camber sweep losses’)

xlabel(’\alpha’)

ylabel(’$\bar{\omega}$’,’Interpreter’,’LaTeX’)

figure

plot(alf,Sep,’b-’,’LineWidth’,2.0)

title(’Camber sweep separation’)

xlabel(’\alpha’)

ylabel(’Mean Separation Distance (\Delta y/c)’)

figure

plot(alf,Turn,’b-’,’LineWidth’,2.0)

title(’Camber sweep turning angle’)

xlabel(’\alpha’)

ylabel(’Turning angle (Degrees)’)

%Sweep for thickness

S=ythi-yo;

for i=0:10

alf(i+1)=i.*0.1;

Ynu=yo+alf(i+1).*S;

[CPthi(i+1),Sep(i+1),Turn(i+1)]=MISES(xo,Ynu,c,Input);

end

figure

plot(alf,CPthi,’b-’,’LineWidth’,2.0)

title(’Thickness sweep losses’)

xlabel(’\alpha’)

ylabel(’$\bar{\omega}$’,’Interpreter’,’LaTeX’)

figure

plot(alf,Sep,’b-’,’LineWidth’,2.0)

title(’Thickness sweep separation’)

xlabel(’\alpha’)

ylabel(’Mean Separation Distance (\Delta y/c)’)

figure

plot(alf,Turn,’b-’,’LineWidth’,2.0)

title(’Thickness sweep turning angle’)

xlabel(’\alpha’)

ylabel(’Turning angle (Degrees)’)

90

%Sweep for solidity

c=0.3;

S=1.3-c;

for i=0:10

C(i+1)=c+(i.*0.1)*S;

[CPc(i+1),Sep(i+1),Turn(i+1)]=MISES(xo,yo,C(i+1),Input);

end

figure

plot(C,CPc,’b-’,’LineWidth’,2.0)

title(’Solidity sweep losses’)

xlabel(’\Delta Y/c’)

ylabel(’$\bar{\omega}$’,’Interpreter’,’LaTeX’)

figure

plot(C,Sep,’b-’,’LineWidth’,2.0)

title(’Solidity sweep separation’)

xlabel(’\Delta Y/c’)

ylabel(’Mean Separation Distance (\Delta y/c)’)

figure

plot(C,Turn,’b-’,’LineWidth’,2.0)

title(’Solidity sweep turning angle’)

xlabel(’\Delta Y/c’)

ylabel(’Turning angle (Degrees)’)

%Sweep for solidity (Max Camber)

c=0.3;

S=1.3-c;

for i=0:10

C(i+1)=c+(i.*0.1)*S;

[CPc(i+1),Sep(i+1),Turn(i+1)]=MISES(xo,ycam,C(i+1),Input);

end

figure

plot(C,CPc,’b-’,’LineWidth’,2.0)

title(’Solidity sweep for max camber losses’)

xlabel(’\Delta Y/c’)

ylabel(’$\bar{\omega}$’,’Interpreter’,’LaTeX’)

figure

plot(C,Sep,’b-’,’LineWidth’,2.0)

title(’Solidity sweep for max camber separation’)

xlabel(’\Delta Y/c’)

ylabel(’Mean Separation Distance (\Delta y/c)’)

figure

plot(C,Turn,’b-’,’LineWidth’,2.0)

title(’Solidity sweep for max camber turning angle’)

xlabel(’\Delta Y/c’)

ylabel(’Turning angle (Degrees)’)

91

%Sweep for solidity (Max thickness)

c=0.3;

S=1.3-c;

for i=0:10

C(i+1)=c+(i.*0.1)*S;

[CPc(i+1),Sep(i+1),Turn(i+1)]=MISES(xo,ythi,C(i+1),Input);

end

figure

plot(C,CPc,’b-’,’LineWidth’,2.0)

title(’Solidity sweep for max thickness losses’)

xlabel(’\Delta Y/c’)

ylabel(’$\bar{\omega}$’,’Interpreter’,’LaTeX’)

figure

plot(C,Sep,’b-’,’LineWidth’,2.0)

title(’Solidity sweep for max thickness separation’)

xlabel(’\Delta Y/c’)

ylabel(’Mean Separation Distance (\Delta y/c)’)

figure

plot(C,Turn,’b-’,’LineWidth’,2.0)

title(’Solidity sweep for max thickness turning angle’)

xlabel(’\Delta Y/c’)

ylabel(’Turning angle (Degrees)’)

%Sweep for expansion ratio

c=0.3;

S=1.5-1.1;

for i=0:10

er(i+1)=1.1+(i.*0.1)*S;

Input.SINLin=er(i+1);

Input.SOUTin=tand(atand(er(i+1))+90);

[CPc(i+1),Sep(i+1),Turn(i+1)]=MISES(xo,yo,c,Input);

end

figure

plot(er,CPc,’b-’,’LineWidth’,2.0)

title(’Expansion ratio sweep’)

xlabel(’ER’)

ylabel(’$\bar{\omega}$’,’Interpreter’,’LaTeX’)

figure

plot(er,Sep,’b-’,’LineWidth’,2.0)

title(’Expansion ratio separation’)

xlabel(’ER’)

ylabel(’Mean Separation Distance (\Delta y/c)’)

figure

plot(er,Turn,’b-’,’LineWidth’,2.0)

title(’Expansion ratio turning angle’)

xlabel(’ER’)

ylabel(’Turning angle (Degrees)’)

92

Appendix B: Sample Files

B.1 Sample MatLAB Commands

In=InStructSet(’BFGnu3’);

[loss,sep,turn]=MISES(xp,yp,0.325,In)

Alternately:

In=InStructSet(’BFGnu3’);

VaneBuild(xp,yp,0.325,In);

InputSetup(In);

MISESEval(In);

[loss,sep,turn]=DataRead(In.FileName)

93

B.2 Input Files

B.2.1 blade.BFGnu3 (Truncated)

BFGnu3

1.5000 -0.6667 1.0000 1.0000 0.3260

0.99826 -0.07670

0.98737 -0.05795

0.97615 -0.03943

0.96466 -0.02118

0.95294 -0.00320

...

0.86453 0.07534

0.88556 0.05342

0.90707 0.03018

0.92908 0.00559

0.95160 -0.02040

0.97466 -0.04782

0.99826 -0.07670

94

B.2.2 ises.BFGnu3

1 2 15 6 5

1 4 15 6 3

0.1473 0.9850 1.5000 -0.5000

0.0000 0.0 -0.6667 1.5000

0.0 1.0

0.2214E06 4.0000

1.0 1.0

3 0.970 1.00

B.2.3 spec.BFGnu3

1

1.2

95

B.3 Output

B.3.1 MatLAB command line output

loss =

0.1163

sep =

0.0097

turn =

73.1048

B.3.2 polar.BFGnu3

MISES polar driver Version 2.69

Calculated polar for: BFGnu3 1 elements

Sinl Sout Minl Mout Pinl/Po1 Pout/Po1 Re/1e6 Tu % omega omega V Xtr top Xtr bot

rVt1 d(rVt) DF cl Phi Psi

——– ——– ——– ——– ——– ——– ——– ——– ——– ——– ——– ——– ——– ——–

——– ——– ——– ——–

1.50000 -1.39777 0.14730 0.14044 0.98496 0.98506 0.221 0.57166 0.08446 0.08769 0.4206

0.1152 0.8321 1.6076 0.3086 1.0738 0.6667 107.4875

96

B.3.3 field.BFGnu3 (Truncated)

x y rho/rho0 p/p0 u/a0 v/a0 q/a0 M

-1.0730 -1.9089 0.98923 0.98496 0.81531E-01 0.12230 0.14698 0.14730
-1.0699 -1.9042 0.98923 0.98496 0.81531E-01 0.12230 0.14698 0.14730
-1.0674 -1.9005 0.98923 0.98496 0.81531E-01 0.12230 0.14698 0.14730
...
2.0850 -1.8976 0.98931 0.98506 0.85263E-01 -0.11914 0.14651 0.14682
2.0935 -1.9095 0.98931 0.98506 0.85277E-01 -0.11915 0.14652 0.14683

-1.0780 -1.9056 0.98923 0.98496 0.81531E-01 0.12230 0.14698 0.14730
-1.0750 -1.9011 0.98923 0.98496 0.81531E-01 0.12230 0.14698 0.14730
-1.0724 -1.8972 0.98923 0.98496 0.81531E-01 0.12230 0.14698 0.14730
...
2.2305 -1.7952 0.98931 0.98507 0.85193E-01 -0.11905 0.14639 0.14671
2.2386 -1.8065 0.98931 0.98507 0.85165E-01 -0.11907 0.14639 0.14671

97

Appendix C: Installation of Necessary Software

1. Install desired distribution of Linux. Ubuntu was used for this thesis.

2. Install MATLAB from MathWorks Site.

3. Use apt−get command to install TCL and Expect or download from respective
websites.

4. Ensure that a FORTRAN compiler and make command are installed on sys-
tem.

5. Obtain MISES from MIT Technology Licensing Office or Dr. Mark Drela.

6. Create new folder and extract MISES to it.

7. Alter plotlib.make in the plotlib folder and Makefile in the bin folder to reflect
installed FORTRAN compiler.

8. Use make all command in plotlib folder.

9. Make new folder within the bin folder of MISES directory and alter Makefile
to output to this folder.

10. Use make all command in bin folder.

11. Copy and save all MATLAB functions to folder created in step 9

12. Test by generating a vane and using command ./iset vane.xxx from the new
folder terminal with xxx replaced by your vane’s name.

98

https://www.mathworks.com/products/matlab.html
https://www.tcl.tk/
https://core.tcl-lang.org/expect/index
https://tlo.mit.edu/technologies/mises-software-design-and-analysis-turbomachinery-blading

Bibliography

[1] “Glenn L. Martin Wind Tunnel” Available: https://windtunnel.umd.edu [re-
trieved 22 Feb. 2019].

[2] Barlow, J. B., Rae, W. H., Jr., and Pope, A., “Wind Tunnel Design,” Low
Speed Wind Tunnel Testing, 3rd ed., Wiley, New York, 1999, pp. 61-135.

[3] Garrick, I. E., “On the Plane Potential Flow Past a Lattice of Arbitrary Air-
foils,” NACA TR-788, January 1944.

[4] Ives, D. C., and Liutermoza, J. F., “Analysis of Transonic Cascade Flow Using
Conformal Mapping and Relaxation Techniques,” AIAA Journal, Vol. 15, No.
5, 1977, pp. 647-652.

[5] Spurr, R.A., and Allen, H. J., “A Theory of Unstaggered Airfoil Cascades in
Compressible Flow,” NACA RM-A7E29, January 1947.

[6] Baskharone, E., and Hamed, A., “A New Approach in Cascade Flow Analysis
Using the Finite Element Method,” AIAA Journal, Vol.19, No. 1, 1981, pp.
65-71.

[7] Drela, M., and Youngren, H., “A User’s Guide to MISES 2.63,” MIT Aerospace
Computational Design Laboratory, Cambridge, MA, February 2008.

[8] Gelder, T. F., Moore, R. D., Sanz, J. M., and Mcfarland, E. R., “Wind Tunnel
Turning Vanes of Modern Design,” NASA TM-87146, January 1985.

[9] López de Vega, L., Maldonado Fernández, F. J., and Muñoz Botas, P., “Optimi-
sation of a Low-Speed Wind Tunnel. Analysis and Redesign of Corner Vanes.”
Escuela Técnica Superior de Ingenieŕıa Aeronáutica y del Espacio, Universidad
Politécnica de Madrid, Madrid, Spain, May 2014.

99

[10] Lindgren, B., Österlund, J., and Johansson, A.V., “Measurement and Calcu-
lation of Guide Vane Performance in Expanding Bends for Wind-Tunnels,”
Springer-Verlag, Vol. 24, Issue 3, 1998, pp. 265-272.

[11] Samareh, J. A., “A Survey of Shape Parameterization Techniques,” NASA CP-
1999-209136/PT1, June 1999.

[12] Derksen, R. W., Rogalsky, T., “Optimum Aerofoil Parameterization for Aero-
dynamic Design,” Wessex Institute of Technology Transactions on The Built
Environment, Vol. 106, 2009, pp. 197-206.

[13] Jaiswal, A. S., “Shape Parameterization of Airfoil Shapes Using Bezier Curves,”
Innovative Design and Development Practices in Aerospace and Automotive
Engineering, Springer Science, Singapore, 2016, pp. 79-85.

[14] Kamermans, M. “A Primer on Bezier Curves,” [online], [2018]. Available:
https://pomax.github.io/bezierinfo/

[15] Canos, A. “Fast and Robust Self-Intersections,” [online], [13 De-
cember 2006]. Available: https://www.mathworks.com/matlabcentral/

fileexchange/13351-fast-and-robust-self-intersections

[16] Engineering ToolBox, “Air - Density, Specific Weight and Thermal
Expansion Coefficient at Varying Temperature and Constant Pres-
sures,” [online], [2003]. Available: https://www.engineeringtoolbox.com/

air-density-specific-weight-d_600.html?vA=293&units=K#

100

https://pomax.github.io/bezierinfo/
https://www.mathworks.com/matlabcentral/fileexchange/13351-fast-and-robust-self-intersections
https://www.mathworks.com/matlabcentral/fileexchange/13351-fast-and-robust-self-intersections
https://www.engineeringtoolbox.com/air-density-specific-weight-d_600.html?vA=293&units=K#
https://www.engineeringtoolbox.com/air-density-specific-weight-d_600.html?vA=293&units=K#

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background and Motivation
	Prior Work
	Theoretical treatment of flow about airfoil cascades
	General turning vane design
	Expanding turning vane design
	Bezier curve parameterization

	Scope of Present Research
	Contributions of Present Research

	Methodology
	Airfoil Definition
	Bezier curve definition
	Smoothness constraints
	Additional constraints
	Expansion ratio representation
	Solidity definition

	MISES Operation
	Optimization Functions
	 MATLAB Operation
	Bezier curve functions
	File setup functions
	Program operation functions
	Optimization functions
	Miscellaneous functions

	Flow Similarity Parameters
	Data Acquisition
	Verification
	Model generation
	Meshing
	Simulation setup
	Data collection

	Results
	MISES Results
	Parameter sweep
	Constant solidity optimizations
	Variable solidity optimizations
	Additional designs of note

	STAR-CCM+ Results
	Original vane, no expansion
	Original vane, ER=1.2
	Optimized vane, ER=1.2

	Conclusions and Future Work
	Optimization Efficacy
	Possible Improvements
	Future Work

	MATLAB code
	Sample Files
	Sample MatLAB Commands
	Input Files
	blade.BFGnu3 (Truncated)
	ises.BFGnu3
	spec.BFGnu3

	Output
	MatLAB command line output
	polar.BFGnu3
	field.BFGnu3 (Truncated)

	Installation of Necessary Software

