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Abstract

The real-time optimization of large-scale systems is a difficult problem due to the

need for complex models involving uncertain parameters and the high computational

cost of solving such problems by a decentralized approach. Extremum-seeking control

(ESC) is a model-free real-time optimization technique which can estimate unknown

parameters and can optimize nonlinear time-varying systems using only a measure-

ment of the cost function to be minimized. In this thesis, we develop a distributed

version of extremum-seeking control which allows large-scale systems to be optimized

without models and with minimal computing power.

First, we develop a continuous-time distributed extremum-seeking controller. It

has three main components: consensus, parameter estimation, and optimization. The

consensus provides each local controller with an estimate of the cost to be minimized,

allowing them to coordinate their actions. Using this cost estimate, parameters for

a local input-output model are estimated, and the cost is minimized by following a

gradient descent based on the estimate of the gradient. Next, a similar distributed

extremum-seeking controller is developed in discrete-time.

Finally, we consider an interesting application of distributed ESC: formation con-

trol of high-altitude balloons for high-speed wireless internet. These balloons must

i



be steered into a favourable formation where they are spread out over the Earth and

provide coverage to the entire planet. Distributed ESC is applied to this problem,

and is shown to be effective for a system of 1200 ballons subjected to realistic wind

currents. The approach does not require a wind model and uses a cost function based

on a Voronoi partition of the sphere. Distributed ESC is able to steer balloons from

a few initial launch sites into a formation which provides coverage to the entire Earth

and can maintain a similar formation as the balloons move with the wind around the

Earth.
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Lyapunov function for the entire extremum seeking controller . . . . . . . . . VESC

Lyapunov function for parameter estimation and stabilization . . . . . . . . . VStab

Lyapunov function for the parameter estimation algorithm . . . . . . . . . . VPE

Lyapunov function for the deviation of the input bias from its optimum . . . . Vu
Lyapunov function for the deviation of the state from steady-state . . . . . . . Vx
Lyapunov function for the zero dynamics . . . . . . . . . . . . . . . . . . . . . Vz
Lyapunov function for the auxiliary variable estimation errors . . . . . . . . . . Vη
Lyapunov function for the parameter estimation errors . . . . . . . . . . . . . . Vθ
Vertex set of a graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Filtered version of agent i’s regressor vector . . . . . . . . . . . . . . . . . . . . wi

Weight associated with edge ei,j in a weighted graph . . . . . . . . . . . . . . wi,j
First coordinate of a point in R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . x
State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Optimal steady-state value of x . . . . . . . . . . . . . . . . . . . . . . . . . . x∗

Deviation of state from its optimal value . . . . . . . . . . . . . . . . . . . . . x̃
Component of state used in mean value theorem . . . . . . . . . . . . . . . . . xi
Value of state used in mean value theorem . . . . . . . . . . . . . . . . . . . . x
Set of allowable values of the state . . . . . . . . . . . . . . . . . . . . . . . . . X
Set of time-varying vector fields on Q . . . . . . . . . . . . . . . . . . . . X(R,Q)
Set of (time-invariant) vector fields on Q . . . . . . . . . . . . . . . . . . . . X(Q)
Second coordinate of a point in R3 . . . . . . . . . . . . . . . . . . . . . . . . . . y
Area based local cost measured by the ith balloon . . . . . . . . . . . . . . . yA,i
Bandwidth based local cost measured by the ith balloon . . . . . . . . . . . . yB,i
Distance to centroid based local cost measured by the ith balloon . . . . . . . yC,i
Distance between balloons based local cost measured by the ith balloon . . . yD,i
Population based local cost measured by the ith balloon . . . . . . . . . . . . yP,i
Users based local cost measured by the ith balloon . . . . . . . . . . . . . . . yU,i
Local cost measured by agent i . . . . . . . . . . . . . . . . . . . . . . . . . . . yi
Vector of local costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y
Predicted average cost obtained using the parameter estimate . . . . . . . . . . ŷi
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Chapter 1

Introduction

1.1 Motivation

The real-time optimization (RTO) of large-scale systems is an important but chal-

lenging problem in control engineering. RTO is a closed-loop control technique which

improves system performance by minimizing a measurable cost function in real-time.

Existing RTO techniques, such as model predictive control [3, 30, 110, 132], stochas-

tic optimization [20, 144], and dynamic programming [6, 7, 32], are computation-

ally intensive. The number of computations required—and thus computation time—

typically grows rapidly with the dimension of the system. These techniques are there-

fore impractical for large-scale systems such as chemical plants, multi-robot systems,

and traffic planning which involve high-dimensional state spaces. Without effective

RTO techniques, large-scale systems often suffer from suboptimal performance.

Distributed real-time optimization is an alternative to conventional RTO which

is better suited to large-scale systems. A distributed system consists of several con-

trollers, typically referred to as agents or decision makers (DMs), which cooperate to

achieve an overall control objective [125, 130]. Each agent makes some local measure-

ments, communicates with other DMs, and implements a control action based on its
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Figure 1.1: Comparison of centralized (top left), decentralized (top right), and dis-
tributed (bottom) control architectures.

local information. Distributed control can be contrasted with centralized and decen-

tralized control (Figure 1.1). Centralized control consists of one DM which performs

all calculations; Decentralized control consists of several DMs but no communica-

tion. The key to a successful distributed control algorithm is the communication

network. Through communication, agents can coordinate their actions and achieve

overall objectives; without communication, agents only true to achieve their own local

objectives, resulting in a competitive system with worse overall performance.

Extremum-seeking control (ESC) is a model-free RTO technique. ESC works by

introducing a small perturbation, called a dither signal, to the system to generate data

and estimate a simple model which is locally valid. Based on this model, the ESC

moves in the direction which minimizes the cost function. As the system changes,

2
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the local model is updated so that it remains locally valid. The main advantage of

ESC is that it is a model-free technique for nonlinear, time-varying systems, and can

therefore be applied to a large class of systems while avoiding the need to model

the system, which is usually the most difficult and costly step of RTO. Existing ESC

techniques are centralized (see Section 2.1), consisting of a single DM which measures

the cost function and controls all of the control inputs.

The main topic of this thesis is distributed ESC. A distributed extremum-seeking

control system consists of several agents which each measure a local cost and control

one or more control inputs. The objective of the network of ESC agents is to minimize

the total cost which is the sum of the local costs. The main difference between

distributed and centralized ESC is the use of a consensus algorithm which provides

each agent with an estimate of the total cost. Each agent uses ESC to minimize

the estimate of the total cost. Collectively, the agents achieve overall objective of

minimizing the total cost, while the computational burden is shared between several

agents. In this thesis, distributed ESC is developed in both continuous-time and

discrete-time.

At the end of this thesis, we apply distributed ESC to one useful real-world ap-

plication: formation control of high-altitude balloons. These balloons float in the

stratosphere and can connect wirelessly to internet users on Earth to provide them

with high-speed internet access. One such project is Google’s Project Loon which

intends to use several thousand balloons to provide high-speed internet to users any-

where on Earth [98]. One of the main challenges (see Chapter 5) for such a fleet

of balloons is maintaining a formation where the balloons are spread out enough to

provide adequate coverage everywhere on Earth. The balloons ride the Earth’s wind

3
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currents and can change their velocity by pumping helium in or out of the balloon

to move up or down into different wind currents. In this thesis, distributed ESC is

used to solve this formation control problem. This approach allows each balloon to

control its own motion without needing a model of the wind currents and results in

each balloon moving in a direction which is beneficial for the formation of the overall

network.

1.2 Statement of contributions

Several of the results from this thesis have expanded the body of knowledge in dis-

tributed RTO or formation control, and have been published in other places. These

results are:

1. Section 3.3 involves the development of a version continuous-time distributed

ESC that can be used to optimize large-scale systems. The initial result was

only valid for stable systems, such as the 25-agent stable linear system in Sub-

section 3.4.1. This approach has the advantage of allowing the controller to

optimize an unknown large-scale system in a distributed manner, using only

measurements of a local cost function. These results were published in and

presented at the 2015 American Control Conference in Chicago, Illinois [50].

2. The results from Section 3.3 can also be applied to the stabilization of unknown,

slowly unstable systems. The simulation results in Subsection 3.4.2 and Sub-

section 3.4.3 show the effectiveness of this technique for unstable and nonlinear

systems. These results were published and presented at the 2015 International

Symposium on Advanced Control of Chemical Processes in Whistler, British

4
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Columbia [51].

3. Chapter 4 extends the distributed ESC results to discrete-time. The discrete-

time controller uses different parameter estimation and consensus algorithms

than a discretization of the continuous-time algorithms. These results have

been accepted for publication and presentation at the 2016 IFAC Symposium

on Nonlinear Control Systems in Monterey, California [126]

4. Subsection 5.6.1 describes the application of continuous-time ESC to the balloon

formation control problem. This approach does not require knowledge of wind

currents and was shown in Subsection 5.6.1 to be able to steer a system of 20

balloons to the optimal dodecahedral formation. This work has been accepted

for publication and presentation at the 2016 American Control Conference in

Boston, Massachusetts [127].

5. Subsection 5.6.2 describes the application of discrete-time ESC to the balloon

formation control problem. Using a reasonable 6 minute time step and realistic

wind models, it is shown in Subsection 5.6.2 that the discrete-time controller

is able to maintain a randomized formation and that it can steer balloons from

several initial launch sites into a favourable formation. This work has been

submitted for publication and presentation at the 2016 IEEE Conference on

Decisions and Control in Las Vegas, Nevada [128].

1.3 Organization of thesis

The remainder of this thesis is organized into five chapters and six appendices.

Chapter 2 is a literature review. It contains background information relevant to

5
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the three main chapters, as well as a survey of the current state of the art in ESC and

formation control. In particular, the literature review covers the topics of extremum-

seeking control, distributed control, consensus algorithms, formation control, and

coverage control.

Chapter 3 contains the development of distributed ESC in continuous-time. First,

the problem is formally defined and the necessary assumptions are stated. Next, the

controller is designed, using a dynamic average consensus algorithm, time-varying pa-

rameter estimation algorithm, and a proportional-integral (PI) ESC technique. This

chapter includes a formal proof of the convergence of the algorithm, and simulation

results for large-scale, unstable, and nonlinear systems.

Chapter 4 continues the development of distributed ESC, this time in discrete-

time. The techniques are developed by directly considering a discrete-time system,

instead of simply discretizing a continuous-time system. The controller resembles

the controller developed in Chapter 3, but it uses different consensus and parameter

estimation algorithms. Again, a proof of the algorithm’s convergence and simulation

results for large-scale and nonlinear systems are provided.

Chapter 5 concerns the application of distributed ESC to the formation control of

high-altitude balloons. This chapter begins with a discussion on world-wide internet

penetration and a survey of existing internet technology to provide justification for

the use a fleet of high-speed internet balloons. Next, the formation control problem

and its objectives are defined. Since simulation results require a model of Earth’s wind

currents, a discussion on wind current models follows. Next, several cost functions

which measure how well the balloons provide global coverage are introduced. This

chapter includes analysis of the application of both the continuous-time distributed

6
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ESC algorithm from Chapter 3 and the discrete-time distributed ESC algorithm from

Chapter 4 to the balloon formation control problem. Several simulation results show-

ing the effectiveness of both controllers are presented. Most notably, simulations

involving 1200 balloons and using real wind data show that discrete-time distributed

ESC is an excellent technique for formation control of high-altitude balloons.

Chapter 6 is the conclusion. It contains a brief summary of the major results

discussed in this thesis and provides an outlook on some useful future work that

could extend these results.

The six appendices contain the mathematical proofs which are omitted from Chap-

ter 3 and Chapter 4. Appendix A contains the proof of the main theorem from

Chapter 3; Appendix F contains the proof of the main theorem from Chapter 4.

Appendices B–E contain proofs of some smaller lemmas which are used in the proof

found in Appendix F.
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Chapter 2

Literature review

This chapter provides an introduction to the various topics covered in this thesis.

Section 2.1 discusses the main ideas behind extremum-seeking control (ESC), its his-

tory, advantages, and current limitations. Section 2.2 gives an overview of multi-agent

systems (MAS) and distributed control with an emphasis on consensus algorithms.

Section 2.3 covers current techniques in formation control and coverage control.

2.1 Extremum-seeking control

Extremum-seeking control is a model-free RTO technique which relies only on mea-

surements of a cost function without requiring knowledge of its mathematical descrip-

tion. ESC typically considers systems of the form

ẋ = f(x,u) (2.1)

y = h(x) (2.2)

where x ∈ Rn is the state, u ∈ Rm is the input, y ∈ R is the output, f is a smooth

vector field on Rn, and h is a smooth convex cost function. The objective of ESC is to

find u∗ and x∗ such that f(x∗,u∗) = 0 and h(x) is minimized by x∗. This problem

8
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is the steady-state minimization of h(x) subject to the dynamics given by f(x,u).

A similar problem of minimizing a static map—typically representing the steady-

state cost function—is often also considered. By letting x = π(u) be the steady-state

of (2.1), the system can be described by

y = `(u) = h(π(u)). (2.3)

The objective of ESC is to find u∗ which minimizes ` = h ◦ π.

Several variants of ESC have been developed which solve these problems. The

common feature of all ESC algorithms is that the controller has no knowledge of f ,

h, π, or ` and must rely solely on measurements of y. A typical ESC (Figure 2.1)

consists of a dither signal, parameter estimation, and a gradient descent. The dither

signal provides persistence of excitation which is required by the parameter estimation

algorithm to estimate ∂`
∂u

, the gradient of the steady-state cost function with respect

to the input. The ESC then follows a gradient descent based on this estimate to

minimize the steady-state cost function.

The basic concept behind ESC was first developed in the 1920s by LeBlanc [73] to

maximize the power transfer between a tram car and an electrical transmission line.

Since this technique was not well understood and there was no guarantee of con-

vergence, few researchers investigated ESC for several decades. Between 1940–1970

there was some research activity on ESC in Russia by researchers such as Kazake-

vich [62, 63, 64, 65], Morosanov [92], and Meerkov [88]. With the advent of adaptive

control in the 1960s, ESC—itself a form of adaptive control—finally became a topic

in the English-language control literature, with researchers such as Eykhoff [35, 36]

and Blackman [14] investigating. Despite some advances, these techniques still lacked

9
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Extremum
seeking

controller

Plant

Parameter
estimation

Gradient
descent

Dither
signal

Output

Gradient

estimate

Input

Figure 2.1: Block diagram of a general form of ESC. The controller minimizes the
output by a gradient descent. The gradient is estimated by the parameter
estimation. The dither signal provides persistence of excitation needed
for parameter estimation.

a rigorous theoretical basis [117]. For more information on the history of extremum-

seeking control, see the excellent review paper by Tan [119].

The early 2000s saw a renewed interest in ESC when Krstić and Wang [71] pro-

vided a rigorous proof of the technique’s convergence. Krstić and Wang’s original

ESC (Figure 2.2) uses a series of high- and low-pass filters to correlate the plant out-

put y with an input signal θ and estimate the optimal parameter θ̂ which minimizes y.

Their technique relies on a time-scale separation between the dynamics of the plant

and the frequency of the dither signal a sin(ωt), and they used averaging and singular

perturbation analyses to prove the convergence of the system.

With ESC finally on a rigorous theoretical foundation, considerably more research

was done on the topic in the early 2000s. Rotea extended the basic ESC scheme to

multi-input systems by passing the input u ∈ Rm through an appropriate dynamic

compensator and was also able to show that ESC is still effective in the presence of

a noisy output signal [108]. A basic discrete-time ESC (Figure 2.3) was designed by

10
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ẋ = f(x, θ)

y = h(x)

s

s+ ωh

ω`

s+ ω`

k

s

a sin(ωt)

yθ

ξθ̂

Figure 2.2: Block diagram of the form of ESC proposed by Krstić and Wang in [71].
The output signal is high-pass filtered, modulated by the dither signal,
low-pass filtered, and integrated to obtain the input bias.

Choi et al. for the optimization of a cost function represented by a static map [22];

however, this technique is limited in application as it cannot be used for systems

with unstable or slow dynamics. While the original ESC techniques were only shown

to be effective at finding a time-invariant extremum, Ariyur and Krstić were able

to extend these results to systems with time-varying extrema [4]. Tan et al. showed

that ESC can achieve semi-global stability where the region of attraction can be made

arbitrarily large by appropriate choice of tuning parameters [120].

Early ESC techniques were perturbation-based, estimating the relevant param-

eters using a combination of filters and a sinusoidal perturbation. More recently,

estimation based ESC techniques have been developed which directly estimate the

steady-state gradient. Initial work by Guay and Zhang used an adaptive control ap-

proach to guarantee convergence of parameter estimates resulting in convergence of

the system to the unknown optimum [52]. This work was extended by DeHaan and

Guay to solve constrained optimization problems by augmenting the cost function

with a barrier function that prevents violation of the constraint [29]. Adetola and

Guay investigated the minimal perturbation required for parameter convergence [1]

11
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Plant

Fi(z) f(θ) Fo(z)

z − 1

z + h

−γ
z − 1

α cos(ωk) β cos(ωk − φ)

y(k)

θ∗ f ∗

θ(k)

ξ(k)θ̂(k)

Figure 2.3: Block diagram of the discrete-time ESC proposed by Choi et al. in [22].
The linear input and output blocks, Fi(z) and Fo(z) are assumed stable.
The ESC consists of a high-pass filter, modulation by a signal similar to
the dither, and integration.

and finite-time parameter convergence [2]. Nešić et al. showed that ESC is possible

using any arbitrary parameter estimation routine combined with any arbitrary op-

timization routine [97]. A particularly effective estimation technique developed by

Moshksar and Guay requires only one tuning parameter and can track time-varying

parameters [93]. While perturbation-based ESC is easier to tune, Guay and Burns

found that estimation-based ESC routines tend to have better performance [46].

One of the main limitations of ESC is its slow performance due to the need for

time-scale between the system dynamics and the controller. One method to improve

performance is to estimate the Hessian of the cost function and use a Newton-based

descent instead of a gradient-based descent. Newton-based ESC has been developed

by Moase et al. [90] and Ghaffari et al. [41], but this technique still requires time-

scale separation. Zhang and Ordóñez were able to remove the need for time-scale

separation using a numerical optimization algorithm and a state regulator, however

their technique requires a measurement of both the output and the state [142]. By
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ẋ = f(x) +G(x)u

y = h(x)

Parameter
Estimation

1

τIs

Kg

d(t)

y

u

L̂Ghû

Figure 2.4: Block diagram of the basic form of the PI ESC algorithm developed by
Guay and Dochain [48]. This technique is based on a gradient descent

using L̂Gh, an estimate of the gradient of the steady-state cost func-
tion with respect to the input. The integral term provides the standard
extremum-seeking action. The proportional term increases the speed of
optimization, eliminating the need for time-scale separation.

using a proportional-integral (PI) extremum-seeking technique (Figure 2.4), Guay and

Dochain were able to remove the need for time-scale separation in output-feedback

ESC [48]. This technique has been extended to discrete-time systems by Guay [45].

Over the years, ESC has been applied to many diverse applications such as pho-

tovoltaic cells [17, 18, 77, 139], bioreactors [25, 49, 87, 124, 131, 143], heating and

cooling systems [79, 82, 90, 133], active braking systems [121, 140, 141], wind tur-

bines [26, 42, 60, 68, 101], fuel cells [13, 19, 27, 146], aerospace engineering [8, 9, 10, 21],

and internal combustion engines [31, 67, 103, 104]. Outside of this thesis, ESC has

not yet been applied to the formation control of high-altitude balloons.
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2.2 Distributed control & consensus

Achieving overall objectives of large-scale dynamical systems is difficult due to the

computational complexity associated with centralized approaches. Instead, a dis-

tributed approach can be used. A distributed or multi-agent system (MAS) consists

of several controllers, known as agents, which each perform one small part of the over-

all system’s task [86]. The agents are often spread out over a large geographic area.

Individual agents communicate with each other over a network to share information.

The overall distributed system (Figure 2.5) is quite complex, with many controllers

measuring different outputs, controlling different inputs, and communicating with

other agents.

The distributed system as seen by a single agent (Figure 2.6) is much simpler [86].

It measures only a small number of outputs and receives some information from a few

other agents which it can use to coordinate its actions with the rest of the network of

agents. The information sent over the network is limited; each agent is not aware of

exactly what the other agents are doing. Using its measurements of the system and

the information from the network, the agent manipulates a few control actions. The

agent must also send information out to other nodes in the network, but it typically

sends the same information to all other nodes.

One way to coordinate MASs is through a consensus algorithm [99]. The objective

of a consensus algorithm is for agents to share information so that all agents eventually

agree on the value of a certain variable. This consensus variable typically relates to the

overall state of the system, providing each agent with an overall understanding of the

state of the entire system despite not knowing any other agent’s control action. For

example, in distributed optimization, a consensus algorithm is used on the overall cost
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System

y1

u1

Agent 1

Agent 1

y2

u2

Agent 2

Agent 1

y3

u3

Agent 3Agent 1

y4

u4

Agent 4

Agent 1

y5

u5

Agent 5

Agent 1

y6

u6

Agent 6 Agent 1

Figure 2.5: General scheme for a distributed control system. Agent i measures some
output variables yi and manipulates some input variables ui. Nearby
agents communicate over the network to share information about the
over all state of the system.

function [96]. While each agent does not directly measure the total cost—typically

they can only measure one component of it—through consensus, all agents know the

total cost and can cooperatively work to minimize it. In this way, the distributed

system is able to solve a large optimization problem, and it has the advantages of

parallel computing, such as decreased computing times, improved robustness, and

scalability [118].

The effectiveness of a consensus algorithm depends on the network topology which

can be described by a graph theory [15]. A graph G = (V , E) consists of a vertex set
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Agent iyi ui

Ĵi Ĵi Ĵi Ĵi

Ĵj Ĵk Ĵ`

Figure 2.6: View of a distributed system as seen by one agent. This agent measures
a few outputs, yi, and manipulates a few inputs, ui. It receives some in-

formation Ĵj, Ĵk, and Ĵ`, which summarize the overall state of the system

according to agents j, k, and `. It transmits some information, Ĵi, which
summarizes its own view on the overall state of the system.

V and an edge set E ⊂ V × V . Each vertex vi ∈ V represents an agent i in the MAS.

An edge ei,j ∈ E indicates that agent i can send information to agent j. A graph is

said to be undirected if ej,i ∈ E whenever ei,j ∈ E , and is otherwise said to be directed

(Figure 2.7). For a weighted graph, we also assign a weight wi,j > 0 to each edge

ei,j ∈ E . In many cases we simply take wi,j = 1 for every ei,j ∈ E and refer to the

graph as unweighted. A communication network can be described by a graph and the

consensus algorithm relies on the values of wi,j.

Graphs can be described by one of several matrices, allowing graphs to be analyzed

using linear algebra. The weighted adjacency matrix A is a square matrix containing

all of the weights of the graph. If ei,j 6∈ E , then ai,j = 0 and otherwise ai,j = wi,j.

For an unweighted graph, ai,j = 1 if ei,j ∈ E and ai,j = 0 if ei,j 6∈ E . The degree

matrix D is a square diagonal matrix where di,i =
∑p

j=1wi,j. For an unweighted
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1 2

3

45

1 2

3

45

Figure 2.7: Examples of a directed graph (left) and an undirected graph (right). The
directed graph has directed edges represented by single-headed arrows and
undirected edges represented by double-headed arrows. In the undirected
graph, all edges are undirected so the arrowheads are omitted.

graph, di,i = deg+(vi) is the number of agents which agent i sends information to.

The Laplacian matrix is defined by L = D −A. The Laplacians of the unweighted

graphs in Figure 2.7 are

Ldirected =




3 −1 0 −1 −1

0 1 0 0 −1

−1 −1 4 −1 −1

−1 0 0 2 −1

0 1 0 0 −1




and Lundirected =




3 −1 −1 −1 0

−1 3 −1 0 −1

−1 −1 3 0 −1

−1 0 0 2 −1

0 −1 −1 −1 3




.

Note that L1 = 0 since the diagonals of D are the row sums of A. A graph is said

to be weight-balanced if L>1 = 0. Also note that for an undirected graph L = L>,

while for an directed graph L is not necessarily symmetric.

One main requirement for consensus algorithms is that the graph is connected

so that each agent receives information from every agent. An undirected graph is

connected if there is a sequence of edges connecting every pair of vertices. The

necessary notion of connectivity for directed graphs is strong connectivity. A directed
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graph is strongly connected if for any pair of nodes (i, j) there exists a directed path

from i to j and a directed path from j to i. Intuitively, connectivity matters because

it means that each agent can get information from all the other agents, although this

information may have passed through many other agents first.

Several researchers have considered the convergence properties of various consen-

sus algorithms. The simplest consensus algorithms are of the form ẋ = −Lx or

x[k + 1] = (I − L∆t)x[k]. Olfati-Saber and Murray showed that these first-order

linear consensus algorithms result in all the states converging to the same value when-

ever the network is connected and that the convergence value is the average of the

initial states whenever L is weight-balanced [100]. Nonlinear consensus algorithms

can also achieve convergence, as Moreau showed, whenever the graph is connected

and the update law is a convex combination of states at the previous time step [91].

When nonlinear consensus algorithms are used, the states do not necessarily converge

to the average of the initial states. First-order consensus algorithms have been applied

to vehicle formations, attitude alignment, rendezvous problem, coordinated decision

making, flocking, coupled oscillators, and robot position synchronization [106]. The

effect of communication delays has been considered by Xiao and Wang [138], Tian et

al. [123], and Lin et al. [83]. Li and Zhang used a distributed stochastic approximation

protocol to limit the effect of noise in communication channels and provide necessary

and sufficient conditions for minimizing the mean square error and providing almost

sure convergence when data are corrupted by stochastic noise [80].

Dynamic average consensus algorithms resemble the aforementioned static average

consensus algorithms, except instead of averaging several initial values, they attempt

to track the time-varying average of several time-varying reference signals. Freeman
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et al. considered first- and second-order linear consensus algorithms in continuous-

time and were able to show that for weight-balanced connected digraphs, the PI

algorithm achieves dynamic consensus with slowly time-varying input signals [38]. A

class of discrete-time dynamic average consensus algorithms were designed by Zhu and

Mart́ınez using nth-order algorithms for averaging signals with bounded nth differences

[147]. Kia et al. analyzed nth-order consensus algorithms in continuous- and discrete-

time and bounded the convergence rate and tracking error in terms of the eigenvalues

of L and the bound for the nth difference or derivative [66].

2.3 Formation & coverage control

Formation control and coverage control are two control objectives for MASs consist-

ing of spatially distributed, mobile agents such as satellites, wheeled vehicles, aircraft,

and robots. Formation control is primarily concerned with maintaining the positions

and orientations of individual agents relative to other agents [28]. In formation con-

trol, the entire group of agents may move within its environment, and the control

objective is simply to maintain a formation. Coverage control, on the other hand, is

primarily concerned with deploying a group of sensor-equipped agents so that their

entire environment can be adequately monitored by sensors [56]. In coverage control,

the relative positions of the agents do not matter as long as their formation solves the

coverage problem. While formation and coverage control have different objectives, the

resulting behaviour is often complementary, with a fixed formation providing good

coverage [5].

In formation control, the overall system objective is to maintain the relative po-

sitions and orientations of all agents. Many formation control strategies also include
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practical considerations such as collision avoidance, communication constraints, and

obstacle avoidance. One approach to formation control is a behavioural approach

where each robot implements a control that satisfies a weighted average of control

objectives such as maintaining formation, path following, and collision avoidance [5].

Another approach is to designate one agent as the leader and have all agents maintain

their position and orientation relative to this leader while the leader follows a path,

coordinating the entire group [23, 113, 122]. Alternatively, a virtual leader can be

used to ensure that the entire formation follows the path while maintaining forma-

tion [34, 76]. The use of artificial potential functions defined based on the positions

of a virtual leader and obstacles can be used to maintain formation while avoiding

obstacles and is implemented by each agent following a gradient descent based on its

potential [75].

In coverage control, several vehicles occupy a space Q and try to spread themselves

out to maximize the coverage of this region. Given a probability density φ : Q→ R≥0,

the objective of the MAS is to position agents at q1, . . . , qp to minimize

H =

∫

Q

min
qi
{‖q − qi‖}dφ(q). (2.4)

When H is minimized, the agents are evenly spread out so that they maximize the

possibility of observing an event whose location has probability density φ. Since the

integrand at q depends only on the position of the agent that minimizes ‖q − qi‖,

coverage control is closely linked to Voronoi partitions.

A Voronoi partition is a partition of a space into several regions Γ1, . . . ,Γp based

on a set of points q1, . . . , qn with the property that Γi is the set of points which are
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closest to qi [129]. Formally, a Voronoi cell is defined by

Γi = {q ∈ Q | ‖q − qi‖ < ‖q − qj‖ ∀j 6= i} . (2.5)

Using the definition of the a Voronoi cell, the coverage control objective function,

(2.4), can alternatively be written as

H =

p∑

i=1

∫

Γi

‖q − qi‖ dφ(q). (2.6)

This cost function is (locally) minimized when each qi is at the φ-centroid of Γi

resulting in a centroidal Voronoi formation [33].

A common way to solve coverage control problems is Lloyd’s algorithm, where

each agent moves towards the centroid of its Voronoi cell. This approach is based

on Lloyd’s optimal quantization schemes which can be interpreted as a gradient de-

scent [85]. Since Voronoi cells and centroids can be computed from neighbouring

agents’s position, Lloyd’s algorithm can be implemented by a distributed MAS with

communication between neighbours [24]. When φ is multimodal or there or several

local minima to H, a “ladybug”-like variant of Lloyd’s algorithm where agents spi-

ral towards their Voronoi centroids can result in a better configuration [111]. If the

orientation of the agents affect their sensing ability, a different metric can be used

in place of the standard `2-norm, resulting in an anisotropic Voronoi partition and a

cost function which is minimized by an anisotropic centroidal Voronoi formation [53].

Computation times for the Voronoi centroid in Lloyd’s algorithm can be improved by

using a polynomial approximation of φ with an adaptive law to improve the estimate

of φ [112]. Lloyd’s algorithm can also be adapted to non-convex environments by
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combining it with a path planning algorithm that avoids obstacles [16].

Several other techniques exist which can solve coverage control problems. While

these techniques are different from Lloyd’s algorithm, and do not rely on Voronoi

partitions, they are still based on a gradient descent. One method, when φ is constant,

is to use a gradient descent of a potential function based on each agent’s distance

from other agents and the boundary [55]. Another formulation is based on a gradient

descent of a cost function H =
∫
Q
φ(q)P (q, q1, . . . , qn)dq where P is the probability

that an event at q can be sensed by some sensor q1, . . . , qn [57, 81]. This approach

does not assume that an event can only be sensed by the nearest agent, and can be

seen as a generalization of Lloyd’s algorithm. It reverts to Lloyd’s algorithm and can

be expressed in terms of a Voronoi partition when it is assumed that the nearest agent

always senses an event. This joint probability approach can be used in a non-convex

environment by having P (q, q1, . . . , qn) be defined in terms of sensing cones which get

blocked by obstacles [145].

Both formation control and coverage control rely on various geometric notions,

such as distances, angles, areas, centroids, and Voronoi partitions. While the majority

of the results are derived for Euclidean space, the extension to non-Euclidean spaces

is often straight-forward by using differential geometry. Delaunay triangulations and

Voronoi partitions—which are of particular importance for coverage control—can be

defined on arbitrary Riemannian manifolds with uniqueness guaranteed if there set of

points is sufficiently dense [74]. Of Riemannian manifolds, the sphere is particularly

important, as an MAS surrounding Earth naturally moves on the sphere. Bishop and

Basiri have used differential geometric definitions of angles and distances to achieve

formation control on the sphere [12].
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Chapter 3

Continuous-time distributed

extremum-seeking control

In this chapter, a continuous-time version of distributed extremum-seeking control is

developed. The most general problem which can be solved by this technique and some

necessary assumptions is described in Section 3.2. The distributed ESC is designed

and its convergences is proven in Section 3.3. Several simulation examples for large-

scale, unstable, and nonlinear systems are shown in Section 3.4.

3.1 Introduction

Current approaches in extremum-seeking control assume that a single controller is

used to control the entire system. In many applications this approach is not practical.

If the system is very large, a single centralized controller may not be able to perform

the necessary calculations fast enough to implement the needed control action. If

a system consists of several subsystems which are distributed over a large distance,

it is more practical to have each subsystem controlled by a nearby local controller

than to use a single controller which is distant from most subsystems. Since current

ESC techniques are restricted to a centralized approach, they cannot be applied to
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potential control applications such as transportation networks, the electricity grid,

social media, large manufacturing plants, and distributed robotics.

Multi-agent variants of ESC have already been proposed by several researchers

[39, 40, 43, 69, 102, 116]. In these approaches, each agent measures its own local cost

or payoff function which it optimizes by extremum-seeking. However, since all the

costs are dependent on each other, this approach is competitive, and the overall system

can only reach a Nash equilibrium, and cannot achieve overall system objectives.

Decentralized ESC techniques which do reach the overall system optimum require

carefully designed cost local cost functions such that the total cost is minimized when

all the local costs are minimized [78, 105]. Nedić et al. showed that a distributed

system can achieve overall system objectives by solving local optimization problems

and communicating estimates of the overall optimum via a network [96]. A general

framework for distributed ESC based on communicating total cost estimates was

provided by Kvaternik et al. but was not applied with any ESC algorithm [72].

In this chapter, we develop a distributed version of extemum-seeking control in

continuous-time. This approach involves a consensus algorithm over a network of

agents which each implement a local ESC. It is assumed that each agent measures

a local cost using sensor measurements, but does not have a mathematical model

describing the cost function. The overall system objective is to measure the sum of

the local costs. Since each agent does not actually measure the objective function to

be minimized, a consensus algorithm is used to provide each agent of the overall cost.

Then the agents use a gradient-based ESC algorithm to minimize the overall cost

based on the estimate obtained from the network. A novel proportional-integral ESC

technique originally proposed by Guay and Dochain [48] is used to remove the need

24



3.2. Problem description I. Vandermeulen

for time-scale separation, and allow the distributed ESC to stabilize slowly unstable

systems. The proposed continuous-time distributed PI ESC technique is valid for

nonlinear systems with unknown, unstable dynamics with coupling between agents.

3.2 Problem description

Consider a network of nonlinear control-affine systems of the form

ẋi = f i(x, z) + gi(x, z)u (3.1)

yi = hi(x) (3.2)

where x = [x>1 . . . x>p ]> ∈ X ⊆ Rn is the state vector, u = [u>1 . . . u>p ] ∈ U ⊆

Rm is the input vector for the entire network, and z ∈ Rnz is a vector of states

associated with the zero dynamics. Each xi has dimension ni with
∑p

i=1 ni = n. The

dynamics of each agent i are described by the dynamics (3.1) with local cost (3.2).

Each agent manipulates the local input variables ui ∈ Rmi , with
∑p

i=1 mi = m. The

vector fields f i(x, z) ∈ Rni and gi(x, z) ∈ Rni×m are unknown smooth functions of

x and z and the cost functions hi(x) are unknown smooth functions of x.

The overall network cost function is the sum of all the individual costs. Using the

definition of the local costs (3.2), the total cost is

J = H(x) =

p∑

i=1

hi(x). (3.3)

The objective is to steer the system to the equilibrium x∗ ∈ X and u∗ ∈ U that

achieves the minimum value of J(x) using only measurements of the local cost and

communication between agents.

25



3.2. Problem description I. Vandermeulen

By concatenating the agent dynamics from (3.1), we can write the overall dynamics

of the network as

ẋ = f(x, z) +G(x, z)u (3.4)

ż = f z(x, z). (3.5)

The drift vector field f(x, z) = [f>1 (x, z) . . . f>p (x, z)]>, (matrix-valued) control

vector field G(x, z) = [g>1 (x, z) . . . g>p (x, z)]>, and zero dynamics vector field

f z(x, z) : Rn × Rnz → Rnz are all smooth.

The overall system objective is to minimize J at steady-state. The overall system

equilibrium occurs when a triple (x, z,u) simultaneously satisfies the equations

0 = f(x, z) +G(x, z)u (3.6)

0 = f z(x, z). (3.7)

We assume that for each u ∈ U, there exists a unique pair (x, z) ∈ X × Rnz which

satisfies (3.6) and (3.7). Thus we can define maps πx : U → X and πz : U → Rnz

such that for a given u, (πx(u), πz(u),u) is the unique triple that satisfies (3.6) and

(3.7). Using these steady-state maps, we can define a steady-state cost function by

J = H(πx(u)) = `(u) (3.8)

where ` = H ◦ πx. At equilibrium, the system objective is reduced to finding the

minimizer u∗ of `(u). Furthermore, for stabilization we must ensure that x(t) and

z(t) converge to x∗ = πx(u) and z∗ = πz(u).
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For the combined stabilization and optimization problem to be well posed, we

must make assumptions about the cost function and dynamics. The main assumption

about the cost functions is that the total steady-state cost—but not the local costs—

is locally strictly convex. For stabilization to be possible, we must assume that the

x-dynamics are controllable and that the z-dynamics are stable.

Assumption 3.1 (Convexity). There exists some positive constant β1 ∈ R>0 such

that for all û ∈ U, the equilibrium steady-state map `(u) is such that

∂`

∂u

∣∣∣
û
(û− u∗) ≥ β1 ‖û− u∗‖2 . (3.9)

Assumption 3.2 (Stabilizability). There exists a positive definite function Ω(x, z) =

Vz(z) + J(x) and positive constants β2,x, β2,z, β3,x, β3,z ∈ R>0 such that

Ω(x, z)− Ω(πx(û),πz(û)) ≥ β2,x ‖x− πx(û)‖2 + β2,z ‖z − πz(û)‖2 (3.10)

Ω(x, z)− Ω(πx(û),πz(û)) ≤ β3,x ‖x− πx(û)‖2 + β3,z ‖z − πz(û)‖2 . (3.11)

Furthermore, there exists K∗g , β4,x, β4,z ∈ R>0 such that Ω(x, z) satisfies

∂Vz
∂z
f z+

∂J

∂x
f +

∂J

∂x
Gû−K∗g

∂J

∂x
GG>

(
∂J

∂x

)>

≤ −β4,x ‖x− πx(û)‖2 − β4,z ‖z − πz(û)‖2 .

(3.12)

for all (x, z) ∈ X, and for all û ∈ U. This assumption determines a class of minimum-

phase unstable nonlinear system that can be optimized and stabilized by ESC. These

systems must be stabilizable by the state-feedback u = −K∗gG>(x, z)∂J
>

∂x
+ û, for

some K∗g > 0. If the system is open-loop stable then K∗g = 0 meets the assumption.
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3.3 Distributed extremum-seeking controller

In this section, we design the distributed ESC that is used to minimize (3.3) while

stabilizing (3.4). Each agent uses only local cost measurements and communication

with neighbouring agents to compute its control action. The overall system is coor-

dinated by a dynamic average consensus algorithm. This consensus takes the local

costs yi as inputs and returns estimates Ĵi of the average cost as outputs. The av-

erage cost 1
p

∑p
i=1 hi = 1

p
J is proportional to the total cost which is the objective

function to be minimized. Each agent uses a local ESC to minimize their average

cost estimates. Since the average cost estimates converge, the minimization of the

average cost estimates results in the minimization of the total cost. In this way, the

local ESCs are coordinated and the distributed ESC can achieve the overall system

objective despite no agent having full knowledge about the entire system.

3.3.1 Consensus algorithm

The consensus algorithm provides each agent with an estimate of the average cost.

Most existing average consensus algorithms are only valid for static consensus prob-

lems (see Section 2.2). When the inputs to the consensus algorithm—in this case, the

local costs—are time-varying, a dynamic average consensus protocol is needed.

We use the PI consensus algorithm developed by Freeman et al. [38]. Let Ĵi

denote agent i’s estimate of 1
p
J and Ĵ = [Ĵ1 . . . Ĵp]

> and let ρ = [ρ1 . . . ρp]
> be

the integrator state. The dynamic average consensus algorithm is given by




˙̂
J

ρ̇


 =



−κ0I − κPL κIL

−κIL 0






Ĵ

ρ


+



κ0I

0


y (3.13)
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where κ0, κP , κI ∈ R>0 are user-specified tuning parameters. The parameter κ0 con-

trols how much weight each agent gives its own local cost or how selfish each agent

is. The parameters κP and κI are the PI control gains which determine how fast

the agents coordinate their actions. If κP � κI , the consensus tracks the average

faster but is more susceptible to noise. If κI � κP the consensus does a better job at

rejecting noise but tracks the average slower.

Convergence of this algorithm depends on the properties of the graph. In Theo-

rems 5 and 6 of the paper by Freeman et. al [38], several convergence requirements

for (3.13) are provided. For time-invariant graphs, a sufficient condition is that the

communication occurs over a connected weight-balanced digraph. A connected graph

ensures that all information can propagate to all areas of the network and thus all

agents’ estimates converge to the same value. The weight-balanced property ensures

that all information gets used equally and so that the estimates converge to the aver-

age instead of some other value. This consensus algorithm is limited to cases where y

and ẏ are bounded. It achieves dynamic tracking and has zero high-frequency gain,

allowing it to filter out noise in y. This algorithm was selected over other average

consensus algorithms as it can achieve dynamic average tracking and its requirements

on the graph structure are easy to achieve.

Assumption 3.3. The communication network for local costs is represented by a

time-invariant connected weight-balanced digraph.

The consensus algorithm in (3.13) is written in a vector format that relates all of

the agents’ total cost estimates in one equation. In reality, the total costs are not

computed in a vector format, but the computation is instead distributed over the

network. Each agent computes its own local cost, so agent i only computes the rows
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of (3.13) corresponding to Ĵi and ρi. These rows have dynamics

˙̂
J i = κ0(yi − Ĵi)− κP`i,:Ĵ + κI`i,:ρ (3.14)

ρ̇i = −κI`i,:Ĵ (3.15)

where `i,: is the ith row of L. Since agent i does not have access to all information, it is

important to check that this algorithm can actually be implemented in a distributed

way. Therefore we must check that each agent can actually compute its total cost

update law.

At first, it seems that agent i cannot compute (3.14) or (3.15) since they both

depend on all agents’ Ĵi and ρi but agent i only knows the value of these variables

for its neighbours. However, since the Laplacian encodes the neighbour structure of

the graph, whenever agents i and j are not neighbours, `i,j = 0. Therefore (3.14) and

(3.15) can be expanded as

˙̂
J i = κ0(yi − Ĵi)−

∑

j∈Ni
κP `i,jĴj +

∑

j∈Ni
κI`i,jρj (3.16)

ρ̇i = −
∑

j∈Ni
κI`i,jĴj (3.17)

where Ni = {j ∈ {1, . . . , p} | ei,j ∈ E} is the neighbour set of agent i on the commu-

nication graph. Therefore agent only requires information that it does have access to

and (3.13) is a valid distributed algorithm.
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3.3.2 Input-output dynamics of agent i

Estimation-based ESC is based on the idea of parameterizing the total cost dynamics

by a locally linear model, estimating the gradient of the cost function based on this

local model, and then optimizing the cost by a gradient descent. Therefore, ESC

relies on a local input-output model. We consider the dynamics of the total cost J

by differentiating (3.3) along the vector fields given by (3.4), resulting in

J̇(t) = LfH + LGHu (3.18)

where LfH and LGH are Lie derivates of H along f and G.

The input-output dynamics of (3.18) relate all agents’ inputs to the total cost.

Since each agent only controls its own inputs, it is useful to rewrite the input-output

dynamics in a form that explicitly state the dependence on a specific agent’s input.

By expanding the definition of the Lie derivative LGH in (3.18), the dynamics of J

as seen by each agent i are given by:

J̇ = LfH +
∂J

∂x
Giui +

∑

j 6=i

∂J

∂x
Gjuj (3.19)

where Gi ∈ Rn is ith column of the matrix-valued function G(x).

Each agent must estimate some parameters based on (3.19). Agent i has access

to ui and, through the consensus algorithm, a convergent estimate of J
p
. Therefore,

we parameterize the average cost dynamics as

J̇

p
= θ0,i(t) + θ>1,i(t)ui. (3.20)
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In this form, an agent can use data of Ĵi and ui to estimate some linear parameters

θ0,i(t) and θ1,i(t). By inspecting (3.19) and noting that it differs from (3.20) by a

factor of 1
p
, the parameters can be exactly expressed as:

θ0,i(t) =
1

p

(
LfH +

∑

j 6=i

∂J

∂x
Gjuj

)
(3.21)

θ1,i(t) =
1

p

(
∂J

∂x
Gi

)>
. (3.22)

The parameter θ0,i(t) describes the effect of the system drift and the other agents’

control on the total cost dynamics. The parameter θ1,i(t) is the gradient of the total

cost with respect to agent i’s control inputs. Note that both parameters are time-

varying even though the vector fields are not, as the model is locally linear while the

system is nonlinear.

3.3.3 Time-varying parameter estimation

The locally linear input-output model in (3.20) is useful for minimizing J by a gradient

descent. Each ESC works by implementing a gradient descent using the parameter

θ1,i(t). Since the agents only know J(t) and ui(t), they cannot directly measure

θ1,i(t) and instead estimate it. While ESC only requires the estimate θ̂1,i, for this

estimate to converge, θ̂0,i must also be estimated.

Each agent implements a parameter estimation routine similar to the one pre-

sented by Adetola and Guay [2]. The parameter estimation is based on (3.20) with

the average cost replaced by an estimate of it. Let φi = [1 u>i ]> be the regressor

vector and θi = [θ0,i θ
>
1,i]
> be the true parameter vector. Then the estimation is
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based on the equation

˙̂
J i = φTi θi + ν̇i (3.23)

where νi = Ĵi − 1
p
J is the consensus error which is assumed to be small and expo-

nentially decaying. In standard least squares estimation, we would estimate θi by

computing a covariance matrix Σi from measurements of φi and then compute the

parameter estimate θ̂i from this covariance matrix and measurements of
˙̂
J i. The

resulting parameter estimate would minimize a function relating an estimator of
˙̂
J i

to the actual measured
˙̂
J i.

The parameter estimation algorithm we use is a continuous-time algorithm which

regresses on (3.23) and uses a covariance matrix and an estimator. The estimator ŷi

is predicts the total cost using current parameter estimates. Its dynamics are

˙̂yi = φ>i θ̂i +Kei +w>i
˙̂
θi (3.24)

where K ∈ R≥0 is the estimation gain and ei = Ĵi − ŷi is the error between the total

cost estimate and the model’s prediction of it. The φ>i θ̂i term in (3.24) resembles

(3.23) with θ̂i replacing θi. This term results in ŷi and Ĵi having similar dynamics

when the parameter estimate is close to the true parameter. The term Kei in (3.24)

is reduces the error by moving ŷi closer to Ĵi when ei is large. The last term in (3.24)

uses derivative information to compensate for time-varying parameters.

The last term in (3.24) also involves wi which is a filtered version of φi. Unwanted
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noise in the regressor vector is removed by a simple low pass filter

ẇi = −Kwi + φi. (3.25)

In addition to its use in (3.24), wi is used in defining the dynamics of the covariance

matrix and parameter update law.

The parameter update law also relies on an auxiliary variable ηi = ei − w>i θ̃i
where θ̃i = θi − θ̂i is the parameter estimation error. This auxiliary variable has

relatively simple dynamics and depends on the parameter estimation error, which is

a quantity of interest. Using (3.23), (3.24), and (3.25), its dynamics are

η̇i = −Kηi −w>i θ̇i + ν̇i. (3.26)

Assuming that the consensus converges and the true parameter values change slowly,

ηi has stable first-order linear dynamics with a known gain K. Therefore, we can

easily estimate ηi using an estimator of the form

˙̂ηi = −Kη̂i. (3.27)

Since η̂i has very similar dynamics to ηi, we can use it as an estimator of ηi and since

ηi contains information about θ̃i, η̂i provides some information about θ̃i. Note that

since (3.26) depends on θ̇i and ν̇i but (3.27) does not, η̂i is only a good estimate of

ηi when θi changes slowly and the consensus error is small.

The covariance matrix Σi ∈ R(mi+1)×(mi+1) is a symmetric positive definite matrix
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with dynamics given by

Σ̇i(t) = wiw
>
i −KTΣi + σ1I (3.28)

where KT , σ1 ∈ R≥0 are user-defined constants. The wiw
>
i term in (3.28) is the

standard update term for a least squares covariance matrix. The KTΣ term in (3.28)

is used to reduce the weight given to past measurements and allow the covariance

matrix to change rapidly as the system evolves. If KT = 0, all values of wi affect Σi

equally, while if KT � 0 little weight is given to past measurements. The σ1I term

in (3.28) is used to ensure that the eigenvalues of Σi have a positive lower bound and

the covariance matrix is therefore always invertible. Since Σi must be symmetric and

positive definite, we initialize this variable as Σi(0) = σ0I for some σ0 ∈ R>0. Since

σ1 is solely used to ensure the invertibility of Σi, it should be small.

The parameter update law depends on the variables with dynamics described by

(3.24)–(3.28). Then using a similar update law to the one proposed by Adetola and

Guay [2], the parameter estimate has dynamics

˙̂
θi = proj

{
Σ−1
i

(
wi(ei − η̂i)− σ1θ̂i

)
,Θ
}
, θ̂i(0) = θ̂i0 (3.29)

where proj {·,Θ} is a Lipschitz projection onto a compact set Θ. The main term in

(3.29) is Σ−1
i wi(ei − η̂i) which is the standard least squares update law. The other

term −σ1Σ
−1
i θ̂i compensates for the σ1I term in (3.28).

The Lipschitz projection operator in (3.29) ensures that the parameter estimates

are bounded [70]. This projection guarantees that θ̂i(t) ∈ Θ for all t > 0, whenever
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θ̂i(0) ∈ Θ. Since the projection operator bounds θ̂i, it also guarantees that

θ̃
>
i Σi proj

{
Σ−1
i

(
wi(ei − η̂i)− σ1θ̂i

)
,Θ
}
≤ θ̃>i

(
wi(ei − η̂i)− σ1θ̂i

)
. (3.30)

This inequality is useful in the proof of convergence of distributed ESC.

Following the requirements from Adetola and Guay [2], this parameter estimation

technique converges provided a persistence of excitation condition on wi is met.

Assumption 3.4 (Persistence of Excitation). There exist constants γw, T
− ∈ R>0

such that for each agent i and for any t > 0 we have

∫ t+T

t

wi(τ)w>i (τ)dτ ≥ γ−wI. (3.31)

3.3.4 Proportional-integral extremum-seeking control

The local ESCs perform the optimization of the total cost using a gradient descent

based on the gradient estimate θ̂1,i from the parameter estimation routine. Typical

ESC techniques only have integral action and require a time-scale separation. Guay

and Dochain added a proportional term to the ESC input, removing the need for

time-scale separation [48]. We use a similar PI ESC technique for each agent:

ui = −Kgθ̂1,i + ûi + di(t) (3.32)

˙̂ui = − 1

τI
θ̂1,i (3.33)

where Kg ∈ R>0 is a the proportional gain for the ESC and τI ∈ R>0 is the integral

time constant for the ESC. These tuning parameters play a similar role to the tuning

parameters of a standard PI controller.
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The ESC control law in (3.32) also contains a dither signal di(t) which provides

persistence of excitation to satisfy Assumption 3.4. We take the dither signals to

be sinusoidal with amplitude D ∈ R>0. To meet Assumption 3.4, all dithers must

have different frequencies and no frequency can be the sum of two other frequencies.

While there are many ways to select dither frequencies that meet these criteria, the

easiest way is to use prime dither frequencies. Since the dither frequencies should

also be chosen in a particular bandwidth, depending on the speed of the system’s

dynamics, we typically choose the dither frequencies to be distinct primes multiplied

by the same rational number.

The technique used here is quite similar to the technique used by Guay and

Dochain [48] with the main contribution being the extension to multi-agent systems.

While the PI control law, (3.32)–(3.33) takes the same form as in [48], the parameter

θ̂1,i has a different interpretation. In [48], the total cost J is known exactly and θ̂1

is the estimate of the gradient of the total cost. In this application, since there are

multiple agents, J is not known and θ̂1,i is instead the estimate of the gradient of

the estimated average cost. Since θ̂1,i is based on Ĵi which is itself uncertain, θ̂1,i has

additional uncertainty in the multi-agent case. Despite this additional uncertainty,

the PI control law based on θ̂1,i is still effective.

3.3.5 Convergence analysis

At this point we have developed the entire distributed ESC (Figure 3.1). Agent

i controls inputs ui to the system, and measures a local cost yi from the system.

It also receives some average cost estimates Ĵj from other agents j 6= i. It then

computes its own average cost estimate as a convex combination of its existing average
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ẋ = f(x, z) +G(x, z)u

ż = f z(x, z)

y = h(x)
Consensus over

network L

˙̂
θi = proj

{
Σ−1i

(
wi (ei − η̂i)− σ1θ̂i

)
,Θ
}

Σ̇i = w>i wi −KTΣi + σ1I

ẇi = −Kwi + φi

˙̂yi = θ̂
>
i φi +Kei +w>i

˙̂
θi

1

τIs

Kg

Consensus for
other agents

Other agents
j 6= i

di(t)

η̂i(t)

yi

Ĵi
+

θ̂0,i

θ̂1,i+ ûi

−

ui

ei

ŷi
−

−

yj 6=i

Ĵ j 6=i

uj 6=i

Figure 3.1: Block diagram of continuous-time distributed PI ESC as it appears to
one agent. Each agent is aware of its local cost measurement yi, its own
extremum-seeking controller, and some other agents’ total cost estimates.
It is not aware of other agents’ local costs or extremum-seeking controllers.

cost estimate, its local cost measurements, and other agents’ average cost estimates.

Then using a copy of its input signal and its average cost estimate, it estimates a drift

parameter θ̂0,i and a gradient parameter θ̂1,i. The parameter estimation is driven by

the estimation error ei which is the difference between Ĵi and a predictor state ŷi.

The gradient estimate is used for a PI-type gradient descent with tuning parameters

Kg and τI . The ESC input is the PI gradient descent plus a dither signal di.

Next we examine the convergence of the distributed ESC. Its convergence depends

on the convergence of the consensus and the parameter estimation algorithms. The
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consensus must converge so that agents have an accurate value of the total cost to

use for parameter estimation; the parameter estimation must converge so that the

agents have an accurate value of the gradient to use for extremum-seeking. The main

theorem in this chapter says that the consensus, parameter estimation, and overall

system converge to the optimum of the total cost function.

Theorem 3.1. Consider a continuous-time nonlinear control-affine system (3.4)–

(3.5) with total cost (3.3) and let Assumptions 3.1–3.4 hold. Consider the distributed

extremum-seeking controller (3.32), the parameter estimation algorithm (3.24)–(3.29)

and the dynamic average consensus algorithm (3.13). Then there exists ESC tuning

parameters Kg, KT , K, σ1, and τI and dynamic consensus gains κ0, κP and κI such

that the system converges exponentially to an O(Kg/KT +σ1 ‖θ0‖+D/Kg)-neighbourhood

of the minimizer x∗ of the total cost function J .

Proof. See Appendix A

The main limitation of this controller is its ability to stabilize systems. Stabiliza-

tion is provided by the proportional control action with gain Kg. For stabilization,

we must have Kg > pK∗g ; however, if Kg is too large, the input—and therefore

system—changes too quickly and prevent the parameter estimates from converging.

Therefore, distributed ESC can only be applied to systems that can be stabilized

by gains K∗g <
2γ−Σ
pT

which limits the controller to systems with slow unstable poles.

Furthermore, since the upper bound for K∗g decreases with p, the distributed ESC is

less effective at stabilization as the number of agents increases.

For large-scale unstable systems controlled by many agents, tuning becomes more

difficult as there is a narrower range of proportional ESC gains which are large enough

to stabilize the system, but not so large that parameter estimation does not converge.
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In the case of fast unstable large-scale systems, it may well be impossible to stabilize

the system if too many agents are used. One way to stabilize such systems is to to use

fewer agents with each agent controlling more inputs. This approach puts a higher

computational burden on each agent as the dimension of ui and thus Σi increases

and the controller must invert a larger matrix. In the extreme case, a centralized

ESC may be required or the system may be impossible to stabilize using a model-free

approach.

3.4 Simulation examples

This section contains three simulation examples which highlight some types of systems

which can be solved by distributed ESC. The first system is a 25-dimensional stable

linear quadratic (LQ) system which shows distributed ESC’s ability to solve large-

scale problems. The second example is a 5-dimensional unstable LQ problem which

shows distributed ESC’s ability to stabilize an unknown system. The third example

is a 5-agent nonlinear system with nonlinear costs which shows that distributed ESC

is not limited to linear systems.
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3.4.1 Stable 25 agent linear system

Consider a system with 25 states, 25 inputs and linear dynamics given by

ẋ =




−2 1 0 0 . . . 0

0 −2 1 0
. . .

...

0 0 −2
. . . . . . 0

0 0
. . . . . . 1 0

...
. . . . . . 0 −2 1

0 . . . 0 0 1 −2




x+ u.

This system is controlled by 25 agents. The ith agent measures a local cost yi and

manipulates the input ui. The local costs are quadratic functions of the states

yi =





(xi − i)2 + 2(xi+1 − 2i)2 if i ∈ {1, . . . , 24}

(x25 − 25)2 + x2
1 if i = 25.

The total cost is the sum of the local costs J =
∑25

i=1 yi. Each agent communicates

with two neighbours (Figure 3.2), resulting in the Laplacian matrix

L =




2 −1 0 . . . 0 −1

−1 2 −1 0 . . . 0

0 −1 2
. . . . . .

...

... 0
. . . . . . −1 0

0
...

. . . −1 2 −1

−1 0 . . . 0 −1 2




.
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1

2

3

25

24

Figure 3.2: Communication graph for the 25 agents controlling the stable linear sys-
tem. This graph has the structure of a cycle.

Table 3.1: Tuning parameters for the 25-agent linear system controlled by continuous-
time distributed ESC.

κ0 κP κI K σ1 KT Kg τI

1× 104 1× 104 1× 104 50 1× 10−6 50 0.25 1

Each agent implements an identical PIESC algorithm with the same tuning param-

eters (Table 3.1) and initial conditions (Table 3.2). The dither signals each have

different angular frequencies ranging between ω1 = 123 and ω25 = 251.

The optimal cost can be computed to be J∗ = 2883.16. The control system

was simulated from x(0) = 0 using the PIESC controller. The distributed ESC

algorithm is able to quickly find the optimal input, state, and minimize the total cost

(Figure 3.3).

Table 3.2: Initial conditions for the 25-agent linear system controlled by continuous-
time distributed ESC.

ŷi(0) Ĵi(0) ρi(0) wi(0) η̂i(0) θ̂i(0) Σi(0)

yi(0) yi(0) 0 [0, 0]> 0 [0, 0]> I2×2
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Figure 3.3: State (top left), input (top right), local cost (bottom left), and total cost
(bottom right) trajectories for the stable 25-agent linear system controlled
by PIESC with consensus.

3.4.2 Unstable 5 agent linear system

Consider a system with 5 states, 5 inputs and linear dynamics given by

ẋ =




0.1108 1 0 0 0

0 0.1367 1 0 0

0 0 0.0548 1 0

0 0 0 0.1172 1

0 0 0 0 0.1000




x+ u.
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Table 3.3: Tuning parameters for the 5-agent unstable linear system controlled by
continuous-time distributed ESC.

κ0 κP κI K σ1 KT Kg τI

1× 104 1× 104 1× 104 50 1× 10−6 50 0.5 1

This system has poles at 0.1108, 0.1367, 0.0548, 0.1172 and 0.1000 and which are all

slow, unstable poles. This system is controlled by 5 agents. The ith agent measures

a local cost yi and manipulates the input ui. The local costs are quadratic functions

of the states:

y1 = (x1 − 1)2 + 2(x2 − 2)2

y2 = (x2 − 2)2 + 2(x3 − 4)2

y3 = (x3 − 3)2 + 2(x4 − 6)2

y4 = (x4 − 4)2 + 2(x5 − 8)2

y5 = (x5 − 5)2 + 2x2
1.

The total cost is the sum of the local costs J =
∑5

i=1 yi. Each agent communicates

with two neighbours (Figure 3.4), resulting in the Laplacian matrix

L =




2 −1 0 0 −1

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

−1 0 0 −1 2




.

Each agent implements an identical PIESC algorithm with the same tuning param-

eters (Table 3.3) and initial conditions (Table 3.4). The dither signals each have

different angular frequencies ranging between ω1 = 123 and ω5 = 251.

The optimal cost can be calculated to be J∗ = 9.833, which occurs when the input

44



3.4. Simulation examples I. Vandermeulen

1

2

3

45

Figure 3.4: Communication graph for the 5 agents controlling the unstable linear
system. This graph has the structure of a cycle.

Table 3.4: Initial conditions for the 5-agent unstable linear system controlled by
continuous-time distributed ESC.

ŷi(0) Ĵi(0) ρi(0) wi(0) η̂i(0) θ̂i(0) Σi(0)

yi(0) yi(0) 0 [0, 0]> 0 [0, 0]> I2×2

bias and state are:

u∗ =

[
−2.0554 −3.9400 −5.5344 −7.6253 −0.7000

]>

x∗ =

[
0.5000 2.0000 3.6667 5.3333 7.0000

]>
.

The control system was simulated from x(0) = 0. The simulation results (Fig-

ure 3.5) show that the distributed extremum-seeking controller is able to stabilize

the unstable system and find the minimum of the total cost function. Initially, some

oscillatory transient behaviour is observed as the parameter estimates are still far

from their true values. However, once the algorithm has been running for a short

period of time, the controllers have accurate estimates of the gradient and can then

move in the appropriate direction. All 5 input biases converge to the optimal input

u∗. Despite the instability of the open-loop system, the closed-loop system is stable
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Figure 3.5: State (top left), input (top right), local cost (bottom left), and total
cost (bottom right) trajectories for the unstable 5-agent linear system
controlled by PIESC with consensus.

and so the states, converge to their optimal values. At these conditions, the convex

total cost function is also minimized.
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3.4.3 Unstable 5 agent nonlinear system

Consider a system with 6 states, 5 inputs and nonlinear dynamics given by

ẋ1 =
3

10
x1 − 4x3

1 + x2x5 +
u1

x2
1 + 1

+ 2u4

ẋ2 = sin(x2) + zx4 +
1

4
sin(z)u3 − u5

ẋ3 = −x3 + log(x2
3 + 1) + x1x4 + 3u2 +

1

3
atan(x3)u4

ẋ4 = − 7

10
x4 +

x2
5

x2
5 + x2

2 + 1
+ u1 +

1

5
e−x

2
2u5

ẋ5 = − cos(x1 + z) +
2

5
x5 +

1

2
cos(x4)u2 − 2u3

ż = −z + x3.

This system is controlled by 5 agents. The ith agent measures a local cost yi and

manipulates the input ui. The local costs are quadratic functions of the states:

y1 = (x5 − 8)2 + 2(x2 − 2)2

y2 = (x2 + 5)4 + (x3 − 4)2 + |x5 + 3| − x1

y3 = (x3 − 3)2 + cosh(x4 − 6) + (x2 − x1)2

y4 =
1

2
(x4 − 4)2 + (x3 − x1x2)2

y5 = (x5 + x2)2 + x1.
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1 2 3 4 5

Figure 3.6: Communication graph for the 5 agents controlling the nonlinear system.
This graph has the structure of a path which is a type of tree.

Table 3.5: Tuning parameters for the 5-agent nonlinear system controlled by
continuous-time distributed ESC.

κ0 κP κI K σ1 KT Kg τI

1× 104 1× 104 1× 104 50 1× 10−7 50 0.25 2

The total cost is the sum of the local costs J =
∑5

i=1 yi. Each agent communicates

with one or two neighbours (Figure 3.6), resulting in the Laplacian matrix

L =




1 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 1




.

Each agent implements an identical PIESC algorithm with the same tuning param-

eters (Table 3.5) and initial conditions (Table 3.6). The dither signals each have

different angular frequencies ranging between ω1 = 123 and ω5 = 251.

The optimal cost can be calculated to be J∗ = 90.95, which occurs when the input

Table 3.6: Initial conditions for the 5-agent nonlinear system controlled by
continuous-time distributed ESC.

ŷi(0) Ĵi(0) ρi(0) wi(0) η̂i(0) θ̂i(0) Σi(0)

yi(0) yi(0) 0 [0, 0]> 0 [0, 0]> I2×2
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bias and state are

u∗ =

[
2.834 2.136 1.642 3.440 19.065

]>

x∗ =

[
−1.352 −3.235 3.791 5.070 5.367

]>
.

The control system was simulated from x(0) = 0 (Figure 3.7) and the distributed

ESC steered the system to the optimum of the steady-state cost function. Since this

system is nonlinear the parameter estimates θi change as the system evolves. Despite

having no knowledge of a model for the system, the distributed ESC is able to track

the time-varying parameters and therefore always has an accurate local model. Using

this ever changing local model, it successfully implements a gradient descent and

reaches the optimum of the steady-state cost.

3.5 Conclusion

In this chapter, a distributed ESC technique was proposed to solve a class of RTO

problems over a network of dynamic agents with unknown dynamics. A dynamic

average consensus algorithm provides each agent with an estimate of the total network

cost. Each agent implements an extremum-seeking controller which contributes to

the optimization of the total cost, in a cooperative fashion. The extremum-seeking

control technique is based on a proportional-integral approach that avoids the explicit

need for time-scale separation. This technique is novel as it is the first example of a

distributed model-free output-feedback controller which can simultaneously stabilize

and optimize a nonlinear system. Three simulation examples were used to show the

techniques applicability to large-scale, unstable, and nonlinear systems.
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Figure 3.7: State (top left), input (top right), local cost (bottom left), and total cost
(bottom right) trajectories for the 5-agent nonlinear system controlled by
PIESC with consensus.
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Chapter 4

Discrete-time distributed

extremum-seeking control

This chapter continues the development of distributed ESC by extending it to discrete-

time systems. Section 4.2 defines the problem to be solved. A discrete-time dis-

tributed extremum-seeking controller is designed in Section 4.3 and its convergence

is analyzed in Section 4.4. Several discrete-time simulation examples are provided in

Section 4.5.

4.1 Introduction

Distributed ESC has been shown in Chapter 3 to be effective when implemented in

continuous-time. It is also important to consider its discrete-time implementation so

that it can be applied to commonly used digital control systems. In this chapter we

develop a discrete-time distributed extremum-seeking controller. It has the same main

components—consensus, parameter estimation, and gradient-based optimization—as

the continuous-time controller, but with discrete-time algorithms for each component.

Both extremum-seeking control and average consensus have already been consid-

ered in discrete-time by several researchers. Both extremum-seeking and consensus
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4.1. Introduction I. Vandermeulen

are more difficult in discrete-time than in continuous-time as time step limitations

can lead to poor transient performance and instability. A proportional-integral ver-

sion of discrete-time ESC for a single agent has been considered by Guay [45] using

a recursive least squares (RLS)-based time-varying parameter estimation technique

to estimate the gradient. Several nth-order discrete-time dynamic average consensus

algorithms have been considered by Kia et al. [66] and can provide dynamic average

consensus for signals with bounded nth-differences.

This chapter provides an effective method for distributed extremum-seeking con-

trol of large-scale systems in discrete-time. The system has unknown nonlinear dy-

namics, which may potentially be unstable. Each agent is equipped with a sensor

and measures a local cost. The global objective is to minimize the sum of the local

costs. Agents communicate over a network and use the dynamic average consensus

algorithm from Kia et al. [66] to obtain an estimate of the average cost. Each agent

implements a extremum-seeking controller using its average cost estimate. The PI

ESCs are based on the controller proposed by Guay [45] which removes the explicit

need for time-scale separation and allows the ESC to stabilize unknown nonlinear

discrete-time systems. The estimation algorithm provided in this chapter has differ-

ent update laws for the covariance matrix and parameter estimate than in [45], which

are simpler and result in convergence to a smaller neighbourhood of the true values.

By adding a proportional term to the standard ESC technique, the PI ESC is able to

improve transient performance and thus eliminates the need for time scale separation.

The resulting distributed control system is able to achieve global RTO objectives and

can be used to stabilize a plant with unknown dynamics using only measurements of

local cost functions.
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4.2. Problem description I. Vandermeulen

4.2 Problem description

Consider a general discrete-time non-linear control-affine system

x[k + 1] = x[k] + f (x[k]) +G (x[k])u[k] (4.1)

where k ∈ Z is the time, x ∈ X ⊆ Rn is the state, and u ∈ U ⊆ Rm is the input,

and f(x) and G(x) are smooth vector fields. While these vector fields do not depend

explicitly on a time step, in reality, the system’s dynamics evolve in continuous-time

so f and G are obtained by the exponential map and are therefore O (∆t).

This system is controlled by p agents which each measure a local output yi and

control mi inputs ui. The vector of outputs is y = [y1, . . . , yp]
> ∈ Rp and the vector

of inputs is u = [u>1 , . . . ,u
>
p ]> ∈ Rm. The cost function can therefore be modeled by

y[k] = h (x[k]) (4.2)

J [k] =

p∑

i=1

yi[k] = H (x[k]) (4.3)

where J is the total cost which is simply the sum of the local costs. We also consider

the average cost 1
p
J .

Since the controllers do not have a model for the system, nor measurements of x,

it is useful to also describe the system by an input-output model for each agent. For

some nominal input ûi, the average cost dynamics can be expressed as

1

p
∆J [k + 1] =

1

p
J [k + 1]− 1

p
J [k]

=
1

p
H (x[k + 1])− 1

p
H (x[k])
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=
1

p
H
(
x[k] + f (x[k]) +G (x[k])u[k]

)
− 1

p
H (x[k])

=
1

p
H
(
x[k] + f (x[k]) +G (x[k])u[k]

)

− 1

p
H
(
x[k] + f (x[k]) +G (x[k]) û[k]

)

+
1

p
H
(
x[k] + f (x[k]) +G (x[k]) û[k]

)
− 1

p
H (x[k]) .

By the mean-value theorem [11], there exists x = [x1, . . . , xn]> with xi = fi (x[k]) +

δigi[k] (u[k]− û[k]) for some δi ∈ [0, 1] such that

1

p
∆J [k + 1] =

1

p
∇H (x)G (x[k]) (u[k]− û[k])

+
1

p
H
(
x[k] + f (x[k]) +G (x[k]) û[k]

)
− 1

p
H (x[k])

=
1

p
H
(
x[k] + f (x[k]) +G (x[k]) û[k]

)
− 1

p
H (x[k])

+
1

p

∑

j 6=i
∇H (x)Gj (x[k]) (uj[k]− ûj[k])

+
1

p
∇H (x)Gi (x[k]) (ui[k]− ûi[k])

= θ0,i[k] + θ>1,i[k] (ui[k]− ûi[k])

= θ>i [k]φi[k] (4.4)

where

θ0,i[k] =
1

p

(
H
(
x[k] + f (x[k]) +G (x[k]) û[k]

)

− 1

p
H (x[k]) (4.5)

+
1

p

∑

j 6=i
∇H (x)Gj (x[k]) (uj[k]− ûj[k])
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θ1,i[k] =
1

p
G>i (x[k])∇>H (x) . (4.6)

Note that the parameterization of ∆J [k + 1] = θ>i [k]φi[k] in (4.4) is exact due to

the use of the mean-value theorem and is not simply a linear approximation. The

time-varying parameter θ0,i describes the effect of drift and other agents’ inputs on

the system; it describes all the changes in the total cost which cannot be affected by

agent i. The time-varying parameter θ1,i is a vector describing the how each of agent

i’s inputs affects the total cost. If θi is known, the agent can minimize the total cost

by setting ui− ûi = −Kgθ1,i. If all agents implement this control law with a suitably

large gain, they can dominate the drift term and ensure that J is decreasing.

The objective of the controller is to stabilize the dynamics and minimize the total

cost at steady-state. Let S = {(x,u) ∈ X× U | 0 = f (x) +G (x)u} be the steady-

state manifold. We assume that for every u ∈ U, there exists a unique x ∈ X

such that (x,u) ∈ S. Therefore, we can instead describe the steady-state by a map

π : U → X. The steady-state cost ` : U → R, is defined by ` (u) = H (π (x)). Let

u∗ = argmin (`) and x∗ = π (u∗). The control objective is to find u∗ and stabilize x

to x∗.

For the optimization problem to have a well-defined solution, we need to assume

that the steady-state cost is locally convex around u∗.

Assumption 4.1 (Convexity of total cost). There exists some positive constant

β1 ∈ R>0 such that for all u ∈ U, the equilibrium input-output map is such that

∂`

∂u

∣∣∣∣
u

(u− u∗) ≥ β1 ‖u− u∗‖2 . (4.7)

For the stabilization problem to be well-defined, the system must be stabilizable
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using output-feedback. We assume that the dynamics (4.1) have relative degree one

so there exists a diffeomorphism ψ : X→ Rm × Rnz with ψ(x) = (ξ, z) such that

ξ[k + 1] = ξ[k] + f ξ (ξ[k], z[k]) +Gξ (ξ[k], z[k])u[k] (4.8)

z[k + 1] = z[k] + f z (ξ[k], z[k]) (4.9)

y[k] = hξ (ξ[k]) (4.10)

where z ∈ Rnz are the zero dynamics of the system and Gξ ∈ Rm×m is invertible.

Let ψ (x) = (ξ, z) =
(
ψξ (x) ,ψz (x)

)
. Then f ξ = ψξ ◦ f ◦ψ−1, Gξ = ψξ ◦G ◦ψ−1,

f z = ψz ◦G ◦ψ−1, and hξ (ξ) = h ◦ψ−1 (ξ, z) for any z ∈ Rnz . We assume that the

zero dynamics are stable and therefore the system can be stabilized by a controller

of the form ui[k] = −K∗gθ1,i[k] + ûi. For a stable system K∗g = 0. This stabilizability

assumption can be expressed in terms of a Lyapunov function.

Assumption 4.2 (Stabilizability). For a fixed û ∈ U, let x̃[k] = x[k]−π (û). Then

there exists a positive definite function Vz and positive constants β2, β3 ∈ R>0 such

that

β2 ‖x̃[k]‖2 ≤ Vz (z[k]) +H (x[k]) ≤ β3 ‖x̃[k]‖2 . (4.11)

Furthermore, there exists K∗g , β4 ∈ R≥0 such that

Vz (z[k + 1]) +H
(
x[k] + f(x[k]) +G(x[k])

(
û[k]−K∗gθ1[k]

))

−Vz (z[k])−H (x[k]) ≤ −β4 ‖x̃[k]‖2 .

(4.12)

To keep the problem general, we would like to make as few assumptions as possible
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on f , G, H, and π. The main assumption is that they are Lipschitz.

Assumption 4.3 (Lipschitz properties). The vector fields f andG, the cost function

H, and the steady-state map π, are Lipschitz continuous. Therefore there exist

constants Lf , LG, LH , Lπ ∈ R≥0 such that for all x1,x2 ∈ X and u1,u2 ∈ U, we have

‖f (x1)− f (x2)‖ ≤ Lf ‖x1 − x2‖ (4.13)

‖G (x1)−G (x2)‖ ≤ LG ‖x1 − x2‖ (4.14)

‖H (x1)−H (x2)‖ ≤ LH ‖x1 − x2‖ (4.15)

‖π (u1)− π (u2)‖ ≤ Lπ ‖u1 − u2‖ . (4.16)

Since f ,G ∈ O (∆t), we also have that Lf , LG ∈ O (∆t).

4.3 Discrete-time controller design

We use distributed extremum-seeking control to minimize the steady-state cost. This

technique only requires measurements of the local costs and communication between

agents, but does not require a model. There are three main components to this

controller: dynamic average consensus, parameter estimation, and the PI extremum-

seeking controller (Figure 4.1). The PI extremum-seeking controller consists of pro-

portional and integral components and a dither signal.

Extremum-seeking control is based on a gradient descent algorithm. The con-

troller can minimize the total cost by moving in the direction of the gradient θ1,i.

Unfortunately, θ1,i is not measured and changes with time as x changes. Since θ1,i

relates the total cost to the input by (4.4), it can be estimated from data of 1
p
J and

ui−ûi using recursive least squares. RLS involves a forgetting factor α ∈ (0, 1) which
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Figure 4.1: Block diagram of the main components of the discrete-time distributed
ESC as seen by one agent.

can be used to control how much old measurements affect the regression to control

how fast θ̂1,i changes. Unfortunately, the agents only measure yi and not 1
p
J which

is needed for the parameter estimation. Since the agents can communicate with each

other, a dynamic average consensus is used to provide each agent with an estimate

Ĵi of the total cost which is then used in the regression.

4.3.1 Dynamic average consensus

We use the consensus algorithm from [66] which has the form



Ĵ [k + 1]− Ĵ [k]

ρ[k + 1]− ρ[k]


 =



−κPI − κIL −I

κPκIL 0






Ĵ [k]

ρ[k]


∆t

+



κPI

0


y[k]∆t+



I

0


∆y[k]

(4.17)
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where κP , κI ∈ R>0 are tuning parameters. As with the continuous-time consensus

algorithm (see Subsection 3.3.1), this algorithm can be implemented in a distributed

fashion. For every agent’s estimate to converge to the average, we place the following

requirements on the communication network.

Assumption 4.4 (Graph properties). The network structure can be described by a

strongly connected time-invariant weight-balanced directed graph.

For a network which satisfies Assumption 4.4, when the changes in the average

cost are bounded, the convergence error J̃ = Ĵ − 1
p
J is ultimately bounded. The size

of the bound depends on the time step, tuning parameters, and network structure.

In particular, it is inversely proportional to λ2, the second smallest eigenvalue of

L = 1
2

(
L+L>

)
. Note that since L is symmetric, it can be viewed as the Laplacian

of a undirected graph. For an arbitrary undirected Laplacian, all of the eigenvalues

are non-negative and λ1 = 0. Furthermore, when the graph is connected λ2 > 0. We

have assumed a strongly connected graph, which results in the graph associated with

L being a connected undirected graph. Therefore L has only one zero eigenvalue and

so λ2 > 0 and the consensus algorithm is convergent.

4.3.2 Time-varying parameter estimation

The parameters θi are estimated using a modification of recursive least squares that

includes some additional features that improve the performance. RLS is a method of

estimating time-varying linear parameters which is based on minimizing a weighted

squared error [84]. Since the parameters change with time, recent measurements are

given more weight than past measurements. A tuning gain is used to determine how
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much weight is given to past measurements and how much is given to recent measure-

ments. If more weight is given to recent measurements, the parameter estimates can

change faster but are more susceptible to noise. The effect of noise can be reduced by

increasing the weight of past measurements, but this change results in the parameter

estimates changing slower.

The estimation algorithm used is based on the algorithm presented by Guay [45].

It is a variation of RLS which includes some additional filters and predictors to im-

prove tracking of time varying parameters. Since the average cost is unknown, the

parameter estimation instead uses the estimate Ĵi. The parameter estimation update

law is be driven by the estimation error

ei[k] = Ĵi[k]− ŷi[k] (4.18)

which compares the total cost estimates obtained by communication and parameter

estimation. The total cost predictor ŷi uses the parameter estimates by

ŷi[k + 1] = ŷi[k] + θ̂
>
i [k]φi[k] +Kei[k]

+w>i [k + 1]
(
θ̂i[k + 1]− θ̂i[k]

) (4.19)

where wi ∈ Rni+1 is a filtered version of φi. Its dynamics are

wi[k + 1] = wi[k] + φi[k]−Kwi[k]. (4.20)

Using wi and ei, the parameter update law is

Σi[k + 1] = αΣi[k] +wi[k]w>i [k] (4.21)
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θ̂i[k + 1] = Projγθ

(
θ̂i[k] +

Σ−1
i [k]wi[k] (ei[k]− η̂[k])

α +w>i [k]Σ−1
i [k]wi[k]

)
(4.22)

where Projγθ(·) denotes a Lipschitz projection onto a ball of radius γθ. This projection

ensures that ||θ̂i[k]|| ≤ γθ for all k ∈ Z≥0. Note that the update law (4.21)–(4.22)

is different than the law used by Guay [45] as it does not require a perturbation

of σ1I to be added to the covariance matrix. This term was required in [45] to

ensure invertibility of Σ[k] for all k > 0; however, as is shown in Lemma 4.4, the

covariance matrix update law in (4.21) ensures invertibility of Σ[k] without requiring

a perturbation. The parameter estimate update law (4.22) has also been modified in

a corresponding way. By reducing the need for the perturbation σ1I, this parameter

update law achieves convergence to a smaller neighbourhood than in [45].

The parameter η̂i[k] is an estimate of the auxiliary variable ηi[k] = ei[k]−w>i [k]θ̃i[k].

Its dynamics are

η̂i[k + 1] = η̂i[k]−Kη̂i[k]. (4.23)

This parameter estimation algorithm relies on two parameters K and α which should

both be chosen between 0 and 1 to ensure that wi, η̂i, and Σi are stable.

4.3.3 Proportional-integral extremum-seeking control

Each agent implements an identical proportional-integral extremum-seeking controller

which is based on a gradient descent using the parameter estimate θ̂i. The PI ESCs

have the form

ui[k] = −Kgθ̂1,i[k] + ûi[k] + di[k] (4.24)
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ûi[k + 1] = ûi[k]− 1

τI
θ̂1,i[k] (4.25)

where di is a dither signal, Kg is the proportional gain and τI is the integral time

constant. These parameters can be tuned to affect the stability of the PI ESC and to

improve its transient performance. The dither signals are chosen to be sinusoids with

amplitude D and frequencies ω1, . . . , ωn which are unique primes multiplied by some

common rational factor. This choice of dither is sufficient to provide the persistence

of excitation necessary for parameter estimation.

Assumption 4.5 (Persistence of excitation). The dither signals di (t) have been

chosen to be sinusoids with frequencies ω1, . . . , ωn such that no frequencies are integer

multiples of each other or the sum of two other frequencies. This assumption implies

that the dithers are persistently exciting so that for some T ∈ Z>0 and γ−u , γ
+
u ∈ R>0,

we have that

γ−u I <
1

T

k+T−1∑

j=k

φi[j]φ
>
i [j] < γ+

u I. (4.26)

Since ui is one component of φi, this assumption also implies that

γ−u I <
1

T

k+T−1∑

j=k

ui[j]u
>
i [j] < γ+

u I. (4.27)

Since wi is a filtered version of φi and the two signals are initialized at the same

value, this assumption implies that there exist γ−w , γ
+
w ∈ R>0 such that

γ−wI <
1

T

k+T−1∑

j=k

wi[j]w
>
i [j] < γ+

wI. (4.28)
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Furthermore, this assumption implies that ‖u[k]‖ <
√
pγ+

u T , ‖ui[k]‖ <
√
γ+
u T ,

‖w[k]‖ <
√
pγ+

wT , and ‖wi[k]‖ <
√
γ+
wT .

In practice, Assumption 4.5 requires that the input signals be bounded and that

the dither signals be persistently exciting, which can be achieved using sinusoids of

different frequencies. Since bounded inputs are already guaranteed by the projection

algorithm in (4.22), the only real requirement of Assumption 4.5 is persistently ex-

citing dithers. While the inequalities in Assumption 4.5 are more detailed than in

the equivalent assumption for continuous time systems, Assumption 3.4, the practical

requirements are nearly indentical in continuous- and discrete-time. The only addi-

tional consideration in discrete-time is that the time step must be considered when

choosing dither frequencies as no dither can have a frequency which is a multiple of

the sampling frequency.

4.4 Convergence analysis

In this section, we consider the convergence of the distributed extremum-seeking

controller described in Section 4.3. When discussing convergence, we are interested

in practical stability, rather than asymptotic stability. There are always small per-

turbations to the system due to the dither signal, and therefore the system is not

asymptotically stable. Instead, we are interested in showing that various signals con-

verge to a small set containing the origin. This form of stability is known as practical

stability [89].

The control objectives are stabilization and optimization. For stability, we are

interested in showing that x converges to a neighbourhood of π(û). For extremum-

seeking, we are interested in showing that û converges to a neighbourhood u∗. These
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objectives are equivalent to showing that x̃ = π(û) − x and ũ = u∗ − û converge

to a neighbourhood of zero. While the control objectives do not require parameter

convergence or convergence of consensus, we will also consider their convergence.

Before proving the main theorem, we prove several lemmas pertaining to the

boundedness of various signals. The results of these lemmas are useful for proving

the main theorem.

Since the system is nonlinear, the controller cannot exploit any mathematical

structure, and instead relies on a simple, local model generated from recent data. For

this approach to be effective, the system cannot change too fast as otherwise previous

data would not be relevant. To bound changes in the state, we use the Lipschitz

bounds from Assumption 4.3. Changes in the state also depend on the control action.

The controller stabilizes and optimizes the system by reducing x̃ = π(û) − x and

ũ = u∗− û. The magnitude of the control depends on the tuning parameters Kg, τI ,

and D. Therefore we would like to bound ‖∆x‖ in terms of ‖x̃‖, ‖ũ‖, Kg,
1
τI

, and

D.

Lemma 4.1. For the system (4.1)–(4.3) with controller (4.17)–(4.25), there exists

constants c1, . . . , c4 ∈ R>0 such that

‖∆x[k + 1]‖ ≤ c1 ‖x̃[k]‖+ c2 ‖ũ[k]‖+ c3Kg + c4D.

Proof. See Appendix B.

The controller does not measure ∆x, but instead relies on its parameter estimates.

Therefore, it is also useful to bound ‖∆θi‖. Using the definition of θi (4.5)–(4.6) and

the result of Lemma 4.1, we can bound ‖∆θi‖ in terms of ‖x̃‖, ‖ũ‖, Kg,
1
τI

and D.
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Lemma 4.2. For the system (4.1)–(4.3) with controller (4.17)–(4.25), there exists

constants c6, . . . , c10 ∈ R>0 such that

‖∆θi[k + 1]‖ ≤ c6 ‖x̃[k]‖+ c7 ‖ũ[k]‖+ c8Kg + c9
1

τI
+ c10D

for every i ∈ {1, . . . , p}.

Proof. See Appendix C.

It is also useful to bound the consensus error J̃i = Ĵi − 1
p
J . Since the controllers

are trying to minimize J but can only use Ĵi, we would like to show that the errors

between the average cost and the estimates of it are small. Therefore we would also

like to bound ‖J̃i‖ in terms of ‖x̃‖, ‖ũ‖, Kg,
1
τI

and D. This result is based on the

results from [66].

Lemma 4.3. For the system (4.1)–(4.3) with controller (4.17)–(4.25), there exists

constants c11, . . . , c14 ∈ R>0 and N ∈ Z>0

∥∥∥∆J̃i[k + 1]
∥∥∥ ≤ c11 ‖x̃[k]‖+ c12 ‖ũ[k]‖+ c13Kg + c14D

for every i ∈ {1, . . . , p} whenever k > N .

Proof. See Appendix D.

The parameter update law (4.22) involves the inversion of the covariance matrix

Σi. We must ensure that Σi remains invertible for all time. It is always initialized

as a positive definite—and thus invertible—matrix σ0I. It is updated according to

(4.21) by scaling it by α ∈ (0, 1) and then adding a positive semidefinite term wiw
>
i .
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Since the sum of a positive definite and positive semidefinite matrix is always posi-

tive definite, the covariance matrix is always positive definite; however the smallest

eigenvalue could get arbitrarily small leading to poor conditioning of numerical re-

sults. Therefore it is useful to provide a lower bound for the smallest eigenvalue of

Σi. While we are bounding Σi, it is also useful to find an upper bound for its largest

eigenvalue.

Lemma 4.4. The covariance matrix from (4.21) is positive definite for all time.

Furthermore, there exists γ−Σ , γ
+
Σ ∈ R>0 such that

γ−ΣI < Σi[k + 1] < γ+
ΣI.

Proof. See Appendix E.

At this point, we have provided enough bounds and we can state the main the-

orem. This theorem concerns the practical stability of the system and simultane-

ously considers parameter estimation, stabilization to the steady-state manifold, and

extremum-seeking to find the optimum steady-state cost. The theorem states that

these objectives are achieved in a practical sense, with all variables converging to a

neighbourhood of their true values. Furthermore, this neighbourhood can be made

arbitrarily small by choice of the tuning parameters Kg, τI , D and ∆t.

Theorem 4.1. Consider a nonlinear discrete-time system, (4.1)–(4.3), under the

control of the distributed extremum-seeking controller, (4.17)–(4.25). Suppose As-

sumptions 4.1–4.5 hold. Then for ∆t sufficiently small, there exists consensus gains

κP , κI ∈ R>0, estimation parameters K,α ∈ (0, 1), PI tuning parameters Kg, τI ∈

R>0, and dither amplitude D, such that J̃ , θ̃, η̃, x̃, and ũ converge to an O(KG+ 1
τI

+
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D)-neighbourhood of the origin.

Proof. See Appendix F.

4.5 Simulation examples

We consider two simulation examples that demonstrate the effectiveness of this tech-

nique: a large-scale linear system and a smaller scale nonlinear system.

The first system is a large system with 100 states, 100 inputs, and 100 local costs,

which is controlled by a network of 100 agents. This example is designed to show

the power of the consensus algorithm. The agents communicate over a very sparse

network; the information that each agent requires is only measured by the agent

which is farthest away from it. Therefore this information must be shared through

the entire network before it can be used for control. To reduce the simulation time,

this example uses linear dynamics and quadratic costs although the controllers are

generic and do not rely on the linearity of the dynamics. Distributed ESC is very

effective and finds the optimum of this system in under 100 seconds (10,000 time

steps).

The second system shows that this technique is also applicable to nonlinear sys-

tems. The second example involves only five agents controlling a system whose dy-

namics involve five states. This system has nonlinear dynamics and costs which

are not quadratic. Again, the technique is effective, finding the optimum within 40

seconds. This simulation example demonstrates the validity of this technique for

nonlinear systems and shows that the controller does not require any model of the

system.
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4.5.1 100 agent LQ system

Consider the discretization of a continuous-time stable linear system with dynamics

x[k + 1] = x[k] + (Ax[k] +Bu[k]) ∆t

where x,u ∈ R100. The matrices are defined by

A =




−1 1/2 0 . . . 0

0 −1 1/2
. . .

...

0 0
. . . . . . 0

...
...

. . . −1 1/2

0 0 . . . 0 −1




and B = I100×100. This system is control-affine and can be represented in the form

of (4.1). Since this system is linear, it is globally Lipschitz and therefore meets

Assumption 4.3. A has 100 eigenvalues at −1, so the discretized system has 100 poles

at −∆t. Therefore when ∆t < 1, the system is stable and meets Assumption 4.2.

The local cost functions for this system are

y1 = (x51 − 1)2 y51 = (x1 − 51)2

y2 = (x52 − 2)2 y52 = (x2 − 52)2

...
...

y50 = (x100 − 50)2 y100 = (x50 − 100)2 .

The local costs are all quadratic and convex. Since the global cost is the sum of the
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local costs, it is convex and meets Assumption 4.1. Furthermore, since each state only

appears in one quadratic term in the global cost, the optimum state can easily be

determined by inspection to occur at x∗ = (51, 52, . . . , 100, 1, 2, . . . , 50) which results

in a total cost of J∗ = 0. Since A is invertible, there is exactly one optimal input at

u∗ = A−1x∗.

This system is controlled by 100 agents each implementing the discrete-time dis-

tributed extremum-seeking control technique we have described. Each agent commu-

nicates with exactly two other agents. The network structure can be described by a

cycle graph with 100 nodes. Since cycle graphs are connected, the controller satisfies

Assumption 4.4. The Laplacian associated with this graph is

L =




2 −1 0 0 . . . 0 −1

−1 2 −1 0 . . . 0 0

0 −1 2 −1
. . .

...
...

0 0 −1 2
. . . 0 0

...
...

. . . . . . . . . −1 0

0 0 . . . 0 −1 2 −1

−1 0 . . . 0 0 −1 2




.

This system can be visualized as 100 agents arranged in a circle (Figure 4.2). Each

agent communicates only with its two neighbours; however it measures a cost based

on the state associated with the agent directly across the circle from it. Therefore

each agent relies heavily on the communication network to find its optimal input.

For example, consider agent 1. It manipulates u1 which only directly affects x1. The

only agent whose cost depends on x1 is agent 51. Agents 1 and 51 are as far away
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1

2

3

100

99

Figure 4.2: Communication graph for the 100 agents controlling the stable linear
discrete-time system. This graph has the structure of a cycle.

Table 4.1: Tuning parameters used by the agents implementing discrete-time dis-
tributed ESC for the 100-agent linear system.

∆t κP κI K α τI Kg D

0.01 10 5 0.8 0.8 1 10 0.1

from each other as possible with the shortest path between them having length 50.

Therefore there is a delay of 50 time steps between when agent 1 makes an action and

when it receives any information about how that action affected the system. This

delay makes this system difficult to optimize.

Each agent uses identical tuning parameters (Table 4.1) with dither frequencies

which are 100 consecutive primes all multiplied by the same rational scaling factor.

This choice of dither frequencies is used to satisfy Assumption 4.5. The controllers

are easy to initialize with ŷi[0] = Ĵi[0] = yi[0], Σi[0] equal to the identity, and all

other controller variables initialized at zero (Table 4.2).

The distributed ESC is able to quickly find the optimum of the total cost (Fig-

ure 4.3). Within 20 seconds, most of the local costs are close to zero. After 100

seconds, all local costs are very close to zero, and the total cost is also very close
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Table 4.2: Initial conditions for the 100-agent stable linear system controlled by
discrete-time distributed ESC.

ŷi[0] Ĵi[0] ρi[0] wi[0] η̂i[0] θ̂i[0] Σi[0]

yi[0] yi[0] 0 [0, 0]> 0 [0, 0]> I2×2

to zero. The optimal value of the state is x∗ = (51, 52, . . . , 100, 1, 2, . . . , 50). At x∗,

there should be one state at each integer between 1 and 100. The state does not quite

reach this point after 100 seconds; however, when the simulation runs slightly longer,

we can see that it reaches this optimum within 300 seconds. Similarly, the inputs

converge to the optimal value with 300 seconds.

4.5.2 5 agent nonlinear system

Consider a discretization of a continuous-time nonlinear system with dynamics

x[k + 1] = x[k] + F (x[k],u[k])∆t

where the nonlinear vector field is given by

F1(x,u) = −x1 + x3x5 + u1

F2(x,u) = −2x2 + sin(x1) +
(

1− x4

10

)
u2

F3(x,u) = −x3
3 +

1

x2
2 + 1

+ u3

F4(x,u) = −2x4 + log(x2
3 + 1)− u4

F5(x,u) = −5 arctan
(x5

5

)
+ x4 +

1 + cos
(
x3

10

)

2
u5.
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Figure 4.3: State, input, local cost, and total cost trajectories for the LQ discrete-time
system under control by 100 agents implementing distributed ESC.

Note that this vector field is control-affine as required. It can also be shown that

the vector fields are Lipschitz and the system is stabilizable, so this example meets

Assumption 4.3 and Assumption 4.2.
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Table 4.3: Tuning parameters used by the agents implementing discrete-time dis-
tributed ESC for the 5-agent nonlinear system.

∆t κP κI K α τI kg D

0.05 2 1 0.8 0.8 8 1 0.1

Table 4.4: Initial conditions for the 5-agent nonlinear system controlled by discrete-
time distributed ESC.

ŷi[0] Ĵi[0] ρi[0] wi[0] η̂i[0] θ̂i[0] Σi[0]

yi[0] yi[0] 0 [0, 0]> 0 [0, 0]> I2×2

This system’s local cost functions are

y1[k] = (x1[k]− 4)2 − x3[k]

y2[k] = (x2[k]− 3)4

y3[k] = (x3[k] + 3)2

y4[k] = cosh (x4[k] + 2)

y5[k] = (x5[k]− 8)2 + x3[k].

These local costs are not convex because y1 and y5 contain linear terms, but the

total cost function is indeed convex as the linear terms cancel eachother and there-

fore Assumption 4.1 is satisfied. The optimum of the cost function occurs at x∗ =

(4, 3,−3,−2, 8) which results in a total cost of J∗ = 0.

This system is controlled by 5 agents each implementing the discrete-time dis-

tributed ESC with identical tuning parameters (Table 4.3). The dither frequencies

are the consecutive primes 11, 13, 17, 19, and 23 which results in the input signals

meeting Assumption 4.5. Again, the controller is initialized with most variables equal

to zero (Table 4.4).

The agents communicate over a network which can be described by a path graph
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1 2 3 4 5

Figure 4.4: Communication graph for the 5 agents controlling the nonlinear discrete-
time system. This graph has the structure of a path which is a type of
tree.

(Figure 4.4), which results in the Laplacian matrix

L =




1 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 1




.

Since path graphs are connected, this network satisfies Assumption 4.4.

The simulation results show that the distributed ESC is able to find the optimum

of this nonlinear system within 40 seconds (Figure 4.5). Note that some of the states

experience some overshoot and undershoot. These kinds of trajectories are common

with nonlinear systems. The controller is based on a locally linear parameterization

of the dynamics. Since the system is nonlinear, this parameterization changes when

the state changes and is therefore time-varying. When the parameterization changes

rapidly, the parameter estimation algorithm can take a while to adjust, resulting in

some poor transient performance. By tuning α, it is possible to change this per-

formance. When α is close to zero, historic data have less weight, which results in

parameter estimates updating faster, but they are more susceptible to noise. When

α is close to 1, the parameter estimates are more robust to signal noise, but they do

not update as fast.
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Figure 4.5: State, input, local cost, and total cost trajectories for the nonlinear dis-
crete time system under control by 5 agents implementing distributed
ESC.

4.6 Conclusion

In this chapter, a discrete-time implementation of distributed ESC was developed.

The approach—similar to the continuous-time approach—uses a consensus algorithm

to coordinate several agents implementing a local ESC. A discrete-time dynamic

average consensus algorithm can provide a convergent total cost estimate whenever
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the first differences are bounded which, by design of the ESC, they always are. Each

agent uses an RLS-type parameter estimation routine to estimate the time-varying

total cost gradient and then minimizes the total cost by a PI gradient descent. The

stability of the overall system is dependent on the choice of time step. For a small

enough time step, discrete-time distributed ESC is able to stabilize slowly unstable

nonlinear discrete-time systems with unknown dynamics, and is able to optimize an

unknown, but measured cost function.
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Chapter 5

Formation control of

high-altitude balloons

In this chapter, we examine one potential application of distributed ESC: the for-

mation control of high-altitude balloons for wireless internet. Section 5.1 introduces

the technology and explains why formation control is important. Section 5.2 outlines

the requirements for the controller of these balloons. Several dynamic models are

developed in Section 5.3 and cost functions are designed in Section 5.4. A discussion

of the application of distributed ESC to this problem can be found in Section 5.5.

Continuous- and discrete-time simulations are provided in Section 5.6.

5.1 Introduction

Widespread internet access can help many countries improve in diverse areas such

as education, health care, agriculture, and manufacturing. As of May 2016, only

46.1% of people have access to the internet [58]. In Europe and North America more

than three quarters of people have internet access; however, the two most populous

continents of Asia and Africa have the lowest internet penetration rates with less than

half of the people being connected (Figure 5.1). These two continents consist of many
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Figure 5.1: Fraction of people with internet access in each geographical region on
Earth. Data from [58].

emerging countries and represent the largest two regions for increased internet use.

The relative lack of internet use in emerging countries is typically due to prohibitive

costs associated with existing internet technologies. To connect the entire world,

new technology is required which reduces the financial barriers to internet access in

geographically isolated and poor regions.

The past fifty years have seen a doubling of the Earth’s population and a re-

cent explosion in the number of internet users (Figure 5.2). Prior to the 1990s, very

few people had internet access; however in the past twenty years, many widely used

internet technologies have been developed, enabling almost half of all people to con-

nect to the internet. To put this growth in perspective, in 2016 there are 3.4 billion

internet users, equal to the entire population of Earth in 1967. Each year the num-

ber of people not connected to the internet decreases despite consistent increases in

Earth’s population. While it may seem that this upward trend is inevitable and will

eventually result in an equal number of people as internet users, this trend cannot
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Figure 5.2: Global population and number of internet users from 1951–2016. Popu-
lation data from [136] and internet user data from [58].

continue without new technology more suited to providing internet access to people

in emerging countries.

Current broadband internet technologies include digital subscriber line (DSL), ca-

ble modem, fiber, broadband over powerline (BPL), wireless, and satellite [37]. DSL,

cable modem, fiber, and BPL are all ground-based technologies which require the

installation of physical wires. Wires can be expensive to install, especially for remote

areas with low population densities. Current wireless technologies, such as WiFi and

LTE, rely on wireless access points around Earth’s surface which are costly to install

and can only operate over short distances as the signals are attenuated by obstacles

on Earth’s surface. Again, costs are prohibitive for widespread wireless internet use

in emerging countries with current technology. Satellite internet is mostly used in

remote locations where ground-based internet technologies are not practical. Unfor-

tunately, satellite internet is the most expensive internet technology that is widely
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used today, and is therefore only practical for remote areas of developed countries.

Furthermore, as low Earth orbit satellites orbit the Earth at 1200 km altitude, satel-

lite internet has noticeable latency of 40–400 ms, which makes it inconvenient to use

when other, faster technologies are available [54]. Since wired, wireless, and satellite

internet are not suitable in emerging countries, none of these technologies are well

suited for expanding the internet to be truly global.

Several large tech companies have plans to create a global internet using new air-

based technologies. SpaceX and Virgin-backed OneWeb both hope to use satellites

orbiting at much lower altitudes than current satellite internet uses [135]. Facebook’s

connectivity labs plans to use drones that actively fly around the troposphere [59].

Google’s Project Loon wants to use high-altitude balloons which float passively in the

stratosphere [44]. The common trait shared by all of these prospective technologies

is that they consist of a network mobile agents moving through Earth’s atmosphere

and connecting many internet users wirelessly. Since they are in the air, there are

fewer obstacles between the wireless source and receiver, resulting in wireless commu-

nication over much larger distances. Furthermore since each of these networks would

cover the entire Earth, they could drastically reduce the cost of providing internet

to emerging countries and help create a world where everyone has internet access

everywhere.

High-altitude balloons are a very promising technology for global internet. They

float in the stratosphere at an altitude of 15–50 km, which is high enough that they

do not interfere with birds or airplanes, but is still low enough to provide a high-

speed connection without noticeable latency. In the stratosphere, wind currents are

much smoother and more predictable than in the troposphere (Figure 5.3). Drones
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flying in the troposphere need to actively fly against the chaotic wind currents found

near Earth’s surface, requiring significant amounts of energy. Balloons float passively

on smooth stratospheric wind currents, requiring very little energy, only needing

motors to power the pumps that maintain the balloon’s pressure and control its

altitude. Additionally, since balloons float above the clouds, they receive consistent

solar radiation, so their pumps and onboard electronics can be powered completely

by solar power, making this technology very environmentally friendly.

One of the main challenges for a large fleet of high-altitude balloons is formation

control. The balloons must be launched from designated launch sites and then nav-

igate into a favourable, spread out formation so that all people on Earth are close

to at least one balloon. Balloons float passively on wind currents and are therefore

constantly moving so they cannot simply be placed in an optimal formation and left

there. The formation of a fleet of balloons is therefore dynamic and must be con-

trolled to maintain an acceptable formation. The balloons are able to control their

position by pumping helium in and out of the balloon to change its buoyancy and

thus altitude. Since wind currents vary with altitude, balloons can steer into a more

favourable formation by changing their altitude.

Successful implementation of a network of balloons requires control algorithms for

launch and for maintaining a formation. Google intends on “solving this with some

complex algorithms and lots of computing power” [98]. Sniderman et al. showed that

this problem can be solved without large amounts of computing power [114]. They

derived a block-circulant control law which relied on a linear model of the wind. They

do not provide a method for dealing with the nonlinearities of real wind currents and

only consider the simpler case of balloons on a circle. While effective on a circle, it is
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Tropospheric wind currents

Stratospheric wind currents

Figure 5.3: Earth’s wind currents at its surface (top) and in the stratosphere at 5 kPa
(bottom). Data obtained on May 11, 2016 at 10:00 UTC from [95].
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unclear that this algorithm could be generalized to a sphere.

In this chapter, we consider the application of distributed ESC to the formation

control of high-altitude balloons. In this approach, the distributed agents are the

individual balloons. Each balloon must be able to measure some cost which is a func-

tion of its own position position, the position of nearby balloons, and the density of

nearby internet users. These local cost functions must be designed so that their sum,

the total cost function, is minimized when the balloons are in an optimal formation.

The balloons can use ESC to minimize the total cost and thereby improve their for-

mation. The design of the local cost functions is one of the most important aspects

of successfully implementing distributed ESC. Since ESC is model-free and only re-

quires a measurement of a cost function, it does not require knowledge of the wind

currents, thereby drastically reducing the computational burden associated with the

algorithms Google intends to use. Despite its computational simplicity, this approach

can effectively control the formation of balloons which are subject to realistic wind

currents. Because of its computational simplicity, it is a scalable approach can be

used for systems of over 1000 balloons.

5.2 Problem definition

Consider a system of p balloons floating above the Earth. The objective is to steer

these balloons into a formation which can provide adequate internet coverage for all

internet users on Earth. Furthermore, once the balloons reach this formation, they

must always remain in a similar formation. Such a formation must meet the following

requirements:

1. Each user must be able to connect to at least one balloon at all times,
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2. Users must be less than a minimum distance away from a balloon to connect

to it.

These requirements are met when there are sufficiently many balloons and the

balloons are adequately spread out. Let `max be the maximum distance that a balloon

and user can communicate over. Then a balloon located at qi ∈ S2 is capable of

communicating with any balloon located in the closed geodesic ball,

B`max(qi) =
{
q ∈ S2 | `G (q, qi) ≤ `max

}
(5.1)

where `G(·, ·) is the distance function on S2 associated with the standard round metric

G : TS2 × TS2 → R≥0. Intuitively, B`max(qi) is balloon i’s region of coverage. Since

we want every point on Earth to be in at least one balloon’s coverage region, the first

two requirements are met when ∪pi=1B`max(qi) = S2. Alternatively since we don’t need

to provide coverage to uninhabited places on Earth, we can use the slightly weaker

requirement that the union of the coverage regions contains all regions of Earth where

people live.

Google expects to use “thousands of balloons” [115]. With such a large number of

balloons, the control algorithm must scale well with p. Ideally, the algorithm should

be fully parallelizable, so that each balloon computes its own actions, resulting in an

algorithm whose computation time does not depend on p. To coordinate their motion,

the balloons must communicate; however the amount of communication should also

be kept as small as possible so that the overall algorithm is scalable. The computation

and communication requirements can be summarized as:

3. Each balloon must coordinate its own movements; no centralized coordinator
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may be used,

4. The control algorithm must rely only a balloon’s own measurement of its posi-

tion, the number of users it is connected to, their bandwidth, and information

received from nearby balloons; no complex wind models may be used,

5. Balloons may only communicate with balloons which are less than a maximum

distance away.

A distributed control system meets these requirements. In a distributed setting,

the system is controlled by p agents which communicate over a network but each

plan their own local movements. The last requirement essentially determines the

structure of the network which the balloons can communicate over with balloons i

and j communicating if `G(qi, qj) ≤ `max. Typically, distributed algorithms require a

connected network which occurs if every pair of balloons is connected by a sequence

of balloons which are all less `max away from their neighbours. Since balloons tend

to be closer as there are more balloons, this requirement is more likely to be met as

p increases.

To minimize the amount of energy used by each balloon and maximize their lifes-

pan, balloons are only equipped with pumps to change their buoyancy and are not

equipped with any other motors and cannot fly actively. Therefore, we have the

following requirement:

6. Each balloon must float passively with the wind current; balloons may not move

in any direction in which there is no wind current.

This requirement limits the performance of the network. Since balloons may not

remain statically above one location, the formation is dynamic. Users in one location
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can only connect to any one balloon for a short period of time before that balloon

floats away and is replaced by a new balloon. It is not possible to find an optimal

formation and remain there due to this drift. Instead, the objective should be for

each balloon to constantly try to improve the formation of the network. Therefore a

final, soft requirement is:

7. Each balloon should try to position itself in such a way that it is connected to

1/pth of the users so that internet traffic is shared equally between all balloons.

Given these seven requirements, the objective is to design a discrete-time controller

which can be implemented on a fleet of balloons and used to control the formation of

balloons while satisfying these seven requirements.

5.3 Balloon dynamics model

Each balloon moves in a region of the Earth’s atmosphere which has the geometry of

a spherical shell. High-altitude balloons are designed to withstand the low temper-

atures and high radiation levels of Earth’s stratosphere but are not suited to other

conditions [137]. Therefore each balloon’s altitude must be constrained to float in

the stratosphere between 10–50 km above sea level. The Earth’s radius of 6371 km is

much larger than the thickness of stratosphere, so we can neglect the altitude when

describing the position of the balloons and when modeling their dynamics.

Under this simplification, the configuration space of each balloon is the two-

dimensional sphere S2. Since there are p balloons, the configuration space of the
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entire system is

Qsys = S2 × · · · × S2

︸ ︷︷ ︸
p times

. (5.2)

A point q ∈ Qsys represents the position of all of the balloons in the network. To

obtain the position of a single balloon, we define a map Πi : Qsys → S2 such that

qi = Πi(q) is the position of the ith balloon.

5.3.1 Coordinate charts

Each copy of S2 requires two coordinate charts to create an atlas. We primarily use

the standard longitude-latitude chart which is defined by

λ = arctan2(y, x) (5.3)

ϕ = arctan

(
z√

x2 + y2

)
(5.4)

where λ ∈ (−180, 180) is the longitude, ϕ ∈ (−90, 90) is the latitude, and arctan2 :

R2 \ {(0, 0)} → (−180, 180] is the four-quadrant inverse tangent function. As is the

convention in geography, we write the longitude and latitude in degrees instead of

radians. This chart is a mapping from U = S2 \ {(x, y, z) ∈ S2 | x ≤ 0, y < 0} to

(−180, 180)× (−90, 90).

We need a second chart to create an atlas. Other charts can be obtained by

rotating the sphere and applying the regular longitude-latitude chart. Since rotation

is a linear operator, these charts are all compatible with the standard chart. To

get an atlas, we only need one of these charts provided that its domain contains
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S2 \ U = {(x, y, z) ∈ S2 | x ≤ 0, y < 0}. One such chart is

λ̃ = arctan2(−y, z) (5.5)

ϕ̃ = arctan

(
−x√
y2 + z2

)
. (5.6)

This chart is a mapping from Ũ = S2 \ {(x, y, z) ∈ S2 | x ≤ 0, y < 0} to (−180, 180)×

(−90, 90). Since the charts are compatible and U ∪ Ũ = S2, these two charts create

an atlas for S2. While both charts are needed to cover S2, we perform simulations

entirely in the standard longitude-latitude chart.

5.3.2 General nonlinear time-varying model

The balloons’ longitude-latitude dynamics depend on nearby wind currents. Since the

balloons do not fly actively, we can assume that every balloon’s motion only depends

on the wind currents at that location. Therefore the balloon velocity is always equal to

the wind velocity. Since wind currents vary significantly with altitude, altitude must

be considered when describing the wind currents’ vector fields. A balloon’s altitude

depends on the balance between its buoyancy, gravity, and drag. By changing the rate

that helium is pumped into or out of the balloon, the balloon can change its buoyant

force and thus its altitude. The resulting altitude dynamics are second-order with the

pump rate as an input [114]. These altitude dynamics are fast relative to the wind

speeds, and it is assumed that each balloon has an adequate altitude controller such

that the altitude dynamics can be neglected when considering the longitude-latitude

dynamics. Therefore we can treat altitude as an adjustable parameter which is the

control input for the longitude-latitude dynamics.
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Let U = [umin, umax]p be the set of allowable altitudes and u = (u1, . . . , up) where

ui ∈ [umin, umax] is the altitude of the ith balloon. Then we can define a smooth map

F : U → X(R,Qsys) which maps each input u to a smooth time-varying vector field

F{u} : R×Qsys → TQsys. In this general case, the dynamics of the entire system are

q̇ = F{u}(t, q). (5.7)

The vector field F{u} is a vector field on the entire system. This vector field consists

of p component vector fields on S2 which describe the dynamics of each balloon. These

component vector fields are smooth maps f : [umin, umax] → X(R,S2) which map ui

to a smooth time-varying vector field f{ui} : R× S2 → TS2. For a fixed altitude ui,

f{ui} is the wind currents at that altitude. Since component vector fields represent

the wind currents experienced by each balloon, and since each balloon is subjected

to the same wind currents, the component vector fields are all equal. Therefore

F{u} = (f{u1}, . . . , f{up}) where f : [umin, umax] → X(R,S2) represents the wind

currents at an altitude ui. Using this notation, the dynamics of a single balloon are

q̇i = f{ui}(t, qi). (5.8)

This model is the most general model and it can describe any smooth wind current.

We assume that Earth’s wind currents are smooth so the maps f : [umin, umax]→

X(R,S2) and f{ui} : R × S2 → TS2 are smooth functions of their inputs. Since the

vector fields are assumed to be smooth functions of ui, t and qi, they must also be

locally Lipschitz in all of its arguments. Furthermore, since [umin, umax] and S2 are

compact, we can conclude that f is globally Lipschitz in ui and qi.
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5.3.3 Data-based time-invariant model

To simulate the system, we need to be able to evaluate f{ui}(t, qi). Closed form

expressions for f are not available as wind patterns are complex and unpredictable.

Models are generated by numerical integration of fluid flow partial differential equa-

tions or using stochastic predictions based on historical weather data [134]. The

resulting models are available as gridded data which can be interpolated to evaluate

f{ui}(t, qi) at non-grid points.

The United States’ National Oceanic and Atmospheric Adminstration (NOAA)

provides free high-resolution weather data online through the NOAA Operational

Model Archive and Distribution System (NOMADS) [95]. These data are available

on a longitude-latitude-isobaric pressure grid. Our original model was derived using

altitude as the input; however, as there exists a diffeomorphism between pressure and

altitude, we can simply treat pressure as the input to the model without needing to

make any modifications. For simulations, we use data on a 0.25◦ grid for longitude

and latitude at isobaric pressures of 1, 2, 3, 5, 7, and 10 kPa. At non-grid points, we

approximate the wind currents by three-dimensional linear interpolation.

5.3.4 Control-affine model

Simulations with realistic wind-data are slow as they require large data sets and

interpolation. For basic simulations, we use a simpler time-invariant control-affine

model. Let F0 : Qsys → TQsys and F1 : Qsys → TQsys be two smooth vector fields.

The control-affine system is

q̇ = F0(q) + F1(q)u. (5.9)
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As before, there exist component vector fields f0 : S2 → TS2 and f1 : S2 → TS2

describing the currents for each balloon. Then for a single balloon,

q̇i = f0(qi) + f1(qi)ui. (5.10)

This model describes any smooth wind current which varies linearly with altitude.

For simulations, we use a control-affine model which has a simple form in the

standard longitude-latitude coordinates. In this model, the wind blows directly east

and only depends on latitude. In coordinates, this model is

λ̇i = f0(ϕi) + f1(ϕi)ui (5.11)

ϕ̇i = 0. (5.12)

This model is too simple to describe the wind currents in the troposphere but can

be used for the stratosphere where wind is less affected by the geography of Earth’s

surface. For example, at 60◦ south (Figure 5.4) the wind is blowing predominantly

east with only minor north-south components. Therefore we model the wind as having

no north-south components. Additionally, while there is some longitudinal variation

it is smaller than variation due to pressure or latitude and is therefore neglected in

the model.

5.4 Network coverage cost model

The main objective of the controller is to spread out all of the balloons to provide

good coverage over the entire Earth. Intuitively, a good formation is one where all

areas on Earth are close to at least one balloon and a bad formation is one where there
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Figure 5.4: The u- (east-west) and v- (north-south) components of wind velocities at
60◦ south on September 27, 2015 at 2:00 AM UTC using data obtained
from NOMADS [95]. Each line corresponds to a different isobar. The
data are at 1 (lightest), 2, 3, 5, 7, and 10 Pa (darkest).

Good configuration Bad configuration

Figure 5.5: Examples of good and bad balloon formations. In the good formation
(left), the balloons are spread out in such a way that all inhabited places
on Earth are close to at least one balloon. In the bad formation (right),
many places are not close to a balloon.

are places on Earth that are far from all of the balloons (Figure 5.5). While it is easy

to judge whether not a formation is adequate by eye, we must formalize this notion

using a cost function. To formalize this objective, we consider the minimization of a

cost function that measures how spread out the balloons are.

In the framework of distributed ESC, we require one local cost per balloon and
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then try to minimize the total cost which is the sum of the local costs. Each local

cost must be a function only of values that a balloon can actually measure. Some

variables that can be measured and could be used in a balloon’s cost function are:

• It’s own position,

• The position of other balloons which are less than a distance of `max away,

• The number of users that it is connected to, and

• The bandwidth of data flowing through it.

Using some or all of these data, the balloon can compute its local cost. These costs

must be designed to measure how well-positioned each individual balloon is. For ESC

to be effective, we require that the total cost be convex about its optimum. To ensure

that the total cost is convex, we simply define all local costs to be convex. We provide

several convex functions which can be used in cost functions. Many of these functions

require the computation of a Voronoi partition—a useful concept from geometry.

5.4.1 Voronoi partitions

A Voronoi partition is a partition of a set into p disjoint regions Γ1, . . . ,Γp based on

a set of p points q1, . . . , qp [129]. The Voronoi cell associated with qi is defined by

Γi = {q ∈ Q | `G(q, qi) < `G(q, qj) ∀j 6= i} (5.13)

where `G(·, ·) is the distance function obtained from the metric G on the manifold

Q. For our system, Q = S2, qi is the position of the ith balloon, and Γi ⊂ S2 is the

regions on Earth where users would connect to balloon i. Based on this definition,
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Figure 5.6: Example of a Voronoi partition on the sphere, shown here using the plate
carrée projection. Note that the projection distorts the spherical poly-
gons.

∪ni=1Γi = S2, so each place is assigned to at least one balloon, and Γi ∩ Γj = {}

whenever i 6= j, so each place is assigned to exactly one balloon.

In Euclidean space, the definition of a Voronoi partition results in convex polygonal

cells with each each point qi in the interior of its Voronoi cell Γi. On a more general

manifold with nonzero curvature, the boundary of each Voronoi cell consists of finitely

many geodesic paths. For a sphere such as Earth, the geodesics are great circles and

the Voronoi cells are spherical polygons (Figure 5.6).

An analytical represenation of a Voronoi partition on a sphere can be efficiently

computed given a set of points [107]. First the Delaunay triangulation—a trian-

gulation which is based on a set of points and tends to avoid narrow triangles—is

computed using the convex hull of the points embedded in R3. The edges of the

Delaunay triangulation are the great circle arcs which are obtained by projecting the

edges of the convex hull polyhedron onto the surface of the sphere. The Voronoi
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Figure 5.7: Construction of a Voronoi partition from a set of points on the sphere.
First the convex hull of the points is taken to obtain the Delaunay trian-
gulation. Then the Voronoi parition is obtained as the dual polyhedron
of the Delaunay triangulation.

partition is the dual of the Delaunay triangulation. Therefore the Voronoi partition

can be obtained by taking the dual of the convex hull polyhedron and then projecting

the edges of the dual polyhedron to the surface of the sphere (Figure 5.7).

In real life, balloons can compute their own Voronoi cell by communicating with

nearby balloons. Let Ji be the index set of balloons which would share an edge with

balloon i in the Delaunay triangulation. Suppose that qj ∈ B`max(qi) for each j ∈ Ji

and assume that balloon i communicates with every balloon in B`max(qi). Then for

each qj ∈ B`max(qi) compute the geodesic path γi,j connecting qi and qj. Let qi,j be the

midpoint of this path and compute the unique great circle γi,j which passes through

qi,j such that G(γi,j(qi,j), γi,j(qi,j)) = 0. This great circle is the perpendicular bisector

of the geodesic path connecting balloons i and j. The resulting great circles γi,j for

j ∈ Ji result in a partition of the sphere into several polygonal regions. The Voronoi

cell Γi is the region of this partition which contains qi.

If {qj | j ∈ Ji} 6∈ B`max(qi) then balloon i cannot communicate with all of the bal-

loons that it needs information from to compute Γi. In this case, the same procedure
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can be used to compute Γ̂i, an estimate of Γi. While Γ̂i is not the Voronoi cell, it has

the property that Γi ⊆ Γ̂i. Since the computation of Γ̂i only requires knowledge of

qi and qj for j ∈ B`max(qi), each balloon can always calculate its own Voronoi cell, or

at least an oversized estimate of it. When `max and p are both large enough, we can

assume that Γ̂i = Γi.

5.4.2 Distance-based cost function

The simplest possible cost function is one based on the distance between nearby

balloons. The cost function must be convex, so we can use quadratic functions of

`G(qi, qj). Since the objective is to spread the balloons, we want to maximize the

distance between balloons which could be achieved by a cost function such as

yD,i = −1

p

p∑

j=1

`2
G(qi, qj). (5.14)

While this cost function may be useful for spreading balloons out, balloon i cannot

actually compute yi as it only has access to qj if qj ∈ B`max(qi) so it is unlikely that

balloon i knows the position of all other balloons. Another option is to only consider

balloons that balloon i can actually communicate with, however such a function would

be discontinuous as qj approaches the boundary of B`max(qi), and would therefore not

be convex.

Instead of simply trying to maximize the distance, we could use a cost function

designed to move the balloons a set distance apart. Suppose we would like to set

96



5.4. Network coverage cost model I. Vandermeulen

nearby balloons a distance of `∗ apart. Then we could use the cost function

yD,i =
1

‖Ji‖
∑

j∈Ji
(`G(qi, qj)− `∗)2 . (5.15)

This cost function is minimized when all nearby balloons—specifically the balloons

which share an edge in the Delaunay triangulation—are an equal distance apart. The

main difficulty with this cost function is the choice of `∗. As the number of balloons

increases, the balloons should on average get closer together so `∗ should decrease as

p increases, but there is no obvious way to choose `∗. Furthermore, this cost function

is discontinuous when ‖Ji‖ changes and is therefore not necessarily convex.

5.4.3 Voronoi centroid-based cost function

Rather than use the distance between nearby balloons, we can use a cost function

based on the distance between a balloon and qc,i, the centroid of its Voronoi cell:

yC,i = `2
G(qi, qc,i). (5.16)

Since qc,i is a continuous function of the positions of nearby balloons, yC,i is continuous

and, since it is quadratic, it is convex. Using this cost function results in each balloon

moving towards the centroid of its Voronoi cell, resulting in an algorithm resembling

k-means clustering or Lloyd’s algorithm which is a well known algorithm for evenly

spacing a set of points [61]. Furthermore, this cost function has the advantage that

it moves each balloon to the centroid of its Voronoi cell, so it tends to result in more

consistent signal strengths for all of the users that are connected to that balloon.

The centroids of Voronoi cells can be computed by decomposing the Voronoi cell
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into several triangles, computing their centroids, averaging the triangular centroids

weighted by the triangular areas, and then projecting the resulting point onto the

sphere. Since each balloon knows an estimate of its Voronoi cell, it can compute its

centroid and therefore has access to q̂c,i, the centroid of Γ̂i. Assuming that `max and

p are large enough, q̂c,i = qc,i so balloon i can measure yC,i.

5.4.4 Voronoi area-based cost function

Another way to use the Voronoi partition is to define a cost function based on the

areas of the Voronoi cells. Γi represents the region on Earth where users would connect

to balloon i from. To share the internet traffic amongst all balloons equally, these

regions should all be the same area. Let Ai be the area of Γi and At be the total area

of Earth. Then we can define a cost function by

yA,i =

(
Ai −

At
p

)2

. (5.17)

This cost function is convex and is minimized when all of the balloons have the same

coverage area.

The Voronoi areas can be easily computed by each balloon given Γi. Since Voronoi

cells are spherical polygons, their areas can be computed from the interior angles

α1, . . . , αm of Γi by the formula

Ai = R2
⊕

(
(2−m)π +

m∑

i=1

αi

)
(5.18)

where R⊕ is the radius of Earth. Alternatively, the cost functions can be based on

the solid angle to avoid multiplying by R2
⊕.
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5.4.5 Internet bandwidth-based cost function

Balloons can also measure ri, the number of users they are connected to, and bi, the

bandwidth of data flowing through the balloon. To equally share the internet traffic,

we can use a cost function based on the bandwidth:

yB,i =

(
bi −

1

p

p∑

j=1

bj

)2

. (5.19)

This cost function is convex and is minimized when all balloons the total bandwidth

is shared equally between all balloons. Unfortunately, this cost function relies on

the total bandwidth of the entire network, which is unknown since balloon i can

only obtain bj if qj ∈ B`max(qi). However, since the total bandwidth does not change

that much from day to day b̂t, a nominal estimate of
∑p

j=1 bj, could be used instead

resulting in a cost function

yB,i =

(
bi −

b̂t
p

)2

. (5.20)

Another major problem with using a bandwidth-based cost function is that the

bandwidth in a particular location varies with the time of day. Since fewer people use

the internet at night than during the day, yB,i would oscillate at a frequency of one

day if balloon i were to stay still. Since the balloons do move, they would try to move

west fast enough that they always remain in a timezone where it is currently a time

of day that a lot of people are using the internet. Since the balloons can not move

nearly fast enough to cycle the Earth once per day, using a cost function based on

the current bandwidth would be ineffective. One way to fix this problem would be to
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integrate the bandwidth over a model-free hour period; however doing so would result

in the costs changing much slower and forcing the formation controller to operate on

a time-scale slower than one day, which is not practical.

Connected users ri could be used instead of current bandwidth or bandwidth in

the past day. Then the cost function would take the form

yU,i =

(
ri −

r̂t
p

)2

(5.21)

where r̂t is a nominal estimate of the total number of internet users. Since users often

remain connected to an internet source all day even when not actively sending or

receiving data, yU,i would not have the same problems associated with time of day

that yB,i would suffer from. Furthermore, since the number of internet users is more

constant than bandwidth, it is easier to estimate r̂t than b̂t.

The main drawback of using yU,i is that it tends to concentrate balloons where

there are already internet users. The optimal formation would involve many balloons

over North America and Europe, where the majority of people have internet access,

but not over Asia and Africa, where the majority of people are not connected. Since

the performance of the network in an area depends on how many balloons are there,

the internet connection would be strongest in places where there is already good

internet infrastructure. Over emerging countries, where there are few internet users,

the internet connection from the balloons would be quite weak, and therefore few

people would want to connect to the balloons. Therefore this cost function would not

result in many new people connecting to the internet, and would not be successful in

the goal of making the internet truly global.
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5.4.6 Population-based cost function

To provide strong internet connections everywhere that people live, and thereby en-

courage more people to become internet users, we could use a cost function based on

population instead of internet users:

yP,i =

(
pi −

pt
p

)2

(5.22)

where pi is the population in Γi and pt is the total population of Earth. Given a

population density function ρ : S2 → R≥0, the population in a Voronoi cell can be

computed as

pi =

∫

Γi

ρ(q)dq. (5.23)

This cost relies on knowledge of ρ. While an analytical form of ρ is not known,

gridded population density (Figure 5.8) is avilable from NASA’s Socioeconomic Data

and Applications Center [94]. These data can be numerically integrated over the

known region Γi allowing each balloon to compute its own yP,i.

When using a population-based cost function, very few balloons would be posi-

tioned over the oceans. Since pi = 0 for a balloon over the ocean, the balloon would

travel across the ocean as quickly as possible. This behaviour may or may not be

desirable. Balloons over the ocean are necessary for routing so that users can connect

across the ocean; however the number of users over the ocean should be minimized

since they do not connect directly to users. Using a cost function only based on popu-

lation could result in poor performance due to too few balloons for routing across the

ocean, or it could result in enough balloons for routing and have better performance
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Figure 5.8: Population density of Earth. Data taken from [94].

as more balloons are over land.

5.4.7 Summary of cost functions

We have provided several cost functions which, when minimized, would result in

balloons spread out over the Earth, providing everyone with internet access.

• yD,i is based solely on distance between balloons. It is not recommended as

balloons can only communicate with nearby balloons, and as it is hard to choose

the optimal distance between balloons.

• yC,i is based on the distance between a balloon and the centroid of its Voronoi

cell. It results in an algorithm resembling Lloyd’s algorithm [85].

• yA,i, is based on the area of Voronoi cells. It results in each balloon being

responsible for an equal area of coverage.

• yB,i, is based on the bandwidth of each balloon. It is not recommended as

bandwidth in one location changes too much over the course of a day.
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• yU,i, is based on the number of users connected to each balloon. It is not

recommended as it only provides good internet coverage to regions that already

have high internet penetration.

• yP,i, is based on the total population each balloon could connect to. It results

in each balloon being responsible for an equal population of potential internet

users.

In practice, multiple cost functions can be used simultaneously, to combine their

characteristics, and obtain a more robust system while allowing for the performance

of the system to be changed by tuning the cost function. For example, consider a

cost function of the form

yi = KCyC,i +KAyA,i +KPyP,i (5.24)

where KC , KA, KP ∈ R≥0 are tuning parameters. This cost function spreads the

balloons out so that all the balloon’s Voronoi cell’s have similar populations and

areas and so that the balloons are located at the centroids of their Voronoi cells. By

increasing KP , balloons will be more concentrated over highly populated areas and

by increasing KA, balloons will be more evenly spread out.

5.5 Distributed ESC for balloons

We consider both the continuous- and discrete-time distributed ESC controllers from

Chapter 3 and Chapter 4 for solving the balloon formation control problem. Each

balloon measures a local cost based on its position and connectivity and controls one

input which is the pressure inside the balloon. Distributed ESC is useful for this
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problem as it meets the design requirements of locally coordinate motion based only

on local measurements and communication with neighbours without using a complex

model. The effectiveness of these controllers in simulation depends on the choices

of wind model, cost function, and tuning parameters. The main requirement is to

ensure that all the assumptions made during the controller design are met by the

balloon system.

Before considering the convergence properties of the controllers, we briefly sum-

marize the equations defining the control systems. In continuous-time, the distributed

ESC has the form
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ui = −Kgθ̂1,i + ûi + di(t) (5.32)

˙̂ui = − 1

τI
θ̂1,i (5.33)

where the tuning parameters are κ0, κP , κI , σ1, K, KT , Kg, and τI . All of these

parameters must be positive. The consensus gains κ0, κP , and κI should be chosen

to be quite large, as they affect the convergence rate of the consensus and without
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a good estimate of the total cost, the parameter estimation and optimization do not

perform well. The estimation gains K and KT should generally be smaller than the

consensus gains. The ESC gain Kg and time constant τI can be tuned like typical PI

tuning parameters. The parameter σ1 is used to ensure the covariance matrix remains

invertible and should chosen to be very small.

The discrete-time distributed ESC has the form
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ei[k] = Ĵi[k]− ŷi[k] (5.35)

ŷi[k + 1] = ŷi[k] + θ̂
>
i [k]φi[k] +Kei[k]

+w>i [k + 1]
(
θ̂i[k + 1]− θ̂i[k]

) (5.36)

wi[k + 1] = wi[k] + φi[k]−Kwi[k] (5.37)

η̂i[k + 1] = η̂i[k]−Kη̂i[k] (5.38)

Σi[k + 1] = αΣi[k] +wi[k]w>i [k] (5.39)

θ̂i[k + 1] = Projγθ

(
θ̂i[k] +

Σ−1
i [k]wi[k] (ei[k]− η̂[k])

α +w>i [k]Σ−1
i [k]wi[k]

)
(5.40)

ui[k] = −Kgθ̂1,i[k] + ûi[k] + di[k] (5.41)

ûi[k + 1] = ûi[k]− 1

τI
θ̂1,i[k] (5.42)

where ∆t is the time step and κP , κI , K, α, Kg, and τI are positive tuning parameters.

The consensus gains κP and κI should be inversely proportional to the time step. The
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estimation gain K and RLS forgetting factor α should both be between 0 and 1 to

ensure stability of the parameter estimation. The ESC gain Kg and time constant τI

can be tuned like typical PI tuning parameters.

Both continuous- and discrete-time controllers use a projection algorithm on the

update law for θ̂ which bounds this parameter. This projection has the same effect

as a saturation on the input. The radius γθ of the parameter set Θ should be chosen

based on the maximum rate that a balloon can increase or decrease its altitude by

changing its internal pressure. Additionally, a projection algorithm can be used on

the input bias ûi to prevent integrator windup [109].

The choice of dither signals is also important to a successful distributed ESC

implementation. The dither frequencies must be unique so that each balloon can

identify its own effect on the total cost. The dither amplitude must be large enough

that the dither signals can be distinguished from noise. The frequencies should be

slow enough that the balloon can actually move up and down that fast, but should not

be too slow, or else the estimation would be slow. Furthermore, in discrete-time, the

time step should be considered when choosing the range of dither frequencies so that

several samples are taken period of each dither and so that the sampling frequency

and dither frequencies are also unique.

For the local ESC cost functions, we propose a function similar to (5.24). This cost

function relies on three parameters KC , KA, and KP which weigh the relative contri-

butions of the centroid-based cost (5.16), area-based cost (5.17), and population-based

cost (5.22). The choice of these parameters depends on the units each cost are mea-

sured in as well as the desired closed-loop performance. In simulation, we use the
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cost function

yi =

(
Ai −

At
p

)2

+ `2
G(qi, qc,i). (5.43)

Since yP is time-consuming to compute, we set KP = 0 to decrease simulation time.

KC and KA were both simply set to 1 in this cost function.

5.5.1 Convergence analysis

Theorems 3.1 and 4.1 provide convergence results for both types of distributed ESC.

These theorems show that under some mild assumptions the system converges ex-

ponentially to a neighbourhood of the optimum of the cost function. The main

assumptions required for the convergence of the consensus algorithm and parameter

estimation in the proofs of the two theorems are:

1. Convexity of the total cost function, which is guaranteed as the local costs are

quadratic,

2. Lipschitzness of the cost function and vector fields which is met by the com-

pactness of S2 and smoothness of f{ui}(t, qi) and H(q),

3. Connectedness of the communication network, which is enforced by choice of

network, and

4. Persistence of excitation in the input signals, which is provided by the unique

dither signals.

Since these assumptions are met, we can use the results from Theorems 3.1 and 4.1

to show that Ĵi and θ̂i converge to a small neighbourhood of 1
p
J and θi.
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The optimization portion of distributed ESC requires an additional assumption

to be met:

5. Stabilizability of the system’s dynamics to the steady-state manifold, which is

met when we use the simple linear wind model in (5.11)–(5.12) with a rotating

reference frame. However, when using an arbitrary nonlinear, realistic wind

model, this assumption is not met as the balloon formation is dynamic and

there is no steady-state manifold.

Without this last result holding, we cannot guarantee that the system moves into an

optimal formation. However, a simple modification of either proof can be used to

show that while J(t) does not always decrease, the distributed ESC minimizes J̇(t)

or ∆J [k+ 1] even though this derivative or difference may occasionally be positive as

there is not always a choice of ui which results in the total cost decreasing. Further-

more, when J is large, it is more likely that there exists ui which causes J to decrease.

Therefore the distributed ESC tends to move balloons away from bad formations but

may not quite reach the optimal formation.

Since the balloons cannot fly actively, they continue to move so it is unreasonable

to expect that the balloons would reach the steady-state optimum, as they would

have to remain statically in one formation. Since the balloons will be blown out of

their formation by unavoidable wind currents, the best we can expect for a controller

is one that is able to constantly improve the formation despite the wind currents

naturally blowing the balloons into a less favourable formation.
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5.6 Simulation results

5.6.1 Continuous-time simulation results

First, we consider a simple, ideal simulation example in continuous-time. In this

example, the balloons move on very simple winds which only move east-west, which

results in the system having a steady-state in an appropriate rotating reference frame.

Thus, in this example, the system meets all of the assumptions required in Chapter 3.

The balloons begin at initial conditions that are close to the known optimal formation

of the vertices of a dodecahedron and can reach this formation simply by following

the appropriate wind currents. We apply the continuous-time distributed ESC from

(5.25)–(5.33) and use this example simply to ensure that this technique can indeed

solve a simple, ideal formation control problem with a known solution.

Consider a system of 20 balloons implementing distributed ESC while floating

on wind currents described by (5.11)–(5.12). From Figure 5.4, winds in the strato-

sphere have velocities ranging between 40–100 m/s which vary linearly with altitude.

Therefore between altitudes of 0–50 km, we use a linear model of wind velocity:

uwind =

(
60 m/s

40 km

)
a+ 25 m/s

vwind = 0

where a is the altitude. These data are from 60◦ south where Earth’s circumference is

20,000 km. Using ui = ai− 30 km as the input parameter, we can write the dynamics
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in coordinates as

λ̇i = 4.55 + 0.0975ui

ϕ̇i = 0

where λi and ϕi are the longitude and latitude of the ith balloon in degrees and t is

in hours. Note that all balloons have identical dynamics which are not coupled, but

that each balloon’s local cost is influenced by the other balloons.

The objective is to spread the balloons out equally over the globe. In their optimal

formation, the areas of all Voronoi cells should be equal with each balloon at the

centroid of its Voronoi cell. Therefore, the local costs are

yi =

(
Ai −

πR2

5

)2

+ `2
G(qi, qc,i).

The first term is equalizes the Voronoi areas; the second term moves each balloon to

the centroid of its Voronoi cell. The total cost function J =
∑20

i=1 yi is minimized

when the balloons are at the vertices of a dodecahedron.

Note that using this cost function results in balloons having equal areas of coverage

but not necessarily an equal number of users as in requirement 7. This cost function

could be improved by replacing the area with ri; however doing so requires numerical

integration which drastically increases simulation time. Using area in the cost also

has the advantage that the optimal formation is known exactly.

In this simulation, the wind currents have no north-south components. Therefore,

balloons cannot change their latitude. The only way that the balloons can reach the

optimal dodecahedral arrangement is if they begin at the correct latitudes. When
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Table 5.1: Initial conditions of the 20 balloons, (λ0,i, ϕ0,i) compared to the locations
of the dodecahedral vertices, (λd,i, ϕd,i).

Balloon λ0,i ϕ0,i λd,i ϕd,i

1 117.15 69.09 90.00 69.09
2 −59.69 69.09 −90.00 69.09
3 74.73 35.26 45.00 35.26
4 29.31 35.26 −45.00 35.26
5 161.22 35.26 135.00 35.26
6 −128.15 35.26 −135.00 35.26
7 28.24 20.91 0.00 20.91
8 −178.73 20.91 180.00 20.91
9 80.17 0.00 69.09 0.00

10 −67.25 0.00 −69.09 0.00
11 114.79 0.00 110.91 0.00
12 −77.97 0.00 −110.91 0.00
13 27.79 −20.91 0.00 −20.91
14 −167.32 −20.91 180.00 −20.91
15 83.01 −35.26 45.00 −35.26
16 −43.62 −35.26 −45.00 −35.26
17 152.55 −35.26 135.00 −35.26
18 −119.74 −35.26 −135.00 −35.26
19 120.62 −69.09 90.00 −35.26
20 −58.19 −69.09 −90.00 −35.26

initializing the simulation, we place all of the balloons at the correct latitude but at

a longitude which deviates from the location of the dodecahedral vertex by a random

amount (Table 5.1). This initialization ensures that balloons are able to reach the

optimal formation.

The balloons communicate with their nearest neighbours. The initial formation

resembles the vertices of distorted dodecahedron and the communication network

can be represented by the edges of this distorted dodecahedron. Using this network,

each balloon can communicate with exactly three other balloons which are the three

balloons which are closest to it in the optimal formation.
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Table 5.2: Tuning parameters used by the balloons implementing the continuous-time
distributed ESC.

κ0 κP κI K σ1 KT τI Kg D

100 100 100 50 1× 10−7 50 10 100 10

Each controller uses identical tuning parameters (Table 5.2). The only parameter

which differs between the balloons is the frequency ωi of its dither signal. The dithers

must be unique so that each balloon can estimate its own parameters while ignoring

the effects of other balloons which have different frequency dithers. While there

are many choices of dither frequencies which work, we have chosen to use prime

frequencies for each balloon.

The system of 20 balloons was simulated for 21 days using distributed ESC to

control the formation. During this time, the local costs all decreased and the total

cost decreased to close to 20% of its original value (Figure 5.9). Once the system

reached this neighbourhood of the optimal cost it is stable around that point. Plots

of the Voronoi cells (Figure 5.10) show that the balloons move from the initial random

formation to a more evenly distributed formation where the Voronoi cells are similarly

sized triangles. This simulation shows that distributed ESC can indeed by applied to

formation control problems and that the choice of cost function is effective.

5.6.2 Discrete-time simulation results

Next we consider a more realistic wind model. In this case, there is not necessarily

a steady-state and so the problem of steady-state cost function minimization is not

well-defined. Nevertheless, we apply distributed ESC as a method of continuously

improving the formation of balloons. Since we now consider real wind models and a
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Figure 5.9: Local costs (left) and total cost (right) for the system of 20 balloons under
distributed ESC in continuous-time.

system of 1200 balloons, discrete-time simulations are much simpler to perform, so

we use the discrete-time extremum-seeking controller (5.34)–(5.42).

Suppose the balloons start in a good formation where they are spread out over the

globe. They continue to move with the wind, but must stay in a similar formation to

provide good coverage over the entire Earth. Since balloons tend to follow prevailing

winds, all balloons naturally end up following the same patterns and may congregate

at a specific place, such as in a hurricane, or along one dominant wind current. The

first simulation considers the problem of maintaining the balloons in a good formation

when they start in a good one.

In any real life situation, balloons must be launched from a fixed location. This

location must be equipped with the necessary launch equipment and the balloons

leaving this location have to travel through the troposphere to reach their usual

altitude in the stratosphere. Since the balloons could disrupt aircrafts or birds in the

troposphere, the company performing the launch must obtain the relevant permits to
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Initial balloon configuration

Balloon configuration after 150 h

Figure 5.10: Initial randomized balloon configurations and balloon configuration after
150 h of distributed ESC. The dots represent the balloons. The lines
represent the boundaries of Voronoi cells.
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launch at each location. The requirements of launch equipment and permits result in

a limited number of launch sites with many balloons being launched from each site.

The second simulation example considers the problem of steering the balloons from

a few initial launch locations to an evenly distributed formation.

These simulations were performed using wind data from March 8, 2016 at 17:00

UTC which was obtained from the NOAA [95]. The data was obtained as u- and

v-components of the wind velocity on a three-dimensional grid of longitude, latitude,

and isobaric pressure. The longitude and latitude grids have resolutions of 0.25◦

and the isobaric pressure grid is not uniform and has values at 1, 2, 3, 5, 7, and

10 kPa. Since isobaric pressure is a monotonic function of altitude, this grid could be

converted into an altitude grid. Linear interpolation was used between grid points.

Since the grid is high-resolution, linear interpolation is a good approximation.

The simulations run for a total of 1000 h. After such a long time, the wind

currents can change significantly. While a more realistic simulation would use a time-

varying wind model, we have opted for a simpler time-invariant model. A dynamic

wind model can be created from historic wind data from the NOAA. These data

are available at 6 hour increments, however a time-varying model uses significantly

more data requiring many gigabytes of hard drive space and interpolation must be

performed over 4 dimensions, which increases simulation time. Since prevailing wind

currents do not change, the advantage of using a time-varying model is small and

we have opted to use a time-invariant wind model which is still realistic enough to

demonstrate the effectiveness of distributed ESC.
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Table 5.3: Tuning parameters used by the balloons implementing discrete-time dis-
tributed ESC.

∆t κP κI K α τI Kg D γθ

0.1 h 1 0.5 0.8 0.8 10 1 0.1 1

5.6.3 Maintaining a formation

In this simulation, we consider a fleet of 1200 balloons which start at 1200 random

locations. These locations were chosen from a uniform distribution on the sphere by

choosing the (x, y, z)-coordinates of each balloon uniformly on [−1, 1]3, normalizing

the position vector, and then converting it into a longitude-latitude pair.

Each balloon is equipped with a distributed extremum-seeking controller which

uses isobaric pressure as an input and measures a convex local cost given by (5.43).

The total cost achieves its minimum when each Voronoi cell has the same area and

each balloon is at the centroid of its Voronoi cell. Each balloon uses identical tuning

parameters (Table 5.3) with the exception that each balloon uses a unique dither

frequency. The dither frequencies are the consecutive primes between 121, 369 and

135, 497 multiplied by a common rational factor of 15
135497

. The balloons communicate

over a time-varying connected network with balloons i and j communicating when-

ever j ∈ Ji. The resulting communication network is equivalent to the Delaunay

triangulation of the balloons and it is guaranteed to be connected.

The system was simulated from launch for 1000 h using two control schemes (Fig-

ure 5.11). The first control scheme is the distributed ESC which we have described.

The second control scheme is to simply fly the balloons at 5 kPa, near the middle of

the range of acceptable isobaric pressures (1–10 kPa), and not implement any other

control action. The second scenario is how the balloons would naturally move without
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a controller. Without control, the balloons slowly congregate in some specific areas.

After two weeks (336 h) there are very few balloons over the equator as most balloons

have moved into stronger prevailing wind currents in both hemispheres. After 1000 h

most of the balloons have entered into a few dominant wind patterns, either trav-

eling over the Southern Ocean cycling around the south pole, or are traveling over

Greenland and Eurasia cycling around the north pole. Additionally, many balloons

are trapped in small cyclones above Australia, Mexico, the Yukon, the Atlantic south

of Nigeria, the Pacific north of Australia, and the Pacific west of Chile. Large por-

tions of North America, South America, Africa, India, and Southeast Asia receive no

coverage.

Distributed ESC performs much better. While the balloons are all moving and

their formation is changing, the final formation provides a similar level of coverage

to the initial formation. There are no large areas that are lacking coverage and there

are no areas with a very high balloon density. The balloons remain relatively well

spread out when controlled by distributed ESC.

Another way to see the effectiveness of distributed ESC is by examining the total

cost function (Figure 5.12). This cost function is a single positive number which

represents the overall performance of the system. It reaches a minimum at J = 0

when the balloons are evenly distributed over the Earth. The cost can be thought

of as a measure of how spread out or clumped together the balloons are. When

J is small, the balloons are spread out; when J is large, the balloons are clumped

together. The cost functions for both control schemes start at the same value since the

balloons all start in the same locations. When no control is used, the cost increases

rapidly as the balloons move from a relatively evenly distributed formation to a poorly
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Figure 5.11: Position of 1200 balloons launched from random locations when con-
trolled by distributed ESC (left) and when flown at 5 kPa with no con-
troller (right).
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Figure 5.12: Total cost trajectories for a system of 1200 balloons launched from ran-
dom positions when under no control (dashed) and when under dis-
tributed ESC (solid).

distributed formation as the balloons aggregate. When distributed ESC is used, the

cost remains relatively constant, although it does have some variance. Since the

cost does not increase or decrease significantly, the ESC is keeping the balloons in

a formation which provides as good of coverage as when the balloons are randomly

placed according to a uniform distribution. The minor variations are due to the non-

uniformity of the wind currents which sometimes result in balloons naturally moving

to slightly worse formations despite the control, as there are no available currents

which move the balloons to a better formation.

From the map and the cost trajectories, we can see that distributed ESC is effective

at maintaining a good formation, while using no controller is not. Without control,

the balloons tend to move into dominant wind patterns; with ESC, the balloons do

not get stuck in these weather features and are able to remain spread out.
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Figure 5.13: Locations of the twelve balloon launch sites.

5.6.4 Launching the balloons

In the next simulation, we again consider a fleet of 1200 balloons. This time the

balloons are launched from 12 launch sites with 100 balloons at each site. There are

two launch sites for each inhabited continent, located at the continent’s two largest

urban areas by population (Figure 5.13, Table 5.4). Since Oceania is small, maritime

Southeast Asia was grouped with Oceania when selecting the launch sites for the

simulation.

From these launch sites, we considered the trajectories of balloons when controlled

by distributed ESC and without any control (Figure 5.14). Since 100 balloons start at

each launch site, when flown at 5 kPa without control these balloons tend to follow the

same wind currents and do not spread out much. After more than a month (744 h),

the balloons have formed several closely spaced lines which follow the same routes.

Furthermore, at the end of the simulation there are only 10 distinct groups, meaning

that two pairs of initial groups of balloons have merged into a single group.

120



5.6. Simulation results I. Vandermeulen

Table 5.4: Coordinates of the twelve launch sites.

City Country Continent λ ϕ

New York USA North America −74.01 40.71
Mexico City Mexico North America −99.13 19.43
São Paulo Brazil South America −46.63 −23.55
Buenos Aires Argentina South America −58.38 −34.60
Paris France Europe 2.35 48.86
Moscow Russia Europe 37.62 55.75
Lagos Nigeria Africa 3.40 6.45
Kinshasa DR Congo Africa 15.32 −4.33
Tokyo Japan Asia 139.68 35.68
Delhi India Asia 77.21 28.61
Jakarta Indonesia Oceania/SE Asia 106.80 −6.17
Manila Philippines Oceania/SE Asia 121.00 14.58

On the other hand, when distributed ESC is used, the balloons are able to spread

out much more effectively. After only two days (48 h), the initial groups of balloons

have spread out enough that it is difficult to distinguish which balloons started where.

After two weeks (336 h), the balloons have almost completely covered all of the Earth

with the only significant gaps being over the Pacific Ocean and Antarctica, which both

do not have significant populations. After a month (744 h) all of the Earth except

Antarctica is covered by balloons. No balloons move over Antarctica as the Antarcti-

cic Circumpolar Current over the Southern Ocean creates strong prevailing westerly

winds isolating the Antarctica air system and preventing balloons from floating over

the continent.

Again, we can also examine the performance of the control system by looking at

the total cost trajectories (Figure 5.15). The cost function for the ESC simulation

drops rapidly and gets close to zero indicating the balloons are spreading out as

desired. When no controller is used, the cost function varies widely and generally
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Figure 5.14: Position of 1200 balloons launched from 12 cities when controlled by
distributed ESC (left) and when flown at 5 kPa with no controller (right).
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Figure 5.15: Total cost trajectories for a system of 1200 balloons launched from 12
cities when under no control (dotted) and when under distributed ESC
(solid).

increases. Since it is increasing, the formation actually tends to get worse as time

goes on. It has a high variance as the wind is non-uniform over the globe and may

naturally blow balloons closer together or further apart.

Both the individual maps showing the simulation results and the performance

metric of the cost function show that distributed ESC is an effective tool for launching

balloons. While the balloons would naturally tend to stay together, distributed ESC

is able to steer them apart into a formation that provides adequate coverage to the

entire Earth. This process takes less than one month. Furthermore, these results

indicate that even if all the balloons are released from the same place at the same

time, distributed ESC can efficiently distribute them over the entire Earth.
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5.7 Conclusion

A fleet of several thousand high-altitude balloons are a promising technology for

providing high-speed internet to the entire Earth. One challenge in implementing such

a network of balloons is controlling their formation. Google’s Project Loon intends to

solve this problem using complex wind models and lots of computing power. Other

approaches requiring less computing power have been successful for simpler models

with unrealistic linear wind currents.

We have shown that discrete-time distributed ESC is an effective method for for-

mation control of balloons when subjected to realistic wind currents. Each balloon

implements the same algorithm using only its own measurements and information

received from nearby balloons. The algorithm does not require a central coordina-

tor and is computationally efficient. It does not require a model and can adapt to

changing, nonlinear wind currents. Distributed ESC relies on measurements of a

cost function and constantly improves the formation of the balloons to move them

towards a feasible optimum. Several cost functions based on distances between bal-

loons, Voronoi partions, internet bandwidth, and number of internet users connected

to a balloon can all be used. While each cost function results in slightly different

optimal formations, they all can be used to spread out the balloons over Earth.

In continuous-time, a simulation involving 20 balloons was used to show the ef-

fectiveness of this strategy. The optimal formation for 20 balloons on a sphere is

for each balloon to be at the vertex of a dodecahedron. Using distributed ESC, the

system was able to drastically reduce the total cost over 3 weeks and the total cost

was stabilized to a neighbourhood of the optimal cost by moving towards this optimal

dodecahedral formation.
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In discrete-time, a simulation involving 1200 balloons was used to show the effec-

tiveness of this strategy. The balloons were subjected to realistic wind currents based

on meteorological data from the NOAA. Each balloon implemented a PI ESC and

communicated with nearby balloons resulting in a distributed ESC control scheme.

This scheme was implemented in discrete-time with a time step of six minutes. In the

simulation, 100 balloons were launched from each of 12 of the largest cities on Earth.

Within a month’s time, the balloons moved from being concentrated in 12 locations

to being spread out over the entire Earth. This scheme vastly outperformed using

no controller. A second simulation showed that when the balloons start in a good

formation, distributed ESC can maintain this formation even though the balloons

would naturally drift into a suboptimal formation.
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Chapter 6

Conclusion

6.1 Summary

The real-time optimization of large-scale systems with complex or poorly understood

dynamics is a challenging problem relevant to many diverse industries. Current RTO

techniques use centralized approaches which require significant computational effort,

and are not feasible for large-scale systems. Furthermore, modeling large-scale sys-

tems is a time-consuming and often futile procedure, especially when many parame-

ters are unknown.

Distributed extremum-seeking control provides a simple, effective way to opti-

mize many real-world systems of arbitrary size, while eliminating the need to de-

velop a model of the system. In this thesis, distributed ESC was developed in both

continuous- and discrete-time. These controllers were applied to several mathemati-

cal examples show to illustrate the types of problems which can be solved with these

types of controllers. They were also shown to be an effective way to control the for-

mation of a large fleet of over one thousand high-altitude balloons—a problem which

could not be solved by any other existing technique—without requiring a wind model.

A continuous-time distributed extremum-seeking control algorithm was developed
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in Chapter 3. This controller consists of p agents which each measure a local cost

and have the collective objective of minimizing the sum of these costs. Each agent

implements an identical ESC. This controller consists of three parts: a dynamic

average consensus, time-varying parameter estimation, and a gradient descent. The

consensus algorithm is a second-order linear system which converges to the average of

the time-varying local costs. It provides each agent with a convergent estimate of the

total cost. Using the total cost estimate, two time-varying parameters are estimated.

The first parameter represents all changes to the cost that the agent cannot control

and is the sum of of the Lie derivatives of the cost along the drift vector field and along

all other agents’ control vector fields. The second parameter is the Lie derivative of

the cost along the agent’s control vector field, and describes how that agent’s inputs

affect the total cost. This second parameter is used in a proportional-integral control

law, resulting in a gradient descent algorithm. With each agent implementing a

gradient descent based on how its own input affects the total cost, the entire system

converges to a neighbourhood of the optimum total cost. This approach only requires

measurement of local costs and communication between nearby agents. It does not

require a model of the system, a priori knowledge of parameters, or a measurement

of the total cost.

In Chapter 4, an analogous discrete-time distributed ESC was developed. This

controller consists of the same components—consensus, parameter estimation, and

gradient descent—as the continuous-time controller; however, different algorithms

must be used for convergence in discrete-time. In discrete-time, the parameter es-

timation routine estimates parameters which are not simply Lie derivatives, but in-

stead depend on the mean-values of the Lie derivatives over the entire time step.
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This parameterization results in a direct relationship between the time step of the

discrete-time system and the parameters and hence convergence of the distributed

ESC.

Chapter 5 contains a large-scale real-world simulation example showing a valuable

application of distributed ESC. This application is the formation control of high-

altitude balloons. These balloons are an emerging technology with the potential

to bring high-speed wireless internet to people anywhere on Earth. The formation

control problem is the problem of spreading the balloons out in such a way that every

internet user on Earth is close to at least one balloon. As the balloons float passively

in the stratosphere, they naturally follow Earth’s wind currents, and control actuation

is provided by pumping helium in or out of the balloon to move it up or down into a

different wind current. Distributed ESC was an appropriate control algorithm for this

system as several thousand balloons would be required, and accurate wind models

are not available. We discussed several different cost functions which could be used

to steer the balloon into a formation that provides adequate coverage to the entire

Earth. For simulations, we used a cost function based on the areas and centroids of

Voronoi cells which is optimized when each balloon is at the centroid of its Voronoi

cell and the cells are all the same size.

We performed simulations involving 1200 balloons floating on wind currents sim-

ulated using data from the United States National Oceanic and Atmospheric Admin-

istration. In the first set of simulations, balloons began in a random formation that

provided good coverage; in the second set of simulations, balloons began at one of

twelve designated launch sites. When no controller was used, balloons starting in
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a random formation were slowly blown towards prevailing winds and no longer pro-

vided good coverage after one month. Distributed ESC, on the other hand, was able

to maintain a formation which provided equivalent coverage to the random formation.

Furthermore, when launched from launch sites, balloons under control of distributed

ESC moved into a favourable formation within one month. This approach used a

discrete-time controller with a time step of six minutes and is completely scalable to

arbitrarily many balloons.

The distributed extremum-seeking control techniques developed in this thesis are

able to solve real-time optimization tasks for a large class of systems. They provide

scalable techniques that are computationally efficient and do not require a model.

They provide good performance and can be used for nonlinear, time-varying, and

slowly unstable systems. The techniques can thus be applied to many real-world

problems, such as the formation control of balloons, which cannot be optimized by

any other technique.

6.2 Future work

There are several challenges in distributed ESC that have yet to be addressed. The

current techniques, while valid for a large class of systems, are not valid for all sys-

tems. In particular, the techniques are not valid for nonminimum phase systems or

systems with relative degree greater than one. Future work on expanding the tech-

niques to these important classes of systems would result in distributed ESC being

applicable to even more real-world problems. Another interesting problem is devel-

oping a framework for including models into distributed ESC. Significant effort has

been put into modeling of real-world systems and using the results of these modeling
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efforts could potentially result in more effective extremum-seeking techniques.

Additionally, there are some interesting problems that arise due to the use of a

network in distributed ESC. One extension is asynchronous distributed ESC where

individual agents operate on different clocks and do not send information at the same

time. Another topic to consider is minimal communication, where each agent’s goal

is to optimize the system while communicating with other agents as infrequently as

possible. A main concern when implementing control systems over networks is secu-

rity. A malicious node which actively works against the efforts of the network could

cause poor performance or even instability of the entire system. Future work should

consider techniques to detect attacks and prevent malicious agents from making the

entire system ineffective or unsafe.

There are several important future steps that should be taken when applying

distributed ESC to fleets of high-altitude balloons. Time-varying simulations should

be performed using real wind data collected over a period of several weeks to simulate

a more realistic scenario. If it is possible to partner with a company, such as Google,

then real experiments involving a few balloons should be conducted. These tests

would be necessary to tune the distributed ESC and also to determine the best choice

of cost function. The Voronoi-based cost functions were used in simulation as they

are easy to compute, but a cost function involving internet bandwidth or number of

connected users may be more effective at providing coverage.

As distributed control and ESC are relatively young fields, the future for dis-

tributed ESC is bright. There remain many interesting theoretical developments to

be made in this area. Furthermore, as it is applicable to a large class of systems, there

are many potential applications of distributed ESC that have yet to be explored.
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finitely and infinitely-many players,” in Nonlinear Control Systems, 2010, pp.
1086–1091.
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Appendix A

Proof of Theorem 3.1

In the first part of the proof, we consider the consensus dynamics over the network.

We first write the consensus algorithm as



ε

˙̂
J

ερ̇


 =



−κ0I − κPL κIL

−κIL 0






Ĵ

ρ


+



κ0I

0


h(u) (A.1)

where ε is a small positive singular perturbation parameter. We let J̃i = J − pĴi.

By Assumption Assumption 3.3, the graph associated with the network is undirected

and connected, so rank(L) = p − 1. Then using a theorem from [38], the consensus

algorithm achieves an exponential rate of convergence. That is, each local consensus

estimate converges to 1
p
J and there exist constants ν0, kc > 0 such that:

∥∥∥J̃i
∥∥∥ ≤ ν0 exp

(
−kc

t

ε

)
(A.2)

Thus, if ε→ 0 then pĴi → J for all i and each agent has a local measurement of the

total augmented cost. Since the total costs estimates converge, we can express the
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estimates as

pĴi = J(x) + pνi(t) (A.3)

where, by the properties of the dynamic consensus, νi(t) is an exponentially decaying

measurement error.

In the second part of the proof, we consider parameter estimation using the total

cost estimation instead of the true total cost. The proof of convergence for the

parameter estimates follows the arguments presented in [47]. Since we are interested

in parameter convergence, we use the following Lyapunov function

VPE =

p∑

i=1

(
1

2
η̃>i η̃i +

1

2
θ̃
>
i Σiθ̃i

)
(A.4)

where η̃i = ηi − η̂i and θ̃i = θi − θ̂i. In this Lyapunov function, the parameter

estimate deviations are summed over all of the agents. The Lyapunov function reaches

a minimum at VPE = 0 when all p agents have accurate parameter estimates θ̂i = θi

and η̂i = ηi. Since the local agents are only using local estimates of the total cost, we

must use the perturbed measurement for each agent Ĵi = 1
p
J(x) + νi(t) and consider

the error ei = Ĵi − ŷi. Since we must take into account the effect of νi(t), the error

dynamics can be written as

ėi = −Kei −w>i
˙̂
θi + θ̃

>
i φi + ν̇i. (A.5)
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Using (A.5), the corresponding ηi and η̃i dynamics are thus given by

η̇i = −Kηi + ν̇i −w>i θ̇i (A.6)

˙̃ηi = −Kη̃i + ν̇i −w>i θ̇i. (A.7)

The dynamics of the parameter estimation error θ̃i = θi − θ̂i are

˙̃
θi = θ̇i −Σ−1

i

(
wi(ei − η̂i)− σ1θ̂i

)
. (A.8)

By differentiating (A.4) and using (3.28), (3.30), (A.7), and (A.8), the derivative of

the Lyapunov function along system trajectories is

V̇PE ≤
p∑

i=1

(
− η̃>i Kη̃i − η̃>i w>i θ̇i + θ̃

>
i Σiθ̇i + η̃>i ν̇i −

KT

2
θ̃
>
i Σiθ̃i

+
σ1

2
θ̃
>
i θ̃i − θ̃

>
i wi(ei − η̂i) +

1

2
θ̃
>
i wiw

>
i θ̃i + σ1θ̃

>
i θ̂i

)
.

(A.9)

From the definitions of ηi and η̃i, we have that w>i θ̃i = ei− ηi = ei− η̂i− η̃i. Making

this substitution and simplifying results in

V̇PE ≤
p∑

i=1

(
− η̃>i Kη̃i − η̃>i w>i θ̇i + θ̃

>
i Σiθ̇i + η̃>i ν̇i −

KT

2
θ̃
>
i Σiθ̃i

+
σ1

2
θ̃
>
i θ̃i −

1

2
(ei − η̂i)2 +

1

2
η̃>i η̃i + σ1θ̃

>
i θ̂i

)
.

(A.10)

Noting that θi = θ̂i + θ̃i and that −1
2
(ei − η̂i)

2 ≤ 0, one can rewrite the above
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inequality as

V̇PE ≤
p∑

i=1

(
− η̃>i

(
K − 1

2

)
η̃i − η̃>i w>i θ̇i + θ̃

>
i Σiθ̇i + η̃>i ν̇i

− KT

2
θ̃
>
i Σiθ̃i −

(
σ1 −

σ1

2

)
θ̃
>
i θ̃i + σ1θ̃

>
i θi

)
.

(A.11)

We can bound the indefinite terms by completing the squares to obtain

V̇PE ≤
p∑

i=1

(
− η̃>i

(
K − 1

2

)
η̃i +

a17

2
η̃>i w

>
i wiη̃i +

1

2a17

θ̇
>
i θ̇i

+
a18

2
θ̃
>
i Σiθ̃i +

1

2a18

θ̇
>
i Σiθ̇i +

a19

2
η̃>i η̃i +

1

2a19

ν̇>i ν̇i

− KT

2
θ̃
>
i Σiθ̃i −

(
σ1 −

σ1

2

)
θ̃
>
i θ̃i +

σ1

2
θ̃
>
i θ̃i +

σ1

2
θ>i θi

)
(A.12)

where a17, a18 and a19 are strictly positive constants. It is assumed without loss of

generality that KT > a18 so KT − a18 > 0. Then collecting terms, we have

V̇PE ≤
p∑

i=1

(
− η̃>i

(
K − 1

2
− a17

2
w>i wi −

a19

2

)
η̃i +

1

2a17

θ̇
>
i θ̇i

+
1

2a18

θ̇
>
i Σiθ̇i +

1

2a19

ν̇>i ν̇i −
KT − a18

2
θ̃
>
i Σiθ̃i +

σ1

2
θ>i θi

)
.

(A.13)

By definition, Σi is positive definite; however as it is time-varying, it is useful to show

that it has upper and lower bounds so that we can bound the terms + 1
2a17
θ̇
>
i θ̇i and

−KT−a18

2
θ̃
>
i Σiθ̃i using constants. The boundedness of Σi is shown using the same ap-

proach as is presented in [47]. By integrating and using Assumption Assumption 3.4,

for t ≥ T we have:

Σi = e−KT tΣi(0) +

∫ t

0

e−KT (t−τ)
(
wi(τ)w>i (τ) + σ1I

)
dτ
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≥
∫ t

t−T
e−KT (t−τ)

(
wi(τ)w>i (τ) + σ1I

)
dτ

≥ e−KTT
(
γ−w + σ1T

)
I. (A.14)

When t < T we can upper bound Σi by Σi ≥ e−KTTσ0I. Therefore for any t > 0,

Σi ≥ min{σ0, γ
−
w + σ1T}e−KTTI. (A.15)

The Lipschitz projection operator used to define the update law for θ̂i results in

the boundedness of θ̂i. Since θ̂i is bounded, ui is bounded and wi is also bounded.

Since wi is bounded there exists γ+
w > 0 such that wi(t)w

>
i (t) < γ+

wI for all t > 0.

Therefore we can write:

Σi = e−KT tΣi(0) +

∫ t

0

e−KT (t−τ)
(
wi(τ)w>i (τ) + σ1I

)
dτ

≤ σ0I +
(
γ+
wI + σ1I

) ∫ t

0

e−KT (t−τ)dτ

= σ0I +
(
γ+
wI + σ1I

)(1− e−KT t

KT

)

≤
(
σ0 +

γ+
w + σ1

KT

)
I. (A.16)

Therefore by setting γ−Σ = min{σ0, γ
−
w + σ1T}e−KTT and γ+

Σ =
(
σ0 + γ+

w+σ1

KT

)
we have

γ−ΣI ≤ Σi ≤ γ+
ΣI. (A.17)

Substituting these bounds into (A.13) and using the fact that w>i wi < γ+
w , we can
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write

V̇PE ≤
p∑

i=1

(
− η̃>i

(
K − 1

2
− a17γ

+
w

2
− a19

2

)
η̃i +

1

2a17

θ̇
>
i θ̇i +

γ+
Σ

2a18

θ̇
>
i θ̇i

+
1

2a19

ν̇>i ν̇i −
(KT − a18)γ−Σ

2
θ̃
>
i θ̃i +

σ1

2
θ>i θi

)
.

(A.18)

Then we can finally write V̇PE as

V̇PE ≤
p∑

i=1

(
−c45 ‖η̃i‖2 − c46

∥∥∥θ̃i
∥∥∥

2

+ c47

∥∥∥θ̇i
∥∥∥

2

+ c48 ‖ν̇i‖2 +
σ1

2
‖θi‖2

)
(A.19)

where

c45 = K − 1

2
− a17γ

+
w

2
− a19

2

c46 =
(KT − a18)γ−Σ

2

c47 =
1

2a17

+
γ+

Σ

2a18

c48 =
1

2a19

.

By choosing K > 1+a17γ
+
w+a19

2
and KT > a18, we ensure that the first two terms are

negative definite. Since limt→∞ νi(t) = 0, the c48 ‖ν̇i‖2 term does not affect param-

eter estimate convergence. This Lyapunov derivative therefore shows that η̃i and θ̃i

are uniformly ultimately bounded to a ball whose size is determined by θi and θ̇i.

Therefore the parameter estimates reach a neighbourhood of their true values.

In the third part of the proof, we consider the stability of the proposed ESC at a

constant û. We use the Lyapunov function

VStab = VPE + Ω− Ω(x∗, z∗). (A.20)
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Using the system dynamics, (3.5) and (3.4), its derivative is

V̇Stab = V̇PE +
∂Vz
∂z
f z +

∂J

∂x
f +

p∑

i=1

∂J

∂x
Giui. (A.21)

Using the definition of θ1,i we have that ∂J
∂x
Gi = pθ>1,i so

V̇Stab = V̇PE +
∂Vz
∂z
f z +

∂J

∂x
f +

p∑

i=1

pθ>1,iui. (A.22)

Substituting the proposed ESC, (3.32), and letting θ̂1,i = θ1,i − θ̃1,i gives

V̇Stab = V̇PE +
∂Vz
∂z
f z +

∂J

∂x
f

+

p∑

i=1

(
−pKgθ

>
1,iθ1,i + pKgθ

>
1,iθ̃1,i + pθ>1,iûi + pθ>1,idi

)
.

(A.23)

Using the fact that θ1,i = 1
p

(
∂J
∂x
Gi

)>
, we have

V̇Stab = V̇PE +
∂Vz
∂z
f z +

∂J

∂x
f − Kg

p

∂J

∂x
GG>

(
∂J

∂x

)>

+
∂J

∂x
Gû+

p∑

i=1

(
pKgθ

>
1,iθ̃1,i + pθ>1,idi

)
.

(A.24)

By Assumption Assumption 3.2, there exists β4,x, β4,z, K
∗
g > 0 such that

V̇Stab = V̇PE − β4,x ‖x− πx(û)‖2 − β4,z ‖z − πz(û)‖2

−
(
Kg

p
−K∗g

)
∂J

∂x
GG>

(
∂J

∂x

)>
+

p∑

i=1

(
pKgθ

>
1,iθ̃1,i + pθ>1,idi

)
.

(A.25)

Since we can choose the parameter estimation gain, Kg, choose Kg > pK∗g we ensure
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that Kg
p
−K∗g > 0. Then using by substituting (A.19) and using the fact that ∂J

∂x
Gi =

pθ>1,i, we have

V̇Stab ≤
p∑

i=1

(
− c45 ‖η̃i‖2 − c46

∥∥∥θ̃0,i

∥∥∥
2

+ c47

∥∥∥θ̇i
∥∥∥

2

+ c48 ‖ν̇i‖2 +
σ1

2
‖θi‖2 + pθ>1,idi − v>θ,iΛθvθ,i

)

− β4,x ‖x− πx(û)‖2 − β4,z ‖z − πz(û)‖2

(A.26)

where

vθ,i =




∥∥∥θ̃1,i

∥∥∥

‖θ1,i‖


 and Λθ =



c46 −pKg

2

−pKg
2

p2
(
Kg
p
−K∗g

)
.




We must check that Λθ is positive definite. Since c46 > 0, we only need to show that

det(Λθ) > 0. The determinant is positive when c46 >
K2
g

4
(
Kg
p
−K∗g

) so we want to make

c46 as large as possible. We cannot directly choose c46; however, it is a function of

KT as

c46 =
(KT − a18) min{σ0, γ

−
w + σ1T}e−KTT

2
.

To maximize c46, we should choose KT = a18 + 1
T

. With this choice of KT , we can

ensure that Λθ > 0 by choosing K2
g <

2γ−Σ
(
Kg
p
−K∗g

)
T

. Since the right hand side is a

function of Kg, we can alternatively write this bound as

Kg <
γ−Σ
pT


1 +

√√√√γ−Σ − 2p2T
(
Kg
p
−K∗g

)

γ−Σ


 <

2γ−Σ
pT

. (A.27)
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Therefore Λθ > 0. Let γ−Λ > 0 be the minimum eigenvalue of Λθ. Then (A.26) can

be written as

V̇Stab ≤
p∑

i=1

(
− c45 ‖η̃i‖2 − c46

∥∥∥θ̃0,i

∥∥∥
2

+ c47

∥∥∥θ̇i
∥∥∥

2

+ c48 ‖ν̇i‖2

+
σ1

2
‖θi‖2 + pθ>1,idi − γ−Λ

∥∥∥θ̃1,i

∥∥∥
2

− γ−Λ ‖θ1,i‖2

− β4,x

p
‖x− πx(û)‖2 − β4,z

p
‖z − πz(û)‖2

)
.

(A.28)

The only indefinite term in (A.28) which was not in (A.19) is the indefinite term

pθ>1,idi. This term is bounded since di(t) is a bounded dither signal. Therefore this

Lyapunov function shows that the proposed ESC stabilizes the system dynamics to

a neighbourhood of the steady-state manifold.

In the final part of the proof, we consider the dynamics of the input bias û to

show that it reaches a neighbourhood of the optimum, u∗, of the steady-state map,

`(û). To achieve this objective, we focus on proving that there exists a τ ∗I such that

for all τI > τ ∗I , û reaches a neighbourhood of the optimum equilibrium input, u∗. We

consider the equilibrium response for the nonlinear system (3.1), given by x = π(û),

of the system at a specific û. Let ũ = u∗ − û and consider the Lyapunov function

VESC = VStab +
1

2
ũ>ũ. (A.29)

Differentiating and using (3.33) gives

V̇ESC = V̇Stab +

p∑

i=1

1

τI
ũ>i θ̂1,i. (A.30)
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By letting θ̂1,i = θ1,i − θ̃1,i we have

V̇ESC = V̇Stab +
1

τI
ũ>θ1 −

p∑

i=1

1

τI
ũ>i θ̃1,i. (A.31)

The gradient of the steady-state map `(u) is

∂`(û)

∂u
=
∂J(π(û))

∂x
G(πx(û),πz(û)). (A.32)

Then by letting ũ = u∗ − û, Assumption Assumption 3.1 can be written as

0 ≤ −β1 ‖ũ‖2 − ∂J(π(û))

∂x
G(πx(û),πz(û))ũ. (A.33)

Then since ũ>θ1 = 1
p
∂J
∂x
Gũ, we can use this inequality to write

ũ>θ1 ≤ −
β1

p
‖ũ‖2 − 1

p

(
∂J

∂x
G− ∂J(π(û))

∂x
G(πx(û),πz(û))

)
ũ. (A.34)

Given that J(x) and G(x) are smooth, it follows that there exists Lipschitz constants

LG,x and LG,z such that

ũ>θ1 ≤ −
β1

p
‖ũ‖2 +

LG,x
p
‖x− πx(û)‖ ‖ũ‖+

LG,z
p
‖z − πz(û)‖ ‖ũ‖ . (A.35)

Substituting this inequality into (A.31), we have

V̇ESC ≤ V̇Stab −
β1

pτI
‖ũ‖2 +

LG,x
pτI
‖x− πx(û)‖ ‖ũ‖

+
LG,z
pτI
‖z − πz(û)‖ ‖ũ‖ −

p∑

i=1

1

τI
ũ>i θ̃1,i.

(A.36)
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We can bound the indefinite term 1
τI
ũ>i θ̃1,i by completing the squares:

V̇ESC ≤ V̇Stab +

p∑

i=1

(
− β1

pτI
‖ũi‖2 +

LG,x
pτI
‖x− πx(û)‖ ‖ũi‖

+
LG,z
pτI
‖z − πz(û)‖ ‖ũi‖+

1

2τI
‖ũi‖2 +

1

2τI

∥∥∥θ̃1,i

∥∥∥
2 )
.

(A.37)

By substituting (A.28), we can write

V̇ESC ≤
p∑

i=1

(
− c45 ‖η̃i‖2 − c46

∥∥∥θ̃0,i

∥∥∥
2

+ c47

∥∥∥θ̇i
∥∥∥

2

+ c48 ‖ν̇i‖2

+
σ1

2
‖θ0,i‖2 + pθ>1,idi −

(
γ−Λ −

1

2τI

)∥∥∥θ̃1,i

∥∥∥
2

−
(
γ−Λ −

σ1

2

)
‖θ1,i‖2 − v>x Λxvx − v>z Λzvz

)

(A.38)

where

vx =



‖x− πx(û)‖

‖ũi‖




vz =



‖z − πz(û)‖

‖ũi‖




Λx =




β4,x

p
−LG,x

2pτI

−LG,x
2pτI

2β1−p
4pτI




Λz =




β4,z

p
−LG,z

2pτI

−LG,z
2pτI

2β1−p
4pτI


 .

We must check that Λx and Λz are positive definite. Since β4,x

p
and β4,z

p
are positive,

it remains to check that their determinants are positive. We can ensure that the

determinants are positive by choosing τI such that

τI > max

{
L2
G,x

β4,x(2β1 − p)
,

L2
G,z

β4,z(2β1 − p)

}
. (A.39)

Additionally, to ensure that c49 = γ−Λ − 1
2τI

> 0, we must choose τI >
γ−Λ
2

. Therefore
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let

τ ∗I = max

{
L2
G,x

β4,x(2β1 − p)
,

L2
G,z

β4,z(2β1 − p)
,
γ−Λ
2

}
(A.40)

and choose τI > τ ∗I . With this choice of τI , let γ−v = min{λmin(Λx), λmin(Λz)} and

c50 = γ−Λ − σ1

2
. To ensure that c50 > 0, set σ1 < 2γ−Λ . Then we can write V̇ESC as

V̇ESC ≤
p∑

i=1

(
− c45 ‖η̃i‖2 − c46

∥∥∥θ̃0,i

∥∥∥
2

+ c47

∥∥∥θ̇i
∥∥∥

2

+ c48 ‖ν̇i‖2

+
σ1

2
‖θ0,i‖2 + pθ>1,idi − c49

∥∥∥θ̃1,i

∥∥∥
2

− c50 ‖θ1,i‖2

− γ−v ‖x− πx(û)‖2 − γ−v ‖z − πz(û)‖ − 2γ−v ‖ũi‖2
)
.

(A.41)

Thus, for every τI > τ ∗I , we have that η̃i, θ̃i, ũi and θ1,i converge to a neighbour-

hood of the origin and (x, z) converges to a neighbourhood of (πx(û),πz(û)). As u

approaches a neighbourhood of u∗, the state x enters a neighbourhood of the steady-

state optimum π(u∗). This convergence is achieved by using estimation gains K and

KT that are large enough to ensure that all constants multiplying the corresponding

norms (‖η̃‖2,
∥∥∥θ̃
∥∥∥

2

, ‖θ1‖2, ‖ũ‖2, ‖x− πx(û)‖2, and ‖z − πz(û)‖2) are negative.

To determine the size of the neighbourhood the trajectories converge to, we must

examine the positive and indefinite terms in (A.41). These terms are:

1. c47

∥∥∥θ̇
∥∥∥

2

— Since c47 = 1
2a17

+
γ+

Σ

2a18
, we can reduce the effect of this term by

increasing a17 and a18. We can freely increase a17 by increasing K. Since a18

appears in KT − a18 which must be positive, we can only make a18 as large as

KT . Therefore the contribution of this term is O(‖θ̇‖/KT ).

The magnitude of θ̇ depends on the magnitude of a drift term, 1
p
LfJ , and a
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controlled term, 1
p
LGJu. Since the drift is unaffected by the controller, we can

simply bound its size by a positive constant, χ0. Since the magnitude of the

control is proportional to the gain, Kg, we can bound the size of the controlled

term by χ1Kg. Therefore

∥∥∥θ̇
∥∥∥ ≤ χ0 + χ1Kg. (A.42)

Since
∥∥∥θ̇
∥∥∥ increases monotonically with Kg, the contribution of this term to the

size of the neighbourhood is O(Kg/KT ).

2. c48 ‖ν̇‖2 — Since limt→∞ ν = 0, this term does not contribute to the size of the

neighbourhood.

3. σ1

2
‖θ0‖2 — Since θ0 is a drift term, we cannot bound its size using any control

parameters. Therefore the contribution of this term can only be expressed as

O(σ1 ‖θ0‖).

4. pθ>1 d — The dither signal is bounded such that ‖d‖ ≤ D; however the effect of

the dither signal can be reduced by increasing Kg. Therefore the contribution

of this term is O(D/Kg).

Therefore the proposed ESC converges to an O(Kg/KT , σ1 ‖θ0‖ ,D/Kg)-neighbourhood

of the origin.

157



Appendix B

Proof of Lemma 4.1

Using the system dynamics,

‖∆x[k + 1]‖ = ‖x[k + 1]− x[k]‖

= ‖f (x[k]) +G (x[k])u[k]‖ . (B.1)

By the definition of π, we have that f(π(u)) +G(π(u))u = 0 for any u ∈ U. Then

using the triangle inequality, we have

‖∆x[k + 1]‖ = ‖f (x[k]) +G (x[k])u[k]− f (π (û[k]))−G (π(û[k])) û[k]‖

≤ ‖f (x[k])− f (π (û[k]))‖

+ ‖G (x[k])u[k]−G (π(û[k])) û[k]‖ .
(B.2)

By the Lipschitzness of f , we can bound the first term to get

‖∆x[k + 1]‖ ≤ Lf ‖x[k]− π (û[k])‖+ ‖G (x[k])u[k]−G (π(û[k])) û[k]‖
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= Lf ‖x̃[k]‖+ ‖G (x[k])u[k]−G (π(û[k])) û[k]‖ . (B.3)

We can simplify the second term by adding and subtracting G(π(û[k]))u[k], and

then applying the triangle inequality and Cauchy-Schwarz inequality:

‖∆x[k + 1]‖ ≤ Lf ‖x̃[k]‖+
∥∥G (x[k])u[k]−G (π(û[k]))u[k] + . . .

+G (π(û[k]))u[k]−G (π(û[k])) û[k]
∥∥

≤ Lf ‖x̃[k]‖+ ‖(G (x[k])−G (π(û[k])))u[k]‖

+ ‖G (π(û[k])) (u[k]− û[k])‖

≤ Lf ‖x̃[k]‖+ ‖u[k]‖ ‖G (x[k])−G (π(û[k]))‖

+ ‖G (π(û[k]))‖ ‖u[k]− û[k]‖ .
(B.4)

The second term can be bounded using the Lipschitzness of G and the bound on

‖u‖ from Assumption 4.5. We also simplify the last term by adding and subtracting

G(π(u∗)) and applying the triangle inequality:

‖∆x[k + 1]‖ ≤ Lf ‖x̃[k]‖+
√
pγ+

u TLG ‖x[k]− π (û[k])‖

+ ‖G (π(û[k]))−G (π(u∗)) +G (π(u∗))‖ ‖u[k]− û[k]‖

≤
(
Lf +

√
pγ+

u TLG

)
‖x̃[k]‖

+
(
‖G (π (û[k]))−G (π(u∗))‖+ ‖G (π(u∗))‖

)
× . . .

‖u[k]− û[k]‖

≤ c1 ‖x̃[k]‖+
(
‖G (π (û[k]))−G (π(u∗))‖+ . . .

+ ‖G (π(u∗))‖
)
‖u[k]− û[k]‖

(B.5)
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where c1 = Lf +
√
pγ+

u TLG. Since u∗ is constant, G(π(u∗)) is a constant and we

denote it by γG. Then using the Lipschitzness of G and π, we can write the bound

as

‖∆x[k + 1]‖ ≤ c1 ‖x̃[k]‖+
(
LG ‖π(û[k])− π(u∗)‖+ γG

)
‖u[k]− û[k]‖

≤ c1 ‖x̃[k]‖+
(
LGLπ ‖û[k]− u∗‖+ γG

)
‖u[k]− û[k]‖

≤ c1 ‖x̃[k]‖+
(
LGLπ ‖ũ[k]‖+ γG

)
‖u[k]− û[k]‖ . (B.6)

By looking at the controller dynamics (4.24)–(4.25), we have that u[k] − û[k] =

−Kgθ̂1[k] +d[k], which we can use with the triangle inequality to simplify the bound

as

‖∆x[k + 1]‖ ≤ c1 ‖x̃[k]‖+
(
LGLπ ‖ũ[k]‖+ γG

) ∥∥∥Kgθ̂1[k] + d[k]
∥∥∥

≤ c1 ‖x̃[k]‖+
(
LGLπ ‖ũ[k]‖+ γG

) (
Kg

∥∥∥θ̂1[k]
∥∥∥+ ‖d[k]‖

)
. (B.7)

By the projection algorithm used in (4.22), ‖θ̂1,i[k]‖ < γθ and by the choice of dither

signals ‖di[k]‖ ≤ D. Since there are p agents, ‖θ̂1[k]‖ < γθ
√
p and ‖di[k]‖ ≤ D

√
p.

Therefore

‖∆x[k + 1]‖ ≤ c1 ‖x̃[k]‖+
(
LGLπ ‖ũ[k]‖+ γG

)
(Kgγθ

√
p+D

√
p)

= c1 ‖x̃[k]‖+ LGLπ
√
p (Kgγθ +D) ‖ũ[k]‖

+ γGγθ
√
pKg + γG

√
pD

= c1 ‖x̃[k]‖+ c2 ‖ũ[k]‖+ c3Kg + c4D (B.8)
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where c2 = LGLπ(Kgγθ
√
p+D

√
p), c3 = γGγθ

√
p, and c4 = γG

√
p. While c1, c2, and

c3 are constants, they can be changed by suitable choices of Kg and D.
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Appendix C

Proof of Lemma 4.2

Using the definition of θi from (4.5)–(4.6) and the triangle inequality, we have

‖∆θi[k + 1]‖ = ‖θi[k + 1]− θi[k]‖

≤ ‖θ1,i[k + 1]− θ1,i[k]‖+ ‖θ0,i[k + 1]− θ0,i[k]‖

≤
∥∥∥H
(
x[k + 1] + f (x[k + 1]) +G (x[k + 1]) û[k + 1]

)
− . . .

−H
(
x[k] + f (x[k]) +G (x[k]) û[k]

)∥∥∥

+

∥∥∥∥∥
∑

j 6=i
∇H (x)Gj (x[k + 1]) (uj[k + 1]− ûj[k + 1])− . . .

−
∑

j 6=i
∇H (x)Gj (x[k]) (uj[k]− ûj[k])

∥∥∥∥∥

+ ‖−H (x[k + 1]) +H (x[k])‖

+
∥∥G>i (x[k + 1])∇>H (x)−G>i (x[k])∇>H (x)

∥∥ .

(C.1)

Since H is Lipschitz, its gradient is also bounded so ∇H(x) ≤ LH for any x. In

particular, ∇H(x) ≤ LH . Using this fact and the usual Lipschitz inequality, we
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obtain

‖∆θi[k + 1]‖ ≤ LH
∥∥x[k + 1] + f (x[k + 1]) +G (x[k + 1]) û[k + 1]− . . .

− x[k]− f (x[k])−G (x[k]) û[k]
∥∥

+ LH

∥∥∥∥∥
∑

j 6=i
Gj (x[k + 1]) (uj[k + 1]− ûj[k + 1])− . . .

−Gj (x[k]) (uj[k]− ûj[k])

∥∥∥∥∥

+ LH ‖x[k + 1]− x[k]‖+ LH ‖Gi (x[k + 1])−Gi (x[k])‖

≤ LH ‖x[k + 1]− x[k]‖+ LH ‖f (x[k + 1])− f (x[k])‖

+ LH ‖G (x[k + 1]) û[k + 1]−G (x[k]) û[k]‖

+ LH
∥∥G (x[k + 1]) (u[k + 1]− û[k + 1])− . . .

−G (x[k]) (u[k]− û[k])
∥∥

+ LH ‖x[k + 1]− x[k]‖+ LH ‖Gi (x[k + 1])−Gi (x[k])‖ .

(C.2)

Using the Lipschitzness of f and G, we can simplify the second and last terms:

‖∆θi[k + 1]‖ ≤ LH ‖x[k + 1]− x[k]‖+ LHLf ‖x[k + 1]− x[k]‖

+ LH ‖G (x[k + 1]) û[k + 1]−G (x[k]) û[k]‖

+ LH
∥∥G (x[k + 1]) (u[k + 1]− û[k + 1])− . . .

−G (x[k]) (u[k]− û[k])
∥∥

+ LH ‖x[k + 1]− x[k]‖+ LHLf ‖x[k + 1]− x[k]‖
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≤ LH (2 + LG + Lf ) ‖∆x[k + 1]‖

+ LH ‖G (x[k + 1]) û[k + 1]−G (x[k]) û[k]‖

+ LH
∥∥G (x[k + 1]) (u[k + 1]− û[k + 1])− . . .

−G (x[k]) (u[k]− û[k])
∥∥.

(C.3)

The remaining terms are of the form ‖r2s2− r1s1‖, but we would like to bound them

by terms of the form ‖r2 − r1‖ or ‖s2 − s1‖. By adding and subtracting r1s2, and

using the triangle inequality, we can bound these types of terms by ‖r2s2 − r1s1‖ =

‖r2s2−r1s2+r1s2−r1s1‖ ≤ ‖r2s2−r1s2‖+‖r1s2−r1s1‖ = ‖s2‖‖r2−r1‖+‖r1‖‖s2−s1‖.

Using this type of bound for the remaining terms, we have

‖∆θi[k + 1]‖ ≤ LH (2 + LG + Lf ) ‖∆x[k + 1]‖

+ LH ‖û[k + 1]‖ ‖G (x[k + 1])−G (x[k])‖

+ LH ‖G (x[k])‖ ‖û[k + 1]− û[k]‖

+ LH ‖u[k + 1]− û[k + 1]‖ ‖G (x[k + 1])−G (x[k])‖

+ LH ‖G (x[k])‖ ‖(u[k + 1]− û[k + 1])− (u[k]− û[k])‖ .

(C.4)

Terms involving u or û can be simplified by substituting the control laws (4.24)–(4.25)

and the triangle inequality:

‖∆θi[k + 1]‖ ≤ LH (2 + LG + Lf ) ‖∆x[k + 1]‖

+ LH

∥∥∥u[k + 1] +Kgθ̂1[k + 1]− d[k + 1]
∥∥∥× . . .

‖G (x[k + 1])−G (x[k])‖+ LH ‖G (x[k])‖
∥∥∥∥

1

τI
θ̂1[k]

∥∥∥∥

+ LH

∥∥∥−Kgθ̂1[k + 1] + d[k + 1]
∥∥∥ ‖G (x[k + 1])−G (x[k])‖
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+ LH ‖G (x[k])‖ × . . .
∥∥∥−Kg(θ̂1[k + 1]− θ̂1[k]) + (d[k + 1]− d[k])

∥∥∥

≤ LH (2 + LG + Lf ) ‖∆x[k + 1]‖

+ LH

(
‖u[k + 1]‖+Kg

∥∥∥θ̂1[k + 1]
∥∥∥+ ‖d[k + 1]‖

)
× . . .

× ‖G (x[k + 1])−G (x[k])‖+
LH
τI
‖G (x[k])‖

∥∥∥θ̂1[k]
∥∥∥

+ LH

(
Kg

∥∥∥θ̂1[k + 1]
∥∥∥+ ‖d[k + 1]‖

)
× . . .

‖G (x[k + 1])−G (x[k])‖

+ LH ‖G (x[k])‖
(
Kg

∥∥∥θ̂1[k + 1]− θ̂1[k]
∥∥∥+ . . .

‖d[k + 1]− d[k]‖
)
.

(C.5)

By the projection algorithm in (4.22), ‖θ̂1[k]‖ ≤ γθ. Using Assumption 4.5, u[k] ≤
√
pγ+

u T . Since the dither signals are sinusoids with amplitude D, we have that

‖d[k]‖ < D. Using these bounds,

‖∆θi[k + 1]‖ ≤ LH (2 + LG + Lf ) ‖∆x[k + 1]‖

+ LH

(√
pγ+

u T +Kgγθ +D
)
‖G (x[k + 1])−G (x[k])‖

+
LH
τI
‖G (x[k])‖ γθ

+ LH (Kgγθ +D) ‖G (x[k + 1])−G (x[k])‖

+ LH ‖G (x[k])‖ (2Kgγθ + 2D)

= LH (2 + LG + Lf ) ‖∆x[k + 1]‖

+ LH

(√
pγ+

u T + 2Kgγθ + 2D
)
‖G (x[k + 1])−G (x[k])‖

+ LH

(
γθ
τI

+ 2Kgγθ + 2D

)
‖G (x[k])‖ .

(C.6)
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We can simplify the second term using the Lipschitzness of G. For the third term,

we add and subtract G(π(û[k])) and G(π(u∗)) and then use the triangle inequality

and Lipschitzness of G and π to obtain

‖∆θi[k + 1]‖ ≤ LH (2 + LG + Lf ) ‖∆x[k + 1]‖

+ LH

(√
pγ+

u T + 2Kgγθ + 2D
)

(LG ‖x[k + 1]− x[k]‖)

+ LH

(
γθ
τI

+ 2Kgγθ + 2D

)∥∥G (x[k])−G(π(û[k])) + . . .

G(π(û[k]))−G(π(u∗)) +G(π(u∗))
∥∥

≤ LH

(
2 + LG

(
1 +

√
pγ+

u T + 2Kgγθ + 2D
)

+ Lf

)
‖∆x[k + 1]‖

+ LH

(
γθ
τI

+ 2Kgγθ + 2D

)(
‖G (x[k])−G(π(û[k]))‖+ . . .

‖G(π(û[k]))−G(π(u∗))‖+ ‖G(π(u∗))‖
)

≤ c5 ‖∆x[k + 1]‖+ LH

(
γθ
τI

+ 2Kgγθ + 2D

)
× . . .

(
LG ‖x̃[k]‖+ LGLπ ‖uT [k]‖+ γG

) (C.7)

where c5 = LH(2 + LG(1 +
√
pγ+

u T + 2Kgγθ + 2D) + Lf ). Finally, we can insert the

bound for ‖∆x[k + 1]‖ from Lemma 4.1 to obtain

‖∆θi[k + 1]‖ ≤ c5 (c1 ‖x̃[k]‖+ c2 ‖ũ[k]‖+ c3Kg + c4D)

+ LH (LG ‖x̃[k]‖+ LGLπ ‖ũ[k]‖+ γG)

(
γθ
τI

+ 2Kgγθ + 2D

)

=

(
c1c5 + LG

(
γθ
τI

+ 2LHKgγθ + 2D

))
‖x̃[k]‖

+

(
c2c5 + LGLπ

(
γθ
τI

+ 2LHKgγθ + 2D

))
‖ũ[k]‖

+ (c3c5 + 2LHKgγGγθ)Kg + LHγGγθ
1

τI
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+ (c4c5 + 2LHγG)D

= c6 ‖x̃[k]‖+ c7 ‖ũ[k]‖+ c8Kg + c9
1

τI
+ c10D (C.8)

where c6 = c1c5 + LHLG(γθ
τI

+ 2Kgγθ + 2D), c7 = c2c5 + LHLGLπ(γθ
τI

+ 2Kgγθ + 2D),

c8 = c3c5+2LHKgγGγθ), c9 = LHγGγθ, and c10 = c4c5+2LHγG are positive constants.
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Appendix D

Proof of Lemma 4.3

We are using the consensus algorithm from [66]. In corollary 4.2 from their paper,

they prove that this algorithm is ultimately bounded when its average input has

bounded first differences. The inputs to our consensus algorithm are the local costs,

yi, and so the average input to the consensus algorithm is simply the average cost

1
p
J . Therefore to apply the results of [66], we must show that ‖∆J‖ is bounded.

Using the Lipschitzness of H and the bound for ‖∆x[k+ 1]‖ from Lemma 4.1, we

can bound ‖∆J‖ by

‖∆J [k + 1]‖ = ‖J [k + 1]− J [k]‖

= ‖H (x[k + 1])−H (x[k])‖

≤ LH ‖x[k + 1]− x[k]‖

≤ LHc1 ‖x̃[k]‖+ LHc2 ‖ũ[k]‖+ LHc3Kg + LHc4D. (D.1)

Therefore the average input to the consensus algorithm is bounded, and so we can
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use the ultimate bound from [66]. This bound is

lim
k→∞

∥∥∥J̃i[k]
∥∥∥ ≤

maxk∈Z>0

{∥∥∥1
p
∆J [k]

∥∥∥
}

∆tκIλ2

(D.2)

where λ2 is the second smallest eigenvalue of L. By Assumption 4.4, λ2 6= 0 so this

bound is well-defined. We use the tuning parameters of κP = 1
∆t

and κI = 1
∆tdeg+(L)

where deg+(L) is the maximum degree of the network. Since the consensus error is

ultimately bounded, for any ε > 0, there exists N(ε) ∈ Z>0 such that for any k > N ,

we have that

∥∥∥J̃i[k]
∥∥∥ ≤ deg+(L) maxk∈Z>0 {‖∆J [k]‖}

λ2

+ ε. (D.3)

In particular by letting ε = 1
2

deg+(L) maxk∈Z>0
{‖∆J [k]‖}

λ2
, there exists N such that for all

k > N , we have

∥∥∥J̃i[k]
∥∥∥ ≤ 3

2

deg+(L) maxk∈Z>0 {‖∆J [k]‖}
λ2

. (D.4)

We already have a bound for ‖∆J [k]‖ and since this bound holds for all k, it holds

for the argmax. Therefore the consensus error is bounded by

∥∥∥∆J̃i[k + 1]
∥∥∥ =

∥∥∥J̃ [k + 1]− J̃ [k]
∥∥∥

≤
∥∥∥J̃i[k + 1]

∥∥∥+
∥∥∥J̃ [k]

∥∥∥

≤ 3

2

deg+(L)LH (c1 ‖x̃[k]‖+ c2 ‖ũ[k]‖+ c3Kg + c4D)

λ̂2

+
3

2

deg+(L)LH (c1 ‖x̃[k]‖+ c2 ‖ũ[k]‖+ c3Kg + c4D)

λ̂2
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=
3 deg+(L)LHc1

λ̂2

‖x̃[k]‖+
3 deg+(L)LHc2

λ̂2

‖ũ[k]‖

+
3 deg+(L)LHc3

λ̂2

Kg +
3 deg+(L)LHc4

λ̂2

D

= c11 ‖x̃[k]‖+ c12 ‖ũ[k]‖+ c13Kg + c14D (D.5)

where c11 = 3 deg+(L)LHc1

λ̂2
, c12 = 3 deg+(L)LHc2

λ̂2
, c13 = 3 deg+(L)LHc3

λ̂2
and c14 = 3 deg+(L)LHc4

λ̂2

are positive constants.
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Appendix E

Proof of Lemma 4.4

By iteratively applying (4.21), we have

Σi[k + 1] = αΣi[k] +wi[k]w>i [k]

= α
(
αΣi[k − 1] +wi[k − 1]w>i [k − 1]

)
+wi[k]w>i [k]

= α2Σi[k − 1] + αwi[k − 1]w>i [k − 1] +wi[k]w>i [k]

= αr+1Σi[k − r] +
k∑

j=k−r
αk−jwi[j]w

>
i [j]

= αk+1Σi[0] +
k∑

j=0

αk−jwi[j]w
>
i [j]. (E.1)

In this way, we can write Σi[k + 1] in terms of wi[j] for j ∈ {1, . . . , k} and Σi[0].

Since we can arbitrarily assign Σi[0], we set Σi[0] = σ0I for some σ0 ∈ R>0 and then

we can explicitly write

Σi[k + 1] = αk+1σ0I +
k∑

j=0

αk−jwi[j]w
>
i [j]. (E.2)
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By Assumption 4.5, we have several bounds for sums ofwi[j]w
>
i [j]. By adding or sub-

tracting appropriate amounts of positive semidefinite terms of the formwi[j]w
>
i [j], we

can bound Σi[k+1] by an expression involving sums over T time steps of wi[j]w
>
i [j].

Then these bounds can be simplified using Assumption 4.5 to obtain a bound which

is a geometric sequence in α which can easily be simplified.

First, we find a lower bound for Σi[k + 1]. We consider the cases where k ≤ T

and k > T separately. First, assume k ≤ T . Then

Σi[k + 1] = αk+1σ0I +
k∑

j=0

αk−jwi[j]w
>
i [j]

≥ αk+1σ0I

≥ αT+1σ0I. (E.3)

Next consider the case where k > T . Since the first term is positive, we can lower

bound it by zero:

Σi[k + 1] = αk+1σ0I +
k∑

j=0

αk−jwi[j]w
>
i [j]

≥ 1

T

k∑

j=0

Tαk−jwi[j]w
>
i [j]. (E.4)

We would like to bound the sum using Assumption 4.5 and therefore need to write

this sum as several sums which resemble (4.28). These sums need to be over a horizon

of T time steps. Since k > T , there is at least one such sum. The exact number of

these sums is k−T +1. Additionally, we have several sums over shorter time horizons

for the first T − 2 terms and last T − 2 terms. When we rearrange the sum in this
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way, we obtain

Σi[k + 1] ≥ 1

T

(
T−1∑

j=0

αk−jwi[j]w
>
i [j] + · · ·+

k∑

j=k−T+1

αk−jwi[j]w
>
i [j]

)

+
1

T

(
0∑

j=0

αk−jwi[j]w
>
i [j] + · · ·+

T−2∑

j=0

αk−jwi[j]w
>
i [j]

)

+
1

T

(
k∑

j=k−T+2

αk−jwi[j]w
>
i [j] + · · ·+

k∑

j=k

αk−jwi[j]w
>
i [j]

)

=
1

T

k−T+1∑

s=0

s+T−1∑

j=s

αk−jwi[j]w
>
i [j] +

1

T

T−2∑

s=0

s∑

j=0

αk−jwi[j]w
>
i [j]

+
1

T

T−2∑

s=0

k∑

j=k−s
αk−jwi[j]w

>
i [j]

≥ 1

T

k−T+1∑

s=0

s+T−1∑

j=s

αk−jwi[j]w
>
i [j]. (E.5)

Since α ∈ (0, 1), for any j ∈ {s, . . . , s + T − 1} we have that αk−s ≥ αk−j. We can

factor the α terms from the second sum using this bound.

Σi[k + 1] ≥
k−T+1∑

s=0

αk−s
(

1

T

s+T−1∑

j=s

wi[j]w
>
i [j]

)
. (E.6)

The second sum is over a time horizon of T time steps as in (4.28) and we can apply

Assumption 4.5 to bound these sums by

Σi[k + 1] >
k−T+1∑

s=0

αk−sγ−wI

= αk
k−T+1∑

s=0

(
1

α

)s
γ−wI. (E.7)
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The resulting sum is geometric in 1
α

. Using the well-known formula for the first several

terms of a geometric series, we have

Σi[k + 1] > αk

(
1− (1/α)k−T+2

1− 1/α

)
γ−wI

=
αk+1 − αT−1

α− 1
γ−wI

=
αT−1

(
1− αk−T+2

)

1− α γ−wI. (E.8)

Since k > T , k − T + 2 > 1 so αk−T+2 < α and 1− αk−T+2 > 1− α. Therefore

Σi[k + 1] >
αT+1 (1− α)

1− α γ−wI

= αT+1γ−wI. (E.9)

We now have lower bounds for Σ for any value of k:

Σi[k + 1] >





αT+1σ0I if k ≤ T

αT+1γ−wI if k > T.

(E.10)

Alternatively, we can write this bound as a single equation valid for all k ∈ Z≥0 by

taking the minimum of the two cases to obtain

Σi[k + 1] > min{σ0, γ
−
w}αT+1I. (E.11)

Next, we find an upper bound for Σi[k+ 1]. We start with the definition of Σi[k+ 1]
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in terms of wi[j]w
>
i [j] in (E.2). Since αk+1 ≤ 1 for any k ∈ Z≥0, we have

Σi[k + 1] = αk+1σ0I +
k∑

j=0

αk−jwi[j]w
>
i [j]

≤ σ0I +
k∑

j=0

αk−jwi[j]w
>
i [j]. (E.12)

Now we selectively add more terms of the form wi[j]w
>
i [j] so that we can get sums

of the form (4.28) and apply Assumption 4.5:

Σi[k + 1] ≤ σ0I +
k∑

s=0

αk−s
(
s+T−1∑

j=s

wi[j]w
>
i [j]

)

< σ0I +
k∑

s=0

αk−sTγ+
wI

= σ0I +
k∑

s=0

αsTγ+
wI. (E.13)

Again, we have a geometric series, which we can simplify using the well known formula

to get

Σi[k + 1] < σ0I +
1− αk+1

1− α Tγ+
wI. (E.14)

Then since 1− αk < 1 for any k ∈ Z>0, we can finally write this bound as

Σi[k + 1] =

(
σ0 +

γ+
wT

1− α

)
I. (E.15)
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We have now shown that Σi[k + 1] has both an upper and lower bound. Therefore

min{σ0, γ
−
w}αT+1I < Σi[k + 1] <

(
σ0 +

γ+
wT

1− α

)
I (E.16)

and since both bounds are positive definite, we can conclude that Σi[k+ 1] is always

positive definite and thus invertible and there exists γ−Σ , γ
+
Σ ∈ R≥ 0 such that γ−ΣI <

Σi[k + 1] < γ+
ΣI.
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Appendix F

Proof of Theorem 4.1

The proof of this theorem uses a Lyapunov approach. Rather than writing a Lya-

punov function for the entire system right away, we consider some simpler candidate

Lyapunov functions, which only relate to one aspect of the controller, and then add

them together to get an overall Lyapunov function. The first differences of each Lya-

punov function are not necessarily negative definite in all variables, but once added

together the final Lyapunov function has the necessary properties. This approach

has the advantage of being easer to follow as expressions are only written down when

relevant. We consider separate Lyapunov functions for parameter estimation, stabi-

lization, and extremum-seeking. Note that throughout this proof, a1, a2, . . . denote

arbitrary constants from completing the squares and c1, c2, . . . denote positive coeffi-

cients.

The parameter estimation Lyapunov functions are written in terms of the devi-

ation variables, θ̃i[k] = θi[k] − θ̂i[k] and η̃i[l] = ηi[k] − η̂i[k]. The dynamics of the
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parameter estimation error are

θ̃i[k + 1] ≤ θ̃i[k] + ∆θi[k + 1]− Σ−1
i [k]wi[k] (ei[k]− η̂[k])

α +w>i [k]Σ−1
i [k]wi[k]

. (F.1)

Note that these dynamics are represented by an inequality due to the projection

algorithm on the dynamics of θ̂i[k] from (4.22). The dynamics of the auxiliary variable

estimation error are

η̃i[k + 1 = η̃i[k]−Kη̃i[k]−w>i [k + 1] (θi[k + 1]− θi[k]) + ∆J̃i[k + 1]. (F.2)

We start by finding a Lyapunov function to show that the parameter estimation

error is practically stable. An obvious candidate is

Vθ[k] =

p∑

i=1

θ̃
>
i [k]Σi[k]θ̃i[k]. (F.3)

By Lemma 4.4, Σi[k] is positive definite for all k ∈ Z≥0 so this function is positive

definite and radially unbounded and hence a valid candidate Lyapunov function.

Using (4.21) and (F.1), the dynamics of Σi and θ̃i, the first difference is

∆Vθ[k + 1] = Vθ[k + 1]− Vθ[k]

=

p∑

i=1

θ̃
>
i [k + 1]Σi[k + 1]θ̃i[k + 1]−

p∑

i=1

θ̃
>
i [k]Σi[k]θ̃i[k]
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=

p∑

i=1

(
θ̃i[k] + ∆θi[k + 1]− Σ−1

i [k]wi[k] (ei[k]− η̂[k])

α +w>i [k]Σ−1
i [k]wi[k]

)>
× . . .

(
αΣi[k] +wi[k]w>i [k]

)
× . . .

(
θ̃i[k] + ∆θi[k + 1]− Σ−1

i [k]wi[k] (ei[k]− η̂[k])

α +w>i [k]Σ−1
i [k]wi[k]

)

−
p∑

i=1

θ̃
>
i [k]Σi[k]θ̃i[k].

(F.4)

To simplify notation, let µ1,i[k] = θ̃
>
i [k]wi[k], µ2,i[k] = ∆θ>i [k + 1]wi[k], µ3,i[k] =

w>i [k]Σ−1
i [k]wi[k], and µ4,i[k] = ei[k] − η̂i[k]. Using this notation, the Lyapunov

difference is

∆Vθ[k + 1] =

p∑

i=1

(
θ̃
>
i [k] + ∆θ>i [k + 1]− w

>
i [k]Σ−1

i [k]µ4,i[k]

α + µ3,i[k]

)
× . . .

(
αΣi[k] +wi[k]w>i [k]

)
× . . .

(
θ̃i[k] + ∆θi[k + 1]− Σ−1

i [k]wi[k]µ4,i[k]

α + µ3,i[k]

)

− θ̃>i [k]Σi[k]θ̃i[k].

(F.5)

Since Σi[0] = σ0I and wi[k]w>i [k] are symmetric, it is easy to inductively show that
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Σi[k] is symmetric. Using this symmetry, we can expand the quadratic term to get

∆Vθ[k + 1] =

p∑

i=1

αθ̃
>
i [k]Σi[k]θ̃i[k] + 2αθ̃

>
i [k]Σi[k]∆θi[k + 1]

− 2
αµ4,i[k]

α + µ3,i[k]
θ̃
>
i [k]Σi[k]Σ−1

i [k]wi[k]

+ α∆θ>i [k + 1]Σi[k]∆θi[k + 1]

− 2
αµ4,i[k]

α + µ3,i[k]
∆θ>i [k + 1]Σi[k]Σ−1

i [k]wi[k]

+
αµ2

4,i[k]

(α + µ3,i[k])2w
>
i [k]Σ−1

i [k]Σi[k]Σ−1
i [k]wi[k]

+ θ̃
>
i [k]wi[k]w>i [k]θ̃i[k] + 2θ̃

>
i [k]wi[k]w>i [k]∆θi[k + 1]

− 2
µ4,i[k]

α + µ3,i[k]
θ̃
>
i [k]wi[k]w>i [k]Σ−1

i [k]wi[k]

+ ∆θ>i [k + 1]wi[k]w>i [k]∆θi[k + 1]

− 2
µ4,i[k]

α + µ3,i[k]
∆θ>i [k + 1]wi[k]w>i [k]Σ−1

i [k]wi[k]

+
µ2

4,i[k]

(α + µ3,i[k])2w
>
i [k]Σ−1

i [k]wi[k]w>i [k]Σ−1
i [k]wi[k]

− θ̃>i [k]Σi[k]θ̃i[k].

(F.6)

Next, we simplify this expression by letting Σi[k]Σ−1
i [k] = I, collecting terms, and
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grouping together squared terms where appropriate:

∆Vθ[k + 1] =

p∑

i=1

− (1− α) θ̃
>
i [k]Σi[k]θ̃i[k] + 2αθ̃

>
i [k]Σi[k]∆θi[k + 1]

+ α∆θ>i [k + 1]Σi[k]∆θi[k + 1]− 2α
µ4,i[k]

α + µ3,i[k]

(
θ̃
>
i [k]wi[k]

)

− 2α
µ4,i[k]

α + µ3,i[k]

(
∆θ>i [k + 1]wi[k]

)

+ α
µ2

4,i[k]

(α + µ3,i[k])2

(
w>i [k]Σ−1

i [k]wi[k]
)

+
(
θ̃
>
i [k]wi[k]

)2

+ 2
(
θ̃
>
i [k]wi[k]

) (
∆θ>i [k + 1]wi[k]

)

− 2
µ4,i[k]

α + µ3,i[k]

(
θ̃
>
i [k]wi[k]

) (
w>i [k]Σ−1

i [k]wi[k]
)

+
(
∆θ>i [k + 1]wi[k]

)2

− 2
µ4,i[k]

α + µ3,i[k]

(
∆θ>i [k + 1]wi[k]

) (
w>i [k]Σ−1

i [k]wi[k]
)

+
µ2

4,i[k]

(α + µ3,i[k])2

(
w>i [k]Σ−1

i [k]wi[k]
)2
.

(F.7)

The terms θ̃
>
i [k]wi[k], ∆θ>i [k + 1]wi[k], and w>i [k]Σ−1

i [k]wi[k] appear several times

in this expression. Conveniently, these terms are equal to the scalars µ1,i[k], µ2,i[k],
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and µ3,i[k] which were recently defined. Making this substitution, we can write

∆Vθ[k + 1] =

p∑

i=1

− (1− α) θ̃
>
i [k]Σi[k]θ̃i[k] + 2αθ̃

>
i [k]Σi[k]∆θi[k + 1]

+ α∆θ>i [k + 1]Σi[k]∆θi[k + 1]− 2α
µ4,i[k]

α + µ3,i[k]
µ1,i[k]

− 2α
µ4,i[k]

α + µ3,i[k]
µ2,i[k] + α

µ2
4,i[k]

(α + µ3,i[k])2µ3,i[k] + µ2
1,i[k]

+ 2µ1,i[k]µ2,i[k]− 2
µ4,i[k]

α + µ3,i[k]
µ1,i[k]µ3,i[k] + µ2

2,i[k]

− 2
µ4,i[k]

α + µ3,i[k]
µ2,i[k]µ3,i[k] +

µ2
4,i[k]

(α + µ3,i[k])2µ
2
3,i[k].

(F.8)

By regrouping and canceling terms, this expression becomes

∆Vθ[k + 1] =

p∑

i=1

− (1− α) θ̃
>
i [k]Σi[k]θ̃i[k] + 2αθ̃

>
i [k]Σi[k]∆θi[k + 1]

+ α∆θ>i [k + 1]Σi[k]∆θi[k + 1] + µ2
1,i[k]

+ 2µ1,i[k]µ2,i[k] + µ2
2,i[k]− 2

µ4,i[k] (α + µ3,i[k])

α + µ3,i[k]
µ1,i[k]

− 2
µ4,i[k] (α + µ3,i[k])

α + µ3,i[k]
µ2,i[k] +

µ2
4,i[k] (α + µ3,i[k])

(α + µ3,i[k])2 µ3,i[k]

=

p∑

i=1

− (1− α) θ̃
>
i [k]Σi[k]θ̃i[k] + 2αθ̃

>
i [k]Σi[k]∆θi[k + 1]

+ α∆θ>i [k + 1]Σi[k]∆θi[k + 1] + (µ1,i[k] + µ2,i[k])2

− 2µ4,i[k] (µ1,i[k] + µ2,i[k]) +
µ3,i[k]

α + µ3,i[k]
µ2

4,i[k].

(F.9)

Since µ3,i[k] is a quadratic term, it is always positive. Therefore
µ3,i[k]

α+µ3,i[k]
< 1 and we
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can bound the Lyapunov difference by

∆Vθ[k + 1] <

p∑

i=1

− (1− α) θ̃
>
i [k]Σi[k]θ̃i[k] + 2αθ̃

>
i [k]Σi[k]∆θi[k + 1]

+ α∆θ>i [k + 1]Σi[k]∆θi[k + 1] + (µ1,i[k] + µ2,i[k])2

− 2µ4,i[k] (µ1,i[k] + µ2,i[k]) + µ2
4,i[k]

=

p∑

i=1

− (1− α) θ̃
>
i [k]Σi[k]θ̃i[k] + 2αθ̃

>
i [k]Σi[k]∆θi[k + 1]

+ α∆θ>i [k + 1]Σi[k]∆θi[k + 1] + (µ1,i[k] + µ2,i[k]− µ4,i[k])2 .

(F.10)

Next, we replace µ1,i[k], µ2,i[k], and µ4,i[k] by their definitions to obtain

∆Vθ[k + 1] ≤
p∑

i=1

− (1− α) θ̃
>
i [k]Σi[k]θ̃i[k] + 2αθ̃

>
i [k]Σi[k]∆θi[k + 1]

+ α∆θ>i [k + 1]Σi[k]∆θi[k + 1]

+
(
θ̃
>
i [k]wi[k] + ∆θ>i [k + 1]wi[k]− ei[k] + η̂i[k]

)2

.

(F.11)

By rearranging the definition of ηi[k], we have ei[k] = ηi[k]+ θ̃
>
i [k]wi[k]. Substituting

this expression for ei[k] gives

∆Vθ[k + 1] ≤
p∑

i=1

− (1− α) θ̃
>
i [k]Σi[k]θ̃i[k] + 2αθ̃

>
i [k]Σi[k]∆θi[k + 1]

+ α∆θ>i [k + 1]Σi[k]∆θi[k + 1]

+

(
θ̃
>
i [k]wi[k] + ∆θ>i [k + 1]wi[k]− ηi[k]

− θ̃>[k]wi[k] + η̂i[k]

)2

.

(F.12)
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Let η̃i[k] = ηi[k]− η̂i[k]. Then the first difference is bounded by

∆Vθ[k + 1] ≤
p∑

i=1

− (1− α) θ̃
>
i [k]Σi[k]θ̃i[k] + 2αθ̃

>
i [k]Σi[k]∆θi[k + 1]

+ α∆θ>i [k + 1]Σi[k]∆θi[k + 1] +
(
∆θ>i [k + 1]wi[k]− η̃i[k]

)2

=

p∑

i=1

− (1− α) θ̃
>
i [k]Σi[k]θ̃i[k] + 2αθ̃

>
i [k]Σi[k]∆θi[k + 1]

+ α∆θ>i [k + 1]Σi[k]∆θi[k + 1]− 2∆θ>i [k + 1]wi[k]η̃i[k]

+ ∆θ>i [k + 1]wi[k]w>i [k]∆θi[k + 1] + η̃2
i [k].

(F.13)

There is one remaining positive definite term. It can be bounded by completing the

squares. Since Σi[k] is positive definite, for any a1 ∈ R>0 we have that

(
θ̃i[k]− a1∆θi[k + 1]

)>
Σi[k]

(
θ̃i[k]− a1∆θi[k + 1]

)
≥ 0. (F.14)

By rearranging this equation we can write an upper bound for the indefinite term as

the sum of two positive definite terms. In this step, we additionally use the fact that

Σi[k] is symmetric. This process gives

0 ≤
(
θ̃i[k]− a1∆θi[k + 1]

)>
Σi[k]

(
θ̃i[k]− a1∆θi[k + 1]

)

0 ≤ θ̃>i [k]Σi[k]θ̃i[k]− 2a1θ̃
>
i [k]Σi[k]∆θi[k + 1]

+ a2
1∆θ>i [k + 1]Σi[k]∆θi[k + 1]

θ̃
>
i [k]Σi[k]∆θi[k + 1] ≤ 1

2a1

θ̃
>
i [k]Σi[k]θ̃i[k]

+
a1

2
∆θ>i [k + 1]Σi[k]∆θi[k + 1].

(F.15)

Similarly, for any a2 ∈ R>0, we can complete the squares to bound the ∆θ>i [k +
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1]wi[k]η̃i[k] term by a2

2
‖∆θi[k + 1]‖2 ‖wi[k]‖+ 1

2a2
η̃2
i [k]. Using these two bounds, we

can bound the Lyapunov difference in terms of definite functions only:

∆Vθ[k + 1] ≤
p∑

i=1

− (1− α) θ̃
>
i [k]Σi[k]θ̃i[k] +

α

a1

θ̃
>
i [k]Σi[k]θ̃i[k]

+ αa1∆θ>i [k + 1]Σi[k]∆θi[k + 1]

+ α∆θ>i [k + 1]Σi[k]∆θi[k + 1] + a2 ‖∆θi[k + 1]‖2 ‖wi[k]‖

+
1

a2

η̃2
i [k] + ∆θ>i [k + 1]wi[k]w>i [k]∆θi[k + 1] + η̃2

i [k]

=

p∑

i=1

−
(

1− α− α

a1

)
θ̃
>
i [k]Σi[k]θ̃i[k]

+ (αa1 + α) ∆θ>i [k + 1]Σi[k]∆θi[k + 1]

+ (1 + a2) ‖∆θi[k + 1]‖2 ‖wi[k]‖2

+

(
1 +

1

a2

)
η̃2
i [k].

(F.16)

The quadratic terms θ̃
>
i [k]Σi[k]θ̃i[k] and ∆θ>i [k + 1]Σi[k]∆θi[k + 1] can be further

bounded using Lemma 4.4:

∆Vθ[k + 1] ≤
p∑

i=1

−
(

1− α− α

a1

)
γ−Σ θ̃

>
i [k]θ̃i[k]

+ (αa1 + α) γ+
Σ ‖∆θi[k + 1]‖2

+ (1 + a2) ‖∆θi[k + 1]‖2 ‖wi[k]‖2 +

(
1 +

1

a2

)
η̃2
i [k]

≤
p∑

i=1

−c15

∥∥∥θ̃i[k]
∥∥∥

2

+ (αa1 + α) γ+
Σ ‖∆θi[k + 1]‖2

+ (1 + a2) ‖∆θi[k + 1]‖2 ‖wi[k]‖2 +

(
1 +

1

a2

)
η̃2
i [k]

(F.17)
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where c15 = (1 − α − α
a1

)γ−Σ . This constant is positive whenever a1 >
α

1−α , however

since a1 is arbitrary, it can be chosen to ensure that c15 is positive and the first term is

therefore negative. Using the bound for ‖wi[k]‖ from Assumption 4.5, we can further

simplify this expression:

∆Vθ[k + 1] ≤
p∑

i=1

−c15

∥∥∥θ̃i[k]
∥∥∥

2

+ (αa1 + α) γ+
Σ ‖∆θi[k + 1]‖2

+ (1 + a2) ‖∆θi[k + 1]‖2
(√

γ+
wT
)2

+

(
1 +

1

a2

)
η̃2
i [k]

=

p∑

i=1

−c15

∥∥∥θ̃i[k]
∥∥∥

2

+

(
1 +

1

a2

)
η̃2
i [k]

+
(
(αa1 + α) γ+

Σ + (1 + a2)γ+
wT
)
‖∆θi[k + 1]‖2

=

p∑

i=1

−c15

∥∥∥θ̃i[k]
∥∥∥

2

+ c16 ‖∆θi[k + 1]‖2 +

(
1 +

1

a2

)
η̃2
i [k] (F.18)

where c16 = (αa1 + α)γ+
Σ + (1 + a2)γ+

wT . Since we know a bound for ‖∆θi[k + 1]‖,

we are not concerned with the second term at this point. We do not know anything

about the behaviour of η̃i yet. Therefore, we consider the Lyapunov candidate

Vη[k] =

p∑

i=1

η̃2
i [k]. (F.19)

Since this function is the sum of quadratic scalar terms, it is positive definite and

radially unbounded. Using (F.2), the dynamics of η̃i[k], the first difference is

∆Vη[k + 1] = Vη[k + 1]− Vη[k]

=

p∑

i=1

η̃2
i [k + 1]−

p∑

i=1

η̃2
i [k]
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=

p∑

i=1

(
(1−K)η̃i[k]−w>i [k + 1]∆θi[k + 1] + ∆J̃i[k + 1]

)2

− η̃2
i [k].

(F.20)

Next, we expand the squared term and collect terms to simplify this expression:

∆Vη[k + 1] =

p∑

i=1

(1−K)2η̃2
i [k]− 2(1−K)η̃i[k]w>i [k + 1]∆θi[k + 1]

+ 2(1−K)η̃i[k]∆J̃i[k + 1] +
(
w>i [k + 1]∆θi[k + 1]

)2

− 2w>i [k + 1]∆θi[k + 1]∆J̃i[k + 1] + ∆J̃2
i [k + 1]− η̃2

i [k]

=

p∑

i=1

−
(
2K −K2

)
η̃2
i [k]− 2(1−K)η̃i[k]w>i [k + 1]∆θi[k + 1]

+ 2(1−K)η̃i[k]∆J̃i[k + 1] +
(
w>i [k + 1]∆θi[k + 1]

)2

+ 2 ‖wi[k + 1]‖ ‖∆θi[k + 1]‖
∥∥∥∆J̃i[k + 1]

∥∥∥+ ∆J̃2
i [k + 1].

(F.21)

We can remove the indefinite terms by completing the squares. For any arbitrary

a3, . . . , a5 ∈ R>0, we have

∆Vη[k + 1] ≤
p∑

i=1

−
(
2K −K2

)
η̃2
i [k] + a3(1−K)η̃2

i [k]

+
1−K
a3

(
w>i [k + 1]∆θi[k + 1]

)2
+ a4(1−K)η̃2

i [k]

+
1−K
a4

(
∆J̃i[k + 1]

)2

+
(
w>i [k + 1]∆θi[k + 1]

)2

+ a5 ‖wi[k + 1]‖2 ‖∆θi[k + 1]‖2 +
1

a5

∥∥∥∆J̃i[k + 1]
∥∥∥

2

+
(

∆J̃i[k + 1]
)2
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=

p∑

i=1

−
(
2K −K2 − (a3 + a4)(1−K)

)
η̃2
i [k]

+

(
1−K
a3

+ 1 + a5

)
‖wi[k + 1]‖2 ‖∆θi[k + 1]‖2

+

(
1 +

1−K
a4

+
1

a5

)∥∥∥∆J̃i[k + 1]
∥∥∥

2

.

(F.22)

Using the bound on ‖wi[k + 1]‖ from Assumption 4.5, we can further simplify this

expression as

∆Vη[k + 1] ≤
p∑

i=1

−c17η̃
2
i [k] +

(
1−K
a3

+ 1 + a5

)
γ+
wT ‖∆θi[k + 1]‖2

+

(
1 +

1−K
a4

+
1

a5

)∥∥∥∆J̃i[k + 1]
∥∥∥

2

=

p∑

i=1

−c17η̃
2
i [k] + c18 ‖∆θi[k + 1]‖2 + c19

∥∥∥∆J̃i[k + 1]
∥∥∥

2

. (F.23)

where c17 = (2K − K2 − (a3 + a4)(1 − K)), c18 = (1−K
a3

+ 1 + a5)γ+
wT , and c19 =

1 + 1−K
a4

+ 1
a5

. Note that since K ∈ (0, 1), we can always choose a3 and a4 such that

a3 +a4 < K which ensures that c17 > 0. Note that all of the terms are either negative

definite or have already been shown to be bounded whenever the ESC stabilizes and

optimizes the system. Therefore, we can interpret Vη as a Lyapunov function that

shows that the η̃ dynamics are uniformly asymptotically bounded. The size of the

invariant set that η̃ converges to is inversely proportional to a3 and a4. Therefore,

we want to make a3 and a4 as large as possible. Since these are constants obtained

by completing the square, they can be chosen arbitrarily. However, to ensure the

positivity of c17, we have the additional constraint that a3 + a4 < K. Therefore the

size of the set that η̃ converges to can be made smaller by increasing K. This set

cannot be made arbitrarily small as K must be less than one. This limitation is a
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fundamental limitation of a discrete-time algorithm.

The size of the set could also be made arbitrarily small by reducing the size of the

time step which would effectively cause f andG to scale proportional to the time step.

The scaled vector fields would have proportionally scaled Lipschitz constants, Lf and

LG which would ultimately result in an arbitrarily small bounds on ‖∆θi[k+ 1]‖ and

‖∆J̃i[k+ 1]‖. Furthermore, the bound on ‖∆J̃i[k+ 1]‖ can be made arbitrarily small

by reducing the time step towards zero.

Now that we have candidate Lyapunov functions for the θ̃i and η̃i dynamics, we

can add them to get the overall parameter estimation Lyapunov function:

VPE[k] = Vθ[k] + ζVη[k] (F.24)

where ζ ∈ R>0 is a positive constant which will be chosen later to make terms

negative definite. Using the differences we have already calculated for Vθ and Vη, it is

straightforward to compute the first difference for the parameter estimation Lyapunov

function:

∆VPE[k + 1] = ∆Vθ[k + 1] + ζ∆Vη[k + 1]

≤
p∑

i=1

−c15

∥∥∥θ̃i[k]
∥∥∥

2

+ c16 ‖∆θi[k + 1]‖2 +

(
1 +

1

a2

)
η̃2
i [k]

+ ζ

(
p∑

i=1

−c17η̃
2
i [k] + c18 ‖∆θi[k + 1]‖2 + c19

∥∥∥∆J̃i[k + 1]
∥∥∥

2
)

=

p∑

i=1

−c15

∥∥∥θ̃i[k]
∥∥∥

2

−
(
ζc17 − 1− 1

a2

)
η̃2
i [k]

+ (c16 + ζc18) ‖∆θi[k + 1]‖2 + ζc19

∥∥∥∆J̃i[k + 1]
∥∥∥

2
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=

p∑

i=1

−c15

∥∥∥θ̃i[k]
∥∥∥

2

− c20η̃
2
i [k] + c21 ‖∆θi[k + 1]‖2

+ ζc19

∥∥∥∆J̃i[k + 1]
∥∥∥

2

(F.25)

where c20 = ζc17 − 1 − 1
a2

and c21 = c16 + ζc18. Since c17 is positive, we can ensure

that c20 > 0 by choosing ζ > a2+1
c17a2

. Such a ζ always exists since the only restriction

on ζ is that it must be positive to ensure the VPE is indeed positive definite. Note

that if we choose ζ to be very large, the coefficients multiplying the other terms in

the Lyapunov difference become large, which results in a more conservative estimate

of the neighbourhood that the parameter estimates converge to.

At this point, we can interpret what this Lyapunov function means. The first

two terms are negative definite terms involving θ̃ and η̃. The third and fourth terms

are positive terms involving ∆θ and ∆J̃ . Suppose that the system does not change

too fast. Then ∆θ and ∆J̃ are bounded and we can treat the last three terms as

a constant term. Whenever θ̃ or η̃ are large, the negative definite terms dominate

this positive constant, and the Lyapunov function decreases. A decreasing Lyapunov

function means that θ̃ and η̃ must decrease. Eventually θ̃ and η̃ get small enough that

the negative definite terms no longer bound the positive term. At this point, θ̃ and

η̃ cannot increase, or else the Lyapunov difference would be negative and they would

decrease. Therefore θ̃ and η̃ must remain in some neighbourhood of the origin. The

system has converged to a level set of the Lyapunov function which it cannot leave.

Therefore, if ∆θ and ∆J̃ are bounded, then the parameter estimation algorithm is

uniformly asymptotically bounded.

We have discovered that the convergence of the parameter estimates depends on

the assumption that θ and J̃ do not change too rapidly. Fortunately, we have already
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shown that for a system controlled by ESC, when k is sufficiently large, ∆θ and

∆J̃ can be bounded by a function of x̃, ũ and a constant. Using these bounds, for a

large enough k we can write the first difference of the parameter estimation Lyapunov

function as

∆VPE[k + 1] ≤
p∑

i=1

−c15

∥∥∥θ̃i[k]
∥∥∥

2

− c20η̃
2
i [k]

+ c21

(
c6 ‖x̃[k]‖+ c7 ‖ũ[k]‖+ c8Kg + c9

1

τI
+ c10D

)2

+ ζc19 (c11 ‖x̃[k]‖+ c12 ‖ũ[k]‖+ c13Kg + c14D)2 .

(F.26)

By expanding the squared terms, and collecting similar terms, we can simplify this

bound as

∆VPE[k + 1] ≤
p∑

i=1

−c15

∥∥∥θ̃i[k]
∥∥∥

2

− c20η̃
2
i [k] +

(
c2

6c21 + ζc2
11c19

)
‖x̃[k]‖2

+
(
c2

7c21 + ζc2
12c19

)
‖ũ[k]‖2

+ 2 (c6c7c21 + ζc11c12c19) ‖x̃[k]‖ ‖ũ[k]‖

+ 2 (c6c8c21 + ζc11c13c19)Kg ‖x̃[k]‖

+ 2c6c9c21
1

τI
‖x̃[k]‖+ 2 (c6c10c21 + ζc11c14c19)D ‖x̃[k]‖

+ 2 (c7c8c21 + ζc12c13c19)Kg ‖ũ[k]‖+ 2c7c9c21
1

τI
‖ũ[k]‖

+ 2 (c7c10c21 + ζc12c14c19)D ‖ũ[k]‖

+

(
c8c21

(
c8Kg + c9

1

τI
+ c10D

)
+ ζc13c19 (c13Kg + c14D)

)
Kg

+ c9c21

(
c8Kg + c9

1

τI
+ c10D

)
1

τI

+

(
c10c21

(
c8Kg + c9

1

τI
+ c10D

)
+ ζc14c19 (c13Kgc14D)

)
D
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=

p∑

i=1

−c15

∥∥∥θ̃i[k]
∥∥∥

2

− c20η̃
2
i [k] + c22 ‖x̃[k]‖2 + c23 ‖ũ[k]‖2

+ c24 ‖x̃[k]‖ ‖ũ[k]‖+ c25Kg ‖x̃[k]‖+ c26
1

τI
‖x̃[k]‖

+ c27D ‖x̃[k]‖+ c28Kg ‖ũ[k]‖+ c29
1

τI
‖ũ[k]‖

+ c30D ‖ũ[k]‖+ c31Kg + c32
1

τI
+ c33D.

(F.27)

The various positive constants are defined by

c22 = c2
6c21 + ζc2

11c19

c23 = c2
7c21 + ζc2

12c19

c24 = 2 (c6c7c21 + ζc11c12c19)

c25 = 2 (c6c8c21 + ζc11c13c19)

c26 = 2c7c9c21

c27 = 2 (c6c10c21 + ζc11c14c19)

c28 = 2 (c7c8c21 + ζc12c13c19)

c29 = 2c7c9c21

c30 = 2 (c7c10c21 + ζc12c14c19)

c31 = c8c21

(
c8Kg + c9

1

τI
+ c10D

)
+ ζc13c19 (c13Kg + c14D)

c32 = c9c21

(
c8Kg + c9

1

τI
+ c10D

)

c33 = c10c21

(
c8Kg + c9

1

τI
+ c10D

)
+ ζc14c19 (c13Kgc14D) .

Next we complete the squares and simplify the resulting expression to write the bound

entirely in terms of linear functions of Kg,
1
τI

, and D and quadratic functions of the
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other variables:

∆VPE[k + 1] ≤
p∑

i=1

−c15

∥∥∥θ̃i[k]
∥∥∥

2

− c20η̃
2
i [k] + c22 ‖x̃[k]‖2 + c23 ‖ũ[k]‖2

+
a6c24

2
‖x̃[k]‖2 +

c24

2a6

‖ũ[k]‖2 +
a7c25

2
KgKg +

c25

2a7

‖x̃[k]‖2

+
a8c26

2

1

τI

1

τI
+
c26

2a8

‖x̃[k]‖2 +
a9c27

2
DD +

c27

2a9

‖x̃[k]‖2

+
a10c28

2
KgKg +

c28

2a10

‖ũ[k]‖2 +
a11c29

2

1

τI

1

τI
+

c29

2a11

‖ũ[k]‖2

+
a12c30

2
DD +

c30

2a12

‖ũ[k]‖2 + c31Kg + c32
1

τI
+ c33D

≤
p∑

i=1

−c15

∥∥∥θ̃i[k]
∥∥∥

2

− c20η̃
2
i [k]

+

(
c22 +

a6c24

2
+
c25

2a7

+
c26

2a8

+
c27

2a9

)
‖x̃[k]‖2

+

(
c23 +

c24

2a6

+
c28

2a10

+
c29

2a11

+
c30

2a12

)
‖ũ[k]‖2

+
(
c31 +

a7c25

2
Kg +

a10c28

2
Kg

)
Kg

+

(
c32 +

a8c26

2

1

τI
+
a11c29

2

1

τI

)
1

τI

+
(
c33 +

a9c27

2
D +

a12c30

2
D
)
D

=

p∑

i=1

−c15

∥∥∥θ̃i[k]
∥∥∥

2

− c20η̃
2
i [k] + c34 ‖x̃[k]‖2 + c35 ‖ũ[k]‖2

+ c36Kg + c37
1

τI
+ c38D

(F.28)

where a6, . . . , a12 ∈ R are arbitrary and the positive constants are defined by

c34 = c22 +
a6c24

2
+
c25

2a7

+
c26

2a8

+
c27

2a9

c35 = c23 +
c24

2a6

+
c28

2a10

+
c29

2a11

+
c30

2a12
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c36 = c31 +
a7c25

2
Kg +

a10c28

2
Kg

c37 = c32 +
a8c26

2

1

τI
+
a11c29

2

1

τI

c38 = c33 +
a9c27

2
D +

a12c30

2
D.

Now suppose that x̃[k] and ũ[k] converge to zero. Then since Kg,
1
τI

, and D are all

constants, these Lyapunov difference is negative whenever θ̃i[k] and η̃i[k] are large.

Therefore this function tells us that when x̃[k] and ũ[k] converge, then the parameter

estimates converge to a neighbourhood of the origin whose size is O(KG + 1
τI

+ D).

It remains to show that x̃[k] and ũ[k] converge.

In the second part of the proof, we show that the controller is able to stabilize x

to the steady-state manifold π(û). Consider the Lyapunov function

Vx[k] = Vz (z[k]) +H (x[k]) . (F.29)

Using the state dynamics, (4.1), the first difference of this Lyapunov function is

∆Vx[k + 1] = Vx[k + 1]− Vx[k]

= Vz (z[k + 1]) +H (x[k + 1])− Vz (z[k])−H (x[k])

= Vz (z[k + 1]) +H (x[k] + f (x[k]) +G (x[k])u[k])

− Vz (z[k])−H (x[k]) .

(F.30)

Substituting in the control law (4.24) for u[k] into this expression results in

∆Vx[k + 1] = Vz (z[k + 1])− Vz (z[k])−H (x[k])

+H
(
x[k] + f (x[k]) +G (x[k])

(
−Kgθ̂1[k] + û[k] + d[k]

))
.

(F.31)
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We would like to be able to bound this expression using Assumption 4.2. However, a

stabilizing controller should be written in terms of θ1[k] instead of θ̂1[k]. Therefore

we add and subtract Kgθ1[k] and use θ̃1[k] = θ1[k] − θ̂1[k] to simplify the resulting

expression:

∆Vx[k + 1] = Vz (z[k + 1])− Vz (z[k])−H (x[k])

+H
(
x[k] + f (x[k]) +G (x[k])× . . .
(
−Kgθ1[k] +Kgθ1[k]−Kgθ̂1[k] + û[k] + d[k]

))

= Vz (z[k + 1])− Vz (z[k])−H (x[k])

+H
(
x[k] + f (x[k]) +G (x[k])× . . .
(
−Kgθ1[k] +Kgθ̃1[k] + û[k] + d[k]

))
.

(F.32)

Furthermore, the stabilizability assumption uses a gain of K∗g instead of Kg. Therefore

we add and subtract K∗gθ1[k] as well:

∆Vx[k + 1] = Vz (z[k + 1])− Vz (z[k])−H (x[k])

+H
(
x[k] + f (x[k]) +G (x[k])

(
−K∗gθ1[k] + . . .

+K∗gθ1[k]−Kgθ1[k] +Kgθ̃1[k] + û[k] + d[k]
))

= Vz (z[k + 1])− Vz (z[k])−H (x[k])

+H
(
x[k] + f (x[k]) +G (x[k])

(
û[k]−K∗gθ1[k]

)
+ . . .

+G (x[k])
((
K∗g −Kg

)
θ1[k] +Kgθ̃1[k] + d[k]

))
.

(F.33)

Now, we would like to separate the last term into two terms so that we can apply
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Assumption 4.2. By the mean-value theorem, there exists x ∈ X such that

∆Vx[k + 1] = Vz (z[k + 1])− Vz (z[k])−H (x[k])

+H
(
x[k] + f (x[k]) +G (x[k])

(
û[k]−K∗gθ1[k]

))

+∇H(x)G (x[k])
((
K∗g −Kg

)
θ1[k] +Kgθ̃1[k] + d[k]

)
.

(F.34)

Then by Assumption 4.2, the system is stabilizable, so we can bound this expression

as

∆Vx[k + 1] ≤ − β4 ‖x̃[k]‖2

+∇H(x)G (x[k])
((
K∗g −Kg

)
θ1[k] +Kgθ̃1[k] + d[k]

)
.

(F.35)

The last term resembles (4.6), the definition of θ1,i[k]. By writing this term as a sum,

we can then apply this definition to obtain

∆Vx[k + 1] ≤ −
p∑

i=1

−β4

p
‖x̃[k]‖2

+∇H(x)Gi (x[k])
((
K∗g −Kg

)
θ1,i[k] +Kgθ̃1,i[k] + di[k]

)

= −
p∑

i=1

−β4

p
β4 ‖x̃[k]‖2

+ pθ>1,i[k]
(
−
(
Kg −K∗g

)
θ1,i[k] +Kgθ̃1,i[k] + di[k]

)
.

(F.36)

Next, we expand the last term to obtain

∆Vx[k + 1] ≤
p∑

i=1

−β4

p
‖x̃[k]‖2 − p

(
Kg −K∗g

)
θ>1,i[k]θ1,i[k]

+ pKgθ
>
1,i[k]θ̃1,i[k] + pθ>1,i[k]di[k].

(F.37)
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We bound the indefinite term involving the dither signal by completing the squares.

For any a13 ∈ R>0 we have the bound

∆Vx[k + 1] ≤
p∑

i=1

−β4

p
‖x̃[k]‖2 − p

(
Kg −K∗g

)
‖θ1,i[k]‖2

+ pKg ‖θ1,i[k]‖
∥∥∥θ̃1,i[k]

∥∥∥+
p

2a13

‖θ1,i[k]‖2 +
pa13

2
‖di[k]‖2

=

p∑

i=1

−β4

p
‖x̃[k]‖2 − p

(
Kg −K∗g −

1

2a13

)
‖θ1,i[k]‖2

+ pKg ‖θ1,i[k]‖
∥∥∥θ̃1,i[k]

∥∥∥+
pa13

2
‖di[k]‖2 .

(F.38)

By choosing Kg > K∗g + 1
2a13

, we can ensure that the first two terms are negative

definite. Assuming that the parameter estimates converge, this Lyapunov function

tells us that the proportional controller can stabilize the nonlinear system to a neigh-

bourhood the steady-state manifold π(û) provided that the proportional gain is large

enough. The size of this neighbourhood depends on the dither amplitude.

Since this Lyapunov function does not say anything about the convergence of

parameter estimates, we add it to the parameter estimate Lyapunov function to get

Vstab[k] = VPE[k] + Vx[k]. (F.39)

Its first difference can easily be computed by adding the first differences already

computed for VPE and Vx:

∆Vstab[k + 1] = ∆VPE[k + 1] + ∆Vx[k + 1]
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≤
p∑

i=1

−c15

∥∥∥θ̃i[k]
∥∥∥

2

− c15

∥∥∥θ̃i[k]
∥∥∥

2

− c20η̃
2
i [k] + c34 ‖x̃[k]‖2

+ c35 ‖ũ[k]‖2 + c36Kg + c37
1

τI
+ c38D

+

p∑

i=1

−β4

p
‖x̃[k]‖2 − p

(
Kg −K∗g −

1

2a13

)
‖θ1,i[k]‖2

+ pKg ‖θ1,i[k]‖
∥∥∥θ̃1,i[k]

∥∥∥+
pa13

2
‖di[k]‖2 .

(F.40)

Next we collect terms to simplify. Since ‖θ̃i[k]‖2 = ‖θ̃0,i[k]‖2 +‖θ̃1,i[k]‖2, we can split

up the first terms into two terms. One of the terms can then be expressed along with

two other terms in a matrix form:

∆Vstab[k + 1] =

p∑

i=1

−c15

∥∥∥θ̃0,i[k]
∥∥∥

2

− c20 ‖η̃i[k]‖2 −
(
β4

p
− c34

)
‖x̃[k]‖2

+ c35 ‖ũ[k]‖2 + c36Kg + c37
1

τI
+ c38D

−



‖θ̃1,i[k]‖

‖θ1,i[k]‖




> 


c15 −1
2
pKg

−1
2
pKg p(Kg −K∗g − 1/2a13)






‖θ̃1,i[k]‖

‖θ1,i[k]‖




+
pa13

2
‖di[k]‖2 .

(F.41)

By defining vθ,i and Λθ by

vθ,i =



‖θ̃1,i‖

‖θ1,i‖


 Λθ =




c15 −1
2
pKg

−1
2
pKg p(Kg −K∗g − 1/2a13)


 ,
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we can write the difference of the stabilization Lyapunov function as

∆Vstab[k + 1] =

p∑

i=1

−c15

∥∥∥θ̃0,i[k]
∥∥∥

2

− c20 ‖η̃i[k]‖2 − c39 ‖x̃[k]‖2

+ c35 ‖ũ[k]‖2 + c36Kg + c37
1

τI
+ c38D

− v>θ,i[k]Λθvθ,i[k] +
pa13

2
‖di[k]‖2

(F.42)

where c39 = β4

p
−c34. For stability, we need c39 > 0. Unfortunately, we cannot force c39

to be positive by choosing sufficiently large tuning parameters as β4 is a property of

the system and not of the controller. However, from the definitions of the constants,

we see that

c34 = O (c6) = O (c1 + LG) = O (O (Lf + LG) + LG)

= O (Lf ) +O (LG) = O (∆t) .

Therefore, for a sufficiently small time step, c39 > 0. Also note that a smaller time

step is needed when there are more agents as β4

p
decreases with the number of agents.

Since vθ,i depends on parameter estimates, we need −v>θ,iΛθvθ,i to be negative

definite for parameter estimates to still converge. This term is negative definite if

and only if Λθ is positive definite. We can check that a matrix is positive definite by

checking that the determinants of all of its principal submatrices are positive. Since

Λθ is a 2 × 2 matrix, we simply need to check that det(Λθ) > 0 and c15 > 0. Since

we had previously shown that α can always be chosen such that c15 > 0, it remains
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to show that det(Λθ) > 0. The determinant is

det(Λθ) = c15p

(
Kg −K∗g −

1

2a13

)
− 1

4
p2K2

g . (F.43)

This term is positive if

c15 >
pK2

g

4
(
Kg −K∗g − 1

2a13

) .

Note that since a13 is arbitrary, we can choose it to be large so that it does not affect

the right hand expression much. Suppose the system is stable. Then K∗g = 0 so for a

fixed c15, we can always choose Kg > 0 to be small enough so that c15 >
1
4
pKg. Now

suppose that the system is not stable. Then we must choose Kg > K∗g which limits

our ability to ensure stability by choosing a small enough Kg. Alternatively, we can

ensure stability by choosing c15 to be sufficiently large. Recall that

c15 =

(
1− α− α

a1

)
min{σ0, γ

−
w}αT+1.

By using a large amplitude dither signal, γ−w can be made arbitrarily large. Then by

choosing σ0 ≥ γ−w , we can make c15 arbitrarily large and ensure that Λθ is positive

definite. Let γ−Λ be the minimum eigenvalue of Λθ. Then we can write the stabilization

Lyapunov difference as

∆Vstab[k + 1] =

p∑

i=1

−c15

∥∥∥θ̃0,i[k]
∥∥∥

2

− c20 ‖η̃i[k]‖2 − c39 ‖x̃[k]‖2

− γ−Λ
∥∥∥θ̃1,i[k]

∥∥∥
2

− γ−Λ ‖θ1,i[k]‖2 + c35 ‖ũ[k]‖2

+ c36Kg + c37
1

τI
+ c38D +

pa13

2
‖di[k]‖2 .

(F.44)
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Then noting that ‖di[k]‖2 ≤ D, we have

∆Vstab[k + 1] ≤
p∑

i=1

−c15

∥∥∥θ̃0,i[k]
∥∥∥

2

− c20 ‖η̃i[k]‖2 − c39 ‖x̃[k]‖2

− γ−Λ
∥∥∥θ̃1,i[k]

∥∥∥
2

− γ−Λ ‖θ1,i[k]‖2 + c35 ‖ũ[k]‖2

+ c36Kg + c37
1

τI
+ c38D +

pa13

2
DD

≤
p∑

i=1

−c15

∥∥∥θ̃0,i[k]
∥∥∥

2

− c20 ‖η̃i[k]‖2 − c39 ‖x̃[k]‖2

− γ−Λ
∥∥∥θ̃1,i[k]

∥∥∥
2

− γ−Λ ‖θ1,i[k]‖2 + c35 ‖ũ[k]‖2

+ c36Kg + c37
1

τI
+
(
c38 +

pa13

2
D
)
D

≤
p∑

i=1

−c15

∥∥∥θ̃0,i[k]
∥∥∥

2

− c20 ‖η̃i[k]‖2 − c39 ‖x̃[k]‖2

− γ−Λ
∥∥∥θ̃1,i[k]

∥∥∥
2

− γ−Λ ‖θ1,i[k]‖2 + c35 ‖ũ[k]‖2

+ c36Kg + c37
1

τI
+ c40D

(F.45)

where c40 = c38 + pa13

2
D is a positive constant. This Lyapunov function says that if

ũ converges, then the parameter estimates converge and the system is stabilized to a

neighbourhood of the steady-state manifold. Again, the sizes of the neighbourhoods

are O(Kg + 1
τI

+D).

The final part of the proof is to show that the extremum-seeking controller’s input

bias, û, converges to the optimal input, u∗. Consider the Lyapunov function

Vu[k] =

p∑

i=1

ũ>i [k]ũi[k]. (F.46)

Since ũi[k] = u∗i − ui[k], by using the dynamics of ui from (4.24), the dynamics for
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ũi are ũi[k+ 1] = ũi[k] + 1
τI
θ̂1,i[k]. Using these dynamics, the Lyapunov difference is

∆Vu[k + 1] = Vu[k + 1]− Vu[k]

=

p∑

i=1

ũ>i [k + 1]ũi[k + 1]−
p∑

i=1

ũ>i [k]ũi[k]

=

p∑

i=1

(
ũ>i [k] +

1

τI
θ̂
>
1,i[k]

)(
ũi[k] +

1

τI
θ̂1,i[k]

)
− ũ>i [k]ũi[k]

=

p∑

i=1

ũ>i [k]ũi[k] +
2

τI
θ̂
>
1,i[k]ũi[k] +

1

τ 2
I

θ̂
>
1,i[k]θ̂1,i[k]− ũ>i [k]ũi[k]

=

p∑

i=1

2

τI
θ̂
>
1,i[k]ũi[k] +

1

τ 2
I

θ̂
>
1,i[k]θ̂1,i[k]. (F.47)

Then using the definition of θ̃1,i, we have that θ̂1,i[k] = θ1,i[k]− θ̃1,i[k]. Substituting

this expression gives

∆Vu[k + 1] =

p∑

i=1

2

τI

(
θ>1,i[k]− θ̃>1,i[k]

)
ũi[k]

+
1

τ 2
I

(
θ>1,i[k]− θ̃>1,i[k]

)(
θ1,i[k]− θ̃1,i[k]

)
.

(F.48)

Next we substitute (4.6), the definition of θ1,i, into the first term and expand both

terms:

∆Vu[k + 1] =

p∑

i=1

2

τI

(
1

p
∇H (x)Gi (x[k])

)
ũi[k]− 2

τI
θ̃
>
1,i[k]ũi[k]

+
1

τ 2
I

θ>1,i[k]θ1,i[k]− 2

τ 2
I

θ̃
>
1,i[k]θ1,i[k] +

1

τ 2
I

θ̃
>
1,i[k]θ̃1,i[k]

=
2

pτI
∇H (x)G (x[k]) ũ[k] +

p∑

i=1

− 2

τI
θ̃
>
1,i[k]ũi[k]

+
1

τ 2
I

θ>1,i[k]θ1,i[k]− 2

τ 2
I

θ̃
>
1,i[k]θ1,i[k] +

1

τ 2
I

θ̃
>
1,i[k]θ̃1,i[k].

(F.49)
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We would like to be able to simplify this expression using the convexity of the

steady-state cost from Assumption 4.1. Since the steady-state gradient is ∂`
∂u

∣∣
û[k]

=

∇H(π(û[k]))G(π(û([k])), we add and subtract 2
pτI
∇H(π(û[k]))G(π(û([k]))ũ[k] =

2
pτI

∂`
∂u

∣∣
û[k]
ũ[k] from the Lyapunov difference:

∆Vu[k + 1] =
2

pτI
∇H (x)G (x[k]) ũ[k]− 2

pτI
∇H (π(û[k]))G (π(û([k])) ũ[k]

+
2

pτI
∇H (π(û[k]))G (π(û([k])) ũ[k] +

p∑

i=1

− 2

τI
θ̃
>
1,i[k]ũi[k]

+
1

τ 2
I

θ>1,i[k]θ1,i[k]− 2

τ 2
I

θ̃
>
1,i[k]θ1,i[k] +

1

τ 2
I

θ̃
>
1,i[k]θ̃1,i[k]

=
2

pτI
∇H (x)G (x[k]) ũ[k]− 2

pτI
∇H (π(û[k]))G (π(û([k])) ũ[k]

+
2

pτI

∂`

∂u

∣∣∣∣
û[k]

ũ[k] +

p∑

i=1

− 2

τI
θ̃
>
1,i[k]ũi[k] +

1

τ 2
I

θ>1,i[k]θ1,i[k] (F.50)

− 2

τ 2
I

θ̃
>
1,i[k]θ1,i[k] +

1

τ 2
I

θ̃
>
1,i[k]θ̃1,i[k].

By the Lipschitzness ofH from Assumption 4.3, both∇H(x) ≤ LH and∇H(π(û[k])) ≤

LH , so we can combine the first two terms to obtain

∆Vu[k + 1] ≤ 2LH
pτI
‖G (x[k])−G (π(û([k]))‖ ‖ũ[k]‖+

2

pτI

∂`

∂u

∣∣∣∣
û[k]

ũ[k]

+

p∑

i=1

− 2

τI
θ̃
>
1,i[k]ũi[k] +

1

τ 2
I

θ>1,i[k]θ1,i[k]− 2

τ 2
I

θ̃
>
1,i[k]θ1,i[k]

+
1

τ 2
I

θ̃
>
1,i[k]θ̃1,i[k].

(F.51)

Then we can use the Lipschitzness of G from Assumption 4.3 to further simplify the
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first term:

∆Vu[k + 1] ≤ 2LHLG
pτI

‖x[k]− π(û([k])‖ ‖ũ[k]‖+
2

pτI

∂`

∂u

∣∣∣∣
û[k]

ũ[k]

+

p∑

i=1

− 2

τI
θ̃
>
1,i[k]ũi[k] +

1

τ 2
I

θ>1,i[k]θ1,i[k]− 2

τ 2
I

θ̃
>
1,i[k]θ1,i[k]

+
1

τ 2
I

θ̃
>
1,i[k]θ̃1,i[k]

=
2LHLG
pτI

‖x̃[k]‖ ‖ũ[k]‖+
2

pτI

∂`

∂u

∣∣∣∣
û[k]

ũ[k] +

p∑

i=1

− 2

τI
θ̃
>
1,i[k]ũi[k]

+
1

τ 2
I

θ>1,i[k]θ1,i[k]− 2

τ 2
I

θ̃
>
1,i[k]θ1,i[k] +

1

τ 2
I

θ̃
>
1,i[k]θ̃1,i[k].

(F.52)

We can now use Assumption 4.1, which says that the steady-state total cost is convex,

to bound this expression as

∆Vu[k + 1] ≤
p∑

i=1

2LHLG
p2τI

‖x̃[k]‖ ‖ũ[k]‖ − 2

p2τI
β4 ‖ũ[k]‖2 − 2

τI
θ̃
>
1,i[k]ũi[k]

+
1

τ 2
I

θ>1,i[k]θ1,i[k]− 2

τ 2
I

θ̃
>
1,i[k]θ1,i[k] +

1

τ 2
I

θ̃
>
1,i[k]θ̃1,i[k].

(F.53)

Next, we remove the indefinite terms by completing the squares. For any arbitrary

a14, . . . , a16 ∈ R>0, we have

∆Vu[k + 1] ≤
p∑

i=1

a14LHLG
p2τI

‖x̃[k]‖2 +
LHLG
a14p2τI

‖ũ[k]‖2 − 2β1

p2τI
‖ũ[k]‖2

+
a15

τI

∥∥∥θ̃1,i[k]
∥∥∥

2

+
1

a15τI
‖ũ[k]‖2 +

1

τ 2
I

‖θ1,i[k]‖2

+
a16

τ 2
I

∥∥∥θ̃1,i[k]
∥∥∥

2

+
1

a16τ 2
I

‖θ1,i[k]‖2 +
1

τ 2
I

∥∥∥θ̃1,i[k]
∥∥∥

2

.

(F.54)
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Finally, we collect terms to simplify the Lyapunov difference.

∆Vu[k + 1] =

p∑

i=1

a14LHLG
p2τI

‖x̃[k]‖2 −
(

2β1

p2τI
− LHLG
a14p2τI

− 1

a15τI

)
‖ũ[k]‖2

+

(
a15

τI
+
a16

τ 2
I

+
1

τ 2
I

)∥∥∥θ̃1,i[k]
∥∥∥

2

+

(
1

τ 2
I

+
1

a16τ 2
I

)
‖θ1,i[k]‖2

=

p∑

i=1

−c41 ‖ũ[k]‖2 + c42 ‖x̃[k]‖2 + c43

∥∥∥θ̃1,i[k]
∥∥∥

2

+ c44 ‖θ1,i[k]‖2
(F.55)

where c41 = 2β1

p2τI
− LHLG
a14p2τI

− 1
a15τI

, c42 = a14LHLG
p2τI

, c43 = a15

τI
+ a16

τ2
I

+ 1
τ2
I
, and c44 = 1

τ2
I

+ 1
a16τ2

I
.

Since a14 and a15 are constants obtained by completing the squares, we can always

choose them such that c41 > 0. Therefore this Lyapunov function can be used to show

that û converges to a neighbourhood of u∗. However, choosing a14 very large or a15

very small can result in large values of c42 and c43 which results in this neighbourhood

being large.

Now that we have a candidate Lyapunov function for the extremum-seeking aspect

of the controller, we add it Vstab to get the final, overall Lyapunov function

V [k] = VStab[k] + Vu[k]. (F.56)

The first difference of this Lyapunov function is

∆V [k + 1] ≤
p∑

i=1

−c15

∥∥∥θ̃0,i[k]
∥∥∥

2

− c20 ‖η̃i[k]‖2 − (c39 − c42) ‖x̃[k]‖2

−
(
γ−Λ − c43

) ∥∥∥θ̃1,i[k]
∥∥∥

2

−
(
γ−Λ − c44

)
‖θ1,i[k]‖2

− (c41 − c35) ‖ũ[k]‖2 + c36Kg + c37
1

τI
+ c40D.

(F.57)

We would like to tune the controller in such a way that all six quadratic terms are
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negative definite. At this stage, our main tuning parameter to manipulate is τI . To

ensure that c39−c42 > 0, γ−Λ−c43 > 0, and γ−Λ−c44 > 0, we should try to minimize c42,

c43, and c44 which can be done by making τI large. However, to make c41 − c35 > 0,

we need to make c41 large which can be done by choosing τI to be small. We should

therefore choose τI to be small enough that c41 > c35 but still large enough that the

other terms are positive. Alternatively, by looking at the parameter definitions, we

can see that

c35 = O (c23 + c24 + c28 + c29) = O (c7 + c12)

= O (c2 + LG) = O (LG) = O (∆t) .

Therefore by choosing a small enough time step, it is possible to make c35 small

enough that τI can be chosen to ensure that c41 − c35 > 0 while still being large

enough that all the other terms are indeed negative definite.

Suppose that ∆t and τI are chosen such that the first six terms are negative

definite. Then since the last four terms are bounded, we can conclude that ũ, x̃, and

θ̃ all converge to a neighbourhood of the origin. The size of this neighbourhood is

O(Kg + 1
τI

+D).
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