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Since 1990s, the metropolitan spatial structure has been alleged to be growing 

smarter. Excessive suburbanization trends characterizing urban form since the Second 

World War are now believed to be reversing in favor of urban environment. The reversal 

is driven by changing household preferences as well as a series of changes that urban 

areas have gone through which make them more attractive living environments for some 

demographic groups. 

This is a dissertation consisting of three related essays which examine change in 

the metropolitan spatial structure over the past two decades to determine if suggested 

changes are in fact observable in urban form. In measuring the change, I consider a 

number of measures that characterize urban form, particularly density, concentration, 

clustering, infill and growth allocation of urban growth. Given the prevalence of 

foreclosure crisis in the later part of the first millennium decade, I also explore the impact 

of urban form on accumulation of foreclosures as an indicator of future spatial structure 

change.   

The study finds two different trends at force facing the American metropolitan 

spatial structure. For the metropolitan areas with weak growth pressures or those loosing 

population since 1990, suburbanization trends continue to define spatial structure. 

 



However, in the metropolitan areas that are facing moderate and strong population 

growth pressures and constituting the majority of the largest urban areas in the U.S., the 

importance of urban center is ever more significant and their spatial structure is greatly 

dependent on denser urban form. Desirability for urban environment also manifested 

itself in the spatial distribution of foreclosures in Maryland.     
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Introduction 

The study of urban spatial structure concerns the organization of land uses in 

urban areas. Urban structure describes the arrangement of housing and businesses, public 

and private spaces within urban settings and the degree of connectivity and accessibility 

among them. The spatial structure of metropolitan areas today is the result of interactions 

among its residents, land markets, job markets, landscape, regulation, infrastructure, and 

climate through history. The way that spatial structure is arranged greatly determines how 

the city functions and has consequences for accessibility, environmental sustainability, 

economics, welfare, social equity, social capital, and cultural innovation. Inefficient 

spatial structure can lead to increasing distances among people, jobs, and amenities and 

consequently defragment labor and consumer markets, diminish environmental quality, 

and generally compromise quality of life (Bertaud and Malpezzi, 2003). In the time since 

the World War II, the fear has been that excessive suburbanization led to those negative 

externalities. Yet, recent inquiries into urbanization trends began suggesting that since 

1990s metropolitan spatial structure has reversed again towards an increasingly urban 

future. Now is a particularly interesting period to reflect on the change in urban structure 

because urbanization patterns have perhaps been experiencing momentous change.  

This dissertation consists of three essays which address change in the 

metropolitan spatial structure over the past two decades using a number of measures of 

urban form. In the first essay, I investigate how metropolitan areas have changed between 

1990 and 2007 using several urban form measures established in the urban form 

literature. These measures reflect the change in density, concentration, clustering, and 

growth allocation of urban growth.  
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In the second essay, I employ a new measure for evaluating the change in the 

spatial structure. While the method is not new in the study of settlement patterns, it is a 

new approach to characterizing urban form and measuring the change. In two of the 

essays, the analysis of urban spatial structure is extended to focus specifically on changes 

over time in the largest metropolitan areas. The essays will determine whether these 

trends are consistent with the proposition that U.S. cities are now growing smarter. While 

growing smart generally suggests use of compact development, mixed uses, and close 

coordination between transportation and land use policies, the working definition of 

smart growth employed herein refers to new growth occurring in already existing urban 

areas.  

The third essay considers the spatial problem of foreclosures across the state of 

Maryland and its two largest metropolitan areas, Baltimore and Washington. By 

measuring the effect of a number of urban form measures on the accumulation of 

foreclosures, I aim to delineate the impact of foreclosures on the changing metropolitan 

spatial structure.  

 

Theoretical Models of Urban Form 

Theoretical explanations of urban spatial structure commenced with von Thünen‘s 

(1826) theory of agricultural land use. The theory was based on the notion of economic 

rent to explain how competition for land use among various agricultural activities leads to 

their spatial organization. The original ideas of this model laid the foundation for many of 

the following urban spatial models. In von Thünen‘s city, land use patterns are 

determined by transportation costs to the central market where the most expensive 
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agricultural product to transport occupies land closest to the consumer. The core 

hypothesis of the model is that agricultural land uses are patterned in the form of 

concentric rings around a central city. Although using very restrictive assumptions, this 

model preceded the age of large-scale industrialization thus assuming that all other land 

uses placed around the city were agricultural.  

Since von Thünen, technological advances, such as telecommunication and 

transportation, added new dynamics to urban spatial structure and led to reorganization of 

land uses within cities. Subsequently, manufacturing and commercial land uses also 

began competing for the use of land closest to the central city. The arrival of electric 

streetcars, and later of personal automobiles, allowed residents more flexibility in 

choosing where they lived. Consequently many of upper income residents moved away 

from the central cities. Businesses on the other hand continued benefiting from 

economies of agglomeration in the central cities and their process of bidding for rents led 

to high-rise commercial buildings which now define the skylines of most all metropolitan 

areas.   

Following these changes, in what became known as the Alonso-Mills-Muth 

(AMM) model, Alonso (1964), Mills (1967), and Muth (1969) modernized von Thünen‘s 

theory to include land use, housing services, rent, disposable income, intensity of land 

use, population, transportation cost, and employment. Similarly to von Thünen, the AMM 

model postulated a flat, monocentric, continuous and uniform urban area in which central 

business district (CBD) represents the center for work and shopping. The essential notion 

of their utility-maximization theory, also borrowed from von Thünen, was the bid-rent 

function for each household or firm. The bid rent is the maximum amount that a 
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household is willing to pay for rent at different locations in the city such that it maintains 

the same level of utility. A household‘s utility depends on the size of housing, distance 

from the city center reflecting the transportation cost, and all other goods. Given 

household‘s preferences, a household allocates its fixed budget among these three 

components with the aim to maximize its utility. The bidding among households and 

firms for land closer to the city center results in higher rents in those closer locations. To 

capitalize on higher land values, there are more residences and/or offices built per unit of 

land closer to the CBD resulting in higher overall density in central cities. With 

increasing distance from the CBD, there are fewer bidders for the land causing reduced 

land prices and falling density. However, the cheaper rent of locations further from the 

center is offset by corresponding transportation costs.  

Another theory of spatial structure developed by Homer Hoyt in 1939 proposed 

that an urban area grows outward in wedge-shaped sectors rather than concentric rings. 

Hoyt suggested that particular parts of an urban area are more attractive for some 

activities than others, either inadvertently or due to geographic and environmental 

reasons. As the urban area grows, these activities expand outward in a wedge-shaped 

pattern along railroads, highways, and other transportation routes. Again, better 

accessibility necessitates higher land rents, thus location of commercial functions remains 

in the CBD but manufacturing land uses develop in a wedge adjoining transportation 

routes. Residential land uses also grow in wedge-shaped patterns; however low-income 

housing adjoins manufacturing and industrial sectors since noise and pollution reduces 

desirability of the area, while higher income residents locate furthest away from these 

sectors. 
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Theories by von Thünen, AMM and Hoyt, also referred to as natural evolution 

theories (Mieszkowski and Mills, 1993), offer static descriptions and explanations of 

urban land use, yet they are not explicit theories of urban form change and land use 

change. These theories explicitly treat the actual amount of land consumed via the 

bidding process, but the systems of land use change remain implicit, i.e. it the change is 

understood from the factors, including location preferences and income, which in the 

model are assumed to determine the shape of the bid rent functions. The factors can 

change causing the land use system to change into a new equilibrium position. Thus, 

following this logic, advances in the transportation system allowed not only businesses, 

as mentioned above, but residents to bid for rent in suburban areas. Higher incomes 

afforded households to move out to single family homes on larger lots while the lower 

income residents remained in poorer quality and smaller spaces in the central cities. 

These theories emphasize the importance of transport costs and incomes in changing 

urban structure. However, elements which are arguably equally important to one‘s 

bidding function, such as social, cultural, and political influences, are not explained by 

these theories.  

A theory, elaborated by Mieszkowski and Mills (1993) following Oates, Howrey 

and Baumol (1971) and Bradford and Kelejian (1973), examined the suburbanization 

phenomena by focusing on fiscal and social problems of post- war cities, such as crime, 

congestion, low environmental quality, high taxes, low quality of government services 

and public schools.  As a result of such an environment, higher income households 

moved out first as they were able to afford initially expensive means of transportation, a 

personal automobile. Departure of higher income residents left cities impoverished for 
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tax revenues and led to further deterioration of the quality of life and provision of public 

services, inducing additional outmigration. The vicious circle was exacerbated as suburbs 

became hubs of high-achieving school districts which attracted other better-off 

households. Other land uses, such as commercial, followed afoot. This theory draws 

greatly on Tiebout model (1956) in which households choose to move to jurisdictions 

within a region that offer a combination of government services and tax rates that 

maximize their utility. Through households‘ choice process and resulting revealed 

preferences, jurisdictions and residents find an equilibrium provision of local public 

goods, thereby sorting residents into optimum communities. This theory again is not a 

land use change theory per se, but deals with the change in its determinants and thus 

offers explanation for the change in urban form.  

 

A Brief History of Changes in Urban Form 

Regardless whether the change in urban form resulted solely from changes in 

budget opportunities and its allocation or dynamics of socio-political and fiscal 

influences, studies measuring urban form and change have consistently found that the 

period following the introduction of the personal automobile is characterized by 

decentralization, in particular, falling central-city population densities and decreasing 

rates of decline in density with distance from the central core (Mills, 1972; Edmonston 

1975; Maccauley, 1985; and Kim 2007). More specifically, while the first half of the 

century experienced increasing urban density, the second half experienced both falling 

urban density and the dispersal of urban populations at the urban fringe. Most frequently, 
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this new urban form has been referred to as ―sprawl‖. Sprawl, however, has been 

characterized along many dimensions which are discussed in Literature Review section. 

In 1990s, however, despite the expected continuation of suburbanization trends 

and declining importance of central cities, both central cities and suburbs gained in 

population.  As the 2000 census revealed, many Northeastern and Midwestern cities with 

over 500,000 people gained population for the first time since 1950.  Chicago grew by 4 

percent; New York City grew by 9 percent.  Overall the median growth rate for cities in 

the 1990s was 8.7 percent, more than double the median growth rate in the 1980s 

(Glaeser and Shapiro 2001).  During the same decade, suburbs elsewhere in the country 

grew as well, by about 16.5 percent (Lucy and Phillips, 2001). In fast growing cities in 

the South and West, in particular, most of the growth occurred in the outer ring 

neighborhoods (Katz, 2002). These ―boomburgs‖, defined as suburbs with more than 

100,000 residents, were growing at double digit rates (Lang 2001).  In the 1990s, 

boomburgs accounted for over half of the growth in cities between 100,000 and 400,000 

residents. In 2000s, the same trend continued and central-city populations in the 

metropolitan areas with more than one million people grew at an annual rate of 0.5 

percent between 2002 and 2005. Suburbs of these cities grew at (growth) rates between 

1.29 percent and 1.48 percent during the same period (Frey, 2009). By 2006-2007, 

however, central cities‘ growth rate increased to 0.90 percent, and reached 0.97 percent 

by July 2008. At the same time, the growth rate of suburbs declined by 1.11 percent.  

There are two general theories behind urban resurgence beginning in the 1990s. 

The first theory stems from the increasing importance of knowledge of the economy and 

the ability of large and dense metropolitan areas to facilitate the flow of knowledge. 
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Many of the technological advances in the last quarter of the 20th century led to 

improvements in communications and processing of information, causing a fundamental 

shift in the perception of space and human interactions. The emergence of this new 

economy, referred to as ―knowledge-based economy‖, relied primarily on production, 

distribution and use of knowledge and information. In the context of the urban spatial 

structure, knowledge distribution through formal and informal networks became essential 

to economic performance. But, an even more important component of the new economy 

was transmittance of tacit knowledge which insured continuous learning and 

advancement of individuals and firms. Tacit knowledge includes skills to use and adapt 

codified knowledge. Metropolitan areas, particularly central cities, gained comparative 

advantage in facilitating transfer of tacit knowledge by reducing the costs of interactions 

between firms and individuals through proximity (Fujita, Krugman and Venables, 1999).  

The second theory of urban resurgence elaborated by Glaeser and Gottlieb (2006) 

arises out of increased demand for urban amenities beginning in 1980s and resulting from 

changes in city governance, improvements in law enforcement technology and rising 

incomes. Since 1980s, crime rates have significantly dropped in many large U.S. cities 

(Schwartz et al, 2003). Additionally, cities have invested more in quality of life, such as 

museums, theaters, concerts, restaurants, urban landscape, offering a much richer social 

life. With general rising of incomes in the United States, individuals‘ willingness to pay 

for these urban amenities increased. And it is not to say that cities were not already 

supplying such amenities, but scale efficiencies ensure that cities supply a greater bundle 

of urban amenities. Additionally, individuals were willing to pay more for proximity to 

the constant bundle of urban amenities and proximity to other people.  



 9  

 

Empirical Measures of Urban Form at the Metropolitan Scale 

The literature on measures of urban form is widespread across disciplinary 

boundaries.  As Clifton et al. (2008) suggest in their multidisciplinary review of 

quantitative approaches to urban form, urban form has been examined from various 

disciplinary approaches, including landscape ecology, economic structure, transportation 

planning, community design, and urban design, to name a few. These measures differ 

with each discipline, as do the questions being asked, the targeted audience, and the data 

sources. Also, urban form has been measured at different geographical scales – from 

metropolitan area, to city, to neighborhood. The varying measures reflect the distinct 

public policy issues that occur at each scale. The metropolitan scale, as addressed in this 

study, urban form questions are concerned with size of cities, location and number of 

centers of economic activity, as well as type and intensity of development. The measures 

employed include size of metropolitan populations, size of metropolitan areas, and 

population density, with density analyses measures prevailing in the literature.  

The classic measure of urban form at the metropolitan scale has been the 

population density gradient. Formally, the population density gradient of a city is 

expressed as follows: 

D(x) = D0e
-yxε

                (1) 

        

where D(x) represents population density at distance x from the center; D0 is the density 

at the center; and y is the density gradient or the rate at which the population density 

decreases as one moves away from the center. The final error term, ε, is included when 

the formulation is stochastic. Figure 1 illustrates an example of three density patterns, for 

different values of γ. 
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Figure 1: Alternative Density Gradients 

 

  

In the seminal work by Clark (1951), urban population densities for 19 cities in 

United States, Western Europe and Australia were described using the negative 

exponential function showing that density declines exponentially from the central core 

towards the outskirts of a metropolitan area.  After Clark‘s initial work, Muth (1969) 

expanded the inquiry to 46 U.S. cities using the negative exponential function and 

similarly found ―significant tendency of population densities to decline with distance 

from the CBD at the 0.01 level‖ (p. 140). In applying the same method, Mills (1972) 

studied the patterns and causes of suburbanization of population and employment from 
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In a comprehensive literature review, McDonald (1989) summarized the density 

gradient method as straightforward to implement and very flexible, one that can be 

estimated in virtually any functional form, and expanded to include any number of 

explanatory variables. McDonald concluded that the complexity of the contemporary 

metropolitan areas may have moved beyond the negative exponential function, but a 

superior method had yet to be developed. In addition, similar to the standard urban model 

theory preceding it, the strength of the density gradient lies in both its simplicity and its 

ability to describe the general tendencies of land use worldwide (Anas et al, 1998, 

Bertaud, 2003, DeBorger, 1979, Alperovich, 1980), with the exception of cities in former 

communist countries (Bertaud and Renaud, 1997). 

However, Brueckner (1982), criticizing the method,  presented an extended model 

where housing demand is a function of income adjusted for commuting cost, rather than 

gross income originally proposed by the model. In another paper, Brueckner (1987) 

argued that the model insufficiently accounts for vintage effects of the housing 

production. In other words, Bruckner argued that the model as presented assumes housing 

capital is perfectly malleable. In reality, producers are not able to adjust their capital and 

land inputs without costs from one period to another. However, models which explicitly 

account for housing durability are significantly more complex.  

While the metropolitan spatial structure analysis has traditionally assumed 

monocentricity, research periodically brings into question a linear form of the density 

gradient by demonstrating the  existence of population and employment sub-centers, 

higher-density neighborhoods on the urban fringe, discontinuities due to open spaces, and 

the dominance of commercial land use at the center of an urban area. Batty and Kim 
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(1992), for example, criticized the method suggesting it was only applicable for modeling 

intra-urban variation, while the inverse power function is more appropriate for analyzing 

the urban fringe and hinterland. They argued that the decrease from the negative 

exponential function was too great at the urban fringe. Marshall (2007) further pointed 

out that the model in theory assumes the population density at city center to be greatest, 

but it in fact overestimates its true value because the city center is most often occupied by 

commercial land uses. The author subsequently proposed a linear population density 

model as an alternative; however the model is even more restrictive and unrealistic and it 

never caught on in the urban form research.  

To better reflect metropolitan spatial structure and its variations, efforts have been 

made to develop alternative and more complex forms of population density (Casetti, 

1969; McDonald and Bowman, 1976; Zielinski, 1979; Eldridge, 1984; Latham and 

Yeates, 1970; Newling, 1969). However, in testing for the appropriate specification of the 

density gradient, Kau and Lee (1976), similarly to McDonald and Bowman (1976), 

concluded that no single functional form is optimal for uniform application across urban 

areas since urban areas differ in the age of housing stock, transportation modes, and 

geographical restrictions. In addition, even when the employment monocentricity 

assumption is relaxed, the negative exponential function can still remain, given higher 

density of employment at the urban center than elsewhere in the metropolitan area. 

Other nonparametric approaches, such as the cubic spline density functions, have 

been proposed (Anderson 1982, 1985; Munız et al., 2003) for polycentric urban forms. 

Anderson (1982, 1985) applied the cubic spline model to estimate the changes in 

Detroit‘s urban form between 1960 and 1980 arguing that the model more appropriately 
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identifies urban sub-centers as it offers more flexibility by allowing for nonmonotonic 

and nonconstant density functions. However, as the spline density function gradient has 

to be evaluated at various distances, Muniz et al. (2003) defended the negative 

exponential function saying that the function‘s single estimate of density gradient allows 

for easy comparison between different cities and across time. It is also not clear how 

cubic spline function distinguishes between polycentric and decentralized urban form 

(Tsai, 2005). Alperovich (1995) also noted the function is unlikely to be useful for testing 

hypotheses on the processes underlying the determination
 
of population densities, both 

empirically and theoretically. And, due to multicollinearity among distance variables and 

its high-order functional form, the cubic spline insufficiently improves the performance 

of the model.  

Another method of analyzing metropolitan spatial structure is via point pattern 

analysis. Point pattern analysis involves describing patterns of locations of point events 

and comparing them to theoretical distributions. The location of point events in the case 

of urban form refers to distribution of settlements. Getis (1983) applied the point pattern 

analysis to urban form and examined population clusters in the Chicago area. The 

shortcoming of the method is that it only mathematically describes distribution of points 

in space. It can then be tested for deviation of the particular spatial distribution from 

hypothesized patterns; however it is not able to account for any behavioral influences 

(Carruthers et al, 2010). 

Acknowledging the difficulty in modeling urban complexities, Batty and Longley 

(1987, 1994) and Frankhauser (1994) offered a method using fractal geometry. Fractals 

have a dimension of between one and two, indicating a one-dimensional line to a two-
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dimensional polygon, and measure space filling. The greater the fractal dimension, the 

greater the space filling and the more compact the development pattern. Seemingly 

simple, the estimation is, however, difficult because there are multiple definitions of 

fractal dimension, (not all of which agree,) and multiple ways of calculating it. In other 

words, a fractal has the same shape regardless of the scale employed for viewing it. 

Because they appear similar at all scales, fractals are often considered to be infinitely 

complex. The usefulness of fractal geometry in the study of urban form lies in the self-

similar attribute of the fractals. Though ostensibly chaotic at the local level, fractals 

aggregated to larger areas generate the same patterns over time and space rising to an 

organized and hierarchical structure. Compared, cities are also composed of self-similar 

phenomena, such as roads networks, neighborhoods and centers which repeat themselves 

on many levels. Fotheringham et al (1987) and Longley and Mesev (1997, 2000, 2002) 

explored the connection between a fractal dimension and density of development.  

Torrens (2006, 2008) used the approach to measure sprawl. However, in generating 

fractal dimensions of 20 large U.S. cities along with their surrounding urbanized areas, 

Shen (2002) found that different cities may have virtually the same fractal value but be 

very dissimilar in population sizes. The author concluded that fractal dimension itself 

says little about the specific orientation and configuration of an urban form and is not a 

good measure of urban population density. 

Most recently, researchers have explored survival analysis methods to examine 

urban form and the change. The survival analysis methods were primarily developed in 

medical and biological sciences, but they are also broadly used in social and economic 

sciences and engineering. They are used to characterize occurrence and timing of events. 
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For example, in social sciences, they analyze time to events such as job changes, 

marriage, and birth of children. In economics, survival analyses are used to measure risks 

and timing of mortgage default. When applied to a spatial setting, the time variable is 

replaced with distance variable and measures the conditional probability of a distance 

between two points ending (Waldorf, 2003). For instance, Odland and Ellis (1992) first 

applied the method to measure spacing of urban settlements in Nebraska. Also, Irwin and 

Bockstael (2007) used the spatial hazard models to study the timing of land use change in 

Howard County in Maryland for the period between 1973 and 2002, while An and Brown 

(2008) explored how the method, in conjunction with GIS and remote sensing data, can 

better inform parcel level land change analysis. At the metropolitan scale, Carruthers et al 

(2010) used the method to characterize urban form of 25 largest metropolitan areas in 

2006.  

In sum, the exponential density function has the advantage of being derivable 

from a simple model of a city, a monocentric city; however it is a measure with several 

restrictive assumptions, more specifically constant returns Cobb-Douglas production 

functions for housing, consumers with identical tastes and incomes, and unit price 

elasticity of demand for housing. But although the exponential density function is 

criticized as being a univariate measure, it fits most all American cities. Further, it is a 

univariate measure which in itself provides a single index of decentralization or urban 

sprawl. Depending on the degree to which one wants to scrutinize urban form, the 

simplicity of its use and understanding of the exponential density function serves well 

needs of many. The alternative measures also hold promise for measurement of urban 

areas. They are generally labor and data intensive which may limit their use. In the end, 
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the use of a measure highly depends on the research task at hand, its effectiveness in 

answering the question, and ultimately audience which needs it.  

 

Empirical Measures of Urban Sprawl 

Since the introduction of smart growth notions to urban planning policy in 1990s, 

researchers have actively pursued measures of urban form which identify sprawling 

urban form features. While definition of sprawl has been debated, Nelson and Duncan 

summarized the idea into the following definition (1995, page 1): "Unplanned, 

uncontrolled, and uncoordinated single-use development that does not provide for an 

attractive and functional mix of uses and/or is not functionally related to surrounding land 

uses and which variously appears as low density, ribbon or strip, scattered, leapfrog, or 

isolated development". Ewing (1997), who later identified four characterizations of 

sprawl, namely low density, strip, scattered, and leapfrog development, acknowledged 

that these distinctions exists on a continuum and development patterns may not 

necessarily easily fit into sprawl and non-sprawl categories. In his literature review, 

Ewing finds poor accessibility to be the common denominator of sprawl, where poor 

accessibility is identified as scattered or leapfrog development, commercial strip 

development, uniform low-density development, or separation of land uses.  

The literature measuring sprawl views it most frequently in line with the six 

features outlined by Downs (1997): (1) no limits placed on the outward suburban 

expansion; (2) divided legal control over land use, local services, transportation, property 

taxes, and fiscal policy divided among many small entities or jurisdictions, with no 

central agency responsible for the planning or control of these issues regionally; (3) 
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extensive ―leapfrog‖ development; (4) fragmented land ownership; (5) different types of 

land use, spatially separated or zoned into distinct areas; and (6) extensive strip 

commercial development along larger suburban roads. Following Down‘s six features, 

measures examining sprawl can be loosely grouped in three categories, (i) those that 

measure residential population density, (ii) those based on location and dispersion of 

jobs, and (iii) those that consider multidimensional land use phenomenon. The sprawl 

index composites usually contain various components of each of the three categories.  

At the outset of the empirical inquiry, the Sierra Club‘s 1998 report measured 

sprawl in the U.S. by subjectively ranking U.S. metropolitan regions by the degree to 

which they sprawled.  This sprawl measure was derived from changes in population, land 

area, traffic congestion, and loss of open space using census data and data collected from 

institutions such as The Texas Transportation Institute and the American Farmland Trust. 

The study found that among the biggest cities, Atlanta, St. Louis, and Washington, D.C. 

were the most sprawling. 

Several studies have relied on residential population density alone to examine the 

extent of sprawl among metropolitan areas (Lopez and Hynes, 2003; Nasser and 

Overberg, 2001; Lang, 2003) as well as the change in sprawl over time (Fulton et al, 

2001, Nasser and Overberg, 2001). Lopez and Hynes (2003) calculated residential 

densities of the 2000 census tracts and categorized tracts into low-density – with 

population density between 200 and 3,500 persons per square mile, or high-density – 

with more than 3,500 persons per square mile; and operationally defined a sprawl index 

as the difference between the percentage of a metropolitan area‘s population living in the 

two categories. While the authors argued that density is the most identifiable feature of 
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metropolitan spatial structure that allows for relatively easy comparison of all U.S. areas, 

they acknowledge that the measure does not take into account other features of sprawl, 

including continuity for example. Further, changing their arbitrary cut-off densities would 

change their results.  

Fulton et al. (2001) referred to sprawl as ―land resources consumed to 

accommodate new urbanization,‖ and measure it as the ratio of growth in land 

consumption to growth in population of the metropolitan area, then reported the findings 

as persons per urbanized area. Urbanized areas are considered those with a minimum 

population density of 200 persons per square mile. Their study focused solely on density 

by computing average density across entire metropolitan areas and did not assess how 

density varies across an urban area. On the other hand, Nasser and Overberg (2001) 

quantified sprawl as the percentage of a metropolitan area‘s population that resides within 

the Census Bureau-defined urbanized area, i.e. contiguous blocks with density of one 

thousand or more persons per square mile. Lang (2003) expanded Nasser and Overberg‘s 

study and generated two sets of density measures for the fifty largest metropolitan areas 

using again the Census Bureau-defined urbanized area and the Department of 

Agriculture‘s Natural Resources Inventory (NRI) urban land uses. The study showed that 

the West often has more densely populated metropolitan areas than the East due in part to 

the arid and rugged environment in the West. Also, while the Sunbelt is characterized by 

newer metropolitan areas with lower-density urban form, intraregional differences within 

the Sunbelt make such general comparisons difficult and deceptive. 

Two relatively recent works serve as a useful framework because they analyze 

urban spatial structure at the metropolitan scale and rely extensively on census data. The 
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first was developed by Galster et al. (2001) using GIS technology and data primarily 

from the US Census Bureau.  To begin, all land parcels were categorized into one of three 

types: residential, non-residential, and undevelopable with a ¼ square mile grid laid over 

it. Then, the authors generated eight distinct dimensions of land use patterns: 

development density, continuity, concentration, clustering, centrality, nuclearity, mixed 

uses, and proximity. For each UA and each dimension, the authors added up standard 

deviation a dimension is from the mean of the dimension‘s distribution into a Z score. At 

the end, the Z scores for each UA across all six dimensions were summed into a sprawl 

index. Due to resource and time constraints, the authors forwent operationalization of 

mixed-use and continuity measures. Unlike studies that used MSAs or PMSAs, Galster et 

al. used urbanized areas (UAs) boundaries arguing they are preferable because they do 

not include rural land and more undeveloped land that MSAs or PMSAs do. That is, 

however, a limitation of Galster‘s et al. analysis since most sprawl does in fact occur 

outside urbanized areas. The analysis also only examines thirteen urbanized areas and it 

does not analyze segregation of land uses at the expense of accessibility.  The study also 

implies that one has to be careful with composite sprawl index as one high scoring 

dimension of the eight calculated may be driving the overall value of the composite 

index. Not all dimensions are equally concerned to different analysts. Consequently, a 

metropolitan area may appear sprawling along some of the dimensions but completely 

opposite along others. Thus, the dimensions used should be refined and possibly 

consolidated to specify different types of sprawl.  

Cutsinger et al. (2005) extended the Galster et al. (2001) analysis and included 

additional measures, inter-use proximity, continuity, and mix of uses. Inter-use proximity 
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measures housing proximity, job proximity, and job to housing proximity, while mixed 

use measures evaluate ratio of jobs to housing and housing to jobs. Continuity measures 

the extent to which developable land within the metropolitan area has been skipped over 

and the extent to which development occurs beyond UA boundaries. The study also 

expands the UAs to Extended Urban Areas (EUAs) to account for issues raised by 

Wolman et al (2005) of under- or over- bounding biases with standard Census 

boundaries. The EUAs include UAs plus any additional square-mile cells within an MSA 

or PMSA that contain 60 or more dwelling units and send at least 30 percent of its 

workers into the UA on daily work commutes. Since the authors are primarily interested 

in interrelationship among different indices, 14 indices are reduced via principal 

components analysis to seven-factor solution: density/continuity factor, proximity factor, 

job distribution factor, mixed-use factor, housing centrality factor, nuclearity factor, and 

housing concentration factor.  These different conceptual dimensions can characterize 

any given land use type. However, the results suggests that metropolitan areas often 

demonstrate both high and low levels of sprawl-like patterns across the seven 

components and housing and employment sprawling patterns differ in nature.  

Another composite index of urban sprawl was developed by Ewing, Pendall, and 

Chen (2002).  Like Galster et al., Ewing et al. work toward a single overall sprawl index 

for 83 U.S. metropolitan areas and counties.  However, the authors contribute to previous 

work by adding measures of accessibility. Unlike Galster et al., however, they proceed in 

two steps: first, using principal components analysis, they develop indices of four factors 

of urban form, and then use these subcomponents to develop an overall sprawl index. 

Twenty two measurable subcomponents were based on the following four factors: (i) 



 21  

 

residential density; (ii) neighborhood mix of homes, jobs, and services; (iii) strength of 

activity centers and downtowns and; (iv) accessibility of the street network. 

Neighborhood mix index is an interesting addition which includes a ratio of residents 

with businesses or institutions within ½ a block of their homes, with ―satisfactory‖ 

neighborhood shopping within one mile, with a public elementary school within one 

mile, balance of jobs to residents, balance of population-serving jobs to residents, and 

mix of population-serving jobs. The first three variables are somewhat restrictive in 

definition as ½ a block for example is a short distance to accommodate many business or 

institutions. Also, ―satisfactory‖ shopping is a subjectively derived measure. Finally, 

since those variables were obtained from the American Housing Survey, they are limited 

to the responses given by a small sample. Correlation analysis among the four factors 

showed that centrality is largely independent of residential density, suggesting both 

variables add unique information to the overall sprawl index. While density captures 

intensity of land use, centrality measures the focus of development on the central 

business district and presence of subcenters within a metropolitan area. The land use mix 

factor however is moderately correlated with the density factor, which is expected given 

that higher densities are needed to support mixed uses. Finally, the street network factor 

is highly correlated with density, which is also to be expected since higher density 

requires more street capacity to meet travel needs. The composite approach by Ewing et 

al. offers several advantages.  First, because they use multiple sources of data, including 

the Transportation Planning Package, they add new information on transportation 

infrastructure and provide richer measures of density, centrality, and mix.  Further, by 
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developing sub-indices and overall sprawl indices they provide measures that include a 

wealth of information while removing troublesome problems of multicollinearity.  

In evaluating most of the studies reviewed herein, Jaret et al (2009) concluded 

that while some measures might seemingly address the same phenomenon, i.e. density, it 

is important to pay attention to data used, geographical boundaries, and other components 

of the measure to make sure it is well suited for the intended purpose. Ewing‘s et al. 

(2002) correlation and factor analysis study showed that their four dimensions can 

essentially be reduced to two: one that measures how strongly centered the metropolitan 

area is, and the other, sprawl measure, that combines density, mixed land use, and street 

pattern characteristics. Separating centeredness from sprawl allowed the authors to 

distinguish why seemingly sprawling areas rank low (not sprawling) using density 

measures. For example, Los Angeles is a dense but decentered metropolitan area with 

relatively few people living clustered near major activity centers, such as the CBD.   

Tsai (2005) also attempts to distinguish between compact and sprawling 

metropolitan areas using four matrices:  metropolitan size, density, the degree of equal 

distribution and degree of clustering. To evaluate the degree of equal population 

distribution, Tsai uses Gini coefficients. Higher Gini coefficients suggest population or 

employment density is unevenly dispersed across the metropolitan area, while lower Gini 

coefficients suggest more even distribution in a metropolitan area. As the author 

discusses, though, Gini coefficients alone do not reveal any spatial relationships and are 

limited to differentiating between monocentric, polycentric or decentralized sprawl 

spatial structure. They do address the extent to which development is concentrated in a 

relatively small number of sub-areas.  
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  Finally, with the growth of GIS technology and remote sensing data, studies have 

attempted to directly measure land use and land cover change (Irwin and Bockstael, 

2002; and An and Brown, 2008; Ji et al, 2006; Torrens, 2008; Burchfield et al., 2006). 

Although measures using remote sensing data have a promising future, there have been 

some issues noted. Due to the technology of collecting the data, the data are sensitive to 

meteorological conditions and annual changes in vegetation growth. This can also lead to 

underreporting of low density urban forms and can bias thresholds used to classify 

different land covers (Irwin and Boaksdale, 2002). Alone, remote sensing data are 

capable of detecting land cover changes; however this information by itself is not 

sufficient to address metropolitan spatial structure. While the data may suggest a change 

in land use/land cover, it does not provide information on the intensity of land use. For 

example, in Ji et al (2006) study, the ‗‗built-up‘‘ land use classification referred to 

residential areas of single houses and apartment buildings, shopping centers, industrial 

and commercial facilities, highways and major streets, and associated properties and 

parking lots. Also, since in the study of urban form the data have to be delineated into 

urban and rural uses, categorization of cells is based on thresholds, which arguably may 

be a random decision by the researcher. On the other hand, some have chosen to impose 

census boundaries in delineation of urban and rural areas (Ji et al, 2006).  Finally, remote 

sensed images need to be classified into land covers, which is a procedure usually 

requiring human supervision and accuracy assessment (Ji et al, 2006).  

 Nevertheless, in an extensive analysis, Torrens (2008) measured change in sprawl 

in Austin, Texas, between 1990 and 200 on a series of measures – 18 measures - 

including urban growth, density, social, activity-space, fragmentation, decentralization, 
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and accessibility using high resolution parcel level data. Torrens uses fractal dimension to 

measure fragmentation and scattering in urban spatial structure. Decentralization 

characteristics are measured via spatial autocorrelation metrics, global Moran‘s I index 

(Moran 1950) on metropolitan level, and local Moran‘s I and localized Getis–Ord G 

statistic for per-parcel level analysis. The analysis was based on a very detailed parcel 

level data and while it offered a very thorough representation of Austin, an inter-

metropolitan analysis using these measures would be difficult given the lack of 

comparable time-space data across a large number of metropolitan areas. The author did 

conclude by suggesting that sprawl and ―smart growth‖ are found to co-exist and co-

evolve.  

In summary, it is evident that this body of research is poised with debate over 

what to measure, how to measure it and what is important to consider. One common 

conclusion that emerges is that sprawl is a multidimensional phenomenon which exists on 

a continuum. Each dimension requires a separate examination. Consequently, depending 

on the way in which it is measured, the same metropolitan area can be typified on a 

different end of a spectrum. But again, density characteristics are principal traits of 

sprawl. Being that they are relatively straightforward to measure and across a large 

number of metropolitan areas, they are often used as the sole indicator of sprawl.  

 

Measures of Changes in Urban Form 

Accurately capturing change in urban form is a challenging task. Most studies 

have relied solely on densities to measure such change. Studies looking as far back as 

1890s consistently confirmed that urban densities modestly rose until 1950s but then 
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decreased greatly between 1950 and 2000, whereas density gradients fell monotonically 

over time (Mills, 1972; Edmontson, 1975; McMillen and McDonald, 1998; Kim, 2007) 

As discussed in the theoretical background, decreasing cost of transportation is most 

frequently attributed cause of this trend.  

Fulton et al. (2001) relied solely on population densities and density changes to 

examine the sprawl phenomenon. The authors evaluated relative land consumption to 

population change for all U.S. metropolitan areas between 1982 and 1997, in 5-year 

increments. If land is consumed at a faster rate than the population is growing, it is 

assumed that sprawl is increasing. The analysis revolved around three measures: rate of 

conversion of undeveloped into urban land, metropolitan area‘s population density and 

the change, and difference between the change in population and change in urbanized 

land. The study reported an increase of 47 percent in urbanized land and only 17 percent 

in population over the 15 year study period. Following the author‘s definition, the West is 

home to some of the least sprawling metropolitan areas in the county. Interestingly also, 

Honolulu and Los Angeles were rated most compact in 1997, and Las Vegas and Phoenix 

were both in the top 20 in compactness. However, because the study relied on the 

USDA‘s National Resources Inventory (NRI), which is a very small sample, it is a 

subject to sampling error and considered reliable only at county levels or above. This 

study examined the change at the metropolitan level and does not account for intra-

metropolitan variation. However, the 2009 NRI Summary Report warns against 

comparing NRI data published prior to 2009 as they may produce erroneous results 

because of changes in statistical estimation methodology
1
.  

                                                 
1 
http://www.nrcs.usda.gov/technical/nri/2007/2007_NRI_Summary.pdf  

http://www.nrcs.usda.gov/technical/nri/2007/2007_NRI_Summary.pdf
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More recently, Burchfield et al. (2006) examined temporal changes in the 

American spatial structure using a combination of remote-sensed data to construct a grid 

covering the coterminous U.S. The data included the 1992 National Land Cover Data 

(NLCD) and 1976 USGS data attained mainly from high-altitude aerial photographs 

collected between 1971 and 1982. The study looked at the change in the amount of 

undeveloped land surrounding an average urban dwelling in the U.S. prior to 1976 and 

between 1976 and 1992 and concluded that the extent of residential development sprawl 

has not changed between 1976 and 1992. This did not hold, however, for commercial 

development which had become more spread out. Developed areas in this period grew at 

a rate of 2.5 percent annually, amounting to 49 percent over 16 years.  

In a follow up study by Irwin and Bockstael (2007), the authors criticize the 

Burchfield et al (2006) results concluding that the NLCD data they used are 

systematically biased against recording low-density residential development. Instead, 

Irwin and Bockstael (2007) used planimetric data for Howard County, Maryland from 

1973 and 2000 to quantify land use patterns based on patches. A patch refers to a discrete 

and contiguous area of the same land use, and finds contrasting conclusions which 

suggest increasing land fragmentation, and particularly in areas located far from urban 

areas. Most of the measures generated by authors are commonly used in landscape 

ecology to capture various dimensions of fragmentation based on patch characteristics. 

Consequently, the measures can speak to land fragmentation and changes to land use and 

land cover, but are less meaningful estimates of the metropolitan spatial structure. It is 

also difficult to make any generalizations based on potential idiosyncrasies of Howard 

County in Maryland.   
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Finally, Thomas (2009) evaluated the level of infill across the country by using 

the U.S. Census residential building permit data for the 50 largest metropolitan regions 

over the 18 year period from 1990 to 2007. The study compared the number of permits 

issued by central cities and core suburban communities to clarify if there had been a shift 

toward redevelopment and in which regions had the shift been most significant. The 

permit data confirmed drastic increases in several regions and roughly half of them 

showed larger increases in the urban core. The increase was particularly large in 2000s. 

In fifteen regions, the central city more than doubled its share of permits, such as New 

York City, Chicago, Portland and Atlanta. The limitation of this analysis results from the 

data which are provided at the jurisdiction level and limit spatial knowledge of the 

building location. Consequently, in suburban communities, development on both 

undeveloped and previously developed land is grouped into one suburban category and 

could underestimate the level of infill construction taking place. Also, due to 

administration boundaries and their changes over this time period, it appears to be 

difficult to distinguish between redevelopment and new development. 

In summary of the literature measuring changes in urban form over time, it is 

apparent that the quality of studies heavily relies on availability and comparability of 

longitudinal metropolitan data that are at sufficiently disaggregated levels to account for 

inter-metropolitan variation and change over time. Much of the data compilation has 

evolved over time which often makes it difficult to use in comparative analysis of change 

in urban form. Also, delineation of urban boundaries appears to have led to some 

criticism for a number of studies. Consequently, studies examining the change in the 

metropolitan spatial structure and particularly increasing prevalence of sprawling patterns 
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have been limited in use of different measures and again most frequently rely on 

population densities. Finally, most of the longitudinal studies explore the changes prior to 

2000s, and more so prior to 1990s. It is important and timely to now explore the changes 

in the two decades since 1990 as they may have been significant in reshaping the U.S. 

metropolitan spatial structure.   

 

Spatial Determinants of Foreclosures 

Literature examining mortgage default is certainly not new. Academics have been 

long interested in understanding determinants of mortgage default. The early studies 

focused on determining the effects of loan and borrower characteristics, borrowers‘ 

decisions to default, and institutional frameworks (Quarcia & Stagman, 1992). Yet, the 

recent housing crisis, which began showing the signs of distress in 2005, has brought into 

perspective relatively new concerns related to mortgage default. According to the review 

by Mayer et al. (2009), the distinguishing feature of the current foreclosure crisis is that 

mortgage defaults and delinquencies started among borrowers of non-prime types of 

mortgage products. Non-prime products were generally extended to borrowers who 

would otherwise not qualify for prime mortgages, because of their compromised credit 

histories, very little savings available for down payments, or lack of full documentation 

of assets or income. Immergluck (2009b) effectively summarized how financial 

innovations and deregulation facilitated the rise of high-risk lending and why these types 

of loans and their associated regulatory infrastructure failed in substantial ways, harming 

different populations and communities along the way. 
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Studies immediately following the onset of the recent mortgage crisis but even 

those that focused on areas with high incidence of foreclosures prior to the national crisis, 

found that characteristics of non-prime mortgages were one of the strongest predictors of 

mortgage delinquency (Apgar and Duda 2005a; Immergluck and Smith, 2005; Coulton et 

al., 2008; Ding et al., 2008; Gerardi et al., 2007). In comparing prime and non-prime 

mortgages, non-prime borrowers had much lower credit scores, higher debt-to-income 

ratios (DTIs) and higher loan-to-value ratios (LTVs) at the time of origination (Okah and 

Orr, 2010;  Amromin, G., and A. L. Paulson, 2009).  Generally, the research on both 

prime and non-prime mortgages singles out the relevance of credit scores, DTIs and 

LTVs on default probability (Demyanyk, 2009; Foote et al., 2009; Haughwout et al., 

2008; Ding et al., 2008; Foote et al., 2009; Haughwout et al., 2008). The problematic role 

of non-prime mortgage products also stems from their concentration among minority and 

low-income households, and given the strong probability of those loans to default, the 

high rate of foreclosure in black and minority neighborhoods  (Immergluck, 2004; 

National Community Reinvestment Coalition, 2003; Coulton et al., 2008; Jiang et al., 

2009). Some concluded that race variables are partly picking up the effects of credit 

history and socio-economic conditions of those neighborhoods (Van Order & Zorn, 2000; 

Berkovec et al., 1994; Pedersen & Delgadillo, 2007).   

In tandem to the research on the role of non-prime loans in the mortgage default 

crisis, some research suggested that deteriorated underwriting standards were not the 

culprit of the crisis, but the final problem lay in changing underlying macroeconomic 

conditions such as housing price depreciation that began in late 2005 and the significant 

job losses that followed (Mayer et al, 2009). From 2000 through 2005, housing prices 
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appreciated at an average annual rate of 11 percent and then depreciated at an average 

annual rate of 10 percent from 2006 to 2008. In times of appreciating housing markets, 

mortgage default is less pronounced because financially distressed borrowers can more 

easily sell their properties or refinance and prepay their loans (Danis & Pennington-

Cross, 2005; Haughwout et al., 2008; Schloemer et al., 2006). Borrowers with negative 

equity, however, lack those opportunities and are more likely to default on their loans 

(Foote, Gerardi, and Willen, 2008; Gerardi et al, 2008). Yet, negative equity alone does 

not necessarily lead to default, rather default is often associated with ―shocks‖ or ―double 

triggers‖, particularly unemployment or illness (Bhutta et al, 2010; Foster and Van Order, 

1984; Foote et al., 2008).  

Despite the rich body of research on foreclosures, very few studies focused 

specifically on spatial determinants of foreclosures. Some studies that noted spatial 

patterns, suggest that foreclosures are highly clustered in older urban neighborhoods 

where residents were predominantly minorities, of lower income, and with higher 

instances of subprime lending (Gramlich, 2007; Immergluck and Smith, 2005; and 

Nassar, 2007).  In analyzing concentration of foreclosure filings in Atlanta, Apgar and 

Duda (2005) also showed foreclosure clusters in some suburban areas, including places 

with high minority populations and some in newly built subdivisions. However, though 

three-quarters of all foreclosures in the data were in suburbia, they were generally less 

concentrated than those in the city.  The rate of foreclosure filings, on the other hand, was 

almost twice as high in the city than in the suburbs.  Immergluck (2009a) recently 

described the accumulation of real estate owned (REO) properties within metropolitan 

areas by grouping the areas according to their initial foreclosures in August 2006 and 
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changes in home value from August 2006 to August 2008.  REO is real estate property 

owned by a lender, typically a bank, government agency, or government loan insurer, 

after an unsuccessful sale at a foreclosure auction (Roark, 2006). Using descriptive 

analysis at zip code level, Immergluck observed considerable variation in distribution of 

foreclosures in urban versus suburban neighborhoods across the groups of metropolitan 

areas.  In traditionally weak housing markets, there were relatively large concentrations 

of foreclosures in central cities, but those levels were high even before the current crisis. 

On the other hand, in regions where a high incidence of foreclosures is a newer event, 

foreclosures are more concentrated in suburban areas. In addition, in markets with severe 

home value declines, such as often citied in Florida, Arizona, and California, 

concentrations of foreclosures are highly suburbanized and with longer commute times. 

In a follow up study, Immergluck (2010) analyzed intra-metropolitan differences in REO 

accumulation by applying a multivariate analysis and found that after controlling for 

higher risk lending during the subprime lending boom, suburbanization and commuting 

had no apparent bearing on REO growth. Other working papers which tested this theory 

found mixed results. Ong and Pfeiffer (2008), looking at foreclosures in Los Angeles 

County in early 2008, found that exurban location explained 20 percent of the spatial 

variation in foreclosure rates. The authors attributed the result to higher speculation on 

new homes but also to high commuting costs of the exurban areas which makes them 

more vulnerable to decreases in demand. In a different approach, Rauterkus et al. (2010) 

modeled the probability of mortgage default in Chicago, Jacksonville, and San Francisco 

based on differences in location efficiency. Location-efficient homes are located in areas 

that facilitate lower car ownership. The study found that mortgage default probability 
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increases with the number of vehicles owned after controlling for income. Also, default 

probability decreases with higher Walk Scores in high income areas but increases with 

higher Walk Scores in low income areas. These studies are described in greater detail in 

the last essay which focuses on the spatial determinants of foreclosures.   

Overall, the research on determinants of foreclosures provides evidence that lower 

credit scores, higher debt-to-income ratios and higher loan-to-value ratios at the time of 

origination, particularly among non-prime borrowers, lead to higher default rates. Also, 

the communities with lower incomes, higher capitalization rates - lower or uncertain 

anticipated housing price appreciation, higher credit risk and an older housing stock are 

more vulnerable to subprime lending. The correlation between largely black 

neighborhoods and subprime lending, controlling for other factors, is particularly strong. 

Conversely, the evidence is mixed on the relationship between neighborhood tenure, 

income, other minority population and subprime lending. Notably, studies looking into 

spatial distribution provide some insight into the spatial determinants of foreclosures and 

suggest a link between suburbanization and commuting distance on probability of default, 

though the link is still debated. Those studies are generally limited by their focus on a 

few metropolitan areas. Nevertheless, different results confirm the expectation that the 

effects of spatial determinants on foreclosures may vary in regions with different 

demographics, housing markets, and geographic patterns, as well as among different time 

periods. 
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Essay One: The News On The American Urban Form - Are American Metropolitan 

Areas Growing Smarter? 

Following the decentralization and sprawling of U.S. metropolitan areas in 1970s 

and 1980s, concerns arose over manageability and sustainability of urban growth 

processes. While some attacked sprawl for its lack of aesthetics (Mumford, 1961), most 

critics argue that excessive urban expansion is unsustainable due to loss of open space, 

traffic congestion, increased air and water pollution, and fiscal costs of infrastructure 

associated with new low-density development (Duany et al, 2000; Downs, 1999, 

Brueckner, 2000a; Wu, 2006). Glaeser and Kahn (2003) also argued that the primary 

social problem associated with sprawl is social stratification between people who can 

afford cars and live in the suburbs and the abandoned ones that have no access to the 

variety of jobs and cannot live the car-dependent lifestyle.  

In response to these concerns, support has grown for a set of concepts commonly 

known as smart growth. Smart growth is a toolbox of related land use policies which 

focus on the following objectives: (i) the location of development – by promoting 

compact development, preserving farmland and open spaces, protecting natural resources 

and environmental quality, investing in established communities; (ii) the development 

design – by providing a range of housing choices and supplying affordable housing, 

promoting distinctive communities and mix of land uses; (iii) transportation and land use 

interaction – by creating walkable communities with transportation options; and (iv) the 

community and stakeholder partnership – by encouraging stakeholder collaboration and 

making development decisions process transparent and effective (Smart Growth 

Network, 2011).  
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Smart growth programs in the context of urban spatial structure largely focus on 

increasing the density of use of existing urban areas and limiting the conversion of farm 

land and open spaces to residential and commercial land use. To achieve these goals, the 

specific policies generally implemented include urban growth boundaries, tax incentives 

to revitalize the downtown areas, changes in zoning codes to promote infill development, 

tax incentives to minimize the distance between home and work, transferable 

development rights and conservation of undeveloped land. Some development 

restrictions also implicitly lessen marginal negative externalities of some land uses, 

which could embody aesthetics.  

Evaluation of the effectiveness of smart growth programs usually focuses on their 

ability to increase population density and limit spatial expansion of the urbanized areas. 

In the empirical evaluation of the programs, both Carruthers (2002) and Anthony (2004) 

found little evidence in support of smart growth. Though, Carruthers (2002) does find 

that Oregon‘s smart growth program led to increases in population density over time. 

This finding is consistent with arguments made by Burby and May (1997), and 

reaffirmed by Carruthers (2002a, 2002b) and Dawkins and Nelson (2004) that the 

institutional framework for growth management is a significant determinant of the 

program‘s effectiveness. Howell-Mulroney (2007), responding to the argument, classified 

state programs into weak, moderate and strong to examine whether the structure of state 

approaches makes a difference in development outcomes between states. Weak programs 

were identified in Georgia, New Jersey and Vermont; moderate programs were in Maine, 

Maryland and Rhode Island; while strong programs were in Florida, Oregon and 

Washington. The analysis, which included a longer observation period than previous 
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studies, found lower rates of urban spatial expansion and higher population density 

increases in states with the most stringent smart growth programs, but no effect in states 

with weaker programs when compared to states with no smart growth programs. The 

author pointed out that states that do not have smart growth legislation may have lower 

growth development pressures and consequently do not feel the need for growth 

planning. Another more recent analysis evaluating development patterns in four smart 

growth states (Florida, Maryland, New Jersey, and Oregon) and four states without such 

programs (Colorado, Indiana, Texas, and Virginia) finds that between 1990 and 2000 

smart growth states have fared better than the other states on some of the urban form 

dimensions (edited by Ingram et al, 2009). The smart growth states saw a higher share of 

infill development in already existing areas, though by an insignificant amount. And, the 

average rate of decentralization of population and employment in the metropolitan areas 

of the smart growth states were lower than in metropolitan areas of the other states. Other 

variables such as population and employment concentration and land consumption were 

not significantly different between the two groups of states.  

This study builds on the literature that has attempted to examine the extent to 

which U.S. metropolitan areas have been sprawling.  Literature suggests significant 

decentralization among cities in the South, particularly Atlanta, Raleigh and Greensboro, 

NC, Washington DC, and St. Louis (Galster et al., 2001; Ewing, Pendall and Chen, 2002; 

Sierra Club, 1998). Density of Western metropolitan regions increased the most; 

however, those are also regions constrained by natural and imposed geographical barriers 

(Fulton et al., 2001). In the second half of 1990s and into 2000s, older urban cores, in the 

Northeast in particular, were seeing some remarkable regeneration through infill 



 36  

 

development and population growth (Thomas, 2009). While offering interesting insight 

into dynamic nature of American urban areas, these studies have not probed deeper into 

changes that have occurred between 1990 and 2007, and particularly between 2000 and 

2007. That was a dynamic era for many American urban areas due to the great real estate 

boom, but also an era in which smart growth policies burgeoned and would have 

presented themselves in changes in urban form. This study will try to understand how 

metropolitan areas have changed over the seventeen year period, between 1990, 2000 and 

2007, and if the changes are consistent with previously observed patterns of sprawl or 

whether the trends are consistent with the proposition that U.S. cities are now growing 

smart.  

In the context of this study, growing smart refers to increasing population density 

of existing urban areas and limiting outward expansion of new development. It is not in 

the scope of this study to specifically evaluate smart growth programs and their 

effectiveness. While their existence is important for urban spatial structure, the focus is 

oriented towards evaluating the general tendencies of metropolitan spatial structure in the 

United States to grow inward. The following three questions will be addressed: (1) Has 

the metropolitan spatial structure in thirty five largest metropolitan areas in the United 

States changed between 1990, 2000, and 2007? (2) Is the change consistent with 

decentralization trends observed prior to 1990? (3) Is the change consistent across all the 

metropolitan areas? The hypothesis which assumes that urban areas are growing denser 

and sprawling at a slower rate arises out of a number of descriptive studies suggesting 

densification of urban areas in the past decade, although most often measured along one 

dimension (i.e. Thomas, 2009). Also, as argued in the theoretical background section, 
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households‘ revealed preferences suggest increased demand for urban amenities and 

proximity to urban centers. As a result, increase in population density of existing urban 

areas should be evident in states that do not employ smart growth programs as well as in 

those that do. 

 

Empirical Strategy 

To address these questions, I will compute and interpret multiple measures of 

urban form for the thirty five largest metropolitan areas in the United States. Metropolitan 

areas are defined by the United States Office of Management and Budget (OMB) and 

according to published standards that are applied to Census Bureau data. The general 

concept of a metropolitan or micropolitan statistical area consists of a core area 

containing a substantial population core and adjacent communities having a high degree 

of economic and social integration with that core. The term "core based statistical area" 

(CBSA) became effective in 2000 and refers collectively to metropolitan and 

micropolitan statistical areas
2
. The measures generated in this study include: density 

gradients, concentration indices, clustering indices, density frequency distributions, and 

growth allocation, and will be computed using normalized census tract data for 1990, 

2000, and 2007.  

 

Density Gradients 

Density gradients measure the degree to which population density declines as 

distance to the city center increases.  In describing metropolitan spatial structure, density 

                                                 
2 

Some metropolitan areas with population of 2.5 million or more are subdivided into metropolitan 

divisions. In this analysis, such metropolitan areas will be treated as one CBSA and will not be subdivided 

into metropolitan divisions. http://www.census.gov/population/www/metroareas/files/00-32997.pdf  

http://www.census.gov/population/www/metroareas/files/00-32997.pdf
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gradients are used to measure the change in population density from the center to the 

urban periphery. Following Clark (1951), density gradients describe urban population 

densities using the negative exponential function form, showing that density declines 

exponentially from the central core towards the outskirts of a metropolitan area. Negative 

exponential function is defined as follows:   

D(x) = D0e
-yx

,               (1) 

where D(x) represents population density at distance x from the center; D0 is the 

density at the center; and y is the density gradient or the rate at which the population 

density decreases as one moves away from the center. After taking the natural logarithm 

of population density, the equation yields the linear equation and density gradient can be 

estimated via ordinary least squares: 

  log D(x) = α + β (x) + e.   (2) 

As the study will focus on the changes in central urban densities and density 

gradients in the period between 1990 and 2007, density gradient models are modified as 

follows and are estimated for three pairs of years - 1990-2000, 2000-2007, and 1990-

2007: 

log D(x2000) – log D(x1990) = (α2000 – α1990) + (β2000 – β1990)x + e  (3) 

where the dependent variable log D(x2000) – log D(x1990) is measured as a difference 

between the logged population density variable in year 2000 and year 1990. Equation (3) 

is repeated for the 2000-2007 and 1990-2007 pairs. x is the explanatory variable 

measured as distance to the nearest CBSA center in 2007. A constant distance 

explanatory variable is used for comparability of results. The CBSA centers are defined 

as the centroids of the census tracts where the Central Business District (CBD) was 
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located according to the 1982 Census of Retail Trade. With specification such as the 

equation (3), α measures the intercept and change in population density at the core of the 

CBSA, and β measures the change in slope of the density gradient or the change in the 

rate at which population density decreases away from the core of the CBSA.  

In the analysis, both the difference of the slope and the intercept of the density 

gradients are interesting.  A negative slope coefficient on the gradient and a negative sign 

for the intercept imply fallen central city density and population densification of existing 

suburbs.  Densification of existing suburbs differs from expansion of urban areas and 

increasing population density in outer suburbs. Such spatial structure, also described as 

decentralization and sprawl would be characterized with a positive sign on the slope 

coefficient coupled with a negative sign on the intercept.  A negative sign on the slope 

coefficient of the gradient coupled with a positive sign on the intercept is indicative of 

centralization or smart growth. A positive sign on the intercept suggests that population 

density has increased in the central core, while the negative coefficient on the gradient 

implies that increases in population density have occurred in areas closer to the core. 

Finally, both positive coefficients on the slope and gradient suggest increase in central 

city population density but also greater population density in outer suburbs.   In other 

words, when the coefficient on the change in gradient is positive, it means that gradient in 

an earlier year, say 1990, was larger than the coefficient in the following year, say 2000, 

and the gradient flattened between 1990 and 2000. Figure 2 illustrates intercept and slope 

changes.  
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Figure 2: Change in Density Gradient 

 

 

Concentration Indices 

Concentration indices include Gini coefficients and Lorenz curves and provide 

information about the spatial concentration of population within metropolitan areas.  

They are used to measure inequality of population distribution by spatial units, census 

tracts, in a metropolitan area. The Gini coefficient has been commonly applied in the 

study of ecology, sociology, economics, and other sciences to measure statistical 

dispersion. It is most frequently used as a measure of inequality of income (Gini, 1936).  

In the analysis of metropolitan spatial structure, higher concentrations of 

population are revealed by Gini coefficients that are closer to one and signify that 

population density is high in fewer sub-areas. A Gini coefficient close to zero means that 

population is evenly distributed in a metropolitan area. The Gini coefficients are usually 

mathematically illustrated by Lorenz curves. The Lorenz curve is a graphical 
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representation of the cumulative distribution function of a probability distribution. The 

graph represented in the Figure 2 shows the cumulative percent of the metropolitan area 

(noted on the x-axis) that is inhabited by cumulative percentage of population in the same 

area (noted on the y-axis). For example, the rectangular shape in Figure 3 capturing 25 

percent of the population (y-axis) over 15 percent of the area (x-axis) describes a 

metropolitan area where 25 percent of the population is located on 15 percent of the total 

metropolitan area.  

 

 

 

 

 

 

 

 

 

 

 

 

The Lorenz curve is a function of the cumulative proportion of ordered census 

tracts‘ populations mapped onto the corresponding cumulative proportion of their size. 

Given a metropolitan area with n ordered census tracts with   
  the size of a census tract i 

and    
 <  

 <…<  
 , then the Lorenz curve is the polygon joining the cumulative percent 

population value and the cumulative percent area value for each tract. The Gini 

coefficient is the area in Figure 2 between the perfect equality line and the observed 

Lorenz curve as a percentage of the area between the line of perfect equality and the line 

Figure 3: Gini Coefficient 
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of perfect inequality. Since the area between the line of perfect equality and the Lorenz 

curve is A, and the area beyond the Lorenz curve is B, the Gini index is A/ (A+B). 

Lorenz curves that are more bowed indicate higher concentration of population densities 

within a metropolitan area.  

The implications of the Gini coefficient suggesting growing population 

concentration on the success of smart growth programs are somewhat ambiguous.  Smart 

growth goals include compact development and rural land preservation.  This can be 

achieved by concentrating development in urban areas and leaving rural areas 

undeveloped.  In a two-region landscape that includes one urban region and one rural 

region, success in growth management could be measured by how close the Lorenz curve 

was to L-shaped and how close the Gini coefficient was to one (which indicates that all 

population was in the urban region and not in the rural region). In the more complicated 

real world, the optimal concentration of population is less clear. At the metropolitan 

scale, a more concentrated pattern of development is probably preferred as such a pattern 

is more likely to allow high-density and mixed use urban cores and a relatively 

undeveloped urban fringe.  Even at the metropolitan scale, however, the optimal pattern 

of population concentration is difficult to define in cities with multiple centers of activity 

and relatively tight patterns of development around those centers. Therefore, unequal 

distribution may be better perceived as a general dimension of metropolitan form, rather 

than sprawl particularly. A high Gini coefficient indicates an unequal distribution, 

meaning a large number of people are concentrated in a small area.  Subject to the 

qualifications discussed above, higher coefficients, which imply greater concentration of 

population, are indicative of smarter growth. It is important to note that these coefficients 
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also reflect the geographic size of census tracts, physiographic constraints, and historical 

patterns. Also, as the focus of this study is the relative change of metropolitan spatial 

structure, it is not necessarily as important where a metropolitan area ranks in terms of 

population concentration, but how the indicator has changed over time.     

 

Density Histograms 

Density histograms, as used here, display the frequency of census tracts by 

density in three periods in time, and convey differences across the three periods. When 

evaluating urban form through the lens of smart growth, certain critical densities are 

necessary to accommodate certain types of transit and facilitate the types of development 

advocated by smart growth. Pushkarev and Zuban (1977) presented data on mode usage 

and density to make the point that certain levels of density are needed for the viability of 

types of transportation. In generating density distributions for each metropolitan area, 

attention is paid to which categories of density within metropolitan areas lost or gained 

population between 1990 and 2007. Here, histograms of density are generated in intervals 

of 500 persons per square kilometer for three points in time (1990, 2000, and 2007). 

Also, histograms of differences between pairs of years (1990-2000, 2000-2007, and 

1990-2007) are generated. The shape of these histograms characterizes the distribution of 

tracts by density and difference histograms show how the distribution of tracts by density 

changed over time. Difference histograms provide a sense of whether growth occurred 

primarily in low density tracts, medium density tracts, or occurred in all tracts.   
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Clustering Index  

The clustering index used here includes the global Moran coefficient. To address 

the question of metropolitan areas being monocentric, polycentric or decentralized 

sprawling and to complement the other spatial form measures, this study will also 

compute the global Moran‘s coefficient for each metropolitan area. Moran‘s coefficient is 

a frequently used spatial statistics tool which measures the degree of spatial 

autocorrelation, or in other words, it measures the extent to which adjacent observations 

of the same phenomenon are correlated.  Values range from −1 indicating perfect 

dispersion to +1 indicating perfect correlation. A zero value indicates a random spatial 

pattern. The previous research has shown a high Moran coefficient to be indicative of 

monocentric spatial form. An intermediate Moran coefficient suggested polycentric form, 

while a low coefficient suggested decentralized metropolitan form (Tsai, 2005). The 

Moran‘s coefficient is defined as: 

  

         (4) 

  

where, N is the number of census tracts; Xi is population density in the census tract i; 

Xj is population density in the census tract j;  ̅ is the mean of population density; and Wij 

denotes the weighting between census tracts i and j. The weighting function is K-nearest 

neighbor centroids of census tracts, where K=10. K-nearest neighbor weights is used 

because X is a strongly skewed variable. Most of the tracts have relatively lower density 

while a much smaller share of them have high population density. In the case where the 

input variable is strongly skewed, some features will have very few neighbors and there 
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may be instances where the Moran value falls outside the bounded range of -1.0 to 1.0. In 

such cases, each feature should be weighed with at least 8 neighbors (Getis and Ord, 

1992). In this study, each tract is weighted with its 10 nearest neighbors and Moran‘s 

value of +1 indicates that high density census tracts are closely clustered, while -1 

indicates they are scattered or exhibit a ‗chessboard‘ pattern of development (Tsai, 2005).  

While, similar to Gini coefficients, Moran coefficients alone do not reveal enough 

information about the metropolitan spatial structure; however it does characterize the 

component of the metropolitan spatial structure not addressed with other measures 

included in this study, namely clustering. As noted in the description of the concentration 

indices, concentration of population in higher density areas is critical for success of the 

smart growth policies and while Gini coefficients do not contribute by revealing the 

degree of clustering, the Moran coefficient will complement the analysis with such 

information.  

 

Urbanization – Growth Allocation 

Growth allocation, as defined here, apportions population growth from 1990 to 

2007 in each metropolitan area to: (i) areas urbanized in 1990, (ii) areas urbanized 

between 1990 and 2000, (iii) areas urbanized between 2000 and 2007, and (iv) areas 

never urbanized.  Growth allocation, also referred to as the urbanization indicator, 

focuses on the location and density of urban growth relative to the existing urban areas.  

That is, a census tract is considered urbanized if it had a population density greater than 

1000 persons per square mile regardless of where that census tract is located.  The 1000 
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persons per square mile threshold follows Census‘ delineation of urban and rural areas
3
. 

A schematic of the approach to this indicator is presented in Figure 4, which presumes, 

unrealistically, that all urban growth in a metropolitan area is centered around a single 

urban core. Also note that this is the only indicator which measures population density in 

people per square mile versus people per square kilometer. This was done to maintain 

consistency with Census delineation definition.  

 

Figure 4: Urbanization Scheme 

 

 

In general, smart growth policies prefer development in existing urban areas 

primarily. The next area of development should be new areas which are hopefully 

adjacent to the existing urban areas. Finally, the last place of development should be in 

rural areas.  Further, but again with caveats, higher density development is preferred in 

urban and new urban areas and lower density is preferred in rural areas. Unlike density 

                                                 
3 
http://www.census.gov/geo/www/ua/ua_2k.html  

http://www.census.gov/geo/www/ua/ua_2k.html
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gradients, this measure is not dependent on notions of a monocentric city.  Each census 

tract is defined as either urban 1990, urbanized 1990-2000, urbanized 2000-2007, or 

never urbanized. The disadvantage of this measure is that it does not account for spatial 

location of new urbanization, but only identifies in which of the four categories new 

urbanization was allocated to.  

 

Data 

 The analysis focuses on the thirty five largest CBSAs of the United States and 

uses 2000 census tracts as the units of analysis. Figure 1 in Appendix A lists the 35 

CBSAs along with population statistics. The data comes from three sources: (i) Census 

Summary File 3 (SF-3), from the 2000 census of the population; (ii) ESRI 2007 

Demographic Update; and (iii) two Geolytics, Inc. products which allocate selected 1990 

SF-1 and SF-3 variables from 1990 census block groups and tract boundaries to 2000 

block group and tract boundaries. Geolytics products allow for a meaningful comparison 

as they ensure the underlying geographic boundaries remain constant over time. 

Technical explanation of the Geolytics tract remapping methodology is available in their 

Data Users' Guide
4
.  

The ESRI 2007 Demographic Update provides population estimates for 2007 at 

census tract geography. To estimate the 2007 population count, ESRI uses three primary 

sources: (i) residential delivery statistics from the U.S. Postal Service (USPS), (ii) 

InfoBase database from Acxiom Corporation, and (iii) residential construction data from 

Hanley Wood Market Intelligence. The USPS publishes monthly counts of residential 

deliveries for every U.S. postal carrier route. This represents the most comprehensive and 

                                                 
4
http://www.geolytics.com/Pages/NCDB/NCDB_variables/AppendixJ.pdf  

http://www.geolytics.com/Pages/NCDB/NCDB_variables/AppendixJ.pdf
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current information available for small, sub-county geographic areas. To allocate a 

delivery address to block groups, ESRI relies on its proprietary Address-Based Allocation 

(ABA) method. This allocation method uses the addresses from Acxiom's InfoBase 

household database which are geocoded with carrier route and block group codes. ESRI 

tests its results extensively including benchmarking against the 2000 Census. For the 

small portion of block groups where addresses are not available from the InfoBase 

database, delivery statistics are allocated from a correspondence file. The correspondence 

between census block groups and postal carrier routes is developed using quarterly 

updated data from Tele Atlas. However, given that this analysis focuses on highly urban 

areas, such block group data would not be utilized. To track new housing developments, 

especially in previously unpopulated areas, ESRI uses data from Hanley Wood Market 

Intelligence which tracts new and planned residential construction in the largest 75 U.S. 

housing markets. This database identifies exact locations of individual construction 

projects, including, a complex of single-family homes, townhomes, or a condominium 

building. The database also tracks conversions of apartments into condominiums. The 

construction information includes: total number of units planned, inventory of units under 

construction, sold, and/or closed, type of housing—detached homes, townhomes, 

condominiums, and target markets—families, seniors, empty nesters. Finally, totals for 

block groups are controlled to the county totals. Again, this analysis focuses on 35 largest 

metropolitan areas where the input data for estimates are more extensive and complete. 

Detailed explanation of ESRI‘s method is available in the ESRI
®
 Demographic Update 

Methodology
5
. 

                                                 
5
http://www.esri.com/library/whitepapers/pdfs/demographic-update-methodology-2007.pdf.The 

effectiveness of the ABA method highly depends on the precision of block group assignment to InfoBase 

http://www.esri.com/library/whitepapers/pdfs/demographic-update-methodology-2007.pdf
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Results 

  Detailed results of all measures are available in tables and graphs contained in 

Appendix A.  

 

Density Gradients 

Using the data from 1990, 2000, and 2007, the analysis focuses on density 

gradients among the 35 metropolitan areas during those three periods and the difference 

in the three periods --- 1990 to 2000, 2000 to 2007, and 1990 to 2007. For density 

gradients in each of the three periods, the estimated coefficient on intercept, α, identifies 

population density at the central core of the metropolitan area. The coefficient on the 

slope, β, measures the density gradient. The difference measuring between three sets of 

years show how the slope and the intercept of the density gradients changed. In general, a 

negative slope coefficient on the gradient and a negative sign for the intercept imply 

fallen central city density and population densification of existing suburbs. A negative 

sign on the slope coefficient of the gradient coupled with a positive sign on the intercept 

is indicative of centralization or smart growth.   A positive sign on the slope coefficient 

of the gradient coupled with a negative sign on the intercept implies decentralization and 

sprawl. Finally, both positive slope coefficient of the gradient and the intercept indicate 

population growth in both the inner ring and suburbs.  

It is important to qualify that the analysis in this essay measures change in a 

closed city model. A closed city model in the case of this study means that a CBSA 

                                                                                                                                                 
addresses. ESRI used improved Dynamap/Address Points database from Tele Atlas, which provides 

coordinates that are accurate to the building,; however this database currently covers only the most densely 

populated areas in the United States. Addresses that fall outside the coverage were geocoded with the 

conventional approach, based on address ranges. Post office delivery counts or address counts provide less 

coverage in rural areas.  
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geographic boundary is held constant over time. Also, density gradient measure does not 

control for population growth in CBSAs. Consequently, in metropolitan areas that gained 

significant population growth over the observation period, the intercept and the slope of 

density gradient are naturally expected to show positive change. Thus, the estimated 

coefficient on the slope and the intercept may be more indicative of the type of change in 

spatial structure. Again, because this analysis evaluates constant area, all references to 

suburbs refer to those located inside the constant CBSA boundary. The change beyond 

this boundary is not accounted for and may not be consistent with the change estimated 

inside the boundary.  

 

Density gradients in 1990 

The analysis of density gradients begins with density gradients of metropolitan 

areas in 1990. The model specification indicating a natural logarithm of population 

density in 1990 is regressed on distance from the CBD. In the analysis, the population 

density variable is expressed as population per square kilometer and distance from the 

CBD is expressed in kilometers. To get a sense of general trends among the 35 observed 

metropolitan areas, density gradients were also generated by aggregating all observations. 

The estimated density gradient for 1990 among the 35 metropolitan areas is summarized 

as:  

 log(population density 1990) =       ̂-     ̂ distance to CBD  (5) 

where the first coefficient is the estimated intercept of the gradient for 35 

metropolitan areas and the second coefficient is the estimated density gradient, or the rate 

at which population density falls away from the central core. When the estimated 

coefficients are exponentiated, they yield the following result: 
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population density 1990 =  exp(8.073) + (exp (-0.391)-1) *distance to CBD      (6) 

which equals to: 

population density in 1990 =  3,206 - 32% @ 10km from CBD                    (7) 

where the intercept for 35 metropolitan areas yields density of 3,206 people per 

square kilometer, and falls by almost 32 percent 10 kilometers away from the center.  

Naturally, the estimates differ significantly among metropolitan areas with New York 

City having highest intercept, at over 14,000 people per square km and Las Vegas having 

the smallest intercept, at 400 people per square km. Also, the gradient falls at different 

rates among the CBSAs with Miami losing about 12 percent of population density and 

Denver losing over 66 percent of population density 10 km from the CBSA core. Table 1 

below contains transformed coefficients for the 35 metropolitan areas for 1990, 2000, and 

2007.  Appendix A contains estimated output coefficients.  

 

Density gradients in 2000 

In 2000, the estimated density gradient among the 35 metropolitan areas suggests 

that population density has increased in the central core while the gradient has fallen:  

population density in 2000 =  3,583 – 31% @ 10km from  CBD         (8) 

The results again differ among the metropolitan areas. The estimates continue to 

rank New York City as having highest intercept, but in 2000, Charlotte, NC ranked with 

the lowest intercept. Miami and Denver maintained their ranking at either end of the 

gradient continuum, with Miami losing 11 percent of population density 10 km out of the 

center and Denver losing 66 percent of population density.   

 



 52  

 

Density gradients in 2007 

The aggregated result for 2007 for 35 metropolitan areas suggests that central city 

population density has further increased. Also, density gradient has further flattened:  

population density in 2007 =  3,737 – 30% @ 10km from CBD           (9) 

 

Table 1 contains estimates for all metro areas and CBSAs are listed in 

alphabetical order.  
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Table 1: Density Gradients 1990, 2000, 2007 

Metropolitan Areas 

1990 2000 2007 

Gradient 

(@10km) 
Intercept 

Gradient 

(@10km) 
Intercept 

Gradient 

(@10km) 
Intercept 

Atlanta-Sandy Springs-Marietta, GA -43% 2,089 -41% 2,363 -39% 2,587 

Austin-Round Rock, TX -52% 1,618 -50% 2,244 -48% 2,460 

Baltimore-Towson, MD -53% 4,245 -50% 3,967 -48% 3,882 

Boston-Cambridge-Quincy, MA-NH -37% 4,516 -36% 4,615 -35% 4,568 

Charlotte-Gastonia-Concord, NC-SC  -41% 965 -41% 1,251 -41% 1,464 

Chicago-Naperville-Joliet, IL-IN-WI  -36% 6,462 -34% 6,590 -33% 6,645 

Cincinnati-Middletown, OH-KY-IN  -46% 2,256 -44% 2,194 -42% 2,076 

Cleveland-Elyria-Mentor, OH  -43% 3,077 -40% 2,755 -39% 2,656 

Dallas-Fort Worth-Arlington, TX  -31% 2,099 -30% 2,676 -29% 2,835 

Denver-Aurora, CO -66% 4,238 -61% 4,679 -58% 4,593 

Detroit-Warren-Livonia, MI  -37% 3,880 -34% 3,524 -33% 3,385 

Houston-Sugar Land-Baytown, TX  -36% 2,126 -35% 2,497 -34% 2,779 

Indianapolis, IN  -55% 2,087 -52% 2,129 -51% 2,113 

Jacksonville, FL  -42% 1,281 -39% 1,332 -37% 1,447 

Las Vegas-Paradise, NV  -31% 403 -33% 2,296 -33% 2,895 

Los Angeles-Long Beach-Santa Ana, CA  -33% 7,875 -30% 7,682 -29% 7,787 

Miami-Fort Lauderdale-Miami Beach, FL  -12% 2,242 -11% 2,968 -11% 3,171 

Minneapolis-St. Paul-Bloomington, MN-WI  -53% 3,271 -52% 3,698 -49% 3,530 

New York-Northern New Jersey-Long Island, 

NY-NJ-PA  
-39% 14,368 -38% 15,172 -38% 16,192 

Orlando-Kissimmee,  FL  -42% 1,337 -40% 1,766 -37% 1,953 

Philadelphia-Camden-Wilmington, PA-NJ-

DE-MD  
-34% 3,431 -32% 3,255 -31% 3,216 

Phoenix-Mesa-Scottsdale, AZ  -26% 1,110 -25% 1,979 -24% 2,328 

Pittsburgh, PA  -40% 2,393 -39% 2,213 -38% 2,115 

Portland-Vancouver-Beaverton, OR-WA  -59% 3,041 -58% 3,716 -58% 3,998 

Richmond, VA  -48% 1,343 -46% 1,438 -45% 1,485 

Riverside-San Bernardino-Ontario, CA  -18% 1,413 -16% 1,857 -16% 2,133 

Sacramento-Arden-Arcade-Roseville, CA  -27% 1,268 -27% 1,929 -27% 2,173 

St. Louis, MO-IL -45% 2,701 -41% 2,355 -40% 2,296 

San Antonio, TX  -58% 2,408 -55% 2,670 -54% 2,831 

San Diego-Carlsbad-San Marcos, CA  -31% 3,009 -28% 3,537 -27% 3,729 

San Francisco-Oakland-Fremont, CA  -37% 6,665 -35% 6,943 -35% 7,088 

Seattle-Tacoma-Bellevue, WA  -37% 2,995 -34% 3,282 -33% 3,428 

Tampa-St. Petersburg-Clearwater, FL  -22% 1,303 -22% 1,611 -22% 1,819 

Virginia Beach-Norfolk-Newport News, VA-

NC  
-43% 3,271 -40% 3,137 -38% 3,056 

Washington-Arlington-Alexandria, DC-VA-

MD-WV  
-42% 3,768 -38% 3,744 -36% 3,824 

All metropolitan Areas -32% 3,206 -31% 3,583 -30% 3,737 
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Change between 1990 and 2000 

The change in density gradients for three sets of years is measured for all 

metropolitan areas individually as well as in an aggregated sample. The estimate for 

change between 1990 and 2000 for the aggregated sample is as follows: 

log D(x2000) – log D(x1990) = ( ̂2000 –  ̂1990) + ( ̂2000 –  ̂1990)   ̅+  ̂       (10) 

where 

 ( ̂2000 –  ̂1990) = 0.111, and                                                                                      (11) 

 ( ̂2000 –  ̂1990) = 0.021.                                                                                             (12)  

Positive coefficients on both the slope and the gradient indicate that overall the 

largest metropolitan areas grew denser in the center while the gradient flattened. 

Flattening of the gradient indicates that population density decreased at a slower pace, 

also signifying that suburban areas gained in population density.  Over the decade, 

intercept in the core grew by 12 percent ((exp (0.111)-1)*100) while the gradient 

flattened by 2.15 percent ((exp (0.021)-1)*100).  Note that positive value on change of 

the gradient indicates that the gradient in the later year has lower absolute value than the 

gradient in the former year.  

The change varies some when metropolitan areas are observed individually. Table 

2 below clusters the metropolitan areas according to the change in the intercept and 

gradient between 1990 and 2000.  There are three groups of observed changes. The first 

group, which also covers largest number of metro areas, experienced increases in the 

intercept and flattening of the gradients. Over seventy percent or 21 of the 35 observed 

metropolitan areas fall in the first group and have seen significant increasing population 

density in the urban core. Four more areas saw some marginal increase as well. Among 
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all the 25 metropolitan areas with increasing population in the central core, two thirds 

also had increasing population density in the suburban communities. The second group, 

with a positive change in intercept and fallen gradient, include three metropolitan areas, 

Las Vegas, Sacramento and Tampa. These three areas experienced some centralization, 

though the estimates are marginal and not significant. Finally, the third group includes 

metro areas that saw decrease in the intercept and flatter gradient. These areas in fact 

decentralized or sprawled during 1990s and include mostly older industrialized cities in 

the rust belt.  

The largest positive and significant change on the intercept was noted in Las 

Vegas, Nevada, where the change was three times as large as the next metropolitan area, 

Phoenix, Arizona.  Sacramento, California, Austin, Texas and Miami, Florida, followed. 

Among these five, Austin metropolitan area also saw the  largest increase in population 

density in suburban areas, suggested by large and significant β coefficient. Miami and 

Phoenix grew out but at insignificant levels, while Las Vegas and Sacramento, and 

Tampa centralized but also at insignificant levels. Remaining metropolitan areas with 

increasing population in the center and throughout the metropolitan region, the first 

group, are expectedly newer metros in South and West, but also several in Midwest and 

Northeast.  

The third group, comprising 30 percent of the observed metropolitan areas saw 

declining population in the central core, with six having significant depopulation. With a 

positive and significant slope coefficient, it appears the population moved to the suburban 

areas in all of them.  Many are older metropolitan areas that also had overall population 

loss during this time. The largest and highly significant decrease in central city 
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population density was in St Louis, MO-IL, where also population significantly migrated 

to suburban areas. Other older, largely rust-belt metropolitan areas followed, such as 

Cleveland, Detroit, Pittsburg, Baltimore, and Philadelphia. Cincinnati, Los Angeles, 

Washington DC, and Virginia Beach also had falling central cities but smaller and 

insignificant, with increasing population density in the suburban communities. 

 

Table 2: Change in Population Density 1990 to 2000 

+Intercept & + Gradient  +Intercept & - Gradient  -Intercept  & + Gradient 
Atlanta-Sandy Springs-Marietta, 

GA 

Las Vegas-Paradise, NV  Baltimore-Towson, MD 

Austin-Round Rock, TX Sacramento-Arden-Arcade-

Roseville, CA  

Cincinnati-Middletown, OH-KY-

IN  

Boston-Cambridge-Quincy, MA-

NH 

Tampa-St. Petersburg-

Clearwater, FL  

Cleveland-Elyria-Mentor, OH  

Charlotte-Gastonia-Concord, 

NC-SC  

 Detroit-Warren-Livonia, MI  

Chicago-Naperville-Joliet, IL-

IN-WI  

 Los Angeles-Long Beach-Santa 

Ana, CA  

Dallas-Fort Worth-Arlington, TX   Philadelphia-Camden-

Wilmington, PA-NJ-DE-MD  

Denver-Aurora, CO  Pittsburgh, PA  

Houston-Sugar Land-Baytown, 

TX  

 St. Louis, MO-IL 

Indianapolis, IN   Virginia Beach-Norfolk-Newport 

News, VA-NC  

Jacksonville, FL   Washington-Arlington-

Alexandria, DC-VA-MD-WV  

Miami-Fort Lauderdale-Miami 

Beach, FL  

  

Minneapolis-St. Paul-

Bloomington, MN-WI  

  

New York-Northern New Jersey-

Long Island, NY-NJ-PA  

  

Orlando-Kissimmee,  FL    

Phoenix-Mesa-Scottsdale, AZ    

Portland-Vancouver-Beaverton, 

OR-WA  

  

Richmond, VA    

Riverside-San Bernardino-

Ontario, CA  

  

San Antonio, TX    

San Diego-Carlsbad-San Marcos, 

CA  
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Change between 2000 and 2007 

The estimate for change between 2000 and 2007 for the aggregated sample is:  

log D(x2007) – log D(x2000) = ( ̂2007 –  ̂2000) + ( ̂2007 –  ̂̂2000)   ̅+  ̂       (13) 

where 

( ̂2007 –  ̂2000) = 0.042, and                                                                                 (14) 

( ̂2007 –  ̂̂2000) = 0.015.                                                                                        (15) 

The estimates suggest that although the population density trends of the 1990s 

decade continued into 2000s, the change from 2000 to  2007 was much less dramatic. 

The intercept continued to increase, by 4.3 percent, while the gradient flattened by 1.5 

percent. Examined individually, most metropolitan areas gained population density in the 

urban core but also continued densifying in the suburban communities. Las Vegas 

continued with the highest increase in the intercept, though at lower magnitude than in 

the decade before. Followed by similar increases were Phoenix and Charlotte. Riverside 

and Tampa ranked third and fourth. Charlotte was also the only metro area that 

experienced some insignificant centralization of the suburban population while the other 

four showed increase in population density on the suburban fringe.  

Table 3 groups the metropolitan areas by the type of change seen between 2000 

and 2007. The third group, which lost population density in the center between 1990 and 

2000, was joined by Boston and Minneapolis after 2000, though Minneapolis‘ loss was 

insignificant.  The largest significant drop was in Cincinnati and Pittsburg, followed by a  

San Francisco-Oakland-Fremont, 

CA  

  

Seattle-Tacoma-Bellevue, WA    
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marginally significant drop in Cleveland. Expectedly, all these metropolitan areas 

decentralized with significant increase in population density on the urban fringe. Though 

intercept in Denver only marginally and insignificantly decreased, Denver had the largest 

increase in population density at the urban fringe. Following with population growth on 

the fringe were Minneapolis, Orlando, and Cincinnati. Again, Charlotte was the only area 

with some marginal centralization. The first group where population growth focused on 

both inner central areas and suburbs was the largest and joined by several new 

metropolitan areas. Washington, DC‘s metropolitan area reversed the 1990s trend from 

losing population in the central core to small but significant gains after 2000 and 

continued increasing population density in suburban areas. Las Vegas, Tampa and 

Sacramento also changed from focusing the population growth inward to expansion on 

the suburban fringe; however the change in the gradient is only marginally significant or 

non-significant among all three. 

 

Table 3: Change in Population Density 2000 to 2007 

+Intercept & + Gradient  +Intercept & - 

Gradient 

 -Intercept  & + Gradient 

Atlanta-Sandy Springs-Marietta, GA Charlotte-Gastonia-Concord, 

NC-SC  

Baltimore-Towson, MD 

Austin-Round Rock, TX   Boston-Cambridge-Quincy, MA-

NH 

Chicago-Naperville-Joliet, IL-IN-

WI  

  Cincinnati-Middletown, OH-

KY-IN  

Dallas-Fort Worth-Arlington, TX    Cleveland-Elyria-Mentor, OH  

Houston-Sugar Land-Baytown, TX    Denver-Aurora, CO 

Jacksonville, FL    Detroit-Warren-Livonia, MI  

Las Vegas-Paradise, NV    Indianapolis, IN  

Los Angeles-Long Beach-Santa 

Ana, CA  

  Minneapolis-St. Paul-

Bloomington, MN-WI  

Miami-Fort Lauderdale-Miami 

Beach, FL  

  Philadelphia-Camden-

Wilmington, PA-NJ-DE-MD  

New York-Northern New Jersey-

Long Island, NY-NJ-PA  

  Pittsburgh, PA  
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Orlando-Kissimmee,  FL    St. Louis, MO-IL 

Phoenix-Mesa-Scottsdale, AZ    Virginia Beach-Norfolk-

Newport News, VA-NC  

Portland-Vancouver-Beaverton, 

OR-WA  

    

Richmond, VA      

Riverside-San Bernardino-Ontario, 

CA  

    

Sacramento-Arden-Arcade-

Roseville, CA  

    

San Antonio, TX      

San Diego-Carlsbad-San Marcos, 

CA  

    

San Francisco-Oakland-Fremont, 

CA  

    

Seattle-Tacoma-Bellevue, WA      

Tampa-St. Petersburg-Clearwater, 

FL  

    

Washington-Arlington-Alexandria, 

DC-VA-MD-WV  

    

 

 

Change between 1990 and 2007 

Finally, the estimate for change between the entire period, 1990 and 2007, for the 

aggregated sample is as follows: 

 log D(x2007) – log D(x1990) = ( ̂ –  ̂1990) + ( ̂2007 –  ̂1990)   ̅+  ̂       (16) 

where 

 ( ̂2007 –  ̂1990) = 0.153, and                                                                                (17) 

 ( ̂2007 –  ̂1990) = 0.036.                                                                                       (18) 

In general, over the entire observation period, American metropolitan areas grew 

denser both in the urban core as well as on the urban fringe. Relatively more drastic 

change can be seen in the central cores than in the suburban areas. Population density in 

the core grew by almost 17 percent over 17 years as the intercept rose from 3206 people 

per square km in 1990 to 3737 in 2007. The gradient flattened by 3.7 percent which 
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suggests that density was 3.7 percent higher 10 km outside the center in 2007 than was in 

1990.  

Twenty seven out of thirty five metropolitan areas experienced increasing 

population in the center and are included in the first group in Table 4. Twenty two 

observed significant changes. Thirty two metro areas also expanded their population 

density on the urban fringe. Among the metropolitan areas that grew smarter, Las Vegas 

clearly experienced the highest degree of population increase in the urban center, almost 

three times the magnitude of the second ranking city, Phoenix. Sacramento, Austin and 

Charlotte followed. Charlotte and Las Vegas did centralize some but not significantly. 

Austin expanded significantly at the urban fringe, as did Phoenix and Sacramento but 

only marginally.  

Out of the five metropolitan areas with insignificant changes over the observation 

period, Denver, Boston and Indianapolis increased in central city density between 1990 

and 2000 and then decreased between 2000 and 2007. Washington lost density in the 

urban core prior to 2000 and then gained it significantly after the year 2000. In contrast, 

Chicago increased significantly denser before 2000, but since then, the change has been 

insignificant.  

Metropolitan areas that did not growth smart and decentralized over the 

seventeen-year period were again old industrial areas with St. Louis experiencing the 

greatest degree of decentralization. Following were Cleveland, Detroit, Pittsburg, and 

Baltimore. Smaller and insignificant changes were observed in Los Angeles and Virginia 

Beach. Table 4 groups the metropolitan areas according to the type of spatial structure 

change seen between 1990 and 2007.  
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Table 4: Change in Population Density 1990 to 2007 

+Intercept & + Gradient  +Intercept & - Gradient  -Intercept  &+ Gradient 

Atlanta-Sandy Springs-Marietta, 

GA 

Charlotte-Gastonia-Concord, 

NC-SC  

Baltimore-Towson, MD 

Austin-Round Rock, TX Las Vegas-Paradise, NV  Cincinnati-Middletown, OH-

KY-IN  

Boston-Cambridge-Quincy, MA-

NH 

Tampa-St. Petersburg-

Clearwater, FL  

Cleveland-Elyria-Mentor, OH  

Chicago-Naperville-Joliet, IL-

IN-WI  

  Detroit-Warren-Livonia, MI  

Colorado Springs, CO    El Paso, TX  

Dallas-Fort Worth-Arlington, 

TX  

  Los Angeles-Long Beach-Santa 

Ana, CA  

Denver-Aurora, CO   Philadelphia-Camden-

Wilmington, PA-NJ-DE-MD  

Houston-Sugar Land-Baytown, 

TX  

  Pittsburgh, PA  

Indianapolis, IN    St. Louis, MO-IL 

Jacksonville, FL    Virginia Beach-Norfolk-

Newport News, VA-NC  

Miami-Fort Lauderdale-Miami 

Beach, FL  

    

Minneapolis-St. Paul-

Bloomington, MN-WI  

    

New York-Northern New 

Jersey-Long Island, NY-NJ-PA  

    

Orlando-Kissimmee,  FL      

Phoenix-Mesa-Scottsdale, AZ      

Portland-Vancouver-Beaverton, 

OR-WA  

    

Richmond, VA      

Riverside-San Bernardino-

Ontario, CA  

    

Sacramento-Arden-Arcade-

Roseville, CA  

    

San Antonio, TX      

San Diego-Carlsbad-San 

Marcos, CA  

    

San Francisco-Oakland-Fremont, 

CA  

    

Seattle-Tacoma-Bellevue, WA      

Washington-Arlington-

Alexandria, DC-VA-MD-WV  
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Concentration 

Concentration measured via Gini coefficients varied tremendously among the 

metropolitan areas over the seventeen-year period. It ranged from high 0.974 in 1990 in 

Las Vegas to low 0.639 in Boston in 2007. Areas with high Gini coefficients are 

considered concentrated with highly unequal population distribution across smaller areas. 

Metropolitan areas with smaller Gini coefficients have more equal distribution of 

population across the area. Gini coefficients do not address the location of an area‘s 

concentration. Thus even if the estimated result suggests an urban area has become 

increasingly concentrated that could mean around any focal point within a metro area, not 

only the urban core. For the aggregated sample of 35 metropolitan areas, the 1990 Gini 

coefficient equaled 0.873, and it fell to 0.858 in 2000 and to 0.844 in 2007. Falling Gini 

coefficient suggests that most of the areas across the county grew less concentrated. 

Figure 5 illustrates differences in Gini coefficients across several metropolitan 

areas in 2007. The figure shows Lorenz curves which are graphical representations of 

Gini coefficients. A metropolitan area, such as Las Vegas, which has a very high Gini 

coefficient, 0.950, is depicted with a very bowed Lorenz curve, while an area that is less 

concentrated, such as Atlanta with a Gini equaling 0.66, has a less bowed curve. In Las 

Vegas that means that 83 percent of CBSA‘s population is located on 5 percent of its 

area. Conversely, in Atlanta, 30 percent of population occupies 5 percent of the 

metropolitan area.  
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Figure 5: Lorenz Curves – Selected metropolitan areas, 2007 

 

 

Las Vegas, Nevada, was the most concentrated area in all three periods. Its Gini 

ranged from 0.974 in 1990 to 0.965 in 2000 and 0.950 in 2007. Riverside, California, and 

Phoenix, Arizona, closely followed although Phoenix experienced larger drop in overall 

concentration than Riverside did. Denver and Miami ranked fourth and fifth in 1990, 

however Miami was replaced with Portland in 2000 and 2007. Boston, Massachusetts, 

Charlotte, North Carolina, and Atlanta, Georgia were the least concentrated in the three 

periods with the Gini coefficients ranging between 0.639 and 0.712.   These metropolitan 

areas, thus, have a more even distribution of population across the area.  As discussed in 

Empirical Strategy section, Gini coefficient is sensitive to geographic units. Because Las 

Vegas CBSA consists of large tracts of rural lands surrounding the urban center, Gini 

coefficient ranks it as the most concentrated. Atlanta is on the other side of the spectrum. 

Atlanta CBSA is composed of largely equal area census tracts.  
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Almost all metropolitan areas grew less concentrated over the seventeen years. 

However, three metropolitan areas continued to grow more concentrated: Portland, 

Oregon, Houston, Texas, and St. Louis, Missouri. Figure 6 illustrates change in Lorenz 

curves between 1990 and 2007 in Tampa, Florida. Tampa had the largest absolute change 

over the period and its Gini consistently declined.  

 

Figure 6: Lorenz Curve – Tampa-St. Petersburg-Clearwater, FL – 1990, 2000, 2007 

 

 

Between 1990 and 2000, the population of four metropolitan areas grew more 

concentrated. Concentration of Portland, Oregon, increased the most with an increase in 

the Gini coefficient of 0.017.  Houston, Texas, Minneapolis, Minnesota, and St. Louis, 

Missouri also grew more concentrated but the coefficient changed only marginally, 0.003 

for Houston and 0.002 for Minneapolis and St Louis. The metropolitan areas where 

population concentration decreased the most over the decade were Detroit, Tampa, 

Austin, Orlando, and Philadelphia. The greatest decline was in Detroit where the Gini 
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coefficient fell by 0.033.  The median change in Gini coefficients between 1990 and 2000 

among all metropolitan areas equaled -0.016.  

Between 2000 and 2007, the median decrease in Gini coefficient was smaller, -

0.013. Four metropolitan areas did grow more concentrated. Houston led with the highest 

increase in Gini coefficient, 0.008, followed by a 0.007 increase in Sacramento. St. Louis, 

and Portland also had higher Gini coefficients in 2007 but only marginally, 0.004 and 

0.002 respectively. Sacramento however deconcentrated relatively more after 2000 than 

in the decade before, so the difference over seventeen years still indicated 

deconcentration of that area. Metropolitan areas that deconcentrated the most in the new 

millennium were Minneapolis, where the coefficient fell by 0.046, and Orlando and 

Tampa where the Gini was 0.036 lower.  

From 1990 to 2007, metropolitan areas showed varying changes in concentration.  

Median change reflected a decrease in Gini coefficient, by 0.031. Some metropolitan 

areas, including Portland, Houston and St. Louis increased in concentration.  The increase 

was largest for Portland where the Gini coefficient increased by 0.019. Houston‘s Gini 

increased by 0.011 and St. Louis‘ by 0.006, which are relatively small and may not 

suggest any significant change in spatial structure. All other metropolitan areas 

deconcentrated over the time period. Deconcentration was greatest in Tampa, Orlando, 

Atlanta, Detroit, and Philadelphia.  These decreases in Gini coefficients ranged from 

0.066 in Tampa to 0.048 in Philadelphia.  Table 5 lists the estimated Gini coefficients for 

all metropolitan areas as well as changes over the three periods.  
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Table 5: Gini Coefficients 1990, 2000, 2007 

Metropolitan Area Gini 

1990 

Gini 

2000 

Gini 

2007 

1990-

2000 

2000-

2007 

1990-

2007 
Atlanta-Sandy Springs-Marietta, GA 0.712 0.688 0.661 (0.024) (0.027) (0.052) 

Austin-Round Rock, TX 0.811 0.782 0.764 (0.029) (0.019) (0.047) 

Baltimore-Towson, MD 0.751 0.731 0.716 (0.020) (0.015) (0.035) 

Boston-Cambridge-Quincy, MA-NH 0.671 0.652 0.639 (0.020) (0.013) (0.032) 

Charlotte-Gastonia-Concord, NC-SC  0.675 0.651 0.644 (0.024) (0.007) (0.031) 

Chicago-Naperville-Joliet, IL-IN-WI  0.808 0.787 0.765 (0.021) (0.021) (0.042) 

Cincinnati-Middletown, OH-KY-IN  0.760 0.734 0.721 (0.026) (0.014) (0.039) 

Cleveland-Elyria-Mentor, OH  0.724 0.698 0.680 (0.026) (0.018) (0.044) 

Dallas-Fort Worth-Arlington, TX  0.817 0.795 0.771 (0.022) (0.024) (0.046) 

Denver-Aurora, CO 0.920 0.905 0.892 (0.015) (0.013) (0.028) 

Detroit-Warren-Livonia, MI  0.748 0.715 0.697 (0.033) (0.017) (0.051) 

Houston-Sugar Land-Baytown, TX  0.823 0.826 0.834 0.003  0.008  0.011  

Indianapolis, IN  0.760 0.745 0.732 (0.015) (0.013) (0.028) 

Jacksonville, FL  0.794 0.771 0.749 (0.023) (0.022) (0.044) 

Las Vegas-Paradise, NV  0.974 0.965 0.950 (0.010) (0.015) (0.025) 

Los Angeles-Long Beach-Santa Ana, 

CA  

0.777 0.777 0.772 (0.001) (0.005) (0.005) 

Miami-Fort Lauderdale-Miami Beach, 

FL  

0.894 0.871 0.860 (0.023) (0.010) (0.034) 

Minneapolis-St. Paul-Bloomington, 

MN-WI  

0.795 0.797 0.751 0.002  (0.046) (0.044) 

New York-Northern New Jersey-Long 

Island, NY-NJ-PA  

0.786 0.779 0.773 (0.007) (0.006) (0.013) 

Orlando-Kissimmee,  FL  0.820 0.793 0.757 (0.027) (0.036) (0.063) 

Philadelphia-Camden-Wilmington, PA-

NJ-DE-MD  

0.745 0.718 0.698 (0.027) (0.021) (0.048) 

Phoenix-Mesa-Scottsdale, AZ  0.946 0.934 0.919 (0.012) (0.015) (0.027) 

Pittsburgh, PA  0.721 0.708 0.702 (0.013) (0.006) (0.019) 

Portland-Vancouver-Beaverton, OR-

WA  

0.882 0.899 0.901 0.017  0.002  0.019  

Richmond, VA  0.789 0.773 0.767 (0.016) (0.007) (0.022) 

Riverside-San Bernardino-Ontario, CA  0.942 0.936 0.931 (0.006) (0.006) (0.012) 

Sacramento-Arden-Arcade-Roseville, 

CA  

0.884 0.871 0.878 (0.013) 0.007  (0.006) 

San Antonio, TX  0.879 0.863 0.847 (0.016) (0.016) (0.032) 

San Diego-Carlsbad-San Marcos, CA  0.888 0.880 0.872 (0.008) (0.008) (0.016) 

San Francisco-Oakland-Fremont, CA  0.816 0.805 0.795 (0.011) (0.010) (0.021) 

Seattle-Tacoma-Bellevue, WA  0.866 0.855 0.849 (0.011) (0.006) (0.017) 

St. Louis, MO-IL   0.830 0.832 0.836 0.002  0.004  0.006  

Tampa-St. Petersburg-Clearwater, FL  0.726 0.696 0.660 (0.030) (0.036) (0.066) 

Virginia Beach-Norfolk-Newport 

News, VA-NC  

0.803 0.783 0.773 (0.020) (0.010) (0.030) 

Washington-Arlington-Alexandria, DC-

VA-MD-WV  

0.782 0.760 0.737 (0.022) (0.023) (0.045) 
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 Density Histograms 

Frequency histograms measure frequency of densities by category. The first 

category groups tracts with 0 to 500 people per square kilometer (ppsqkm). Categories 

increase in 500 ppsqkm increments, such as 500 to 1000, 1000 to 1500, and up to 20,000 

ppsqkm.  Figure 7 illustrates density frequency histograms for four metropolitan areas 

which have notably different metropolitan spatial structures. All of the four metropolitan 

areas are graphed on the same frequency scale to highlight the degree to which they 

differ. Charlotte, North Carolina, falls in the group of metropolitan areas which is 

dominated by census tracts where population density does not exceed 500 ppsqkm. 

Density frequency following the first bin (0-500 ppsqkm) falls precipitously. There are 

also very few, if any, census tracts exceeding population density of more than 3000 

ppsqkm. Some of the other metropolitan areas that follow similar spatial structures are 

Atlanta, Baltimore, and Houston. Orlando, Florida, falls into the category of metropolitan 

areas where frequency of tracts with density that is greater than 500 ppsqkm does not 

decline as precipitously as in the first group. Census tracts with population densities 

between 500 and 2500 people are still rather frequent. Some metropolitan areas in this 

category are Austin, Chicago, Riverside, and Washington, DC. The third category 

describes metropolitan areas where density histograms follow a polynomial-like pattern. 

First, there are a large number of lowest density tracts, but that frequency falls for density 

bin between 500-1000 ppsqkm. The frequency then picks up again for tracts with 

densities between 1500 and 3500 ppsqkm. Some of the metropolitan areas that illustrate 

this pattern are Denver, Las Vegas, Miami, and Tampa. Finally, large metropolitan areas, 

such as San Francisco, Los Angeles, and New York, fall into the last group which 
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generally exhibits the right tail of its density distribution extending much further and with 

tracts containing in excess of 8000 ppsqkm. Appendix A contains histograms for all 

metropolitan areas for all three years as well as changes between three sets of years.  

 

Figure 7: Density Histograms in 2000 
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In observing changes in the frequency histograms over seventeen years across the 

metropolitan areas, there are some general trends that emerge. The number of the lowest 

density tracts, those with population density of up to 500 ppsqkm, decreased in all 

metropolitan areas between 1990 and 2007. At the median, there were 39 fewer lowest 

density tracts. Between 1990 and 2000, Las Vegas was the only area that gained lowest 

density tracts, 11 of them;, however it lost 15 of them between 2000 and 2007. Between 

2000 and 2007, Baltimore and Philadelphia were the only metros areas that gained in 

lowest density tracts. Median change for medium density tracts was positive suggesting 

that the number of medium density tracts increased over the period. Medium density 

tracts are considered those with population density exceeding 500 ppsqkm but below 

5000.  

Another trend evident across most of the metropolitan areas is that they exhibit 

higher activity in density changes in 1990s. After 2000, magnitude of changes slows 

some except for Charlotte, Los Angeles, Riverside and Las Vegas. Los Angeles shows a 

large decrease in the number of low and medium density tracts, while Riverside 

experienced high increase in the number of medium density tracts. Las Vegas continually 

had increased activity during the whole observation period.  

When looking at changes across metropolitan areas in the number of high or low 

density tracts, four categories emerge. Falling in the first category, ―high infill‖, are 

metropolitan areas for which the total number of lower density census tracts declined, but 

the number of medium and high density tracts increased.  These histograms are 

characterized by tails that extend far to the right. Metropolitan areas in this category 

include Los Angeles, Miami, San Diego, San Francisco, and Seattle.  Figure 8 illustrates 
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density histogram changes for the ―high infill‖ metropolitan areas with Seattle serving as 

a representative case. In Seattle, there were 44 fewer tracts with population density of 0-

500 ppsqkm and 28 fewer tracts with 500-1000 ppsqkm. As shown in the figure, the bulk 

of the change occurred during 1990s 

 

Figure 8: Density Histograms for High Infill Regions 
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In the second category, ―medium infill‖, are metropolitan areas for which the total 

number of low density tracts, below 1500 ppsqkm, decreased, and the number of medium 

density tracts increased.  In these metropolitan areas, little change happened in the high 

density tails and most of the change occurred below densities of 8000 ppsqkm.  Dallas, 

Denver, Houston, Phoenix, Portland, and Virginia Beach are considered as ―medium 

infill‖ metropolitan regions.  Figure 9 depicts ―medium infill‖ category via changes in 

Phoenix, Arizona. 

 

Figure 9: Density Histograms for Medium Infill Regions 
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In the third, ―mixed‖, category are metropolitan areas with no distinct trend 

towards infill or sprawl.  While these metropolitan areas generally lost lowest density 

tracts, gains and losses in higher density tracts do not follow a specific pattern.  Falling in 

this category are older, rust-belt regions in addition to some West Coast cities.  

Baltimore, Boston, Chicago, Cincinnati, Cleveland, Detroit, Philadelphia, Pittsburgh, and 

Washington, DC, all fall in the mixed category.  Figure 10 illustrates changes in 

Baltimore as an example of the ―mixed category‖. 

 

Figure 10: Density Histograms for Mixed Regions 
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In the fourth category, best characterized as ―sprawl‖, are metropolitan areas for 

which increases in frequency of census tracts occurred primarily in lower density tracts.  

These metropolitan areas had fewer tracts with population density under 500 ppsqkm, but 

more tracts with population density between 1000-2000 ppsqkm.  These metropolitan 

areas also had little activity in the right tail of the difference distribution where 

population densities are high.  Unsurprisingly, the majority of metropolitan areas fell into 

this category including Atlanta, Austin, Charlotte, Indianapolis, Jacksonville, Las Vegas, 

Orlando, Richmond, Riverside, Sacramento, St. Louis, and Tampa.  Figure 11 depicts 

changes in Las Vegas. Las Vegas is a unique example even within the ―sprawl‖ category 

because sprawling changes occurred mostly during 1990s whereas the other metropolitan 

areas saw that period as mostly densification phase. Las Vegas in 2000s experienced 
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rather mixed changes; however, the region at the end gained more of the lower density 

tracts. 

 

Figure 11: Density Histograms in Sprawling Regions 

 

 

 

 

Table 6 distinguishes metropolitan areas in four groups based on the changes in 

density histograms they have experienced. At the end, the category named sprawl covers 

the largest share of metropolitan areas. These are also older industrials areas, as well as 
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some high growth metros in the South. Metropolitan areas in California dominate the 

―high infill‖ category.  

 

Table 6: Categories of Density Histogram Changes 

High Infill Medium Infill Mixed Sprawl 

Los Angeles-Long Beach-

Santa Ana, CA  

Austin-Round Rock, TX 

 

Boston-Cambridge-

Quincy, MA-NH 

Virginia Beach-Norfolk-

Newport News, VA-NC  

Miami-Fort Lauderdale-

Miami Beach, FL  

Arlington, TX Chicago-Naperville-Joliet, 

IL-IN-WI  

Atlanta-Sandy Springs-

Marietta, GA 

Riverside-San Bernardino-

Ontario, CA 

Dallas-Fort Worth- 

 

Jacksonville, FL  

 

Baltimore-Towson, MD 

 

Sacramento-Arden-

Arcade-Roseville, CA  

Denver-Aurora, CO  

 

Las Vegas-Paradise, NV  

 

Phoenix-Mesa-Scottsdale, 

AZ  

San Francisco-Oakland-

Fremont, CA 

Houston-Sugar Land-

Baytown, TX 

New York-Northern New 

Jersey-Long Island, NY-

NJ-PA  

Cincinnati-Middletown, 

OH-KY-IN  

Tampa-St. Petersburg-

Clearwater, FL 

Orlando-Kissimmee,  FL  

 

Washington-Arlington-

Alexandria, DC-VA-MD-

WV 

Charlotte-Gastonia-

Concord, NC-SC  

San Antonio, TX  

 

Portland-Vancouver-

Beaverton, OR-WA 

 Cleveland-Elyria-Mentor, 

OH  

 

San Diego-Carlsbad-San 

Marcos, CA 

Seattle-Tacoma-Bellevue, 

WA 

 Detroit-Warren-Livonia, 

MI 

   Indianapolis, IN  

   Minneapolis-St. Paul-

Bloomington, MN-WI  

   Philadelphia-Camden-

Wilmington, PA-NJ-DE-

MD 

   Pittsburgh, PA  

   Richmond, VA  

   St. Louis, MO-IL 

 

 

Clustering Index  

The Moran‘s I index generated for each of the 35 metropolitan areas in this study 

is intended to show degrees of clustering of similar density tracts. Moran‘s value of +1 

indicates that similar density census tracts are closely clustered, while the value of -1 

suggests they are scattered or exhibit a ‗chessboard‘ pattern of development. Moran‘s 

value closer to zero suggests random scattering. As expected following urban economic 
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theory, all metropolitan areas exhibit at least some level of population density clustering 

suggested by the positive and highly significant value of the Moran‘s I. The estimated 

Moran‘s I in this sample range from 0.28611 to 0.72525 and encompasses the level of 

clustering from decentralized sprawling for low Moran‘s I values to monocentric for high 

Moran‘s I values. The values in the middle of the range indicate polycentric spatial 

structure. The reason for this categorization is that if high density tracts are completely 

clustered, producing high Moran‘s I value, they would describe monocentric urban form. 

If high density tracts are randomly distributed, there would resemble decentralized 

sprawling form. Polycentric form would have some level of concentration characterized 

by Moran‘s values in the middle of the range. It is important to emphasize that this 

analysis focuses on population distribution in a metropolitan area which may or may not 

be consistent with employment distribution. Thus, when an area is considered 

polycentric, it contains multiple population clusters and not necessarily employment 

clusters.   

Moran‘s I index referred to so far indicates Global Moran‘s I, though the index 

can be disaggregated to provide a series of local indices, called Local Moran‘s I or Local 

Indicators of Spatial Association (LISA). The local statistics provide a spatial 

autocorrelation measure for each census tract in a metropolitan area and indicate if a tract 

has population density that is correlated with values in surrounding tracts. While it was 

more interesting to focus on Global Moran‘s I for the purposes of this study, the 

following figure illustrates how LISAs translate into a global one and how monocentric, 

polycentric and decentralized sprawling spatial structures differ. Figure 12 shows census 

tracts in three metropolitan areas thematically mapped based on census tracts‘ cluster 
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value. A census tract surrounded by similar population densities will result in high 

positive z-score and thus be assigned HH for a statistically significant (0.05 level) cluster 

of high density values and LL for a statistically significant (0.05 level) cluster of low 

density values. If the tract has high density but is surrounded by low density tracts, it is 

labeled HL. And, if a low density tract is surrounded by high density tracts, it is labeled 

LH. The areas in white are population tracts that do not exhibit any significant degree of 

density clustering. Since Minneapolis was the most clustered metropolitan area, based on 

the highest estimated Moran‘s I, it is a representative sample of monocentric spatial 

structure. The second featured metropolitan area is Las Vegas, which, given its lowest 

Moran‘s I in 2000 and 2007, represents decentralized sprawling spatial structure.  Finally, 

the last metropolitan area, which represents polycentric spatial structure, is Indianapolis. 

Indianapolis was chosen because its 2000 Moran‘s I value fell in the middle of the range 

of 2000 Moran‘s values. 

       
Figure 12: Moran’s I for Monocentric, Polycentric and Decentralized Spatial Structure 

Minneapolis             Las Vegas 

 
Red Wing, MN

 

HH

HL

LH

LL

Lake Havasu City-Kingman, AZ
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LH
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Indianapolis 

 

 

In 1990, the most clustered metropolitan areas were Minneapolis, with Moran‘s I 

of 0.716, Philadelphia with 0.701, New York with 0.676, St. Louis with 0.670, and 

Atlanta with 0.66874. The relative ranking of metropolitan areas by their levels of 

clustering changed some over the observation period. In 2000, Baltimore with Moran‘s I 

of 0.652 replaced Atlanta as the fifth most clustered metro area. The top four remained 

the same with only a small change in ranking and estimated Moran‘s Is. In 2007, St. 

Louis was replaced with Seattle with value of 0.656, while the other four, Minneapolis, 

New York, Philadelphia and Baltimore remained as the most clustered metropolitan 

areas. Not all of them, though, changed in the same way over the seventeen years. While 

Baltimore and Philadelphia grew less clustered, New York, and especially Minneapolis, 

grew more clustered during the period.  

The metropolitan areas that exhibited the least spatial autocorrelation among tract 

densities in 1990 were Riverside with Moran‘s I of 0.349, Las Vegas with 0.389, 

Charlotte with 0.422, Dallas with 0.436, and Orlando with 0.439. In 2000, Boston 

(Moran‘s I of 0.333) replaced Charlotte among the five least clustered metro areas, while 

again the other four lowest ranking metropolitan areas remained the same. In 2007, the 

Bloomington, IN

 

HH

HL

LH

LL
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ranking did not change. For these least clustered metropolitan areas, Moran‘s I over the 

seventeen-year period continuously decreased suggesting these areas grew less clustered. 

The largest decrease in Moran‘s I was in Boston metropolitan area, followed by Las 

Vegas. Using Tsai‘s (2005) classification, these metropolitan areas would be classified as 

decentralized sprawl.  

The metropolitan areas with Moran‘s I index falling in the middle of the range for 

at least two out of three observation periods and classified as polycentric include 

Indianapolis, San Diego, Portland, San Antonio, Pittsburgh, Cleveland.  

Between 1990 and 2007, most metropolitan areas grew less clustered. Six out of 

35 metropolitan in contrast grew more clustered. Metro areas that grew more clustered 

include Chicago, Cincinnati, Minneapolis, New York, Richmond, and Seattle. The 

median Moran‘s I value also decreased, from 0.5582 in 1990, to 0.50034 in 2000 and 

0.48906 in 2007. During the 1990s, Cincinnati, Chicago, and New York had the largest 

increase in Moran‘s‘ I. The highest decrease in Moran‘s I was observed in Atlanta, 

Boston, and Jacksonville. After 2000, seven metropolitan areas grew more clustered 

while the rest continued to the trend of decreasing clustering.  Seattle had the largest 

increase in the Moran‘s I coefficient between 2000 and 2007, followed by Charlotte, 

Baltimore, Los Angeles, New York, and San Francisco, . In contrast, among the 

metropolitan areas that grew less clustered, Boston and Tampa had the largest change in 

the Moran‘s I.  

Although clustering trends changed for some areas between 1990 to 2000 and 

2000 to 2007, six metropolitan areas grew more clustered over the entire observation 

period, Chicago, Cincinnati, Minneapolis, New York, Richmond, and Seattle. For four of 
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these though, most of the change occurred before 2000 followed by a smaller reversal 

after 2000. Only New York grew more clustered over the entire period. For the 

metropolitan areas experiencing the largest decrease in clustering, the trend was 

continuous over the whole period. The metropolitan areas with largest decrease in 

Moran‘s I included: Atlanta, Boston, Jacksonville, Las Vegas, and Tampa, with decrease 

ranging from -0.20 to -0.11.  

Table 7 provides the estimated Moran‘s Index for 1990, 2000, and 2007, and 

change in index for the three set of years.  

 

Table 7: Clustering Index and Change, 1990, 2000, 2007 

Metropolitan Area 1990 2000 2007 2000-

1990 

2007-

2000 

2007-

1990 
Atlanta-Sandy Springs-Marietta, GA 0.669 0.485 0.471 (0.184) (0.014) (0.198) 

Austin-Round Rock, TX 0.445 0.420 0.403 (0.025) (0.017) (0.042) 

Baltimore-Towson, MD 0.663 0.653 0.657 (0.011) 0.004  (0.006) 

Boston-Cambridge-Quincy, MA-NH 0.519 0.382 0.333 (0.137) (0.049) (0.186) 

Charlotte-Gastonia-Concord, NC-SC  0.423 0.413 0.423 (0.010) 0.010  (0.000) 

Chicago-Naperville-Joliet, IL-IN-WI  0.608 0.634 0.633 0.027  (0.001) 0.026  

Cincinnati-Middletown, OH-KY-IN  0.560 0.601 0.593 0.042  (0.009) 0.033  

Cleveland-Elyria-Mentor, OH  0.561 0.542 0.531 (0.019) (0.011) (0.030) 

Dallas-Fort Worth-Arlington, TX  0.437 0.361 0.351 (0.075) (0.010) (0.085) 

Denver-Aurora, CO 0.493 0.471 0.476 (0.022) 0.005  (0.017) 

Detroit-Warren-Livonia, MI  0.666 0.629 0.612 (0.037) (0.017) (0.053) 

Houston-Sugar Land-Baytown, TX  0.483 0.437 0.433 (0.046) (0.004) (0.050) 

Indianapolis, IN  0.558 0.510 0.489 (0.048) (0.021) (0.069) 

Jacksonville, FL  0.508 0.417 0.406 (0.091) (0.011) (0.102) 

Las Vegas-Paradise, NV  0.389 0.317 0.286 (0.072) (0.031) (0.103) 

Los Angeles-Long Beach-Santa Ana, CA  0.610 0.585 0.592 (0.024) 0.007  (0.018) 

Miami-Fort Lauderdale-Miami Beach, FL  0.485 0.458 0.440 (0.027) (0.018) (0.045) 

Minneapolis-St. Paul-Bloomington, MN-WI  0.716 0.725 0.725 0.009  (0.000) 0.009  

New York-Northern New Jersey-Long 

Island, NY-NJ-PA  

0.676 0.702 0.709 0.026  0.007  0.033  

Orlando-Kissimmee,  FL  0.439 0.388 0.370 (0.052) (0.018) (0.069) 

Philadelphia-Camden-Wilmington, PA-NJ-

DE-MD  

0.702 0.691 0.687 (0.010) (0.004) (0.015) 
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Phoenix-Mesa-Scottsdale, AZ  0.495 0.429 0.405 (0.066) (0.025) (0.091) 

Pittsburgh, PA  0.574 0.549 0.540 (0.025) (0.009) (0.034) 

Portland-Vancouver-Beaverton, OR-WA  0.567 0.537 0.524 (0.031) (0.012) (0.043) 

Richmond, VA  0.588 0.591 0.590 0.004  (0.002) 0.002  

Riverside-San Bernardino-Ontario, CA  0.350 0.333 0.319 (0.017) (0.014) (0.030) 

Sacramento-Arden-Arcade-Roseville, CA  0.456 0.434 0.427 (0.022) (0.007) (0.029) 

San Antonio, TX  0.574 0.541 0.520 (0.033) (0.021) (0.055) 

San Diego-Carlsbad-San Marcos, CA  0.499 0.500 0.498 0.002  (0.002) (0.001) 

San Francisco-Oakland-Fremont, CA  0.612 0.601 0.607 (0.011) 0.005  (0.005) 

Seattle-Tacoma-Bellevue, WA  0.615 0.586 0.656 (0.028) 0.070  0.041  

St. Louis, MO-IL 0.671 0.636 0.629 (0.035) (0.006) (0.041) 

Tampa-St. Petersburg-Clearwater, FL  0.549 0.485 0.441 (0.063) (0.044) (0.108) 

Virginia Beach-Norfolk-Newport News, VA-

NC  

0.458 0.399 0.388 (0.058) (0.012) (0.070) 

Washington-Arlington-Alexandria, DC-VA-

MD-WV  

0.645 0.610 0.607 (0.036) (0.003) (0.038) 

 

 

Urbanization - Growth Allocation 

The results for growth allocation measures are very interesting and vary 

considerably among metropolitan areas. As defined here, a census tract is considered 

urban if its population density is greater than 1000 persons per square mile regardless of 

where that census tract is located.  The 1000 persons per square mile threshold follows 

the U.S. Census Bureau‘ delineation of urban and rural areas
6
. The growth allocation 

indicator examines whether new growth occurring between 1990 and 2007 was allocated 

to already existing urban areas or was it placed in previously non-urbanized areas.  

Between 1990 and 2007, 47 percent of population growth went into the areas that 

were urban in 1990; 19 percent of growth went into the areas that became urbanized 

between 1990 and 2000; 11 percent of growth went into the areas urbanized after 2000; 

and 23 percent of growth went into the areas that are not considered urban. Figures 13 

                                                 
6
 http://www.census.gov/geo/www/ua/ua_2k.html  

http://www.census.gov/geo/www/ua/ua_2k.html
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through 15 contain three pie charts which illustrate distribution of population growth 

between 1990 and 2007 among 4 types of lands:  (i) urban in 1990, (ii) urbanized 

between 1990 and 2000, (iii) urbanized after 2000, and (iv) never urban. The first graph 

illustrates distribution of growth during 1990s, the second graph illustrates growth 

distribution between 2000 and 2007 and the bottom graph illustrates distribution during 

the entire 17-year period. 

  

Figure 13: Growth allocation, 1990-2000                  

 

 

47% 

23% 

6% 

24% 

Urban 1990 Urbanized 1990-2000
Urbanized 2000-2007 Never Urban
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Figure 14: Growth Allocation, 2000-2007 

 

Figure 15: Growth allocation, 1990-2007 

 

 

 

Almost a half of population growth during 1990s went into areas that were 

already urban in 1990, which means that their population density was 1000 people per 

square mile or greater. During the same period, a little less than a quarter of growth went 

into the areas that became urbanized between 1990 and 2000 (red pie) and also to the 

areas that never became urban (purple pie). About 6 percent went into the areas that 

became urbanized after 2000. In the years after 2000, about one-third of population 

growth was allocated to already urban areas and 15 percent went into those areas that 

were urbanized during 1990s. That means that almost half of post-2000 growth went to 

already urban areas. Still, a large share, over one-third of growth, went into never 

urbanized areas.   

33% 
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35% 

Urban 1990 Urbanized 1990-2000

Urbanized 2000-2007 Never Urban

41% 
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29% 
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The figures illustrating the aggregated sample of metropolitan areas are not 

necessarily indicative of change that occurred in the areas that were already urban in 

1990. For example, while in Los Angeles and New York, 88 percent and 81 percent 

respectively, of population growth between 1990 and 2007 went into areas that were 

urban in 1990, Cleveland and Pittsburg lost population in those areas with -163 percent
7 

and -168 percent of total population change. In contrast, they gained a significant share of 

population in never urban areas, 163 percent and 65 percent correspondingly. In other 

words, Cleveland gained a little over 48,000 people between 1990 and 2007. However, 

by 1990 urban areas lost over 78,000 people, while never urbanized areas gained over 

78,000 people. The areas urbanized between 1990 and 2000 gained around 22,000 people 

and areas urbanized after 2000 gained almost 25,000 people. In the aggregate, that 

constitutes change of 48,000 people observed in Cleveland. The results for all 

metropolitan areas are summarized in Appendix A.  

Although changes vary among metropolitan areas, they can be loosely grouped 

into four categories. In the first group, the period between 1990 and 2000 can be 

generalized by often significant population loss in the areas defined as urban in 1990.  

These include Pittsburgh, Cleveland, St. Louis, Detroit, and Cincinnati.  These areas lost 

between 8 percent of population in already urban areas in Cincinnati to 168 percent in 

Pittsburg. The loss of population in already urban areas has been matched with almost 

equal gain in the new urban areas. After 2000, St Louis gained some population in 

already urban areas, while Indianapolis lost 1 percent in the same areas. The rest of the 

group continued to lose population in the urban core.  

                                                 
7 

For Cleveland, for example,  163 percent decrease represents 78,132 population loss in 1990 urban areas 

out of the total gain of 48,038 people between 1990 and 2007in the entire metro area (-78,132/48,038=-

163%). 
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The second category gained almost all of the population growth in urban areas by 

1990. Those were Los Angeles, Miami, New York, Portland, Seattle, and San Francisco, 

with over 55 percent of population growth moving into the existing urban areas.  This 

second group of metros consistently gained over half and up to 88 percent of population 

growth in the existing urban areas. Denver also gained most of its population growth in 

1990s in already urban areas; however that trend shifted to never urbanized lands after 

2000. 

The third category is characterized by the dominant share of population growth in 

the never urbanized areas. This category does not include older industrial areas where 

population growth in the never urbanized areas was the result of population loss in the 

urban core. Some of these are in the South or South West, though there are several 

Northeast metropolitan areas that followed the same trend. Falling in this category are: 

Atlanta, Austin, Baltimore, Boston-, Charlotte, Indianapolis, Jacksonville, Minneapolis, 

Orlando, Philadelphia, Richmond, San Antonio, and Virginia Beach.  

In the fourth and final category are metropolitan areas that gained rather equal 

population growth across all categories. In this category is Las Vegas which converted 

the greatest percentage, 40 percent, of its land to urban between 1990 and 2000.  Other 

metropolitan areas in this category are: Chicago, Dallas, Denver, Houston, Las Vegas, 

Phoenix, Riverside, Sacramento, San Diego, Tampa, and Washington, DC. Some of these 

are still dominated by largest growth in already urban areas, yet the share does not exceed 

50 percent. Riverside and Houston, for example, gained 45 percent of their growth in 

already urban areas, but also about one quarter in never urbanized areas. Figure 16 

illustrates with pie charts the four categories of growth allocation.  
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Figure 16: Growth Allocation for Select Metropolitan Areas 

 

 

 

 

Discussion  

Overview of the Findings 

The excessive expansion of American metropolitan areas and the impact of spatial 

development patterns on open space, traffic, air and water, and social interactions, have 

led to increased attention to metropolitan spatial structure and its sustainability.  Several 

descriptive studies examining spatial patterns in 1990s and particularly beyond 2000 have 

suggested that urban areas are growing denser and sprawl at a slower rate. Some 

theoretical work also argues that households‘ revealed preferences suggest an increased 

demand for urban amenities and proximity to urban centers. However, the studies that did 

examine changes in metropolitan spatial structure focused less on the period after the 
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year 2000 and often measured spatial structure along one dimension and on a larger 

geography, such as counties.  

The purpose of the present study was to address these questions by investigating 

three hypotheses: (1) metropolitan spatial structure in thirty five largest metropolitan 

areas in the United States changed between 1990, 2000, and 2007; (2) change is not 

consistent with decentralization trends observed prior to 1990; (3) change is not 

consistent across all the metropolitan areas. To investigate the hypotheses, this study has 

measured metropolitan spatial structure and its change along five dimensions: (i) density 

gradients, (ii) concentration indices, (iii) clustering indices, (iv) density frequency 

distributions, and (v) growth allocation, for 1990, 2000, and 2007.  Each of these 

measures capture different dimension of spatial structure. This is further evident as each 

of the measures group slightly different cluster of the metropolitan areas in the identified 

categories. For example, while density gradient may suggest centralization of Las Vegas 

metropolitan area, the clustering index may indicate decrease of clustering. Nevertheless, 

several clear trends have emerged which confirmed the original hypotheses.  

First, the 35 metropolitan areas studied in this research can be generally grouped 

in two groups: smart growth winners and losers. The winners are the metropolitan areas 

where population density increased in the central core, most of the population growth 

went into already urban areas, and the number of medium to high density areas increased 

while the frequency of low density areas decreased. The losers are those metropolitan 

areas on the other side of the spectrum. They primarily lost population in the central core 

and gained most of the population in never urbanized areas and at low density.  Naturally, 

some metropolitan areas do not follow the clear distinction between the two groups with 
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some mixed results along one of the dimensions. The ―winners‖ and ―losers‖ categories 

also follow some regional groupings. The areas exhibiting sprawling characteristics are 

largely old industrial cities in the rust-belt and the cities in the South. However both 

regions are not sprawling due to the same pressures. The old industrial areas, which have 

also seen only trivial increases in population growth, have been continuously sprawling, 

i.e. depopulation of central core and urban flight, and loss of high density areas. These 

are consistent with the trends observed prior to 1990s. Sprawl of the metropolitan areas in 

the South arises out of different circumstances. Those areas underwent strong population 

growth pressures during the observation period and the sprawling trends are not evident 

across all measures. While showing an increasing number of low density neighborhoods, 

these metropolitan areas have also densified in the central core and gained a notable 

portion of the population growth in their already urban areas. The metropolitan areas 

pegged as ―winners‖ and characterized by densification characteristics also loosely 

follow regional boundaries. These are the metropolitan areas of South West and West, 

and several in Florida. Notably, these are the areas such as Las Vegas, Sacramento, 

Seattle, Portland, and Tampa, Miami, and Orlando.  They have gained most significant 

population growth during the observation period. Consequently, not all of their 

population growth could have gone to already existing areas and in the central core, but a 

remarkable share did. For example, Las Vegas, which increased in population by 85 

percent between 1990 and 2000, allocated 37 percent of that growth to already urban 

areas and 52 percent to areas that are regarded as urbanized in 1990s. Thus those new 

urbanized areas were reaching population densities in excess of 1000 people per square 
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mile. By contrast, the ―losers‖ were allocating same shares of new growth to never urban 

areas. In other words, their densities never reached 1000 people per square mile.  

Second, the majority of the metropolitan areas reveal trends towards infill 

development. This trend is most clearly evident from the aggregated growth allocation 

measure which shows that almost half of population growth in 1990s went into already 

urban areas while the same areas gained a third of 2000 to 2007 growth. The density 

frequency measure similarly shows that the frequency of the lowest density tracts, with 

500 or less people per square kilometer, fell most drastically, particularly in 1990s. And 

likewise, density gradients showed that in the aggregated sample population density in 

central core increased, however, by more during 1990s than after 2000, 12 percent versus 

4 percent, respectively.  

This leads to the third trend which brings attention to differences between the 

1990s and the 2000s. The decade of 1990s emerges as one with a dominating focus on 

repopulation of the central core and generally increasing density of existing urban areas. 

It is in that sense not consistent with trends observed prior to 1990s which primarily 

embodied decentralization and depopulation of central core. In 1990s, the majority of 

metropolitan areas actually saw increasing population density in the central core 

consistent with the urban resurgence theory presented by Glaeser and Gottlieb (2006). 

The theory of urban resurgence refers to increased demand for urban amenities in 

explaining the renewed importance of American downtowns. After 2000, the focus of 

population growth shifts somewhat back to areas that have not been urbanized yet. 

However it is not clear that there was a reversal in demand for urban amenities, but rather 

that the unprecedented appreciation in housing prices led to housing stock overbuilding 
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on the urban edge. While it is not in the scope of this study to measure determinants of 

urban form change, the results presented here suggest such a study may offer some 

interesting insight. Again, the post-ize2000 results show reorientation of focus from 

already existing areas in 1990s to never urbanized  areas in the 2000s.  Many 

metropolitan areas that have seen gains of 50 percent or more of population growth in 

already urban areas saw those shares drop by sometimes half of the percentage points.  

And finally, while the objective of this study is not to evaluate the effectiveness of 

smart growth programs, it is important to examine if the increase in population density  of 

the existing urban areas is more evident in states that do employ smart growth programs 

than those that do not. However, since this study covers only the 35 largest metropolitan 

areas, there are states with growth management programs whose metropolitan areas are 

not covered in this study. Nevertheless, there is a representative sample of areas from 

Florida, Oregon, Washington, Georgia, California, Colorado and Maryland where the 

programs are either implemented statewide or by localities. The estimates do show that 

the metropolitan areas in well-known smart growth states, such as Oregon and 

Washington, show increasing population density in the areas where such growth is 

desirable, i.e. in already existing urban areas. Portland, in particular, performs well along 

most of the dimensions and it is also the only area which grew more concentrated during 

the observation period. Consistent with finding by Howell-Moroney (2007), the states 

with more stringent smart growth programs, Florida, Oregon, and Washington, also saw 

larger increases in density than Georgia and Maryland, for example, where it is hard to 

say that the metropolitan areas grew smarter. But also, it is critical not to underestimate 

the restriction geographical barriers place on expansion of urban areas. So, naturally, the 



 91  

 

areas such as Miami which has natural barriers on three sides of the metropolitan region 

will grow inward. The same is true for the areas in Arizona or California, where either 

water capacity or federally-owned lands pose as barriers to excessive urban expansion. 

Atlanta, on the other hand, does not have any geographical barriers to growth and the 

land is plentiful and relatively less expensive.   

 

Limitations of the Study 

Focusing on the five measures of metropolitan spatial structure has the advantage 

of providing a more detailed analysis of urban form change. However, though these 

indices measure change in population density which is the most frequently used method 

for evaluation of smart growth programs, these measures, except density gradients, do not 

account for spatial location of population change. While it is possible to determine if an 

urban area grew denser, it is difficult to say where densification occurred. The same 

applies to the measures of concentration and clustering.  

Another limitation of this study concerns the use of census tracts boundaries since 

Gini coefficient measure, in particular, is sensitive to the size of the geographic unit. And 

while census tracts usually encompass between 2,500 and 8,000 persons, they can vary 

significantly in size, particularly between the metropolitan areas in the Northeast and the 

South West. Preferably, an analysis would employ a population grid with consistent grid 

size across the country. Even with that method, one would have to decide on a consistent 

yet meaningful grid cell size and distribute population accordingly. However, given that 

census population count is recorded in areal units, the smallest one being a census block, 

which still varies in size across the country, some areas would have more accurate 

estimates than the others.  
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This study also only examines changes in population densities alone. When 

talking about changes in metropolitan spatial structure, research often measures changes 

in employment patterns as well. The location of employment is critical for spatial 

structure and particularly for measures such as clustering and centrality. The focus herein 

was on population patterns, but research needs to be conducted to see how employment 

density has changed within and among metropolitan areas.  
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Essay Two: A Spatial Hazard Analysis of Urban Form Changes in America 

Because of the vast geographic scope of the United States, metropolitan spatial 

structure is innately different across the country. American metropolitan areas not only 

vary in geophysical features, but have been shaped by different histories, cultures, 

markets, regulations, geographic constraints, natural resources, and unique events. Today, 

as in the past, they host various economic activities and face different obstacles which 

further place demands on their urban spatial structure (Perloff et al, 1960). Separately, 

labor markets are influenced by economic shocks, locally and in world demand. The 

shocks are passed from the labor market to household income, land rents and ultimately 

to urban spatial structure. However, given that events, such as economic shocks, are 

based on some probabilities rather than certainty of occurring, the resultant outcome on 

urban spatial structure follows those processes in a stochastic fashion (Harris, 1968; 

Capozza and Helsley, 1990). Additionally, urban form is durable, and when new 

development takes place, it does not replace the existing built environment but attempts 

to complement it in also often in a stochastic manner (Brueckner, 2000b). As a result, 

when attempting to measure urban form, some measures may perform well in an analysis 

of a single metropolitan area, but be less reliable in a comparative analysis of multiple 

metropolitan areas (Malpezzi and Guo, 2001).  

Researchers have struggled through the years to find ways of characterizing urban 

form in a way that enables a consistent, objective analysis of similarities and 

dissimilarities across regions and particularly over time. The classic economic theory of 

urbanization (Alonso 1964; Muth 1969; Mills 1972), and the ensuing density gradient 

model, continue to be dominant tools in explaining the general tendencies of urban form, 
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even across the vast area as the United States is (Glaeser and Kahn 2004; Bogart 2006). 

The draw of this model is that it takes the complex urban spatial structure and reduces it 

into a few simple relationships which explain general metropolitan spatial structure. 

However, the theory is limiting in that it is highly deterministic while the urban spatial 

structure is not. Urbanization does follow a general trend of decreasing density away 

from the urban center; however that process is not monotonic and often occurs in a 

seemingly disordered way (Carruthers et al, 2010). Like the theory, the weakness of the 

density gradient model is that it is deterministic and can mischaracterize the inherent 

complexity of urbanization (Brueckner 1982, 1987, Kau and Lee 1976a, 1976b, 1977; 

Johnson and Kau 1980; Kau et al 1983). 

The research puzzling with the complexity of urbanization attempted to offer a 

number of alternative and complementary measures. It argued that development of the 

urban spatial structure is a chaotic process which can be only defined as a complex 

structure. To quantify such complexity, one needs spatial patterns which show the 

irregularity of their configuration. One such approach uses fractal geometry. Fractal 

analysis looks at the spatial complexity by treating it as dynamic, nonlinear, disperse, 

open structure that produces unstructured, elaborate geometry in space which resembles 

urban sprawl (Batty and Longley, 1994; Batty and Xie, 1996). Using fractal analysis, 

Torrens (2006, 2008) evaluated urban sprawl as a kind of space filling process and 

assigned a fractal dimension to each urban area. Fractal dimension measured the extent to 

which a city fills its two-dimensional area. The critique of fractal analysis suggested that 

it would be difficult to use the measure to compare metropolitan areas given that virtually 
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the same fractal value may result from metropolitan areas with different population sizes 

and densities (Shen, 2002).  

 Further exploring the complexity of characterizing urban form, Carruthers et al. 

(2010) proposed survival analysis methods. Unlike the density gradients which assume 

urban form to unfold monotonically, the survival analyses are probabilistic by design. 

The probabilistic nature of survival methods allows for stochastic processes observed in 

the development of urban spatial structure. The survival analysis models also referred to 

as longitudinal or duration models, are popular in engineering, economics, and other 

disciplines, and are generally used to characterize occurrence and timing of events. For 

example, they were first used by engineers concerned with failure of products, and then 

applied in biomedical research to time passing away following the beginning of a disease. 

In social sciences, the method has been used to understand the temporal dimensions of 

questions such as the length of unemployment spells and residence tenure (e.g., James, 

1989; Narendranathan and Stewart, 1993; Clark, 1992; Odland, 1997; Davies Withers, 

1997; Glavac and Waldorf, 1998). In urban form research, recent applications by Irwin 

and Bockstael (2007) and An and Brown (2008) used survival analysis to study timing of 

land use change. These studies were, however, concerned with parcel level land use 

changes which are  a different scale of the urban form phenomena than the study 

presented here attempts to examine. 

The survival analysis deals with measuring the duration of some state or the 

length of time prior to a terminating event. The method generates the conditional 

probability of an event happening at a particular time t, given that the event termination 

has not happened up to that time. To apply survival analysis to spatial setting, one can 
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think of distance, similarly to duration, as a nonnegative random variable. This property 

of distance has allowed research to apply a mathematical framework of survival analysis 

to spatial setting and use distance as the endogenous random variable. While Odland and 

Ellis (1992) and Esparza and Krmenec (1996) were first to apply survival analysis to a 

spatial setting, Waldorf (2003) more recently presented a framework for using the 

method in urban form studies. Waldorf argued that it allows for better understanding of 

spatial processes in contrast to methods which only examine spatial patterns and linkages, 

as is the case with spatial point patterns pioneered by Diggle (1983) and Boots and Getis 

(1988). The limitation of the spatial point pattern analysis is that it is not a true behavioral 

approach to hypothesis testing (Odland and Ellis 1992). It examines the degree of spatial 

patterns or randomness among a sample of points, for instance urban settlements or 

housing, by testing the observed pattern against theoretical or hypothesized patterns. The 

method is appropriate for evaluating economic theories of location and it has been used in 

urban form analysis for many years. As early as 1960s, Getis used point pattern analysis 

to examine commercial and residential land use succession in Lansing, Michigan (Getis, 

1964), and, afterward, to identify population clusters in Chicago, Illinois (Getis, 1983). 

But, spatial point pattern analysis is not able to account for behavioral variables that are 

critical in developing urban spatial structure. It can describe the degree of compactness 

versus sprawl, but it cannot explain how a particular pattern evolved, or to identify how 

to alter its course (Carruthers et al, 2010). 

Odland and Ellis (1992) first applied survival analysis to measure spacing of 

urban settlements in Nebraska. The study found that the pattern of settlements in 

Nebraska shows heterogeneity and interdependence. While the spacing of settlements 
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increases from east to west within Nebraska, there is less variation in the distances 

between nearest neighbors within different regions. The study used distance between 

points as a mathematical correspondent of duration labeling survival models accordingly 

as spatial survival models or spatial hazard models. The term hazard arises out of the 

hazard rate which is an important concept in survival analysis. The hazard rate is the 

probability of an event occurring at time t given that there is a risk of the event 

occurring.  For example, if the hazard rate is constant over time and it is equal to 1.2, this 

would imply that 1.2 events would be expected to occur in a time interval that is one unit 

long.  More precisely, if a person has a hazard rate of 1.2 at time t and a second person 

has a hazard rate of 2.4 at time t, then the second person's risk of an event would be two 

times greater at time t.  Thus, the hazard rate is an unobserved variable which controls 

both the occurrence and the timing of events.  It is the primary dependent variable in 

survival analysis. In the context of spatial analysis, the hazard rate describes spatial 

hazard instead of temporal hazard.  While temporal hazard measures the timeframe 

coming to an end, spatial hazard measures  distance coming to an end. For example, in 

the Odland and Ellis (1992) study, the authors examined distance intervals separating 

neighboring settlements and how those varied across the state. While the focus in that 

study was location of settlements in east-west and south-north directions, the method 

could be applied, for example, to examine spacing of neighborhoods as a function of their 

location and distance to the urban core of a metropolitan area.  

Hazard models are also designed to estimate the conditional probability of 

timeframe ending, or distance ending in a spatial analysis case. The traditional regression 

models, in contrast, focus on estimating the unconditional probability density functions. 
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And even though the unconditional probability density function and hazard function are 

mathematically equivalent, there are two advantages with estimating conditional hazard 

functions. First, the observations for which the exact duration is not known do not have to 

be discarded. And second, changes in exogenous variables during the observation period 

can be accounted for (Waldorf, 2003).  

This study builds on the literature that uses survival analysis to characterize urban 

form and extends the analysis to examine longitudinal changes in the U.S. metropolitan 

spatial structure between 1990 and 2007. In using survival analysis to measure urban 

form, Carruthers et al (2010) estimated spatial hazard models for the 25 largest core-

based-statistical-areas (CBSAs) of the United States and showed that hazard functions are 

particularly effective in describing the stochastic nature of urban form. The study relied 

on 2006 housing unit count at census block level to illustrate how urban development 

patterns unfold across a metropolitan area. In a follow up study, the same group of 

authors examined the ability of spatial hazard models to detect changes in urban form 

between 1990 and 2006 (Carruthers et al, forthcoming). In that study, the change in urban 

form was measured via changes in population. The 2006 population in a census block 

group was estimated by multiplying the 2000 average household size and the 2006 

housing unit count. This method effectively assumed that all 2006 housing units were 

occupied. This study again established that spatial hazard models behave as expected in 

the context of urban economics and are an effective tool for analyzing spatial structure 

change.  

While the two studies mentioned focus on establishing spatial hazards and their 

application in the study of urban form, the analysis presented here extends beyond them  
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by applying the method to measure change between 1990 and 2007 in the same 35 

metropolitan areas as in the first essay. Given that the data for 2007 population count 

comes from the ESRI 2007 Demographic Update, it more accurately measures population 

change and is therefore consistent with the analysis performed in the first essay. The 

population estimate used by Carruthers et al. (forthcoming) assumed that all 2006 

housing units were occupied. This is a particularly important issue in metropolitan areas 

that have in fact lost population in some central core areas, such as Detroit. By assuming 

full occupancy in 2006, the analysis may show that those areas have repopulated since 

2000 when that may not be the case.  Another divergence from the previous work is the 

location of the center of a metropolitan area. Consistent with the first essay, the center of 

a metropolitan area in this essay is where the Central Business District (CBD) was 

located according to the 1982 Census of Retail Trade.  

The two specific questions addressed by this study include: (1) Do spatial hazard 

models suggest changes in metropolitan spatial structure? (2) Are changes consistent 

within a metropolitan area? (3) Are changes consistent with traditional measures of 

metropolitan spatial structure as observed in the first essay? To answer these questions, 

the study estimates a series of spatial hazard models characterizing urban form in the 35 

largest CBSAs of the United States areas in 1990, 2000, and 2007.  

 

Empirical Strategy 

Hazard models are a group of longitudinal or survival analysis models used to 

characterize the occurrence and timing of events, and more specifically, modeling time to 

event data. However, in contrast to the hazard function framework observing duration as 
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a nonnegative random variable, the spatial hazard function that is used instead observes 

distance between two spatial observation points as a nonnegative random variable. As 

such, the spatial hazard function, h(d), noted as following: 

 

                                        (1) 

describes the conditional probability of a random distance variable, D, terminating 

at d+Δd given that it lasted up to d. For 0/)(  ddh , the hazard increases, or 

accelerates, also indicating that the probability of terminating increases with distance. In 

other words, given that this study examines metropolitan spatial structure, the two 

hypotheses essential to this model which arise directly from the urban economic theory 

(Alonso 1964; Muth 1969; Mills 1972) are: (1) the conditional probability of distance 

between two nearest neighbor points terminating increases with distance between them; 

and (2) the probability of terminating decelerates with distance from the urban core. 

Survival analysis uses nonparametric, parametric, and semiparametric 

estimations. In social sciences, estimating the effect of independent variables on the 

hazard is most often done via a semiparametric model such as the proportional hazard 

model. In the proportional hazard model, the effect of covariates has a multiplicative 

effect on the hazard rate. The proportional hazard model is the most frequently used 

survival model because it does not have to be based on any assumptions about the nature 

or shape of the underlying survival distribution. The proportional hazards function is 

described as following: 

h(d | X)= h
0
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),0(
)|],[Pr(

lim)(
0







 d

dDdddD
dh

d



 101  

 

where the hazard function consists of two components: (1) a baseline hazard, 

h
0
(d)= λd

λ−1

, where λ is a shape parameter giving the instantaneous rate at which the 

distances between points terminate when X = 0 (X=



Xik
is the vector of covariates); and 

(2) a function f(X, Φ) which is independent of the distance and is specified as an 

exponential function of exogenous variables, X, and an exponential scale parameter, Φ. 

Exogenous variables, X, have proportional and distance-independent effects on the 

conditional probability of terminating the distance, while scale parameter, Φ, accelerates 

or decelerates the baseline hazard. The shape parameter, λ, determines the asymptotic 

nature of the hazard function. For shape parameters < 1, the hazard is monotonically 

declining; and for shape parameters > 1, the hazard is monotonically increasing. 

The baseline hazard may remain unspecified and then estimated via a partial log-

likelihood function. Otherwise, the baseline hazard may assume a particular distribution 

and be estimated via maximum likelihood procedures. While there are several well-

known and well-behaved distributions used in parametric estimations, the Weibull 

distribution is used most often because it allows for a flexible shape of the hazard 

function. When Φ = 1, the Weibull distribution becomes the exponential distribution, and 

its hazard is constant. In other words, the probability of distance terminating is the same 

irrespective of the distance between the points. For Φ > 1, the probability of distance 

terminating monotonically increases, and for Φ < 1, the probability of distance 

terminating monotonically decreases with increasing distance. 

In this analysis, the primary dependent variable is the distance between population 

mean centers of nearest neighbor census tracts. Population mean center of a census tract 

is defined as the population-weighted average Cartesian {x, y} coordinate of all the block 
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group centroids in a given tract. The mean center is calculated using the mean center tool 

in the ArcGIS Spatial Statistics Toolbox. For each of the relevant years – 1990, 2000, and 

2007, block group population count is used as the ―weight‖ field and the tract 

identification number is used as the ―case‖ field. This allows the block groups to be 

grouped into their respective tract and evaluated accordingly. The mean center tool thus 

produces a point within each tract that can be thought of as the population ―center of 

gravity‖. The center of gravity is generated for 1990, 2000, and 2007 for each tract. And, 

distance between the nearest neighbor tract mean centers is then calculated for each of the 

years.  

To address the urban form change, the base function (2) is extended by adding 

two temporal fixed effects for 2000 and 2007 to the vector



Xik
. The fixed effects 

variables measure the change in the conditional probability of distance between nearest 

neighbors terminating in 2000 and 2007 in contrast to the 1990. If the metropolitan 

spatial structure has grown smarter, i.e. more densely populated, distance between nearest 

neighbors will decrease between 1990 and 2007 and conditional probability of distance 

between them terminating will increase. The econometric specification is as follows: 

     )=) kikik XX 
07070000

exp()(|( 0 iDiDiDiDililicic ddddddddijij xxxxdhdh  (3)  

where 



h(dij | Xik) indicates that the baseline hazard for distance between nearest 

neighbors i and j, 



h0(dij ) , is scaled by 



Xik
, a vector of k independent variables, including 



xd ic
, the distance from i to the regional center; 

ildx , the distance from i to the local 

center; and 
00iDdx and

06iDdx , the 2000 and 2007 temporal fixed effects. Regional and local 

centers are defined in the Data section. Scale parameter,



k
, including

icd ,
lld ,

00iDd , and
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07iDd , measures influence of independent variables on the conditional probability of 

distance between nearest neighbors terminating. As described, the proportional hazard 

model implies that explanatory scale parameters multiply hazard via the hazard ratios 

estimated by the model. A positive parameter value of temporal fixed effects (
00iDdx and

07iDdx ) indicates accelerating baseline hazard and increasing probability of distance 

between two nearest neighbors terminating in respective years. It, in essence, indicates 

the nearest neighbor tracts are closer in 2000 or 2007 than they were in 1990.  As the 

objective of this research is to determine urban form change over the 17-year timeframe, 

the decomposition of the proportional hazard model could be viewed as: (1) a common 

baseline hazard, or the fundamental part, is specific to the beginning of the observation 

period, namely 1990; (2) the effect of urban form change is measured with estimated 

scale parameters for 2000 and 2007; and (3) the effect of economic impacts is captured 

with additional explanatory variables and isolate (??)impact of those from the temporal 

fixed effects. The common baseline hazard allows for effective comparison between 

years as the proportionality among groups is required and is guaranteed with the common 

shape parameter.  

 

Data 

This essay focuses on the same 35 largest core based statistical areas (CBSAs) of 

the United States as those observed in the first essay and similarly uses 2000 census tracts 

as the units of analysis. The data comes from four sources: (i) 2007 population estimate 

from the ESRI 2007 Demographic Update Methodology; (ii) a nationwide count of 
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housing units at the census block level in 2006
8
, (iii) Census Summary File 3 (SF-3), 

from the 2000 census of the population; and (iv) two Geolytics, Inc. products which 

allocate selected 1990 SF-1 and SF-3 variables from 1990 census boundaries to 2000 

census boundaries. Measuring the change over time is challenging because it requires 

using constant geographic units and many Census defined boundaries were modified 

between 1990 and 2000. As a result, Geolytics files enabled a more accurate measure of 

change between the two years, because the census block groups and census tract 

polygons are constant. The estimate of the 2007 population count is available from the 

ESRI‘s 2007 Demographic Update and the method for estimating population is described 

in the Data section of the first essay.  

The three variables necessary for estimating the model are dij,



xd ic
, and 

ildx , the 

distance from i to its nearest neighbor and the distance from i to the regional and local 

center, respectively. There were six steps needed to create these distance measures. The 

first step consisted of generating a mean center for each census tract in the 35 CBSAs. To 

do that, the population count for each census blocks group was used to produce a 

population weighted center of all census tracts and for the three observation periods - 

1990, 2000, and 2007. As noted, the mean center was calculated using the mean center 

tool in the ArcGIS Spatial Statistics Toolbox. The population count for each respective 

year was used as the ―weight‖ field and the tract identification number was used as the 

―case‖ field, which organizes block groups into the correct tract and evaluates that tract 

accordingly.  

                                                 
8 

Provided to the Department of Housing and Urban Development by the Census Bureau. The count 

represents the universe for the American Community Survey, an annual survey of about three million 

households that is set to replace the so-called ―long form‖ of the decennial census, which will eventually 

yield census tract level data on an annual basis. 
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The second step involved generating 35 CBSA centers. CBSA centers are defined 

as the centroids of the census tracts where the Central Business District (CBD) was 

located according to the 1982 Census of Retail Trade. The CBSA centers can be thought 

of as the core center, or central business district (CBD), of a metropolitan area. Similarly, 

the third step involved generating the housing weighted centers of the local centers 

defined by the boundaries of the county subdivisions, or county divisions in cases in 

which there are no subdivisions. The housing unit count came from 2006 nationwide 

count of housing units at the census block level. Inclusion of local mean centers in the 

analysis allows for accounting not only of local spatial homogeneity, but also for 

policentricity of many urban regions in the United States.  

In the fourth step, each tract was assigned to its nearest neighbor and distance 

measure between them was calculated. To do this, GeoDa was used because the ArcGIS 

Toolbox does not have a routine that will identify a feature‘s nearest neighbor that is 

within the same shapefile and calculate a distance to that feature. Distance between 

nearest tracts was repeated for each year.  

The fifth step included assigning tracts to their nearest CBSA‘s CBD center point 

and to the nearest local mean center point and obtaining two additional sets of distance 

measures: (i) between tract mean centers and their respective CBSA‘s CBD, and (ii) 

between tract centers and their respective local mean centers. Distance measure 

calculations were repeated for each of the three years resulting in three sets of nearest 

neighbors‘ distances, for 1990, 2000, and 2007.  

The last, sixth step consisted of mapping rays connecting each tract to its CBSA 

center and nearest neighbor tract using an ESRI user-written extension, Desire Line. This 
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tool creates a line between a point of origin and a point of destination. The results of this 

step are shown in the Figure 17. The map shows CBSAs CBDs and their spheres of 

influence for the 35 CBSAs that are the focus of the analysis shown in dark gray. Figure 

18 shows a map of spatial point patterns in San Francisco, Atlanta, San Antonio, and 

Miami metropolitan regions. In the second exhibit, both the rays connecting tracts to their 

CBD center and the rays connecting nearest neighbor tracts are visible.  

 

Figure 17: Desire Lines 
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Figure 18: Desire Lines for San Francisco, Atlanta, San Antonio, and Miami 

 

The remaining vector of independent variables,



Xik
, is composed of explanatory 

variables directly obtained from the theoretical models used to explain urban form . More 

specifically, household income and commuting costs are the determining factors of 

households‘ location decisions. Given that land is a normal good, households are 

anticipated to consume larger size lots with greater income. Consequently, income is 

expected to decelerate the hazard function. Commuting costs, which indicate regions‘ 

accessibility, are constrained by the household budget function. In this analysis, 

commuting costs are measured by the share of workers with travel time to work less than 

25 minutes. The parameter estimates are thus expected to decelerate the hazard function. 

Finally, as discussed above, urban area evolves over time and taking into account the 
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vintage effects, or aged housing, is critical. Though aged development could either 

accelerate or decelerate the hazard depending on the density at which it was developed in 

comparison to the current market conditions. Since the control variable used in this model 

accounts for the percentage of housing units build before 1939, the estimated parameter is 

expected to be positive given that the density of development prior to 1939 was still 

uninfluenced by the automobile and was built at higher densities than is the case of the 

modern market conditions. Beyond these explanatory variables, population count is 

included in order to control for the size of the census tracts and this variable is expected 

to decelerate the hazard of the distance between points terminating. Figure 19 provides 

specific definitions and the source of data of each variable. Figure 1 in Appendix B 

provides descriptive statistics for distance measures.  

 

Figure 19: Variables Definition and Sources of Data 

  Variables Source Definition 

D
ep

en
d

en
t Distance from 

Nearest Neighbor 

Authors‘ calculations, 

U.S. Census and Geolytics  

Distance from population weighted center to the 

population weighted center of the nearest tract, 1990, 2000, 

2007 

In
d

ep
en

d
en

t 

Distance from 

CBD 

Authors‘ calculations, 

U.S. Census and Geolytics 

Distance from population weighted center to the CBD of 

the nearest CBSA, 1990, 2000, 2007 

Distance from  

Local Center 

Authors‘ calculations, 

U.S. Census and Geolytics 

Distance from population weighted center to the 

population weighted center of the nearest county 

subdivision, 1990, 2000, 2007 

Household 

Income 

U.S. Census Bureau, and 

Geolytics — SF-3, Table 

P68 

Median household income, in 1990 and 2000 

Travel Cost  Author‘s calculations, 

from U.S. Census Bureau 

and Geolytics — SF-3, 

Tables P31 and P33 

Percent of workers 16+ years old with travel time-work 

less than 25 minutes, in 1990 and 2000 

Age of Housing 

Units 

U.S. Census Bureau and 

Geolytics — SF-3, Table 

H35 

Percent of homes built before 1939, in 1990 and 2000 

Population U.S. Census Bureau and  

Geolytics 

Estimated population, 1990, 2000, 2007 
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Estimation Results 

The spatial hazard estimation results for 35 CBSAs are listed in alphabetical order 

in Figure 20. All the parameter estimates are positive because they are hazard ratios that 

scale the baseline hazard. So, the parameter value of less than 1 decelerates the baseline 

hazard, while the values greater than 1 accelerate it.  

The first three columns following CBSA names refer to the CBSAs‘ shape 

parameter, , its significance and the z-value. The shape parameter for every region is 

positive and statistically significant at 99 percent confidence level. This confirms the idea 

that urbanization patterns described by nearest neighbor tracts exhibit positive spatial 

dependence, or in other words, the probability of the distance between nearest neighbors 

ending increases with increasing distance between them.   

The following two sets of columns are parameter estimates, significance and z-

values for the two temporal fixed effects, 2000 and 2007. For both temporal effects, most 

of the estimates are statistically significant and greater than 1, suggesting that most of the 

metropolitan areas grew more compact during this 17-year period. The section below 

describes temporal effects estimates in greater detail.  

The remaining parameter estimates under the heading all show expected 

results. First, the parameter estimates on distance from the CBD are less than 1 and 

highly significant in all regions, suggesting that the probability of the distance between 

nearest neighbors terminating decreases with the distance from their CBSA center.  

Second, the parameter on distance from the nearest local center is largely less than 

1 and statistically significant, suggesting as well that the probability of the distance 

between nearest neighbors terminating decreases with distance from their nearest local 
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center. The significance of the local parameters confirms the theoretical assumption of 

the growing importance of local business centers in structuring metropolitan urban form. 

There are several exceptions where the estimated effect is the opposite indicating that the 

probability of the distance terminating increases with distance from the nearest local 

center. This is the case in the very large metropolitan areas with dense spatial structure, 

such as Boston, Chicago, Minneapolis, and Philadelphia.  Given the polycentric nature of 

such large metropolitan areas, it may be that numerous population and employment 

centers are serving as gravity points for population concentration. In cases with the 

insignificant parameters, the baseline hazard is spatially invariant and the areas are 

mostly characterized by strong monocentric urban structure where a dominating central 

business district plays the most important role. The direction of the influence of distance 

to the nearest local center again largely depends on the complexity of an urban region.  

Third, as expected, the parameter on household income is largely less than 1 and 

statistically significant indicating that, all else being equal, income decelerates the spatial 

hazard function. That is, probability of distance between nearest neighbors terminating 

decreases with higher income.  

Fourth, the parameter on travel time has a somewhat mixed effect. Again, this 

variable is defined as the share of workers with commute time of 25 minutes or less. 

While the parameter is highly significant in all of the metropolitan areas, the areas with a 

smaller parameter are more spatially spread out or at least pull workers from a larger 

geographic radius than areas with a larger parameter. New York is the only area with  a 

parameter estimate less than 1 which is indicative of the size of its commuter shed.  
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Fifth, the parameter on the age of housing units, or the share of housing built 

before 1939, also varies across regions. In areas where the parameter is statistically 

significant, the impact is positive two-thirds of the time, suggesting that older 

development is generally denser than newer development. The parameter values of less 

than 1 are recorded in areas with relatively newer housing stock, such as Las Vegas and 

Phoenix, suggesting that the greater share of newer housing stock decelerates the hazard 

function – or, that newer homes are spaced further apart. And finally, the parameter on 

population, a control for the size of the census tracts, is also mostly statistically 

significant and negative. The last two columns provide information on the sample size for 

each metropolitan area (n) and log-likelihood of the estimation function (LL). The sample 

size is n  t observations in the panel, where n is the number of census tracts and t 

indicates the year, 1990, 2000, or 2007. 
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Figure 20: Estimated Spatial Hazard Functions — Distance from Nearest Neighbor 

Distance from Distance from

2000 2007 CBSA Center Local Center Population

CBSA Est. z Est. z Est. z Est. z Est. z Est. z Est. z Est. z Est. z n LL

Atlanta-Sandy Springs-Marietta, GA 2.94 ***(68.79) 1.27 ***(4.01) 1.26 ***(3.71) 0.99992 ***(-46.61) 0.99994 ***(-4.42) 1.00000 ***(-3.69) 6.90 ***(9.07) 1.98 ***(2.76) 0.99995 ***(-6.79) 2,070 -883.38

Austin-Round Rock, TX 2.25 ***(30.31) 2.14 ***(7.64) 2.20 ***(7.68) 0.99993 ***(-18.75) 0.99988 ***(-6.13) 0.99998 ***(-8.74) 46.18 ***(13.75) 0.05 ***(-5.06) 0.99988 ***(-7.20) 771 -553.28

Baltimore-Towson, MD 2.65 ***(59.46) 1.50 ***(6.92) 1.32 ***(4.74) 0.99990 ***(-39.73) 0.99989 ***(-6.17) 0.99998 ***(-17.28) 1.88 ***(3.73) 2.95 ***(7.99) 1.00000 (0.28) 1,926 -1,033.76

Boston-Cambridge-Quincy, MA-NH 2.38 ***(68.21) 1.86 ***(12.40) 1.72 ***(10.90) 0.99996 ***(-34.52) 1.00008 ***(4.78) 0.99998 ***(-22.30) 13.26 ***(12.91) 22.76 ***(27.30) 0.99994 ***(-5.69) 2,760 -1,631.33

Charlotte-Gastonia-Concord, NC-SC 2.51 ***(34.82) 1.60 ***(4.86) 1.66 ***(5.14) 0.99993 ***(-20.57) 1.00001 (0.78) 1.00000 (-0.81) 29.77 ***(8.64) 2.62 ** (2.11) 0.99988 ***(-7.22) 801 -490.36

Chicago-Naperville-Joliet, IL-IN-WI 2.67 ***(108.38) 1.29 ***(7.51) 1.16 ***(4.52) 0.99992 ***(-70.52) 1.00008 ***(11.64) 0.99999 ***(-13.37) 2.21 ***(7.67) 2.20 ***(11.72) 0.99992 ***(-14.86) 6,156 -3,207.25

Cincinnati-Middletown, OH-KY-IN 2.36 ***(43.57) 1.43 ***(5.09) 1.32 ***(3.95) 0.99993 ***(-27.24) 0.99996 * (-1.64) 0.99998 ***(-8.07) 173.98 ***(20.34) 1.61 ***(3.05) 0.99994 ***(-3.94) 1,458 -994.06

Cleveland-Elyria-Mentor, OH 2.86 ***(65.41) 1.43 ***(6.29) 1.22 ***(3.43) 0.99990 ***(-37.05) 1.00012 ***(6.19) 0.99998 ***(-14.44) 3.19 ***(6.20) 2.13 ***(6.76) 0.99995 ***(-3.37) 2,079 -972.21

Dallas-Fort Worth-Arlington, TX 2.09 ***(59.18) 1.39 ***(6.94) 1.30 ***(5.47) 0.99995 ***(-42.33) 0.99999 (-0.83) 0.99999 ***(-9.76) 89.62 ***(27.92) 0.23 ***(-6.40) 0.99995 ***(-7.10) 3,138 -2,340.88

Denver-Aurora, CO 2.46 ***(52.35) 1.03 (0.44) 0.92 (-1.19) 0.99987 ***(-29.48) 0.99996 ***(-2.73) 1.00000 ** (2.15) 4.00 ***(6.30) 0.18 ***(-9.02) 0.99997 ***(-2.91) 1,560 -893.49

Detroit-Warren-Livonia, MI 3.06 ***(101.05) 1.16 ***(3.49) 1.06 (1.33) 0.99992 ***(-51.50) 1.00002 ** (2.17) 1.00000 ***(-4.93) 8.05 ***(13.49) 0.84 (-1.61) 0.99994 ***(-5.64) 3,867 -1,414.03

Houston-Sugar Land-Baytown, TX 2.34 ***(60.52) 1.14 ***(2.62) 1.02 (0.35) 0.99993 ***(-44.48) 0.99997 ***(-3.36) 1.00000 (-1.02) 12.70 ***(15.91) 0.44 ***(-3.26) 0.99997 ***(-4.06) 2,685 -1,809.97

Indianapolis, IN 2.60 ***(38.57) 1.38 ***(3.79) 1.30 ***(3.06) 0.99990 ***(-22.89) 0.99990 ***(-4.17) 0.99998 ***(-6.28) 21.18 ***(7.98) 1.17 (0.80) 0.99993 ***(-4.50) 945 -569.55

Jacksonville, FL 2.35 ***(29.30) 1.19 (1.61) 1.02 (0.16) 0.99992 ***(-16.62) 0.99994 ***(-5.69) 1.00000 (0.28) 18.31 ***(8.89) 1.53 (0.94) 0.99995 ***(-3.29) 603 -387.54

Las Vegas-Paradise, NV 1.77 ***(24.85) 1.28 ***(2.88) 1.14 (1.41) 0.99994 ***(-20.40) 0.99989 ***(-9.33) 0.99999 ***(-3.24) 2.37 ***(5.37) 0.49 (-0.30) 0.99995 ***(-5.42) 1,041 -968.58

Los Angeles-Long Beach-Santa Ana, 

CA 

2.50 ***(111.00) 1.25 ***(7.38) 1.06 ** (2.02) 0.99994 ***(-56.77) 0.99993 ***(-16.61) 0.99998 ***(-28.89) 2.96 ***(11.52) 0.27 ***(-12.87) 0.99999 (-1.12) 7,113 -3,961.24

Miami-Fort Lauderdale-Miami Beach, 

FL 

2.34 ***(71.77) 1.36 ***(6.05) 0.94 (-1.16) 0.99999 ***(-19.77) 0.99982 ***(-12.32) 0.99999 ***(-7.83) 11.12 ***(14.47) 3.37 ***(3.18) 0.99992 ***(-10.87) 2,670 -1,482.88

Minneapolis-St. Paul-Bloomington, 

MN-WI 

2.91 ***(69.18) 1.49 ***(6.93) 1.37 ***(5.38) 0.99989 ***(-42.73) 1.00003 * (1.72) 0.99998 ***(-12.17) 3.77 ***(6.18) 1.74 ***(4.98) 0.99993 ***(-5.11) 2,238 -1,014.31

New York-Northern New Jersey-Long 

Island, NY-NJ-PA 

2.14 ***(133.91) 1.29 ***(11.46) 1.19 ***(7.62) 0.99995 ***(-76.58) 1.00000 (-0.92) 0.99999 ***(-35.48) 0.29 ***(-23.52) 4.46 ***(33.84) 0.99998 ***(-5.43) 13,188 -9,013.50

Orlando-Kissimmee,  FL 2.45 ***(39.23) 1.40 ***(3.99) 1.29 ***(2.91) 0.99991 ***(-23.76) 0.99986 ***(-6.48) 0.99999 ***(-5.67) 5.66 ***(6.30) 6.21 ***(3.13) 0.99995 ***(-4.41) 984 -590.23

Philadelphia-Camden-Wilmington, PA-

NJ-DE-MD 

2.20 ***(76.86) 1.50 ***(10.49) 1.29 ***(6.69) 0.99995 ***(-43.88) 1.00006 ***(6.15) 0.99998 ***(-22.31) 3.03 ***(10.07) 3.03 ***(14.54) 1.00000 (0.34) 4,668 -3,276.48

Phoenix-Mesa-Scottsdale, AZ 1.82 ***(39.72) 1.09 (1.57) 1.04 (0.75) 0.99995 ***(-30.83) 0.99996 ***(-6.38) 1.00000 (-1.26) 1.63 ***(3.28) 0.57 (-1.26) 0.99996 ***(-6.42) 2,115 -1,872.52

Pittsburgh, PA 2.15 ***(48.74) 1.36 ***(5.38) 1.24 ***(3.76) 0.99993 ***(-37.02) 0.99997 (-1.41) 0.99998 ***(-8.07) 19.63 ***(13.05) 3.65 ***(9.90) 0.99989 ***(-7.40) 2,163 -1,631.24

Portland-Vancouver-Beaverton, OR-

WA 

2.64 ***(49.78) 2.06 ***(8.84) 1.76 ***(6.95) 0.99989 ***(-29.12) 0.99999 (-0.82) 0.99997 ***(-12.88) 62.68 ***(12.73) 0.87 (-0.81) 1.00003 * (1.82) 1,278 -670.87

Richmond, VA 2.39 ***(33.76) 1.34 ***(3.24) 1.22 ** (2.18) 0.99993 ***(-20.82) 0.99992 ***(-4.09) 0.99999 ***(-4.44) 106.24 ***(15.11) 4.77 ***(6.47) 0.99996 ** (-2.46) 849 -575.86

Riverside-San Bernardino-Ontario, CA 1.70 ***(39.33) 1.02 (0.46) 0.90 * (-1.91) 0.99998 ***(-25.72) 0.99980 ***(-18.03) 1.00001 ***(5.67) 3.53 ***(8.41) 0.04 ***(-8.22) 0.99994 ***(-10.47) 2,520 -2,339.49

Sacramento-Arden-Arcade-Roseville, 

CA 

1.72 ***(27.17) 1.30 ***(3.41) 1.10 (1.25) 0.99997 ***(-18.63) 0.99989 ***(-7.35) 0.99999 ***(-4.34) 24.24 ***(12.12) 0.01 ***(-11.42) 0.99997 ***(-2.99) 1,209 -1,114.21

St. Louis, MO-IL 2.06 ***(43.11) 1.16 ** (2.25) 1.08 (1.19) 0.99994 ***(-33.84) 0.99990 ***(-4.62) 1.00000 ***(-2.73) 5.26 ***(6.85) 1.37 ** (1.96) 0.99990 ***(-7.91) 1,650 -1,230.09

San Antonio, TX 2.49 ***(40.55) 1.25 ***(2.72) 1.12 (1.31) 0.99990 ***(-26.96) 0.99991 ***(-7.06) 0.99999 ***(-3.82) 32.29 ***(13.59) 0.27 ***(-4.39) 0.99999 (-0.96) 1,014 -604.10

San Diego-Carlsbad-San Marcos, CA 1.88 ***(38.12) 1.14 ** (2.24) 1.07 (1.13) 0.99995 ***(-30.20) 0.99996 ***(-3.66) 0.99999 ***(-7.32) 1.52 ** (2.54) 0.32 ***(-4.67) 0.99999 * (-1.71) 1,797 -1,512.58

San Francisco-Oakland-Fremont, CA 1.85 ***(49.76) 1.41 ***(6.57) 1.26 ***(4.42) 0.99995 ***(-27.17) 0.99996 ***(-3.11) 0.99999 ***(-12.61) 3.12 ***(6.23) 1.87 ***(6.23) 1.00002 ** (2.05) 2,613 -2,093.67

Seattle-Tacoma-Bellevue, WA 2.18 ***(51.68) 1.58 ***(7.33) 1.42 ***(5.54) 0.99995 ***(-32.49) 0.99986 ***(-9.89) 0.99998 ***(-10.41) 16.63 ***(13.61) 1.00 (0.02) 0.99996 ***(-3.53) 1,992 -1,356.92

Tampa-St. Petersburg-Clearwater, FL 2.55 ***(53.23) 1.24 ***(3.21) 1.03 (0.47) 0.99996 ***(-22.98) 0.99979 ***(-16.50) 1.00000 * (-1.81) 48.33 ***(15.68) 12.93 ***(8.47) 1.00000 (0.11) 1,641 -923.83

Virginia Beach-Norfolk-Newport News, 

VA-NC 

1.73 ***(25.57) 1.34 ***(3.65) 1.27 ***(2.96) 0.99995 ***(-18.82) 1.00002 ** (2.16) 0.99999 ***(-3.58) 44.53 ***(15.09) 0.35 ***(-3.42) 0.99992 ***(-5.66) 1,104 -1,040.96

Washington-Arlington-Alexandria, DC-

VA-MD-WV 

2.34 ***(65.78) 1.44 ***(7.62) 1.28 ***(5.23) 0.99992 ***(-45.61) 0.99994 ***(-4.54) 0.99999 ***(-17.22) 4.29 ***(9.62) 1.97 ***(5.30) 0.99997 ***(-3.55) 3,012 -1,935.34

*** denotes significant at 99%; ** denotes significant at 95%; * denotes significant at 90%; and  n/s denotes not significant.

Notes: LL is the log-likelihood; n   t  is the number of observations in the panel; in the event that an observation/s was dropped in the estimation process, n   t  is not symmetric; values in () are z -statistics; all hypothesis tests are two-tailed; 

l Household Travel Age of 

Income Cost Housing Units

t 
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Another way of intuitively illustrating the results is by graphing the survival 

functions. The survival functions are the opposite of hazard functions and express the 

conditional probability of distance extending. Instead of expressing the hazard function as 

H(dij) = Pr(D < dij), the survival function is expressed as S(dij) = 1 – H(dij) = Pr(D ≥ dij). 

Survival functions can be graphed by varying distance from the CBSA center and two 

temporal fixed effects while holding the remainder of Xik constant at the mean . Also, 

the survival functions can be generated at radial distances from the CBSA centers that 

capture ~5%, ~15%, ~25%, ~35%, ~45%, ~55%, ~65%, ~75%, ~85%, and ~95% of each 

CBSA‘s total population. In this analysis, distances capturing each successive share of 

population were generated for each of the three years and applied to the models by 

substituting relevant values into equation (4): 

h(dijXik) = (dij)  exp( + icenter icenter + ilocal ilocal  +    )        (4) 

where, , icenter , ilocal , and    are estimated parameters; and 

icenter , ilocal and  are mean values of the vector . Temporal effects, , were set 

to each of the three years: (i) 2000 = 0 and 2007 = 0, controlling for 1990; (ii) 2000 = 1 

and 2007 = 0; and (iii) 2000 = 0 and 2007 = 1. 

The survival functions for all metropolitan areas are shown in Figure 2 in the 

Appendix B. The figure contains the survival functions and changes for each 

metropolitan area in alphabetical order. These survival curves describe the conditional 

probability of the distance between nearest neighbor tracts extending past a particular 

distance at specific locations within the metropolitan area. For explanation purposes, 

Figure 21 illustrates survival functions for Washington, DC for 2007. The x-axis records 

distance between nearest neighbors and ranges from 0 to 5,000 meters. The y-axis records 
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the probability that distance between nearest neighbors, , extends and ranges from 0 to 

1. Each graph contains 10 different colored curves which represent the distance from the 

CBSA center that capture ~5% through ~95% of the metropolitan area‘s population. For 

example, the curve closest to the y-axis captures urbanization patterns in the ring closest 

to the metropolitan core that contains ~5% of the area‘s population. The distance between 

nearest neighbors in that ring has 18 percent probability of extending beyond 1000 

meters.  Curves successively follow the share of area‘s population. The curve at the far 

right of the graph captures 95 percent of the population and the probability of distance 

between nearest neighbors extending beyond 5000 meters is 63 percent.  

 

Figure 21: Survival Curves 

 
 

Based on the graphs illustrating urbanization patterns in 1990, 2000 and 2007, 

metropolitan areas can be subjectively grouped in four categories. Figure 22 illustrates 

this.. In the first category are regions with high-density, compact patterns of urbanization, 

like New York, Chicago, and San Francisco. Their estimated survival functions are 
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part consistent across the entire region. The last two population rings, capturing 85 

percent and 95 percent of the population are often less steep and extend further out on the 

graph.  

In the second category are regions with low-density, sprawling patterns of 

urbanization, like Atlanta, Phoenix, Charlotte, Riverside, and San Antonio. Their survival 

functions are more flatly sloped, especially at their tops, and spread out. The last two 

population rings usually indicate very high probability of distance between nearest 

neighbors extending beyond 5000 meters. In Atlanta, that probability is around 80 

percent.  

The areas falling in the third category have high-density core suggested by tightly 

bunched first (several) population rings. The rings farther from the center, however, 

suggest sprawling suburban areas and are illustrated by less steep functions. Those areas 

include Baltimore, Denver, Austin, Cleveland, and Philadelphia. In Baltimore, for 

example, the outermost population rings have about 60 percent probability of extending 

beyond 5000 meters.  

The last, fourth, category encompasses areas that are nearly spatially invariant at 

most distances. This is suggested by their survival functions that are clustered together 

without much variation between inner and outer population rings. Metropolitan areas 

exhibiting such settlement patters include Miami, Los Angeles, Dallas, Seattle, and Las 

Vegas.  
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Figure 22: Survival Curves in High Density, Low Density, Mixed, and Spatially Invariant Regions 

 

 

 

Metropolitan Structure Changes via Spatial Hazards  

To answer the specific questions posed by this study, the survival functions can be 

graphed to illustrate changes in metropolitan spatial structure. The change graphs are 
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various survival functions for each region. Figure 23 serves for explanation. The graph 

illustrates the change in survival probabilities between 1990 and 2007 for each of the 

population rings in the Washington, DC metropolitan area. In the change graphs, the x-
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each of the years as they pick up differing changes within and across regions. When the 

change curves are positive, survival rate has increased over time, suggesting a sprawling 

effect on urbanization patterns. In contrast, when the change curve is negative, survival 

rate has decreased over time implying a compacting effect on urbanization.  

Figure 23: Change in Survival Functions 

 

 

The color codes are consistent across all graphs, so for example, dark blue color 

always refers to area encompassing initial ~5% of area‘s population around the urban 

core.  Figure 23 shows that the probability of distance extending beyond 1000 meters in 

the 5% population ring decreased by 11 percent. A decrease in survival probability means 

that nearest neighbors are spaced closer together in 2007 than they were in 1990. In 

contrast, the probability of distance extending beyond 3000 meters in 85% population 

ring increased by 3 percent. That means that nearest neighbors are spaced further apart in 

suburban locations of the Washington, DC metropolitan area. That seems to be true for 

65% and 75% population rings as well. 

 Figure 2 in Appendix B contains change graphs for all regions. Changes among 

all the 35 metropolitan areas suggest a general tendency towards densification. The 

median change for all population rings is summarized in the Table 8. The first section 
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summarizes changes between 1990 and 2000, the middle section between 2000 and 2007, 

and the last section between 1990 and 2007. In looking at the last section, we can see that 

survival function decreased by 3 percent at a 500 meter distance between nearest 

neighbors in the first population ring. The largest decrease was during 1990s when the 

probability of survival beyond 1000 meters in the first ring fell by almost 10 percent. The 

period between 2000 and 2007 is again symbolic of general tendency towards sprawl 

among most of the metropolitan areas indicated by positive change in survival curves.  

 

Table 8: Classification of Land Use Change 

Median 1990 to 2000 

 

At a Distance from the Regional Center of Gravity Capturing % of Population 

 
~5% ~15% ~25% ~35% ~45% ~55% ~65% ~75% ~85% ~95% 

500 -4.39% -3.21% -2.84% -2.29% -1.49% -1.15% -0.78% -0.49% -0.31% -0.12% 

1,000 -9.67% -8.63% -7.14% -6.97% -5.33% -4.55% -3.36% -2.58% -1.54% -0.62% 

2,000 -2.07% -3.05% -3.29% -3.89% -4.53% -7.19% -7.70% -7.92% -5.69% -2.63% 

3,000 -0.01% -0.05% -0.20% -0.31% -0.85% -0.95% -2.54% -5.80% -7.39% -4.75% 

4,000 0.00% 0.00% 0.00% -0.01% -0.02% -0.03% -0.48% -1.36% -4.85% -6.16% 

5,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.01% -0.09% -1.81% -6.26% 

 

Median 2000 to 2007 

 

At a Distance from the Regional Center of Gravity Capturing % of Population 

 
~5% ~15% ~25% ~35% ~45% ~55% ~65% ~75% ~85% ~95% 

500 1.20% 1.14% 1.13% 1.11% 1.00% 0.83% 0.66% 0.48% 0.20% 0.06% 

1,000 2.57% 2.98% 3.11% 3.54% 3.49% 3.26% 2.54% 2.08% 1.27% 0.25% 

2,000 0.19% 0.69% 1.36% 2.42% 3.48% 4.32% 4.71% 4.77% 3.18% 1.14% 

3,000 0.00% 0.02% 0.06% 0.12% 0.52% 1.07% 2.51% 3.66% 3.62% 2.19% 

4,000 0.00% 0.00% 0.00% 0.00% 0.02% 0.12% 0.35% 1.41% 2.14% 2.23% 

5,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.25% 0.86% 2.31% 

 

Median 1990 to 2007 

 

At a Distance from the Regional Center of Gravity Capturing % of Population 

 
~5% ~15% ~25% ~35% ~45% ~55% ~65% ~75% ~85% ~95% 

500 -2.59% -2.25% -1.56% -1.11% -0.36% -0.23% -0.13% -0.07% -0.09% -0.04% 

1,000 -6.12% -4.20% -3.70% -3.29% -1.82% -1.03% -0.47% -0.43% -0.49% -0.24% 

2,000 -0.67% -1.01% -1.41% -2.06% -1.32% -1.10% -0.59% -1.15% -1.72% -1.00% 

3,000 -0.01% -0.01% -0.02% -0.03% -0.14% -0.02% -0.30% -0.01% -2.22% -1.83% 

4,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.02% 0.00% -1.01% -2.54% 

5,000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% -0.20% -2.72% 
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In looking at changes among the 35 metropolitan areas, several urbanization 

trends are immediately evident. Between 1990 and 2000, all but seven metropolitan areas 

saw decreasing survival rates suggesting that the probability of distance extending has 

fallen and nearest neighbor tracts are spaced closer together. This result implies that most 

of the metropolitan areas have grown more densified during 1990s. During 2000s, 

however, every metropolitan area saw an increase in the survival rate suggesting a 

reversal of the 1990s trends and general suburbanization of metropolitan areas. The final 

resultant change, between 1990 and 2007, consequently varies a lot among the areas.  

Using the four regions illustrated in Figure 22 (above) as examples, it is also 

possible to categorize CBSAs into four typologies based on their change. The first 

category, represented by San Francisco, is typified by general compacting over the 17-

year period. While the 2000s do show increasing survival rate, the increase is of a smaller 

degree than the compacting seen during 1990s. On the whole, then, the change reflects 

decreasing survival of distance between nearest neighbors, namely infill development and 

compacting of metropolitan areas. Four out of ten metropolitan areas fall into this 

category, though change is of varying degrees. For example, while the probability of 

distance between nearest neighbors extending beyond 1,000 meters decreased by 30 

percent in the core center of Austin; it only decreased 12 percent in Baltimore. Both 

CBSAs, however, saw overall compacting of the metropolitan area. Figure 24 illustrates 

change in the survival function for San Francisco. In the first graph, the survival 

functions across the whole metropolitan area show a decrease between 1990 and 2000. In 

the second graph showing change between 2000 and 2007, the survival functions have 

increased. The cumulative effects in the graph showing change between 1990 and 2007 
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indicate overall densifying of metropolitan San Francisco, but to a smaller degree than 

seen in 1990s. The remaining metropolitan areas that fall in the ―densification‖ category 

include: Portland, Dallas, Austin, Boston, Charlotte, New York, Philadelphia, Seattle, and 

Virginia Beach. Areas that also densified but to a smaller degree are: Baltimore, 

Cincinnati, Cleveland, Orlando, Pittsburg, and Sacramento. Change between 1990 and 

2007 in the aggregated sample of metropolitan areas that densified indicates that the 

largest decrease in survival function was for survival of distance beyond 1000 meters 

between nearest neighbors. In the first and second population ring, that decrease was 12 

and 10 percent respectively.  The probability of distance extending beyond 500 meters 

also went down by 7 percent and 5 percent in the first two population rings. For the last 

population ring, at the suburban fringe, survival function decreased by well over 6 

percent for distances beyond 3000, 4000 and 5000 meters.  

 

Figure 24: Change Survival Functions in High Density Areas 
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The second category is typified by areas that overall sprawled out over the 

seventeen years. While in some of them the 1990s were still characterized by some 

compacting, the sprawling effect of 2000s dominated the resulting outcome. These 

metropolitan areas are characterized by positive change in the survival rate, such as Las 

Vegas, for example in Figure 25. The other five metropolitan areas falling into this 

category include: Denver, Detroit, Houston, Jacksonville, Phoenix, and Riverside. In Las 

Vegas, change between 1990 and 2007 shows increase in the survival rates in most of the 

population rings. The increase was successively larger away from the center. The first 

ring however saw a minuscule decrease in survival rates. For aggregate sample of 

sprawling metropolitan areas, that decrease is 0.3 percent and 0.8 percent for extending 

beyond 500 and 1000 meters respectively. It is also interesting to note that the temporal 

parameters in this category of metropolitan areas are often insignificant. Again, the 

change in 1990s differs from that of 2000s. During 1990s, sprawling metropolitan areas 

in the aggregate still experienced some densification, with the largest relative change 

being in the first population ring, a 3 percent decrease in survival beyond 1000 meters. 

The last population ring followed. During 2000s, the increase was of a much larger 

proportion, thus completely reversing the trend before. Primarily, for the sprawling 
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category of metropolitan areas, median changes were in the magnitude of +3 to +6 

percent.  

 

Figure 25: Change Survival Functions in Sprawling Areas 

 

 

The third category is characterized by mixed outcomes, with densification in 

some parts of the metropolitan area, usually the central core, and sprawling of the other 

areas, mostly the suburban areas. Eight metropolitan areas fall into this category: Atlanta, 

Chicago, Indianapolis, Minneapolis, Richmond, San Antonio, St. Louis, and Washington 

DC. Again, most of densification occurred during 1990s, while 2000s were significant for 

decentralization. Figure 26 shows urban form change in Atlanta which typifies changes 

for the ―mixed‖ category of the metropolitan areas. Atlanta provides an interesting 

example of conflicting urbanization patterns that occurred in 1990s and 2000s. While the 

-.
4

-.
3

-.
2

-.
1

0
.1

.2

D
if
fe

re
n

c
e
 i
n

 S
u

rv
iv

a
l 
R

a
te

s

0 1000 2000 3000 4000 5000
Distance in Meters

Las Vegas Change 1990 - 2000

-.
4

-.
3

-.
2

-.
1

0
.1

.2

D
if
fe

re
n

c
e
 i
n

 S
u

rv
iv

a
l 
R

a
te

s

0 1000 2000 3000 4000 5000
Distance in Meters

Las Vegas Change 2000 - 2007

-.
4

-.
3

-.
2

-.
1

0
.1

.2

D
if
fe

re
n

c
e
 i
n

 S
u

rv
iv

a
l 
R

a
te

s

0 1000 2000 3000 4000 5000
Distance in Meters

Las Vegas Change 1990 - 2007



 123  

 

1990s is generally defined by decreasing survival rates, particularly in the center of the 

region, the 2000s seem to have reversed that trend. The reversal though is not sudden 

because the rings that saw the smallest decreases in the survival rates in 1990s also saw 

the largest increases in 2000s.  By the same token, the 5% ring which experienced a large 

decrease also saw the smallest increase later on. Nevertheless, the overall result is 

densification of the central core as well as of the two outmost population rings, but the 

opposite effect occurs in the inner parts of the Atlanta metro region. The median change 

among the ―mixed‖ category for the entire observation period indicates a 6 percent fall in 

survival beyond 1000 meters for the first ring, and 4, 3 and 2 percent decrease for the 

successive rings. The survival rate in the last ring decreased by 3 percent for distances 

beyond 5,000 meters. For the inner rings, the increase was generally in the 2 percent 

magnitude.  

 

Figure 26: Change Survival Functions in Mixed Areas 
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Finally, the last category of metropolitan areas is characterized by minimal overall 

change in metropolitan spatial structure over the 17-years period. Four metropolitan areas 

fall into this category: Miami, Los Angeles, San Diego, and Tampa. Figure 27 illustrates 

the category with San Diego. Some of these metropolitan areas did see a slight difference 

in 1990s and 2000s; however the two trends offset each other to result in minimal change. 

Interestingly, still, all of these regions densified during 1990s while they sprawled in 

2000s. The median change in this category is a decrease of about 2 percent in the inner 

rings and 0.5 percent decrease in the outer rings.  

 

Figure 27: Minimal Change Survival Functions 
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Discussion  

Overview of the Findings 

Metropolitan spatial structure is ever evolving and intricately complex. The 

complexity calls for urban measure methods to follow suit. In pursuit of a method which 

will provide objective yet universal information on the state of urban form and its 

expansion, researchers have offered a number of alternatives. Carruthers et al (2010, 

2011) offered one such alternative via application of survival models to a spatial setting. 

Also, the dynamics of the last two decades have raised questions about future 

urbanization trends of the American metropolitan areas. Predominantly sprawling eras 

may have reversed in favor of urban living. Yet, while the first essay showed that the 

emerging population density trends validate those assumptions, it also showed that the 

change is not necessarily universal even among those titled ―winners‖ and ―losers‖. For a 

detailed picture of changes within metropolitan structure complex measures are often 

data intensive. However, detailed comparative data across many metropolitan areas is 

still hard to come by. Spatial hazard framework used in this study provides a thorough 

analysis of complex and stochastic spatial structure change across many metropolitan 
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areas and relies on widely available public data. This analysis also goes beyond the first 

essay and accounts for some of the exogenous factors commonly referred to in urban 

economics, such as income, travel time, and age of housing.   

The purpose of this study was to measure change in urban structure using survival 

analysis and to answer three questions: (1) Do spatial hazard models suggest changes in 

the metropolitan spatial structure? (2) Are changes consistent within a metropolitan area? 

(3) Are changes consistent with more traditional measures of metropolitan spatial 

structure as observed in the first essay? Application of the spatial hazard functions to 35 

metropolitan areas to measure change in metropolitan spatial structure has provided a 

multihued insight in the way urban form has changed over the 17-year period. The 

analysis shows that change has not always been consistent over time and even within a 

metropolitan area. One trend that does emerge again is that majority of the metropolitan 

areas have densified over the 17 years. About one-half of the areas studied grew denser 

while one-fifth densified in some parts of the metropolitan area, which was most often in 

the areas closer to the urban core. One-fifth of the metropolitan areas sprawled over this 

observation period. Densification trend, though, is of varying degree. For some metro 

regions, we can say with certainty that urban form is denser. For example, in Austin, 

change in survival probability decreased by about 30 percent in most parts of the region. 

In other areas, the change is more subtle. Baltimore, for example, densified in the inner 

core by about 12 percent and by only 4 percent on the suburban fringe. This type of 

change may not be easily observable in the built environment.  

Separating the effects between  the 1990s and 2000s strengthened the conclusion 

from the first essay that the 1990s era encountered reversal of suburbanization trends 
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towards the urban core. The 2000s in contrast are characterized by general urban 

expansion. The interesting addition provided through this analysis is how changes varied 

throughout a metropolitan region. Even in regions that mostly sprawled, there was a 

dominating effect of densification during 1990s particularly in the inner population rings. 

Further, when comparing the regions that densified and those that sprawled, the degree of 

densification is much larger than the degree of sprawl. In some parts, that magnitude is 

twice as large.  What is still difficult to say, and will remain so until the housing market 

recovers, is whether the reversal of urbanization trends in 1990s was truly a reflection of 

reversed household preferences for urban living or whether they were the result of some 

unobserved conditions. The 2000s cannot yet be used as an indication of any long-term 

trend given that intensified residential construction during the period left vastly spread 

housing vacancies across many parts of the country. 

In comparing changes in metropolitan spatial structure observed via spatial hazard 

method and those observed in the first essay, the trends prove to be very similar. Both 

sets of measures indicate that the change has been predominantly towards repopulation 

and densification of areas closer to the urban core. Evaluating spatial hazards with 

density gradients provides the most analogous comparison as both measures examine the 

change in structure relative to the urban core. So, while the density gradient classified 

most regions in a group for which the population density increased at the core and 

population density in suburban areas increased as well, the spatial hazard functions 

grouped them similarly while providing a focused picture of that change. In Dallas, a 

metro deemed a ―winner‖ by both sets of measures, survival probabilities between 1990 

and 2007 show similar densification both in the central core as well as at the outskirts, 
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about 11 percent decrease in survival in the core and 14 percent on the fringe. According 

to the density gradient measure, the population density at the core increased by about 30 

percent while the gradient increased by 4 percent.  So, both measures show general 

tendency of densification. Not all regions though are grouped in the same category. For 

example, the Baltimore metropolitan area is typified by fallen intercept and flattened 

gradient between 1990 and 2007, meaning decentralization. Spatial hazards suggest that 

Baltimore‘s survival probabilities decreased during the same period, suggestion 

densification. While the density gradient captures the population change within the same 

tract and the resultant estimate indicates if the population density in the core increased or 

decreased, the spatial hazard captures change in distances between population gravity 

points between two neighboring tracts. The census tract gravity points are based on 

census block group data. More specifically then, the spatial hazard captures clustering of 

population centers.  It is thus feasible that in Baltimore, the population density in the core 

decreased while the population gravity points grew more clustered. The clustering 

referred to here does not measure the same type of clustering as Moran‘s I estimates in 

the first essay. The Moran‘s I from the first essay measures clustering of census tracts 

with similar population densities.  

In the end, this analysis shows that demarcation between deemed ―winners‖ and 

―losers‖ is a fine line. To obtain the full picture on the spectrum of spatial structure 

change, multiple measures of urban form are needed. Among the measures presented in 

the two essays, the estimates do not indicate drastic differences between measures but 

offer answers to various parts of the change question.   
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Limitations of the Study 

 Although the spatial hazard framework is very promising for the study of spatial 

structure change, it may take some time for the method to gain traction as the method is 

not as simple to grasp as the density gradient is for example. That continues to be the 

main advantage of the density gradient model.  

Another limitation of this study concerns the use of census tract boundaries to 

track the movement of the population mean centers. The population mean centers are 

generated for each tract and for each year based on the population count in block groups 

encompassed by a tract. Block groups similar to census tracts are built around a constant 

population count and generally contain between 600 and 3,000 people, with an optimum 

size of 1,500 people. Census tracts generally have between 1,500 and 8,000 people, with 

an optimum size of 4,000 people. Thus, there are generally about 3 block groups in each 

tract. Therefore, constraining the movement of population mean centers by census tract 

boundaries may not reflect the true change in the population gravity point. And, the 

movement is constrained by the number of block groups in each tract. Generally, the 

population gravity point did not move to another block group during the observation 

period. Figure 28 illustrates the limitation posed by use of census products..  
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Figure 28: Census Tract Limitation 
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Essay Three: Spatial Exploration of Foreclosures in Maryland  

The decade of the 2000s has also been marked by an unprecedented housing 

boom followed by a subsequent collapse and a great economic recession. The housing 

collapse, and more particularly the foreclosure crisis resulting from it, left profound 

effects not only on neighborhoods, families, and the entire economy, but also on the 

organization of the metropolitan areas. While the incidence of foreclosures is not a new 

phenomenon, the recent occurrence is significant due to its magnitude, concentration and 

suddenness. In metropolitan areas hardest hit by the crisis, foreclosures followed by 

vacancies have contaminated almost entire neighborhoods.   

The beginning of the current housing crisis is inseparably connected to subprime 

lending. In the Department of Housing and Urban Development‘s (HUD) ―Report to 

Congress on the Root Causes of the Foreclosure Crisis‖ in January 2010, the authors 

discuss the precipitating causes of the crisis and conclude that the significant increase in 

mortgage delinquencies and foreclosures is primarily the result of hasty growth in high 

risk loans, both due to loans‘ terms and the loosening of underwriting oversight and 

standards. The peculiarity of the current foreclosure crisis is that the economic recession 

did not initially produce defaults and foreclosures. It was the slowing of house price 

appreciation that ended lenders‘ ability to continue extending credit to borrowers. At the 

outset, high-cost lending allowed borrowers to obtain mortgages that they could not 

otherwise afford leading to larger house appreciation than would happen under 

fundamental principles of housing demand. Once the economic slowdown began, both an 

oversupply of new homes and mounting defaults caused wide destabilization of housing 

values.  Damage rapidly spread throughout the wider financial system nationally and 
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abroad as banks and mortgage companies were highly leveraged with housing securities 

instruments. What followed was one of the worst economic downturns in the American 

history.  

The HUD report also recognizes spatial heterogeneity of the foreclosure crisis. It 

differentiates between two types of crisis areas. The areas in the South and West of the 

country were characterized by frequency of high-cost lending between 2004 and 2006 

and larger home price appreciation before the crisis hit, while the areas in the Midwest 

already suffered from weak economies prior to the current crisis. Prevalently, 

foreclosures took different spatial forms in the two groups of states. In the fast growing 

states, foreclosures were primarily concentrated in newly built subdivisions,; while in the 

established metropolitan areas of the Midwest foreclosures were concentrated in older 

urban neighborhoods. Within the Midwest, overall worsening of the country‘s economic 

conditions further deteriorated already high unemployment rates and exacerbated 

elevated housing vacancies in older urban cores and among minority groups (Immergluck 

2009b, 2010).  In the fast-growing metropolitan areas, in the South, Southwest and West, 

the spatial distribution of foreclosures was different. Due to high home price 

appreciation, these areas suffered significant decreases in housing affordability. Increased 

demand for proximity to urban amenities coupled with the  rising cost of housing, led to a 

greater appreciation of housing values in areas closer to the urban centers. Some 

preliminary spatial analysis suggested that households drove increasingly further away 

from the employment and service centers into auto-dependent suburban communities that 

offered more affordable housing (Immergluck, 2009b). However, with loosened credit 

requirements and consequent availability of more diverse mortgage products, many 
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households overextended themselves. As well, they may have not accounted for the cost 

of transportation or potential increase in the cost of transportation. Yet, the set of events 

beginning in 2007, including mortgage interest rates resets on some early adjustable rate 

mortgage (ARM) products, rising energy costs, and general economic cyclicality, 

triggered a wave of defaults which escalated to unprecedented proportions. Households 

who were ―on the fringe‖, both financially overextended and living on fringes of urban 

areas, found themselves in a very uncertain situation. They were not able to refinance 

their mortgages into more affordable terms since most did not accrue any equity in their 

homes. Lack of demand and/or unavailability of mortgage financing on the urban fringe 

did not allow them to sell or refinance their homes. Consequently, they defaulted on their 

mortgages (HUD, 2010). To make matters worse, deteriorating of macroeconomic 

conditions nationally further aggravated an already destabilized housing market. After 

nearly collapsing in the summer of 2008, the demise of the financial sector threatened to 

push the entire economy into a deep recession. In October 2008, the federal government 

responded with a $700 billion bailout of financial institutions. But, the economic 

problems spread to the other sectors with construction and manufacturing losing 

significant numbers of jobs. With unemployment reaching 9 percent by early 2009, the 

foreclosure crisis spread from primarily non-prime borrowers to all borrowers. The 

delinquency rate among borrowers with prime mortgage products, jumped from historical 

2 percent to over 7 percent
9
. The total number of past due mortgages along with those in 

foreclosure reached an astounding 6.7 million by the end of 2009
10

.  

 

                                                 
9
 Mortgage Bankers Association, National Delinquency Survey 

10 
Ibid. 
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The question on spatial location of foreclosures relevant to urban form is whether 

their concentration in suburbia stems from reversed preferences for urban centers or was 

it the spatial distribution of higher risk lending during the subprime boom that led to their 

concentration in suburbia. According to arguments by William Lucy, there has been a 

long term demographic and cultural shift away from dispersed and suburban living 

towards a more urban future (Lucy, 2010).  The author saw the foreclosure crisis as a 

supporting consequence of the urban shift rather than a cause. As the evidence of the 

shift, the author discuses several indicators, including strong housing prices in many 

cities versus rapidly declining prices in suburbs, and in those neighborhoods built before 

1940s which are in more walkable communities. He also accounts for increased costs of 

transportation, and demographic shift toward smaller households such as elderly, empty 

nesters, and singles that tend to favor urban or inner suburban settings. Other experts 

have made similar suggestions (Dowell and Pitkin, 2009; Birch, 2009; Nelson, 2004).  

The empirical examination of spatial distribution of foreclosures, though rather 

scarce, has shown mixed results. The results from Immergluck‘s study (2010) suggest 

that the occurrence of foreclosures in suburban locations may be because of unobserved 

characteristics of the loans made in such locations. Many of the homes in new suburban 

communities were likely financed during the peak of the subprime boom. In the study, 

the author grouped 75 metropolitan areas in two groups. One group included those 

metropolitan statistical areas (MSAs) that already had relatively high levels of REO in 

late 2006, before the national foreclosure crisis. The second group of the MSAs included 

those that had very low levels of REO in late 2006 but saw a steep housing price 

depreciation and very large increases in REO during the 2006 to 2008 period. This study 
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accounted for spatial variation of REOs via two variables. The first variable which 

accounts for suburbanization indicates whether at least half of a zip code lies in a primary 

central city. The second variable accounts for commute efficiency, i.e. proximity to major 

employment centers, and is the percentage of auto-commuting residents who commute 

more than 30 minutes to work. After controlling for other determinants, such as lending 

supply, age of housing, poverty rate, regional housing price, unemployment trends, and 

race, the two variables measuring intrametropolitan spatial location had no apparent 

bearing on foreclosure growth. The result was the same for both types of the metro areas. 

The author concluded that the occurrence of foreclosures in suburban location was due to 

unobserved characteristics of the loans rather than some spatial disadvantage of these 

new subdivisions. Ong and Pfeiffer (2008), in contrast, looking at foreclosures in Los 

Angeles County in early 2008, found that exurban location explained 20 percent of the 

spatial variation in foreclosure rates. Exurban location was controlled via a binary 

variable for zip codes located in northern Los Angeles County.  The authors believed that 

those exurban locations suffered from speculation on new home construction and were 

more vulnerable to decreases in demand due to their high commuting costs and traffic 

congestion. The only control for the level of subprime lending, though, was the HMDA 

reported level of first lien, owner-occupied originations in 2006 that were five points or 

more above treasury rates. There are several other limitations to these studies. Both 

studies relied on data at zip code level. Zip codes are typically larger than census tracts. 

Census tracts are mostly used to approximate neighborhoods characteristics since they 

are aligned with physical boundaries, and have more similar housing and demographic 

characteristics. Further, when measuring the effect of suburbanization, neither study 
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accounts for actual distances to the central city. Immergluck study also does not account 

for intrametropolitan variation in housing values and unemployment trends.  Finally, it 

uses median age house built data from 2000 Census and assumes that zip codes with low 

median housing age in 2000 are more likely to have high levels of post-2000 new 

construction. That may not be the case universally across MSAs.  

Focusing on a different measure of spatial location, Rauterkus et al. (2010) show 

that location-efficient homes in Chicago, Jacksonville, and San Francisco have a lower 

probability of mortgage default. To achieve location efficiency, homes should be located 

in a compact residential development, with transit access, and proximity to schools, 

shopping, workplaces, and other amenities. The authors hypothesize that residents in 

location efficient communities save on cost of owning a vehicle because they have 

alternative modes of transportation: to walk, bike or use public transit. As a result, 

location-efficient homeowners have a  lower probability of mortgage default since they 

do not have to spend a substantial portion of their household budget on car ownership and 

are not directly affected by a gasoline price increase. Transportation costs have been the 

second-largest expenditure for a typical American household, averaging $8,500 per year 

(Brookings Institution, 2006). In the study, location efficiency was proxied via vehicles 

per household scaled by income, and the Walk Score. The Walk Score rates the 

walkability of a specific address on a scale from 0 to 100 by compiling the number of 

nearby stores, restaurants, schools, parks, etc., within a one-mile radius from the subject 

location. Higher scores suggest more walkable locations while an address with a score 

below 50 would be considered car dependent. However, some important walkability 

factors, such as topography and weather conditions, and proximity to employment centers 
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are not accounted for in the Walk Score, and the distances are measured in straight path 

distance and not actual distance walked on a street grid. The study finds that mortgage 

default probability increases with the number of vehicles owned after controlling for 

income. Also, mortgage default probability decreases with higher Walk Scores in high 

income areas but increases with higher Walk Scores in low income areas. But, as authors 

also discuss, the location efficient mortgages may simply perform better not because they 

are in location efficient areas but the because of some unobserved characteristics of those 

areas, i.e. amenities, where demand for homes was not as severely impacted by the 

housing bust. In those instances, homeowners have alternatives to mortgage default, such 

as selling or refinancing. Based on their findings, the authors promote location efficient 

mortgages which would presumably reward homebuyers of location-efficient homes with 

more flexible mortgage underwriting terms, for example higher debt-to-income ratio. 

They do not discuss the potential capitalization of the more flexible terms into housing 

prices. 

The study presented here examines the spatial distribution of foreclosures in the 

state of Maryland for the period between the beginning of 2006 and the end of 2009. To 

date, there have not been any studies specifically looking at spatial distribution of 

foreclosures in Maryland.  In examining the accumulation of foreclosures in Maryland, 

the study goes beyond previous empirical work by focusing on the relationship between 

concentrations of foreclosures and their proximity to transit, accessibility to employment 

centers by automobile and transit, and the proximity to the central business districts. By 

introducing a richer set of spatial variables, I aim to gather a better sense of the impact of 

urban form on the foreclosure crisis. Although the analysis is spatially limited to 
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Maryland, it nevertheless covers a critical period of the foreclosure crisis. The study also 

focuses on two metropolitan areas in Maryland with seemingly varying housing markets. 

The Baltimore metropolitan area can be characterized as one of the weaker markets with 

relatively large concentrations of foreclosures in central city neighborhoods even before 

the current crisis. In contrast, five Maryland counties included in the Washington, DC, 

metropolitan area experienced particularly robust housing growth in the boom and were 

not typified by high levels of foreclosures before the current crisis.  Based on the 

previous literature, I expect to find that subprime lending, the housing bubble and urban 

form may have had different impacts on the two metropolitan areas. I conduct an 

empirical analysis to answer the question if the levels of foreclosures across Maryland 

depend on the proximity to public transit, accessibility to employment centers, or 

proximity to central business districts.  

 

Foreclosures in Maryland 

When a property owner defaults on a mortgage loan, according to the loan terms 

the lender has the right to foreclose on that property. Across the country, all states have 

either judicial or non-judicial foreclosure processes. In judicial states, the process is 

conducted through the court system. In non-judicial states, the foreclose process is 

defined by state statute, and the lender is only required to publicly file a notice of default. 

Beyond the type of foreclosure process each state uses, each state also has laws in place 

that govern the timeline of the process. Ordinarily, these rules are in place to afford 

troubled homeowners with protections from hasty foreclosures. In Maryland, lenders 

must file a foreclosure complaint and a lis pendens in the court. Lis pendens is a recorded 

document that provides public notice that the property is being foreclosed upon. Unlike 
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foreclosure processes in judicial states, a judge is not required to rule on a foreclosure 

case in Maryland. Before a foreclosure is filed in court, the lender must notify the 

borrower and property owner that the mortgage is in default under the terms of the loan.  

With filings drastically spiking at the beginning of 2008, in April of the same 

year, Maryland legislators signed an emergency bill which significantly lengthened the 

foreclosure process from 15 days to 150 days hoping to provide homeowners with more 

time and notice before a foreclosure sale.  The bill required a lender to wait 90 days after 

default before filing the foreclosure action and to send a uniform Notice of Intent to 

Foreclose (NOI) to the homeowner 45 days prior to filing an action. It also requires 

personal service to notify a homeowner of impending foreclosure action and that a sale 

may not occur for 45 days after service. A lender has to produce a proof of ownership 

when filing a foreclosure action. The bill codified the right to cure, which allowed a 

homeowner to stop foreclosure by paying what is owed up until one business day before 

the sale. Immediately following the bill foreclosures significantly dropped, while filings 

and the number of properties in distress declined some.  The federal government also 

responded with the Making Home Affordable Program which required that lenders offer 

all qualified, defaulting homeowners an opportunity to modify their existing mortgages. 

Though the program itself had a limited impact, it led to a wider effort among lenders to 

modify defaulted mortgages. An important trend that emerged as a result of the new 

foreclosure law, which is not specific to Maryland though, is that the average number of 

days that a mortgage was delinquent before the foreclosure start increased significantly. 

At the beginning of 2008, it averaged around 233 days in Maryland
11

. That number went 

                                                 
11 

http://www.lpsvcs.com/NewsRoom/IndustryData/Documents/2011%20-

01%20January%20Mortgage%20Monitor/LPS_Mortgage_Monitor_January_2011.pdf  

http://www.lpsvcs.com/NewsRoom/IndustryData/Documents/2011%20-01%20January%20Mortgage%20Monitor/LPS_Mortgage_Monitor_January_2011.pdf
http://www.lpsvcs.com/NewsRoom/IndustryData/Documents/2011%20-01%20January%20Mortgage%20Monitor/LPS_Mortgage_Monitor_January_2011.pdf
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to 350 days by the end of 2010. The foreclosure process itself, which is in addition to the 

number of days a loan is delinquent, is estimated to range from 46 to more than 100 days.  

Figure 29 illustrates the rise in foreclosure filings in Maryland. Three different 

bars indicate three stages of the foreclosure process, (i) Notice of Default, (ii) Notice of 

Foreclosure Sales, and (iii) Foreclosure Sale. The red arrow illustrates the drop in the 

Notice of Foreclosure Sale filings following the introduction of the emergency bill in the 

second quarter of 2008. Nevertheless, mortgage defaults continued mounting.  

 

Figure 29: Foreclosure Filings in Maryland, 2006 - 2009 

 

 

In 2008, when the foreclosure crisis in Maryland significantly intensified, there 

were over 37,600 foreclosure filings. The numbers continued increasing ever since 

ranking Maryland today as the 15
th

 most affected foreclosure state. During the study 

period, there were 100,666 filings. Notices of Default comprised 58 percent of total 

filings, while Notices of Foreclosure Sales comprised 30 percent. The remaining 12 

percent were Foreclosure Sales. The number of Notices of Foreclosure Sales spiked again 
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in the third quarter of 2009;, however there were  no specific changes in Maryland‘s 

foreclosure processes to account for that change. According to Maryland Department of 

Housing and Community Development, the increase in notices of foreclosure sales may 

be due to improvements in the Maryland‘s real estate market conditions at the end of 

2009 (DHCD, 2009).  

The foreclosure filings in Maryland show some spatial clustering across the state. 

Figure 30 maps the number of distressed properties as a share of total distressed 

properties in the state. It illustrates the relative concentration of foreclosures across the 

state. A distressed property is one that has received at least one foreclosure filing between 

2006 and 2009.  A more detailed definition is provided in the Data section. The counties 

particularly affected by the foreclosure crisis are those in the central part of the state, with 

Prince George’s county in the lead. The other counties with high shares of foreclosures 

include Montgomery, Frederick, Washington, Howard, Ann Arundel, and Charles 

counties. In the areas highly affected by the crisis, distressed properties account for up to 

0.5 percent of total distressed properties.   
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Figure 30: Distribution of Distressed Properties in Maryland 

 

Figure 31 illustrates the rate of distressed properties at the census tract level. 

Again, the areas with highest rates of distressed properties are in the Prince George‘s 

county and Baltimore City, with some pockets of concentration in the other centrally 

located counties as well. While the median rate of distressed properties per census tract is 

5.6 percent, figure 31 illustrates standard deviation distribution by tract. The tracts 

colored in red have a distressed rate 1.5 standard deviations higher than the mean rate for 

the whole state and range from 18.4 percent to almost 74 percent.  
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Figure 31: Distressed Rate across Maryland  

 
 

Data 

 

The data utilized in the analysis come from several sources which are summarized 

in Table 9. The data for distressed residential properties is captured in Realtytrac database 

extending from the first quarter of 2006 until the third quarter 2009. Realtytrac collects 

foreclosure data from public court records which record one of three activities: 1) a 

Notice of Default; 2) a Notice of Foreclosure Sale; or 3) a Foreclosure Sale. Since all 

three stages of the foreclosure process can be recorded for an individual property, the 

database is cleaned to count one event per property. The properties with at least one 

foreclosure filing are considered distressed properties. Distressed properties are then 

aggregated at census tract level. The reason that this analysis accounts for distressed 
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properties instead of only foreclosed or REO properties is because of the prolonged 

foreclosure process in Maryland discussed in the previous section. Given that the data 

available tracks information until the third quarter of 2009, it is unclear what happened to 

defaulted properties after that. Nevertheless, this analysis is not concerned with negative 

externalities of foreclosed properties; thus it is not critical to know if a property 

foreclosed or not.  According to Maryland emergency foreclosure bill, if a property has at 

least one filling against it, the borrower has been 90 days or more late on his mortgage. 

Theory assumes that in a healthy housing market, financially-distressed borrowers can 

more easily sell their properties or refinance and prepay the remaining balance before 

seriously defaulting on their mortgage loans (Danis & Pennington-Cross, 2005; 

Haughwout et al., 2008; Schloemer et al., 2006). 

Following the literature on determinants of mortgage default, the first set of 

variables used in this analysis control for some of the borrowers‘ characteristics which 

have historically led to high probability of default: credit scores, loan-to-value ratio 

(LTV), and debt service-to-income ratio (DTI). The data on credit scores are obtained 

from Equifax and measure the share of mortgage borrowers who had credit scores less or 

equal to 639 in 2006. The information on LTV is obtained from the HUD‘s 

Neighborhood Stabilization Program (NSP) which was established for the purpose of 

stabilizing communities that have suffered from high foreclosures and abandonment. To 

create the scores for NSP neighborhood targeting purposes, HUD used the HMDA 

database and calculated the share of high cost and highly leveraged mortgages at a census 

tract originated between 2004 and 2007. In the database, high cost loans are those with a 

positive annual percentage rate (APR) interest  spread of 3 percentage points or more 
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over prevailing Treasury rates at the time of origination. High leverage are ―loans with 

temporary below-market qualifying advantages that pose a risk of payment shock when 

rates adjust to the fully indexed market rates or payments rise to retire balances from 

initial negative amortization‖ (p. 4, HUD, 2008). Based on the loan amount and 

borrower‘s gross income reported in HMDA data, HUD has created a method by which 

to measure the income leverage used by the borrower to obtain the mortgage loan. The 

method is described in the August 2008 U.S. Housing Market Conditions report (HUD, 

2008). The method monitors three ways by which a borrower can increase a loan 

leverage:  (1) by increasing the front-end payment-to-income ratio that determines the 

size of the payment and associated mortgage allowed, (2) by lowering the interest rate 

used to calculate the initial qualifying payment and associated mortgage amount, or (3) 

by reducing the rate at which principal is repaid by extending the term or paying interest 

only. The two variables developed by HUD, share of high cost and high cost and highly 

leveraged mortgages, are used as proxies for the extent of subprime lending. Subprime 

lending peaked between 2004 and 2006. According to Maryland Homeownership 

Preservation Task Force, between 2000 and 2007, the subprime market share in Maryland 

increased from 1.5 percent to almost 12 percent of all mortgage loans. ―Loans with higher 

interest rates and ―exotic‖ options that were originated with little to no verification of a 

borrower‘s ability to repay made up 60 percent of all foreclosures in Maryland during 

2007‖
12

. Since mid-2007, only a few subprime loans have been originated. In the two 

following years, the number of subprime loans outstanding has decreased to 11 percent as 

loans were cured by default, were prepaid, or were refinanced (Edminston, 2009).   

                                                 
12 

Maryland Homeownership Preservation Task Force, November 29, 2007 available at 

http://www.dhcd.state.md.us/Website/documents/TaskForceReportFinal.pdf   

http://www.dhcd.state.md.us/Website/documents/TaskForceReportFinal.pdf
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Table 9: Foreclosure Variables and Sources of Data 

  Variables:  Source:  

Unit of 

Analysis Vintage: 

Expected 

Impact: 
D

ep
en

d
en

t Number of foreclosures in 2006-2009 Realtytrac Census tract 2006-

2009 

 
  

Number of mortgaged properties ACS  Census tract 2005-

2009 

+ 

S
u

b
p

ri
m

e 

L
en

d
in

g
 

Percent of high cost loans HMDA  Census tract 2004-

2006 

+ 

Percent of high cost and high leveraged loans + 

Share of originations that were second liens + 

Share of loans that were refinances - 

Share of loans with low credit scores (<639) Equifax Census tract 2006 + 

H
o

u
si

n
g

 B
u

b
b

le
 

Change in the number of housing units Census Census tract 2000-

2007 

+ 

Increase in home sales from 2002 to 2006 MD Realtors Zip code 2002-

2006 

+ 

House price appreciation from 2002 to 2006 MD Realtors Zip code 2002-

2006 

+ 

N
ei

g
h

b
o

rh
o

o
d

 c
h

a
ra

ct
er

is
ti

cs
 

Median age of home Property View Census tract 2006 + 

Share of households with below median income Census Census tract 2000 + 

Percent population age 35 or less + 

Percent African American population  + 

Percent Hispanic + 

Percent Asian + 

Percent renter units  ? 

Percent vacancy ? 

Share employed in manufacturing or 

construction 

LEHD Origin-

Destination 

Employment 

Statistics 

Census tract 2006 + 

Share employed in finance Census tract 2006 + 

U
rb

a
n

 F
o

rm
 

Proximity to transit stop  (for 0.5, 1, 1.5, and 2 

miles) 

Tiger Files  Census tract 2000 ? 

Job Accessibility by auto NCSG  SMZ 2007 - 

Job accessibility by transit NCSG SMZ 2007 - 

Distance to CBD Own 

calculation 

Census tract 2000 + 

Median commute time Census Census tract 2000 + 

 

 Two other subprime lending variables used in the analysis have been shown to 

have a relationship with rates of foreclosures and both come from the HMDA database. 

The first variable accounts for the level of leveraging among borrowers and is the number 

of originations that were second lien mortgages between 2004 and 2006. A body of 

literature examining the effects of combined loan to value ratio on borrower‘s likelihood 

to default showed that piggyback lending was associated with higher default and 
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foreclosure rates during this foreclosure crisis (LaCour-Little et al., 2011; Elul et al, 

2010).  While second mortgages were often used in combination with other risky features 

of lending, the use of second mortgage also indicates lower levels of owner equity; thus, 

this variable is expected to have a positive impact on the number of distressed properties.  

The second variable is the share of loans that were originated for refinancing.  Loans used 

for home purchase have higher default rates than do refinances, possibly reflecting the 

fact that those who refinance have longer housing tenure and cannot be first time 

mortgage borrowers (Chan et al, 2010).  The variables used in this analysis observe 

neighborhood level lending characteristics, but do not account for the individual 

borrowers. It is expected that all the variables which account for non-prime lending will 

have a positive impact on the rate on mortgage default. Unfortunately, I am not able to 

observe from this data the extent to which the borrowers‘ income and assets have been 

verified by lenders. I also do not have data on DTI ratios. This type of data is generally 

available from loan-level mortgage data providers, such as LoanPerformance; however it 

is not publically available data and can be very costly to access.  

The second set of control variables include a series of neighborhood 

characteristics obtained from the 2000 Decennial Census. These are in line with the 

studies that showed the impact of neighborhood characteristics on the market dynamics 

within geographic submarkets. The neighborhood impact is the outcome of households‘ 

sorting processes where households with similar socioeconomic and often demographic 

characteristics sort into neighborhoods that offer similar amenities.  Since this study does 

not question the negative externality of foreclosures on resultant neighborhood change, 

the use of 2000 Census data allows me to observe neighborhoods before the foreclosure 
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crisis and thus limits the possibility of an endogenous relationship between foreclosures 

and neighborhood change. The neighborhood characteristics include percent of residents 

with below median income, percent African American population, percent Hispanic, 

percent Asian population, percent of units that are vacant, percent of renter-occupied 

units, age of housing, and age of population. These variables have often been identified in 

the literature as having some relationship with foreclosure rates. The relationship between 

income and mortgage default has been well-documented in the literature. High rates of 

foreclosures are generally associated with low income neighborhoods (Gerardi and 

Willen 2008) though some research has shown that the link only exists to the degree to 

which subprime lending has permeated the neighborhood (Mills and Lubuele, 1994). The 

relationship between race and foreclosure rates has also been well documented with 

studies generally finding positive relationships between African American or Hispanic 

populations and foreclosure rates. But similar to the impact of income, after controlling 

for additional credit information, the relationship between race and foreclosures becomes 

less clear. I expect in this analysis that lower incomes and higher shares of minority 

populations are going to have a positive effect on the rate of distressed properties. 

Because I am not able to observe some of the financial information of the borrowers, 

such as DTI ratios, and other characteristics of non-prime lending, and given that non-

prime lending was primarily concentrated among low income, non-white homeowners, I 

expect that these variables may pick up some of those unobserved characteristics.  

Further, high vacancy rates are generally associated with high levels of 

foreclosure. And while the relationship can be endogenous, I observe vacancy rates in the 

year 2000, prior to foreclosure data beginning in 2006. Studies have shown that high 
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vacancy rates lead to depressed property values and neighborhood flight (Immergluck 

and Smith 2006). Both, in turn, increase foreclosures and further exacerbate low property 

values and residents‘ flight.  Nevertheless, the areas with high vacancy may be among the 

drivers of gentrification, particularly if placed in desirable locations (Helms, 2003). Thus, 

I also account for the change in housing price appreciation from 2002 to 2006. If a 

neighborhood underwent gentrification, the housing prices will likely appreciate at a 

higher rate than in neighborhoods that remained plagued with vacancy. This variable is 

discussed in more detail below.  

Another neighborhood variable of interest is owner-occupancy which is generally 

employed to measure the inverse of investor-owned properties (Edminston, 2009, Chan et 

al, 2010). The impact of investor-owned properties on foreclosure rates works in several 

dimensions. First, investors are generally better diversified than owner-occupants and 

therefore should be better insulated from housing cyclicality. Second though, investors 

often acquire non-prime loans with typically very low payment options in order to 

maximize their returns. Thus, as rents fall subsequent to home price declines and 

investors are not able to sell their properties, investors are more likely to default than 

homeowners (Brinkmann, 2008). Such a relationship has not always held up with some 

studies finding higher default rates in primarily owner-occupied neighborhoods (Mayer et 

al, 2009; Edminston, 2009; Chan et al, 2010). This could happen because owner-

occupancy data is self-reported and investors benefit from better mortgage terms if they 

claim the property as owner-occupied.  Based on differing results from previous 

literature, the expected impact of owner-occupancy on mortgage default rates in this 

study is ambiguous.  
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The age of a population is included because some evidence suggests that those 

younger than 35 have experienced relatively higher rates of default.  As affordability 

deteriorated in the middle of the 2000s, they were more susceptible to targeting for non-

prime mortgage products. Additionally, they had less equity built into their 

homeownership and thus were more vulnerable to economic shocks (Edminston, 2009). 

Homeownership rates among those aged 35 or less peaked in 2004 at 43.1 percent and 

fell back to 39.1 percent by 2010. Historically, homeownership in that age category 

averaged 39.5 percent. For the same reasons shown in Edminston (2009), I expect a 

higher share of population aged 35 or younger will have a positive impact on the 

incidence of distressed properties.  

The age of housing has also shown some significant relationship with foreclosure 

rates in previous research although in both directions. The notion is that both older and 

newer housing stock is more susceptible to riskier lending; the older stock because of 

higher concentration of minority population; and the newer stock because it is built 

during the housing boom with proliferation of higher-risk lending practices (Immergluck 

2009, 2010). The impact of housing age in this analysis is thus unclear.  

With the third set of variables, I account for the housing market bubble. In 

Maryland, median housing prices increased at an annual rate of almost 15 percent from 

2001 to 2006, started declining in 2007, and decreased 25 percent since the peak. The 

change in housing prices has not played out evenly across the state. I account for housing 

price appreciation between 2002 and 2006 at a zip code level with data from the 

Maryland Association of Realtors (MAR). Given that this period observes appreciation 

before the foreclosure crisis, it aims to distinguish the areas that possibly suffered from a 
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speculative bubble, such as areas on the Eastern Shore or gentrified communities in 

Baltimore City. Since the MAR captures prices of homes that have been resold during the 

period, it accounts for change in home prices only for homes that have been resold using 

a Realtor. Also, the data ranges widely suggested by large difference between the 

minimum and maximum values in the table of descriptive statistics (see Figure 33). 

Another source of home price data at lower geography would be the American 

Community Survey 2005-2009 sample; however that sample overlaps with the period 

during which home values started to decline which may introduce some endogeneity. 

Previous research confirmed the strong relationship between default rates of subprime 

mortgages and house price appreciation (Doms et al, 2007, Gerardi et al, 2008). The 

increase in housing prices led some borrowers to non-prime and alternative mortgages in 

search of more affordable payment options. Lenders were comfortable with the increased 

risk of overextended borrowers since both believed in continued housing appreciation. In 

fact, Mayer and Pence (2009) showed that areas with high house price appreciation saw 

growing subprime mortgage originations in the following year. Since housing prices in 

Maryland did not start falling until the second half of 2007, including a variable which 

accounts for home price depreciation would overlap with foreclosure data that began in 

2006 and again may induce endogeneity between the variables.  

Another variable which accounts for the housing bubble is the change in home 

sales between 2002 and 2006. The areas with more homes sales during those years are 

expected to a  have larger presence of non-prime loans for reasons explained above and 

may be subject to a speculative bubble. Since some areas are going to have more sales 

simply because there are more new housing units, I also control for change in the number 
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of housing units between 2000 and 2007. Both of these variables are expected to show a 

positive relationship with distressed properties. Home sales data also come from the 

MAR. The 2007 number of housing units at the census tract level comes from the HUD‘s 

NSP3 database. The NSP3 program was the 3
rd

 allocation of the NSP grants to 

communities in need.  

Another important macroeconomic factor that played a significant role in the 

current foreclosure crisis is the widespread increase in unemployment. Generally, when 

faced with loss of income, homeowners are more likely to default. In the current crisis, 

falling home prices and increasing unemployment further exacerbated mortgage default. 

More recent home buyers who were facing loss of income were generally unable to sell 

their homes because the home prices fell, demand was low, and they were likely facing 

negative equity.  Negative equity occurs when a homeowner‘s outstanding balance on a 

home mortgage is more than the value of the home. Unemployment in Maryland spiked 

in the first quarter of 2009, but since the foreclosure data in this analysis ends in the third 

quarter of 2009, it is difficult to observe any discernible impact from the changing 

employment situation. Instead, I control for the share of workers employed in sectors that 

were significantly impacted in the last economic downturn. Those were jobs in 

construction, manufacturing, and the financial sector.  Shares of unemployment claims by 

those employed in finance and insurance sectors spiked at 6.4 percent in October of 2007 

from the average for the industry of 3.7 percent. The share of construction unemployment 

claims, though continuously climbing since 2006, peaked at 19.5 percent in September 

2009
13

.  According to the Bureau of Labor Statistics, Quarterly Census of Employment 

and Wages, between 2008 and 2009, construction jobs were down 15.2 percent, 

                                                 
13
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manufacturing jobs were down 8.5 percent and financial activities were down 5.4 

percent
14

. The other industries had less sizable losses. I expect that a higher share of 

employed in those sectors per census tract will have a positive impact on the number of 

distressed properties.  

Finally, the primary construct of interest in this analysis is the group of variables 

which control for urban form. I examine several important urban form measures, such as 

proximity to transit, job accessibility by car and by transit, distance to the central business 

district, and commute time. These variables are intended to test the arguments that urban 

areas have resurged in their importance and that the demographic and cultural shift away 

from dispersed and suburban living is in fact a long-term underlying trend. If so, areas 

further away from the urban core and poor accessibility to transit and employment will 

show higher rates of distressed properties because lack of  demand and depreciated home 

values will leave homeowners with fewer options in times of economic shocks.  

Proximity to transit are binary variables which indicate if a census tract centroid is 

located within a half a mile, one mile, one and a half mile, or two miles from a fixed-rail 

transit station. The proximity to bus stops is not accounted for as that variable alone is not 

expected to have a significant impact on household location decisions, however it does 

affect households‘ transportation costs. The variables for job accessibility by auto and 

transit indicate the number of jobs by car or transit, respectively, which are within 30 

minutes travel time from the centroid of a Statewide Model Zone (SMZ). The description 

of SMZs is included in Appendix C. Generally and to the extent possible, SMZs conform 

to census tract geography to best utilize census data products. Job accessibility data at 

SMZ level were linked to census tracts via spatial join in ArcGIS based on SMZ‘s 

                                                 
14

 http://beta.bls.gov/maps/cew/MD 

http://beta.bls.gov/maps/cew/MD


 154  

 

centroid falling inside a census tract boundary. Jobs are classified into four categories: 

industrial, retail, office, other, and all jobs. Figure 32 illustrates, for example, the total 

number of jobs accessible in 30 minutes by automobile. Each census tract has at least 146 

jobs accessible within a 30 minute drive. As anticipated, areas closer to the urban centers 

will have greater accessibility to jobs than rural areas in the western and eastern part of 

the state.  Transit proximity and job accessibility measures are all expected to have a 

negative relationship with levels of distress. Figure 33 illustrates job accessibility to all 

types of employment by transit. 

 

Figure 32: Job Accessibility by Auto in Maryland 
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Figure 33: Job Accessibility by Transit in Maryland 

 

The variable controlling for proximity to the CBSA center measures the linear 

distance from a census tract centroid to the nearest mean housing-weighted centroids of 

seven CBSAs: Cambridge, Cumberland, Easton, Hagerstown, Lexington Park, Ocean 

Pines, and Salisbury. For census tracts nearest to Washington DC or Baltimore City 

CBSA distance is measured to the centroid of the census tracts where the Central 

Business District (CBD) was located according to the 1982 Census of Retail Trade. With 

Washington and Baltimore CBSAs, the traditional CBDs are hypothesized to have a 

greater impact on location decisions than housing-weighted centers of less urban CBSAs 

because the traditional center provides the amenities at question, such as access to jobs, 

restaurants, and other cultural activities. If urban centers do have an impact on 

foreclosures, distance from the center variable is expected to show a positive relationship 

with levels of distress.  
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Another variable tested in this analysis is the commute time of auto-commuting 

residents. This variable is obtained from the 2000 Census. It is intended to measure the 

proximity of neighborhoods to major employment centers. Other analyses have shown 

that commuting was not a significant factor is accumulation of foreclosures (Immergluck, 

2010). However, if the hypothesis of greater importance of urban areas holds, commute 

time will have a positive impact on levels of distressed properties.  

Summary statistics of all variables are presented in Figure 34. The summary table 

contains mean values, standard deviation and minimum and maximum values.  

 

Figure 34: Summary Statistics 

  Mean Std. Dev. Min Max 

n 1212 

Distressed properties (#) 59 57 0 385 

Mortgaged properties (#) 922 660 0 5173 

Share of high cost originations  0.226 0.134 0 1 

Share high cost and high leverage 0.124 0.074 0 1 

Share low credit score  0.118 0.104 0 0.667 

Share second liens  0.141 0.040 0 0.5 

Share refinances  0.580 0.110 0 1 

Housing units increase (2000-2007)  0.082 0.558 -0.182 19.2 

Increase in home sales (2002-2006)  1.147 6.011 -1 102 

Change in median home value (2002-2006)  0.775 0.384 -0.568 2.620 

Age of home (=2006-median year built) (#) 43 24 0 131 

Share of households with below median income 0.438 0.205 0.000 1.000 

Share of population age 35 or less  0.310 0.092 0.069 0.989 

Share African-American  0.298 0.322 0.001 0.991 

Share Hispanic  0.041 0.069 0.000 0.799 

Share Asian  0.035 0.047 0.000 0.482 

Vacancy rate  0.070 0.076 0.000 0.857 

Share renter-occupied  0.294 0.211 0.000 0.974 

Share employed in manufacturing or construction  0.127 0.047 0.043 0.381 

Share employed in finance  0.045 0.014 0.000 0.097 

Distance to CBD (in meters) 18,017  11,105  365  49,998  

Median commute time (minutes) 25.5 6.4 0 45.4 

CT centroid within 1/2 mile of transit (0/1) 0.070 0.255 0 1 

CT centroid within 1 mile of transit (0/1) 0.204 0.403 0 1 

CT centroid within 1.5 miles of transit (0/1) 0.304 0.460 0 1 

CT centroid within 2 miles of transit (0/1) 0.399 0.490 0 1 
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Retail employment accessibility by auto (#) 102,836  73,710  14 285,933  

Office employment accessibility by auto (#) 320,200  266,215  0 1,166,101  

Industry employment accessibility by auto (#) 64,636  46,366  15 170,923  

Other employment accessibility by auto (#) 181,576  127,089  28 454,905  

All employment accessibility by auto (#) 669,248  505,265  146 1,966,137  

Retail employment accessibility by transit (#) 69,488  70,005  0 282,815  

Office employment accessibility by transit (#) 235,232  247,980  0 976,486  

Industry employment accessibility by transit (#) 40,804  40,491  0 152,162  

All employment accessibility by transit (#) 466,606  468,404  0 1,795,652  

 

 

Empirical Strategy 

To determine the impact of urban form on spatial distribution of distressed 

properties, I estimate a negative binomial model.  A Negative binomial model is 

generally used for count data when the dependent variable is highly positively skewed. 

Count variables have certain properties: i) they are never negative; ii) they are integers; 

and iii) they have tendency to be positively skewed. They are accordingly described via 

Poisson distribution. Following the method employed by Immergluck (2010), the 

dependent variable in this negative binomial model is the count of distressed properties 

by census tract. Immergluck‘s study focuses on the accumulation of REOs so the author 

accounts for REO properties exclusively. Using a count model rather than a rate model in 

this analysis makes more sense intuitively and theoretically. To get at a foreclosure rate, 

one needs a denominator for the dependent variable. However, there has been some 

debate in the literature over which denominator is best suited for the foreclosure analyses. 

Some have used the number of mortgaged properties; some used the number of all 

residential properties, while others used the number of mortgageable properties. In the 

analyses where the focus is on the impact of foreclosures, using the foreclosure rate may 

be more appropriate. However, this analysis is concerned with which factors led to the 

rise in the number of distressed properties.  
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The negative binomial regression model is a direct extension of the Poisson 

model.  In Poisson distribution, the variance is expected to equal the mean. Often times, 

the variance exceeds the mean which is called over-dispersion. The negative binomial 

models allows for over-dispersion by including a dispersion parameter and allowing for 

independent specification of the mean and variance. Since the only difference between 

the Poisson and the negative binomial is in their variances, regression coefficients are 

often similar, but with different standard errors. In case of an over-dispersed variable, 

standard errors from the negative binomial model will be larger than those in Poisson 

regression. Thus using a Poisson regression in case of an over-dispersed variable can lead 

to low p-values and narrow confidence intervals and can possibly lead to erroneous 

conclusion of the significance of a parameter. One can test for over-dispersion via the 

alpha (dispersion) parameter, where a one-tailed z-test of H0: alpha= 0 indicates when 

the negative binomial or the Poisson regression model is more appropriate. When alpha is 

zero, the negative binomial model reduces to the Poisson model (Long and Freese 2006). 

Additionally, the negative binomial model is estimated via maximum likelihood 

estimation strategy. Maximum likelihood functions attempt to find the value of regression 

coefficients that have most likely given rise to the number of distressed properties. The 

negative binomial model is described via the following form:  

 

DP(2006-2009) = exp [α + βln(M) + γS + δB + ηN + φU +ε]           (1) 

 where DP(2006-2009) is the count of distressed properties between the first quarter of 

2006 and third quarter of 2009 in a census tract. The summary of the dependent variable 

indicates that the variance is 56 times the size of the mean which suggests that the 
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dependent variable is in fact over-dispersed. The test of the significance of the alpha 

parameter is provided in the table of results.  

M is the estimated average number of mortgaged properties in a census tract between 

2005 and 2009 and controls for the total size of the mortgaged inventory in a tract. It is 

alternatively called an exposure parameter because it constrains the dependent variables 

to the maximum number of properties that can be distressed during that time period.  

S is a vector of control variables which describe the level of subprime lending by census 

tract. There are five subprime variables: the share of high cost originations, the share of 

high cost and high leveraged originations, the share of loans with low credit scores, the 

percent of originations that were second lien mortgages, and the share of loans that were 

originated for refinancing.  

B is a vector of control variables that describe the extent of the housing bubble. There are 

three bubble variables which include: the increase in the number of housing units 

between 2000 and 2007 at census tract, the increase in home sales between 2002 and 

2006, and the increase in the median home value between 2002 and 2006. The last two 

variables are generated at the zip code level. 

N is a vector of neighborhood control variables at the census tract level. Those variables 

include median age of homes, percent of households with below median income, percent 

of population 35 or younger, the share of population that is African-American, the share 

of population that is Hispanic, the share of population that is Asian, the share of homes 

that are vacant, and share of homes that are renter occupied. In this category, I also 

include the variables which control for neighborhood employment characteristics. This 
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includes the share of workers that are employed in construction and manufacturing, or 

finance.  

Finally, U is a vector of variables that control for urban structure. These variables include 

proximity to transit stop, employment accessibility by auto and transit, distance to the 

central business district, and median commute time. 

 

Results 

 

The results of the negative binomial model are presented in Tables 10, 11, and 12. 

I estimated three sets of models: 1) for all census tracts in Maryland, 2) for census tracts 

located in Washington, DC metropolitan area, and 3) those located in the Baltimore 

metropolitan area. For each of the three sets of models, I first examine the variation in 

distressed properties using only subprime lending factors. The second model includes the 

housing bubble effects. The third model includes neighborhood characteristics, while the 

last set of models examines the impact of urban form characteristics on the level of 

distressed properties. The tables with results contain untransformed coefficients, p-

values, and goodness-of-fit values. All models are estimated with a heteroskedasticity 

robust estimator in accordance with the Huber-White-Sandwich procedure. With robust 

estimators, the likelihood ratio chi-square test becomes a Wald chi-square and is based on 

log pseudo-likelihoods. The Wald test statistic provides a test for the hypothesis that all 

coefficients in the model except the intercept term are simultaneously equal to zero. In all 

models, the highly significant Wald test strongly rejects the hypothesis the coefficients 

are zero. The likelihood-ratio (LP) test for nesting of the models indicates that those 

models are nested. In other words, the LR tests if coefficients of the variables excluded 
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from the full model are equal to zero. The significant value of LR test rejects the 

hypothesis that those excluded variables have coefficients equal to zero.   

The Bayesian information criterion (BIC) proposed by Raftery (1996) is a 

measure of overall goodness of fit and a means to compare nested and non-nested 

models. The more negative the BIC, the better the fit. Raftery (1996) suggested 

guidelines for the strength of evidence based on a difference between BIC values 

between two models. When the absolute difference is from 0 to 2, the evidence is weak;, 

if the difference is between 2 and 6, the evidence is positive;, if between 6 and 10, the 

evidence is strong;, and absolute difference greater than 10 means the evidence of a better 

model is very strong. The BIC statistics reported for all three sets of models indicate that 

the model is improving with the addition of new control variables. For all three models, 

the absolute values of the difference between the BIC for constrained and fully specified 

models are well above 100. Another measure of fit is Pseudo R
2
 or in this case the 

McFadden‘s R
2
, also known as the likelihood-ratio index, which compares a model with 

just the intercept to a model with all parameters. I report adjusted McFadden R
2
 for all 

three sets of models. The increasing value of the adjusted R
2
 again suggests that the 

model is performing increasingly better with the additional variables. To check for 

multicollinearity among the explanatory variables, I constructed the OLS model by 

generating a log of the dependent variable and running a simple regression using all 

explanatory variables, followed by the variance inflation factor (VIF). Generally, a 

variable whose VIF values is greater than 10 shows collinearity with other variables and 

can be represented as a linear combination of other independent variables. The VIF 

values show that there is generally no serious issue with multicollinearity among the 
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variables. The two variables that show increased collinearity are the share of high cost 

loans and the share of high cost and high leverage loans in Washington metropolitan area 

sample. The two variables however do not show high collinearity for the rest of the 

sample. The VIF for the income variable is elevated; however that is expected as income 

is generally correlated with lending characteristics, type of employment, tenure status, 

and race.    
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Table 10: Negative Binomial Results for Maryland  

 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 Model 14 Model 15 Model 16 Model 17 Model 18 Model 19

ln(mortgaged properties) 0.908*** 0.912*** 1.005*** 1.034*** 1.032*** 1.031*** 1.037*** 1.031*** 1.031*** 1.031*** 1.024*** 1.025*** 1.026*** 1.024*** 1.023*** 1.020*** 1.028*** 1.022*** 1.021***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Share high cost 3.499*** 3.432*** 2.832*** 2.819*** 2.845*** 2.791*** 2.870*** 2.842*** 2.836*** 2.842*** 2.747*** 2.746*** 2.778*** 2.748*** 2.800*** 2.757*** 2.831*** 2.838*** 2.792***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Share high cost and high leverage 3.345*** 3.482*** 2.655*** 2.315*** 2.291*** 2.431*** 2.297*** 2.289*** 2.290*** 2.294*** 2.493*** 2.505*** 2.462*** 2.508*** 2.458*** 2.518*** 2.368*** 2.423*** 2.481***

(0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Share low FICO 0.864** 0.838* 0.718** 0.416 0.467 0.414 0.493 0.467 0.473 0.470 0.451 0.449 0.450 0.449 0.468 0.462 0.462 0.464 0.463

(0.048) (0.055) (0.028) (0.193) (0.143) (0.192) (0.122) (0.143) (0.140) (0.140) (0.160) (0.163) (0.162) (0.163) (0.146) (0.152) (0.150) (0.151) (0.151)

Share second liens 5.633*** 5.481*** 6.830*** 6.459*** 6.335*** 6.165*** 6.287*** 6.339*** 6.345*** 6.338*** 6.161*** 6.144*** 6.211*** 6.153*** 6.213*** 6.035*** 6.302*** 6.265*** 6.150***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Share refinances -2.538*** -2.542*** -1.362*** -1.720*** -1.756*** -1.853*** -1.754*** -1.758*** -1.767*** -1.760*** -1.807*** -1.811*** -1.802*** -1.809*** -1.809*** -1.832*** -1.781*** -1.803*** -1.820***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Housing units increase (2000-

2007)
0.155*** 0.160*** 0.181*** 0.176*** 0.176*** 0.175*** 0.176*** 0.175*** 0.176*** 0.173*** 0.175*** 0.174*** 0.174*** 0.174*** 0.173*** 0.175*** 0.172*** 0.173***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Increase in home sales (2002-

2006)
0.006* 0.004* 0.003** 0.003* 0.003* 0.003* 0.003* 0.003* 0.003* 0.003* 0.003* 0.003* 0.003* 0.003* 0.003* 0.003* 0.003* 0.003*

(0.088) (0.056) (0.048) (0.073) (0.052) (0.081) (0.070) (0.071) (0.073) (0.082) (0.088) (0.084) (0.086) (0.083) (0.098) (0.081) (0.083) (0.091)

Change in median home value 

(2002-2006)
0.013 0.023 0.024 0.023 0.026 0.025 0.023 0.024 0.023 0.027 0.027 0.027 0.028 0.028 0.029 0.026 0.031 0.030

(0.795) (0.604) (0.589) (0.599) (0.550) (0.572) (0.599) (0.592) (0.596) (0.547) (0.546) (0.548) (0.535) (0.529) (0.509) (0.553) (0.488) (0.501)

Age of home 0.003*** 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 0.005*** 0.006*** 0.005*** 0.005*** 0.006***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Percent of households with below 

median income
0.364* -0.186 -0.108 0.020 -0.115 -0.110 -0.110 -0.109 -0.178 -0.174 -0.168 -0.172 -0.173 -0.205 -0.140 -0.149 -0.183

(0.056) (0.321) (0.569) (0.917) (0.542) (0.563) (0.562) (0.566) (0.359) (0.369) (0.388) (0.373) (0.376) (0.290) (0.476) (0.440) (0.346)

Percent populations age <=35 0.568* 0.576** 0.562** 0.572** 0.563** 0.561** 0.563** 0.564** 0.539* 0.530* 0.555* 0.537* 0.547* 0.536* 0.561** 0.579** 0.553*

(0.066) (0.037) (0.040) (0.037) (0.041) (0.041) (0.041) (0.039) (0.064) (0.069) (0.052) (0.065) (0.053) (0.061) (0.043) (0.039) (0.051)

Share African-American 0.283*** 0.689*** 0.674*** 0.605*** 0.654*** 0.677*** 0.682*** 0.676*** 0.733*** 0.733*** 0.725*** 0.735*** 0.712*** 0.734*** 0.695*** 0.708*** 0.723***

(0.008) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Share Hispanic 1.257*** 0.922*** 0.949*** 0.828*** 0.947*** 0.952*** 0.969*** 0.955*** 1.152*** 1.132*** 1.084*** 1.139*** 1.076*** 1.162*** 0.991*** 1.048*** 1.108***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Share Asian 0.974*** 1.872*** 2.131*** 2.058*** 2.124*** 2.132*** 2.138*** 2.135*** 2.208*** 2.216*** 2.196*** 2.207*** 2.248*** 2.297*** 2.179*** 2.229*** 2.268***

(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Vacancy rate 1.865*** 1.995*** 1.994*** 1.950*** 1.972*** 1.997*** 1.998*** 1.994*** 1.913*** 1.921*** 1.931*** 1.913*** 1.919*** 1.887*** 1.961*** 1.910*** 1.899***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Share rent occupied -0.351** -0.094 -0.141 -0.153 -0.140 -0.140 -0.140 -0.142 -0.112 -0.116 -0.117 -0.116 -0.129 -0.116 -0.133 -0.143 -0.126

(0.017) (0.498) (0.308) (0.266) (0.311) (0.317) (0.312) (0.307) (0.429) (0.412) (0.405) (0.410) (0.356) (0.409) (0.340) (0.303) (0.366)

Share employed in manufacturing 

or construction
3.638*** 3.427*** 3.379*** 3.405*** 3.430*** 3.424*** 3.423*** 3.261*** 3.271*** 3.297*** 3.250*** 3.217*** 3.163*** 3.352*** 3.204*** 3.185***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Share employed in finance 0.002 0.286 0.360 0.141 0.294 0.326 0.297 -0.046 -0.028 0.004 -0.022 0.221 0.174 0.239 0.344 0.231

(0.998) (0.789) (0.735) (0.896) (0.783) (0.760) (0.782) (0.965) (0.979) (0.997) (0.983) (0.836) (0.869) (0.822) (0.746) (0.828)

Distance to CBD 0.033** 0.028** 0.035** 0.033** 0.033** 0.033** 0.030** 0.032** 0.031** 0.030** 0.029** 0.028** 0.032** 0.030** 0.029**

(0.015) (0.048) (0.011) (0.016) (0.015) (0.015) (0.027) (0.020) (0.024) (0.025) (0.030) (0.041) (0.020) (0.026) (0.034)

Median commute time 0.007**

(0.015)

Proximity to Transit
0.5 mile 

buffer

1 mile 

buffer

1.5 mile 

buffer

2 mile 

buffer

0.078 -0.006 -0.018 -0.006

(0.137) (0.858) (0.507) (0.827)

Retail Office Industry Total Emp

-0.007*** -0.002*** -0.010** -0.001***

(0.002) (0.004) (0.015) (0.003)

Retail Office Industry Other Tot Emp

-0.006** -0.002*** -0.004 -0.003*** -0.001***

(0.014) (0.000) (0.240) (0.008) (0.001)

_cons -2.820*** -2.847*** -4.771*** -5.131*** -5.171*** -5.281*** -5.200*** -5.168*** -5.162*** -5.166*** -4.997*** -5.003*** -5.037*** -4.998*** -4.991*** -4.910*** -5.098*** -5.020*** -4.959***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

/lnalpha -1.922*** -1.934*** -2.198*** -2.294*** -2.302*** -2.313*** -2.305*** -2.303*** -2.303*** -2.302*** -2.309*** -2.308*** -2.306*** -2.309*** -2.305*** -2.313*** -2.302*** -2.307*** -2.309***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Log-Likelihood -5,161.54 -5,154.29 -5,034.96 -4,988.70 -4,985.20 -4,980.86 -4,983.80 -4,985.18 -4,984.99 -4,985.17 -4,979.80 -4,980.45 -4,981.64 -4,979.83 -4,981.62 -4,976.84 -4,984.35 -4,980.97 -4,979.34

chi2 3,126.333 3,263.374 4,419.135 4,929.813 5,014.386 5,018.720 5,013.584 5,016.213 5,060.617 5,022.227 5,204.143 5,179.099 5,156.080 5,203.591 5,177.160 5,318.748 5,074.585 5,224.490 5,255.019

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

McFadden's Adj R2 0.16 0.161 0.179 0.186 0.186 0.187 0.186 0.186 0.186 0.186 0.187 0.187 0.187 0.187 0.187 0.188 0.186 0.187 0.187

BIC': -1942.381 -1935.576 -2117.433 -2195.77 -2195.669 -2197.251 -2191.368 -2188.605 -2188.989 -2188.614 -2199.366 -2198.057 -2195.683 -2199.3 -2195.718 -2205.286 -2190.253 -2197.019 -2200.277

N 1,212 1,212 1,212 1,212 1,212 1,212 1,212 1,212 1,212 1,212 1,212 1,212 1,212 1,212 1,212 1,212 1,212 1,212 1,212

note:  *** p<0.01, ** p<0.05, * p<0.1

Dependent: number of distressed properties from 2006 to 2009 in Maryland

Employment Accessibility by 
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Table 11: Negative Binomial Results for Washington Metropolitan Area 

 

 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 Model 14 Model 15 Model 16 Model 17 Model 18 Model 19

ln(mortgaged properties) 0.955*** 0.960*** 1.030*** 1.052*** 1.020*** 1.020*** 1.022*** 1.021*** 1.019*** 1.020*** 1.023*** 1.022*** 1.022*** 1.023*** 1.021*** 1.022*** 1.022*** 1.022*** 1.022***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Share high cost 5.406*** 5.408*** 4.983*** 5.161*** 4.998*** 5.006*** 4.992*** 5.006*** 4.913*** 4.962*** 5.048*** 5.063*** 5.080*** 5.067*** 4.996*** 4.981*** 5.059*** 5.012*** 5.007***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Share high cost and high leverage 0.806 0.369 0.167 -0.115 0.035 0.031 0.044 0.033 0.078 0.069 -0.154 -0.124 -0.096 -0.137 0.052 0.019 0.012 0.054 0.035

(0.640) (0.828) (0.879) (0.915) (0.975) (0.978) (0.968) (0.977) (0.945) (0.952) (0.887) (0.910) (0.931) (0.900) (0.961) (0.985) (0.992) (0.961) (0.974)

Share low FICO -0.277 -0.379 -0.846 -0.830 -0.930* -0.937* -0.925* -0.931* -0.911* -0.920* -0.992* -0.990* -1.004** -0.999** -1.089** -1.114** -1.090** -1.090** -1.143**

(0.776) (0.685) (0.161) (0.140) (0.078) (0.079) (0.080) (0.078) (0.086) (0.080) (0.050) (0.051) (0.050) (0.048) (0.033) (0.025) (0.035) (0.035) (0.023)

Share second liens 7.543*** 7.152*** 5.640*** 5.515*** 4.908*** 4.911*** 4.906*** 4.914*** 4.869*** 4.899*** 4.638*** 4.602*** 4.723*** 4.637*** 4.397*** 3.983*** 4.729*** 4.758*** 4.298***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Share refinances -1.104* -1.152* -0.415 -0.860* -1.285** -1.290** -1.274** -1.277** -1.361*** -1.303** -1.339*** -1.339*** -1.323*** -1.333*** -1.384*** -1.432*** -1.320*** -1.325*** -1.393***

(0.087) (0.078) (0.393) (0.075) (0.013) (0.013) (0.015) (0.013) (0.008) (0.013) (0.007) (0.007) (0.009) (0.007) (0.005) (0.003) (0.010) (0.009) (0.004)

Housing units increase (2000-

2007)
0.218 0.406** 0.364** 0.453*** 0.455*** 0.449*** 0.452*** 0.442*** 0.445*** 0.417*** 0.441*** 0.439*** 0.435*** 0.460*** 0.454*** 0.466*** 0.469*** 0.465***

(0.278) (0.011) (0.024) (0.007) (0.007) (0.008) (0.007) (0.008) (0.007) (0.008) (0.006) (0.006) (0.006) (0.004) (0.005) (0.005) (0.004) (0.004)

Increase in home sales (2002-

2006)
0.015 0.074 0.048 0.056 0.057 0.056 0.055 0.057 0.056 0.074* 0.072* 0.068* 0.073* 0.069* 0.071* 0.062 0.066 0.071*

(0.782) (0.108) (0.274) (0.160) (0.147) (0.160) (0.163) (0.143) (0.157) (0.067) (0.076) (0.093) (0.073) (0.084) (0.074) (0.121) (0.105) (0.078)

Change in median home value 

(2002-2006)
0.320*** 0.282*** 0.215*** 0.254*** 0.252*** 0.254*** 0.254*** 0.256*** 0.255*** 0.228*** 0.232*** 0.242*** 0.231*** 0.241*** 0.237*** 0.253*** 0.256*** 0.245***

(0.002) (0.001) (0.005) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001)

Age of home -0.001 0.000 0.003* 0.003* 0.003* 0.003 0.004* 0.004* 0.004** 0.004** 0.004** 0.004** 0.005** 0.005** 0.004** 0.004** 0.005**

(0.801) (0.878) (0.095) (0.093) (0.097) (0.102) (0.054) (0.083) (0.031) (0.034) (0.048) (0.033) (0.020) (0.012) (0.048) (0.047) (0.017)

Percent of households with below 

median income
1.223*** 0.574* 0.289 0.297 0.288 0.288 0.317 0.307 0.319 0.301 0.291 0.313 0.314 0.298 0.288 0.309 0.306

(0.000) (0.052) (0.361) (0.354) (0.362) (0.362) (0.314) (0.335) (0.299) (0.328) (0.346) (0.309) (0.293) (0.296) (0.348) (0.317) (0.297)

Percent populations age <=35 1.616*** 1.391*** 1.304*** 1.304*** 1.306*** 1.302*** 1.336*** 1.322*** 1.314*** 1.294*** 1.339*** 1.308*** 1.284*** 1.310*** 1.308*** 1.358*** 1.332***

(0.000) (0.000) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

Share African-American 0.084 0.426** 0.737*** 0.734*** 0.734*** 0.735*** 0.759*** 0.738*** 0.775*** 0.773*** 0.767*** 0.775*** 0.787*** 0.789*** 0.778*** 0.769*** 0.791***

(0.570) (0.014) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Share Hispanic 0.793*** 0.591** 1.106*** 1.101*** 1.108*** 1.108*** 1.114*** 1.099*** 1.106*** 1.101*** 1.078*** 1.094*** 1.128*** 1.169*** 1.077*** 1.082*** 1.121***

(0.002) (0.020) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Share Asian 1.263*** 1.823*** 2.276*** 2.282*** 2.274*** 2.274*** 2.277*** 2.280*** 2.244*** 2.240*** 2.256*** 2.244*** 2.283*** 2.244*** 2.254*** 2.284*** 2.262***

(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Vacancy rate -0.408 -0.437 -0.964* -0.971* -0.959* -0.966* -0.942* -0.962* -0.894* -0.913* -0.938* -0.911* -0.910* -0.809 -0.984* -0.992* -0.901*

(0.518) (0.496) (0.056) (0.053) (0.056) (0.055) (0.067) (0.057) (0.085) (0.074) (0.066) (0.076) (0.085) (0.121) (0.054) (0.052) (0.084)

Share rent occupied -0.790*** -0.457** -0.428** -0.430** -0.429** -0.429** -0.437** -0.432** -0.387* -0.390** -0.394** -0.389** -0.403** -0.398** -0.395** -0.417** -0.399**

(0.000) (0.018) (0.033) (0.032) (0.032) (0.032) (0.030) (0.032) (0.051) (0.049) (0.047) (0.049) (0.039) (0.038) (0.045) (0.035) (0.040)

Share employed in manufacturing 

or construction
3.305*** 1.585** 1.581** 1.571** 1.579** 1.616** 1.588** 2.115*** 2.029*** 1.957*** 2.068*** 1.824** 1.943*** 1.796** 1.822** 1.939***

(0.000) (0.032) (0.033) (0.034) (0.033) (0.027) (0.032) (0.005) (0.007) (0.009) (0.006) (0.014) (0.008) (0.017) (0.016) (0.009)

Share employed in finance 0.867 -2.784 -2.665 -2.829 -2.793 -2.563 -2.651 -1.753 -1.830 -2.106 -1.852 -0.930 -0.584 -1.820 -1.942 -0.914

(0.726) (0.164) (0.207) (0.162) (0.163) (0.199) (0.193) (0.374) (0.357) (0.288) (0.349) (0.649) (0.769) (0.369) (0.334) (0.650)

Distance to CBD 0.102*** 0.103*** 0.103*** 0.103*** 0.100*** 0.101*** 0.061** 0.065*** 0.075*** 0.064*** 0.052** 0.045* 0.076*** 0.078*** 0.052**

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.011) (0.008) (0.001) (0.009) (0.040) (0.058) (0.002) (0.001) (0.035)

Median commute time 0.001

(0.857)

Proximity to Transit
0.5 mile 

buffer

1 mile 

buffer

1.5 mile 

buffer

2 mile 

buffer

0.024 0.007 -0.058* -0.020

(0.728) (0.831) (0.077) (0.562)

Retail Office Industry Total Emp

-0.010*** -0.003*** -0.012** -0.001***

(0.002) (0.009) (0.031) (0.007)

Retail Office Industry Other Tot Emp

-0.013*** -0.004*** -0.011* -0.004* -0.002***

(0.004) (0.000) (0.071) (0.085) (0.002)

_cons -4.101*** -4.256*** -5.589*** -5.768*** -5.279*** -5.309*** -5.296*** -5.286*** -5.239*** -5.270*** -5.123*** -5.120*** -5.194*** -5.138*** -4.989*** -4.912*** -5.181*** -5.211*** -5.016***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

/lnalpha -2.351*** -2.418*** -2.743*** -2.820*** -2.914*** -2.914*** -2.914*** -2.914*** -2.924*** -2.915*** -2.936*** -2.927*** -2.921*** -2.929*** -2.926*** -2.947*** -2.911*** -2.913*** -2.930***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Log-Likelihood -1,946.65 -1,936.23 -1,878.26 -1,865.19 -1,845.52 -1,845.50 -1,845.43 -1,845.50 -1,844.08 -1,845.36 -1,839.94 -1,841.03 -1,842.92 -1,840.90 -1,839.47 -1,834.61 -1,843.39 -1,843.53 -1,838.24

chi2 1,503.103 1,924.807 2,904.619 3,158.673 4,153.274 4,145.886 4,161.723 4,155.114 4,181.146 4,166.908 4,220.530 4,176.997 4,189.111 4,186.239 4,320.661 4,388.651 4,251.784 4,239.580 4,328.013

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

McFadden's Adj R2 0.175 0.178 0.199 0.204 0.212 0.211 0.211 0.211 0.212 0.211 0.214 0.211 0.213 0.213 0.214 0.216 0.212 0.212 0.214

BIC': -808.323 -810.956 -878.347 -892.352 -925.621 -919.594 -919.728 -919.592 -922.44 -919.871 -930.719 -928.539 -924.753 -928.792 -931.658 -941.375 -923.813 -923.523 -934.121

N 432 432 432 432 432 432 432 432 432 432 432 432 432 432 432 432 432 432 432

note:  *** p<0.01, ** p<0.05, * p<0.1

Dependent: number of distressed properties from 2006 to 2009 if Washington metro=1

S
u

b
p

ri
m

e
 l
e

n
d

in
g

H
o

u
s

in
g

 b
u

b
b

le
N

e
ig

h
b

o
rh

o
o

d
 c

h
a

ra
c

te
ri

s
ti

c
s

E
m

p
lo

y
m

e
n

t
U

rb
a

n
 f

o
rm

Employment Accessibility by 

transit

Employment Accessibility by auto



 165  

 

Table 12: Negative Binomial Results for Baltimore Metropolitan Area 

 

 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 Model 13 Model 14 Model 15 Model 16 Model 17 Model 18 Model 19

ln(mortgaged properties) 0.874*** 0.878*** 0.992*** 1.004*** 0.999*** 0.993*** 1.006*** 0.998*** 0.998*** 0.999*** 0.996*** 0.993*** 0.996*** 0.994*** 1.007*** 1.006*** 1.007*** 1.005*** 1.006***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Share high cost 3.522*** 3.343*** 2.768*** 2.551*** 2.571*** 2.559*** 2.670*** 2.575*** 2.583*** 2.580*** 2.565*** 2.553*** 2.561*** 2.558*** 2.541*** 2.553*** 2.524*** 2.540*** 2.544***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Share high cost and high leverage 1.457* 1.855** 1.803** 1.929*** 2.040*** 2.120*** 2.042*** 2.046*** 2.060*** 2.042*** 2.098*** 2.176*** 2.109*** 2.159*** 1.955*** 1.962*** 1.991*** 1.983*** 1.967***

(0.051) (0.017) (0.019) (0.009) (0.007) (0.005) (0.006) (0.006) (0.006) (0.007) (0.005) (0.004) (0.005) (0.004) (0.009) (0.009) (0.008) (0.008) (0.009)

Share low FICO 1.117** 1.140** 0.741** 0.412 0.429 0.421 0.479 0.429 0.412 0.406 0.434 0.438 0.436 0.437 0.422 0.420 0.428 0.425 0.422

(0.032) (0.026) (0.031) (0.239) (0.220) (0.227) (0.168) (0.220) (0.234) (0.241) (0.214) (0.210) (0.211) (0.211) (0.229) (0.231) (0.223) (0.225) (0.229)

Share second liens 4.454*** 4.478*** 5.125*** 4.407*** 4.327*** 4.298*** 4.291*** 4.316*** 4.291*** 4.282*** 4.348*** 4.339*** 4.382*** 4.347*** 4.160*** 4.188*** 4.033*** 4.191*** 4.167***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Share refinances -2.353*** -2.351*** -1.288*** -1.692*** -1.734*** -1.770*** -1.770*** -1.731*** -1.705*** -1.697*** -1.742*** -1.747*** -1.750*** -1.748*** -1.679*** -1.700*** -1.682*** -1.695*** -1.692***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Housing units increase (2000-

2007)
0.135*** 0.108*** 0.121*** 0.113*** 0.112*** 0.111*** 0.112*** 0.111*** 0.111*** 0.113*** 0.114*** 0.115*** 0.114*** 0.115*** 0.114*** 0.116*** 0.114*** 0.115***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Increase in home sales (2002-

2006)
0.004* 0.002* 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.002 0.001 0.001

(0.067) (0.100) (0.115) (0.154) (0.131) (0.233) (0.155) (0.166) (0.156) (0.130) (0.130) (0.136) (0.128) (0.190) (0.175) (0.162) (0.174) (0.177)

Change in median home value 

(2002-2006)
-0.097* -0.092* -0.067 -0.065 -0.062 -0.062 -0.065 -0.066 -0.066 -0.064 -0.062 -0.064 -0.062 -0.066 -0.066 -0.067 -0.066 -0.066

(0.088) (0.059) (0.164) (0.178) (0.198) (0.196) (0.177) (0.169) (0.171) (0.186) (0.197) (0.185) (0.195) (0.172) (0.170) (0.162) (0.170) (0.169)

Age of home 0.001 0.003*** 0.003*** 0.003*** 0.003*** 0.003*** 0.003*** 0.003*** 0.003*** 0.003*** 0.003*** 0.003*** 0.003*** 0.003*** 0.003*** 0.003*** 0.003***

(0.221) (0.004) (0.002) (0.001) (0.002) (0.004) (0.006) (0.004) (0.002) (0.001) (0.001) (0.001) (0.004) (0.003) (0.004) (0.004) (0.004)

Percent of households with below 

median income
0.844*** 0.438* 0.494* 0.515** 0.465* 0.498** 0.493* 0.495* 0.491* 0.510** 0.478* 0.503** 0.521** 0.521** 0.551** 0.523** 0.525**

(0.001) (0.086) (0.051) (0.045) (0.067) (0.050) (0.051) (0.051) (0.051) (0.042) (0.057) (0.045) (0.039) (0.040) (0.030) (0.039) (0.038)

Percent populations age <=35 0.724** 0.756** 0.792** 0.804** 0.776** 0.798** 0.815** 0.789** 0.782** 0.764** 0.782** 0.770** 0.807** 0.820** 0.797** 0.811** 0.814**

(0.031) (0.022) (0.018) (0.016) (0.019) (0.018) (0.016) (0.019) (0.020) (0.023) (0.020) (0.022) (0.014) (0.013) (0.014) (0.014) (0.013)

Share African-American 0.004 0.364*** 0.353*** 0.322** 0.307** 0.350*** 0.339** 0.342** 0.352*** 0.353*** 0.360*** 0.352*** 0.360*** 0.350*** 0.347** 0.354*** 0.352***

(0.965) (0.006) (0.009) (0.016) (0.026) (0.010) (0.012) (0.012) (0.009) (0.009) (0.008) (0.009) (0.008) (0.010) (0.010) (0.009) (0.009)

Share Hispanic 2.300** 2.335** 2.188** 2.274** 2.392** 2.196** 2.152** 2.159** 2.126** 2.066** 2.046** 2.068** 2.078** 2.126** 2.056** 2.126** 2.112**

(0.019) (0.021) (0.025) (0.023) (0.016) (0.026) (0.030) (0.027) (0.030) (0.033) (0.037) (0.034) (0.029) (0.027) (0.028) (0.026) (0.027)

Share Asian -0.657 0.227 0.456 0.495 0.452 0.458 0.418 0.441 0.450 0.452 0.481 0.443 0.197 0.157 0.033 0.194 0.153

(0.284) (0.711) (0.488) (0.453) (0.488) (0.486) (0.528) (0.504) (0.497) (0.498) (0.470) (0.506) (0.760) (0.810) (0.960) (0.765) (0.814)

Vacancy rate 2.411*** 2.193*** 2.181*** 2.122*** 2.066*** 2.165*** 2.130*** 2.162*** 2.132*** 2.086*** 2.114*** 2.093*** 2.253*** 2.253*** 2.261*** 2.254*** 2.257***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Share rent occupied -0.608*** -0.415** -0.463*** -0.470*** -0.462*** -0.468*** -0.471*** -0.461*** -0.464*** -0.474*** -0.455*** -0.470*** -0.459*** -0.465*** -0.466*** -0.465*** -0.464***

(0.001) (0.016) (0.007) (0.007) (0.007) (0.006) (0.006) (0.008) (0.007) (0.006) (0.008) (0.006) (0.007) (0.007) (0.006) (0.007) (0.007)

Share employed in manufacturing 

or construction
2.609*** 2.447*** 2.339*** 2.350*** 2.434*** 2.399*** 2.416*** 2.236*** 2.064*** 2.200*** 2.092*** 2.586*** 2.555*** 2.508*** 2.551*** 2.559***

(0.000) (0.000) (0.001) (0.001) (0.000) (0.001) (0.001) (0.002) (0.004) (0.002) (0.003) (0.000) (0.000) (0.000) (0.000) (0.000)

Share employed in finance -3.434** -3.276** -3.518** -3.596** -3.294** -3.448** -3.391** -3.567** -3.522** -3.727** -3.597** -2.876* -2.972* -2.459 -2.915* -2.887*

(0.030) (0.039) (0.032) (0.023) (0.037) (0.030) (0.033) (0.027) (0.025) (0.019) (0.022) (0.076) (0.065) (0.134) (0.072) (0.075)

Distance to CBD 0.026 0.024 0.030 0.026 0.027 0.028 0.008 -0.009 0.002 -0.006 0.066** 0.065** 0.077*** 0.060** 0.066**

(0.220) (0.267) (0.153) (0.212) (0.195) (0.193) (0.751) (0.750) (0.934) (0.815) (0.020) (0.032) (0.007) (0.039) (0.026)

Median commute time 0.004

(0.387)

Proximity to Transit
0.5 mile 

buffer

1 mile 

buffer

1.5 mile 

buffer

2 mile 

buffer

0.151** 0.011 0.049 0.038

(0.025) (0.809) (0.178) (0.250)

Retail Office Industry Total Emp

-0.009 -0.005** -0.019* -0.002*

(0.266) (0.044) (0.090) (0.057)

Retail Office Industry Other Tot Emp

0.013** 0.004* 0.023*** 0.005* 0.002**

(0.033) (0.064) (0.007) (0.079) (0.048)

_cons -2.470*** -2.452*** -4.415*** -4.325*** -4.347*** -4.354*** -4.358*** -4.347*** -4.345*** -4.359*** -4.220*** -4.115*** -4.185*** -4.128*** -4.629*** -4.587*** -4.656*** -4.570*** -4.603***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

/lnalpha -2.113*** -2.142*** -2.520*** -2.635*** -2.639*** -2.641*** -2.650*** -2.639*** -2.643*** -2.644*** -2.640*** -2.645*** -2.643*** -2.644*** -2.652*** -2.650*** -2.661*** -2.649*** -2.651***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Log-Likelihood -2,474.49 -2,466.98 -2,385.08 -2,364.80 -2,363.97 -2,363.51 -2,360.36 -2,363.93 -2,363.03 -2,363.35 -2,363.41 -2,361.97 -2,362.59 -2,362.21 -2,361.91 -2,362.39 -2,360.45 -2,362.52 -2,362.15

chi2 1,508.448 1,589.785 1,918.926 2,079.241 2,083.447 2,100.238 2,101.722 2,086.790 2,081.836 2,103.266 2,097.141 2,122.166 2,107.211 2,116.745 2,121.029 2,112.047 2,135.876 2,116.636 2,117.352

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

McFadden's Adj R2 0.155 0.157 0.182 0.188 0.188 0.188 0.189 0.188 0.188 0.188 0.188 0.188 0.188 0.188 0.188 0.188 0.189 0.188 0.188

BIC': -890.124 -885.854 -998.183 -1025.884 -1021.105 -1015.599 -1021.902 -1014.747 -1016.548 -1015.906 -1015.8 -1018.666 -1017.427 -1018.192 -1018.795 -1017.842 -1021.705 -1017.563 -1018.307

N 622 622 622 622 622 622 622 622 622 622 622 622 622 622 622 622 622 622 622

note:  *** p<0.01, ** p<0.05, * p<0.1

Dependent: number of distressed properties from 2006 to 2009 if Baltimore metro=1

Employment Accessibility by 

transit

Employment Accessibility by auto
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Subprime Lending Variables 

 As evident by the first and most simplistic model, subprime lending is strongly 

associated with the number of distressed properties in Maryland. Nearly all variables in 

all models are highly significant and have the expected direction of influence. The first 

variable, log of mortgaged properties, serves as an exposure factor and controls for a 

maximum number of distressed properties in a tract. For the entire Maryland state, the 

increase in the share of high cost loans, high cost and high leverage loans, increase in the 

share of borrowers with credit scores below 639, and increase in the share of second 

liens, all lead to a significant increase in the number of distressed properties.  

The share of high cost loans is consistently (highly) significant across all three 

samples though the effect diminishes slightly when the neighborhood characteristics are 

introduced to the model. For every one percentage point increase in the share of loans 

that were high cost, the number of distressed properties is expected to increase by 3.5 

percent. Since a standard deviation of the share of high cost loans is 13.4 percent, this 

effect on distressed properties is rather large. Similarly, a percentage increase in the share 

of high cost and highly leveraged loans leads to about 3.3 percent higher number of 

distressed properties. This effect also lessens with the introduction of neighborhood 

variables. In the Baltimore metropolitan area, the impact of the two subprime variables is 

consistently significant and of similar magnitude though the latter variable has about half 

as strong an impact than it does for the entire state. In the Washington metro region, on 

the other hand, due to increased correlation between the two variables, only the share of 

high cost loans remains as a significant predictor of levels of distress. The effect of the 

variable is likewise in the 4 percent range.  
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Another subprime variable, the share of borrowers with low credit scores, also 

indicates a positive relationship with the number of distressed properties. The impact of a 

one percentage increase of low credit score borrowers is around one percent. The variable 

however loses significance when the model controls for the neighborhood variables such 

as income and race. This is expected as generally the population with lower incomes and 

minorities have lower credit scores. The same is true when looking at the Baltimore 

region only. In Washington, though, this variable exhibits the same magnitude of impact, 

but it is only marginally significant when the distance to the CBD is teased out in the 

model as well.   

The share of second lien originations is positively and significantly related with 

the rise in distressed properties. This variable carries the largest impact of the number of 

distressed properties in Maryland. Across all three samples, one percent increase in the 

share of second liens increases the levels of distressed properties by 4 to 7 percent. The 

impact is strongest in Washington metropolitan region though it lessens some when 

neighborhood characteristics are controlled for. This result suggests that the use of 

piggybacks might have been more prevalent in Washington due to relatively higher 

housing prices and appears to have carried more risk.   

The last indicator of subprime lending is a variable measuring the share of loans 

that were refinances. As anticipated, a greater share of originations that are refinances 

lowers the number of distressed properties. The impact ranges between 1.1 and 2.5 

percent and is relatively lower in the Washington metropolitan region. This suggests that 

while households who refinanced during the housing boom may have refinanced to 
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extract some equity out of their home or obtain better financing terms, they did not 

necessarily become delinquent as the result of refinancing.   

 

Housing Bubble Variables  

The second model accounts for the impact of the housing bubble on the level of 

distressed properties. The three variables, the increase in the number of housing units, the 

increase in home sales, and the increase in home values, exhibit expected signs and are 

generally significant. Housing prices did play some role in the accumulation of distressed 

properties though the effect dissipates when looking at the full sample. In the Washington 

region particularly, home prices have significantly impacted levels of distress, with one 

percent increase in home value leading to about a quarter percent increase in the level of 

distress. In Baltimore, this impact was negative, i.e. the increase in home value led to 

lower levels of distressed properties, and it also dissipated when other neighborhood 

characteristics were accounted for. The impact in Baltimore differs probably due to the 

different real estate market than in Washington. As noted before, the Baltimore 

metropolitan area has a weaker real estate market and suffered from relatively large 

concentration of foreclosures in central city neighborhoods even before the current crisis. 

Gentrifying and other desired neighborhoods saw larger home price appreciation but also 

remained stable afterwards. On the other hand, some central city neighborhoods 

continued with high concentrations of foreclosures and did not see significant changes in 

home prices.   

The variable accounting for change in homes sales between 2002 and 2006 is 

used as a proxy for a speculative bubble where the relatively higher turnover was not the 
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result of fundamental increase in demand but the expectation of future price appreciation. 

Those areas may have consequently experienced more unstable housing markets which 

led to a higher concentration of distressed properties. Similarly, the variable measuring 

change in the number of housing units between 2000 and 2007 is intended to capture the 

speculative bubble and also to account for higher incidence of riskier lending during 

those years. The estimation results suggest that while the areas with higher level of new 

construction activity did subsequently see more distress, that impact is rather small and 

only marginally significant. Change in home prices did not have any impact on the level 

of distress across the state. In the Washington region, increased construction had more 

than twice the impact on levels of distress than the rest of the state, with each percentage 

point increase in the number of new housing units leading to almost half a percent 

increase in the number of distressed properties. The results for Baltimore are consistent 

with the state sample, though home sales seemed not to have any impact after controlling 

for neighborhood characteristics.  

 

Neighborhood Characteristics Variables 

 The third model goes further by accounting for a variety of neighborhood 

characteristics. All the variables again exhibit the expected signs and the estimated 

coefficients are highly significant. Income and tenure impacts lose significance when 

employment is accounted for in the fourth model. It is noteworthy that apart from the 

share of second liens, subprime lending coefficients are smaller in magnitude when the 

neighborhood characteristics are added. This finding highlights the importance of 

neighborhood characteristics in research on mortgage defaults. This result also highlights 
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the tight relationship between subprime lending and neighborhood and racial 

characteristics. However, in the absence of individual borrower information, the 

neighborhood variables also capture characteristics of the borrowers in a neighborhood.  

As expected, lower income neighborhoods have higher levels of distress. The 

impact is not consistent though. In the full sample, the income effect is unstable and goes 

away when employment sectors are accounted for. As previously noted, the income 

variable is expected to be correlated with some of the other neighborhood and 

employment characteristics. In the Washington sample, the significance of income 

variable dissipates when distance from the CBD is added to the analysis. In Baltimore, on 

the other hand, income maintained significant impact on the level of distressed properties 

even after accounting for the employment type. One percent increase in the share of 

population with below the median income led to about a half percent increase is levels of 

distress.  

 In line with the previous research, racial composition of a neighborhood had a 

significant impact of the number of distressed properties. For each of the three races, 

African-American, Hispanic, and Asian, the impact is positive. While the share of 

Hispanics has a relatively larger effect, after controlling for spatial location, the effect of 

the Asian population is more conspicuous. One percent increase in the share of Asian 

population leads to a two percent increase in distress. The impact is similar in 

Washington region where the share of African-American population becomes significant 

after holding the distance to the CBD constant.  In Baltimore, the share of Asian 

population does not appear to bear any significance on accumulation of distressed 
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properties. This may be due to a relatively lower concentration of an Asian population in 

the Baltimore metropolitan area.  

 I also account for vacancy status and tenure status as neighborhood variables. As 

anticipated, higher levels of vacancies led to higher levels of distressed properties and the 

impact is strongest in the Baltimore region. A one percent increase in vacancies led to 

over a 2 percent increase in distress. In Washington, though, the impact is reversed. After 

controlling for distance to the CBD, one percent higher vacancies led to about 1 percent 

lower distress. This result may contribute further evidence to the difference between the 

Baltimore and Washington housing markets. While previously vacant areas in Baltimore 

continued suffering from vacancies, Washington‘s stronger housing market absorbed the 

vacancies. The impact of tenure status is also consistent with the previous research. 

Across the state, tenure status generally does not have a significant impact on the levels 

of distress, yet impact is more pronounced in Washington and Baltimore regions. One 

percent more renter-occupants lead to about 4 percent decrease in distressed properties in 

both regions.  

 The remaining two neighborhood variables, age of homes and population age, 

also provide some interesting insights. The age of home variable suggests that older 

neighborhoods across the state and in the two metropolitan areas experienced higher 

levels of distress. Though the magnitude of the impact is rather small, it is consistent 

across space and models. The effect is opposite from the one found by Immergluck 

(2010) where the areas with newer homes had higher concentration of foreclosures. The 

differing effect may indicate that non-prime lending in Maryland was heavily 

concentrated in older neighborhoods with prevalence of minority residents. Immergluck‘s 
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study encompasses much newer metropolitan areas, in Arizona and Nevada for example, 

where the construction boom was of much larger proportions than that seen in Maryland.  

Age of population is a significant predictor of distress and shows the expected 

effect. Across the state, one percent increase in population aged 35 or less increases 

distress by more than a half a percent. In Baltimore that increase is three-quarters of a 

percent, while in Washington, it is as much as 1.3 percent.  

 

Employment Variables 

 The employment variables used here are indented to capture employment in 

sectors which were disproportionally impacted as the result of the economic downturn. 

As anticipated, employment in construction or manufacturing led to a sizable and 

significant increase in levels of distress. In the full sample, one percent increase in those 

sectors led to about a 3.5 percent increase in distress. The effect is somewhat smaller in 

Baltimore and even more so in Washington, but still accounting for a 2 to 3 percent 

increase in distress.  Employment in finance sector did not exhibit any significant impact 

on levels of distress across the state or in the Washington region; however the impact was 

negative in the Baltimore region. This outcome may suggest that those employed in the 

finance sector may have skills transferable to other sectors which may have insulated 

them from economic shocks associated with employment layoffs.   

 

Urban Form Variables  

Now I turn to the variables which are of primary interest in this analysis. Urban form is 

accounted for via five variables: distance to the CBD, commute time, proximity to transit, 
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and employment accessibility by transit and employment accessibility by auto. The 

variable accounting for the distance to the CBD provides particularly interesting 

information showing that increase in the distance from the CBD results in higher 

concentration of distressed properties, all else equal. This result is consistent with 

arguments of those who believe that increased levels of foreclosures on the urban fringe 

is not merely an outcome of the subprime lending disaster but a shift in preferences for 

urban living.  The effect is evident when looking at the full sample, but with even greater 

magnitude when looking at the Washington metro communities. In Baltimore, distance to 

the CBD alone does not affect the level of distress, but distance becomes significant 

when employment accessibility by auto is kept constant. I suspect that the high 

correlation between distance to the CBD and accessibility measures in Baltimore impacts 

the results. In Washington, the correlation is much lower. For the full sample, being 

10km further from the CBD increases the level of distress by about 3 percent. In 

Washington, distress increases by as much as 10 percent before accounting for other 

accessibility measures.  

The second measure of interest is median commute time. This variable is also 

interesting because it suggests that commute time impacts the accumulation of distress in 

areas of the state apart from Washington and Baltimore regions. In other words, when the 

sample is not constrained to either Washington or Baltimore, the areas with longer 

commute time also experienced higher levels of distress. This result is consistent with the 

notion that households drove out further away from employment and service centers into 

auto-dependent bedroom communities that offered more affordable housing.  
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This notion is further corroborated by measures of employment accessibility by 

auto and transit which indicate significant relationships with accumulation of distressed 

properties. In particular, accessibility to employment by transit consistently shows 

significant impact on properties‘ distress. Access to retail jobs has a sizable effect of 0.72 

percent decrease for 10,000 more jobs, while access to office jobs has a smaller effect of 

0.19 percent decrease per 10,000 jobs. The largest impact comes from the accessibility to 

industry jobs by transit with a decline of 1.01 percent. Access to total employment by 

transit has the same effect as it does by the car, 0.11 percent. While the anticipated 

relationship between accessibility and foreclosures is confirmed, the results provide 

additional information about the relative importance of different employment sectors. In 

Washington, the relevance of retail jobs and industry jobs is even greater. Ten thousand 

more retail jobs decrease distress by 1 percent while the same number of industry jobs 

decrease distress by 1.2 percent. The office jobs reduce distress by 0.3 percent. Access to 

10,000 of any type of jobs has a 0.1 percent reducing effect. In Baltimore, the effects are 

similar. Access to retail jobs leads to 0.9 percent decline though the impact is 

insignificant. The office jobs have a declining effect of 0.5 percent, industry jobs 

decrease distress by 1.9 percent and the total employment has a negative 0.2 percent 

effect.  

Accessibility to jobs by auto has similar effects on levels of distressed properties. 

Ten thousand more retail jobs decrease the number of distressed properties by 0.59 

percent. The same accessibility to office jobs decreases distress by 0.24 percent. 

Accessibility to industry jobs by car does not appear to impact foreclosures, while jobs in 

the category of ―other‖ lead to 0.35 percent decrease in foreclosures. Employment in the 
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―other‖ category include: farm, mining, forestry, fishing and agricultural support, 

construction, health and social services, arts, entertainment and recreation, 

accommodations, food services, and other services including rental.  

Finally, access to 10,000 more jobs in general decreases distress by 0.11 percent. 

Within the two metropolitan areas, the impact of employment accessibility is still most 

significant though the coefficients are to some degree smaller and opposite between the 

two regions. While car accessibility to retail jobs leads to 0.13 percent decline per 10,000 

more jobs in Washington, it leads to a 0.13 increase in Baltimore. The same opposite 

relationship holds for office jobs with a 0.4 percent decreasing effect in Washington and 

a 0.4 increasing effect in Baltimore. Industry jobs lead to a 1.1 percent decrease in 

Washington and a 2.3 percent increase in Baltimore, while ―other‖ jobs have a positive 

0.4 percent and a negative 0.5 percent impacts for Washington and Baltimore 

respectively. Finally, access to 10,000 more jobs of any type of leads to a 0.2 percent 

decrease in distress in Washington and a 0.2 percent increase in Baltimore.  The opposite 

effects in Baltimore and Washington are interesting, though the Baltimore effects are 

counterintuitive. One would not generally expect the areas with greater accessibility to 

jobs to also have more foreclosures. The results for Baltimore may be because the 

accessibility measure is picking up some unobserved neighborhood characteristic that is 

not accounted for in this analysis. Baltimore‘s most blighted neighborhoods are well 

located near to downtown and with good accessibility to jobs. It may be that the 

neighborhood variables included in the model may be lacking some distinguishing 

feature of such neighborhoods.  
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And, the last set of variables controlling for proximity to transit in general does 

not appear to have significant and consistent impact on levels of distress. For the full 

sample, insignificance of transit buffers is expected as transit stops are located in the 

denser central corridor between the Baltimore and Washington regions. In Washington, 

being in a 1.5 mile buffer of a transit stop marginally decreases levels of distress but the 

effect is rather large, 5.8 percent fewer distressed properties. That effect is not conclusive 

given that proximity buffers of 0.5, 1, or 2 miles do not indicate any significant 

relationship with distress. In Baltimore, again, the buffer immediately encompassing the 

transit stops, 0.5 mile buffer, suggests increased levels of distressed properties by as 

much as 15 percent. The larger buffers are not significant. The result for Baltimore again 

indicates the peculiarity of the area since one would not expect transit oriented 

communities to be prone to foreclosures. Same as with the accessibility measure, the 

transit buffer may be suggesting some unobserved characteristics of those neighborhoods.   

 

Discussion  

Overview of the Findings 

The current foreclosure crisis is undoubtedly one of the most significant events in 

the recent history of housing markets in the United States. With the number of distressed 

households in millions, the future of many still remains uncertain. And while the 

financial regulatory oversight is still discussing precipitating causes and deliberating the 

appropriate response, the spatial context of the crisis is decisive for future organization of 

metropolitan spatial structure. Some have even argued that reversed preference for urban 
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living among the new, non-traditional household structure is among the causes of the 

foreclosure crisis.  

The purpose of the third essay was to examine the importance of urban form in 

accumulation of distressed properties in Maryland and two metropolitan areas, Baltimore 

and Washington. I investigated the relationship between distressed properties and their 

proximity to transit, employment, and central business districts. By introducing a richer 

set of urban form measures, I aimed to tease out differing findings of the previous 

research. I do, in fact, find that the majority of these measures have significant impact on 

the accumulation of distressed properties. Still, as previous research established, the 

dominating trigger of foreclosures in Maryland was the risky component of subprime 

lending with excessive mortgage leveraging carrying the most weight. All other subprime 

lending measures were also important predictors of household distress. The impact of 

second liens highlights an interesting trend observed in this region during the housing 

boom, specifically the lack of housing affordability. In order to afford homeownership, 

households overextended themselves by resorting to ―piggyback‖ loan products.   

Following in magnitude was the impact of employment with neighborhoods 

heavily dependent on jobs in manufacturing or construction suffering the most. These 

results confirm the expectations that the foreclosure crisis was just as much brought on by 

the risky lending practices as the subsequent economic downturn. The neighborhood 

characteristics which are also proxies for borrower characteristics confirm all previous 

expectations. Interestingly, also, the opposing impact of housing vacancies for the two 

metropolitan areas draws attention to differing housing markets, with the Washington 

region being relatively stronger than the Baltimore region. However, this study shows 
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that even after accounting for all expected drivers of the foreclosure crisis, urban form 

matters. One of the findings suggests that more foreclosures are occurring further from 

the central business districts. In Washington region, there are about 10 percent more 

distressed properties 10 kilometers away from the downtown, with the effect only falling 

down to 5 percent after accounting for accessibility to jobs. The effect is somewhat 

smaller when looking at the entire state though it is consistent again after accounting for 

accessibility to employment. This result confirms the value placed on amenities provided 

by urban living. The outcome on the metropolitan spatial structure works through the 

standard urban economic theory of changing rent gradients. In competing for locations 

closer to the urban core, increased demand for closer locations raises the value of that 

land and leads to higher density development. With increased population density closer to 

the urban core, the intercept of the density gradient rises as well. That is also the result 

confirmed by the analysis in the first essay for the Washington metropolitan area.   

Accessibility to employment, too, is a significant predictor of mortgage default. 

With the largest coefficient carried by accessibility to industry jobs, this measure may 

highlight the vulnerability of those employed in industry jobs to mortgage default if they 

lose their jobs. The employment accessibility measure may capture both the greater 

desirability of areas closer to employment as well as the availability of quicker transition 

of those who face loss of employment. Untangling the two effects may be an interesting 

subject for future research.  

Unexpectedly, I found the contrasting effect of auto accessibility and proximity to 

transit in Baltimore. There are several differing trends between Washington and 

Baltimore. First, the higher correlation between accessibility variables and the distance to 
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the central business district in Baltimore leads to the model‘s instability among the urban 

form measures. In Washington, the distribution of employment is not as heavily related to 

the distance to the central business district. Second, some unobserved feature of the 

Baltimore‘s most accessible and transit-oriented areas accounts for the increased level of 

distress.     

Finally, the results of this foreclosure study are consistent with the analyses of 

change in the metropolitan spatial structure from the first two essays. While the first two 

essays measured change in urban form up to the year 2007, the results on foreclosures 

provided in this essay may hint at future change in metropolitan spatial structure. Given 

the causative relationship between foreclosures and dire economic conditions and 

economic conditions and urban form, foreclosures may be a leading indicator that future 

urban form is changing.  

 

Limitations of the Study 

 There are several limitations of this study which are important to acknowledge. 

The foreclosure data used here captures both mortgage default as well as foreclosures up 

to the third quarter of 2009. However, due to the extended foreclosure process, I am not 

able to observe what happened to the defaulted properties thereon out. Also, while I am 

observing Maryland‘s side of the Washington metropolitan area, I do not account for the 

counties in Virginia or the District of Columbia. The sample encompassing the entire 

Washington metropolitan area may provide a better informational picture of the 

foreclosure crisis and how it may lead to urban form change. Also, this analysis only 

looks at the areas in Maryland. It would be interesting to similarly analyze other states 
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and metropolitan regions where forces at hand may have had different effects on the 

accumulation of distressed properties. Washington‘s dependency on the federal 

government and its consequently strong job market insulated the area from the worst of 

the economic downturn. Finally, it would be valuable to examine the other components 

of urban form which affect household transportation costs, such as proximity to bus stops 

and schools.  
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Final Remarks 

In this dissertation, I evaluated changes in urban spatial structure across a number 

of metropolitan areas in the US between 1990 and 2007.  The measures chosen in this 

work intended to primarily address attributes of urban form synonymous with the idea of 

sprawl and included a number of density measures, concentration and clustering indices, 

a measure for allocation of new growth within urban areas, and a new measure of infill 

development. By focusing on the multi-dimensional nature of urban form, I was able to 

discern some of the interesting trends at work since 1990. 

While I cannot say that suburbanization trends have determinately reversed across 

the country, the areas experiencing the most growth during this period have certainly 

showed reversal of pre-1990s trends.  The new growth trends which occurred in the 

metropolitan regions and which can contribute most of their current size to the growth in 

the last two decades appear to be different than growth trends of older, established 

regions.  

Despite their population pressures, new growth regions focused on increasing density of 

already existing urban areas. Following the definition of smart growth as presented 

herein, it is reasonable to conclude that most of the studied metropolitan areas have 

grown smarter. The growth trends are consistent with the theory of urban resurgence. 

While it is beyond the scope of this work to examine the underlying causes of increased 

demand for the urban environment and its amenities, there is an opportunity for future 

research to address that question. It appears that the urban resurgence trend is more 

prevalent among the new, incoming population. Also, changes in demographic trends, 

such as increasing number of single person households and the shrinking household size 
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in general, should be addressed as significant drivers of future change in spatial structure. 

In areas that remained stagnant in terms of their population size, the previously 

established trend of decentralization continued. It is in any case difficult to talk about 

urban resurgence for a region that hardly experienced any population growth. A 

household with more than one member would rarely relocate from their existing suburban 

home to a downtown location.   

Separately, there also appears to be a clear distinction between the decade of 

1990s and of 2000s. The trends of the 1990s can be claimed with some degree of 

certainty. The results show almost universally the tendency for urban areas to fill in the 

land previously passed over in the process of development. The decade of the 2000s, 

while subject to a great deal of innovation, was also the era of what can only be described 

as irrational exuberance on many fronts. For urban spatial structure, it was manifested in 

excessive overbuilding across the country and worldwide. The notion of shelter, housing, 

became tantamount with a perpetually multiplying investment portfolio, or a Ponzi 

scheme. However, the result of its collapse has been devastating for so many. Today, 

vacant homes epitomize neighborhoods of many metropolitan areas. Due to these 

aberrant set of events, it is difficult to ascertain which trends are indeed leading to an 

underlying reshaping of metropolitan areas and which trends simply caught the tailwinds 

of the exuberance.  The analysis of the foreclosure crisis presented in here also suggests 

that the theory of urban resurgence at least in the regions like Washington, DC, holds 

ground. The shift is demographic-specific though. As the 2010 census shows for the 

District,   households in their 20s and early 30s drove almost all of the city‘s growth since 

2000 and today make up almost one third of the District‘s population. The city also saw 
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an increase in households in their late 50s and early 60s, while the number of children 

younger than 15 decreased by a fifth (Morello et al, 2011). 

Spatial hazard analysis presented in the second essay also illustrated that 

urbanization and suburbanization trends can coexist within a single metropolitan area. 

The same applies to change in urban form. Over the last decade, metropolitan spatial 

structure has not changed consistently or universally. It is evident that some areas grew 

both denser in the urban core, but also more dispersed on the urban fringe. What all these 

results may be implying is that the traditional urban areas have gone from being 

organized based on income and race, to a new urban form which uniquely follows 

population age distribution, with young and old living close to urban amenities and those 

middle-aged enjoying the space of suburbs.  

Following the findings of this dissertation, I see many opportunities for planners 

to influence the reshaping of future metropolitan structure. While change in urban form 

may not seem as drastic when viewed in aggregate, there are clearly opportunities to 

improve efficiency of spatial structure and revisit collective concerns which led to a call 

for new urbanism and smart growth in the first place. As previously suggested by Peiser 

(1989), today‘s sprawl can turn into compact development in later years as the pace of 

urban growth leads builders to fill-in previously undeveloped sites. With a high 

probability of the re-shifting of population within and across metropolitan areas, planners 

can ensure that the opportunities for infill development are clearly defined and without 

obstacles. Further, the results illuminate the multi-dimensional nature of the metropolitan 

areas. When considering public policy responses, it is important to determine which 

specific dimension of urban form is creating detrimental results.  



 

184 

 

And finally, the foreclosure crisis, though devastating for many families and 

highly taxing on cities and neighborhoods, provides a unique opportunity for planners, 

policy makers, and developers. The location of foreclosures clearly matters; thus, the 

location of foreclosures needs to be taken into consideration when determining remedial 

measures. Many have suggested turning vacant homes into long-term affordable housing 

or redeveloping the areas, given the relatively inexpensive land and housing stock. 

However, when the housing stock is located further away from the service and 

employment centers, turning it into affordable housing further challenges the households 

facing financial difficulties. Also, the current foreclosure crisis is an opportunity for 

planners to learn from the grave mistakes. Understanding the circumstances that cause 

neighborhoods to be vulnerable to foreclosure and exposing the planning process and 

urban form that enable these circumstances is critical in creating more sustainable forms 

of urban spatial structure.  
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APPENDIX A 
 

Table 13:  Metropolitan Area Population Changes, 1990-2007 

Metropolitan Area 
Population Difference in Population Population change 

1990 2000 2007 2000-1990 2007-1990 2007-2000 2000-1990 2007-1990 2007-2000 

Atlanta-Sandy Springs-Marietta, GA 3,069,427 4,247,981 5,322,915 1,178,554 2,253,488 1,074,934 38% 73% 25% 

Austin-Round Rock, TX 850,140 1,256,354 1,577,236 406,214 727,096 320,882 48% 86% 26% 

Baltimore-Towson, MD 2,450,250 2,635,625 2,798,417 185,375 348,167 162,792 8% 14% 6% 
Boston-Cambridge-Quincy, MA-NH 4,133,897 4,391,344 4,515,779 257,447 381,882 124,435 6% 9% 3% 

Charlotte-Gastonia-Concord, NC-SC  1,024,291 1,330,448 1,621,635 306,157 597,344 291,187 30% 58% 22% 

Chicago-Naperville-Joliet, IL-IN-WI  8,182,079 9,098,316 9,747,870 916,237 1,565,791 649,554 11% 19% 7% 
Cincinnati-Middletown, OH-KY-IN  1,844,793 2,009,632 2,118,580 164,839 273,787 108,948 9% 15% 5% 

Cleveland-Elyria-Mentor, OH  2,102,091 2,148,143 2,150,129 46,052 48,038 1,986 2% 2% 0% 

Dallas-Fort Worth-Arlington, TX  3,989,291 5,161,544 6,118,183 1,172,253 2,128,892 956,639 29% 53% 19% 
Denver-Aurora, CO 1,634,528 2,127,336 2,399,559 492,808 765,031 272,223 30% 47% 13% 

Detroit-Warren-Livonia, MI  4,248,698 4,452,557 4,561,522 203,859 312,824 108,965 5% 7% 2% 

El Paso, TX  591,610 679,622 751,891 88,012 160,281 72,269 15% 27% 11% 
Houston-Sugar Land-Baytown, TX  3,767,463 4,715,407 5,620,734 947,944 1,853,271 905,327 25% 49% 19% 

Indianapolis, IN  1,294,217 1,525,104 1,701,870 230,887 407,653 176,766 18% 31% 12% 

Jacksonville, FL  925,214 1,122,750 1,359,173 197,536 433,959 236,423 21% 47% 21% 
Las Vegas-Paradise, NV  748,000 1,381,417 1,900,147 633,417 1,152,147 518,730 85% 154% 38% 

Los Angeles-Long Beach-Santa Ana, CA  10,281,036 11,111,054 11,780,120 830,018 1,499,084 669,066 8% 15% 6% 

Miami-Fort Lauderdale-Miami Beach, FL  4,056,100 5,007,564 5,607,038 951,464 1,550,938 599,474 23% 38% 12% 
Minneapolis-St. Paul-Bloomington, MN-WI  2,538,831 2,968,806 3,313,789 429,975 774,958 344,983 17% 31% 12% 

New York-Northern New Jersey-Long Island, NY-

NJ-PA  

16,489,798 17,898,155 18,629,884 1,408,357 2,140,086 731,729 9% 13% 4% 

Orlando-Kissimmee,  FL  1,224,851 1,644,561 2,098,102 419,710 873,251 453,541 34% 71% 28% 

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD  5,737,662 6,048,477 6,339,267 310,815 601,605 290,790 5% 10% 5% 

Phoenix-Mesa-Scottsdale, AZ  2,253,304 3,268,226 4,181,616 1,014,922 1,928,312 913,390 45% 86% 28% 
Pittsburgh, PA  2,468,289 2,431,087 2,404,190 -37,202 -64,099 -26,897 -2% -3% -1% 

Portland-Vancouver-Beaverton, OR-WA  1,523,738 1,927,881 2,162,868 404,143 639,130 234,987 27% 42% 12% 

Richmond, VA  992,048 1,168,021 1,316,356 175,973 324,308 148,335 18% 33% 13% 
Riverside-San Bernardino-Ontario, CA  3,585,376 4,516,881 5,572,433 931,505 1,987,057 1,055,552 26% 55% 23% 

Sacramento-Arden-Arcade-Roseville, CA  1,481,807 1,796,857 2,141,388 315,050 659,581 344,531 21% 45% 19% 

St. Louis, MO-IL 2,580,901 2,698,687 2,833,675 117,786 252,774 134,988 5% 10% 5% 
San Antonio, TX  1,403,765 1,705,112 1,978,640 301,347 574,875 273,528 21% 41% 16% 

San Diego-Carlsbad-San Marcos, CA  2,472,728 2,784,344 3,032,312 311,616 559,584 247,968 13% 23% 9% 

San Francisco-Oakland-Fremont, CA  3,686,592 4,123,740 4,316,905 437,148 630,313 193,165 12% 17% 5% 
Seattle-Tacoma-Bellevue, WA  2,559,163 3,043,878 3,327,901 484,715 768,738 284,023 19% 30% 9% 

Tampa-St. Petersburg-Clearwater, FL  2,067,963 2,395,997 2,765,528 328,034 697,565 369,531 16% 34% 15% 

Virginia Beach-Norfolk-Newport News, VA-NC  1,454,603 1,581,449 1,695,860 126,846 241,257 114,411 9% 17% 7% 
Washington-Arlington-Alexandria, DC-VA-MD-WV  4,060,750 4,700,926 5,321,363 640,176 1,260,613 620,437 16% 31% 13% 
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Table 14: Density Gradients 1990, 2000, and 2007 

Metropolitan Areas 

Ln (population density 1990) Ln (population density 2000) Ln (population density 2007) 

N 
Distance 

to CBD 
Intercept  

Adj 

R2 

Distance to 

CBD 
Intercept 

Adj 

R2 

Distance to 

CBD 
Intercept 

Adj 

R2 

Atlanta-Sandy Springs-Marietta, GA 
-0.571*** 7.644*** 0.720 -0.522*** 7.768*** 0.671 -0.495*** 7.858*** 0.671 690 

  -38.877 178.440 

 

-36.403 164.470   -35.533 170.883     

Austin-Round Rock, TX 
-0.736*** 7.389*** 0.411 -0.694*** 7.716*** 0.468 -0.656*** 7.808*** 0.468 257 

  -12.314 65.208 

 

-12.765 81.389   -12.372 86.385     

Baltimore-Towson, MD 
-0.754*** 8.353*** 0.575 -0.694*** 8.286*** 0.562 -0.662*** 8.264*** 0.549 642 

  -28.154 141.525 

 

-27.614 148.636   -27.162 153.118     

Boston-Cambridge-Quincy, MA-NH 
-0.459*** 8.415*** 0.487 -0.448*** 8.437*** 0.487 -0.435*** 8.427 0.476 920 

  -23.635 158.470 

 

-23.992 161.217   -23.683 162.626     

Charlotte-Gastonia-Concord, NC-SC  
-0.528 6.872*** 0.362 -0.527 7.132*** 0.431 -0.531 7.289*** 0.457 267 

  -12.356 61.893 

 

-13.098 68.716   -13.267 71.232     

Chicago-Naperville-Joliet, IL-IN-WI  
-0.444*** 8.774 0.413 -0.419*** 8.793 0.417 -0.402*** 8.802 0.431 2,052 

  -29.981 168.223 

 

-30.473 184.201   -30.768 201.559     

Cincinnati-Middletown, OH-KY-IN  
-0.618*** 7.721 0.412 -0.577*** 7.693*** 0.425 -0.538*** 7.638** 0.405 486 

  -16.284 95.234 

 

-16.458 114.007   -15.587 115.796     

Cleveland-Elyria-Mentor, OH  
-0.564*** 8.032*** 0.311 -0.509*** 7.921* 0.267 -0.490*** 7.885*** 0.278 693 

  -14.949 86.815 

 

-13.405 82.021   -13.708 89.038     

Colorado Springs, CO  
-1.215*** 7.545*** 0.689 -1.136*** 7.756*** 0.708 -1.097*** 7.796*** 0.702 123 

  -12.753 55.422 

 

-14.896 67.164   -15.841 71.137     

Dallas-Fort Worth-Arlington, TX  
-0.377*** 7.649** 0.241 -0.358*** 7.892 0.296 -0.338*** 7.950 0.297 1,046 

  -17.522 109.715 

 

-17.517 122.261   -16.762 124.940     

Denver-Aurora, CO 
-1.078*** 8.352*** 0.492 -0.934*** 8.451*** 0.473 -0.864*** 8.432*** 0.461 520 

  -14.016 72.706 

 

-14.002 85.467   -13.792 91.458     

Detroit-Warren-Livonia, MI  
-0.465*** 8.264*** 0.471 -0.416*** 8.167*** 0.446 -0.394*** 8.127*** 0.455 1,289 

  -24.716 146.857 

 

-22.758 143.001   -22.856 158.170     

El Paso, TX  
-1.167*** 8.442 0.358 -0.909*** 8.245 0.345 -0.841*** 8.209 0.322 126 

  -7.690 37.315 

 

-7.128 45.397   -6.482 44.853     

Houston-Sugar Land-Baytown, TX  
-0.451*** 7.662 0.312 -0.425*** 7.823*** 0.320 -0.412*** 7.930*** 0.333 895 

  -15.687 99.688 

 

-15.940 108.632   -15.948 116.216     

Indianapolis, IN  
-0.795 7.644*** 0.538 -0.743 7.663*** 0.531 -0.709 7.656*** 0.532 315 

  -15.717 93.620 

 

-15.538 100.153   -15.257 104.316     

Jacksonville, FL  
-0.542*** 7.155 0.375 -0.492*** 7.195 0.351 -0.462*** 7.277 0.345 201 

  -7.672 63.554 

 

-7.396 66.735   -7.164 70.698     

Las Vegas-Paradise, NV  
-0.373 5.998*** 0.095 -0.405*** 7.739*** 0.338 -0.399** 7.971*** 0.411 347 

  -6.402 33.979 

 

-7.820 88.660   -7.771 106.066     

Los Angeles-Long Beach-Santa Ana, 

CA  
-0.404 8.971** 0.229 -0.361** 8.947 0.196 -0.339*** 8.960** 0.191 2,371 

  -17.886 189.828 

 

-16.597 187.520   -16.747 196.798     

Miami-Fort Lauderdale-Miami Beach, 

FL  
-0.128 7.715*** 0.089 -0.122 7.996*** 0.160 -0.112* 8.062*** 0.167 890 

  -10.139 98.851 

 

-11.944 148.593   -11.794 164.753     

Minneapolis-St. Paul-Bloomington, 

MN-WI  
-0.764 8.093*** 0.593 -0.738*** 8.216*** 0.661 -0.668*** 8.169*** 0.618 746 

  -20.435 107.812 

 

-28.353 154.598   -21.022 133.316     

New York-Northern New Jersey-Long 

Island, NY-NJ-PA  
-0.487*** 9.573*** 0.378 -0.482*** 9.627*** 0.349 -0.481*** 9.692*** 0.387 4,396 

  -48.069 262.434 

 

-47.458 255.291   -48.886 274.798     

Orlando-Kissimmee,  FL  
-0.537 7.198*** 0.258 -0.508** 7.477*** 0.336 -0.462 7.577*** 0.353 328 

  -9.097 64.491 

 

-9.552 85.348   -9.282 96.174     

Philadelphia-Camden-Wilmington, PA-

NJ-DE-MD  
-0.420*** 8.141*** 0.277 -0.392*** 8.088*** 0.245 -0.371*** 8.076*** 0.234 1,556 

  -21.238 124.124 

 

-19.430 119.860   -18.925 122.256     

Phoenix-Mesa-Scottsdale, AZ  
-0.298*** 7.012*** 0.188 -0.286*** 7.590*** 0.279 -0.279*** 7.753*** 0.300 705 

  -6.195 59.420 

 

-6.828 78.484   -6.898 84.451     

Pittsburgh, PA  
-0.505*** 7.780** 0.373 -4.881*** 7.702*** 0.373 -0.479*** 7.657*** 0.370 721 

  -18.330 119.286 

 

-18.213 124.696   -17.944 124.513     

Portland-Vancouver-Beaverton, OR-

WA  
-0.901** 8.020*** 0.575 -0.873*** 8.220*** 0.581 -0.858*** 8.293*** 0.572 426 

  -16.956 94.487 

 

-16.690 102.640   -16.493 104.399     

Richmond, VA  
-0.653 7.203*** 0.487 -0.617* 7.271*** 0.487 -0.594 7.303*** 0.482 283 

  -13.390 71.222 

 

-12.391 73.616   -11.573 74.149     
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Riverside-San Bernardino-Ontario, CA  
-0.199*** 7.253*** 0.091 -0.180*** 7.527** 0.104 -0.172*** 7.665*** 0.105 840 

  -8.474 75.668 

 

-7.412 79.489   -6.920 80.628     

Sacramento-Arden-Arcade-Roseville, 

CA  
-0.315*** 7.145*** 0.185 -0.320*** 7.565*** 0.304 -0.315*** 7.684*** 0.324 403 

  -7.824 58.459 

 

-8.358 80.476   -8.332 87.199     

St. Louis, MO-IL 
-0.593** 7.901*** 0.560 -0.535*** 7.764*** 0.492 -0.511*** 7.739*** 0.480 550 

  -22.371 102.562 

 

-20.017 94.769   -19.637 99.295     

San Antonio, TX  
-0.871*** 7.786* 0.531 -0.808* 7.890* 0.546 -0.774*** 7.948** 0.542 338 

  -18.254 85.671 

 

-18.325 94.573   -17.840 98.009     

San Diego-Carlsbad-San Marcos, CA  
-0.365*** 8.010*** 0.151 -0.326*** 8.171*** 0.205 -0.316*** 8.224*** 0.213 599 

  -9.268 84.319 

 

-8.719 104.601   -8.535 109.346     

San Francisco-Oakland-Fremont, CA  
-0.469 8.805*** 0.240 -0.437 8.845*** 0.239 -0.429 8.866*** 0.240 871 

  -14.864 108.013 

 

-14.742 115.299   -15.083 120.946     

Seattle-Tacoma-Bellevue, WA  
-0.456*** 8.005 0.349 -0.420*** 8.096* 0.332 -0.406*** 8.140* 0.328 664 

  -16.935 120.881 

 

-15.615 122.390   -15.089 123.386     

Tampa-St. Petersburg-Clearwater, FL  
-0.246*** 7.172 0.065 -0.251*** 7.385*** 0.101 -0.249*** 7.506 0.118 547 

  -6.804 69.988 

 

-7.514 87.813   -7.701 93.071     

Virginia Beach-Norfolk-Newport News, 

VA-NC  
-0.557*** 8.093 0.232 -0.516*** 8.051*** 0.221 -0.486*** 8.025 0.212 368 

  -10.911 62.996 
 

-10.305 66.383 
 

-9.988 69.213 
 

  

Washington-Arlington-Alexandria, DC-

VA-MD-WV  
-0.545*** 8.234 0.454 -0.484*** 8.228*** 0.410 -0.451*** 8.249 0.393 1,004 

  -21.662 134.883 
 

-20.479 133.858 
 

-20.107 140.879 
 

  

All metropolitan Areas 
-0.391*** 8.073*** 0.217 -0.369*** 8.184*** 0.230 -0.354*** 8.226*** 0.232 

29,47

5 

  -68.903 499.767 
 

-69.101 546.214   -68.267 570.324     
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Table 15: Density Gradients Change, 1990-2000, 2000-2007, 1990-2007 

Metropolitan Areas 

Change 1990 to 2000 Change 2000 to 2007 Change 1990 to 2007 

N 
Distance 

to CBD 
Intercept  

Adj 

R2 

Distance to 

CBD 
Intercept 

Adj 

R2 

Distance to 

CBD 
Intercept 

Adj 

R2 

Atlanta-Sandy Springs-Marietta, GA 
0.048*** 0.123*** 0.062 0.028*** 0.091*** 0.064 0.076*** 0.214*** 0.094 690 

  7.049 4.895   4.962 7.276   7.463 7.023     

Austin-Round Rock, TX 
0.042*** 0.327*** 0.009 0.038*** 0.092*** 0.076 0.081*** 0.419*** 0.030 257 

  2.913 6.735   5.212 6.435   4.056 7.602     

Baltimore-Towson, MD 
0.060*** -0.068*** 0.054 0.032*** -0.022*** 0.272 0.093*** -0.089*** 0.106 642 

  9.265 -3.854   14.043 -4.183   11.574 -4.498     

Boston-Cambridge-Quincy, MA-NH 
0.011*** 0.022*** 0.023 0.013*** -0.010*** 0.265 0.024*** 0.012 0.088 920 

  3.708 2.829   14.947 -3.880   7.252 1.357     

Charlotte-Gastonia-Concord, NC-SC  
0.001 0.260*** -0.004 -0.004 0.157*** -0.003 -0.003 0.417*** -0.004 267 

  0.062 6.485   -0.734 9.081   -0.213 8.095     

Chicago-Naperville-Joliet, IL-IN-WI  
0.025*** 0.020 0.016 0.017*** 0.008 0.018 0.042*** 0.028 0.036 2,052 

  4.782 0.908   5.137 0.590   7.080 1.202     

Cincinnati-Middletown, OH-KY-IN  
0.041*** -0.028 0.029 0.039*** -0.055*** 0.096 0.080*** -0.083** 0.094 486 

  3.721 -0.877   6.240 -6.454   7.106 -2.466     

Cleveland-Elyria-Mentor, OH  
0.055*** -0.110*** 0.034 0.019*** -0.037* 0.016 0.074*** -0.147*** 0.066 693 

  4.299 -2.854   3.046 -1.948   6.020 -4.099     

Dallas-Fort Worth-Arlington, TX  
0.019*** 0.243*** 0.002 0.020*** 0.058*** 0.034 0.039*** 0.300*** 0.008 1,046 

  3.575 9.315   7.133 6.993   5.632 10.347     

Denver-Aurora, CO 
0.145*** 0.100** 0.066 0.070*** -0.018 0.081 0.214*** 0.080 0.098 520 

  5.248 2.553   4.782 -0.954   5.421 1.483     

Detroit-Warren-Livonia, MI  
0.049*** -0.096*** 0.039 0.022*** -0.040*** 0.056 0.071*** -0.137*** 0.072 1,289 

  5.027 -3.517   7.326 -3.303   7.062 -5.022     

Houston-Sugar Land-Baytown, TX  
0.026*** 0.161*** 0.009 0.013*** 0.107*** 0.013 0.039*** 0.268*** 0.016 895 

  2.896 5.003   4.705 10.716   3.886 7.678     

Indianapolis, IN  
0.052*** 0.020 0.059 0.034*** -0.007 0.077 0.086*** 0.013 0.095 315 

  5.886 0.912   6.326 -0.639   6.486 0.452     

Jacksonville, FL  
0.050*** 0.039 0.054 0.030*** 0.082*** 0.070 0.080*** 0.122*** 0.084 201 

  4.930 1.230   4.632 5.237   5.866 3.188     

Las Vegas-Paradise, NV  
-0.033 1.740*** -0.002 0.006 0.232*** -0.002 -0.027 1.972*** -0.002 347 

  -1.161 11.218   1.061 7.862   -0.833 12.146     

Los Angeles-Long Beach-Santa Ana, 

CA  
0.043*** -0.025 0.016 0.022*** 0.014 0.017 0.065*** -0.011 0.033 2,371 

  4.364 -1.438   3.413 1.143   6.066 -0.609     

Miami-Fort Lauderdale-Miami Beach, 

FL  
0.007 0.281*** -0.000 0.010*** 0.066*** 0.015 0.016** 0.347*** 0.002 890 

  1.124 5.505   3.663 4.412   2.313 6.201     

Minneapolis-St. Paul-Bloomington, 

MN-WI  
0.026 0.123** 0.005 0.070** -0.047 0.110 0.096*** 0.076** 0.075 746 

  0.837 2.160   2.537 -0.959   7.558 2.556     

New York-Northern New Jersey-Long 

Island, NY-NJ-PA  
0.005 0.054*** 0.000 0.001 0.065*** -0.000 0.006* 0.119*** 0.000 4,396 

  1.452 3.653   0.464 9.158   1.734 8.340     

Orlando-Kissimmee,  FL  
0.029 0.279*** -0.001 0.046*** 0.101*** 0.039 0.075*** 0.379*** 0.011 328 

  1.300 3.561   3.907 3.307   2.901 4.786     

Philadelphia-Camden-Wilmington, PA-

NJ-DE-MD  
0.028*** -0.053*** 0.012 0.021*** -0.012*** 0.087 0.049*** -0.065*** 0.036 1,556 

  4.521 -2.862   11.990 -2.660   7.786 -3.421     

Phoenix-Mesa-Scottsdale, AZ  
0.011 0.579*** -0.001 0.007** 0.162*** 0.002 0.019 0.741*** 0.000 705 

  0.710 10.550   2.112 11.883   1.014 12.190     

Pittsburgh, PA  
0.017*** -0.078*** 0.033 0.009*** -0.046*** 0.071 0.026*** -0.124*** 0.060 721 

  5.512 -6.534   7.903 -11.178   7.794 -9.652     

Portland-Vancouver-Beaverton, OR-

WA  
0.028*** 0.200*** 0.008 0.016*** 0.073*** 0.029 0.043*** 0.273*** 0.016 426 

  3.063 8.473   3.608 8.239   3.469 9.260     

Richmond, VA  
0.036*** 0.068** 0.025 0.024*** 0.032*** 0.109 0.060*** 0.100*** 0.056 283 

  4.853 2.369   5.594 3.019   6.037 3.065     

Riverside-San Bernardino-Ontario, CA  
0.019** 0.273*** 0.001 0.008*** 0.139*** 0.007 0.027*** 0.412*** 0.004 840 

  2.532 6.888   2.685 10.994   3.175 9.268     

Sacramento-Arden-Arcade-Roseville, 

CA  
-0.005 0.420*** -0.002 0.005* 0.119*** -0.000 0.001 0.539*** -0.002 403 

  -0.640 5.614   1.908 6.035   0.078 6.645     
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St. Louis, MO-IL 
0.058*** -0.137*** 0.125 0.024*** -0.025** 0.112 0.082*** -0.162*** 0.196 550 

  7.933 -5.354   6.063 -2.461   9.575 -7.177     

San Antonio, TX  
0.063*** 0.103*** 0.038 0.033*** 0.059*** 0.054 0.097*** 0.162*** 0.056 338 

  6.009 3.360   5.747 4.805   6.311 4.248     

San Diego-Carlsbad-San Marcos, CA  
0.039** 0.161*** 0.003 0.010*** 0.053*** 0.005 0.049*** 0.214*** 0.005 599 

  2.346 3.043   2.764 3.772   2.837 3.730     

San Francisco-Oakland-Fremont, CA  
0.032*** 0.041* 0.015 0.009* 0.021* 0.007 0.040*** 0.061** 0.018 871 

  3.990 1.824   1.755 1.690   3.799 2.217     

Seattle-Tacoma-Bellevue, WA  
0.036*** 0.092*** 0.043 0.014*** 0.043*** 0.025 0.050*** 0.135*** 0.055 664 

  7.013 5.226   4.333 4.071   6.994 5.974     

Tampa-St. Petersburg-Clearwater, FL  
-0.005 0.213*** -0.002 0.002 0.121*** -0.002 -0.003 0.334*** -0.002 547 

  -0.352 3.763   0.323 7.445   -0.199 5.248     

Virginia Beach-Norfolk-Newport News, 

VA-NC  
0.041*** -0.042 0.024 0.030*** -0.026* 0.108 0.071*** -0.068* 0.056 368 

  3.818 -1.303   5.471 -1.803   5.228 -1.739     

Washington-Arlington-Alexandria, DC-

VA-MD-WV  
0.060*** -0.006 0.082 0.033*** 0.021*** 0.120 0.094*** 0.015 0.127 1,004 

  8.724 -0.428   9.365 2.899   10.357 0.861     

All metropolitan Areas 
0.021*** 0.111*** 0.004 0.015*** 0.042*** 0.015 0.036*** 0.153*** 0.011 

29,47

5 

  12.526 18.130   19.290 18.258   19.556 23.341     
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Figure 35: Density Histograms 1990, 2000, 2007 

 

Atlanta-Sandy Springs-Marietta, GA 

 

 

 
 

1990 1990-2000 

  

2000 2000-2007 

  

2007 1990-2007 

  

 

 

 

0

50

100

150

200

250

300

350
5

0
0

2
0

00

3
5

00

5
0

00

6
5

00

8
0

00

9
5

00

1
1

00
0

1
2

50
0

1
4

00
0

1
5

50
0

1
7

00
0

1
8

50
0

2
0

00
0

Fr
e

q
u

e
n

cy
 

Population per square kilometer -80

-60

-40

-20

0

20

40

5
0

0

2
0

00

3
5

00

5
0

00

6
5

00

8
0

00

9
5

00

1
1

00
0

1
2

50
0

1
4

00
0

1
5

50
0

1
7

00
0

1
8

50
0

2
0

00
0

C
h

an
ge

 in
 F

re
q

u
e

n
cy

 

Population per square kilometer 

0

50

100

150

200

250

300

350

5
0

0

2
0

00

3
5

00

5
0

00

6
5

00

8
0

00

9
5

00

1
1

00
0

1
2

50
0

1
4

00
0

1
5

50
0

1
7

00
0

1
8

50
0

2
0

00
0

Fr
e

q
u

e
n

cy
 

Population per square kilometer 
-80

-60

-40

-20

0

20

40

5
0

0

2
0

00

3
5

00

5
0

00

6
5

00

8
0

00

9
5

00

1
1

00
0

1
2

50
0

1
4

00
0

1
5

50
0

1
7

00
0

1
8

50
0

2
0

00
0

C
h

an
ge

 in
 F

re
q

u
e

n
cy

 

Population per square kilometer 

0

50

100

150

200

250

300

350

5
0

0

2
0

00

3
5

00

5
0

00

6
5

00

8
0

00

9
5

00

1
1

00
0

1
2

50
0

1
4

00
0

1
5

50
0

1
7

00
0

1
8

50
0

2
0

00
0

Fr
e

q
u

e
n

cy
 

Population per square kilometer 
-80

-60

-40

-20

0

20

40

5
0

0

2
0

00

3
5

00

5
0

00

6
5

00

8
0

00

9
5

00

1
1

00
0

1
2

50
0

1
4

00
0

1
5

50
0

1
7

00
0

1
8

50
0

2
0

00
0

C
h

an
ge

 in
 F

re
q

u
e

n
cy

 

Population per square kilometer 



 

191 

 

 

 

Austin-Round Rock, TX 
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Baltimore-Towson, MD 
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Boston-Cambridge-Quincy, MA-NH 
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Charlotte-Gastonia-Concord, NC-SC 
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Chicago-Naperville-Joliet, IL-IN-WI 
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Cincinnati-Middletown, OH-KY-IN 
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Cleveland-Elyria-Mentor, OH 

 

 

  

1990 1990-2000 

  

2000 2000-2007 

  

2007 1990-2007 

  

 

  

0

20

40

60

80

100

120

140

160

5
0

0

2
0

00

3
5

00

5
0

00

6
5

00

8
0

00

9
5

00

1
1

00
0

1
2

50
0

1
4

00
0

1
5

50
0

1
7

00
0

1
8

50
0

2
0

00
0

Fr
e

q
u

e
n

cy
 

Population per square kilometer 
-20

-15

-10

-5

0

5

10

15

5
0

0

2
0

00

3
5

00

5
0

00

6
5

00

8
0

00

9
5

00

1
1

00
0

1
2

50
0

1
4

00
0

1
5

50
0

1
7

00
0

1
8

50
0

2
0

00
0

C
h

an
ge

 in
 F

re
q

u
e

n
cy

 

Population per square kilometer 

0

20

40

60

80

100

120

140

160

5
0

0

2
0

00

3
5

00

5
0

00

6
5

00

8
0

00

9
5

00

1
1

00
0

1
2

50
0

1
4

00
0

1
5

50
0

1
7

00
0

1
8

50
0

2
0

00
0

Fr
e

q
u

e
n

cy
 

Population per square kilometer 
-20

-15

-10

-5

0

5

10

15

5
0

0

2
0

00

3
5

00

5
0

00

6
5

00

8
0

00

9
5

00

1
1

00
0

1
2

50
0

1
4

00
0

1
5

50
0

1
7

00
0

1
8

50
0

2
0

00
0

C
h

an
ge

 in
 F

re
q

u
e

n
cy

 

Population per square kilometer 

0

20

40

60

80

100

120

140

160

5
0

0

2
0

00

3
5

00

5
0

00

6
5

00

8
0

00

9
5

00

1
1

00
0

1
2

50
0

1
4

00
0

1
5

50
0

1
7

00
0

1
8

50
0

2
0

00
0

Fr
e

q
u

e
n

cy
 

Population per square kilometer 
-20

-15

-10

-5

0

5

10

15

5
0

0

2
0

00

3
5

00

5
0

00

6
5

00

8
0

00

9
5

00

1
1

00
0

1
2

50
0

1
4

00
0

1
5

50
0

1
7

00
0

1
8

50
0

2
0

00
0

C
h

an
ge

 in
 F

re
q

u
e

n
cy

 

Population per square kilometer 



 

198 

 

Dallas-Fort Worth-Arlington, TX 
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Denver-Aurora, CO 
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Detroit-Warren-Livonia, MI 
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Houston-Sugar Land-Baytown, TX 
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Indianapolis, IN 
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Jacksonville, FL 
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Las Vegas-Paradise, NV 

 

 

  

1990 1990-2000 

  

2000 2000-2007 

  

2007 1990-2007 

  

 

  

0
5

10
15
20
25
30
35
40
45
50

5
0

0

2
0

00

3
5

00

5
0

00

6
5

00

8
0

00

9
5

00

1
1

00
0

1
2

50
0

1
4

00
0

1
5

50
0

1
7

00
0

1
8

50
0

2
0

00
0

Fr
e

q
u

e
n

cy
 

Population per square kilometer 
-15

-10

-5

0

5

10

15

5
0

0

2
0

00

3
5

00

5
0

00

6
5

00

8
0

00

9
5

00

1
1

00
0

1
2

50
0

1
4

00
0

1
5

50
0

1
7

00
0

1
8

50
0

2
0

00
0

C
h

an
ge

 in
 F

re
q

u
e

n
cy

 

Population per square kilometer 

0
5

10
15
20
25
30
35
40
45
50

5
0

0

2
0

00

3
5

00

5
0

00

6
5

00

8
0

00

9
5

00

1
1

00
0

1
2

50
0

1
4

00
0

1
5

50
0

1
7

00
0

1
8

50
0

2
0

00
0

Fr
e

q
u

e
n

cy
 

Population per square kilometer 
-15

-10

-5

0

5

10

15

5
0

0

2
0

00

3
5

00

5
0

00

6
5

00

8
0

00

9
5

00

1
1

00
0

1
2

50
0

1
4

00
0

1
5

50
0

1
7

00
0

1
8

50
0

2
0

00
0

C
h

an
ge

 in
 F

re
q

u
e

n
cy

 

Population per square kilometer 

0
5

10
15
20
25
30
35
40
45
50

5
0

0

2
0

00

3
5

00

5
0

00

6
5

00

8
0

00

9
5

00

1
1

00
0

1
2

50
0

1
4

00
0

1
5

50
0

1
7

00
0

1
8

50
0

2
0

00
0

Fr
e

q
u

e
n

cy
 

Population per square kilometer 
-15

-10

-5

0

5

10

15

5
0

0

2
0

00

3
5

00

5
0

00

6
5

00

8
0

00

9
5

00

1
1

00
0

1
2

50
0

1
4

00
0

1
5

50
0

1
7

00
0

1
8

50
0

2
0

00
0

C
h

an
ge

 in
 F

re
q

u
e

n
cy

 

Population per square kilometer 



 

205 

 

Los Angeles-Long Beach-Santa Ana, CA 
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Miami-Fort Lauderdale-Miami Beach, FL 
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Minneapolis-St. Paul-Bloomington, MN-WI 
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New York-Northern New Jersey-Long Island, NY-NJ-PA 
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Orlando-Kissimmee, FL 
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Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 
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Phoenix-Mesa-Scottsdale, AZ 
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Pittsburgh, PA 
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Portland-Vancouver-Beaverton, OR-WA 
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Richmond, VA 
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Riverside-San Bernardino-Ontario, CA 
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Sacramento-Arden-Arcade-Roseville, CA 
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St. Louis, MO-IL 
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San Antonio, TX 
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San Diego-Carlsbad-San Marcos, CA 
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San Francisco-Oakland-Fremont, CA 
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Seattle-Tacoma-Bellevue, WA 
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Tampa-St. Petersburg-Clearwater, FL 
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Virginia Beach-Norfolk-Newport News, VA-NC 
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Washington-Arlington-Alexandria, DC-VA-MD-WV 
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Urbanization  

 
Table 16: Population Growth by Category – 1990-2007 

CBSA Urban 1990 

Urbanized 

1990-2000 

Urbanized 

2000-2007 Never Urban 

Atlanta-Sandy Springs-Marietta, GA 29.11% 18.15% 14.27% 38.46% 

Austin-Round Rock, TX 24.72% 21.77% 13.34% 40.17% 

Baltimore-Towson, MD 22.40% 29.83% 6.13% 41.64% 

Boston-Cambridge-Quincy, MA-NH 35.50% 4.88% 2.79% 56.83% 

Charlotte-Gastonia-Concord, NC-SC  13.48% 17.94% 24.40% 44.19% 

Chicago-Naperville-Joliet, IL-IN-WI  40.68% 27.00% 7.08% 25.23% 

Cincinnati-Middletown, OH-KY-IN  -7.78% 30.33% 16.65% 60.80% 

Cleveland-Elyria-Mentor, OH  -162.65% 45.90% 53.91% 162.84% 

Dallas-Fort Worth-Arlington, TX  37.39% 20.96% 15.09% 26.56% 

Denver-Aurora, CO 41.78% 24.87% 8.39% 24.96% 

Detroit-Warren-Livonia, MI  -7.90% 28.14% 19.79% 59.97% 

Houston-Sugar Land-Baytown, TX  45.37% 13.74% 16.21% 24.68% 

Indianapolis, IN  9.58% 25.08% 15.04% 50.31% 

Jacksonville, FL  20.78% 21.62% 12.00% 45.61% 

Las Vegas-Paradise, NV  26.08% 40.12% 22.36% 11.44% 

Los Angeles-Long Beach-Santa Ana, CA  88.29% 6.07% 1.14% 4.49% 

Miami-Fort Lauderdale-Miami Beach, FL  57.39% 27.43% 5.22% 9.96% 

Minneapolis-St. Paul-Bloomington, MN-WI  23.93% 22.18% 7.19% 46.70% 
New York-Northern New Jersey-Long Island, 

NY-NJ-PA  80.84% 4.30% 1.84% 13.02% 

Orlando-Kissimmee,  FL  27.08% 25.98% 10.25% 36.69% 

Philadelphia-Camden-Wilmington, PA-NJ-DE-

MD  13.45% 20.53% 8.82% 57.19% 

Phoenix-Mesa-Scottsdale, AZ  40.25% 18.43% 18.58% 22.74% 

Pittsburgh, PA  -168.27% 3.10% 0.00% 65.17% 

Portland-Vancouver-Beaverton, OR-WA  55.05% 20.54% 6.24% 18.17% 

Richmond, VA  17.14% 14.75% 12.42% 55.69% 

Riverside-San Bernardino-Ontario, CA  44.65% 21.07% 8.12% 26.16% 

Sacramento-Arden-Arcade-Roseville, CA  31.30% 28.98% 13.92% 25.80% 

St. Louis, MO-IL -13.45% 28.74% 6.33% 78.38% 

San Antonio, TX  33.44% 13.21% 14.92% 38.43% 

San Diego-Carlsbad-San Marcos, CA  43.04% 24.06% 16.52% 16.37% 

San Francisco-Oakland-Fremont, CA  70.49% 9.75% 3.16% 16.60% 

Seattle-Tacoma-Bellevue, WA  56.96% 11.24% 8.04% 23.76% 

Tampa-St. Petersburg-Clearwater, FL  35.09% 19.68% 14.10% 31.13% 
Virginia Beach-Norfolk-Newport News, VA-

NC  27.12% 16.91% 5.98% 49.99% 

Washington-Arlington-Alexandria, DC-VA-
MD-WV  46.22% 15.49% 8.61% 29.67% 

All metropolitan areas 41% 19% 11% 29% 
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Table 17: Population Growth by Category – 1990-2000 

CBSA Urban 1990 

Urbanized 

1990-2000 

Urbanized 

2000-2007 Never Urban 

Atlanta-Sandy Springs-Marietta, GA 34% 23% 11% 32% 

Austin-Round Rock, TX 31% 23% 11% 35% 

Baltimore-Towson, MD 18% 38% 5% 39% 

Boston-Cambridge-Quincy, MA-NH 38% 6% 3% 53% 

Charlotte-Gastonia-Concord, NC-SC  14% 22% 21% 43% 

Chicago-Naperville-Joliet, IL-IN-WI  50% 27% 5% 18% 

Cincinnati-Middletown, OH-KY-IN  -1% 30% 13% 58% 

Cleveland-Elyria-Mentor, OH  -65% 38% 30% 97% 

Dallas-Fort Worth-Arlington, TX  48% 24% 8% 20% 

Denver-Aurora, CO 55% 24% 4% 17% 

Detroit-Warren-Livonia, MI  -1% 28% 17% 56% 

Houston-Sugar Land-Baytown, TX  51% 16% 10% 23% 

Indianapolis, IN  18% 30% 9% 43% 

Jacksonville, FL  17% 32% 12% 40% 

Las Vegas-Paradise, NV  37% 52% 6% 5% 

Los Angeles-Long Beach-Santa Ana, CA  89% 8% 0% 3% 

Miami-Fort Lauderdale-Miami Beach, FL  60% 29% 3% 8% 

Minneapolis-St. Paul-Bloomington, MN-WI  30% 28% 5% 38% 
New York-Northern New Jersey-Long Island, NY-

NJ-PA  83% 4% 1% 12% 

Orlando-Kissimmee,  FL  33% 32% 7% 28% 

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD  6% 28% 8% 58% 

Phoenix-Mesa-Scottsdale, AZ  52% 25% 6% 16% 

Pittsburgh, PA  -178% 4% 0% 74% 

Portland-Vancouver-Beaverton, OR-WA  56% 22% 5% 17% 

Richmond, VA  16% 19% 12% 54% 

Riverside-San Bernardino-Ontario, CA  49% 28% 3% 21% 

Sacramento-Arden-Arcade-Roseville, CA  40% 36% 9% 15% 

St. Louis, MO-IL -32% 33% 9% 89% 

San Antonio, TX  38% 15% 8% 40% 

San Diego-Carlsbad-San Marcos, CA  51% 30% 7% 12% 

San Francisco-Oakland-Fremont, CA  77% 9% 1% 13% 

Seattle-Tacoma-Bellevue, WA  61% 13% 4% 22% 

Tampa-St. Petersburg-Clearwater, FL  39% 26% 11% 24% 

Virginia Beach-Norfolk-Newport News, VA-NC  19% 26% 6% 49% 
Washington-Arlington-Alexandria, DC-VA-MD-

WV  51% 20% 5% 24% 

All Metropolitan areas 47% 23% 6% 24% 
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Table 18:  Population Growth by Category – 2000-2007 

CBSA Urban 1990 

Urbanized 

1990-2000 

Urbanized 

2000-2007 Never Urban 

Atlanta-Sandy Springs-Marietta, GA 23.44% 13.26% 17.82% 45.48% 

Austin-Round Rock, TX 16.43% 20.23% 16.52% 46.82% 

Baltimore-Towson, MD 27.34% 20.52% 7.63% 44.52% 

Boston-Cambridge-Quincy, MA-NH 30.50% 3.22% 2.50% 63.78% 

Charlotte-Gastonia-Concord, NC-SC  13.35% 13.42% 27.63% 45.60% 

Chicago-Naperville-Joliet, IL-IN-WI  27.26% 27.13% 10.45% 35.16% 

Cincinnati-Middletown, OH-KY-IN  -18.79% 31.27% 22.03% 65.48% 

Cleveland-Elyria-Mentor, OH  -2419.64% 235.75% 603.32% 1680.56% 

Dallas-Fort Worth-Arlington, TX  24.57% 16.77% 23.90% 34.76% 

Denver-Aurora, CO 18.16% 26.61% 16.27% 38.96% 

Detroit-Warren-Livonia, MI  -20.22% 27.66% 25.54% 67.02% 

Houston-Sugar Land-Baytown, TX  39.08% 11.18% 23.03% 26.71% 

Indianapolis, IN  -0.92% 18.12% 22.48% 60.32% 

Jacksonville, FL  24.16% 13.25% 12.14% 50.45% 

Las Vegas-Paradise, NV  13.13% 25.36% 41.90% 19.61% 

Los Angeles-Long Beach-Santa Ana, CA  87.59% 4.06% 2.00% 6.35% 

Miami-Fort Lauderdale-Miami Beach, FL  53.46% 24.61% 8.94% 12.99% 

Minneapolis-St. Paul-Bloomington, MN-WI  16.86% 15.49% 10.05% 57.60% 
New York-Northern New Jersey-Long Island, 

NY-NJ-PA  77.43% 4.05% 3.31% 15.21% 

Orlando-Kissimmee,  FL  21.50% 20.38% 13.23% 44.89% 

Philadelphia-Camden-Wilmington, PA-NJ-DE-

MD  21.28% 12.52% 9.81% 56.39% 

Phoenix-Mesa-Scottsdale, AZ  26.80% 10.84% 32.29% 30.06% 

Pittsburgh, PA  -154.70% 2.19% 0.00% 52.51% 

Portland-Vancouver-Beaverton, OR-WA  52.66% 18.69% 8.08% 20.56% 

Richmond, VA  18.49% 10.25% 13.40% 57.86% 

Riverside-San Bernardino-Ontario, CA  41.24% 14.92% 12.81% 31.03% 

Sacramento-Arden-Arcade-Roseville, CA  23.31% 22.68% 18.50% 35.51% 

St. Louis, MO-IL 2.36% 24.81% 3.85% 68.98% 

San Antonio, TX  28.78% 11.04% 22.98% 37.19% 

San Diego-Carlsbad-San Marcos, CA  33.22% 16.92% 28.14% 21.72% 

San Francisco-Oakland-Fremont, CA  55.87% 12.58% 6.92% 24.62% 

Seattle-Tacoma-Bellevue, WA  50.76% 8.62% 14.27% 26.35% 

Tampa-St. Petersburg-Clearwater, FL  31.46% 14.22% 17.09% 37.23% 
Virginia Beach-Norfolk-Newport News, VA-

NC  36.18% 6.66% 5.68% 51.47% 

Washington-Arlington-Alexandria, DC-VA-
MD-WV  41.64% 10.80% 12.08% 35.47% 

All metropolitan areas  33% 15% 17% 35% 
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APPENDIX B 

Table 19:  Distance Measures Descriptive Statistics 

 

Dist. from Nearest Neighbor Dist. From CBSA Center Dist. From Local Center

1990 2000 2007 1990 2000 2007 1990 2000 2007

n Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev

Atlanta-Sandy Springs-Marietta, GA 2,070 2,993  2,534  3,026 2,535 3,193  2,614  29,896 20,850 29,891 20,820 29,970  20,919  2,654   1,738   2,646  1,762  2,652 1,762 

Austin-Round Rock, TX 771 2,485  2,914  2,532 2,864 2,733  2,953  18,947 15,206 18,958 15,196 19,084  15,296  3,191   2,039   3,221  2,009  3,242 2,011 

Baltimore-Towson, MD 1,926 1,811  1,802  1,794 1,779 1,885  1,855  18,874 16,449 18,873 16,445 18,886  16,451  2,131   1,329   2,107  1,334  2,109 1,340 

Boston-Cambridge-Quincy, MA-NH 2,760 1,717  1,469  1,731 1,472 1,817  1,536  27,071 22,568 27,074 22,565 27,089  22,601  1,868   1,126   1,879  1,143  1,875 1,147 

Charlotte-Gastonia-Concord, NC-SC 801 2,872  2,348  2,884 2,347 3,061  2,406  21,867 15,541 21,879 15,518 21,904  15,587  3,246   2,106   3,239  2,074  3,267 2,058 

Chicago-Naperville-Joliet, IL-IN-WI 6,156 1,262  1,429  1,275 1,428 1,357  1,508  29,552 22,628 29,552 22,622 29,561  22,650  2,995   2,657   3,000  2,655  3,005 2,653 

Cincinnati-Middletown, OH-KY-IN 1,458 2,330  2,364  2,330 2,366 2,464  2,557  21,400 16,382 21,399 16,382 21,460  16,415  1,651   1,091   1,638  1,077  1,639 1,083 

Cleveland-Elyria-Mentor, OH 2,079 1,418  1,345  1,422 1,348 1,493  1,388  19,225 14,515 19,229 14,513 19,230  14,538  1,978   1,152   1,981  1,160  1,979 1,163 

Dallas-Fort Worth-Arlington, TX 3,138 1,986  2,236  2,005 2,231 2,153  2,294  31,767 20,792 31,745 20,781 31,786  20,816  3,245   1,957   3,258  1,955  3,261 1,958 

Denver-Aurora, CO 1,560 1,711  2,243  1,704 2,184 1,922  2,788  16,048 11,221 16,041 11,199 16,157  11,525  2,630   1,977   2,628  1,941  2,652 1,988 

Detroit-Warren-Livonia, MI 3,867 1,537  1,323  1,538 1,329 1,591  1,340  29,169 20,486 29,162 20,478 29,183  20,486  2,713   1,619   2,715  1,625  2,714 1,625 

Houston-Sugar Land-Baytown, TX 2,685 2,255  2,524  2,275 2,531 2,484  2,797  29,082 20,912 29,086 20,915 29,136  20,987  4,075   2,669   4,088  2,679  4,108 2,692 

Indianapolis, IN 945 2,499  2,600  2,507 2,590 2,644  2,703  17,570 14,327 17,566 14,310 17,623  14,360  2,551   1,427   2,553  1,417  2,562 1,419 

Jacksonville, FL 603 2,624  2,358  2,647 2,310 3,038  2,793  19,426 16,662 19,434 16,694 19,518  16,662  6,535   4,142   6,528  4,147  6,576 4,178 

Las Vegas-Paradise, NV 1,041 1,629  3,423  1,583 3,267 2,035  4,313  16,682 25,230 16,609 25,110 16,656  24,882  3,387   2,026   3,374  2,171  3,331 1,954 

Los Angeles-Long Beach-Santa Ana, CA 7,113 949     826     942    811    1,010  941     24,928 15,006 24,926 14,996 24,944  15,032  3,183   2,615   3,178  2,615  3,181 2,623 

Miami-Fort Lauderdale-Miami Beach, FL 2,670 1,331  737     1,325 588    1,469  1,073  46,871 34,528 46,877 34,539 46,937  34,552  1,674   1,252   1,650  1,096  1,655 1,100 

Minneapolis-St. Paul-Bloomington, MN-

WI 2,238 2,147  2,389  2,151 2,386 2,269  2,476  21,202 16,103 21,199 16,079 21,259  16,171  2,318   1,256   2,317  1,254  2,316 1,247 

New York-Northern New Jersey-Long 

Island, NY-NJ-PA 13,188 864     938     862    937    905     1,039  26,405 22,162 26,408 22,163 26,397  22,170  2,636   1,920   2,632  1,922  2,633 1,924 

Orlando-Kissimmee,  FL 984 2,225  2,258  2,239 2,193 2,518  2,651  18,574 13,747 18,585 13,698 18,746  13,813  2,139   1,302   2,147  1,328  2,140 1,335 

Philadelphia-Camden-Wilmington, PA-NJ-

DE-MD 4,668 1,488  1,202  1,488 1,205 1,584  1,288  28,111 20,619 28,113 20,626 28,118  20,607  1,762   1,470   1,753  1,476  1,753 1,481 

Phoenix-Mesa-Scottsdale, AZ 2,115 2,030  3,258  2,026 3,170 2,317  3,986  25,745 29,955 25,686 29,867 25,820  30,038  4,971   3,282   4,968  3,218  4,973 3,192 

Pittsburgh, PA 2,163 2,017  2,065  2,026 2,067 2,128  2,133  24,207 18,189 24,203 18,180 24,237  18,241  1,288   1,078   1,277  1,086  1,279 1,099 

Portland-Vancouver-Beaverton, OR-WA 1,278 2,137  2,448  2,124 2,411 2,424  3,205  17,457 13,719 17,464 13,748 17,592  14,062  2,444   1,888   2,419  1,845  2,395 1,746 

Richmond, VA 849 3,328  3,760  3,329 3,731 3,558  3,990  22,063 19,218 22,087 19,207 22,185  19,249  2,662   1,740   2,660  1,743  2,668 1,748 

Riverside-San Bernardino-Ontario, CA 2,520 1,896  2,790  1,882 2,597 2,258  4,764  41,344 27,347 41,330 27,401 41,372  27,322  2,440   2,038   2,432  1,861  2,428 1,840 

Sacramento-Arden-Arcade-Roseville, CA 1,209 2,027  2,903  2,003 2,762 2,251  3,072  25,855 27,903 25,830 27,915 25,912  28,035  2,738   2,125   2,727  2,121  2,732 2,088 

St. Louis, MO-IL 1,650 2,721  3,009  2,721 3,003 2,904  3,089  26,742 21,203 26,750 21,200 26,830  21,272  1,728   1,311   1,729  1,316  1,743 1,334 

San Antonio, TX 1,014 2,726  3,179  2,723 3,170 2,983  3,412  19,015 16,010 18,986 15,957 19,164  16,213  3,951   2,506   3,965  2,508  3,953 2,509 

San Diego-Carlsbad-San Marcos, CA 1,797 1,439  2,116  1,442 2,134 1,548  2,136  23,969 17,807 23,969 17,804 24,030  17,849  3,933   2,628   3,937  2,623  3,947 2,627 

San Francisco-Oakland-Fremont, CA 2,613 1,083  981     1,079 960    1,181  1,115  24,070 15,365 24,076 15,358 24,076  15,369  2,174   1,357   2,166  1,351  2,169 1,351 

Seattle-Tacoma-Bellevue, WA 1,992 1,844  1,760  1,832 1,720 1,956  2,028  29,220 17,607 29,213 17,592 29,277  17,702  2,329   1,703   2,318  1,691  2,317 1,723 

Tampa-St. Petersburg-Clearwater, FL 1,641 1,839  1,269  1,847 1,252 1,983  1,396  26,547 14,392 26,533 14,371 26,581  14,446  2,594   1,907   2,575  1,908  2,591 1,911 

Virginia Beach-Norfolk-Newport News, 

VA-NC 1,104 2,068  2,428  2,060 2,410 2,210  2,687  25,310 12,822 25,330 12,844 25,376  12,800  4,883   2,875   4,875  2,876  4,869 2,869 

Washington-Arlington-Alexandria, DC-VA-

MD-WV 3,012 1,704  1,746  1,700 1,727 1,813  1,825  23,332 19,734 23,337 19,742 23,355  19,757  1,740   1,281   1,736  1,289  1,736 1,287 
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Figure 36: Survival Functions and Changes 
Atlanta, GA  Austin, TX  Baltimore, MD 
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Cincinnati, OH  Cleveland, OH  Dallas, TX 
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Indianapolis, IN   Jacksonville, FL   Las Vegas, NV 
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APPEDNIX C 

 

Statewide Model Zones (SMZs) 

SMZs are the polygon structures used in the statewide model and can be 

considered similar to TAZs in transportation planning. SMZs in the statewide model are 

equivalent to TAZs in high density development areas, or TAZs are nested under SMZs 

in the low density development areas. The MSTM SMZs were developed through an 

iterative process.  The outer study area was identified from analysis of 2000 Census 

Transportation Package (CTPP) data on labor flows in/out of Maryland. Within this 

larger boundary, six regions were identified for SMZ formation, treating each region as a 

separate entity with its own datasets and issues.  These regions are shown in Figure 1.   

 

Figure 37: Regions used to develop SMZs 

 
 

The remainder of this section discusses the process and assumptions made in 

developing SMZs for each of these sub-regions and overall.  The goal was to respect the 

following major factors in the development of the SMZs. 

 To the extent possible, SMZs conform to census geography to best utilize census 

data products in model development/updates and model calibration/validation.  

However, Washington MPO TAZs are retained, and do not follow census 

geography.  

 SMZs must nest within Counties and conform to County boundaries.   
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 Aggregations of MPO zones, to facilitate linkages between MPO and statewide 

models. 

o Within Washington and Baltimore MPO areas, SMZs should be equal to 

or aggregations of MPO TAZs and nest within the MPO‘s TADs/RPDs. 

o SMZs should be more uniform in size than TAZs.  In general, SMZ should 

be greater than 0.25 and less than 10 square miles.  There should be 

greater aggregation in central areas where MPO TAZs are smaller (often 

individual street blocks) and little to no aggregation of larger MPO TAZs. 

 SMZs should not straddle freeways, major rivers or other natural barriers. 

 SMZs should separate the traffic sheds of major roads.  MPO TAZs on opposite 

sides of a major road can be combined to define a traffic shed or corridor. 

 SMZs should separate activity centers from surrounding areas and, where the 

activity center has been subdivided into multiple MPO TAZs, group adjacent 

TAZs into a single SMZ.   

 

In each region, SMZs were developed with reference to various GIS overlays.   

 MPO or other TAZ GIS shape file (where available) with activity density 

(ActDen) symbology (where TAZ data available) and Labels = TAZ number. 

Activity Density maps, calculated from historic/forecast demographic and acreage 

in areas of Maryland where TAZ demographic data is not available; 

 Where TAZ shape files and related data are not available, use statewide land use 

or zoning coverage instead of Activity Density. 

 Major roads coverage, from MPO networks where available, with Freeways and 

Major Arterials highlighted. 

 MPO analysis districts (i.e., TAD or RPD) boundaries, where relevant. 

 County boundaries. 

 

The process for developing the zones consisted of a first cut based on the criteria 

above followed by review by SHA and other team members.  Comments were addressed 

and conflicting comments resolved.   During a final review the following additional 

changes were made: 

 Isolate protected or restricted development lands for the land use model. 

 Baltimore and District central business district aggregation to provide somewhat 

more uniform SMZ size and accentuate downtown activity levels on par with 

suburban centers. 

 Distinctions were made to delineate areas with good accessibility to Metro rail 

stations. 

 

To the extent possible, the SMZ boundaries outside the MPOs and Eastern Maryland 

were made to distinguish rural from urban/suburban development zoning boundaries, 

with zones centered upon activity/town centers and major crossroads. 
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Figure 38: Statewide Modeling Zones in MSTM 
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