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In recent years, the shared scooter market has seen tremendous growth along with other 

micromobility industries as the future means of urban transport. One particularly 

interesting innovation that companies have begun experimenting with in this field is 

that of self-driving e-scooters.  

 

This thesis presents a study on the benefits of an autonomous or teleoperated scooter 

fleet with self-assembly capabilities: the ability to cluster nearby scooters and reduce 

the number of locations for servicing. To this end, the application is tackled as two 

separate optimization problems in clustering and routing. The full algorithm pipeline is 

described and several metrics evaluated against independent variables and algorithm 

parameters using real-world GBFS scooter data collected over several months. 

 

This thesis shows that self-assembly reduces total service times by as much as 50%, 

and can serve as a stepping stone for early adoption of the technology while more 

complex capabilities are being developed. 
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 Foreword 
 

The work presented in this thesis is completed as part of the ReZoom initiative at the 

University of Maryland – College Park led by Dr. Derek A. Paley. The initiative 

involves the development of a wide range of autonomous capabilities for e-scooters 

and research into how these capabilities may be used to benefit stakeholders in the 

shared scooter industry. As such, the project scope (see Chapter 2), assumptions on the 

scooter fleet (see Chapter 3), and specific ranges of certain parameters (see Chapter 4) 

were chosen to complement the other capabilities being developed at the time of 

writing.  
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 Chapter 1: Introduction 

1.1 Motivation 

Micromobility is a mode of transportation that involves small, lightweight vehicles that 

typically travel below 25 km/h. This includes but is not limited to bikes, e-bikes, 

scooters, e-scooters and skateboards. In recent years, both private and shared 

micromobility have tremendously risen in popularity as an option for urban 

transportation. There has been much discussion recently about the potential for 

micromobility to play a role in solving several of the transport related issues large cities 

face worldwide, as well in reducing their carbon footprints by facilitating the move 

away from private fossil fuel vehicles. 

 

Of the various micromobility vehicle categories, perhaps none has seen more visible 

growth than the shared e-scooter segment. However, with rapid growth and expansion 

comes a rapid need for an efficient scooter fleet management solution, which is one of 

the most important key factors to profitability. This includes the logistics of collecting, 

charging, servicing, and rebalancing scooters to high demand areas. Currently, scooter 

operators must allocate tasks for their own employees and/or third-party contractors 

that move and charge scooters for payment. With the miniaturization of computing 

resources and sensor suites in recent years due to smartphone industry, several scooter 

companies are exploring the possibility of adopting a fleet with self-driving capabilities 

to complement humans in this task. Although self-driving scooters have several 

potential benefits to operators in this area, a central challenge that is not yet fully solved 

is the optimization of human and scooter directives to decrease servicing costs and 

increase ride revenue.  

 

1.2 Relation to State of the Art 

The idea of adding autonomy to personal mobility scooters has been demonstrated as 

early as the 2016 MIT Open House, with MIT and the National University of Singapore 

presenting a joint project which saw the replication of an architecture and sensor suite 

normally used on cars on a scooter [1]. Surveys at the time showed that the public is 

generally receptive to the concept of an autonomous personal mobility device. More 

recently, several companies are making plans to bring this technology to the 

commercial space. One of the more visible figures in this field is Tortoise, led by Uber’s 

former director of business development, which aims to provide a standard autonomy 

operating system for micromobility vehicles. Tortoise has already partnered with 

shared scooter operators Go X and Spin to develop remotely operated scooters as the 

first phase of this technology rollout [2] [3]. Another prominent name in the space is 

Segway-Ninebot, which has also developed and showcased its own brand of self-

driving e-scooters that can find their way back to charging stations [4]. The company 

intends to sell its scooters to Uber and Lyft, both of which it claims are advancing 
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towards semi-autonomous micromobility vehicles. Furthermore, several smaller 

startup companies are also beginning to fill the space with their own versions of self-

driving scooters, autonomy module additions, and software. 

 

One key to profitability in the micromobility industry is successful fleet management. 

Understanding the logistics of collecting/servicing scooters and then re-distributing or 

re-balancing them to high demand areas is central to reducing costs and increasing 

ridership (and thus revenue) for shared scooter operators. To this end, there have been 

several studies conducted in the following areas: 

1. The spatial-temporal distribution variations of shared scooters [5] [6] 

2. The forecasting of supply/demand and ride trip prediction [7] 

3. The relation between ridership and region demographics [8] 

These studies all focus on conventional shared scooter operation models, where 

scooters do not have self-driving capabilities and the data analytics are used by shared 

operators to determine the best areas to re-balance scooters to each morning, either via 

their own employees or third-party contractors.  

 

Self-driving scooters increase ridership by automatically re-balancing to high demand 

areas. One recent study estimates the ideal fleet size under varying assumptions of fleet 

operations and that up to 10 times higher utilization of scooters can be achieved with 

self-driving capabilities [9]. 

 

1.3 Contributions of Thesis 

There has been much work in the data analytics of conventional shared scooter systems, 

and studies into the benefits of self-driving scooter systems in increasing ridership and 

revenue are underway, with more expected in the near future. However, there have 

been no studies yet to our knowledge that look at the benefit of self-driving scooters in 

terms of the other component of fleet management: the reduction in operating costs 

from collection and/or servicing. The focus of this thesis aims to bridge that gap with 

a study into one specific application of self-driving scooters that would aid operator 

companies in reducing operating costs. 

 

We investigate the application of scooter self-assembly, or clustering. The idea is that 

the self-assembly of scooters close to each other allows for batch collection and/or 

servicing, thereby reducing the number of stops and time it takes for service personnel 

to complete a service run. Our work is based on the model where an operator company 

employs its own service personnel, which all depart from one central location or depot 

in the area that the scooter fleet is deployed. The two service types investigated are 

collection (for charging) and battery swapping. Collection was chosen as it is a task 

that currently every scooter operator company needs to do, either to recharge scooters 

or as the first step in re-balancing. Battery swapping was chosen due to the realization 

that several companies are transitioning to this type of re-charging method, as it is 

quicker than the traditional method of taking scooters off the road and bringing them 

back to a depot or charging station.  
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We evaluate the benefits of self-assembly for different operational approaches by 

performing analyses on different combinations of scooter servicing parameters. We 

utilize real-world GBFS scooter data collected over several months for this evaluation, 

and in doing so we formulate preliminary motivations for the development of self-

driving e-scooters and the foundations for impactful requirements. 

 

1.4 Technical Approach 

We tackle the scooter self-assembly application using a two-stage approach, each with 

a separate optimization problem and solution.  

 

The first stage is the clustering stage, in which scooters in need of servicing are 

identified and located geographically on a map. The geographic coordinates are fed 

into a custom variation of the agglomerative clustering algorithm [10]. The basic 

algorithm is applied with the scooters’ travel distance matrix and a specified maximum 

travel distance threshold in order to determine preliminary clusters. Afterwards, the 

clusters and cluster centers are refined with a check that each scooter respects the 

maximum travel distance threshold relative to its cluster center. Finally, the refined 

cluster centers are slightly adjusted to snap to the nearest road, ensuring that the final 

destinations for the scooters are valid and feasible. 

 

The second stage is the service routing stage, in which near-optimal routes are 

determined for a given number of service personnel to each scooter cluster center. This 

is a classic vehicle routing problem (VRP) and conventional heuristic-based solvers are 

used to provide solutions. The distance matrix used in the solver actually consists of 

driving times between each cluster center rather than physical distances. Furthermore, 

the time of each leg is adjusted to account for the service time at each cluster. Two 

different service time calculations are used, depending on whether the service type is 

collection or battery swapping. 

 

We quantify the amount of cost reduction in terms of man-hours, number of stops and 

the maximum time taken to complete a service run. We use real-world data collected 

from scooter companies over several months to investigate these metrics against 

various independent variables and parameters, including scooter fleet size, time of year, 

number of service personnel and maximum scooter travel distance. 

 

 

1.5 Outline of Thesis 

The remainder of this thesis is organized as follows. Chapter 2 provides background 

information on the optimization algorithms used as the foundations for the two stages 

of the solution to the self-assembly application. Chapter 3 describes in detail the 
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methods and algorithms pipeline for the solution to the self-assembly application. 

Chapter 4 describes in detail the data and various metrics used to evaluate the solution 

and the independent variables and metrics used to compare them. Results are provided 

to quantify the trends in metrics with respect to independent variables and parameters. 

Chapter 5 summarizes our findings and provides suggestions for future work. 
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 Chapter 2: Background 
 

This chapter provides background information on the optimization algorithms used as 

the foundation for the two stages of our solution to self-assembly. 

 

2.1 Data Clustering 

There are several clustering algorithms available from the fields of statistical data 

analysis, pattern recognition, and machine learning. The goal of each one is to group 

data points or objects that are in some sense similar to each other. However, the notion 

of a cluster cannot be precisely defined, as the metrics for doing so varies between 

applications. Clustering algorithms can generally be grouped into the following broad 

categories. 

 

Centroid-Based: Algorithms in this category provide a vector representation of a 

cluster’s center, calculated as the mathematical centroid of the data points within it 

[11]. The most popular algorithm of this category is the classic k-means clustering 

algorithm [12], where a given number of known centroids are continuously shifted in 

the data space to minimize a distance cost function, usually the squared error between 

the cluster centers and their points. 

 

Connectivity-Based: This type of clustering works under the premise that objects are 

more related to objects nearby than those that are farther away [13]. This category is 

most often associated with hierarchical or agglomerative clustering [10], in which the 

closest objects are grouped together first, before larger clusters are formed and those 

are in turn grouped even further. 

 

Distribution-Based: This type of clustering envisions the data space as being 

composed of a series of probability distributions, with each point holding a full or part 

membership to a distribution or cluster [14]. The Gaussian Mixture Model (GMM) 

method [15] is a prominent algorithm of this category. One distinction of this category 

from the previous two is that the clusters here are permitted to intersect and overlap 

with one another. 

 

Density-Based: In this category, clusters are identified as areas of high density in the 

data space [16]. Object is sparse areas are sometimes considered as outliers and omitted 

from the calculation of the cluster centers. The Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) algorithm [17] is a prominent example in this 

category. 

 

The agglomerative clustering algorithm is chosen to be the foundation of the first stage 

of our solution due to its natural conformity to our data of interest. When looking for 

common locations for scooters to aggregate to on a map, the primary metric is travel 

distance. Scooters close to each other should be clustered together. Since the scooters 
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are not known to obey any particular spatial probability or density distributions, 

distribution- or density-based algorithms would be less suitable. The centroid-based k-

means algorithm was considered and actually implemented as a prototype for our 

solution, but agglomerative clustering suits our application better for the following 

reasons: 

1. The number of natural clusters formed from the scooters is not known a priori, 

and thus the k-means algorithm must be applied iteratively while increasing the 

number of clusters until the travel distance threshold between scooters and their 

cluster centers are satisfied. Because the cluster centers are randomized at the 

start of each iteration, this introduces several opportunities for errors. 

2. The k-means algorithm works best for a small number of clusters relative to the 

number of data points [18]. It was found experimentally that due to the general 

sparsity of our scooter data, the number of clusters is very large, especially for 

smaller travel thresholds.  

3. By definition, the k-means cluster centers are calculated as the centroids of 

scooters rather than geographic centers among them. It uses this definition in 

optimizing its cost function, which is not always realistically correct in our 

application since we are interested in geographic centers for scooters to travel 

to. Agglomerative clustering does not have this limitation. 

 

2.2 Combinatorial Optimization for Operations Research 

Determining the optimal way to route an agent between several locations is called the 

Travelling Salesman Problem (TSP) [19]. The task is to find the shortest route for a 

salesman to visit customers at various locations and return to the starting point. For 

routing several agents, the more general Vehicle Routing Problem (VRP) [20] can be 

employed. The task of the VRP is to have one vehicle in a group visit a subset of 

locations while minimizing the longest route taken by any one vehicle and ensuring all 

locations are visited exactly once. This problem has a number of variations, including 

capacity constraints and time windows. Although exact solution techniques such as 

branch and bound [21] do exist, the computation time for these approaches become 

unreasonable for larger problems. A more common approach to the VRP is to conduct 

a limited search of the problem solution space using a metaheuristic. One such 

approach is simulated annealing [22]. More recently, machine learning techniques such 

as genetic algorithms have also been leveraged in the formulation of new solvers [23]. 
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 Chapter 3:  Optimization of Servicing Logistics 
 

This chapter describes in detail the methods and algorithms pipeline for our solution to 

the self-assembly and collection problem. 

 

3.1 Overview of Approach 

We tackle the scooter self-assembly application using a two-stage approach, each with 

a separate optimization problem and solution. The complete algorithm pipeline is 

illustrated in Figure 1. 

 

 
Figure 1 - E-scooter Self-Assembly and Collection 

 

Scooter location data is collected in the General Bikeshare Feed Specification (GBFS) 

[24] format, an open data standard for shared micromobility. After extracting the 

locations into a suitable data structure, the entire fleet is filtered to include only low 

battery scooters that fall below a certain threshold. The data used in this study is 

described in Section 4.1. 

 

The first stage of the application algorithm is the clustering stage, in which scooters in 

need of servicing are identified and located geographically on a map. The geographic 

coordinates are fed into a custom variation of the agglomerative clustering algorithm, 

which returns the cluster center locations as well as the scooters that belong to those 

clusters. 

 

The second stage of the application algorithm is the service routing stage, in which 

near-optimal routes are determined for a given number of service personnel to each 

scooter cluster center. The distance matrix used in the solver for this problem consists 

of travel times between each stop location (clusters) as well as a pre-assigned depot for 
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the service personnel. Each leg is adjusted to account for the two different types of 

service time at each cluster.  

 

To analyze the metrics of the self-assembly application, the algorithm pipeline is run 

twice for a given scooter fleet. During the first run, only the routing stage is executed, 

treating every scooter as its own cluster center. This generates benchmark results for 

the theoretical optimal service run using the current industry practice. During the 

second run, the clustering stage is executed before the routing stage, and thus reduces 

the number of stops that is fed into the VRP solver. The results from the second run 

show the theoretical optimal service run generated by the proposed self-assembly 

application. The two metrics are compared and further analyzed. Figure 2 shows the 

full logic pipeline for the dual benchmarking runs, along with the intermediary and 

final products of each process and component of the algorithm. 

 

 
Figure 2 – Algorithm Benchmarking Pipeline with Final Products 
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3.2 Clustering by Micro-scale Re-positioning 

This section describes in detail the first stage of the self-assembly algorithm. We work 

with the assumption that a scooter operator company already has access to an e-scooter 

fleet with the following autonomous or teleoperated capabilities: 

1. Scooters that are able to self-orient into an upright position suitable for 

mobility; 

2. Scooters that are able to navigate a few hundred meters given a set of 

destination GPS coordinates, while driving safely on public roads, avoiding 

obstacles and obeying traffic laws; 

3. Scooters that are able to identify valid parking spaces at a destination and self-

park in line with other scooters at the location, if any. 

These capabilities are being developed as part of the ReZoom initiative at the time of 

writing this thesis. 

 

With the previous autonomous capabilities available to a scooter fleet under 

consideration, the problem is reduced to spatial data clustering in two dimensions. As 

stated in Section 2.1, agglomerative clustering was selected to be the foundation of our 

approach, with slight modifications to improve the real-world feasibility of the 

solutions generated. The specific steps in the clustering stage pipeline are detailed 

below. 

  

3.2.1 Initial Cluster Generation  

The agglomerative clustering package from the scikit-learn machine learning 

framework [25] is used for generating the initial clusters. The following key parameters 

are set specific to our application during usage: 

1. linkage This parameter is set to complete, which tells the solver to use the 

maximum of the distances between all scooters of two clusters when deciding 

whether or not to merge them. This choice better ensures that scooters will 

satisfy the travel distance threshold to their cluster centers. 

2. distance_threshold This parameter tells the solver to continue merging 

clusters until the given threshold can no longer be satisfied. This choice is in 

contrast to setting a specific number of clusters for the solver to generate. 

3. affinity This parameter tells the solver what metric to use in computing the 

linkage distances. It is set to precomputed for our application, which states that 

a custom linkage matrix will be used to determine distances. We utilize the Bing 

Maps Distance Matrix API [26] from Microsoft in order to generate the required 

matrix that comprise of the route distances between scooter locations. 

After the clusters are generated from the solver, the centers are calculated as the spatial 

midpoint of the scooter locations in each cluster. 
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3.2.2 Cluster Refinement  

Each cluster is put through a refinement process to ensure every scooter satisfies the 

given travel distance threshold. The process involves using the Bing Maps Routes API 

[27] to calculate the distance between each scooter and its cluster center and comparing 

it with the distance threshold. The Distance Matrix API cannot be used here since it 

cannot handle the edge case of a 1x1 matrix request. If a scooter violates the threshold, 

it is separated from the rest of the cluster and forms its own cluster. The center of the 

original cluster is then recalculated. This process repeats until all clusters have been 

processed.  

 

This refinement procedure does not produce the absolute optimal result. However, it is 

expected and also observed through preliminary testing that the vast majority of 

clusters formed during the initial step are unchanged after refinement, and does not 

significantly affect the overall results presented in Chapter 4. 

 

3.2.3 Cluster Center Refinement 

After the clusters are refined, their recalculated centers are also refined. Because the 

centers are calculated purely as the spatial midpoint, it is possible that some are 

infeasible destinations for scooters to travel to on a map, such as in the middle of a 

building. To correct for this, we utilize the Google Maps Platform Roads API [28], 

which provides the functionality to snap any GPS coordinate to its nearest road. All 

cluster centers are adjusted to their nearest roads, and this is the final step in the 

clustering stage. 

 

Figure 3 illustrates the results of applying the modified agglomerative clustering 

algorithm on the low-battery scooters of a sample fleet in Washington DC on February 

2, 2020. The fleet consists of scooters below 40% battery, with a travel distance 

threshold of 300m. Refer to Section 4.1 for a detailed explanation of these parameters. 

Scooters are represented as dots and cluster centers are represented as X’s. The colors 

identify unique clusters. The red circles outline two instances where the cluster 

refinement step described in section 3.2.2 is executed. Notice how spatially, these areas 

contain scooters which appear as if they should from a cluster, but have been separated 

in the refinement step. Also notice that for some single scooter clusters, the center 

locations are slight shifted from the scooter location as a result of the cluster center 

refinement step. 
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Figure 3 - Sample Cluster Diagram of an E-Scooter Fleet 

Battery Threshold: 40% 

Service Type: Collection 

Travel Distance: 300m 

 

3.3 Optimization of Service Routes for Multiple Personnel 

This section describes in detail the second stage of the self-assembly algorithm. For the 

purpose of this study, we make the following assumptions about a sample scooter 

operator company: 

1. The company services its fleet via its own employees rather than third party 

contractors; 

2. All service personnel depart and return to one depot location within a given area 

of operation; 

3. All personnel drive motor vehicles to scooter locations to perform servicing; 

4. There are only two types of servicing: scooter collection and battery swapping; 

5. In the case of the service being collection, all vehicles shall have sufficient 

capacity to store all collected scooters. 

 

Under these assumptions, the formulation is a simple Vehicle Routing Problem (VRP) 

with no time windows or capacity constraints. The Google OR-Tools framework [29] 

and its VRP solver package is used as the foundation for this stage of the algorithm. 

The specific steps in the routing stage pipeline are detailed below. 
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3.3.1 Route Time Matrix Generation 

Similar to in the clustering stage, the Bing Maps Distance Matrix API is used to 

generate a distance matrix for all stop locations (cluster centers) calculated from the 

previous stage. The values of the matrix are travel times rather than distances since we 

are interested in optimizing service time rather than checking against a certain distance 

threshold. Furthermore, the depot location is prepended to the list of stops to account 

for the first and last legs of each trip. 

 

3.3.2 Route Time Refinement via Service Type 

Before the route times are passed to the VRP solver, they are adjusted to account for 

the service time at each stop location, with the exception of the depot. The models used 

for the two service types, collection and battery swapping, are shown below. 

 

Collection: 

𝑆𝑇𝐶𝑜𝑙,𝑖 = 5          𝑖 = 1,2 … 𝑁𝐶 

 

Battery Swapping: 

𝑆𝑇𝐵𝑎𝑡,𝑖 = 4 + 1 ∗ 𝑁𝑆,𝑖          𝑖 = 1,2 … 𝑁𝐶  

 

The variables are defined as follows: 

STCol is the collection service time per stop (minutes)  

STBat is the battery swapping service time per stop (minutes) 

NS is the number of scooters at a particular stop location 

NC is the number of clusters (stop locations) for the service run 

 

During collection, we assume that it roughly takes a flat 5 minutes for a service 

personnel to park the vehicle, exit, load all scooters into the vehicle and then depart. 

For battery swapping, we assume that it roughly takes a flat 4 minutes to park the 

vehicle, exit and depart. Furthermore, it roughly takes an addition 1 minute per scooter 

for the personnel to open the battery compartment, swap cells and then close the 

compartment. These parameters are adjustable. The number of scooters at each cluster 

is obtained from the list of clusters generated in the algorithm’s first stage. In the 

absence of clustering, the battery swapping model reduces to the collection model. 

 

3.3.3 VRP Solution Matrix Generation 

The refined route times along with the number of service personnel are passed to the 

Google OR-Tools VRP solver. The solver uses a heuristic-based approach in 

generating near-optimal routes. Its first solution generation method and local search 

strategy (metaheuristic) are set to automatic, which allows it to select the best 
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parameters based on its internal analysis of the dataset. The solver returns a list of 

ordered stop locations for each vehicle, which corresponds to the near-optimal routes 

found for each. A solution matrix of these routes is saved, along with the total and 

maximum travel times for the service run. 

 

The following figures show the routes generated by the VRP solver for service 

personnel, both for the non-clustering scenario (Figure 4) and the clustering scenario 

(Figure 5). The sample scooter fleet used is the same as that in Figure 3. The number 

of service personnel is set to 3 and the service type is set to collection. See Section 4.1 

for a detailed explanation of these parameters. In each plot, the depot location is marked 

with a red star and each color represents a route taken by the personnel. The stop 

locations are shown as dots on the routes and labeled with numbering system that 

follows the scheme:  
(𝑃𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 𝑁𝑢𝑚𝑏𝑒𝑟). (𝑆𝑡𝑜𝑝 𝑁𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑅𝑜𝑢𝑡𝑒) 

Notice how the number of stops in Figure 5 is reduced from that in Figure 4.  

 

The paths between each stop location are generated with the Google Maps Platform 

Directions API [30], which has the functionality to return the wapoints of a route’s 

polyline on a map between two GPS coordinates. 

 

 
Figure 4 - Sample Routing Diagram of an E-Scooter Fleet without Clustering 

Service Type: Collection 

Number of Personnel: 3 
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Figure 5 - Sample Routing Diagram of an E-Scooter Fleet with Clustering 

 Battery Threshold: 40% 

Travel Distance: 300m 

Number of Personnel: 3 

Service Type: Collection 
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 Chapter 4: Numerical Analysis of Servicing Logistics 
 

This chapter describes the data and various metrics used to evaluate how the solution 

depends on certain independent variables.  

 

4.1 Data and Performance Metrics 

4.1.1 Data Description 

As stated in section 3.1, the data used in this study is originally collected in the GBFS 

format. The GBFS data available to us consists of scooters from various operator 

companies in the Washington DC area from late 2019 to late Summer of 2020. The 

data was eventually filtered to include only scooters from the operator Bird, since it is 

the only company to include battery levels in its GBFS data and the company with the 

least amount of data gaps within the 8-month range. 

 

After the Bird GBFS data was separated from the rest of the dataset, it was further 

filtered to include only scooters with the first timestamp after 3am of all the available 

days. This effectively provides a snapshot of scooter locations in the fleet at around 

3am each day, which is the expected time that service personnel will become active. 

For each day at the 3am timestamp, the scooters’ GPS coordinates, battery levels and 

datetime are extracted and saved as CSV files, which are the inputs to the self-assembly 

algorithm. 

 

Within the algorithm, the depot location is set to be the office of Capitol Scooter Rental. 

Since Bird does not operate any depots in Washington DC, an arbitrary local scooter 

operator’s location is chosen as a substitute. Furthermore, the low battery threshold is 

set to 40%, although this choice is adjustable. 

 

4.1.2 Parameters, Independent Variables and Performance Metrics 

We define three types of variables for the analysis of the self-assembly algorithm. 

Parameters are tunable variables that affect the algorithm’s performance. Metrics are 

values that measure the performance of the algorithm (y-values in plots). Independent 

variables are variables that metrics are plotted against (x-values in plots). 

 

The following tables list and describe specific variables of each type that we use in our 

numerical analysis. 
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Name Description Value Range 

Scooter Travel 

Distance Threshold 

Maximum distance a scooter can 

autonomously travel to a cluster 

center 

100m, 300m, 500m 

Service Type 

 

Type of service performed by service 

personnel at each cluster center 

collection, battery 

swapping 

Number of Service 

Personnel 

Number of personnel sent out for a 

service run 

1, 3, 5 

Table 1 - Algorithm Parameters 

 

 

Name Description 

Time 

 

The date that a service run occurs on 

Number of Low-Battery Scooters 

 

The number of low-battery scooters for 

a service run 
Table 2 - Independent Variables for Performance Evaluation 

 

 

Name Description 

Fleet Service Total Time (No Clustering) The total man-hours used in a service 

run without clustering 

Fleet Service Total Time (Clustering) The total man-hours used in a service 

run with clustering 

Fleet Service Time (No Clustering) The maximum time it takes for a service 

run to be competed without clustering 

Fleet Service Time (Clustering) The maximum time it takes for a service 

run to be competed with clustering 

Number of Service Stops (No Clustering) Number of locations for personnel to 

visit for a service run without clustering 

Number of Service Stops (Clustering) Number of locations for personnel to 

visit for a service run with clustering 
Table 3 - Metrics for Performance Evaluation 

 

Under metrics, fleet service total time refers to the sum of times across all routes taken 

by service personnel. This is equivalent to the total man-hours required to complete a 

service run, and therefore has a direct correlation with the cost required for a company 

to perform such a run. By contrast, the fleet service time refers only to the longest route 

taken by service personnel. This is the metric that the VRP solver minimizes and assists 

companies in forecasting how many personnel are needed to complete a service run 
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given a time constraint. If there is only one service personnel, the fleet service time is 

equal to the fleet service total time. 

 

For the analysis shown in subsequent sections, we use parameter configurations that 

resemble those of a sensitivity analysis. In other words, all parameters are held at a 

reference value while a single parameter is perturbed across its full range of values. 

This results in the parameter configuration table below. The reference configuration set 

is highlighted in green. 

 

Travel Distance Threshold (m) Number of Personnel Service Type 

100 1 Collection 

300 1 Collection 

500 1 Collection 

300 3 Collection 

300 5 Collection 

300 1 Battery Swapping 
Table 4 - Parameter Configuration Sets (Reference Set Shown in Green) 

 

We take the reference configuration to be {Travel Distance Threshold, Number of 

Personnel, Service Type} = {300, 1, Collection}. We then cycle each parameter 

through its range while avoiding repetitions. For each parameter configuration, the 

metrics are compared for both the clustering and non-clustering cases. 

 

4.2 Performance vs. Time 

We first evaluate the self-assembly algorithm’s performance with respect to time. 

Figure 6 shows a plot of the fleet service total time comparisons for the parameter 

configuration {500, 1, Collection}. 
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Figure 6 – Fleet Service Total Time vs Time (December 2019 to July 2020) 

Battery Threshold: 40% 

Travel Distance: 500m 

Number of Personnel: 1 

Service Type: Collection 

 

The plot displays the fleet service total times for the clustering and non-clustering 

scenarios on the left y-axis, and the number of clusters formed on the right y-axis. All 

three metrics in this case is a measure of scooter usage, since usage is directly correlated 

with the number of low-battery scooters, which in turn affects the service total times, 

both with and without clustering. 

 

There is a large data gap between mid-March and mid-June 2020, which is most likely 

due to Bird temporarily stopping their services due to the COVID-19 pandemic. Apart 

from this gap, the overall usage trends appear to be quite stable from late 2019 to mid-

March 2020. There is a slight increase in usage in February, which may be attributed 

to the public and especially students returning to a daily commute after Winter Break. 

Furthermore, there appears to be another slight increase in usage after the service 

suspension. Although the timeline does not extend very far to provide more insights, it 

is possible that this increase is due to people transitioning away from public transit and 

toward shared mobility for daily commuting.  

 

Apart from these usage trends, however, there is not much else that can be inferred 

from examining the metrics with respect to time. The next section provides a alternative 

way to examine the data that better highlights the relationship between the metrics and 

parameters. 
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4.3 Performance vs. Number of Scooters 

The most useful insights from the metrics are visible when they are plotted with respect 

to the number of low-battery scooters in a fleet. Consider the sample fleet service total 

time plot of parameter configuration {500, 1, Collection} in Figure 7. 

 

 
Figure 7 - Fleet Service Total Time vs Number of Scooters 

Battery Threshold: 40% 

Travel Distance: 500m 

Number of Personnel: 1 

Service Type: Collection 

 

The plot displays the service total times for the clustering and non-clustering scenarios 

on the left y-axis, and the number of clusters formed on the right y-axis. However, 

unlike in the previous section, the metrics here are arranged as a scatter plot. There is 

a positive correlation between the number of scooters, the clusters formed, and the total 

times for both clustering and non-clustering. This correlation is modeled with a linear 

regression. 

 

While the no-clustering service total time can be modeled linearly even as the number 

of scooters grow very large, the same cannot be said for the clustering service total time 

or the number of clusters formed. The reason is that given a distance threshold and a 

constrained space, there is a limit to the number of clusters that can be formed in that 

space. As more scooters are added to the space, they would automatically belong to 

one of the existing clusters instead of forming a new one. Thus, we expect that as the 

number of scooters grows very large, the number of clusters formed would be more 

accurately modeled with a plateauing exponential and asymptotically approach a 

limiting value. The same logic applies to the clustering total service time, as it is 
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directly related to the number of clusters. We can already see this relationship in Figure 

7. Although the data points for large numbers of scooters are sparse, it is clear that the 

overall trend is not linear. That said, since the cluster number limit is expected to very 

large, and because the majority of real-world data is shown to fall within the plot 

segment with smaller scooter numbers, a linear model serves as a good first-order 

estimate to provide the results needed to quantify the benefits of self-assembly, while 

also making calculations very convenient.  

 

Since all metrics are modeled linearly, their slopes can be used to provide more insight 

into the data and results. For instance, an estimate of the percent reduction in total 

service time by using self-assembly can be calculated as follows: 

 

𝑃𝑅𝐹𝑆𝑇𝑇 =  
𝑦𝑁𝐶 − 𝑦𝐶

𝑦𝑁𝐶
=

𝑚𝑁𝐶𝑥 − 𝑚𝐶𝑥

𝑚𝑁𝐶𝑥
=

𝑚𝑁𝐶 − 𝑚𝐶

𝑚𝑁𝐶
 

 

The variables are defined as follows: 

PRFSTT is the percent reduction in fleet service total time 

x is the number of scooters for a run 

yNC is the fleet service total time with no clustering 

yC is the fleet service total time with clustering 

mNC is the slope of the fleet service total time line with no clustering 

mC is the slope of the fleet service total time line with clustering 

 

Although the fitted lines do not have exact zero-intercepts, we expect that this 

assumption does not have a large impact on benefit estimate. 

 

Furthermore, the percent reduction in the number of stops for service personnel can be 

calculated from the slope of the cluster number metric: 

 

𝑃𝑅𝑆𝑆 = 1 − 𝑚𝐶𝐹 

  

The variables are defined as follows: 

PRSS is the percent reduction in the number of service stops 

mCF is the slope of the number of clusters (stops) line 

 

If no scooters are self-assembled, then the number of clusters would be equal to the 

number of scooters, since each cluster would only have one scooter. In this scenario, 

the slope is 1. As more scooters self-assemble, the number of clusters and service stops 

decreases. 

 

The percent reductions in service total time as well as number of service stops provide 

a quantitative way to measure the benefits of the self-assembly application. The 

sensitivity of these quantities with respect to each algorithm parameter are examined 

in the following sections. 
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4.3.1 Travel Distance Threshold Variation 

We begin by examining the sensitivity of our metrics as the scooter travel distance 

threshold is varied. Figure 8 shows the fleet service total times for each of the values 

in the parameter’s range, while Figure 9 shows the number of clusters (service stops). 

 

 
Figure 8 – Fleet Service Total Time vs Number of Scooters 

Battery Threshold: 40% 

Number of Personnel: 1 

Service Type: Collection 
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Figure 9 – Number of Service Stops vs Number of Scooters 

Battery Threshold: 40% 

Number of Personnel: 1 

Service Type: Collection 

 

Using the equations in Section 4.3, the following table summarizes the benefit in terms 

of the percent reduction in service total time and number of stops. 

 

Scooter Travel Distance 
Threshold (m) 

% Reduction in Fleet 
Service Total Time 

% Reduction in Number 
of Service Stops 

100 11.1% 14.3% 

300 30.8% 37.3% 

500 51.3% 59.5% 
Table 5 - Performance Benefits with Respect to Scooter Travel Distance 

 

 

4.3.2 Number of Service Personnel Variation 

Next, we examine the sensitivity of our metrics as the number of service personnel is 

varied. Figure 10 shows the fleet service total service times for each of the values in 

the parameter’s range. 
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Figure 10 – Fleet Service Total Time vs Number of Scooters 

Battery Threshold: 40% 

Travel Distance: 300m 

Service Type: Collection 

 

Similar to the previous section, the following table summarizes the benefit in terms of 

the percent reduction in service total time. Percent reduction in service stops is not 

calculated, as this metric is not affected by changing the number of service personnel. 

 

Number of Service 
Personnel 

% Reduction in Fleet 
Service Total Time 

1 30.8% 

3 29.7% 

5 31.4% 
Table 6 - Reduction in Fleet Service Total Time with Respect to Number of Service Personnel 

 

We see here that changing the number of personnel does not seem to affect the total 

service time. This makes sense, since roughly the same total distance needs to be 

travelled to each cluster regardless of how many personnel are sent. The only 

differences that occur are minor variations in the route solution matrix generated by the 

VRP solver. 

 

The only metric we do expect to see great benefit from an increase in personnel, 

however, is the fleet service time. The plot for this metric is shown in Figure 11.  
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Figure 11 - Fleet Service Time vs Number of Scooters 

Battery Threshold: 40% 

Travel Distance: 300m 

Service Type: Collection 

 

Instead of calculating the percent reduction between the clustering and non-clustering, 

here we calculate the percent reductions with respect to the nominal scenario of only 

one service personnel. The same equation from section 4.3 can be used, but with 

different inputs. 

 

Number of Service 
Personnel 

% Reduction in Fleet 
Service Time with 1 

Personnel 

1 0% 

3 66.7% 

5 80.2% 
Table 7 - Reduction in Fleet Service Time with Respect to Number of Service Personnel 

 

As expected, we see a dramatic improvement in reducing the fleet service time as the 

number of personnel is increased. 

 

 

4.3.3 Service Type Variation 

Finally, we examine the sensitivity of our metrics as the service type is varied. Figure 

12 shows the fleet service total times for each of the values in the parameter’s range. 
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Figure 12 - Fleet Service Total Time vs Number of Scooters 

Battery Threshold: 40% 

Travel Distance: 300m 

Number of Personnel: 1 

 

The percent reduction in service total time can be calculated as before. 

 

Service Type % Reduction in Fleet 
Service Total Time 

Collection 30.8% 

Battery Swapping 25.6% 
Table 8 - Performance Benefits with Respect to Service Type 

 

We see that if the service type is battery swapping, the self-assembly algorithm offers 

less benefit than if the type is collection. As the number of scooters per cluster increase, 

the battery swapping times at those clusters become greater than the collection times. 

As in Section 4.3.2, the percent reduction in service stops is not calculated as this metric 

is not affected by the service type. 
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 Chapter 5: Conclusion 

5.1 Summary of Contributions 

This thesis presents a study on self-assembly as an application of self-driving e-scooter 

fleets to reduce costs for operator companies. To this end, the application is tackled as 

two separate optimization problems in clustering and routing. A full algorithm pipeline 

is developed to solve both of these problems using modified versions of agglomerative 

clustering and a generic VRP solver. 

 

We quantify the benefit to shared scooter operators as percent reductions in the number 

of service stops, fleet service total time (man-hours) and fleet service time if self-

assembly is utilized. We studied the sensitivity of these metrics and their relation to the 

parameters of our algorithm, namely scooter travel distance, number of service 

personnel and service type. 

 

We find that the scooters’ travel distance threshold plays the biggest factor in reducing 

the number of stops and service total time of a fleet, with reductions of up to 50% 

possible if the scooters are able to autonomously travel 500m, and over 10% reduction 

if the travel distance is 100m. We also found that self-assembly provides slightly 

greater benefits in terms of total service time for collection type services as compared 

to battery swapping. Finally, our results show that the number of service personnel 

plays no role in reducing the service total time, but greatly helps in reducing the fleet 

service time.  

 

The two main insights that result from this study are as follows: 

1) As self-diving e-scooter fleets are developed, efforts should be focused on 

improving the range for which the scooters can travel autonomously or 

teleoperated, since this factor is shown to have the greatest impact on reducing 

servicing times. 

2) Self-driving e-scooter fleets do not necessarily have to be a replacement for 

humans in the servicing process. When self-assembly is used together with the 

conventional servicing procedure, increasing the number of personnel can help 

counter low scooter travel distance thresholds, and the service time for a fleet 

can still be dramatically reduced. 

 

5.2 Ongoing and Future Work 

Although the work done in this project presented some interesting results regarding the 

benefit of self-assembly to shared scooter operator companies, we have only scratched 

the surface of the possibilities and scenarios of self-driving e-scooters.  

 

The algorithm presented in this thesis for the self-assembly application has several 

areas for improvement. The clustering stage currently consists of finding the solution 
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for an optimization problem and then performing a series of refinement steps to tweak 

the solution, thereby making it sub-optimal. It would be ideal if the clustering problem 

can be reformulated to include these refinements as constraints, thus providing one 

coherent solution for the full problem instead of doing it as separate pieces. The Google 

Maps Roads API was used under the assumption that roads will always provide valid 

destinations for scooters to cluster to, but this is certainly not the case, especially if the 

road is a highway. A more rigorous method for determining the validity and feasibility 

of a destination is needed. 

 

As stated in Section 4.3, the metrics in our study were modeled linearly, which is valid 

for a slightly reduced dataset and made benefit calculations convenient. It would be 

interesting, however, to apply the exponential model to certain metrics as previously 

stated and see how the results would change. We would no longer be able to assign a 

percent reduction value for an entire parameter configuration, but this would be a more 

realistic model for large scooter fleets or scooters that have a large travel distance 

threshold. 

 

Finally, since this thesis only studies one particular application of an autonomous 

scooter fleet, it would be beneficial to use it as a starting point in the study of other 

applications. For example, scooters may be able to autonomously re-position to directly 

reduce the travel time of service personnel, rather than doing so indirectly by reducing 

the number of stops. Studies can also be conducted on how utilization of the fleet to 

reduce costs can be integrated with utilization of the fleet to increase ride revenue by 

re-positioning to high demand areas. There may be a way to combine these two 

applications into one complete optimization problem to solve. 
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 Appendices 

6.1 Appendix A: Tools and Software 

Software Language and Packages 

Python 3.7.6 

NumPy 1.18.1 

Matplotlib 3.1.1 

Pandas 1.0.4 

Scikit-learn 0.23.2 

Google OR-Tools 8.0.8283 

 

Microsoft Bing Maps APIs 

Distance Matrix API 

Routes API 

 

Google Maps Platform APIs 

Static Maps API 

Roads API 

Directions API 
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