

ABSTRACT

Title of Thesis: ANALYSIS AND OPTIMIZATION OF

SERVICING LOGISTICS FOR SELF-

DRIVING E-SCOOTERS

 Hao Da Dong, Master of Science, 2021

Thesis Directed By: Dr. Derek A. Paley, Department of Aerospace

Engineering and Institute for Systems Research

In recent years, the shared scooter market has seen tremendous growth along with other

micromobility industries as the future means of urban transport. One particularly

interesting innovation that companies have begun experimenting with in this field is

that of self-driving e-scooters.

This thesis presents a study on the benefits of an autonomous or teleoperated scooter

fleet with self-assembly capabilities: the ability to cluster nearby scooters and reduce

the number of locations for servicing. To this end, the application is tackled as two

separate optimization problems in clustering and routing. The full algorithm pipeline is

described and several metrics evaluated against independent variables and algorithm

parameters using real-world GBFS scooter data collected over several months.

This thesis shows that self-assembly reduces total service times by as much as 50%,

and can serve as a stepping stone for early adoption of the technology while more

complex capabilities are being developed.

ANALYSIS AND OPTIMIZATION OF SERVICING LOGISTICS FOR SELF-

DRIVING E-SCOOTERS

by

Hao Da Dong

Thesis submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Master of Science

2021

Advisory Committee:

Dr. Derek A. Paley, Chair

Dr. Jeffrey Herrmann, Committee Member

Dr. Ilya O. Ryzhov, Committee Member

© Copyright by

Hao Da Dong

2021

ii

 Foreword

The work presented in this thesis is completed as part of the ReZoom initiative at the

University of Maryland – College Park led by Dr. Derek A. Paley. The initiative

involves the development of a wide range of autonomous capabilities for e-scooters

and research into how these capabilities may be used to benefit stakeholders in the

shared scooter industry. As such, the project scope (see Chapter 2), assumptions on the

scooter fleet (see Chapter 3), and specific ranges of certain parameters (see Chapter 4)

were chosen to complement the other capabilities being developed at the time of

writing.

iii

 Dedication

This thesis is dedicated to my parents. While holding Masters engineering degrees

themselves, they have never pressured me onto any one path and have always

encouraged me to find a career that is suitable for me. In completing this thesis, I hope

to follow in their footsteps and continue my life-long journey of learning and

continuous improvement in my field of study.

iv

 Acknowledgements

This thesis was generously supervised by Dr. Derek A. Paley. I cannot express the

gratitude I have for his support, flexibility and insurmountable patience during the

entirety of this project. From helping me find my direction on the ReZoom team, to

giving me technical advice for my work, to providing support in all administrative

matters right up to the very end, he has enabled me to complete a research project

virtually in the midst of a global pandemic. I give my absolute thanks to Dr. Paley for

an amazing year and know that any student who may to taking over my work in the

future will be very fortunate to have his incredible support and guidance.

I would also like to thank Dr. Ashish Santosh Kabra, who was kind enough to share

with us hundreds of gigabytes of GBFS scooter data collected by his team over the

course of several months to assist us in our work.

v

Table of Contents
 Foreword ... ii
 Dedication .. iii

 Acknowledgements .. iv
 Chapter 1: Introduction ... 1

1.1 Motivation ... 1
1.2 Relation to State of the Art ... 1
1.3 Contributions of Thesis ... 2

1.4 Technical Approach .. 3
1.5 Outline of Thesis ... 3

 Chapter 2: Background ... 5
2.1 Data Clustering ... 5

2.2 Combinatorial Optimization for Operations Research 6
 Chapter 3: Optimization of Servicing Logistics .. 7

3.1 Overview of Approach .. 7
3.2 Clustering by Micro-scale Re-positioning .. 9
3.3 Optimization of Service Routes for Multiple Personnel 11

 Chapter 4: Numerical Analysis of Servicing Logistics....................................... 15
4.1 Data and Performance Metrics.. 15
4.2 Performance vs. Time ... 17

4.3 Performance vs. Number of Scooters ... 19
 Chapter 5: Conclusion... 26

5.1 Summary of Contributions .. 26
5.2 Ongoing and Future Work .. 26

 Appendices .. 28
6.1 Appendix A: Tools and Software ... 28

 Bibliography ... 29

1

 Chapter 1: Introduction

1.1 Motivation

Micromobility is a mode of transportation that involves small, lightweight vehicles that

typically travel below 25 km/h. This includes but is not limited to bikes, e-bikes,

scooters, e-scooters and skateboards. In recent years, both private and shared

micromobility have tremendously risen in popularity as an option for urban

transportation. There has been much discussion recently about the potential for

micromobility to play a role in solving several of the transport related issues large cities

face worldwide, as well in reducing their carbon footprints by facilitating the move

away from private fossil fuel vehicles.

Of the various micromobility vehicle categories, perhaps none has seen more visible

growth than the shared e-scooter segment. However, with rapid growth and expansion

comes a rapid need for an efficient scooter fleet management solution, which is one of

the most important key factors to profitability. This includes the logistics of collecting,

charging, servicing, and rebalancing scooters to high demand areas. Currently, scooter

operators must allocate tasks for their own employees and/or third-party contractors

that move and charge scooters for payment. With the miniaturization of computing

resources and sensor suites in recent years due to smartphone industry, several scooter

companies are exploring the possibility of adopting a fleet with self-driving capabilities

to complement humans in this task. Although self-driving scooters have several

potential benefits to operators in this area, a central challenge that is not yet fully solved

is the optimization of human and scooter directives to decrease servicing costs and

increase ride revenue.

1.2 Relation to State of the Art

The idea of adding autonomy to personal mobility scooters has been demonstrated as

early as the 2016 MIT Open House, with MIT and the National University of Singapore

presenting a joint project which saw the replication of an architecture and sensor suite

normally used on cars on a scooter [1]. Surveys at the time showed that the public is

generally receptive to the concept of an autonomous personal mobility device. More

recently, several companies are making plans to bring this technology to the

commercial space. One of the more visible figures in this field is Tortoise, led by Uber’s

former director of business development, which aims to provide a standard autonomy

operating system for micromobility vehicles. Tortoise has already partnered with

shared scooter operators Go X and Spin to develop remotely operated scooters as the

first phase of this technology rollout [2] [3]. Another prominent name in the space is

Segway-Ninebot, which has also developed and showcased its own brand of self-

driving e-scooters that can find their way back to charging stations [4]. The company

intends to sell its scooters to Uber and Lyft, both of which it claims are advancing

2

towards semi-autonomous micromobility vehicles. Furthermore, several smaller

startup companies are also beginning to fill the space with their own versions of self-

driving scooters, autonomy module additions, and software.

One key to profitability in the micromobility industry is successful fleet management.

Understanding the logistics of collecting/servicing scooters and then re-distributing or

re-balancing them to high demand areas is central to reducing costs and increasing

ridership (and thus revenue) for shared scooter operators. To this end, there have been

several studies conducted in the following areas:

1. The spatial-temporal distribution variations of shared scooters [5] [6]

2. The forecasting of supply/demand and ride trip prediction [7]

3. The relation between ridership and region demographics [8]

These studies all focus on conventional shared scooter operation models, where

scooters do not have self-driving capabilities and the data analytics are used by shared

operators to determine the best areas to re-balance scooters to each morning, either via

their own employees or third-party contractors.

Self-driving scooters increase ridership by automatically re-balancing to high demand

areas. One recent study estimates the ideal fleet size under varying assumptions of fleet

operations and that up to 10 times higher utilization of scooters can be achieved with

self-driving capabilities [9].

1.3 Contributions of Thesis

There has been much work in the data analytics of conventional shared scooter systems,

and studies into the benefits of self-driving scooter systems in increasing ridership and

revenue are underway, with more expected in the near future. However, there have

been no studies yet to our knowledge that look at the benefit of self-driving scooters in

terms of the other component of fleet management: the reduction in operating costs

from collection and/or servicing. The focus of this thesis aims to bridge that gap with

a study into one specific application of self-driving scooters that would aid operator

companies in reducing operating costs.

We investigate the application of scooter self-assembly, or clustering. The idea is that

the self-assembly of scooters close to each other allows for batch collection and/or

servicing, thereby reducing the number of stops and time it takes for service personnel

to complete a service run. Our work is based on the model where an operator company

employs its own service personnel, which all depart from one central location or depot

in the area that the scooter fleet is deployed. The two service types investigated are

collection (for charging) and battery swapping. Collection was chosen as it is a task

that currently every scooter operator company needs to do, either to recharge scooters

or as the first step in re-balancing. Battery swapping was chosen due to the realization

that several companies are transitioning to this type of re-charging method, as it is

quicker than the traditional method of taking scooters off the road and bringing them

back to a depot or charging station.

3

We evaluate the benefits of self-assembly for different operational approaches by

performing analyses on different combinations of scooter servicing parameters. We

utilize real-world GBFS scooter data collected over several months for this evaluation,

and in doing so we formulate preliminary motivations for the development of self-

driving e-scooters and the foundations for impactful requirements.

1.4 Technical Approach

We tackle the scooter self-assembly application using a two-stage approach, each with

a separate optimization problem and solution.

The first stage is the clustering stage, in which scooters in need of servicing are

identified and located geographically on a map. The geographic coordinates are fed

into a custom variation of the agglomerative clustering algorithm [10]. The basic

algorithm is applied with the scooters’ travel distance matrix and a specified maximum

travel distance threshold in order to determine preliminary clusters. Afterwards, the

clusters and cluster centers are refined with a check that each scooter respects the

maximum travel distance threshold relative to its cluster center. Finally, the refined

cluster centers are slightly adjusted to snap to the nearest road, ensuring that the final

destinations for the scooters are valid and feasible.

The second stage is the service routing stage, in which near-optimal routes are

determined for a given number of service personnel to each scooter cluster center. This

is a classic vehicle routing problem (VRP) and conventional heuristic-based solvers are

used to provide solutions. The distance matrix used in the solver actually consists of

driving times between each cluster center rather than physical distances. Furthermore,

the time of each leg is adjusted to account for the service time at each cluster. Two

different service time calculations are used, depending on whether the service type is

collection or battery swapping.

We quantify the amount of cost reduction in terms of man-hours, number of stops and

the maximum time taken to complete a service run. We use real-world data collected

from scooter companies over several months to investigate these metrics against

various independent variables and parameters, including scooter fleet size, time of year,

number of service personnel and maximum scooter travel distance.

1.5 Outline of Thesis

The remainder of this thesis is organized as follows. Chapter 2 provides background

information on the optimization algorithms used as the foundations for the two stages

of the solution to the self-assembly application. Chapter 3 describes in detail the

4

methods and algorithms pipeline for the solution to the self-assembly application.

Chapter 4 describes in detail the data and various metrics used to evaluate the solution

and the independent variables and metrics used to compare them. Results are provided

to quantify the trends in metrics with respect to independent variables and parameters.

Chapter 5 summarizes our findings and provides suggestions for future work.

5

 Chapter 2: Background

This chapter provides background information on the optimization algorithms used as

the foundation for the two stages of our solution to self-assembly.

2.1 Data Clustering

There are several clustering algorithms available from the fields of statistical data

analysis, pattern recognition, and machine learning. The goal of each one is to group

data points or objects that are in some sense similar to each other. However, the notion

of a cluster cannot be precisely defined, as the metrics for doing so varies between

applications. Clustering algorithms can generally be grouped into the following broad

categories.

Centroid-Based: Algorithms in this category provide a vector representation of a

cluster’s center, calculated as the mathematical centroid of the data points within it

[11]. The most popular algorithm of this category is the classic k-means clustering

algorithm [12], where a given number of known centroids are continuously shifted in

the data space to minimize a distance cost function, usually the squared error between

the cluster centers and their points.

Connectivity-Based: This type of clustering works under the premise that objects are

more related to objects nearby than those that are farther away [13]. This category is

most often associated with hierarchical or agglomerative clustering [10], in which the

closest objects are grouped together first, before larger clusters are formed and those

are in turn grouped even further.

Distribution-Based: This type of clustering envisions the data space as being

composed of a series of probability distributions, with each point holding a full or part

membership to a distribution or cluster [14]. The Gaussian Mixture Model (GMM)

method [15] is a prominent algorithm of this category. One distinction of this category

from the previous two is that the clusters here are permitted to intersect and overlap

with one another.

Density-Based: In this category, clusters are identified as areas of high density in the

data space [16]. Object is sparse areas are sometimes considered as outliers and omitted

from the calculation of the cluster centers. The Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) algorithm [17] is a prominent example in this

category.

The agglomerative clustering algorithm is chosen to be the foundation of the first stage

of our solution due to its natural conformity to our data of interest. When looking for

common locations for scooters to aggregate to on a map, the primary metric is travel

distance. Scooters close to each other should be clustered together. Since the scooters

6

are not known to obey any particular spatial probability or density distributions,

distribution- or density-based algorithms would be less suitable. The centroid-based k-

means algorithm was considered and actually implemented as a prototype for our

solution, but agglomerative clustering suits our application better for the following

reasons:

1. The number of natural clusters formed from the scooters is not known a priori,

and thus the k-means algorithm must be applied iteratively while increasing the

number of clusters until the travel distance threshold between scooters and their

cluster centers are satisfied. Because the cluster centers are randomized at the

start of each iteration, this introduces several opportunities for errors.

2. The k-means algorithm works best for a small number of clusters relative to the

number of data points [18]. It was found experimentally that due to the general

sparsity of our scooter data, the number of clusters is very large, especially for

smaller travel thresholds.

3. By definition, the k-means cluster centers are calculated as the centroids of

scooters rather than geographic centers among them. It uses this definition in

optimizing its cost function, which is not always realistically correct in our

application since we are interested in geographic centers for scooters to travel

to. Agglomerative clustering does not have this limitation.

2.2 Combinatorial Optimization for Operations Research

Determining the optimal way to route an agent between several locations is called the

Travelling Salesman Problem (TSP) [19]. The task is to find the shortest route for a

salesman to visit customers at various locations and return to the starting point. For

routing several agents, the more general Vehicle Routing Problem (VRP) [20] can be

employed. The task of the VRP is to have one vehicle in a group visit a subset of

locations while minimizing the longest route taken by any one vehicle and ensuring all

locations are visited exactly once. This problem has a number of variations, including

capacity constraints and time windows. Although exact solution techniques such as

branch and bound [21] do exist, the computation time for these approaches become

unreasonable for larger problems. A more common approach to the VRP is to conduct

a limited search of the problem solution space using a metaheuristic. One such

approach is simulated annealing [22]. More recently, machine learning techniques such

as genetic algorithms have also been leveraged in the formulation of new solvers [23].

7

 Chapter 3: Optimization of Servicing Logistics

This chapter describes in detail the methods and algorithms pipeline for our solution to

the self-assembly and collection problem.

3.1 Overview of Approach

We tackle the scooter self-assembly application using a two-stage approach, each with

a separate optimization problem and solution. The complete algorithm pipeline is

illustrated in Figure 1.

Figure 1 - E-scooter Self-Assembly and Collection

Scooter location data is collected in the General Bikeshare Feed Specification (GBFS)

[24] format, an open data standard for shared micromobility. After extracting the

locations into a suitable data structure, the entire fleet is filtered to include only low

battery scooters that fall below a certain threshold. The data used in this study is

described in Section 4.1.

The first stage of the application algorithm is the clustering stage, in which scooters in

need of servicing are identified and located geographically on a map. The geographic

coordinates are fed into a custom variation of the agglomerative clustering algorithm,

which returns the cluster center locations as well as the scooters that belong to those

clusters.

The second stage of the application algorithm is the service routing stage, in which

near-optimal routes are determined for a given number of service personnel to each

scooter cluster center. The distance matrix used in the solver for this problem consists

of travel times between each stop location (clusters) as well as a pre-assigned depot for

8

the service personnel. Each leg is adjusted to account for the two different types of

service time at each cluster.

To analyze the metrics of the self-assembly application, the algorithm pipeline is run

twice for a given scooter fleet. During the first run, only the routing stage is executed,

treating every scooter as its own cluster center. This generates benchmark results for

the theoretical optimal service run using the current industry practice. During the

second run, the clustering stage is executed before the routing stage, and thus reduces

the number of stops that is fed into the VRP solver. The results from the second run

show the theoretical optimal service run generated by the proposed self-assembly

application. The two metrics are compared and further analyzed. Figure 2 shows the

full logic pipeline for the dual benchmarking runs, along with the intermediary and

final products of each process and component of the algorithm.

Figure 2 – Algorithm Benchmarking Pipeline with Final Products

9

3.2 Clustering by Micro-scale Re-positioning

This section describes in detail the first stage of the self-assembly algorithm. We work

with the assumption that a scooter operator company already has access to an e-scooter

fleet with the following autonomous or teleoperated capabilities:

1. Scooters that are able to self-orient into an upright position suitable for

mobility;

2. Scooters that are able to navigate a few hundred meters given a set of

destination GPS coordinates, while driving safely on public roads, avoiding

obstacles and obeying traffic laws;

3. Scooters that are able to identify valid parking spaces at a destination and self-

park in line with other scooters at the location, if any.

These capabilities are being developed as part of the ReZoom initiative at the time of

writing this thesis.

With the previous autonomous capabilities available to a scooter fleet under

consideration, the problem is reduced to spatial data clustering in two dimensions. As

stated in Section 2.1, agglomerative clustering was selected to be the foundation of our

approach, with slight modifications to improve the real-world feasibility of the

solutions generated. The specific steps in the clustering stage pipeline are detailed

below.

3.2.1 Initial Cluster Generation

The agglomerative clustering package from the scikit-learn machine learning

framework [25] is used for generating the initial clusters. The following key parameters

are set specific to our application during usage:

1. linkage This parameter is set to complete, which tells the solver to use the

maximum of the distances between all scooters of two clusters when deciding

whether or not to merge them. This choice better ensures that scooters will

satisfy the travel distance threshold to their cluster centers.

2. distance_threshold This parameter tells the solver to continue merging

clusters until the given threshold can no longer be satisfied. This choice is in

contrast to setting a specific number of clusters for the solver to generate.

3. affinity This parameter tells the solver what metric to use in computing the

linkage distances. It is set to precomputed for our application, which states that

a custom linkage matrix will be used to determine distances. We utilize the Bing

Maps Distance Matrix API [26] from Microsoft in order to generate the required

matrix that comprise of the route distances between scooter locations.

After the clusters are generated from the solver, the centers are calculated as the spatial

midpoint of the scooter locations in each cluster.

10

3.2.2 Cluster Refinement

Each cluster is put through a refinement process to ensure every scooter satisfies the

given travel distance threshold. The process involves using the Bing Maps Routes API

[27] to calculate the distance between each scooter and its cluster center and comparing

it with the distance threshold. The Distance Matrix API cannot be used here since it

cannot handle the edge case of a 1x1 matrix request. If a scooter violates the threshold,

it is separated from the rest of the cluster and forms its own cluster. The center of the

original cluster is then recalculated. This process repeats until all clusters have been

processed.

This refinement procedure does not produce the absolute optimal result. However, it is

expected and also observed through preliminary testing that the vast majority of

clusters formed during the initial step are unchanged after refinement, and does not

significantly affect the overall results presented in Chapter 4.

3.2.3 Cluster Center Refinement

After the clusters are refined, their recalculated centers are also refined. Because the

centers are calculated purely as the spatial midpoint, it is possible that some are

infeasible destinations for scooters to travel to on a map, such as in the middle of a

building. To correct for this, we utilize the Google Maps Platform Roads API [28],

which provides the functionality to snap any GPS coordinate to its nearest road. All

cluster centers are adjusted to their nearest roads, and this is the final step in the

clustering stage.

Figure 3 illustrates the results of applying the modified agglomerative clustering

algorithm on the low-battery scooters of a sample fleet in Washington DC on February

2, 2020. The fleet consists of scooters below 40% battery, with a travel distance

threshold of 300m. Refer to Section 4.1 for a detailed explanation of these parameters.

Scooters are represented as dots and cluster centers are represented as X’s. The colors

identify unique clusters. The red circles outline two instances where the cluster

refinement step described in section 3.2.2 is executed. Notice how spatially, these areas

contain scooters which appear as if they should from a cluster, but have been separated

in the refinement step. Also notice that for some single scooter clusters, the center

locations are slight shifted from the scooter location as a result of the cluster center

refinement step.

11

Figure 3 - Sample Cluster Diagram of an E-Scooter Fleet

Battery Threshold: 40%

Service Type: Collection

Travel Distance: 300m

3.3 Optimization of Service Routes for Multiple Personnel

This section describes in detail the second stage of the self-assembly algorithm. For the

purpose of this study, we make the following assumptions about a sample scooter

operator company:

1. The company services its fleet via its own employees rather than third party

contractors;

2. All service personnel depart and return to one depot location within a given area

of operation;

3. All personnel drive motor vehicles to scooter locations to perform servicing;

4. There are only two types of servicing: scooter collection and battery swapping;

5. In the case of the service being collection, all vehicles shall have sufficient

capacity to store all collected scooters.

Under these assumptions, the formulation is a simple Vehicle Routing Problem (VRP)

with no time windows or capacity constraints. The Google OR-Tools framework [29]

and its VRP solver package is used as the foundation for this stage of the algorithm.

The specific steps in the routing stage pipeline are detailed below.

12

3.3.1 Route Time Matrix Generation

Similar to in the clustering stage, the Bing Maps Distance Matrix API is used to

generate a distance matrix for all stop locations (cluster centers) calculated from the

previous stage. The values of the matrix are travel times rather than distances since we

are interested in optimizing service time rather than checking against a certain distance

threshold. Furthermore, the depot location is prepended to the list of stops to account

for the first and last legs of each trip.

3.3.2 Route Time Refinement via Service Type

Before the route times are passed to the VRP solver, they are adjusted to account for

the service time at each stop location, with the exception of the depot. The models used

for the two service types, collection and battery swapping, are shown below.

Collection:

𝑆𝑇𝐶𝑜𝑙,𝑖 = 5 𝑖 = 1,2 … 𝑁𝐶

Battery Swapping:

𝑆𝑇𝐵𝑎𝑡,𝑖 = 4 + 1 ∗ 𝑁𝑆,𝑖 𝑖 = 1,2 … 𝑁𝐶

The variables are defined as follows:

STCol is the collection service time per stop (minutes)

STBat is the battery swapping service time per stop (minutes)

NS is the number of scooters at a particular stop location

NC is the number of clusters (stop locations) for the service run

During collection, we assume that it roughly takes a flat 5 minutes for a service

personnel to park the vehicle, exit, load all scooters into the vehicle and then depart.

For battery swapping, we assume that it roughly takes a flat 4 minutes to park the

vehicle, exit and depart. Furthermore, it roughly takes an addition 1 minute per scooter

for the personnel to open the battery compartment, swap cells and then close the

compartment. These parameters are adjustable. The number of scooters at each cluster

is obtained from the list of clusters generated in the algorithm’s first stage. In the

absence of clustering, the battery swapping model reduces to the collection model.

3.3.3 VRP Solution Matrix Generation

The refined route times along with the number of service personnel are passed to the

Google OR-Tools VRP solver. The solver uses a heuristic-based approach in

generating near-optimal routes. Its first solution generation method and local search

strategy (metaheuristic) are set to automatic, which allows it to select the best

13

parameters based on its internal analysis of the dataset. The solver returns a list of

ordered stop locations for each vehicle, which corresponds to the near-optimal routes

found for each. A solution matrix of these routes is saved, along with the total and

maximum travel times for the service run.

The following figures show the routes generated by the VRP solver for service

personnel, both for the non-clustering scenario (Figure 4) and the clustering scenario

(Figure 5). The sample scooter fleet used is the same as that in Figure 3. The number

of service personnel is set to 3 and the service type is set to collection. See Section 4.1

for a detailed explanation of these parameters. In each plot, the depot location is marked

with a red star and each color represents a route taken by the personnel. The stop

locations are shown as dots on the routes and labeled with numbering system that

follows the scheme:
(𝑃𝑒𝑟𝑠𝑜𝑛𝑛𝑒𝑙 𝑁𝑢𝑚𝑏𝑒𝑟). (𝑆𝑡𝑜𝑝 𝑁𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝑅𝑜𝑢𝑡𝑒)

Notice how the number of stops in Figure 5 is reduced from that in Figure 4.

The paths between each stop location are generated with the Google Maps Platform

Directions API [30], which has the functionality to return the wapoints of a route’s

polyline on a map between two GPS coordinates.

Figure 4 - Sample Routing Diagram of an E-Scooter Fleet without Clustering

Service Type: Collection

Number of Personnel: 3

14

Figure 5 - Sample Routing Diagram of an E-Scooter Fleet with Clustering

 Battery Threshold: 40%

Travel Distance: 300m

Number of Personnel: 3

Service Type: Collection

15

 Chapter 4: Numerical Analysis of Servicing Logistics

This chapter describes the data and various metrics used to evaluate how the solution

depends on certain independent variables.

4.1 Data and Performance Metrics

4.1.1 Data Description

As stated in section 3.1, the data used in this study is originally collected in the GBFS

format. The GBFS data available to us consists of scooters from various operator

companies in the Washington DC area from late 2019 to late Summer of 2020. The

data was eventually filtered to include only scooters from the operator Bird, since it is

the only company to include battery levels in its GBFS data and the company with the

least amount of data gaps within the 8-month range.

After the Bird GBFS data was separated from the rest of the dataset, it was further

filtered to include only scooters with the first timestamp after 3am of all the available

days. This effectively provides a snapshot of scooter locations in the fleet at around

3am each day, which is the expected time that service personnel will become active.

For each day at the 3am timestamp, the scooters’ GPS coordinates, battery levels and

datetime are extracted and saved as CSV files, which are the inputs to the self-assembly

algorithm.

Within the algorithm, the depot location is set to be the office of Capitol Scooter Rental.

Since Bird does not operate any depots in Washington DC, an arbitrary local scooter

operator’s location is chosen as a substitute. Furthermore, the low battery threshold is

set to 40%, although this choice is adjustable.

4.1.2 Parameters, Independent Variables and Performance Metrics

We define three types of variables for the analysis of the self-assembly algorithm.

Parameters are tunable variables that affect the algorithm’s performance. Metrics are

values that measure the performance of the algorithm (y-values in plots). Independent

variables are variables that metrics are plotted against (x-values in plots).

The following tables list and describe specific variables of each type that we use in our

numerical analysis.

16

Name Description Value Range

Scooter Travel

Distance Threshold

Maximum distance a scooter can

autonomously travel to a cluster

center

100m, 300m, 500m

Service Type

Type of service performed by service

personnel at each cluster center

collection, battery

swapping

Number of Service

Personnel

Number of personnel sent out for a

service run

1, 3, 5

Table 1 - Algorithm Parameters

Name Description

Time

The date that a service run occurs on

Number of Low-Battery Scooters

The number of low-battery scooters for

a service run
Table 2 - Independent Variables for Performance Evaluation

Name Description

Fleet Service Total Time (No Clustering) The total man-hours used in a service

run without clustering

Fleet Service Total Time (Clustering) The total man-hours used in a service

run with clustering

Fleet Service Time (No Clustering) The maximum time it takes for a service

run to be competed without clustering

Fleet Service Time (Clustering) The maximum time it takes for a service

run to be competed with clustering

Number of Service Stops (No Clustering) Number of locations for personnel to

visit for a service run without clustering

Number of Service Stops (Clustering) Number of locations for personnel to

visit for a service run with clustering
Table 3 - Metrics for Performance Evaluation

Under metrics, fleet service total time refers to the sum of times across all routes taken

by service personnel. This is equivalent to the total man-hours required to complete a

service run, and therefore has a direct correlation with the cost required for a company

to perform such a run. By contrast, the fleet service time refers only to the longest route

taken by service personnel. This is the metric that the VRP solver minimizes and assists

companies in forecasting how many personnel are needed to complete a service run

17

given a time constraint. If there is only one service personnel, the fleet service time is

equal to the fleet service total time.

For the analysis shown in subsequent sections, we use parameter configurations that

resemble those of a sensitivity analysis. In other words, all parameters are held at a

reference value while a single parameter is perturbed across its full range of values.

This results in the parameter configuration table below. The reference configuration set

is highlighted in green.

Travel Distance Threshold (m) Number of Personnel Service Type

100 1 Collection

300 1 Collection

500 1 Collection

300 3 Collection

300 5 Collection

300 1 Battery Swapping
Table 4 - Parameter Configuration Sets (Reference Set Shown in Green)

We take the reference configuration to be {Travel Distance Threshold, Number of

Personnel, Service Type} = {300, 1, Collection}. We then cycle each parameter

through its range while avoiding repetitions. For each parameter configuration, the

metrics are compared for both the clustering and non-clustering cases.

4.2 Performance vs. Time

We first evaluate the self-assembly algorithm’s performance with respect to time.

Figure 6 shows a plot of the fleet service total time comparisons for the parameter

configuration {500, 1, Collection}.

18

Figure 6 – Fleet Service Total Time vs Time (December 2019 to July 2020)

Battery Threshold: 40%

Travel Distance: 500m

Number of Personnel: 1

Service Type: Collection

The plot displays the fleet service total times for the clustering and non-clustering

scenarios on the left y-axis, and the number of clusters formed on the right y-axis. All

three metrics in this case is a measure of scooter usage, since usage is directly correlated

with the number of low-battery scooters, which in turn affects the service total times,

both with and without clustering.

There is a large data gap between mid-March and mid-June 2020, which is most likely

due to Bird temporarily stopping their services due to the COVID-19 pandemic. Apart

from this gap, the overall usage trends appear to be quite stable from late 2019 to mid-

March 2020. There is a slight increase in usage in February, which may be attributed

to the public and especially students returning to a daily commute after Winter Break.

Furthermore, there appears to be another slight increase in usage after the service

suspension. Although the timeline does not extend very far to provide more insights, it

is possible that this increase is due to people transitioning away from public transit and

toward shared mobility for daily commuting.

Apart from these usage trends, however, there is not much else that can be inferred

from examining the metrics with respect to time. The next section provides a alternative

way to examine the data that better highlights the relationship between the metrics and

parameters.

19

4.3 Performance vs. Number of Scooters

The most useful insights from the metrics are visible when they are plotted with respect

to the number of low-battery scooters in a fleet. Consider the sample fleet service total

time plot of parameter configuration {500, 1, Collection} in Figure 7.

Figure 7 - Fleet Service Total Time vs Number of Scooters

Battery Threshold: 40%

Travel Distance: 500m

Number of Personnel: 1

Service Type: Collection

The plot displays the service total times for the clustering and non-clustering scenarios

on the left y-axis, and the number of clusters formed on the right y-axis. However,

unlike in the previous section, the metrics here are arranged as a scatter plot. There is

a positive correlation between the number of scooters, the clusters formed, and the total

times for both clustering and non-clustering. This correlation is modeled with a linear

regression.

While the no-clustering service total time can be modeled linearly even as the number

of scooters grow very large, the same cannot be said for the clustering service total time

or the number of clusters formed. The reason is that given a distance threshold and a

constrained space, there is a limit to the number of clusters that can be formed in that

space. As more scooters are added to the space, they would automatically belong to

one of the existing clusters instead of forming a new one. Thus, we expect that as the

number of scooters grows very large, the number of clusters formed would be more

accurately modeled with a plateauing exponential and asymptotically approach a

limiting value. The same logic applies to the clustering total service time, as it is

20

directly related to the number of clusters. We can already see this relationship in Figure

7. Although the data points for large numbers of scooters are sparse, it is clear that the

overall trend is not linear. That said, since the cluster number limit is expected to very

large, and because the majority of real-world data is shown to fall within the plot

segment with smaller scooter numbers, a linear model serves as a good first-order

estimate to provide the results needed to quantify the benefits of self-assembly, while

also making calculations very convenient.

Since all metrics are modeled linearly, their slopes can be used to provide more insight

into the data and results. For instance, an estimate of the percent reduction in total

service time by using self-assembly can be calculated as follows:

𝑃𝑅𝐹𝑆𝑇𝑇 =
𝑦𝑁𝐶 − 𝑦𝐶

𝑦𝑁𝐶
=

𝑚𝑁𝐶𝑥 − 𝑚𝐶𝑥

𝑚𝑁𝐶𝑥
=

𝑚𝑁𝐶 − 𝑚𝐶

𝑚𝑁𝐶

The variables are defined as follows:

PRFSTT is the percent reduction in fleet service total time

x is the number of scooters for a run

yNC is the fleet service total time with no clustering

yC is the fleet service total time with clustering

mNC is the slope of the fleet service total time line with no clustering

mC is the slope of the fleet service total time line with clustering

Although the fitted lines do not have exact zero-intercepts, we expect that this

assumption does not have a large impact on benefit estimate.

Furthermore, the percent reduction in the number of stops for service personnel can be

calculated from the slope of the cluster number metric:

𝑃𝑅𝑆𝑆 = 1 − 𝑚𝐶𝐹

The variables are defined as follows:

PRSS is the percent reduction in the number of service stops

mCF is the slope of the number of clusters (stops) line

If no scooters are self-assembled, then the number of clusters would be equal to the

number of scooters, since each cluster would only have one scooter. In this scenario,

the slope is 1. As more scooters self-assemble, the number of clusters and service stops

decreases.

The percent reductions in service total time as well as number of service stops provide

a quantitative way to measure the benefits of the self-assembly application. The

sensitivity of these quantities with respect to each algorithm parameter are examined

in the following sections.

21

4.3.1 Travel Distance Threshold Variation

We begin by examining the sensitivity of our metrics as the scooter travel distance

threshold is varied. Figure 8 shows the fleet service total times for each of the values

in the parameter’s range, while Figure 9 shows the number of clusters (service stops).

Figure 8 – Fleet Service Total Time vs Number of Scooters

Battery Threshold: 40%

Number of Personnel: 1

Service Type: Collection

22

Figure 9 – Number of Service Stops vs Number of Scooters

Battery Threshold: 40%

Number of Personnel: 1

Service Type: Collection

Using the equations in Section 4.3, the following table summarizes the benefit in terms

of the percent reduction in service total time and number of stops.

Scooter Travel Distance
Threshold (m)

% Reduction in Fleet
Service Total Time

% Reduction in Number
of Service Stops

100 11.1% 14.3%

300 30.8% 37.3%

500 51.3% 59.5%
Table 5 - Performance Benefits with Respect to Scooter Travel Distance

4.3.2 Number of Service Personnel Variation

Next, we examine the sensitivity of our metrics as the number of service personnel is

varied. Figure 10 shows the fleet service total service times for each of the values in

the parameter’s range.

23

Figure 10 – Fleet Service Total Time vs Number of Scooters

Battery Threshold: 40%

Travel Distance: 300m

Service Type: Collection

Similar to the previous section, the following table summarizes the benefit in terms of

the percent reduction in service total time. Percent reduction in service stops is not

calculated, as this metric is not affected by changing the number of service personnel.

Number of Service
Personnel

% Reduction in Fleet
Service Total Time

1 30.8%

3 29.7%

5 31.4%
Table 6 - Reduction in Fleet Service Total Time with Respect to Number of Service Personnel

We see here that changing the number of personnel does not seem to affect the total

service time. This makes sense, since roughly the same total distance needs to be

travelled to each cluster regardless of how many personnel are sent. The only

differences that occur are minor variations in the route solution matrix generated by the

VRP solver.

The only metric we do expect to see great benefit from an increase in personnel,

however, is the fleet service time. The plot for this metric is shown in Figure 11.

24

Figure 11 - Fleet Service Time vs Number of Scooters

Battery Threshold: 40%

Travel Distance: 300m

Service Type: Collection

Instead of calculating the percent reduction between the clustering and non-clustering,

here we calculate the percent reductions with respect to the nominal scenario of only

one service personnel. The same equation from section 4.3 can be used, but with

different inputs.

Number of Service
Personnel

% Reduction in Fleet
Service Time with 1

Personnel

1 0%

3 66.7%

5 80.2%
Table 7 - Reduction in Fleet Service Time with Respect to Number of Service Personnel

As expected, we see a dramatic improvement in reducing the fleet service time as the

number of personnel is increased.

4.3.3 Service Type Variation

Finally, we examine the sensitivity of our metrics as the service type is varied. Figure

12 shows the fleet service total times for each of the values in the parameter’s range.

25

Figure 12 - Fleet Service Total Time vs Number of Scooters

Battery Threshold: 40%

Travel Distance: 300m

Number of Personnel: 1

The percent reduction in service total time can be calculated as before.

Service Type % Reduction in Fleet
Service Total Time

Collection 30.8%

Battery Swapping 25.6%
Table 8 - Performance Benefits with Respect to Service Type

We see that if the service type is battery swapping, the self-assembly algorithm offers

less benefit than if the type is collection. As the number of scooters per cluster increase,

the battery swapping times at those clusters become greater than the collection times.

As in Section 4.3.2, the percent reduction in service stops is not calculated as this metric

is not affected by the service type.

26

 Chapter 5: Conclusion

5.1 Summary of Contributions

This thesis presents a study on self-assembly as an application of self-driving e-scooter

fleets to reduce costs for operator companies. To this end, the application is tackled as

two separate optimization problems in clustering and routing. A full algorithm pipeline

is developed to solve both of these problems using modified versions of agglomerative

clustering and a generic VRP solver.

We quantify the benefit to shared scooter operators as percent reductions in the number

of service stops, fleet service total time (man-hours) and fleet service time if self-

assembly is utilized. We studied the sensitivity of these metrics and their relation to the

parameters of our algorithm, namely scooter travel distance, number of service

personnel and service type.

We find that the scooters’ travel distance threshold plays the biggest factor in reducing

the number of stops and service total time of a fleet, with reductions of up to 50%

possible if the scooters are able to autonomously travel 500m, and over 10% reduction

if the travel distance is 100m. We also found that self-assembly provides slightly

greater benefits in terms of total service time for collection type services as compared

to battery swapping. Finally, our results show that the number of service personnel

plays no role in reducing the service total time, but greatly helps in reducing the fleet

service time.

The two main insights that result from this study are as follows:

1) As self-diving e-scooter fleets are developed, efforts should be focused on

improving the range for which the scooters can travel autonomously or

teleoperated, since this factor is shown to have the greatest impact on reducing

servicing times.

2) Self-driving e-scooter fleets do not necessarily have to be a replacement for

humans in the servicing process. When self-assembly is used together with the

conventional servicing procedure, increasing the number of personnel can help

counter low scooter travel distance thresholds, and the service time for a fleet

can still be dramatically reduced.

5.2 Ongoing and Future Work

Although the work done in this project presented some interesting results regarding the

benefit of self-assembly to shared scooter operator companies, we have only scratched

the surface of the possibilities and scenarios of self-driving e-scooters.

The algorithm presented in this thesis for the self-assembly application has several

areas for improvement. The clustering stage currently consists of finding the solution

27

for an optimization problem and then performing a series of refinement steps to tweak

the solution, thereby making it sub-optimal. It would be ideal if the clustering problem

can be reformulated to include these refinements as constraints, thus providing one

coherent solution for the full problem instead of doing it as separate pieces. The Google

Maps Roads API was used under the assumption that roads will always provide valid

destinations for scooters to cluster to, but this is certainly not the case, especially if the

road is a highway. A more rigorous method for determining the validity and feasibility

of a destination is needed.

As stated in Section 4.3, the metrics in our study were modeled linearly, which is valid

for a slightly reduced dataset and made benefit calculations convenient. It would be

interesting, however, to apply the exponential model to certain metrics as previously

stated and see how the results would change. We would no longer be able to assign a

percent reduction value for an entire parameter configuration, but this would be a more

realistic model for large scooter fleets or scooters that have a large travel distance

threshold.

Finally, since this thesis only studies one particular application of an autonomous

scooter fleet, it would be beneficial to use it as a starting point in the study of other

applications. For example, scooters may be able to autonomously re-position to directly

reduce the travel time of service personnel, rather than doing so indirectly by reducing

the number of stops. Studies can also be conducted on how utilization of the fleet to

reduce costs can be integrated with utilization of the fleet to increase ride revenue by

re-positioning to high demand areas. There may be a way to combine these two

applications into one complete optimization problem to solve.

28

 Appendices

6.1 Appendix A: Tools and Software

Software Language and Packages

Python 3.7.6

NumPy 1.18.1

Matplotlib 3.1.1

Pandas 1.0.4

Scikit-learn 0.23.2

Google OR-Tools 8.0.8283

Microsoft Bing Maps APIs

Distance Matrix API

Routes API

Google Maps Platform APIs

Static Maps API

Roads API

Directions API

29

 Bibliography

[1] H. Andersen, Y. H. Eng, W. K. Leong, C. Zhang, H. X. Kong, S. Pendleton, M.

H. Ang and D. Rus, "Autonomous Personal Mobility Scooter for Multi-Class

Mobility-on-Demand Service," in 2016 IEEE 19th International Conference on

Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 2016.

[2] M. Toll, "‘Self-Driving’ Shared Electric Scooters Are Here – Are They Awesome

or Terrifying?," electrek, 20 May 2020. [Online]. Available:

https://electrek.co/2020/05/20/g0-x-self-driving-shared-electric-scooters-are-

here/.

[3] H. Field, "Spin Teams Up With Tortoise on Teleoperated E-Scooters," Emerging

Tech Brew, 27 January 2021. [Online]. Available:

https://www.morningbrew.com/emerging-tech/stories/2021/01/27/spin-teams-

tortoise-teleoperated-

escooters?__cf_chl_jschl_tk__=8efaa1787f6c8a3221d04b1e291fa98d84985b97-

1616685279-0-AaEw52gRsYUOok7sIibLzB-dvuO39p-

IQQ3Vi3YVFzB5U9li3aCfSgRRvTt4sUDpJUh-FqQuwS1mY.

[4] K. Pyzyk, "Segway-Ninebot's Newest E-Scooter Can Drive Itself," SmartCities

Dive, 20 August 2019. [Online]. Available:

https://www.smartcitiesdive.com/news/segway-ninebots-newest-e-scooter-can-

drive-itself/561226/.

[5] R. Zhu, X. Zhang, D. Kondor, P. Santi and C. Ratti, "Understanding Spatio-

Temporal Heterogeneity of Bike-Sharing and Scooter-Sharing Mobility,"

Computers, Environment and Urban Systems, vol. 81, no. 101483, 2020.

[6] J. Jiao and S. Bai, "Understanding the Shared E-scooter Travels in Austin, TX,"

ISPRS International Journal of Geo-Information, vol. 135, 2020.

[7] M. Li, S. Somenahalli and S. Berry, "Policy Implementation of Multi-Modal

(Shared) Mobility: Review of a Supply-Demand Value Proposition Canvas,"

Transport Reviews, pp. 670-684, 2020.

[8] R. Mitra and P. M. Hess, "Who are the potential users of shared e-scooters? An

examination of socio-demographic, attitudinal and environmental factors," Travel

Behaviour and Society, vol. 23, pp. 100-107, 2021.

[9] D. Kondor, X. Zhang, M. Meghjani, P. Santi, J. Zhao and C. Ratti, "Estimating

the Potential for Shared Autonomous Scooters," IEEE Transactions on Intelligent

Transportation Systems, 2020.

[10] C. D. Manning, P. Raghavan and H. Schütze, "Hierarchical Agglomerative

Clustering," in Introduction to Information Retrieval, Cambridge University

Press, 2008, pp. 378-382.

[11] S. K. Uppada, "Centroid Based Clustering Algorithms - A Clarion Study,"

International Journal of Computer Science and Information Technologies, vol. 5,

no. 6, pp. 7309-7313, 2014.

[12] C. D. Manning, P. Raghavan and H. Schütze, "K-means," in Introduction to

Information Retrieval, Cambridge University Press, 2008, pp. 360-365.

30

[13] C. D. Manning, P. Raghavan and H. Schütze, "Hierarchical Clustering," in

Introduction to Information Retrieval, Cambridge University Press, 2008, pp.

377-400.

[14] "Clustering Algorithms," Google, 2021. [Online]. Available:

https://developers.google.com/machine-learning/clustering/clustering-

algorithms.

[15] D. Reynolds, "Gaussian Mixture Models," Encyclopedia of biometrics, vol. 741,

pp. 659-663, 2009.

[16] M.Parimala, D. Lopez and N. Senthilkumar, "A Survey on Density Based

Clustering Algorithms for Mining Large Spatial Databases," International

Journal of Advanced Science and Technology, vol. 31, no. 1, pp. 59-66, 2011.

[17] M. Ester, H.-P. Kriegel, J. Sander and X. Xu, "A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise," in KDD-96

Proceedings, 1996.

[18] P. Fränti and S. Sieranoja, "How Much Can K-Means be Improved by Using

Better Initialization and Repeats?," Pattern Recognition, vol. 93, pp. 95-112,

2019.

[19] J. K. Lenstra and A. R. Kan, "Some Simple Applications of the Travelling

Salesman Problem," Journal of the Operational Research Society, vol. 26, no. 4,

pp. 717-733, 1975.

[20] P. Toth and a. D. Vigo, The Vehicle Routing Problem, Society for Industrial and

Applied Mathematics, 2002.

[21] G. Laporte and Y. Nobert, "A Branch and Bound Algorithm for the Capacitated

Vehicle Routing Problem," Operations-Research-Spektrum, vol. 5, no. 2, pp. 77-

85, 1983.

[22] A. S. Alfa, S. S. Heragu and M. Chen, "A 3-Opt Based Simulated Annealing

Algorithm for Vehicle Routing Problems," Computers & Industrial Engineering,

vol. 21, no. 1-4, pp. 635-639, 1991.

[23] M. A. Mohammed, M. K. A. Ghani, R. I. Hamed, S. A. Mostafa, M. S. Ahmad

and D. A. Ibrahim, "Solving Vehicle Routing Problem by Using Improved

Genetic Algorithm for Optimal Solution," Journal of Computational Science, vol.

21, pp. 255-262, 2017.

[24] "GBFS and Open Data," North American Bikeshare Association, 2021. [Online].

Available: https://nabsa.net/resources/gbfs/.

[25] "scikit-learn Machine Learning in Python," scikit-learn, 2021. [Online].

Available: https://scikit-learn.org/stable/.

[26] "Calculate a Distance Matrix," Microsoft, 2021. [Online]. Available:

https://docs.microsoft.com/en-us/bingmaps/rest-services/routes/calculate-a-

distance-matrix.

[27] "Calculate a Route," Microsoft, 2021. [Online]. Available:

https://docs.microsoft.com/en-us/bingmaps/rest-services/routes/calculate-a-

route.

31

[28] "Roads API Overview," Google , 2021. [Online]. Available:

https://developers.google.com/maps/documentation/roads/overview.

[29] "Vehicle Routing Problem," Google, 2021. [Online]. Available:

https://developers.google.com/optimization/routing/vrp.

[30] "The Directions API Overview," Google, 2021. [Online]. Available:

https://developers.google.com/maps/documentation/directions/overview.

