
  

 

 

 

 

 

ABSTRACT 

 

 

 

 

Title of Dissertation: COMPUTATIONAL METHODS FOR THE 

IDENTIFICATION OF MUTATION 

SIGNATURES AND INTRACELLULAR 

MICROBES IN CANCER   

  

 Wells Ivens Robinson, Doctor of Philosophy, 

2021 

  

Dissertation directed by: Professor Max Leiserson, Department of 

Computer Science 

Professor Eytan Ruppin, Department of 

Computer Science 

 

 

Cancer is the second leading cause of death in the United States behind heart 

disease, killing ~600,000 Americans per year. Technological advances have lowered 

the cost of sequencing a tumor genome even faster than would have been predicted by 

Moore’s law. However, specialized computational techniques are required to 

effectively analyze this genomic data. In this dissertation, we present two such 

computational approaches to address key challenges in the field of computational 

cancer biology. Given the importance of reproducibility in biomedical research, we 

provide publicly available workflows for reproducing the results from our 

computational approaches.  

In the first part of this thesis, we present a novel approach for the extraction of 

mutation signatures from matrices of somatic mutations. One computational 



  

challenge for extracting mutation signatures is the relatively small number of 

mutations in each tumor compared to the relatively large number of distinct 

signatures, which can be mathematically similar to each other. To help address this 

computational challenge, we apply ideas from the field of topic modeling to develop 

the first mutation signature model, the Tumor Covariate Signature Model (TCSM), 

that can incorporate known tumor covariates. We focus on two mathematically 

similar signatures associated with distinct covariates to evaluate TCSM and show that 

by leveraging these covariates, TCSM can more accurately distinguish between 

mutations attributed to these two signatures than existing NMF-based approaches.  

The second part focuses on the microbes in the tumor microenvironment. It is 

not currently known whether microbial reads identified from tumor sequencing 

datasets result from contamination or represent either extracellular or intracellular 

microbial residents of the tumor microenvironment. We develop a computational 

approach named CSI-Microbes (computational identification of Cell type Specific 

Intracellular Microbes) that mines single-cell RNA sequencing (scRNA-seq) datasets 

to distinguish cell-type specific intracellular microbes from other microbes. We show 

that CSI-Microbes can identify previously reported intracellular microbes from both 

human-designed and cancer scRNA-seq datasets. Finally, we apply CSI-Microbes to 

a large scRNA-seq lung cancer dataset and identify microbial taxa in tumor cells with 

a transcriptomic signature of decreased immune activity.  
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Chapter 1: Introduction 

1.1 Background 

The rise of next-generation sequencing (NGS) has revolutionized the entire 

field of biology including cancer genomics1,2. NGS is massively parallel, high-

throughput DNA and RNA sequencing. The advent of NGS is largely responsible for 

the dramatic decrease from ~$2.7 billion and ~10 years to sequence the first human 

genome in 2001 to ~$1,000 and a few days to sequence a genome today, which 

significantly outpaces even Moore’s law3.  

At a high level, NGS starts with either DNA or RNA as input material and 

outputs thousands to millions of “short reads” where each read is a string of ~50-250 

characters from an alphabet of four characters, each of which represent one type of 

nucleotide (adenine (“A”), thymine (“T”), guanine (“G”) and cytosine (“C”)). Next, 

these short sequences are either “assembled” into a set of long contiguous regions 

(usually representing a genome)4 or “aligned” to an existing reference genome5–7. 

Read alignment is generally solved using variants on string matching algorithms from 

computer science8. In string matching terms, the read alignment problem is the 

identification of exact or near-exact occurrences of pattern R within text G where R 

represents the short DNA or RNA read and G represents the large genome. 

NGS applied to DNA is called DNA-sequencing and at a high level, can be 

partitioned into targeted sequencing, which is most commonly targeted to the exome, 

which is the ~2% of the genome that encodes proteins (whole exome sequencing or 

WXS), and untargeted or whole genome sequencing (WGS)9. The primary objective 
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of DNA-sequencing is to identify mutations, which are differences between the 

genome or exome being sequenced and a reference genome, using mutation calling 

algorithms such as VarScan 210,11 and MuTect212. Mutations can broadly be divided 

into germline, which are passed down from parent to child, and somatic, which occur 

during the lifetime of an individual in a single cell and are only passed down to 

daughter cells. In cancer genomics, the objective is to identify somatic mutations that 

occur in the cancerous cells.  

NGS applied to RNA is called RNA-sequencing and is most commonly 

targeted to the messenger RNA (mRNA) molecules, which represent the intermediate 

stage between DNA and protein13. The primary objective of RNA-sequencing is to 

quantify the number of transcripts being transcribed from a given gene using 

algorithms that align reads to the transcriptome6. One challenge for analyzing DNA 

and RNA-sequencing from tumor samples is that tumor samples contain a mix of 

tumor and non-tumor cells and reads from both of these cell populations are 

intermixed in the DNA and RNA-sequencing output14. To avoid this problem of 

mixing multiple cell-types, techniques have been developed to sequence the RNA15 or 

the DNA16 of a single cell. Very recent technological advances have scaled the 

number of single cells able to be sequenced in a single experiment from one in 2009 

to tens of thousands today17. 

By time that I started my PhD in 2016, algorithmic development paired with 

the application of NGS to tens of thousands of cancer genomes by international 

consortiums such as The Cancer Genome Atlas (TCGA)18–20 and the International 

Cancer Genome Consortium (ICGC)21 had already yielded many novel discoveries 



 

 

3 

 

about the drivers and hallmarks of cancer14. For example, large sequencing datasets 

has enabled the identification of recurrently mutated genes in specific cancer types in 

unexpected pathways like splicing and protein homeostasis22,23. One unexpected 

finding is that while there are only a small number of genes that are frequently 

mutated across many tumors, there are a large number of genes that are infrequently 

mutated14. 

Some of these somatic mutations drive the cancer by either transforming one 

class of proteins (oncogenes) into hyperactive versions of themselves that cause the 

cell to grow uncontrollably or by transforming another type of proteins (tumor 

suppressors) into non-functional versions of themselves, which are no longer able to 

stop the cell from growing uncontrollably14. However, these somatic mutations can 

also be recognized as foreign by the immune system, which has been exploited by the 

field of cancer immunotherapy that I will mention later in this introduction. One 

prominent computational research area has been the development of computational 

tools to distinguish the small number of somatic mutations that “drive” the cancer 

(“driver mutations”) from the many somatic mutations that do not play a functional 

role in the development or progression of cancer (“passenger mutations”). One group 

of tools looks for single genes that are more mutated than expected given the 

background rate of mutation24,25. Another set of computational tools like CoMEt26 

and HotNet227 looks for sets of driver genes using mutual exclusivity or network 

propagation approaches. While these “passenger mutations” do not drive the cancer, 

they provide a functional readout of the mutational processes active in the tumor. I 
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became interested in mutational processes after taking Max Leiserson’s class on 

Machine Learning for Cancer Mutations in the fall of 2017. 

 

1.2 Mutational Processes in Cancer 

Somatic mutations are caused by either mutagenic processes such as 

ultraviolet radiation and smoking or defective DNA repair processes such as 

mismatch repair and homologous recombination28. Generally, the somatic mutations 

in a tumor are thought to occur from multiple co-occurring mutagenic processes29. 

For example, an inactivating somatic mutation in a gene in a DNA repair pathway can 

inactivate that pathway, which can cause additional mutations. The inactivation of the 

homologous recombination repair (HR) pathway is one of the most clinically relevant 

DNA repair pathway defects because tumors with defects in this pathway are 

particularly susceptible to treatment with PARP inhibitors30. The biallelic inactivation 

of either BRCA1 or BRCA2 is one of the most common defects to the HR pathway 

although defective HR pathway has been reported in the absence of these 

inactivation31. 

It has long been recognized that some of these mutagenic processes cause 

specific patterns of mutations such as the dramatic increase in the number of G to T 

substitutions in lung tumors of smokers compared to those of non-smokers32. 

Incredibly, Alexandrov et al.33 showed that the application of unsupervised machine 

learning approaches to thousands of cancer exomes and genomes sequenced by 

TCGA could extract mathematical patterns of mutations termed “mutation 

signatures”, some of which strongly resemble the previously reported patterns of 
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known mutagenic processes. In their approach, the catalog of single-base 

substitutions, which are a subset of all somatic mutations, from a tumor are first 

categorized into 96 categories, where a category is defined by the base substitute and 

the immediately flanking nucleotides (ex. C[G>T]C represents a T substituted for a G 

flanked on either side by a C). Next, each set of 96 categories from patients are 

concatenated together into a mutation count matrix of size N-by-96 where N equals 

the number of patients. Finally, this mutation count matrix is deconvolved using the 

machine learning approach non-negative matrix factorization (NMF) into two smaller 

matrices, one matrix representing the identified mutation signatures and one matrix 

representing each patient’s exposure to each mutation signature (Figure 1). 

Shiraishi et al.34 first observed that this problem could also be solved using 

machine learning approaches from the field topic modeling, which tries to identify 

topics present across a large cohort of text documents. In this analogy, the cancer 

genomes are documents, mutation signatures are topics, exposures are topic 

prevalence and mutation categories are words. The field of topic modeling has 

generated a significant number of new models and extensions to the original latent 

Dirichlet allocation (LDA)35 including correlated topic models36 as well as 

supervised37 and semi-supervised38 models. We and others34,39 have utilized the 

connection between the two fields to apply models originally developed for topic 

modeling to mutation signatures. 
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Figure 1: Overview of mutation signature extraction  

M, the mutation count matrix (orange) is deconvolved into two smaller matrices: P, which 

represents the mutation signatures (green) and E, which represents the exposures of each 

mutation signature in each of the N samples (blue). 

 

1.3 Tumor Covariate Signature Model 

Research goal: develop a mutation signature model that incorporates tumor 

covariates and better distinguishes between mathematically similar mutation 

signatures. 

We were particularly interested in applying semi-supervised topic modeling 

approaches to the problem of mutation signature extracting because we noticed that 

the existing unsupervised NMF-based approaches struggled to distinguish between 

mutations caused by mathematically similar mutation signatures. This problem was 

particularly pronounced when using the much smaller number of mutations called 

from whole exome sequencing (WXS), where only ~2% (the protein coding region) 

of the genome is sequenced9. We were particularly interested in this problem because 

signature 3, which has been proposed as a biomarker for PARP inhibitors because it 

is associated with defects in the aforementioned HR pathway, is mathematically very 

similar to signature 540. To address this problem, we introduce the Tumor Covariate 

Signature Model (TCSM), which is the first approach to mutation signatures that can 
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incorporate known tumor metadata and demonstrate the improved performance of our 

approach in distinguishing between similar signatures on simulated and real data41. 

1.4 Transition to Cancer Immunotherapy 

During my PhD, my co-advisor, Eytan Ruppin, moved from the University of 

Maryland to the National Cancer Institute to start the Cancer Data Science Laboratory 

(CDSL). As a member of the CDSL, I began a small collaboration with the lab of 

Nick Restifo in the Surgery Branch. The Surgery Branch is one of the pioneers in the 

development of cancer immunotherapy, which uses the patient’s own immune system 

to attack their cancer42.  

During this collaboration, Nick invited me to attend the Surgery Branch’s 

clinical rounds where I met several cancer patients who were being treated by one of 

their clinical trials. After this experience, when Nick offered me a position in his lab, 

I immediately accepted even though it meant moving to a completely new area of 

research and leaving the field of mutation signatures without completing the multiple 

ideas and extensions that Max and I had planned to do after the publication of TCSM. 

Although Nick Restifo unfortunately left the Surgery Branch only a few 

months after I joined, I was already committed to the work being done there and 

continued to attend both clinical rounds and their lab meetings and journal clubs. It 

was during one of these journal clubs when I became interested in the tumor 

microbiome.  
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1.5 The Tumor Microbiome 

The human microbiome is the collection of microbes, which includes bacteria 

and viruses, throughout the human body43. It has been estimated that the human body 

contains roughly the same number of microbial cells as human cells44. Early studies 

of the human microbiome relied on the study of microbes that were cultured from 

human tissue and waste45. However, this culturing-based approach is limited because 

it can only be used to study microbes capable of growing in the provided culture 

media45. In contrast, NGS is able to provide an unbiased sampling of the genomic 

sequences of the microbes present in a sample43. Very recently, interest has grown in 

the tumor microbiome, which is the collection of microbes present in the tumor 

microenvironment46. Several recent papers have pointed to the functional importance 

of the tumor microbiome in both progression and response to treatment of tumors47–

49. The tumor microbiome has previously been studied computationally from NGS 

using a “computational transcriptome subtraction” approach where sequencing reads 

are first aligned to the human reference genome and unmapped, high-quality reads are 

subsequently aligned against a large database of many microbial genomes50,51. This 

approach led to the landmark discovery that the clonal integration of a previously 

unknown polyomavirus (Merkel polyomavirus) causes ~80% of Merkel cell 

carcinomas, which is a rare but aggressive human skin cancer52. Similar 

computational approaches have been applied to identify the enrichment of the 

bacterial genus Fusobacterium in colorectal carcinoma compared to matched normal 

tissues48,53.  
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The journal club paper that piqued my interest in the tumor microbiome 

followed up on these papers and showed that Fusobacterium can exist intracellularly 

within colorectal carcinoma cells47. The existence of Fusobacterium within these 

tumor cells meant that peptides from this bacterium, similar to peptides derived from 

mutated proteins, should be presented by the tumor cells and recognized as foreign by 

the immune system. To both my collaborators in the Surgery Branch and myself, this 

meant that we could target this bacterium (using immune cells) and treat patients with 

colorectal carcinomas.  

From a computational perspective, moving from mutation signatures to the 

tumor microbiome meant working with significantly larger datasets. Although the 

mutation count matrix input to mutation signature extraction is derived from NGS 

data, the identification of somatic mutations from NGS data is usually the primary 

outcome of sequencing, and mutation calling is always performed by the original 

authors. The main pre-processing step for mutation signature extraction is the 

conversion of the mutation calls from VCF files (average VCF file size ~ 10 

megabytes) to the mutation count matrix. The development of a Snakemake pipeline 

to apply the same standardized approach to tens of datasets with Max and a very 

talented undergraduate student Mark Keller was one of my contributions to the 

Leiserson Research Group. In contrast, the sequencing of microbial reads is usually 

an accidental by-product of sequencing to identify mutations or characterize the 

transcriptome and these microbial reads are usually ignored or filtered out by the 

original authors. Therefore, the analysis of microbial reads from NGS datasets usually 
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needs to start with the raw reads in FASTQ format (average FASTQ file size ~10 

gigabytes), which are ~3 orders of magnitude larger.  

My first project in this field was the application of an existing computational 

host subtraction approach54 to hundreds of tumor samples from patients treated by the 

Surgery Branch to identify the subset of tumors with reads that mapped to 

Fusobacterium. I completed this analysis and provided the list of tumors to my 

collaborators in the Surgery Branch, who plan to look for immune cells that recognize 

Fusobacterium in these tumors. At the same time, Eytan pushed me to look for 

additional intracellular bacteria in these tumor samples. However, no definitive list of 

intracellular microbes existed at the time because research is biased towards a small 

number of disease-causing bacteria, which excludes most members of the human 

microbiome, and the distinction between obligate intracellular bacteria, which can 

only reproduce inside of a host cell, and facultative intracellular bacteria, which can 

reproduce both inside and outside of a host cell is blurry (personal correspondence 

with Norma Andrews). Given this background, we began to brainstorm a 

computational approach for the identification of intracellular bacteria.  

1.6 CSI-Microbes 

Research goal: develop a computational model to distinguish intracellular microbes 

from extracellular and contaminating microbes. 

To identify intracellular microbes from NGS, it is necessary to distinguish 

them from both extracellular microbes, which are microbes living outside of host 

cells, and contaminating microbes, which are microbes not originally present in the 

tissue that are introduced prior to sequencing55,56. Previous computational approaches 
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to remove contaminating microbes rely on the idea that samples that are processed 

together should have similar contaminates57,58. However, such approaches usually 

rely on one or at most two NGS samples per patient. In contrast, CSI-Microbes uses 

single cell RNA-sequencing, which sequences hundreds to thousands of cells from 

multiple cell-types per patient. We compare the (normalized) number of microbial 

reads between cells from different cell-types under the assumption that the levels of 

contaminating and extracellular microbes should be similar across cell-types because 

these cells are processed identically. In contrast, microbes that are enriched in one 

cell-type compared to the others likely represent intracellular microbes that reside 

within that cell-type. We demonstrate that our approach works using both human-

designed benchmark scRNA-seq datasets and cancer scRNA-seq datasets with 

previously reported intracellular microbes. Finally, we apply our approach to a large, 

recently published scRNA-seq dataset from lung cancer and identify four tumors 

where microbial taxa are enriched compared to immune cells. By comparing the 

transcriptomes of infected and uninfected tumor cells, we identify antimicrobial 

peptides such as S100A9 and multiple immune response pathways including antigen 

processing and presentation to be significantly downregulated in these infected tumor 

cells compared to the uninfected tumor cells.  
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Chapter 2: Modeling mutation signatures using clinical and 

molecular covariates 

2.1 Preface 

In this project, we develop an approach to flexibly incorporate tumor metadata 

into the mutation signature model and demonstrate that our approach can better 

distinguish between mutations caused by similar signatures. We focus on the problem 

of distinguishing between similar mutation signatures for two reasons. First, there is a 

well-established connection between topic modeling and mutation signature 

extraction from which we are able to borrow techniques. Second, there are important 

implications for precision medicine: mutation signature 3 has been proposed as a 

biomarker for PARP inhibitors but it can be difficult to distinguish mutation signature 

3 from the similar mutation signature 5 using existing approaches. 

A manuscript describing this project was accepted to the 2019 conference on 

Intelligent Systems for Molecular Biology (ISMB) in Basal, Switzerland where I 

presented this work. The manuscript was subsequently published in the journal 

Bioinformatics as part of the conference proceedings41. The approach and the design 

of the experiments in this project were conceived jointly by my co-advisor, Max 

Leiserson, and me. I wrote the code to perform all the experiments and analyze the 

results with help processing the TCGA datasets from Mark Keller. With the exception 

of Figure 2, which was generated with help from Mark Keller and Jason Fan, I 

generated the figures myself. Max Leiserson supervised this project. 
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2.2 Introduction 

Somatic mutations accumulate over time in normal and cancer cells as a consequence 

of multiple mutational processes. Measuring and understanding the activity of these 

mutational process within and across tumors has important applications in modeling 

tumorigenesis, personalized cancer therapy, early detection, and prevention. The large 

cancer sequencing datasets generated over the past decade have led to the discovery 

of signatures of mutational processes present in patterns of single base substitutions28. 

Discovering and characterizing these mutation signatures and their underlying 

etiology has thus become an important challenge in the field.  

The sources of somatic mutations can be broadly classified as due to errors in 

DNA replication or from environmental or lifestyle exposures59. Errors in DNA 

replication result both from processes active in healthy cells (e.g., due to spontaneous 

deamination or reactive oxygen species) and from perturbed DNA damage repair 

pathways60. Clinicians use measures of DNA damage repair deficiency for multiple 

types of cancer therapy, including chemotherapy, synthetic lethal therapy, and, more 

recently, checkpoint inhibitor immunotherapy30,61,62. A recent study evaluated 

mutation signatures of homologous recombination repair deficiency in breast cancer 

as a predictive biomarker, and found that the mutation signature-based approach 

would significantly expand the population of patients eligible for PARP inhibitors63. 

Mutations also result from environmental or lifestyle exposures, including UV 

radiation and tobacco smoke, as well as many DNA damaging agents used as 

chemotherapies64,65. 
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Mutation signatures of these exogenous processes have recently been shown 

to be prognostic in cutaneous melanomas, and revealed pre-cancerous neoplasms 

resulting from aflatoxin B1 exposure66,67. More generally, these sources of somatic 

mutations can be thought of as tumor-level covariates where for a given covariate 

(e.g., smoking status), each tumor is annotated with a specific value (e.g., smoker or 

non-smoker). 

The most widely used methods for discovering mutation signatures are based 

on non-negative matrix factorization (NMF) of a mutation count matrix33. To identify 

signatures in a cohort of N tumors, single base substitutions are first grouped into 96 

categories (based on the substitution and its surrounding 5' and 3' contexts), yielding 

an N-by-96 matrix M of mutation counts. Then, NMF is applied to decompose M into 

a N-by-K exposures matrix E and a K-by-96 signatures matrix P, and E and P are 

rescaled so that the rows of P sum to one. Each entry Ei,j is interpreted as the number 

of mutations in tumor i generated by signature j, and Pk,j is the probability signature k 

generates a mutation of category j. Alexandrov et al. applied this model to >7000 

tumors from 30 different cancer types to identify 20 mutation signatures28. 

Alexandrov and colleagues have since expanded the set to include 30 validated 

signatures that are widely studied and available from the Catalogue of Somatic 

Mutations in Cancer (COSMIC)68. 

Since Alexandrov et al. first applied NMF to identify mutation signatures, 

researchers have developed additional NMF algorithms, and addressed the problem of 

inferring exposures in a cohort given a set of active signatures. Kasar et al. introduced 

the SignatureAnalyzer method that uses a probabilistic formulation of NMF and 
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automatically learns its rank K69. Fischer et al. and Rosales et al. both introduced 

algorithms for NMF that assume that the mutation counts are drawn from a Poisson 

distribution parameterized by multiplying factors with a Gamma prior70,71. Rosenthal 

et al. introduced several heuristics for computing the exposure matrix E given a 

signature matrix P, and Huang et al. extended this work to solve the problem 

optimally72,73. 

A handful of researchers have also considered a second type of approaches to 

inferring mutation signatures that leverages lessons from the natural language 

processing problem of topic modeling. Given a corpus of observed documents, each 

drawn from the same vocabulary, the goal of topic modeling is to infer latent topics 

(distributions over words) and to assign each word in each document to its underlying 

topic74. Most topic modeling approaches such as the standard latent Dirichlet 

allocation (LDA) introduced by Blei et al. are Bayesian and make the ``bag-of-words'' 

assumption that each word in a document is independent given its underlying topic35. 

Applying topic modeling to mutation signatures means interpreting tumors as 

documents, signatures as topics, and mutation categories as the vocabulary. Shiraishi 

et al. introduced the pmsignatures method that generalizes LDA to enable mutation 

categorizations that include more than one flanking base34. Funnell et al. used a 

multi-modal topic modeling approach to simultaneously analyze patterns in single 

base substitutions and structural variations in breast and ovarian cancers39. 

Despite this methodological progress, about half of the 30 validated COSMIC 

signatures have no known etiology. The current approach to mapping signatures to 

their underlying causes is to show statistically significant associations between 
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signature exposure and a clinical/demographic features (e.g., a history of smoking and 

COSMIC Signature 4) or molecular features (e.g., BRCA1 inactivations and COSMIC 

Signature 3)75,76. Further, even for two signatures with known etiologies, it can be 

challenging to distinguish their respective exposures with existing methods if the 

signatures are similar. For example, COSMIC Signature 3 and Signature 5 are highly 

similar (cosine similarity of 0.83), but Signature 3 is associated with homologous 

recombination repair deficiency and Signature 5 is associated with age at diagnosis 

and genetic mutations in the nucleotide excision repair pathway40,76–78. 

We hypothesize that to overcome these challenges, methods for modeling 

mutation signatures and tumor-level clinical or molecular covariates are needed. To 

begin to address this challenge, we present the Tumor Covariate Signature Model 

(TCSM) to learn how observed tumor-level covariates change signature exposure. We 

show on simulated and real mutation datasets that, by modeling tumor-level 

covariates, TCSM outperforms existing NMF- and topic modeling-based approaches 

that are limited to using only a tumor's mutations as input. We find that the largest 

differences in performance come when inferring exposures of held-out tumors not 

used to infer signatures, and that these differences lead to improved performance in 

downstream analyses, including predicting DNA damage repair deficiency. TCSM is 

the first method to model mutation signatures and their tumor-level covariates in 

order to automatically infer signature etiology. 
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2.3 Methods 

2.3.1 Tumor Covariate Signature Model (TCSM) 

We present a probabilistic model of mutation signatures and their covariates 

that builds off of the well-studied area of topic modeling and the previously observed 

connection between topic modeling and mutation signatures34,35,39,74. Topic models 

are generative models for text data, and usually encode the “bag-of-words” 

assumption that words are independent given their underlying topics. The observed 

data for topic models are N documents w, where each document wi consists of ni 

words from vocabulary V such that wij ∈ V,1 ≤ j ≤ ni. Topic modeling seeks to 

uncover (1) K global latent variables βk called topics, where each topic is a probability 

distribution over the vocabulary; and, (2) local latent variables including the K topic 

mixing proportions θi per document, and the assignment zij ∈ {1,...,K} of each 

observed word wij to a topic. The most common topic modeling approaches such as 

latent Dirichlet allocation (LDA) by Blei et al.35 are Bayesian, where both βk and θi 

are multinomial distributions with Dirichlet priors. 

In order to model mutational processes in cancer, we interpret tumors as 

documents, mutation categories as the vocabulary, signatures as topics, and signature 

exposures as topic mixings. Following earlier work, we categorize mutations into L = 

96 mutation categories based on its base substitution (C:G>A:T, C:G>G:C, C:G>T:A, 

T:A>A:T, T:A>C:G, T:A>G:C) and the 5’ and 3’ flanking bases (four choices each) 

in the reference genome. 

We present TCSM to allow observed tumor covariates to change the per tumor 

distribution θi of signature exposures (Figure 2). While there is a rich history of topic 
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modeling using document-level covariates, to our knowledge, this is the first time this 

work has been connected to mutation signatures37,38,79. Importantly, we do not model 

the generative process of the observed covariates, but instead take a conditional 

approach where the D observed covariates ~xi of the ith tumor change the prior 

distribution over the signature exposures θi. For example, an observed covariate could 

be a binary indicator for biallelic inactivation of a DNA damage repair gene. The 

model is flexible enough that the covariates can be any real valued number. The first 

element of ~x is always set to 1 to model the mean exposure of each signature. 

More specifically, we follow the “topic prevalence” approach of the Structural 

Topic Model from Roberts et al. that combines Dirichlet-multinomial regression and 

the correlated topic model, and describe the model as it relates to mutation 

signatures36,38,79,80. The correlated topic model places a logistic normal prior on θ 

such that signature exposures can co-vary (correlate) and was previously used to 

analyze mutation signatures in breast cancer by Funnel et al.39 The mean of the 

logistic normal is set for tumor i as x~iΓ, where Γ is a D×(K−1) matrix of exposure-

covariate coefficients. The full generative process for the TCSM for tumor sample i 

with ni mutations is as follows: 

θi ∼ LogisticNormal(~xiΓ,Σ), (1) zij ∼ Multinomial(θi), 1 ≤ j ≤ ni, (2) wij ∼ 

Multinomial(βzij), 1 ≤ j ≤ ni. (3) 

We place a hyperprior on the exposure-covariate coefficients Γ = [γ1;...;γK−1] where 

 γd,k ∼ Normal(0,σk
2), 1 ≤ d ≤ D,1 ≤ k ≤ K − 1, 

and a Half-Cauchy(1,1) prior is placed on σk to weakly enforce regularization. 
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Figure 2: Overview of the Tumor Covariate Signature Model (TCSM)  

We show an illustrative example of d=1 covariate and K=3 signatures. Given the observed 

mutations in a cohort of patients (top left), TCSM learns per patient exposures and 
assignments (top right), and a global set of signatures and covariate-exposure coefficients 

(bottom right). The associations between covariates and exposures are then tested for 

statistical significance (bottom left). Parts of the design of the figure are inspired by Blei et 

al. and Alexandrov et al.33,74 

 

2.3.2 Model training and hyperparameter selection 

We train the TCSM to learn the signatures β, signature exposures θ and 

covariance Σ, and exposure-covariate coefficients Γ using the variational expectation-

maximization algorithm from Roberts et al. and their recommended initialization 

procedure80. The latter is based on a spectral decomposition (via non-negative matrix 

factorization) of the L × L mutation co-occurrence matrix that was shown to lead to 

quicker convergence of topic models80. 

The main hyperparameter of TCSM is the number K of signatures. We set K 

empirically through 5-fold cross-validation, completely holding out 20% of the 
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tumors in one fold. We use the “document completion” approach of Wallach et al. to 

compute the likelihood of all of a held-out tumors’s mutations wtest i.e., computing 

Pr(wtest|β,·), where · represents hyperparameters81. We choose the K when the 

likelihood plateaus. 

Learning exposures in held-out samples. When the signatures β are given (e.g. 

from learning on a training cohort), we learn the exposures θ for additional, held-out 

samples by maximum a-posteriori probability (MAP) estimation. 

2.3.3 Imputing binary covariates in held-out samples 

One advantage of TCSM is that it enables probabilistic imputation of held out 

(or missing) covariates, including for previously unseen tumors. For example, for a 

single binary covariate in tumor xid, we compute the loglikelihood ratio (LLR) of the 

tumor’s mutations under the model with xid = 1 and xid = 0: 

                           Pr(w|xi1=1,β,Σ,Γ,·) 

 LLR = log   , (5) 

                           Pr(w|xi1=0,β,Σ,Γ,·) 

where · is the hyperparameters of the model. A positive LLR indicates that the 

tumor’s mutations are better fit when xid = 1. After imputing held-out or missing 

covariates in this way, we then report the exposures θ estimated from the model with 

higher likelihood for downstream analysis. 

2.3.4 Statistical Significance of covariates on signature exposure 

After applying variational EM to infer the latent variables of TCSM, we 

perform a statistical test for the significance of a covariate with respect to signature 
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exposure. In this work, we only perform the test for a single binary covariate. For 

each signature k and binary covariate d, we generate 10,000 random exposures to 

signature k, half setting xd = 1 and half setting xd = 0, according to Equation 1. We 

then generate an empirical distribution by repeating these steps for TCSM trained on 

data where the covariates are permuted among samples uniformly at random. We 

compute a P-value for a signature-covariate pair by counting how often the mean 

differences in exposure of any signature-covariate pairs on the permuted datasets are 

greater than the mean difference of exposures on real data. We specifically test for an 

increase in exposure and only report the cases where the mean exposure when the 

covariate is present is greater than the mean exposure without the covariate; the 

parameterization of the Dirichlet (or Logistic Normal approximation) necessarily 

means that increasing the exposure of one signature will decrease the exposure of at 

least one of the others. We report Benjamini Hochberg-corrected P-values82. 

2.3.5 Benchmarking of mutation signature methods 

It is challenging to compare mutation signature methods on real data because 

the true signatures and exposures are unknown. For that reason, we perform 

comparisons on both simulated and real data. 

 

2.3.5.1 Simulated mutation datasets 

 

We generate simulated mutation datasets from a simplified version of TCSM 

with known ground truth parameters and hyperparameters based on real cancer 

datasets and previous mutation signatures studies. The simulation process is 

simplified in that we do not allow correlations between signature exposures, so 
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instead sample each tumor’s exposures θ from a Dirichlet (as in Dirichlet-

multinomial regression) instead of the logistic normal38. As a case study, we generate 

data to reflect homologous recombination (HR) repair deficiency in breast cancer, 

using a single binary covariate. We use four of the validated COSMIC signatures 

found to be active in breast cancer (Signatures 1, 2, 3 and 5)68. For each sample, we 

generate a single binary covariate xi, representing HR deficiency, that increases the 

prior probability of exposure to Signature 3 (the COSMIC HR deficiency signature). 

We then generate θi of tumor i from a Dirichlet distribution with parameter vector ηik 

= exp{λ0,k + λ1,kxi}. We use λ0 = [−2,−2,−5,−2] and λ1 = [0,0,4,0]. Thus, simulated 

tumors with HR deficiency have a much greater prior probability of high Signature 3 

exposure, while the other signatures prior probabilities remain unchanged. We note 

that Signatures 3 and 5 have a high cosine similarity of 0.83 to each other, making it 

challenging to distinguish between Signature 3 mutations resulting from HR 

deficiency and Signature 5 mutations. 

2.3.5.2 Evaluation methods 

 

To quantify the importance of tumor covariates in modeling mutation 

signatures, we compare the TCSM with and without covariates. We also compare the 

models to non-negative matrix factorization, using the popular Somatic Signatures 

implementation of NMF for mutation signature analysis83. 

Recovery of ground truth parameters. On simulated data, we compare the 

models on their learned signatures (using average cosine similarity) and exposures 

(using mean squared error). Note that these are in-sample comparisons. 
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Held-out log-likelihood. We compare TCSM with and without covariates 

using average log-likelihood per mutation of held-out data. Since NMF is non-

probabilistic, we cannot compare it to TCSM using likelihood. 

Prediction tasks using estimated exposures. To compare between probabilistic 

and non-probabilistic models, we compare the prediction power of the inferred 

exposures for a target binary covariate that is known to be associated with mutation 

signatures. First, we learn the mutation signature model on the training data set. Then, 

we use the model to estimate the exposures of the test data set to the identified 

signatures. Importantly, while the covariate is used when training TCSM, we hold it 

out completely in the testing dataset. For TCSM, we first impute the covariate in 

held-out samples before computing exposures (as described in Section 2.3.2). For 

NMF, we estimate the exposures in held-out samples using SignatureEstimation72. 

Next, a Support Vector Classification (SVC) model with a linear kernel is trained 

using the normalized exposures of the training dataset and the target covariate and 

evaluated on the test dataset. When the distribution of the target covariate is 

unbalanced, we set the class weight parameter of the SVC method to balanced and 

evaluate the performance using area under the precision-recall curve (AUPRC). 

2.3.6 Implementation and software 

We implemented TCSM in Python 3. We perform model training and 

inference using a wrapper of the Structural Topic Models R package79. We provide a 

workflow for reproducing the experiments in the paper using Snakemake84. The 

source code is publicly available at https://github.com/lrgr/tcsm. 
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2.3.7 Data 

We analyze mutations in breast cancer exomes processed and standardized by 

The Cancer Genome Atlas PanCanAtlas and downloaded from the Genomic Data 

Commons85. To investigate the relationship between breast cancer and homologous 

recombination (HR) repair deficiency, we restrict our analysis to 760 tumors with 

called biallelic inactivation of 82 genes in the HR pathway and counts of LST (Large-

scale State Transitions; a measure of HR deficiency) from Riaz et al.31,86. We obtain 

biallelic inactivation calls for the 82 HR genes by combining epigenetic silencing 

calls from Knijnenburg et al. with germline and somatic mutation and loss of 

heterozygosity (LOH) calls from Riaz et al.31,87. 

We also analyze 466 melanoma exomes and 485 lung squamous cell 

carcinoma tumors from The Cancer Genome Atlas PanCanAtlas dataset85. We 

exclude 48 melanoma samples that were annotated as either acral melanomas or 

metastatic samples with unknown primary tumor origin by 66 (list of excluded 

samples obtained via personal correspondence). We download CC>TT dinucleotide 

polymorphism counts for these samples from both Firehose and Alexandrov et al.88 

We combine these data sources by taking the average CC→TT count for samples that 

appear in both sources. 

2.4 Results 

2.4.1 Comparison on simulated data 

We first compare the Tumor Covariate Signatures Model (TCSM) on 

simulated data with known ground truth to two baseline methods: nonnegative matrix 
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factorization (NMF) and TCSM using no covariates. To better understand how a 

single signature with changes in exposure due to tumor covariates affects the 

performance of TCSM and existing methods, we perform this comparison using 

simple simulated datasets with a single binary covariate that changes the prior 

probability of exposure for a single signature. The remaining parameters are set using 

previously discovered mutation signatures or are derived from real mutation datasets. 

We randomly generate fifty simulated datasets (see Section 2.3.5), varying the 

number of samples from 50 to 250 and sampling with replacement the number of 

mutations per sample from real breast cancer exomes from The Cancer Genome Atlas 

PanCanAtlas dataset85. We then compare the output of our model to NMF as 

implemented by the SomaticSignatures R package83. We apply TCSM with and 

without covariates to directly quantify the importance of incorporating tumor 

covariates. We evaluate the models in terms of the log-likelihood of held-out samples 

for K = 2−8. We compute the average held-out log-likelihood using Monte Carlo 

cross-validation with fifty train/test splits, holding out 20% of the samples. We also 

report each model’s in-sample accuracy at identifying the hidden signature and 

exposure parameters. 

In terms of model selection (identifying the true K), we find that TCSM with 

covariates consistently outperforms TCSM without covariates and SomaticSignatures. 

While none of the models are able to consistently learn the true number of signatures 

(K = 4) in datasets with only 50 samples, TCSM identifies the true K more often than 

the other methods (7/50 times compared to 2 and 1 for TCSM without covariates and 

SomaticSignatures, respectively). We used the residual sum-of-squares and explained 
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variances for model selection for SomaticSignatures, as suggested by the authors83. 

When we use 250 samples, we find that TCSM with covariates identifies the true 

number of signatures (K = 4) for 35 of the datasets (compared to 3 and 19 for TCSM 

without covariates and SomaticSignatures, respectively). We also find that covariates 

provide additional signal, as TCSM with covariates achieves higher held-out 

likelihood than the TCSM without covariates on the majority of the synthetic datasets 

when K = 4 for N = 50 (28/50) and nearly all datasets when N = 250 (49/50). All 

models identified the signatures with relatively high accuracy (cosine similarity 

>0.90; Figure 3A) for N > 100. However, TCSM with covariates was better able to 

distinguish between mutations caused by Signatures 3 and mutations caused by 

Signature 5, with higher accuracy in identifying the true exposures across all datasets 

(Figure 3B). 

 
Figure 3: Benchmark of TCSM on simulated data  

TCSM with (red) and without (blue) covariates is compared to the NMF-based 
SomaticSignatures (green) on synthetic data. (A) Cosine similarity of inferred signatures (β) 

to hidden Signatures 3 and 5 using the true K = 4 averaged across fifty datasets, varying the 
number of samples. (B) Mean-squared error of the inferred exposures (θ) for the same 

datasets as in (A) 

2.4.2 Homologous recombination repair (HR) deficiency in breast cancer 

After establishing the utility of our model on simulated data, we turn to test it 

on real data. As an initial case study, we apply TCSM to study homologous 

recombination (HR) repair deficiency in breast cancer. Understanding HR deficiency 
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in breast cancer is particularly important because of the clinical importance of 

identifying patients who might respond to PARP inhibitors30. We use the TCGA 

BRCA cohort and divide the samples stratified by the biallelic HR covariate 

(described below) into (1) a training/validation data set (75%) for choosing the 

encoding of the covariate, model selection, and benchmarking TCSM with/without 

covariates; and (2) a completely held-out test dataset (25%) for evaluation with a 

prediction task. 

2.4.2.1 Covariate selection 

The first key challenge in applying TCSM to real data is choosing the events 

or measures to use as covariates. Ideally, the covariates should be associated with 

changes in signature exposure and be easy to interpret biologically in order to reveal 

signature etiology. We begin by examining traditional markers of homologous 

recombination deficiency, including the biallelic inactivation of specific genes in the 

HR pathway31 and the number of large-scale state transitions (LST), which are 

chromosomal breakages that generates fragments of at least 10 Mb86. 

We first compare TCSM using LST count to TCSM using the biallelic 

inactivation of a gene in the HR pathway as covariates in terms of held-out log-

likelihood for K = 2 − 10 (Appendix A Figure 1). We encode the biallelic inactivation 

of a gene in the HR pathway as a single binary covariate where a 1 indicates the 

tumor has a biallelic inactivation in one of the seven genes (ATM, BRCA1, BRCA2, 

CHEK2, FANCM, FANCF, RAD51C) in the HR pathway inactivated in at least five 

samples in our cohort. We find that LST gives consistently better performance as 

measured in held-out log-likelihood, which makes intuitive sense as it is designed to 
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be a direct readout of the functional status of the HR pathway. However, even though 

TCSM can use continuous variables as covariates, binary covariates – such as 

whether a gene has a biallelic inactivation – are more interpretable and easier to 

analyze downstream, e.g., when inferring the true value in a previously unseen 

sample. Therefore, we search for a subset of the HR genes whose biallelic 

inactivation maximizes the mutual information with the number of LSTs. More 

specifically, we use a greedy algorithm that adds the HR gene whose inactivation 

maximizes the mutual information with LST, halting when the mutual information 

stops increasing. The genes in the identified set, BRCA1, BRCA2 and RAD51C, 

exhibit almost perfect mutual exclusivity (1/57 tumors have co-occurring mutations), 

a pattern expected for genes in the same pathway89. Further, TCSM trained using a 

single covariate for these three genes achieves superior performance than TCSM 

trained using a single covariate for all seven genes and nearly the same performance 

as TCSM using LST count as the covariate (Appendix A Figure 1). In subsequent 

sections, we refer to TCSM with a single covariate – the biallelic inactivation of 

either BRCA1, BRCA2 or RAD51C – as TCSM with the biallelic HR covariate. 

 

2.4.2.2 Automated discovery of mutation signatures of etiology 

 

After selecting the covariate to use, we perform model selection over the 

range K = 2 − 10 using the TCSM with the biallelic HR covariate. We select K = 5 as 

that is where the held-out log-likelihood plateaus and show the resulting signatures in 

Figure S3. All five signatures have cosine similarity > .8 to COSMIC signatures with 

known etiologies (Appendix A Figure 2); specifically, TCSM Signature 1 maps to the 
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APOBEC signatures (COSMIC Signatures 2 and 13), TCSM Signature 2 maps to the 

HR deficiency signature (COSMIC Signature 3), TCSM Signature 3 maps to the 

polymerase epsilon signature (COSMIC Signature 10), TCSM Signature 4 maps to 

the mismatch repair (MMR) deficiency signature (COSMIC Signature 6) and TCSM 

Signature 5 maps to the aging signature (COSMIC Signature 1). Reassuringly, our 

covariate significance test identifies statistically significant increases in exposure to 

one TCSM signature, the TCSM signature that resembles COSMIC Signature 3, in 

the presence of the biallelic HR covariate (HR-proficient mean: .200, HR-deficient 

mean: .418, Benjamini-Hochberg-corrected P < .001). 

Next, we evaluate the ability of the TCSM to impute a hidden biallelic 

covariate value given a held-out tumor’s mutations. We impute each tumor’s biallelic 

covariate when it is in the test fold during 5-fold cross validation. The log-likelihood 

ratio of tumors with inactivation of known HR genes – including inactivation of one 

of the three HR genes used in training (orange) or four other HR genes (green) – is 

significantly greater than the ratio of the samples without the inactivation of known 

HR genes (blue; Figure 4C; Wilcoxon rank sum P = 7e−22). Moreover, the tumors 

predicted to be HR deficient (i.e., those with LLR > 0) without known HR 

inactivation have a significantly higher number of LSTs than the tumors predicted to 

be HR proficient (Wilcoxon rank sum P = 8e−10, Figure 4C), possibly indicating that 

they may have some form of HR deficiency due to some other event. Together, these 

results demonstrate the use of TCSM for automated discovery of mutation signatures 

and their etiology. 
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2.4.2.3 Comparison to other methods 

 

We compare the performance of TCSM with the biallelic HR covariate to 

TCSM without covariates (Figure 4A) for K = 2−10. We find that using covariates 

leads to an increase in held-out log-likelihood for all K> 2. 

Next, we add NMF to the comparison. Since NMF is not probabilistic, we 

compare the estimated exposures of the three methods. We use the SomaticSignature 

R package implementation of NMF using the SomaticSignatures model selection 

process. We choose K = 5 because the model selection yields a range from K = 3 − 6 

(Appendix A Figure 4) and K = 5 enables the fairest comparison between the models. 

The five signatures extracted by SomaticSignatures map with cosine similarity > .8 to 

the same five COSMIC signatures as TCSM. 

We compare how well the estimated exposures of each method for held-out 

tumors correspond with standard measures of HR deficiency. We train a linear model 

to classify tumor HR deficiency from the tumor’s signature exposures. Davies et al. 

recently demonstrated the potential of a similar approach using NMF-based exposures 

to expand treatment with PARP inhibitors to a broader class of patients63. As ground 

truth HR deficiency, we use the biallelic inactivation of BRCA1, BRCA2 or RAD51C. 

We then train the model on exposures from TCSM with the biallelic HR covariate, 

TCSM without covariates and SomaticSignatures (see Section 2.3.5.2 for details). To 

enable a fair comparison, TCSM is not provided with the true value for the biallelic 

HR covariate for the held-out tumors but instead infers the covariate value before 

estimating the exposure (see Section 2.3.3). We evaluate the models in terms of the 
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area under the precision-recall curve (AURPC) on held-out cohorts not used when 

training the classifier. 

We first compare within the cross-validation framework used for model 

selection. TCSM with the biallelic HR covariate (mean AUPRC=.62 across the 5-

folds) outperforms both TCSM without covariates (mean AUPRC=.57) and the NMF 

approach (mean AUPRC=.56). We then compare on the completely held out 25% 

samples not used for model selection or choosing the encoding for covariates. Again, 

we find that TCSM with the biallelic HR covariate (AUPRC=.64) outperforms both 

TCSM without covariates (AUPRC=.59) and the NMF approach (AUPRC=.58). 

 

 

Figure 4: Evaluation of TCSM on TCGA breast cancer data 

(A) Comparison of the log-likelihood of held-out samples across K = 2 - 10 between TCSM 

with the biallelic HR covariate (inactivation of BRCA1, BRCA2, or RAD51C) and TCSM 
without covariates. (B) The log-likelihood ratio (LLR) of samples with the biallelic HR 

covariate hidden where LLR > 0 indicates the mutations of a sample are more likely under 

the biallelic HR covariate inactivation model. (C) After excluding tumors with known 

biallelic inactivation of either BRCA1, BRCA2 or RAD51C, the plot of a tumor’s LLR against 

its LST count. 

2.4.3 Simultaneously learning signatures in melanomas and lung cancer 

Next, we investigate mutation signatures in cutaneous melanomas (SKCM) 

and lung squamous cell carcinomas (LUSC), two types of cancer where mutational 

processes relating to environmental or lifestyle exposures are predominant. We 

examine whole-exome sequences of 418 SKCM and 485 LUSC tumors from TCGA 
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PanCanAtlas (see Section 2.3.7 for details). One advantage of TCSM is the ability to 

encode cancer type in the model while performing a pan-cancer analysis. In contrast, 

previous work searched for a consensus set of signatures from a pan-cancer run and 

individual cancer type runs28,88. 

We investigate using multiple covariates for TCSM: cancer type, smoking 

history (expected for many lung cancers), and exposure to UV radiation (expected for 

many melanomas). For cancer type, we use one binary covariate for SKCM and one 

binary covariate for LUSC. For smoking history, we set to one if the patient has a 

history of smoking and zero for never-smokers. Note that smoking history data are 

missing for SKCM patients, so we set their history of smoking covariates to zero. For 

UV radiation, we use the number of CC>TT mutations in the tumor, which has long 

been known as a marker of UV radiation exposure90. Note that these dinucleotide 

mutations are excluded from the traditional 96 single base substitution categories 

analyzed by mutation signature methods and are thus not included in the 

observations. 

We first perform model selection using TCSM and compare the held-out log-

likelihood using all four covariates (cancer type, smoking history and UV radiation 

exposure), using only the cancer type and using no covariates (Figure 5A). We find 

that using the cancer type covariates results in a large improvement in held-out 

likelihood across K compared to using no covariates (Figure 5A). In contrast, we find 

that using all four covariates results in a much smaller improvement in held-out 

likelihood across K compared to using only cancer type. We hypothesize that the 

additional covariates yield minimal improvement because they are strongly associated 
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with the cancer type. To simplify downstream analysis, we remove the smoking status 

and UV radiation exposure covariates and use only the cancer type covariate. To 

further simplify the model, we use a single cancer type covariate with two possible 

values (LUSC and SKCM), instead of using one binary covariate for each cancer type 

as these two models have identical held-out likelihood performance (Appendix A 

Figure 5). Using TCSM with the single cancer type covariate, we select K = 4 as the 

optimal number of signatures and show the resulting signatures in Appendix A Figure 

7. 

The four extracted signatures resemble known COSMIC signatures (Appendix 

A Figure 6): the ultraviolet (UV) radiation-associated signature (Signature 7), the 

smoking-associated signature (COSMIC Signature 4), the APOBEC-associated 

signature (Signatures 2 and 13) and a signature that resembles both the aging-

associated signature (Signature 1) and the mismatch repair deficient signature 

(Signature 6), which is likely a composite of the two COSMIC signatures that share a 

high cosine similarity to each other (cosine similarity=.84). Reassuringly, TCSM 

finds an association between the SKCM cancer type and an increase in the exposure 

to the TCSM signature most similar to COSMIC Signature 7 (LUSC mean: .113, 

SKCM mean: .808, Benjamini Hochberg-corrected P < .001). TCSM finds an 

association between the LUSC cancer type and an increase in the smoking signature 

(LUSC mean: .448, SKCM mean: .054, Benjamini Hochberg-corrected P < .001), the 

APOBEC signature (LUSC mean: .180, SKCM mean: .013, Benjamini Hochberg-

corrected P < .001) and the mismatch repair/aging signature (LUSC mean: .260, 

SKCM mean: .125, Benjamini Hochberg-corrected P < .001). 
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We then investigate imputing a tumor’s cancer type from its mutations. 

Campbell et al. examined 660 lung adenocarcinomas (LUAD) and 484 LUSC from 

TCGA and identified three LUSC tumors whose molecular profile resembled 

melanomas91. They hypothesized that these three LUSC tumors might represent 

metastases from the skin and noted that one of these patients was previously 

diagnosed with basal cell carcinoma. Campbell et al. reported a similar result in a 

targeted sequencing dataset, such that 35% of hypermutated lung cancers had high 

COSMIC Signature 7 exposure92. Motivated by these reports, we use TCSM to 

reexamine the TCGA LUSC tumors to quantify the probability each primary tumor 

was correctly classified as LUSC. 

We find that the cancer types imputed by TCSM are the same as the classified 

cancer type in the vast majority of cases (Figure 5B). All but three LUSC have 

negative log-likelihood ratios, and the three outliers all have LLRs > 1 (indicating 

that they strongly resemble melanomas). Indeed, these three outliers are the same as 

those Campbell et al. identified as having high UV radiation signature exposure. The 

number of CC>TT mutations in these tumors further supports the hypothesis that 

they are misclassified melanomas, as they are the only three tumors in the LUSC 

cohort with at least 15 CC>TT mutations (Figure 5B). This analysis confirms and 

expands upon the conclusions of Campbell et al. and demonstrates the use of TCSM 

for probabilistically reasoning about cancer type classification. 

TCSM identifies several SKCM tumors as likely LUSC (LLR >0) that are 

less likely to be true misclassifications. One explanation is that SKCM tumors with 

LLR < 0 have very few mutations and almost no CC>TT mutations, especially when 
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compared to SKCM tumors with LLR > 0 (mean number of mutations: 70 vs. 1032, 

P = 5e−27 Wilcoxon rank sum; mean number of CC>TT mutations: 0 vs. 23, P = 

1e−27). However, many SKCM tumors with very few or no CC>TT mutations are still 

correctly classified as SKCM tumors, which demonstrates the importance of using the 

entire mutation spectrum, instead of a single feature. 

 

 

Figure 5: Evaluation of TCSM on TCGA melanoma and lung cancer samples  

(A) The held-out log-likelihood plot used for model selection to obtain K = 4. (B) The log-

likelihood ratio (LLR) of the cancer type covariate for tumors where LLR < 0 means the 

(A)

(B)
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mutations of the tumor are more likely under LUSC and LLR > 0 means the mutations of the 
tumor are more likely under SKCM. 

2.5 Discussion 

We presented the first probabilistic model, TCSM, of mutation signatures and 

their tumor-level clinical/demographic and molecular covariates. We found that 

TCSM outperformed NMF- and topic modeling-based approaches on both simulated 

and real mutation datasets, particularly in distinguishing between exposures of similar 

signatures. We then modeled mutation signatures of homologous recombination 

repair deficiency in breast cancers, demonstrating an approach for selecting 

interpretable covariates and predicting HR deficiency in held-out tumors. We also 

modeled mutation signatures in melanomas and lung cancers simultaneously. By 

including cancer type as a covariate, we were able to provide statistical support for 

earlier claims that three lung cancers in our cohort from The Cancer Genome Atlas 

are misdiagnosed metastatic melanomas. 

The key advantage of TCSM over existing methods is in inferring exposures, 

particularly in distinguishing exposures of similar signatures. For example, we found 

that a linear model trained on exposures from TCSM was better able to predict HR 

deficiency than linear models trained on exposures from methods that do not model 

covariates. While not the focus of the applications in this study, we hypothesize that 

by modeling the effects of tumor covariates on signature exposures, TCSM may be 

more sensitive than existing methods in discovering rare signatures. To do so may 

require explicit modeling of the number of mutations per tumor. 

While modeling tumor covariates of mutation signatures brings clear 

advantages, it also raises the challenge of encoding and selecting covariates for the 
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model. Encoding a particular covariate requires considering its sparseness and 

interpretability. Consider the covariate representing HR deficiency. We reasoned that 

the biallelic inactivation of genes in the HR pathway are more interpretable than 

existing HR indices – even if the HR indices may be a more direct encoding of the 

covariate – and that because the inactivation of each HR gene is sparse and 

approximately mutually exclusive, they could be combined into a single event. 

Selecting covariates also brings challenges, particularly when the mutational 

processes active in a cohort are not well understood, there are multiple covariates 

related to the same process, there is population structure or batch effects correlated 

with exposure, or for discovering new signatures. In this case, it may be important to 

add a covariate selection component to the model. 

Certain aspects of TCSM are computationally expensive and can be improved. 

For example, choosing the value of K, the number of signatures, requires multiple 

runs of TCSM for each potential value of K. One future extension is to model K as a 

draw from a Dirichlet Process, a version of which is popular for topic modeling93. 

Another computationally expensive step is our statistical test, which requires 

sampling 10,000 random exposures from the model because the mean of the logistic 

normal distribution is parameterized by a vector of K-1 coefficients, which does not 

lend itself to an easy interpretation of the significance of exposure-covariate 

associations. Substituting the Dirichlet distribution for the logistic normal 

distribution, such as in Mimno and McCallum38, would improve the direct 

interpretability of the parameters, which would enable a fully Bayesian approach for 

evaluating the significance of the exposure-covariate associations. 
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Finally, one direction we plan to explore in future work is modeling the effect 

of covariates on the signatures themselves, rather than their exposure. This is 

analogous to topic models of regional variation in language usage per topic80,94,95. 

There are multiple cases of researchers reporting multiple different signatures of the 

same mutational process, though it is not always clear what each of the distinct 

signatures represents. Learning how covariates change the signature themselves may 

help uncover these relationships.   
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Chapter 3: Identification of tumor-specific intracellular 

microbes from scRNA-seq using CSI-Microbes 
 

3.1 Preface 

In this project, we develop the first tool to identify cell-type specific 

intracellular bacteria from scRNA-seq data. We apply our tool to a large number of 

scRNA-seq datasets to identify tumor cell-specific microbes for two main reasons. 

First, it is computationally challenging to both identify microbial reads and then 

distinguish reads from contaminating microbes from those of true intracellular 

microbes, which we do by using different human cell-types as controls. Second, these 

tumor cell-specific intracellular microbes may be targeted by antibiotics or T cell-

based therapy.  

I built the pipeline and wrote the code to download the datasets, perform all 

the experiments and analyze the results. Alejandro Schäffer supervised experiments 

to improve the microbial read identification step of the pipeline and assisted in the 

administrative approval of the datasets. Fiorella Schischlik greatly assisted me in the 

generation of the figures. Eytan Ruppin supervised this project. We placed a version 

of this manuscript describing the initial version of the pipeline and the initial results 

from this project on the pre-print server bioRxiv in May, 202096. This version of the 

manuscripts reflects a significant improvement and is currently being finalized for 

submission to a journal. 
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3.2 Introduction 

Several recent papers have pointed to the functional importance of the tumor 

microbiome. For example, bacteria of the genus Fusobacterium are enriched in 

colorectal carcinoma compared to matched normal tissue, drive tumorigenesis, 

influence response to chemotherapy and bind to multiple human immune inhibitory 

receptors47–49,53,97,98. pks+ E. coli have been shown to induce a mutation signature 

frequently found in colorectal carcinoma99. In pancreatic cancer, a subset of taxa from 

the class Gammaproteobacteria were shown to mediate tumor resistance to 

chemotherapy100. A computational analysis of the unmapped reads from whole-

genome sequencing (WGS) and whole-transcriptome sequencing (RNA-seq) 

experiments across 33 tumor types from The Cancer Genome Atlas (TCGA) cohort 

identified a variety of bacterial genera present in different tumor types and 

demonstrated that after filtering out potentially contaminant species, one can 

successfully build a predictor of cancer type based on tumors’ microbial 

composition58. 

Recent papers have demonstrated that some members of the tumor 

microbiome live intracellularly in tumor and non-tumor cells within the tumor 

microenvironment. For example, the previously mentioned Fusobacterium has been 

shown to bind to ligands overexpressed by colorectal carcinoma cells; it can invade 

and exist intracellularly within these cells47,101. Another recent publication used 

multiple experimental techniques to interrogate the microbiome of seven cancer types 

and found that each cancer type has its own characteristic tumor microbiome and 

many intratumoral bacteria exist intracellularly in both tumor and immune cells102. 
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Further, it was recently reported that peptides derived from proteins in 41 bacterial 

species, including Fusobacterium nucleatum, are presented on the human leukocyte 

antigen class I and II (HLA-I and HLA-II) molecules of melanoma cells, which 

suggests that intracellular bacteria can be exploited therapeutically103. Despite these 

advances, it is challenging to identify which microbial taxa reside intracellularly and 

whether they reside exclusively or preferentially in tumor cells, immune cells or cells 

of the non-cancerous solid tissue adjacent to the solid tumor. Just recently, the study 

by Nejman et al.102, which characterized the composition of the tumor microbiomes 

using 16S ribosomal RNA104,105 and identified the intracellular localization of some 

bacteria using staining, was unable to classify which bacterial taxa resided 

intracellularly in which cell types.  

Here, we present a computational approach named CSI-Microbes 

(computational identification of Cell-type Specific Intracellular Microbes), aimed at 

identifying intracellular microbes that are cell-type specific from single cell RNA 

sequencing (scRNA-seq) datasets. Previous studies looking at microbial reads from 

scRNA-seq of host cells have generally focused on viruses106,107. The only previous 

study to analyze bacterial reads from scRNA-seq of host cells that we are aware of 

did so in the context of  known Salmonella infection using a protocol designed to 

capture bacterial reads108. CSI-Microbes extends upon this approach by 

demonstrating that viruses and intracellular bacteria that preferentially reside within 

one cell-type can be identified from two commonly used scRNA-seq protocols 

(Smart-seq2 and 10x) without knowing a priori the infecting virus or bacteria as long 

as the microbe is represented in an input list of reference genomes. In this de novo 
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identification context it is necessary to consider all microbial reads identified from the 

datasets, many of which are likely contaminants. Using user-specified cell-type 

annotations (such as those based on host transcriptomic data), CSI-Microbes aims to 

identify microbial reads that are enriched in specific cell types. This step controls for 

contaminating and extracellular microbes, whose abundances is assumed not to vary 

significantly between cells of different types after proper normalization. Finally, we 

show that the microbial abundances of the intracellular microbes identified are likely 

to be of functional significance as they are associated with host transcriptomic 

changes. 

We first test and validate our approach using two human-designed benchmark 

datasets where human immune cells were exposed to Salmonella and both infected 

and bystander cells underwent scRNA-seq109,110. To test CSI-Microbes in cancer, we 

analyze two 10x datasets from cancer types with previously reported tumor-specific 

intracellular microbes and show that it successfully identifies both the previously 

reported enrichment of Merkel polyomavirus in Merkel cell carcinoma cells and 

Fusobacterium in colorectal carcinoma cells as well as the novel enrichment of 

Hathewaya histolytica in colorectal carcinoma cells from one patient. Subsequently, 

we apply CSI-Microbes to analyze a Smart-seq2 dataset of ~11,000 cells from 13 

lung tumors. We identify multiple bacterial taxa including the bacterial species 

Cutibacterium acnes in tumor cells of four lung tumors, the genus Leptotrichia in 

stromal cells of one lung tumor and multiple bacteria taxa in the immune cells of 

another lung tumor. Finally, we performed a differential expression analysis between 

tumor cells with and without sequence evidence for intracellular bacteria to identify 
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host transcriptomic changes associated with intracellular bacteria. Notably, we find 

the gene S100A9, which encodes half of the anti-microbial heterodimer calprotectin, 

to be the most down-regulated gene in tumor cells with intracellular bacteria. At the 

pathway level, we find that pathways associated with innate immune response 

(including defense response and response to biotic stimulus), antigen processing and 

presentation and multiple cytokine response pathways are downregulated in the 

infected tumor cells. These associations both testify to the significance of the results 

of CSI-Microbes and suggest potential mechanisms for how and why intracellular 

bacteria reside within tumor cells.  

3.3 Results 

3.3.1 Overview of CSI-Microbes 

The inputs to CSI-Microbes are i) FASTQ files from scRNA-seq experiments 

and ii) cell metadata, including cell type annotations and iii) known covariates, such 

as the sequencing plate, that may be associated with differential contamination. CSI-

Microbes performs two tests for the identification of cell-type specific intracellular 

microbes: (a) differential abundance, which compares the abundance of the microbial 

taxa between cell types, and (b) differential presence, which compares the percentage 

of cells with at least one read from the microbial taxa between cell types. We use the 

differential presence test for sparsely populated 10x scRNA-seq datasets with few 

microbial reads and the differential abundance test, otherwise.  The output is a list of 

candidate cell type-specific intracellular microbial taxa ranked by their differential 

abundance or presence.  
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The algorithm proceeds in the following steps (Figure 6 and see Methods for 

a detailed description): (1) scRNA-seq reads are mapped to microbial genomes and 

spike-in transcripts (differential abundant test only) after filtering the host reads. (2) 

For the differential abundance test, microbial reads are normalized across cells using 

spike-in sequences, log-transformed and compared across specified cell types using a 

two-sided Wilcoxon rank-sum test with minimum log fold-change=.5. The statistical 

significance and the area under the receiver operating curve (AUC), which is 

equivalent to the U statistic of the Wilcoxon rank-sum test111, are used to report the 

abundance of the microbial taxa to discriminate between cell types, for each 

microbial taxa. For the differential presence test, microbial read counts are compared 

across specific cell types using a two-sided binomial test and the statistical 

significance and effect size (log2 fold-change) are reported. Both tests are run 

separately for cells given their covariate annotations (plate for Smart-seq2 and sample 

for 10x) and combined using Stouffer’s Z-score method112. (3) Post-hoc tests of 

contamination inspired by the decontam model55 are performed using spike-in reads 

and empty wells if available (Methods). These include two tests, the spike-in and the 

empty wells test. The spike-in test, which is based on the observation that the number 

of reads from contaminating microbes are likely to correlate inversely with the 

sample DNA concentration, calculates the correlation between the spike-in reads and 

the reads of the taxon of interest. The empty wells test, which is based on the 

observation that contaminating sequences are more likely to show up in negative 

controls, compares the presence of microbial taxa between empty and non-empty 

wells (Methods).  
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Figure 6: Overview of the CSI-Microbes approach  

The expected input to CSI-Microbes is FASTQ files and metadata. The first step is (1) 

identification: the mapping of reads to human and microbial genomes and optionally spike-

ins; (2) analysis: comparison of number of cells with at least one microbial UMI between 

cell-types (Differential Presence) or comparison of spike-in normalized microbial reads 
between cell-types (Differential Abundance); (3) validation: correlation of microbial reads 

with spike-in reads (Spike-in Test) and comparison between frequency of microbial reads in 
empty wells vs. wells with cells (Empty Wells Test) 

 
 

3.3.2 Validation of CSI-Microbes on Salmonella exposed scRNA-seq datasets 

We first test CSI-Microbes on a “gold-standard” Smart-seq2 dataset that 

sequenced 262 human monocyte-derived dendritic cells (moDCs) that had been 

exposed to either the D23580 strain or the LT2 strain of Salmonella enterica as well 

as 80 control “mock-infected” cells109. The 262 Salmonella exposed cells were further 

labeled as 135 “infected” and 127 “bystander” cells depending on whether the 

presence of live, intracellular Salmonella could be detected using FACS. We 

identified a median of 8,030 reads per cell that mapped to 859 bacterial genera 

including Salmonella. We applied the spike-in test (step 3) to the 19 most abundant 
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genera and found the abundance of all but Salmonella to be highly correlated with the 

number of spike-in reads, suggesting that they are contaminants. We used CSI-

Microbes to identify differentially abundant microbes between the infected and 

bystander cells and found only the taxonomic path from the class 

Gammaproteobacteria (p-value=9e-6, AUC=.66) down to the species Salmonella 

enterica (p-value=1e-8, AUC=.70) (Figure 7A). We did observe false positives when 

comparing cells across plates, illustrating the importance of controlling for the 

sequencing plate (step 2 in CSI-Microbes, Appendix B).  

We next tested CSI-Microbes on a 10x dataset where the authors sequenced 

3,485 human peripheral blood mononuclear cells (PBMCs) that were exposed to 

Salmonella enterica serovar Typhimurium strain SL1344 as well as 3,515 unexposed 

control cells110. Using flow cytometry, the authors determined that ~3% of the 

exposed peripheral blood mononuclear cells (PBMCs), including 90% of the 

monocytes, were infected with live red fluorescent protein (RFP)-expressing 

intracellular Salmonella. We applied CSI-Microbes to look for differentially present 

microbes between the monocytes and non-monocytes, which identified the path from 

the phylum Proteobacteria to the genus Salmonella despite only 29 UMIs that 

mapped to bacterial genomes in this dataset (Figure 7B).  

Although we do not find a significant difference between the percentage of 

genera-resolved bacterial reads belonging to Salmonella between the two datasets 

(8/27 vs. 756,284/1,643,696 Fisher Exact Test p-value=.12), we do observe 

significantly more microbial reads per cell in the Smart-seq2 dataset compared to the 

10x dataset. Given this difference, we find it pertinent to employ different approaches 
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for filtering and false discovery correction for 10x vs Smart-seq2 datasets: For 10x 

datasets, we filter microbes that are not present above a minimum threshold of 1% in 

any cell-type, which filters all microbial taxa not belonging to Salmonella in the 

dataset from Bossel Ben-Moshe et al.110 For Smart-seq2 datasets, we filter microbial 

taxa that have fewer than 10 counts per million microbial reads in at least 50% of the 

cells in any cell-type. We control for false discovery rate using hierarchical FDR, 

which leverages the ability of CSI-Microbes to identify differentially abundant taxa 

starting at the class taxonomic level in the NCBI Taxonomy and we report the highest 

resolution, statistically significant microbial taxa (Methods)113,114. We validated our 

findings of differential abundance and differential presence in the Salmonella datasets 

using direct mapping to the respective strain genomes using the error-tolerant aligner 

SRPRISM115 (Appendix B). 
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Figure 7: Results from CSI-Microbes on human cells exposed to Salmonella 

(A) Overview of the results from running CSI-Microbes on the dataset from Aulicino et al.109. 

The first plot is a volcano plot where all microbes were plotting according to the output of the 
differential abundance test (p-value and AUC). The second plot shows the taxonomic 

ordering of the differentially abundant microbes. The third panel shows the abundance of 
Salmonella enterica from infected, bystander and control cells. (B) Output of CSI-Microbes 

on the dataset from sample GSM3454529 from Bossel Ben-Moshe et al.110 The first plot 

shows the output of the differential presence test (the taxonomic ancestors of Mycoplasma 
wenyonii received identical scores and were excluded for space purposes). The second plot 

shows the taxonomic ordering of the differentially present microbes. The third panel shows 
the frequency of the presence of Salmonella in monocytes and non-monocytes. 

 

3.3.3 Application of CSI-Microbes to Merkel cell and colon carcinomas 

We further validate CSI-Microbes by analyzing two 10x scRNA-seq datasets 

from two tumor types that have previously been reported to have tumor cell-specific 

intracellular microbes. We first applied CSI-Microbes to identify different present 
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microbes between tumor and non-tumor cells from two Merkel cell tumors, which are 

among the ~80% of these cancers that are driven by the clonal integration of the 

Merkel polyomavirus52,116. In both patients, CSI-Microbes identifies the species 

Human polyomavirus 5, for which the only fully sequenced genome comes from the 

“no rank” child taxon Merkel polyomavirus, to be differentially present in tumor cells 

(patient 2586-4: p-value=6e-5, LFC=2.4; patient 9245-3: p-value=3e-36, LFC=2.4).  

Next, we applied CSI-Microbes to identify differentially present microbes 

between tumor and non-tumor cells from colorectal carcinomas, following previous 

reports that the bacterial species Fusobacterium nucleatum preferentially exists 

within colorectal carcinoma cells and to a lesser extent, stromal cells47,117. In 

agreement with these reports, CSI-Microbes identifies the genus Fusobacterium to be 

differentially present in the tumor cells from patient SC028 (Figure 8A). CSI-

Microbes also identifies the differential presence of the bacterial species Hathewaya 

histolytica (previously called Clostridium histolyticum) in tumor cells of patient 

SC019 and with a trend towards enrichment in the tumor cells from patient SC030 (p-

value=.24, LFC=2.33) (p-value=.009, Figure 8B). This species have been previously 

reported  to be strongly enriched in the colonic tissue of patients with ulcerative 

colitis compared to controls118. 
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Figure 8: Results from CSI-Microbes on colorectal carcinoma  

(A) Output of the differential presence test of CSI-Microbes between the tumor and non-
tumor cells from patient SC028 (non-significant ancestors are excluded for space reasons). 

The differentially present microbes and their children are ordered using the NCBI taxonomy. 

The percentage of cells with reads from Fusobacterium nucleatum are show between tumor 
and non-tumor cells (B) Output of the differential presence test of CSI-Microbes between the 

tumor and non-tumor cells from patient SC019. The differentially present microbes are 

ordered using the NCBI taxonomy. The percentage of cells with reads from Hathewaya 

histolytica are show between tumor and non-tumor cells 

3.3.4 Application of CSI-Microbes to lung cancer 

Next, we applied CSI-Microbes to identify differential abundant microbes 

from a large, recently published lung cancer Smart-seq2 scRNA-seq dataset with 

spike-in sequences119. We analyze 13 lung cancer tumors where at least 10 tumor 

cells and 10 non-tumor cells were sequenced in the same plate, comprising in total 

~11,000 cells from 50 sequencing plates. Using the author’s cell-type annotations 
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(tumor, immune, stroma and epithelial), we identify multiple tumors where microbial 

taxa are differentially abundant in tumor cells compared to immune cells (TH231, 

TH236, TH238, TH266, see examples in Figure 9A and 9B) and stromal cells 

(TH236, TH266). We also detect two tumors with taxa that are differentially 

abundant in stromal cells (TH231) or immune cells (TH220) compared to tumor cells. 

All four tumor samples containing tumor cells enriched with bacterial taxa are from 

tumors that had undergone at most one prior drug treatment. In contrast, the tumor 

sample with bacterial taxa enriched in immune cells came from a patient who had six 

prior lines of treatment including immunotherapy. Finally, comparing the results of 

CSI-Microbes to the results of 16S rRNA sequencing by Nejman et al.102 in the lung, 

we find at least one unambiguous read to 16 of the 17 species found enriched in lung 

cancer by Nejman et al.102, suggesting that scRNA-seq data may provide sufficient 

coverage of the tumor microbiome.  

CSI-Microbes identifies the species Cutibacterium acnes to be differentially 

abundant in the tumor cells compared to the immune cells in four tumors (TH231, 

TH236, TH238, TH266). Cutibacterium acnes was excluded from a previous 

experimental exploration of the lung tumor microbiome by Nejman et al.102 because it 

was identified in a large percentage of the negative controls, which indicated that it 

may be a contaminant. Consistent with this finding, we identify reads from C. acnes 

in nearly every single cell analyzed. However, C. acnes is significantly more 

abundant in tumor cells compared to immune cells in all four tumors (and is not 

significantly more abundant in non-tumor cells in any other tumor). Notably, C. acnes 

has also been reported as one of the most abundant commensals in the lung and to 
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exist intracellularly in epithelial cells120,121. Thus, unlike bulk expression based 

computational methods, CSI-Microbes can consider all microbes while implicitly 

controlling for contaminants by comparing between cells of the same patient. CSI-

Microbes identifies another member of the Cutibacterium genus, Cutibacterium 

granulosum as differentially abundant in tumor cells in patient TH266 (uncorrected p-

value = .04, Figure 8B). Additional genera that are differentially abundant in tumor 

cells include the genera Corynebacterium (TH236 and TH238) and Staphylococcus 

(TH236) and the family Micrococcaceae (TH238) (Figure 8A). In patient TH231, 

where CSI-Microbes found C. acnes to be enriched in tumor cells, it also identified 

the genus Leptotrichia to be enriched in stroma cells compared to other cells. In 

patient TH220, CSI-Microbes identifies both the Micrococcus and Corynebacterium 

genera to be enriched in immune cells compared to tumor cells in patient TH220. We 

do not find any bacterial taxa to be differentially abundant between 

macrophages/monocytes and any other cell type.  
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Figure 9: Results from CSI-Microbes on lung cancer 

(A) Overview of the differentially abundant microbes between the tumor and immune cells in 
patient TH238 including a volcano plot, the taxonomical relationship and the abundance of 

specific microbial taxa.  (B) Overview of the differentially abundant microbes including both 

Cutibacterium acnes and Cutibacterium granulosum between the tumor and immune cells in 

patient TH266. (C) Overview of the differentially abundant microbes between the stroma and 

non-stroma cells in patient TH231 including the volcano plot and the taxonomic relationship 
as well as the abundance of genus Leptotrichia across the four major cell types in plate 

B003119 (the only plate from TH231 containing > 1 stroma cell) 

 

 

To study the transcriptomic state associated with the presence of intracellular 

bacteria, we performed a differential expression analysis between the tumor cells 



 

 

54 

 

from patients TH231, TH236, TH238 and TH266 (termed “infected” because CSI-

Microbes identified microbial taxa that are differentially abundant in tumor cells in 

each of these samples) and the tumor cells from the other patients (termed 

“uninfected”) (Figure 10A, Methods). At the gene level, the gene most down-

regulated in infected tumor cells compared to uninfected tumors cells is S100A9 

(FDR-corrected p-value=1e-62, AUC=.09), which forms a heterodimer calprotectin 

with S100A8. Calprotectin has antimicrobial properties because of its ability to 

sequester metal ions such as zinc, manganese and iron that are essential nutrients for 

microbes122. The strong down-regulation of calprotectin as well as multiple other 

S100 calcium-binding proteins may explain how bacteria such as C. acnes can 

survive inside tumor cells.  

Next, we performed a gene set enrichment analysis (GSEA) of the 

differentially expressed genes between the “infected” and uninfected cancer cells and 

clustered similar gene sets using Enrichment Map 123 (Figure 10B, Methods). The 

largest cluster of gene sets downregulated in infected tumor cells contains mostly 

gene sets associated with processing and presentation of antigens as well as gene sets 

associated with hematopoietic differentiation and response to external stimulus. This 

cluster is connected to the chemotaxis cluster, which includes gene sets associated 

with chemotaxis of leukocytes, granulocytes and neutrophils. Of note, there are at 

least three additional and unconnected downregulated gene sets involved in anti-

microbial response, including humoral immune response mediated by antimicrobial 

peptides, transition metal ion homeostasis and cell killing. Additionally, multiple 

immune response pathways such as response to interferon gamma and interferon beta 
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as well as interleukin-12 production are strongly downregulated in the infected tumor 

vs uninfected cells. The largest cluster of up-regulated gene sets includes many gene 

sets associated with microtubules, which have previously been shown to be 

modulated by intracellular pathogens 124. The association of intracellular bacteria with 

the down regulation of the antigen presentation system in tumor cells, which both we 

(Appendix B) and Aulicino et al.109 observe in the Salmonella dataset, is particularly 

relevant given the recent finding that peptides derived from bacteria can be present on 

the HLA class I and II molecules in melanoma103.  

 

 

Figure 10: Transcriptomic changes between infected and uninfected tumor cells 

(A) Volcano plot of the differentially expressed genes between the infected and uninfected 
tumors cells. (B) Enrichment map of the enriched gene sets (FDR q-value < .02) where nodes 

represent gene sets and edges connect gene sets that share a high number of genes. Similar 
gene sets are clustered and manually named using common terms. 

 

3.4 Discussion 

This paper introduces a new approach for the de novo identification of cell 

type-specific intracellular microbes from scRNA-seq data. We first demonstrate that 

CSI-Microbes can identify cells infected with intracellular bacteria from bystander 
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cells analyzing both 10x and Smart-seq2 scRNA-seq datasets and correctly identify 

the infective species. Next, we apply it to analyze scRNA-seq datasets from three 

different cancer types, showing that it identifies cell-type specific intracellular 

bacteria that have been previously reported in the literature, and additionally finds 

sequence evidence for the cell-type specific presence of other intracellular microbes, 

predominately in tumor cells but also in stromal and immune cells. 

One limitation of this paper is that the commonly used scRNA-seq protocols 

that we analyze use polyA tail selection to enrich for polyadenylated eukaryotic 

mRNAs, which selects against prokaryotic RNA molecules, which are less likely to 

be polyadenylated and have shorter polyA tails125. Despite this under sampling, our 

computational approach finds clear evidence of the presence of bacterial reads in 

tumors in a cell-type specific manner. These findings call for further experimental 

testing and validation, e.g., using RNAscope126 to learn how these genomic findings 

correlate with other means of detecting the presence of the microbes in cells. The 

recent findings of intracellular bacteria within tumor cells102,103 obviously raises 

questions concerning the putative functional roles of these intracellular microbes: are 

they simply “innocent bystanders” and opportunistic pathogens or do they play 

important functional roles in tumorigenesis and response to treatment? Our findings 

that moDCs infected with intracellular Salmonella downregulate their antigen 

processing as already suggested by Aulicino et al.109 point to a potential win-win 

relationship between intracellular bacteria and the tumors that host them, in which 

their presence leads to  the down-regulation of the antigen processing and 
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presentation system of the host cell and supports tumor evasion of the immune 

system. 

Finally, we note that CSI-Microbes can be applied to analyze any scRNA-seq 

dataset with multiple cell-types. In such future applications, our results underscore the 

importance of using spike-in sequences, empty wells and multiple cell-types in the 

same plate to further enhance the detection accuracy of intracellular bacteria from 

sequencing data. 

3.5 Methods 

3.5.1 Code and Data Availability 

We analyzed publicly available FASTQ files from the following datasets: 

scRNA-seq of monocyte-derived dendritic 

cells (MoDCs) exposed to Salmonella 

(Smart-seq2)109 

BioProject PRJNA437328 

scRNA-seq of PBMCs exposed to 

Salmonella (10x)110 

BioProject PRJNA503437 

scRNA-seq of Merkel cell carcinoma 

tumors (10x)116 

BioProject PRJNA483959 (patient 

2586-4), PRJNA484204 (patient 

9245-3) 

scRNA-seq of colorectal carcinoma tumors 

(10x)117 

ArrayExpress E-MTAB-8410 

scRNA-seq of lung cancer cells (Smart-

seq2)119 

BioProject PRJNA591860 

 

The code is logically partitioned into two modules, one module for the 

“identification” step and one module for the “analysis” step. A reproducible 

Snakemake workflow for identifying microbial reads from scRNA-seq datasets, 

which includes the step of downloading the data from the datasets above, is available 

on GitHub (https://github.com/ruppinlab/CSI-Microbes-identification) although we 

https://github.com/ruppinlab/CSI-Microbes-identification
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note that the identification module has some dependencies to the NIH Biowulf server. 

To facilitate reproduction of our analyses, we have uploaded the relevant microbial 

read abundance files to Zenodo. Using these files, the key results from this 

manuscript can be reproduced using a Snakemake workflow focused on the analysis 

module and available on GitHub (https://github.com/ruppinlab/CSI-Microbes-

analysis).  

3.5.2 Preprocessing Steps 

3.5.2.1 Smart-seq2 datasets 

Raw FASTQ files were trimmed using fastp v0.20.1 with the arguments “--

unqualified_percent_limit 40 --cut_tail --low_complexity_filter --trim_poly_x”127. The 

trimmed FASTQ files were aligned to the reference human genome (GRCh38 

gencode release 34) and any applicable spike-in sequences using STAR 

2.7.6a_patch_2020-11-16 with the arguments “--soloType SmartSeq --soloUMIdedup 

Exact --soloStrand Unstranded --outSAMunmapped Within”128.  

3.5.2.2 10x datasets 

Raw FASTQ files were aligned to the reference human genome using 

CellRanger v5.0.1 17 (https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/what-is-cell-ranger). The annotated polyA and 

template sequence oligonucleotide (TSO) sequences were trimmed, the unmapped 

reads were converted to the FASTQ file format trimmed and filtered using FASTP as 

described above before being converted to BAM files.  

https://github.com/ruppinlab/CSI-Microbes-analysis
https://github.com/ruppinlab/CSI-Microbes-analysis
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3.5.3 Alignment of unmapped reads to microbial genomes 

The unaligned reads were assigned to microbial genomes using PathSeq 

v4.1.8.1 with the arguments “--filter-duplicates false --min-score-identity .7”54. We 

constructed the reference microbial genome database by downloading the set of 

complete viral, bacterial and fungal genomes from RefSeq release 201129. We 

subsampled at least one genome from each species including any genomes annotated 

as either “reference genome” or “representative genome” as well as the genomes of 

the three Salmonella strains used in the “gold-standard” experiments. To mitigate 

vector contamination, we identified regions of suspected vector contamination 

(including “weak” matches) in the genomes using Vecscreen_plus_taxonomy  

(https://github.com/aaschaffer/vecscreen_plus_taxonomy) with the UniVec Database 

(ftp://ftp.ncbi.nlm.nih.gov/pub/UniVec/.) and filtered any reads that aligned to these 

regions130.  

3.5.4 Differential Abundance Quantification 

We define the abundance of a particular microbe in each cell to be the number 

of unambiguous reads assigned to the relevant genome(s) by PathSeq 

(http://software.broadinstitute.org/pathseq/). The abundances are normalized using 

the computeSpikeFactors function from scran v1.16.0, which computes the library 

size factors using the sum of the spike-in sequences131. To limit the number of 

hypotheses, we only test microbial taxa with counts per million microbial reads > 10 

in at least 50% of the cells from a cell-type. The normalized log abundances are 

compared across cell-types using the findMarkers function from scran v1.16.0 with 

arguments “test=’wilcox’, lfc=0.5, block=’plate’”. In scran v1.16.0, the two-sided p-

https://github.com/aaschaffer/vecscreen_plus_taxonomy
https://ftp.ncbi.nlm.nih.gov/pub/UniVec/
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value (“direction=’any’”) when lfc > 0 is less unintuitively less conservative than the 

one-sided p-value (either “direction=’up’” or “direction=’down’”) 

(https://github.com/MarioniLab/scran/issues/86) so we ran the comparison twice, 

once using with “direction=’up’” and once with “direction=’down’”, selected the 

result with the smaller p-value for each microbial taxa and converted the one-sided p-

value to the two-sided p-value by taking the minimum of 1 and 2*p-value as 

suggested on p.79 by Sokal and Rohlf132. 

3.5.5 False Discovery Rate Correction 

We use two different approaches for correcting p-values for multiple 

hypotheses. For the CSI-Microbes results from the Salmonella dataset, we run CSI-

Microbes separately for each taxonomic level and correct for the number of OTUs 

tested at that taxonomic level using the Benjamini-Hochberg procedure 82. For the 

CSI-Microbes results from the cancer datasets, we leverage the finding from the 

Salmonella dataset that CSI-Microbes can detect differentially abundant classes. For 

each class, we construct the taxonomic tree using RefSeq v201 and calculate the FDR 

for members of that class using the hFDR.adjust function from the structSSI 

package133 which implements the “outer-nodes” method of Yuketeli113, which is the 

method in that theoretical paper that is best suited for testing parent-child taxa in a 

taxonomic tree. To account for the multiple class hypotheses, we multiply the class-

specific hFDR by the number of classes analyzed by CSI-Microbes to give the overall 

hierarchical FDR (hFDR). We compared the hFDR approach described above with 

FDR correction at the species level for the differential abundance of Salmonella 

enterica in the Salmonella Smart-seq2 dataset and find that the hFDR approach 

https://github.com/MarioniLab/scran/issues/86
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reports a more significant FDR-corrected p-value than the species-corrected FDR 

approach (1.58e-8 vs. 2.54e-8).  

3.5.6 Normalization Model 

We extend the model used by decontam to include host and spike-in 

sequences such that we let the total sample RNA (T) be a mixture of 3 components: 

human RNA (H), spike-in RNA (S) and microbial RNA (M)55. We can further divide 

the microbial RNA into contaminating microbial RNA (cM) and true microbial RNA 

(tM). One previously observed pattern of contaminants is the frequency of 

contaminating microbial RNA (cM) is likely to be inversely correlated with the 

human RNA concentration55. We note that the frequency of spike-in RNA is also 

likely to be inversely correlated with the human RNA concentration and therefore the 

frequency of spike-in RNA should be correlated with the frequency of contaminant 

RNA. Therefore, spike-in based normalization should remove any differences in the 

frequency of contaminating sequences between cells.  

3.5.7 Comparison to 16S Tumor Microbiome Findings 

We compared our findings of presence of bacterial taxa as numerical 

identifiers in NCBI’s Taxonomy tree114 to the findings of Nejman et al.102. To do this 

comparison, we had to i) map the findings of Nejman et al.102 to numerical taxa and 

to assess which of the taxa they found are in our reference database. One of the key 

advantages of their 16S method is that it can find taxa for which there is no complete 

genome. In principle, CSI-Microbes can also use sub-genomic sequences in the 

reference database, but we chose not to use partial genomes. 
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In Nejman et al.102, microbial species were presented by name, which can lead 

to ambiguities because there are many synonyms and the preferred genus-species 

name may change over time. We were able to identify NCBI Taxonomy IDs for 1,783 

of the species identified by Nejman et al.102 739 of these 1,783 species have at least 

one completely sequenced genome and were included in our microbial database. 

These species included 17 lung-cancer matches from Nejman et al.102 

3.5.8 Gene Set Enrichment Analysis 

To perform GSEA between the infected and uninfected tumor cells, we first 

performed differential expression analysis as describe above except that we used 

LFC=0 to limit the number of genes with p-value=1 and thereby the number of tied 

genes. Next, we ranked genes by multiplying the -log10(p-value) by -1 (AUC > 0.50 

for Wilcoxon rank sum test) or 1 (AUC ≤ .50). Finally, we performed gene set 

enrichment analysis using the ranked genes list and the GSEAPreranked function of 

the GSEA tool v4.1.0 with default settings and seed=149134 with the gene ontology 

biological processes gene set from the molecular signature database (MSigDB) v7.3 

134–137. We visualized the enriched gene sets (FDR q-value < .02) using Enrichment 

Map v3.3.1 (node cutoff FDR q-value < .02, edge cutoff similarity=.375).  
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Chapter 4: Conclusions 

“If the 20th century was the century of physics, the 21st century will be the century of 

biology” 

- Craig J. Venter and Daniel Cohen  

 

If the 21st century is the century of biology (and early indications are positive), 

then there will have to be a significant amount of computational innovation. The 

ability to generate large amounts of more and more sophisticated biological data will 

only continue to grow but this data will only lead to biological discoveries if it can be 

properly analyzed. In this thesis, I present two very different computational 

approaches for the analysis of NGS data that illustrate two different types of 

computational innovations for the analysis of biological data.  

For TCSM, which was my first project, we applied a novel approach (borrowed 

from the field of topic modeling) to the well-studied problem of mutation signature 

extraction and were able to mainly rely on pre-processed data. For my second project, 

CSI-Microbes, we applied a novel approach to the under-studied question of the 

identification of intracellular microbes. To the best of our knowledge, CSI-Microbes 

is the first and only approach to use NGS to try to identify intracellular microbes. Our 

approach uses scRNA-seq data, which is a relatively new technology (in comparison 

to DNA sequencing). This project required both the software engineering ability to 

build scalable, efficient and reproducible pipelines to mine the raw reads of hundreds 

of thousands of cells (terabytes of data) for microbial reads but also the computational 
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ability to develop proper approaches for normalizing extremely sparse microbial 

reads between single cells.  

Importantly, both of these research projects were computational methods 

motivated by biological observations by myself and my co-authors. In particular, we 

were only able to identify the research question behind CSI-Microbes because of my 

collaboration with the Surgery Branch. One of my most important advantages as a 

computational biologist is that I am genuinely interested in learning and 

understanding the underlying biology. This curiosity has allowed me to both apply 

novel computational methods to solve research questions posed by others and pose 

my own novel research questions.  
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Appendices 

Appendix A 

 

 
Appendix A Figure 1: Comparison of the likelihood of held-out samples of TCSM with the 

LST count, TCSM with the HR biallelic covariate (BRCA1, BRCA2, RAD51C) and TCSM 
with the biallelic inactivation of any of seven recurrently inactivated HR genes (ATM, 

BRCA1, BRCA2, CHEK2, FANCM, FANCF, RAD51C). 
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Appendix A Figure 2: The cosine similarity of the five signatures extracted TCSM on the 
breast cancer dataset with the biallelic HR covariate (BRCA1, BRCA2, and RAD51C) to the 

COSMIC signatures. 
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Appendix A Figure 3: The five signatures extracted by TCSM on the breast cancer dataset 

with the biallelic HR covariate (BRCA1, BRCA2, and RAD51C). 
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Appendix A Figure 4: The model selection output for the SomaticSignatures package83 on the 
breast cancer dataset where the red dot is the mean value across ten runs and the crosses 

represent the results of individual runs. 
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Appendix A Figure 5: The log-likelihood performance on held-out tumors of TCSM using a 
single covariate to represent cancer type (Cancer Type) and TCSM using two binary 

covariates to represent cancer type (SKCM+LUSC) 
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Appendix A Figure 6: The cosine similarity of the four signatures extracted TCSM on the 
combined LUSC-SKCM dataset using a single covariate to represent cancer type to the 

COSMIC signatures. 
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Appendix A Figure 7: The four signatures extracted TCSM on the combined LUSC-SKCM 

dataset using a single covariate to represent cancer type. 

 

Appendix B 

Comparison of Salmonella-exposed cells between sequencing plates 

Aulicino et al.109 sequenced the infected, bystander and control cells across 

four sequencing plates. To understand the importance of controlling for the 

sequencing plate (step 2 in CSI-Microbes), we generated all 12 possible datasets with 

the infected cells from one plate and the exposed cells from another. Next, we ran 

CSI-Microbes to identify differentially abundant microbes between the infected and 

bystander cells (without controlling for plate) and it reported at least one genus other 

than Salmonella in nine of the twelve plate combinations. 
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Direct Mapping to Salmonella genomes using SRPRISM 

We mapped the non-human reads from Aulicino et al.109 against the genomes  

of the Salmonella strains used in each study applying SRPRISM115 to estimate the 

number of Salmonella reads present in the dataset (RefSeq release 201)129. We found 

reads that mapped to the genome of the respective Salmonella strains in all the 

infected and bystander cells as well as the control cells. Similar to the results from 

CSI-Microbes, we found significantly more mapped reads in the infected cells 

compared to both the bystander (two-sided Wilcoxon rank sum test p-value=2e-11) 

and other, mock-infected cells (p-value<2e-16) (Appendix B Figure 1A). Of the 

mapped bacterial reads, ~78% mapped to regions encoding rRNAs (including ~9% 

that mapped to the 7 16S rRNA genes present in each strain), while ~20% mapped to 

regions encoding proteins (Appendix B Direct Mapping Approach). The differential 

abundance between infected and bystander cells patterns was observed more strongly 

for reads mapped to encoding proteins (p-value=6e-14) (Appendix B Figure 1B) than 

for reads mapped to regions encoding rRNA (p-value=3e-9) (Appendix B Direct 

Mapping Approach). 

Next, we applied a similar approach to the dataset from Bossel Ben-Moshe et 

al.110 From the exposed cells, we identified 351 reads that mapped to the SL1344 

genome but the vast majority of these reads either lacked a valid cell barcode or had 

cell barcodes excluded by the original authors. In total, we identified 17 unique 

molecular identifiers (UMIs) from 15 cells expressing intracellular Salmonella. These 

cells were enriched in monocytes compared to non-monocytes (Fisher’s exact test p-



 

 

73 

 

value=.002, odds ration=9.75) (Appendix B Figure 1C) in keeping with the 

experimental findings of Bossel Ben-Moshe et al.110 

Identification of host-transcriptomic changes associated with intracellular 

Salmonella 

We analyzed whether we identify host cell transcriptomic changes associated 

with Salmonella infection in the cells from Aulicino et al. 109. We find 318 human 

genes whose expression is significantly correlated with the abundance of the 

Salmonella genera (Spearman rank correlation FDR < .05). Repeating this analysis 

using the abundance of the other thirty-three most abundant bacterial genera, we find 

that the abundance of only three bacteria genera is correlated with the expression of a 

small number of human genes that mostly encode human ribosomal proteins. 

Reassuringly, we observed a strong correlation between the human genes ranked by 

their differential expression between the infected and bystander cells and ranked by 

their correlation with Salmonella abundance (Spearman rank correlation rho=.59, p-

value=0). A gene set enrichment analysis (GSEA) of the human genes ranked by their 

correlation with Salmonella abundance identified antigen processing and 

presentation of endogenous antigen to be the most strongly down-regulated by 

infection by Salmonella (FDR q-value=7e4, NES=-2.25), which mirrors the original 

findings of Aulicino et al.109 Notably, we find that the expression of the antigen 

presentation genes CD83 and CD40 (already noted by the original authors) is 

negatively correlated with the expression of the Salmonella str. D23580 acid shock 

protein gene D5R57_RS08090 (Spearman correlation rho=-26, FDR=.02 (CD40); 

rho=-.28, FDR=.009 (CD83))138. 
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Appendix B Figure 1: (A) Number of reads per cell mapped to the Salmonella D23580 strain 

genome grouped by cell status from Aulicino2018. (B) Number of reads per cell mapped to 
the protein coding regions of the Salmonella D23580 strain genome grouped by cell status 

from Aulicino2018. (C) The percentage of cells with >= 1 UMI mapped to the Salmonella 

SL1344 strain genome grouped by cell-type from Ben-Moshe2019. 

 

Direct Mapping Approach 

We used SRPRISM (https://github.com/ncbi/SRPRISM) with the default 

parameters115 to map the unaligned reads from Bossel Ben-Moshe et al.110 against the 

genome of Salmonella enterica subspecies enterica serovar Typhimurium strain 

SL1344 (RefSeq assembly accession: GCF_000210855.2)139 and the unaligned reads 

from Aulicino et al.109 against the Salmonella enterica subspecies enterica serovar 

Typhimurium strain LT2 (RefSeq assembly accession: GCF_000006945.2) 140 and 

strain D23580 (RefSeq assembly accession: GCF_900538085.1)141 because it is more 

tolerant of errors than other more commonly used read alignment tools. We assigned 

reads to genes for the Smart-seq2 dataset using the intersect command of bedtools142 

and the gene feature format (GFF) file associated with the RefSeq assembly 

accession. We used the attributes column from the GFF file to assign reads as either 

https://github.com/ncbi/SRPRISM
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protein coding (gene_biotype=protein_coding) or encoding ribosomal RNA 

(gene_biotype=rRNA).  

Gene Set Enrichment Analysis 

We performed gene set enrichment analysis using the GSEAPreranked 

function of the GSEA tool v4.1.0 with default settings and seed=149134 with the gene 

ontology (GO) biological processes v7.3 gene set from MSigDB134–137. To perform 

GSEA on the Salmonella dataset, we first calculated the Spearman rank correlation 

between the spike-in normalized abundance of the Salmonella genus and the spike-in 

normalized expression of human genes expressed above 10 counts per million (CPM) 

in at least 50% of the cells using the correlatePairs function from scran131. Next, we 

ranked genes by multiplying the -log10(p-value) by -1 (Spearman rank correlation rho 

>0) or 1 (rho <=0).  
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