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ploring Machine Learning in Fixed Income Market” designs a decision sup-

port framework that can be used to provide suggested indications of future

U.S. on-the-run 10Y Treasury market direction along with the associated

probability of making that move. My primary innovation is proposing a

framework for applying machine learning methods to U.S. fixed income

market. The framework includes a newly proposed performance metric that

combines profitability and randomness to select proper outperform models

and a sliding window cross-validation method for streaming data learning.

I find the Random Forest method provides a decent Sharpe ratio for trad-

ing U.S. 10Y Treasury in a “quarantined” testing set but underperforms

on Spread trading (10Y Treasury and an asset swap) and Volatility trad-

ing (1M10Y Swaption Straddle). Chapter 2, “A Robust Trend Following

Framework: Theory and Application” constructs a trend-following signal

based on statistical theory and analytically analyzes its properties. I man-

age to reconcile our model’s theoretical results with stylized facts about

trend-following investing – the presence of a "CTA smile". Leveraging on



the theoretical results, we proposed a prototype trend-following framework

that is diversified across time-frames and assets. I also discuss the portfolio

and risk management of the trend-following strategy. I illustrate the risk-

budgeting approach can be used to enhance the trend-following framework.

Different approaches to control the costs have also been discussed. Chap-
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practitioners argue the market has high volatility regimes and low volatility

regimes. I argue the model can capture the mean reversion, asymmetries

of returns of up moves and down moves, and other empirical regularities.

I derived the characteristic function and provide preliminary parameter es-

timates by calibrating the model to VIX Index upon the assumption of sta-

tionary distribution to avoid using filter methodologies.
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CHAPTER 1

Exploring Machine Learning in Fixed Income Market

1.1. Introduction

Although predicting stock price direction is something individuals and

financial firms have researched for years, and there is plenty of literature

written on this subject. However, there is rarely empirical research focus-

ing on the fixed income market direction prediction, especially using the

machine learning methodologies, and these kinds of literature are barely

repeatable. This paper explores the fixed income market direction predic-

tion using supervised machine learning classification methodologies. These

methods would be of considerable interest to quantitative traders who pro-

duce mathematical models which account for a decent portion in fixed in-

come already. Our objective is to build a decision support framework that

provides the suggested indication of future fixed income market direction

and the probability of making that move. We noticed the lack of published

working models. We may argue that there is little incentive to publish such

models in academic literature.

When predicting the U.S. fixed income products direction, similar to

stocks, practitioners typically use one of three approaches. The first is the

fundamental analysis which analyzed the economic factors that drive the
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price. The second approach uses traditional technical analysis to anticipate

what others are thinking based on the price and volume. Studies show 80%

to 90% of polled professionals, and individual investors rely on at least

some form of technical analysis [15]. With advancements in technology

and the growing amounts of available data, technical analysis evolves into

a more quantitative and statistical approach. This is what we call the quan-

titative analysis approach, and it is the third approach to predicting market

direction.

In this paper, our primary contributions are two folds. First, we pro-

posed a metric to measure the performance of the classifiers in the context

of trading. Traditional measurements don’t consider randomness, as we pre-

sented in Section 1.2. Our metric combines profitability and randomness to

measure the performance of the classifiers. Second, and more importantly,

we proposed the framework to apply machine learning in the fixed income

market. While there is plenty of academic literature on stock prediction, we

demonstrate significant economic gains to investors using machine learning

forecasts in the U.S. rates market whose trading is not yet fully electronic.

A portfolio strategy that times the 10 year U.S. Treasury with random forest

tree classifier enjoys an annualized out-of-sample Sharp ratio of 1.35 ver-

sus the 0.5 Sharp ratio of a buy-and-hold investor. And sizing daily trades

by the machine learning classifier’s level of conviction, vis Kelly Criterion,

substantially enhanced Sharpe Ratios, across timeframes, asset classes, hold

periods, and machine learning methods. Further, the classifiers’ perceived
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conviction in its decision correlated well with its realized hit rate. This

suggests a promising application of machine learning in fixed income is in

aiding investors in optimal execution.

In economics and finance fields, the application of machine learning

methodologies is a promising direction. [126] use neural nets to price op-

tions. [127] and [128] also apply a multilayer feedforward neural network to

price S&P 500 index calls, and options of Australian All Ordinaries Share

Price Index on futures respectively. [129] outline some financial applica-

tions of deep learning in portfolios theory. [131] use sequential learning to

do return predictability when forming optimal portfolios. [130] introduces

the application of deep learning in financial prediction problems.

We begin Section 1.2 with an introduction of different plain vanilla ma-

chine learning methods. This includes the description of traditional com-

monly used supervised learning methods and different ways of evaluating

classifiers’ performance used for analysis later in the paper. The high di-

mension nature of these methods improves the flexibility relative to more

traditional prediction techniques. This flexibility could help better approxi-

mating the unknown and likely complex data generating process. However,

due to the enhanced flexibility, overfitting the data becomes the problem.

We analyzed different testing methods, including k-fold cross-validation,

sliding window, and presequential testing. k-fold cross-validation, the most

commonly used technique, is not suitable for our framework. Instead, we

combine the sliding window and other methods to avoid information leaks
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in the cross-validation stage. Then, we briefly discussed the so-called "con-

cept drift." It is an essential concept for streaming data machine learning.

In finance, we can consider them as "regimes." When the market condition

changes, we need to recalibrate our model using a specific training data set.

The timing of the recalibration and the selection of the training data is well

discussed in different kinds of literature. Our framework is built based on

the assumption that the concept drift occurs and doesn’t measure it.

In Section 1.3, we proposed our framework of applying machine learn-

ing methods in the fixed income market. We investigate trading liquid du-

ration, spread, and volatility products from 2000 to 2017 using the machine

learning classifiers. Our feature space includes around 1000 characteristics

of different products in the fixed income market. These products include

Treasuries, swaps, swaptions, OIS, TIPS, and international interest rates.

Beyond rates products, we also have levels from the corporate bond, FX,

commodities, equities markets, and domestic and global economic data.

Since the price volatility is high around specific dates, we also include bi-

nary ’date flags’ for FOMC meetings, payroll releases, and month-ends.

Some of our methods expand this feature set much further by having non-

linear transformations and baseline signal interactions.

Our main finding is that machine learning can improve our empirical

understanding of fixed income returns at the broadest level. The machine

learning classifiers could take the high-dimensional feature set, which is
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massive from the existing literature’s perspective, into a direction classifi-

cation model. The immediate implication is that machine learning could

provide help in solving practical investment problems, such as market tim-

ing, portfolio choice, and risk management.

1.2. Methodologies

This section discussed what it meant by machine learning. In Section

1.2.1, we present the collection of most commonly used supervised ma-

chine learning methods for regression and classification. Some of them are

applied in our analysis. In each subsection, we introduce a new technique

and describe the method’s general functional form and its objective func-

tion for estimating the model parameters. We aim to provide a sufficiently

in-depth description of each method so that a reader without machine learn-

ing background can understand the basic model structure. In Section 1.2.2,

we explores the different commonly used performance metrics for com-

paring classifiers, such as confusion matrix and ROC. Also, we propose a

new performance metric, the Sharpe Ratio Envolope, which is used in our

framework for selecting proper model for trading fixed income products.

Lastly, we examines different methods of testing in machine learning, such

as k-fold cross-validation.
5



1.2.1. Supervised learning methods. We describe an asset’s excess

return:

(1.2.1) ri,t+1 = Et(ri,t+1)+ εi,t+1

where

(1.2.2) Et(ri,t+1) = g∗(zi,t)

Assets are indexed as i = 1, ...,Nt and days by t = 1, ...,T . In prediction,

our objective is to find a representation of Et(ri,t+1) as a function of predic-

tor variables (features) that maximizes the out-of-sample explanatory power

for realized ri,t+1. We can denote those features as vector zi,tand assume the

conditional expected return g∗(·) is a flexible function of these features. For

classification, the set of classess needs to be defined for supervised learning.

For example, we could define 3 classes for ri,t+1: up move, no move and

down move. If we are interested in bigger up moves, we may define more

classes. In our analysis, we only define two classes and defer the study of

more classes to the later study.

1.2.1.1. Simple Linear Regression. We begin with the least complex

method – the linear predictive model estimated via ordinary least squares

(OLS). We didn’t use this model in our analysis and the linear regression is

not suitable for the classification job, but we think it is worth to go through
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predictive models from simplest linear models to more complicated nonlin-

ear models.

The simple linear model imposes g∗(·) can be approximated by a linear

function of the raw predictor variables and the parameter vector, θ ,

(1.2.3) g(zi,t ;θ) = z
′
i,tθ

The model imposes a simple regression specification and does not allow

for nonlinear effects or interactions between predictors.

The simple linear model uses a standard least squares, or “l2” objective

function:

(1.2.4) L(θ) =
1

NT

N

∑
i=1

T

∑
t=1

(ri,t+1−g(zi,t ;θ))2

Minimizing L(θ) yields the OLS estimator.

1.2.1.2. Extension: weighted least squares objective function. In some

cases, replacing 1.2.4 with a weighted least squares objective, such as

(1.2.5) Lw(θ) =
1

NT

N

∑
i=1

T

∑
t=1

wi,t(ri,t+1−g(zi,t ;θ))2
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can possibly improve the predictive performance. The weighted least

squares objective function allows the users to tilt estimates toward more sta-

tistically or economically informative observations. For example, we could

set wi,t proportional to the equity market value of stock i at time t. [16]

argues the smallest 20% of stocks compose only 3% of aggregate market

capitalization. An example of a statistically motivated weighting scheme

uses wi,t inversely proportional to an observation’s estimated error variance,

a choice that potentially improves prediction efficiency in the spirit of gen-

eralized least squares.

Heavy tails are a well-known attribute of financial returns. The least

squares objective function places extreme emphasis on large errors so that

outliers can undermine the stability of OLS. The modified least squares

objective functions have been developed to produce more stable forecasts

than OLS in the presence of extreme observations. In the machine learning

literature, a common choice for counteracting the heavy-tailed observations

is the Huber robust objective function, which is defined as

(1.2.6) LH(θ) =
1

NT

N

∑
i=1

T

∑
t=1

H(ri,t+1−g(zi,t ;θ),ξ )

where
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H(x;ξ ) =


x2, |x|6 ξ

2ξ |x|−ξ 2 |x|> ξ

The Huber loss, H(·), is a hybrid of squared loss for relatively small

errors and absolute loss for relatively large errors, where the combination is

controlled by a tuning parameter, ξ , that can be optimized adaptively from

the data.1

Constructing more robust objective functions are easily applicable in

almost all the machine learning methods we study.

1.2.1.3. Penalized linear. The simple linear model begins to overfit noise

when the number of predictors approaches the number of observations. In

return prediciton, the signal-to-noise ratio is notoriously low. It is trouble-

some to use the simple linear model in this case.

To avoid overfit, we would like to reduce the number of estimated pa-

rameters. The most commonly used technique is to append a penalty to the

objective function in order to favor more parsimonious specifications. This

regularization mechanically deteriorates a model’s in-sample performance

and hopes it can improve the model’s stability out of sample. Penalized

methods differ by appending a penalty to the original loss function:

(1.2.7) L(θ ; ·) = L(θ)+φ(θ ; ·)

1OLS is a special case with ξ = ∞.
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There are several choices for the penalty function. The “elastic net”

penalty is a popular one:

(1.2.8) φ(θ ;λ ,ρ) = λ (1−ρ)
P

∑
j=1
|θ j|+

1
2

λρ

P

∑
j=1

θ
2
j

The elastic net has two nonnegative hyperparameters, λ and ρ . The

ρ = 0 case corresponds to the lasso and uses l1 penalization. The lasso can

be thought of as a variable selection method. The ρ = 1 case corresponds

to ridge regression, which uses an l2 penalization. It makes estimates closer

to zero but does not impose exact zeros anywhere. In this sense, ridge

is a shrinkage method that helps prevent coefficients from becoming large

in magnitude. For intermediate values of ρ , the elastic net involves both

shrinkage and selection.

1.2.1.4. Generalized Linear. Linear models are popular in practice, in

part because they can be thought of as a first-order approximation to the

data generating process. However, when the “true” model is complex and

nonlinear, using linear models introduce approximation error due to model

misspecification. Let g∗(zi,t) denote the true model and let g(zi,t ; θ̂) and

ˆri,t+1 denote the fitted model and predicted return. We can decompose a

model’s forecast error as:

(1.2.9) ri,t+1− ˆri,t+1 = g∗(zi,t)−g(zi,t ;θ)+g(zi,t ;θ)−g(zi,t ; θ̂)+ εi,t+1

10



The first term represents the approximation error - model misspecifica-

tion; the second term represents the estimation error; the third term repre-

sents the intrinsic error. Intrinsic error is irreducible due to sources of ran-

domness in financial markets. Estimation error is determined by the sample

data and can be potentially reduced by adding new observations. Approx-

imation error can be potentially reduced by using more flexible specifica-

tions to improve the model’s ability to approximate the true model while ad-

ditional flexibility raises the risk of overfitting and destabilizing the model’s

out of sample performance.

The generalized linear model introduces nonlinear transformations of

the original predictors as new additive terms in an otherwise linear model:

(1.2.10) g(z;θ , p(·)) =
P

∑
j=1

p(z j)
′
θ j

where p(·) = (p1(·), ..., pK(·))′ is a vector of basis functions, and the

parameters are now a K×N matrix. The squared loss function is replaced by

the unit deviance d of a distribution in the exponential family. The objective

function becomes

1
2N ∑d(ri,t , r̂i,t)+

α

2
||θ ||2

1.2.1.5. Decision Tree. The generalized linear model captures individ-

ual predictors’ nonlinear impacts, but it does not capture the interactions
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among predictors. One way to add interactions is to expand the generalized

model to include multivariate functions of predictors. However, without a

priori assumptions for which interactions to include, the generalized linear

model becomes computationally infeasible.

As an alternative, decision trees have become a popular machine learn-

ing approach for classification and regression by incorporating predictor

interactions in practice because the algorithm creates rules which are easy

to understand and interpret. At a basic level, trees are designed to find

groups of observations that behave similarly to each. A tree “grows” in a

sequence of steps. At each step, a new “branch” sorts the data leftover from

the preceding step into bins based on one of the predictor variables. This se-

quential branching slices the space of predictors such that the samples with

the same labels or similar target values are grouped togehther, and approx-

imates the unknown function g∗(·) with the average value of the outcome

variable within each partition.

Figure 1.3.4-1shows an example with two predictors, “size” and “b/m.”.

More formally, let the data at node m be represented by Qm with Nm sam-

ples. For each candidate split θ =( j, tm) consisting of a feature j and thresh-

old tm, partition the data into Qle f t
m (θ) and Qright

m (θ) subsets

12



FIGURE 1.2.1. Tree Example

This figure presents the diagrams of a regression tree (left) and its equivalent representation (right) in

the space of two characteristics (size and value). The terminal nodes of the tree are colored in blue,

yellow, and red.a

aShihao Gu, Bryan Kelly, Dacheng Xiu “Empirical Asset Pricing via Machine Learning”

Qle f t
m (θ) = {(x,y}|z j ≤ tm}

Qright
m (θ) = Qm\Qle f t

m (θ)

The quality of a candidate split of node is then computed using an im-

purity function or loss function H(·), the choice of which depends on the

task being solved (classification or regression)

(1.2.11) G(Qm,θ) =
Nle f t

m

Nm
H(Qle f t

m (θ))+
Nright

m

Nm
H(Qright

m (θ))

Select the parameters that minimise the impurity

θ
∗ = argminθ G(Qm,θ)

13



Recurse for subsets Qle f t
m (θ ∗) and Qright

m (θ ∗) until the maximum allow-

able depth is reached, Nm < minsamples or Nm = 1.

If a target is a classification outcome taking on values 0,1, ... for node

m, let

pmk = 1/Nm ∑
y∈Qm

I(y = k)

be the proportion of class k observations in node m. If m is a termi-

nal node, the prediction probability for this region is set to pmk. Common

measure of impurity are the following.

(1) Misclassification:

H(Qm) = 1−max(pmk)

(2) Gini:

H(Qm) = ∑
k

pmk(1− pmk)

(3) Entropy

H(Qm) =−∑
k

pmklog(pmk)

The version we use in this paper is also one of the most popular forms, the

C4.5 [2], which extends the ID3 [3] algorithm. The improvements are: 1)

it is more robust to noise, 2) it allows for the use of continuous attribute,

and 3) it works with missing data. The C4.5 begins as a recursive divide-

and-conquer algorithm, first by selecting an attribute from the training set
14



to place at the root node. Each value of the attribute creates a new branch,

with this process repeating recursively using all the instances. An ideal

node contains all (or nearly all) of one class. To determine the best attribute

to choose for a particular node in the tree, the gain in information entropy

for the decision is calculated.

Advantages of the tree model are that it is invariant to monotonic trans-

formations of predictors, that it naturally accommodates categorical and

numerical data in the same model, that it can approximate potentially se-

vere nonlinearities, and that a tree of depth L can capture (L−1)-way in-

teractions. Their flexibility is also their limitation. Trees are among the

prediction methods most prone to overfit, and therefore must be heavily

regularized.

1.2.1.6. Ensemble. [17] summarizes that an ensemble is a collection of

multiple base classifiers that take a new example, pass it to each of its base

classifiers, and then combine those predictions according to some method

(such as through voting). The motivation is that by combining the pre-

dictions, the ensemble is less likely to misclassify. The idea of classifier

independence may be unreasonable, given that the classifiers may predict

similarly due to the training set. Obtaining a base classifier that generates

errors as uncorrelated as possible is ideal. Creating a diverse set of clas-

sifiers within the ensemble is considered an important property since the

likelihood that a majority of the base classifiers misclassify the instance is

15



decreased. Two of the more popular methods used within ensemble learn-

ing are bagging and boosting. These methods promote diversity by build-

ing base classifiers on different subsets of the training data or classifiers’

weights.

As we discussied in the previous section, decision trees must be heavily

regularized.

The first regularization is “boosting”. In boosting, instances being clas-

sified are assigned a weight; instances that were previously incorrectly clas-

sified receive larger weights, with the hope that subsequent models correct

the mistake of the previous model. For example, in the AdaBoost [4] al-

gorithm the original training set D has a weight w assigned to each of its

N instances {(x1,y1), ....,(xn,yn)}, where xi is a vector of inputs and yi is

the class label of that instance. The AdaBoost algorithm then builds k base

classifiers with an initial weight wi =
1
N . In each step, the weight gets up-

dated according to the error εi of each classifier. The reweighting will help

the classifiers to correctly classify the instances that were misclassified. The

final class is determined by a weighted vote of the classifiers.

The second regularization is “Random Forest”. Random forest is a

method of tree boosting by bagging. The bagging works by generating k

bootstrapped training sets and building a classifier on each (where k is de-

termined by the user). Random forests use a variation on bagging designed

to reduce the correlation among trees in different bootstrap samples. If, for

example, firm book value is the dominant factor, then most of the bagged
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trees will have low-level splits on book value resulting in substantial cor-

relation among their ultimate predictions. The forest method decorrelates

trees using a method known as “dropout,” which considers only a randomly

drawn subset of predictors for splitting at each potential branch. Doing so

ensures that, in the example, early branches for at least a few trees will split

on characteristics other than book value. This lowers the average correla-

tion among predictions to further improve the variance reduction relative to

standard bagging. Depth L of the trees, number of classifiers k in each split

and number of bootstrap samples B are the tuning parameters optimized via

validation.

While ensembles have shown success in a variety of problems, there are

some associated drawbacks. This includes added memory and computation

cost in keeping multiple classifiers stored and ready to process. Also the

loss of interpretability may be a cause for concern depending on the needs

of the problem. For example, a single decision tree can be easily interpreted,

while an ensemble of 100 decision trees could be difficult. [5]

1.2.1.7. Support Vector Machine. Support vector machines are com-

monly applied to classification problems. The basic idea of SVM is to find

a slice through the predictor (feature) space that best separates disparate out-

comes. For a binomial predictor in two dimensions, this can be visualized as

a line drawn to separate two prediction classes as cleanly as possible, pick

in particular a line with the largest gap (margin) between itself and the data

points; in many dimensions, the line becomes a “hyperplane.” Intuitively, a
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good separation is achieved by the hyper-plane that has the largest distance

to the nearest training data points of any class (so-called functional margin),

since in general, the larger the margin, the lower the generalization error of

the classifier. This approach is dubbed “linear” SVM. In general, when the

problem isn’t linearly separable, the support vectors are the samples within

the margin boundaries.[17]

More formally, given training vectors xi ∈ Rp,i=1,..,n in two classes,

and a vector y ∈ {1,−1}n, the goal is to find ω ∈ Rp and b ∈ R such that

the prediction given by sign(ωT φ(x)+b) is correct for most samples.

SVC solves the following primal problem:

minω,b,ζ
1
2

ω
T

ω +C
n

∑
i=1

ζi

sub ject toyi(ω
T

φ(xi)+b)≥ 1−ζi

ζi ≥ 0, i = 1, ....n

Intuitively, we’re trying to maximize the margin (by minimizing ), while

incurring a penalty when a sample is misclassified or within the margin

boundary. Ideally, the value would be for all samples, which indicates a

perfect prediction. But problems are usually not always perfectly separable

with a hyperplane, so we allow some samples to be at a distance from their

correct margin boundary. The penalty term C controls the strengh of this

penalty, and as a result, acts as an inverse regularization parameter.
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The dual problem to the primal is

minα

1
2

α
T Qα− eT

α

sub ject toyT
α = 0

0≤ αi ≤C, i = 1, ...,n

where e is the vector of all ones, and Q is an n by n positive semidefi-

nite matrix, Qi j = yiy jK(xi,x j), where K(xi,x j) = φ(xi)
T φ(x j) is the kernel.

The terms αi are called the dual coefficients, and they are upper bounded

by C. This dual representation highlights the fact that training vectors are

implicitly mapped into a higher (maybe infinite) dimensional space by the

function φ .[6]

Once the optimization problem is solved, the output for a given x be-

comes:

∑
i∈SV

yiαiK(xi,x)+b

and the predicted class corresponds to its sign. We only need to sum

over the support vectors because the dual coefficients αiare zeo for the other

samples.

In summary, the linear support vector classier can be represented as
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(1.2.12) g(x) = θ0 +
n

∑
i=1

αi < xi,x >

where αi 6= 0 only for all support vectors. Moreover, αi can also be

computed based < xi,x j >. Only the inner product of the feature space is

relevant in computing the linaer support vector classer. The above support

vector classier has a linear boundary, which may not be the “ground truth”

in practice. To cope with more general cases, one can consider to enlarge the

feature space. A straightfoward method is to include the power functions

of the inputs. A better approach is the use of the kernel trick, which gives

rise to the suppot vector machines. The support vector machine actually

enlarges the original feature space to a space of kernel functions:

xi −→ K(·,xi)

The kernel functions are bivariate functions satisfying the property of

nonnegative deniteness:∑i, j ωiyiK(xi,x j) ≥ 0. The original feature space is

the p-dimensional input space. The enlarged feature space is the space of

kernel functions, which is in fact of infinite dimension. In actual fitting of

the support vector machine, we only need to compute the K(xi,x j) for all

xi,x j in training data.

The commonly used kernel functions are

• linear kernel K(xi,x j) =< xi,x j >= xT
i x j
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• polynomial kernel of degree d: K(xi,x j) = (1+< xi,x j >)d

• Gaussian radial basis function (RBF) kernel: K(xi,x j) = exp(−γ ‖

x j− xi ‖2), γ > 0

• Sigmoid kernel (Hyperbolic Tangent Kernel): K(xi,x j)= tanh(γ <

xi,x j >+r)

More information can be found in [7].

1.2.1.8. Nearest Neighbors. Nearest neighbor is one of the simplest

methods. It takes the most frequent class measured by the weighted eu-

clidean distance (or some other distance measure) among the k closest train-

ing examples in the feature space. In specific problems such as text classi-

fication, NN has been shown to work as well as more complicated models

[8]. A downside of using this model is the slow classification times. How-

ever, we can increase speed by using dimensionality reduction algorithms.

This chapter used the kNN, k nearest neighbors of each query point, where

k is an integer value specified by the user.

The basic nearest neighbors classification uses uniform weights: the

value assigned to a query point is computed from a simple majority vote

of the nearest neighbors. It is better to weigh the neighbors under some

circumstances such that nearer neighbors contribute more to the fit. We use

the uniform weights in our case and the brute force computation of distances

between all pairs of points in the data.
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1.2.1.9. Artificial Neural Net. Arguably the most powerful model in

machine learning, neural networks have theoretical underpinnings as “uni-

versal approximators” for any smooth predictive association.[18] They are

the currently preferred approach for complex machine learning problems,

such as computer vision, natural language processing, and automated game-

playing. Their flexibility draws from the ability to connect many tele-

scoping layers of nonlinear predictor interactions. At the same time, their

complexity ranks neural networks among the least transparent, least inter-

pretable, and most highly parameterized machine learning methods. We

present only a short overview of their structure in this section.

We focuses on traditional “feed-forward” networks. These consist of an

“input layer” of raw predictors, one or more “hidden layers” that interact

and nonlinearly transform the predictors, and an “output layer” that aggre-

gates hidden layers into an ultimate outcome prediction. 1.2.2 shows two

illustrative examples.

The left panel shows the simplest possible network that has no hidden

layers. Each of the predictor signals is amplified or attenuated according

to a 5-dimensional parameter vector, θ , that includes an intercept and one

weight parameter per predictor. The output layer aggregates the weighted

signals into the forecast θ0 +∑
4
k=1 zkθk; that is, the simplest neural network

is a linear model.

The model incorporates more flexible predictive associations by adding

hidden layers between the inputs and output. The right panel of 1.2.2 shows
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FIGURE 1.2.2. Neural Networks

This figure provides diagrams of two simple neural networks with (right) or without (left) a hidden

layer. Pink circles denote the input layer, and dark red circles denote the output layer. Each arrow

is associated with a weight parameter. In the network with a hidden layer, a nonlinear activation

function f transforms the inputs before passing them on to the output.a

aShihao Gu, Bryan Kelly, Dacheng Xiu “Empirical Asset Pricing via machine learning”

an example with one hidden layer that contains five neurons. Each neuron

draws information linearly from all of the input units, just as in the simple

network on the left. Then, each neuron applies a nonlinear “activation func-

tion” f to its aggregated signal before sending its output to the next layer.

In this example, there are a total of 31 = (4+ 1)× 5+ 6 parameters (five

parameters to reach each neuron and six weights to aggregate the neurons

into a single output).

Formally, given a set of training example (xi,yi) where xi ∈Rn and yi ∈

{0,1}, a one hidden layer neuron learns the function f (x) = W2g(W T
1 x+

b1)+ b2 where W1 ∈ Rm and W2,b1,b2 ∈ R are model parameters. W1,W2

represent the weights of the input layer and hidden layer, respectively; and

b1,b2 represent the bias added to the hidden layer and the output layer,

respectively. g(·) : R→ R is the activation function.
23



[9] state that with foreign exchange rate forecasting, which is similar

to stocks because of the high degree of noise, volatility and complexity,

it is advisable to use the sigmoidal type-transfer function (i.e. logistic or

hyperbolic tangent).

We used the hyperbolic tan given as

(1.2.13) g(z) =
ez− e−z

ez + e−z

For binary classification, f (x) passes through the logistic function g(z)=

1/(1+ e−z) to obtain output values between zero and one. A threshold, set

to 0.5, would assign samples of outputs larger or equal 0.5 to the positive

class, and the rest to the negative class.

If there are more than two classes, f (x) itself would be a vector of size

(n classes). Instead of passing through logistic function, it passes through

the softmax function, which is written as,

(1.2.14) so f tmax(z)i =
exp(zi)

∑
k
l=1 exp(zl)

where zirepresents the ith element of the input to softmax, which cor-

responds to class i, and K is the number of classes. The result is a vector

containing the probabilities that sample x belong to each class. The output

is the class with the highest probability.
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We applied the Cross-Entropy loss function for classification, which in

binary case is given as,

(1.2.15) L(ŷ,y,W ) =−ylnŷ− (1− y)ln(1− ŷ)+α ‖W ‖2
2

where α ‖W ‖2
2is a regularizaiton term that penalizes complex models;

and α > 0 is a non-negative hyperparameter that controls the magnitude of

the penalty.

Starting from initial random weights, our neural network minimizes the

loss function by repeatedly updating these weights. After computing the

loss, a backward pass propagates it from the output layer to the previous

layers, providing each weight parameter with an update value meant to de-

crease the loss.

In gradient descent, the gradient 5LW of the loss with respect to the

weights is computed and deducted from W . More formally, this is expressed

as,

(1.2.16) W i+1 =W i− ε5Li
W

where i is the iteration step, and ε is the learning rate with a value larger

than 0.
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The algorithm stops when it reaches a preset maximum number of iter-

ations; or when the improvement in loss is below a certain, small number.

In our analysis, we applied the Stochastic Gradient Descent. Also, we

consider architectures with up to five hidden layers. We choose the number

of neurons in each layer according to the geometric pyramid rule. We used

the gridsearch for the regularization parameter α .

1.2.2. Performance Metrics.

1.2.2.1. Confusion matrix and accurary. A confusion matrix is a visu-

alization of the performance of a supervised learning method. In a confu-

sion matrix, TP (true positive) is the number of positives correctly identi-

fied, TN (true negative) is the number of negatives correctly identified, FP

(false positive) is the number of negatives incorrectly identified as positive,

and FN (false negative) is the number of positives incorrectly identified as

negatives. From the confusion matrix, we could define commonly used

measures e.g. Accuracy

Accurary =
T P+T N

T P+T N +FP+FN

Error rate =
FP+FN

T P+T N +FP+FN

However, when the dataset is imbalanced, the model may have high

accuracy but may not provide us with high-level accuracy in classifying
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the class we are interested in. Also, the accuracy metric does not take into

account pure randomness.

There are other approaches to comparing models with imbalanced datasets.

We will discuss these methods in the next few sections. These metrics are

precision and recall, harmonic mean, and the F-measure. The harmonic

mean considers the class’s randomness using Cohen’s kappa statistic, while

ROC is based on the TP and FP rates.

1.2.2.2. Precision and Recall. Precision and recall are both popular

metrics for evaluating classifier performance. These metrics are defined

Precision =
T P

T P+FP

Sensitivity(Recall) =
T P

T P+FN

Speci f icity =
T N

T N +FP

F−measure =
2(precision)(recall)

precision+ recall

The F-measure is the harmonic measure of precision and recall in a

single measurement. The F-measure ranges from 0 to 1, with a measure

of 1 being a classifier perfectly capturing precision and recall. We can use

these metrics to measure the performance of the class we are interested even

in a imbalanced data.
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1.2.2.3. Cohen’s kappa statistic. Cohen’s kappa statistic takes into ac-

count the randomness of the class and provides an intuitive result. [10]

defined these metrics

κ =
P0−Pc

1−Pc

P0 =
I

∑
i=1

P(xii)

Pc =
I

∑
i=1

P(xi.)P(x.i)

where P0 is called the total agreement probability P0 (i.e. the classifier’s

accuracy), P(xi.) is the row marginal probability and P(x.i) is the column

probability computed from the confusion matrix, and Pc is the agreement

probability due to the chance. The kappa statistics is on [−1,1]. κ = 0

means the agreement is equal to random chance, and κ = 1 and −1 means

perfect agreement and perfect disagreement.

1.2.2.4. ROC. Receiver operating characteristic curve (ROC) is a plot

of the true positive rate which is also called recall against the false positive

rate, which is 1-specificity.

T PR =
T P

T P+FN

FPR =
FP

T N +FP
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The top left corner on the ROC graph means the best performance with

the highest TP and TN. The Area Under the ROC Curve (AUC) is calcu-

lated by integrating the ROC curve. AUC is a single number comparison.

Random classifier would therefore have an AUC of 0.50, and a classifier

better and worse than random would have an AUC greater than and less

than 0.50, respectively. It is most commonly used with two-class problems.

1.2.2.5. Costs. The cost-based method is based on the “cost” associ-

ated with making incorrect decisions[11]. The performance metrics we dis-

cussed so far do not consider the possibility that not all classification errors

are equal. For example, an opportunity cost can be associated with missing

a significant move in a stock.

One of the advantages of the cost-based evaluation metric for trading is

the cost associated with making incorrect decisions is known. For example,

the cost of the wrong prediction of the “no change” state will only cost us

the opportunity, while the cost of the wrong prediction of “up move” will

cost us real money. Hence, different errors of the classifier’s results would

have a different associated cost. The table shows a hypothetical cost matrix

of the trading problem by classifying the “down move”, “no move”, “up

move” of the stock market.

TABLE 1. Hypothetical Cost Matrix

Classifier’s results
down move no move up move

Actual Class
down move 0 1.0 4.0

no move 2.0 0 2.0
up move 4.0 1.0 0
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1.2.2.6. Profitability - Sharpe Ratio Envelope. While the objective of

correctly predicting the directional movement of the US Treasury is to achieve

better profitability, the performance metrics we discussed so far are only

based on the ability to correctly classify but not on the trading system’s

overall profitability. For example, a classifier may have very high accu-

racy, kappa, AUC, but this may not necessarily produce a profitable trading

strategy. The profitability of individual trades may be more critical. For ex-

ample, making $1 on one hundred trades is not as profitable as losing $0.5

95 times and making $30 on each of the five trades. On the contrary, we

also can argue that a less volatile approach is more ideal (i.e., making small

sums consistently). This depends on the overall objective of the trader.

As shown in the figure, a classifier is trained on the historical data and

make classification decision “up”, “hold”, “down” on the next one week or

one month. The classification results are passed to the rule system, which

sets the trading rules based on the classification results. For example, a

“up” leads to buy a 10Y US Treasury, and a “down” leads to short a US

10Y Treasury. The rules shall also address the amount of US 10Y Treasury

to be purchased, how much risk to take, etc.

In this chapter, our trading system’s rules are to follow the classification

results to open a position daily and close the position after one week or one

month. The position size is determined based on the classifiers’ confidence.

We proposed a profitability based method to measure the performance

of the classifiers. The method takes into consideration the randomness
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FIGURE 1.2.3. Trading system

which we is commonly called “luck” on the trading floor. We call it Sharpe

Ratio Envelope in this paper.

1.2.4shows the SRE (Sharpe Ratio Envelop) we constructed. We take

our classifier’s daily position decisions, randomly shuffle those decisions

(permute them), and calculate the new Sharpe. We then repeat this exercise

many thousands of times, recording the 95th and 99th percentile Sharpe

Ratio of these randomly permuted returns along with the maximal Sharpe

Ratio from all the trials. The median, 95th, and maximal randomly discov-

ered Sharpe ratios from 3,000 random trials are shown as a function of sell

fraction, i.e., the percentage of days you were short instead of long. The

median Sharpe threshold drops from roughly 0.6 for an all-long strategy to

0.0 for a 50/50 split, to -0.6 for all-short over this period. The maximal

Sharpe from 3000 random trials peaks near a sell fraction of 20%, meaning

if you were required to go short 1 out of 5 trades, you have a roughly 1:3,000

chance of achieving those risk-adjusted returns by luck. It is the “residual

Sharpe Ratio” in excess of these percentiles of randomly permuted deci-

sions that we consider when declaring an improvement over luck for all our
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classifiers. Using this metric, it is much more impressive if a machine learn-

ing strategy with a 50% sell fraction produces a Sharpe of 0.75 than if an

80%-long strategy does likewise.

FIGURE 1.2.4. Sharpe Ratio Envelope

1.2.3. Methods of testing. Once a model’s parameters are calibrated

on the training set, its performance needs to be evaluated on a testing set.

The testing set is used since the model is biased toward the training set and

may over-fit the data. Overfitting leads to an artificially high-performance

measure. The following subsection reviews some of the methods used to

evaluate the performance of classifiers.

1.2.3.1. Holdout. The holdout method split dataset D into two disjoint

sets, Dtraining and Dtest . The split varies from a 50-50 to a two-thirds for

training and a one-third split for testing.

There are several problems associated with the holdout methods. First,

splitting the data into disjointed sets reduces the amount of data available
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for learning. This can be mostly solved by using random subsampling.

However, it doesn’t fit for our time series data analysis.

The holdout method’s second potential problem is the performance met-

ric can be high if the classes are imbalanced between the training and testing

set. It is pertinent, especially when evaluating the streaming US Treasury

data, where the underlying structure of the data may change over time due

to changing market dynamics—for example, training a model on an upward

moving market, where the class “large up move” outweighs “large down

move”. Then, we test the model on a downward moving market where

“large down move” dominates “large up move”.

1.2.3.2. Sliding window. We propose to use the sliding window ap-

proach for our analysis. It can prevent information leaks assuming history

could be repeated in the future in financial market.

As shown in the figure, The model is trained on the blue data sets and

then tested on the data sets after the red dot. There is a gap between the

training and testing set because the gap is the holding period of the security.

The method is the most intuitive and it is the main method we will use

in our trading system. In our analysis, the size of the sliding window are

predefined by us. However, such priori could be determined by an adaptive

algorithm that takes account of the level of concept drift in the data. We

defer the adaptive approach to the later study.

1.2.3.3. Prequential. In data streaming, prequential [12] becomes pop-

ular because it monitors a model’s error over time by predicting unseen
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FIGURE 1.2.5. Sliding Window in our Framework

instances one-by-one. It will add those instances into the training set after

the observed value is known. The error is computed as the sum of a loss

function between the observed values yi and predicted values ŷi. In the be-

ginning, few instances are included in the model, and it causes high error

rates. The high error rates then lead to the inclusion of a forgetting factor in

the model, giving less weight to previously seen examples. The forgetting

factor can include either a sliding window of size n or a decay factor. More

information can be found in [13].

1.2.3.4. k-fold Cross Validation. k-fold Cross-validation split the dataset

into k equal subsets. K − 1 subsets are used as the training set, and the re-

maining subset is used as the testing set. This is repeated k times so that

each subset is used as a testing set once. The errors obtained during all k

runs are added together, and then the performance metric is computed as

the average across runs.

Although k-fold cross-validation is the most popular approach to test

the model, we think it doesn’t fit our purpose because the future market

conditions are being leaked. It may lead to an overly optimistic and biased
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classifier. Models should be tested only on data that was not available at the

time when the model was created.

1.2.4. Concept Drift.

1.2.4.1. Definition and Causes. The changing of the underlying target

variable’s statistical properties, or called concept drift, makes learning from

streaming data difficult. It also makes the task of keeping models relevant

difficult. As the concept drift changes, model performance may decrease

and require a change or update in the training data. Ideally, if the concept

drift is known, the traders could use different models for each specific mar-

ket condition.

However, the assumption is that the concept generating function is un-

known. We know the market periodically displays reoccurring behavior

such as economic cycles or certain market moods but specific market con-

ditions are rarely consistently known as a priori. Also, the idea of using the

most recent training data may not be optimal for all problems.

[14] may give the most common definition of concept drift explaining

it in three forms that concept drift can occur: (1) the class priors, P(ci) may

change over time, (2) the distribution of the classes may change, P(X |ci),

where X is a vector of labeled instances, and (3) the posterior distribution

of the class member P(ci|X) may change.

In traditional offline machine learning, we usually assume the training

and testing data are from a stationary distribution with the same concept
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generating function. However, this assumption is often violated in the fi-

nancial market. Many adaptive algorithms are developed for streaming data,

but they still have difficulty maintaining high performance dealing with con-

cept drift. We may overreact to the noise and update the training set so that

the model loses past knowledge that may be helpful in the future. Mean-

while, not updating training data frequently enough leads to a model with

poor performance. There are some reasons that concept drift occurs in the

market. For example, traders preference changes; the political environment

changes; crowding trades eliminates the predictability of a predictor.

1.2.4.2. Approaches to learning with concept drift. Different literature

proposes different approaches to build algorithms to learn with drifting con-

cepts, but they usually take two forms. The first is to detect concept drift,

such as the novelty detection algorithms. Once detected, we update the

classifiers. The second approach assumes the concept drift occurs and con-

siders this assumption when building the model. In the second approach,

the actual level of concept drift or its occurrence may not be measured. For

example, we could train the model using a fixed size of the training set, such

as the sliding windows approach. Another solution is to use ensembles that

use a pool of trained classifiers updated according to the heuristic.

There are several algorithms developed to detect the concept drift and

adjust the model training accordingly. We will not review these methods in

this chapter. Building an adaptive online learning framework for trading is

deferred to the later study.
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Our framework applied the second approach, which assumes the con-

cept drift occurs and doesn’t measure it. There are several advantages of

this approach. First, although our approach requires longer training times

than adaptive classifiers, it is offset by only training models periodically.

Second, our approach also allows us to use the traditional machine learning

models that could be trained parallelly on a multiple cores machine. Third,

using the up-to-date data for the model may not be ideal since markets may

stabilize and old knowledge may become useful again. Fourth, to handle the

US rates market data problems, such as class imbalance and dimensionality

reduction, using the full subset of data is much more easier.

1.3. An Empirical Study of machine learning methods trading Fixed

Income products

1.3.1. Data and Data Preprocessing.

1.3.1.1. Data Universe. We obtain the data from 2000-2016 (1) the

daily close levels across all benchmark tenors USD interest rates and be-

yond such as Treasuries, swaps, swaptions, OIS, TIPS, and international

interest rates; (2) the daily close levels across the corporate bond, agency

mortgage, FX, commodities, equities markets, and domestic economic data;

(3) the binary date flag for FOMC meetings, payrolls releases, and month-

ends; (4) the 1-week, 1-month and 3-month changes in levels and 3-month,

6-month, 1-year and 2-year trailing z-scores for most of the products with

levels.Table 1 summarizes this broad feature set. Altogether this consists of

roughly 1,000 raw input features.
37



The broad feature sets reflect our “agnostic” preliminary approach to

explore machine learning in the fixed income market. We could have used

our domain knowledge to create a more focused list of drivers. Also, we

could have created signals without strong collinearities (e.g., using the level,

slope, and curvature of the Treasuries curve, rather than all the benchmark

yields themselves). This “agnostic” approach comes at the cost of a lack of

transparency.

We separate the data into two timespans: a post-crisis period from mid-

2008 to 2016 and a more extended millennial period from 2000-2016. The

first time-period has a richer feature set: many of our input features have

only been reliably and frequently tracked since the financial crisis. The sec-

ond period covers a broader set of market conditions, including the com-

plete arc of the global financial crisis, albeit with a sparser set of the feature

set. We elected to quarantine all 2017 data, which was not used for training

or testing purposes under any circumstances, until we had arrived at our

final, tuned, and productized machine learning strategies.

This limited time frame and the slow frequency of our data (daily closes)

give us a limited sample size of roughly 1500 testing days for the post-

crisis set and approximately 3500 testing days for the millennial period.

The sample points will also exhibit a strong degree of autocorrelation, even

if the features and asset performance have no autocorrelation. Hence, the

total number of plausibly independent observations is much lower.
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TABLE 2. Input Features Set

Treasuries yield, carry, repo rates
Swaps realized volatility, carry

Swaptions Implied Volatility Surface, skew
OIS Rates
TIPS Breakevens
MBS Mortage basis, convexity

Cross-Asset HG and HY bond indices, equity index levels and
volatility, FX indices and volatility, commodity indices

Economic Global and regional economic indices, various date
flags

Dates Flags for FOMC meetings, payrolls and month-ends

1.3.1.2. Data normalization. Normalization, refers to the process of

transforming the data for use in a training model. We showed the most

common techniques below

xt =
xt− xmin

xmax− xmin

xt =
xt

xmax

xt =
xt−µ

σ

xt = log(xt)

There are two reasons for normalization. First, some models such as

ANN are prone to outliers. The normalization can help to eliminate the

problem. Second, trends may be present in the time series, which is called
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non-stationarity. The presence of trends often degrades the classifiers’ per-

formance. The transformation is used to stabilize the variability of the se-

ries. In online learning, normalization is more difficult because we cannot

assume that the data’s future distribution will remain the same as the past,

and we will not know the min and max values until all the information is

available. In our framework, there is no such problem. However, minimum

and maximum values are necessarily stored to make similar comparisons

with future data.

1.3.1.3. Dimension Reduction. The benefits of dimension reduction are

commonly well recognized. It can help the model make a better prediction

and reduce the computational and memory/storage burden. There are mul-

tiple approaches to reduce dimensionality. The first one is by creating new

features that combine existing features, such as combine stock price and

earing using the P/E ratio. The second way to reduce dimensionality is by

selecting a subset of the features. Feature subset selection is the process

of removing as much irrelevant information as possible. There are three

commonly used methods: filter, wrapper feature selection, and embedded

methods.

Recall that our approach is the “agnostic” preliminary approach. Hence,

we didn’t apply feature selection techiniques. We applied one of the feature

project techinique - PCA to reduce the dimensionality of our dataset. We

defer discussion of the feature selection in our framework to the later study.
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We apply the transformation to all our continuous variables, excluding

binary “date flags” from the process. It results in a set of orthogonal (and

thus uncorrelated) features, the first few of which – the “principal compo-

nents” – explain a majority of the variance in the original raw feature set.

As illustrated in 1.3.1, ten components capture roughly half the variation in

the richer 2008-16 dataset while capturing approximately 80% of variation

on the longer but sparser 2000-16 dataset. Approaching 90% of the vari-

ation requires ~100 components for the 08-16 set, our primary sample for

this piece.

FIGURE 1.3.1. PAC reduces the dimentionality of the raw
feature set

1.3.2. Framework For Machine Learning in Fixed Income Trades.

1.3.2.1. Trading Strategy and Rules. Recall we illustrate the basic frame-

work in section 1.2. The classifiers’ prediction results are passed to the rule
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box for executing based on a particular set of predefined rules. We devel-

oped the strategies (rules) in this chapter to execute trades daily based on

the prediction results and close the position after one week or one month.

Thus the only decision to make is positioning: whether to buy or sell, and

in what size. In some cases, the trade size is uniform for each day, and

the predictor simply needs to decide to buy or sell. In other cases, the

algorithm is allowed to arrive at an optimal trade size. A slightly more ad-

vanced approach would allow the classifiers to select the proper structure

to trade daily and/or arrive at the decision of when to close the position on

its own. We looked primarily at three different trade structures: 10-year

Treasuries, 10-year matched maturity swap spreads, and 1Mx10Y ATMF

swaption straddles.

Thus our problem boils down to predicting the optimal daily trade po-

sitioning, given our set of input features. Supervised machine learning can

work in two broad tasks: classification and regression. In this chapter, the

machine learning models can either predict the magnitude and direction

of returns (regression) or simply whether the asset will rally, sell-off, or

move sideways (classification). We limited our investigations to the lat-

ter approach, exploring classification schemes. For most of our work, we

trained the classifiers to classify just two outcomes: rally or sell-off, and

thus whether to buy or sell. We defer the multinomial classification study,
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with three outcomes (rally, sell-off, or roughly unchanged) and four out-

comes (rally and sell-off broken into two different size classes) to the future

study.

We found the simple binary classifier (buy or sell) is substantially im-

proved when we size the trade based on the classifier’s conviction level. We

size the trade using the Kelly Criterion, a simple two-outcome bet-sizing

strategy. Assuming expected gains and losses are approximately equal mag-

nitude (roughly accurate for a simple duration trade), the optimal size to

maximize expected returns is S = 2P− 1 where P is the probability you

made the right choice (S will be between 0 and 1, since P is necessarily

above 50%).

We also explore other features of the strategies’ behavior (volatility, av-

erage returns, and the fraction of days you buy or sell). We find certain ML

techniques can converge to multiple, qualitatively distinct solutions of com-

parable performance, depending on the choice of the technique’s so-called

‘hyperparameters’.

1.3.2.2. Testing Method. The most commonly used method for testing

is the k-fold cross-validation. To the extent the markets tomorrow look and

perform similar to the markets today, randomly placing adjacent days in

the training and testing samples will cause the information to leak between

the two sets. Even if the markets exhibit no intrinsic autocorrelation, our

P/L series has strong autocorrelation. The entire holding period returns on

adjacent days are built from many of the same daily returns. Recall we
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discussed the testing method in 1.2.3. We applied the sliding window in our

framework. Therefore, our testing set always consists of a contiguous block

of days that occurs entirely after an expanding or rolling set of training days.

We also remove the first n days from the testing set, where n is our trade’s

holding period since the training space’s final points are built from daily

returns on those days.

1.3.2.3. Performance Measurement. Our metric for success is the risk-

adjusted returns, typically captured with the Sharpe ratio for linear instru-

ments and the non-parametric Sharpe ratio for nonlinear instruments. We

know returns across all financial products exhibit a high degree of kurto-

sis so that the sample means and standard deviations are noisy and heavily

biased by extreme moves. Said another way, the positioning decision on

one or two days where the market moved aggressively can exert an out-

size influence on these performance metrics. Also, many of these classifiers

tend to produce an extensive range of performance levels on high dimen-

sional data with only modest sample size (the case in our framework). In

this case, simply cherry-picking a solution with the highest Sharpe ratio

from the sliding window cross-validation will lead to a strategy that veers

into massive losses on novel data points. This issue is especially acute for

financial strategies, given the aforementioned high kurtosis of daily returns.

Therefore, recall that we proposed the SRE performance metric (Sharpe

Ratio Envelope) in section 1.2.2.6. The method takes into consideration the

randomness. We create a threshold from the SRE to compare our classifiers’
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success - 95th and 99th percentile Sharpe: a threshold Sharpe above which

the good signal is implausible to have arisen by random chance.

Besides, we “quarantine” a final contiguous set of days which we set

aside from use throughout the cross-validation and hyperparameter selec-

tion process. In our case, this was the entirety of 2017 thus far, a 10-month

period. After selecting the optimal strategy for each classifier through cross-

validation, we test their performance on this quarantined set.

Nevertheless, the interpretation is quite different when we test a couple

of hand-selected ‘best’ classifiers from the cross-validation on the ‘quar-

antined’ 2017 data. We are essentially running a hypothesis test on every

single trial. The solutions need only clear the 95% threshold, and this pro-

cedure is a generalized approach to the classic t-score hypothesis test.

Beyond, we also eliminate solutions that exhibited red flags. In partic-

ular, we remove classifiers with exorbitantly high in sample accuracy and

the classifiers that isolated outperformers that did not exist within a cluster

of nearby hyperparameters that performed similarly. We are most confi-

dent when a classifier is not especially sensitive to hyperparameter’s exact

choice or when a classifier showed a clear, intuitive trend in terms of in-

/out-of-sample accuracy out-of-sample volatility and Sharpe after dialing

up/down the hyperparameters.

1.3.3. Results.
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1.3.3.1. Initial Cross Validation Results. We performed the sliding win-

dow cross-validation procedure beginning with daily trades of 10-year on-

the-run Treasury notes held for one week. We trained each classifier using

the broad set of input features available for the 2008-16 period, holding off

on using all 2017 data we placed in “quarantine.” We will discuss the results

of other asset classes, hold periods, and training epochs.

Across machine learning models and regardless of parameter choices,

we found a substantial improvement in outcomes when we sized trades

based on the classifier’s conviction level by using the Kelly Criterion. Going

forward, we present only results using this sizing approach.

We applied the grid search procedure for each model for hyperparam-

eters’ selection. We calibrate the classifiers on a training sub-sample and

test its performance on a later, distinct test sample. We then computed sum-

mary statistics for that particular run, such as training and test sample hit

rates, daily buy/sell fractions, and ultimately Sharpe ratios. As discussed

in 1.3.2.3, we removed classifiers with high overfitting likelihood. All sur-

viving classifiers are summarized in 1.3.2, which shows the distribution of

test-sample Sharpe ratios broken out by the machine learning models. From

this chart, we found several ML techniques, for a subset of hyperparameter

choices, produced Sharpe ratios meaningfully higher than uniform buying.

After the cross-validation, it is tempting to simply select a few high per-

formers with a certain set of hyperparameters (with Sharpes above 1.2) in
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FIGURE 1.3.2. Sharpe Ratio Distribution

The thin lines show the min/max range, thick lines the inner-quartile
range, and white strip is the median outcome; unitless
Classifiers were trained on data beginning in mid-2008 and tested out-
of-sample beginning in early 2010. The first 5 days were removed
from the testing period, and Sharpe ratios and sell fractions were then
computed on the remaining out-of-sample period of roughly 1.5 years.
The training window was then expanded four times, until all dates up
until 12/30/2016 were tested.

most machine learning applications. This is, after all, out-of-sample perfor-

mance. However, given our sparse input feature set, the kurtosis of returns,

and the relative opaqueness of many of these methods, cherrypicking these

predictors is not a responsible approach.

Instead, we looked for structure and consistency in these results. As

1.3.3 illustrates, the various ML classifiers arrived upon an extensive range

of trading strategies, measured by the fraction of days they short. While

random forests showed a high degree of performance and stability (two tight

clumps, both more than unity Sharpe), ANN classifiers’ performance is all

over the map. The best ANN classifier is shown to be an isolated point

on the map, and we had trouble explaining exactly why it out-performed.

Neighboring choices of hyperparameters produced a drastically different
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performance. We argue the performance is highly sensitive to a random

seed used to initiate the optimization suggesting the algorithm often did not

converge to the globally optimal network. These issues may be caused by

our sparse dataset and the complexity of the financial markets. ANN is

known to have such issues when applied towards prediction tasks instead of

object recognition, where it has enjoyed much success.

FIGURE 1.3.3. Performance of Classifiers with Different
Hyperparameter sets

While random forest performs well almost regardless of hyperparame-

ters’ choice, and ANNs’ performance seemingly is irrelevant to their selec-

tion, the other classical methods’ performance sat somewhere in between.

Decision trees, KNN, and SVM produced a broad spectrum of Sharpe ratios

and sell fractions (1.3.3). In general, low-depth decision trees, also pruned

for nodes with too few samples points, generalized more accurately. KNN
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with a broad sample of nearby neighbors (k~80 as opposed to, say, 10) per-

forms better out of sample. While these properly tuned classifiers showed

some promise, the clear "winner" is the random forest.

1.3.3.2. Deep Dive into Random Forest Trees. By every performance

metric we calculated, the most consistent results came via the random for-

est tree, the only “ensemble” method we explored in this preliminary work.

As we discussed in the methodology section, a random forest is built from

an ensemble of basic decision trees. Each decision tree is trained on a ran-

domly selected sub-sample of the training data and a randomly selected

subset of the input features. The final result of the RF is the aggregated

votes from all the decision trees in the ensemble. Through all these efforts,

the resulting ensemble of trees is typically less susceptible to overfitting.

FIGURE 1.3.4. Performance of Random Forest Tree

Since RF performs the best among all the models, we take some time

to present its performance and general behavior from the sliding window
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cross-validated sample data. We present the strategy to trade 10-year Trea-

suries daily and hold for one-week periods, from 2008-16. After removing

the classifiers with obvious overfitting signs, we were left with classifiers

consistently producing Sharpe Ratios above unity (1.3.4). The classifiers

belong to two general clumps by the sell fraction based on one parameter

setting that dictates how important it is for correct classification to be “bal-

anced.” In the context of our strategy, where buying the 10Y note every day

can generate a decent hit rate, this parameter effectively requires the deci-

sion trees to find opportunities to short with as much accuracy as opportu-

nities to buy. We find both classifiers outperform all long by a comfortable

margin, despite markedly different aggregate behavior. While for the sake

of simplicity, none of the results include transaction costs in 1.3.4. The

standard bid/ask on 10-year Treasuries reduces all Sharpe ratios by slightly

less than 0.1 (~10%).

As discussed previously, across different models, we found sizing trades

by the classifiers’ conviction level can substantially increase the Sharpe ra-

tios, despite the long/short positions having the same “hit rate.” For RF, we

found the balanced and non-balanced clumps had disparate levels of convic-

tion. The balanced classifier behaves in a more ‘timid’ fashion, with most

days having a conviction ~50% (very low conviction) than the non-balanced

ones where the conviction rate is ~56% (1.3.5). These two different behav-

iors do not prevent either from performing well in aggregate. In addition, all

the RF classifiers enjoy the realized test-sample hit rates move much higher
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FIGURE 1.3.5. Trade Conviction and Hit Ratio

Distribution of days on which the RF classifiers had X% confidence

(‘conviction’) in their decision to go long or short (LHS, count) bro-

ken out by weighting strategy, also shown is realized hit-rate vs con-

viction (RHS; %). Balanced and non-balanced denote whether or not

the decision tree seeks to classify buy and short with equal accuracy—

balanced classifiers cared more about spotting short opportunity.

when they have high conviction. It suggests using machine learning models

for timing execution is a promising application.

We also found that the out-of-sample hit rate of our RF classifiers is not

well correlated with the Sharpe ratio (1.3.6). For non-balanced classifiers,

the test sample hit rate is at ~57% for all classifiers, regardless of the training

set’s performance. However, as the hit rates increase in the training set, so

does the Sharpe, thanks to the sizing strategy based on how confident the

machine learning prediction. The balanced RF also enjoys a similar pattern,

though to a lesser extent.

1.3.7 shows that the RF classifiers outperform the all-long strategy when

RF models managed to avoid the large draw-downs such as the taper tantrum

of 2013 and the widening in rates in late 2015. Within the 2010-16 testing
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FIGURE 1.3.6. Hit rates in Training Sets and Test Sets

Test (out-of-)sample hit-rate vs train (in-)sample hit rate, broken out
by weighting strategy (LHS; %), with shading connoting test sample
Sharpe ratio (colors; unitless)
Balanced and non-balanced denote whether or not the algorithm
sought to predict rallies and selloffs with equal accuracy—balanced
predictors cared more about spotting selloffs

time and across all our RF classifiers, the performance rarely fell below the

simple all-long strategy.

FIGURE 1.3.7. RF Classifiers Outperform All-long Strategy

Rolling 1-year Sharpe ratio for daily trades of 10-year Treasuries held

for one week from 2010-16, for our RF predictors and uniform, all-

long (unitless)
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1.3.8 shows the RF classifiers generalizes well to the strategy to trade

10-year Treasury with holding period of one month within longer 2000-16.

For both weekly and monthly hold bond trades tested from 2003-16, RF

classifiers manage to avoid all the significant drawdowns associated with

all-long strategies though they do dip into the red, on a rolling 1-year basis,

on occasion.

Emboldened by our success in trading duration, we explored how well

the machine learning classifiers perform on spreads and volatility. For

spreads, we trade the matched-maturity swap spreads to on-the-run 10Y

Treasuries. For volatility, we trade 1Mx10Y swaption straddles (no delta

hedging) with a holding period of either one week or one month (to matu-

rity). Once more, we found RF classifiers provided the best performance.

However, while the RF classifiers could produce the Sharpe well above

both our 95th and 99.9th percentile significance thresholds, 1.3.9 illustrate

that the story is more mixed for spreads and volatility.

In the case of spreads, it is difficult to determine the proper ‘benchmark’

strategy. Within the post-crisis time frame, narrowers have been the winning

spread trade on average, while the “default” all-long positive carry strategy

is to buy spreads (wideners). We use selling spreads as the benchmark

strategy for this exercise, while for the final test on the quarantined 2017

data, we use the all-long strategy as the benchmark (buying spreads).

This inconsistent benchmark seems unfair to our classifiers, and we are

interested in whether the ML classifiers can beat both benchmarks over the
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relevant timeframes. 1.3.9 shows that the entirety of Random Forest classi-

fiers mostly fall above 95% of the Sharpe Ratio Envelop, but they are within

the maximum Sharpe, which is the 99.9% threshold. This is not the very

clean outperformance we observe in the duration trading.

FIGURE 1.3.8. RF Classifiers Outperform All-long Strat-
egy (2000-16)

For volatility, we do not measure the performance by the Sharpe ra-

tio. Instead, we use a non-parametric ratio better suited to the non-linear

products with skewed and long-tailed returns. We found our non-balanced

classifiers simply converged to the popular short-gamma strategy on trading

the swaption straddle, while the balanced classifiers underperform the sys-

tematic short-gamma strategy. We note that this underperformance may be

due to our categorization/sizing scheme, which was designed intentionaly

for a symmetric P/L distribution.

1.3.3.3. Performance on Quarantined 2017 Data. The results presented

thus far came from an iterative, experimental fit-then-test approach. While

the success of the most robust predictors proved insensitive to the details
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FIGURE 1.3.9. RF Classifiers Performance on Spread and Volatility

*The nonparameteric ratio for volatility is the average of 1) Non-

parametric Sharpe: the average of median versus inter-quartile range;

2) Sterling ratio: median returns versus median losses; and 3) draw-

down ratio: returns versus 5th percentile as expected returns versus

downside risk.

of implementation, we nonetheless fully admit that during the cross vali-

dation process parameters were tuned, design decisions were tweaked, and

techniques and strategies were proposed and then abandoned, until out-of-

sample performance delivered a respectable risk adjusted return. Along the

way, high level information from our test set has inevitably seeped into the

fitting and selection process.

Thus from the start we elected to “quarantine” data from 2017, remov-

ing it from all analysis until we had selected the top candidate predictors

from each ML technique. This final sample serves to validate the predic-

tors. We have a testable hypothesis: that the best predictors, particularly the
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random forest predictors, will continue to out-perform a daily buying strat-

egy. And we have a framework for judging the statistical significance of the

out performance (outlined in the Framework Implementation Section).

Beyond this hypothesis-testing, testing the performance on a quaran-

tined data is particularly important since the financial time series are noto-

riously nonstationary. That said, the 2017 time frame is not exactly a brand

new era of financial markets, and performance therein may not be able to

tell how these classifiers will behave through a large and exogenous shock

to the rates markets.

FIGURE 1.3.10. RF Classifiers vs All-long Treasury Strate-
gies Quarantined 2017 dataset

Sharpe ratio on ‘quarantined’ 2017 data versus on test-set data for var-
ious ML predictors trained* to trade 10-year Treasury notes daily for
5-day hold periods (unitless)
*All predictors cross-validated on 10-year Treasury performance
(daily trades, 1-week holding) from mid-2008-16; trades sized with
the Kelly Criterion. For each predictor we pre-selected the 5 top can-
didates from each technique before setting it loose on the ‘quarantined’
2017 data. Absolutely no information from 2017 was used while train-
ing and vetting these predictors.
† Balanced and non-balanced denote whether or not the algorithm
sought to predict rallies and selloffs with equal accuracy – balanced
predictors cared more about spotting selloffs.
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For trading 10-year Treasuries with a holding period of one week, 1.3.10

shows the Sharpe ratios for the top 5 classifiers we selected from the slid-

ing window cross-validation. Consistent with the results from the cross-

validation, RF is still the most consistent outperformer, with balanced RF

classifiers producing a Sharpe of 1.35 over 2017, compared to 0.38 for all

long. The ensemble method outperforms all classical models, where the

top 5 classifiers proved very inconsistent. Only SVM RBF consistently per-

forms at-or-above all-long strategy. The single best classifier is a lone neu-

ral network that produced a Sharpe above 1.72, while the four other ANN

classifiers do not reproduce such a good Sharpe. Three of them essentially

match the all-long strategy, while the fourth one produces a negative Sharpe.

We found the machine learning classifiers on trading spreads and volatil-

ity do not perform as well as on trading duration given the cross-validation

results. This trend persisted into the quarantine period. 1.3.11 For spreads,

it is worth mentioning the RF classifiers outperformed the narrower bench-

mark strategy in cross-validation; meanwhile, they also almost match the

wideners benchmark strategy in the quarantine 2017 time frame. For spreads,

it is worth mentioning the RF classifiers outperformed the narrower bench-

mark strategy in cross-validation; meanwhile, they also almost match the

wideners benchmark strategy in the quarantine 2017 time frame.
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FIGURE 1.3.11. RF Classifers’ Performance on 2017 data
Across Different Strategies

Performance* of RF classifiers** on ‘quarantined’ 2017 data com-
pared to systematic strategies for 10-year Treasuries, matched-
maturity swap spreads, and 1Mx10Y swaptions (unitless)
*For Treasuries and swap spreads, “performance” refers to annualized
Sharpe Ratio, for 1Mx10Y swaptions, we instead use the average of
non-parametric Sharpe, Sterling and drawdown ratios.
†Balanced and non-balanced denote whether or not the RF seeks to
predict long and short with equal accuracy – balanced predictors cared
more about spotting short opportunity
**All classifiers cross-validated on daily trades from mid-2008-16;
trades sized with the Kelly Criterion. For each classifier we pre-
selected the 5 top candidates from each model before setting it loose
on the ‘quarantined’ 2017 data.

For volatility, we discussed that implementation (particularly how we

size trades based on probabilities) is designed within the mind of a sym-

metric distribution of risk, which is more appropriate for linear products.

Hence, the underperform is anticipated in this case.

Finally, we would like to discuss how significant the out-performance is.

For this, we produce the Sharpe Ratio Envelope on the 2017 data and com-

pute the significant threshold. Each classifier’s performance is compared

against this threshold. 1.3.12 shows this residual Sharpe across different

ML models. We find RF once more outperforms, at both the 95th and 99th
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FIGURE 1.3.12. Residual Sharpe Ratio on 2017 Data

Residual Sharpe* of various ML predictors on ‘quarantined’ 2017 data
for strategies trading 10-year Treasuries; positive values denote statis-
tically significant out performance (unitless)
*Residual Sharpe: for each predictor, we take its daily trade decisions
(trade size and direction) and randomly permute (shuffle) them across
all days in the quarantine period, recomputing Sharpe for this random-
ized set. We repeat the exercise thousands of times, taking the 50th,
95th and 99th percentile outcomes. These Sharpes are then subtracted
from the predictor’s Sharpe. If this residual Sharpe is positive, we
deem it statistically significant to that percentile level. In the context
of our quarantine set, this is somewhat analogous to a one-sample hy-
pothesis test.

percentile level, as does SVM RBF. The other methods failed to meet this

benchmark.

1.4. Conclusion

We propose a framework to apply machine learning models for trad-

ing liquid fixed income products. Based on the prediction from the ma-

chine learning classifiers, the trade is executed on a daily basis for liquid,

benchmark rates products held for one-week to one-month. Specifically,
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we explore the k-nearest neighbors (KNN), decision trees, and support vec-

tor machines (SVM); the ‘ensemble’ technique random forest; and artificial

neural networks (ANN). We propose a sliding window cross-validation pro-

cedure instead of using the most commonly used k-fold cross-validation for

our application. Also, we propose a Sharpe Ratio Envelope approach to

measure the performance of different models with different hyperparameter

sets. Among the various models, the only ensemble method, random forest

(RF), is the most successful. It consistently produces Sharpe ratios greater

than unity while trading 10 year Treasuries, both in the cross-validation and

‘quarantined’ 2017 data. This performance comes for both 1-week and 1-

month hold periods, using a broad set of input features available from 2008

and a more limited set available since 2000. We found sizing daily trades by

the ML classifiers’ conviction level via the Kelly Criterion can substantially

enhance the Sharpe Ratios across timeframes, asset classes, hold periods,

and ML classifiers. Further, the classifiers’ perceived conviction is corre-

lated well with its realized hit rate. This suggests a promising application

of ML models in the fixed income for timing the market. We found trad-

ing 10-year matched-maturity swap spreads, RF classifiers incrementally

outperform the narrowers benchmark on the cross-validation dataset, and

then the same classifiers roughly match the wideners benchmark on 2017

data. Although the consistent performance is promising, we are not that

confident on trading spread using ML models. For trading 1Mx10Y ATMF
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swaption straddles, RF classifiers failed to outperform the popular system-

atically short-gamma strategy.

1.5. Future Research

Firstly, we use the ML classifiers to predict a binary classification in ei-

ther one week or one month, which are up move and down move. A multi-

nomial classification setup could be explored in the future. For example,

a three classes classification, which consists of move, no move, and down

move, could potentially enhance the strategy’s performance. Investors are

usually also interested in capturing the big market moves, so big up moves,

such as 10% up move, could be appropriately defined. Hence, the five

classification setups could be explored in future study too. Secondly, we

briefly discussed the concept drift used in online learning literature in sec-

tion 1.2. Our framework is an offline learning framework. The online learn-

ing methodologies could be explored since these algorithms are designed to

conduct the learning in a streaming data environment. Especially as the

market regime changes, training data selection and parameter calibration

frequency are necessary setups for online learning. Thirdly, we found the

random forest tree, an ensemble method, is the most promising one among

all the classifiers. Different ensemble methods could be explored in the fu-

ture. Primarily, we could explore setting up an ensemble, which consists of

different classifiers, such as decision trees, ANNs, and SVMs, to conduct

the prediction job. Fourthly, we found the sizing strategy can substantially
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enhance the performance. However, we designed the sizing strategy with

symmetric return distribution in mind. It may be why the volatility trading

using ML classifiers does not perform well in our framework. We could ex-

plore a different sizing strategy for the nonlinear products, and we may find

that with a proper sizing strategy, the ML classifiers can also outperform

the traditional sell-gamma strategy for trading volatility. Finally, we could

explore intraday trading using our framework since the intraday return pre-

dictability is well documented in the literature.
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CHAPTER 2

A Trend Following Framework: Theory and Application

2.1. Introduction

A price momentum effect means that the price of an asset has trends

instead of being randomly distributed. A trending price means that an as-

set that recently appreciated is more likely to continue moving higher and

vice versa. The existence of Momentum effects is an asset pricing anomaly

and would violate the efficient markets hypothesis and enable Momentum

traders to consistently outperform the broad market. Trend-following (also

referred to in academic circles as time-series momentum1) has actively been

on investors’ radar for the last few decades. Managed Futures Hedge Funds,

also known as ‘CTAs’ (short for Commodity Trading Advisors), often trade

futures contracts based on Trend-Following techniques.2The longevity of

the strategy and the appealing performance in the midst of the crisis of 2008

have helped to propel the assets managed by CTAs to more than $348bln3.

A host of academic literature provides potential explanations for the

Momentum effect. They include inefficiencies in investor behavior (see

1See Tobias, M., Ooi, Y. and Pedersen, L. “Time Series Momentum”. Journal of Financial
Economics 104 (2012): 228–250
2Earlier CTAs mainly traded Currencies and Commodity futures. Nowadays, CTAs trade a
broad range of financial instruments (cash, forwards, futures, options, etc) across different
asset classes and geographies.
3Estimate by BarclayHedge in the 3rd Quarter of 2017
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[133][134]), macroeconomic supply and demand frictions, positive feed-

back loops between risk assets and economic growth, and even in the mar-

ket microstructure. Momentum in equities is a well documented in aca-

demic literature. [1] is one of the early literature that documents equity

Momentum. [73][74] provides a detailed review of commodity Momentum

strategies and the CTA practitioners applied momentum strategies over the

past 30 years. [72] document the momentum in fixed income. The Momen-

tum effect in Currency Markets was demonstrated in the research of [71],

[70] and [69]. [68] documented Momentum effects in global equity in-

dex, currency, commodity and bond futures markets since the 1970s. Based

on extended datasets, [67] validated significant Momentum effects across

assets since 1903, while [66] did a similar exercise for Equity index and

commodity markets since 1800.

This chapter focuses on a concrete trend-following solution and ana-

lyzes its analytical properties alongside its practical implementation. We

find the majority of the research on trend-following has been empirical. In

our opinion, there has been a relative lack of theoretical research linking

the empirically observed characteristics of the strategy to theoretical results

with a model framework. To some extent, we try to fill this void with the

current paper.

The contribution of the chapter is threefold. First, we propose a trend-

following signal based on statistical theory and analytically analyze its prop-

erties. We manage to reconcile the theoretical results with the stylized
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facts, a ‘CTA smile’ (see [67]) and prove the signals based on longerterm

horizons to outperform (see [64]). Second, we propose a prototype trend-

following framework that is diversified across time-frames and assets and

uses a unified approach across assets. Third, we discuss the portfolio and

risk management of the trend-following strategy. We illustrate how the risk-

budgeting approaches can be applied to the trend-following framework.

We start by presenting a signal that is based on statistical hypothesis

testing. We show that under certain assumption and specification, the trend-

following signal is also the delta of a straddle. Therefore, we can explicitly

link the trend-following fund’s performance and the long straddle positions’

performance [65].

Next, we analyze the profit drivers for the trend-following strategy us-

ing our proposed signal. We prove the strategy is profitable whenever the

underlying assets have trends in either direction. Hence we demonstrate

that the so-called “CTA smile” [67] can be justified within our theoretical

model as well. We found that the absolute value of the Sharpe ratio of the

underlying asset is important for the profitability of the strategy. Further-

more, we found the signal based on longer bookback periods have better

profitability than the signal based on shorter lookback periods.

We explicitly take into account the time series properties and assume the

underlying asset return follows a AR(1) process. We analytically demon-

strate that the autocorrelation is important for the profitability of signals

based on short lookback periods. It is intuitive that positive autocorrelation
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leads to profits while negative autocorrelation leads to substantial losses. On

the other hand, the signals’ profitability based on longer lookback periods

is unaffected by the time-series properties of the underlying. The impact of

transaction costs is also explicitly modeled. Results show that transaction

costs increase with the bid-ask spread but decrease with the volatility and

the lookback period.

Besides, the correlation between the P&L of the signal based on differ-

ent lookback periods is derived. We analytically show that the correlation

depends on the ratio of the lookback periods, and the correlations’ theo-

retical values closely match the empirical observations. It is demonstrated

that the average of the signals across various lookback periods is optimal

if an appropriate correlation structure between P&Ls of signals is present.

While averaging the signals among different lookback windows has been

common, certain conditions have to be present for its optimality.

We propose a prototype trend-following framework that uses a unified

methodology across asset and asset classes based on the theoretical results.

The solution is diversified across various time-frameworks. The perfor-

mance prototype trend-following framework is compared to benchmark in-

dices under various fee structure scenarios. The diversification and hedging

properties of trend-following with respect to long-only portfolios are also

demonstrated in simulations.

We apply a risk budgeting approach to the proposed trend-following

framework and compare it with the inverse volatility approach. Last but
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not least, we discussed different cost control approaches. We tempt to in-

corporate short-signals that provide quicker reaction at inflection points in

a cost-efficient way. We discuss the impact of ‘carry’ and show how our

framework allows for incorporating the carrier component in the strategy

design.

2.2. Methodology

2.2.1. Trend-Following Signal and Options. A simple and intuitive

measure of a trend is the average asset’s return over a certain period. If it

is positive, we can conclude the asset is trending upwards and vice versa.

The greater the average return in absolute value, the higher our conviction

for the presence of a trend.

We denote the average return over period T at time t as ¯Rt,T and the

estimated volatility as σ̂t . Under the assumption that Rt is i.i.d. N(0,σ2), it

is well-known that the t-statistic tt,T =
√

T ¯Rt,T
σ̂t

has a Student’s t-distribution

with T −1 degrees of freedom. Later, we relax the assumption and assume

Rt follows a AR(1) process. Then, the t-statistics becomes
√

T ¯Rt,T
σ̂t
·
√

1+ρ

1−ρ
,

where ρ is the autocorrelation coefficient. In the case of daily return data,

the absolute value of autocorrelation is small and hence the value of the t-

statistics is not significantly impacted. When the sample size increases, the

t-distribution converts to the standard normal distribution (it occurs when

T > 30 as will be the case in most of our subsequent work).
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We can easily construct the statistical tests to test whether the average

return is greater than zero when the estimate ¯Rt,T turns out positive:

H0 : µ = 0 H1 : µ > 0

The decision whether to accept or reject H0 at a certain confidence level

is based on comparison of the calculated t-value to a critical value depend-

ing on the chosen confidence level. Hence, we will reject H0 when 1−

N(tt,T ) is below the required confidence level, where N stands for the stan-

dard normal cumulative density function. In general, the smaller 1−N(tt,T )

the higher is our confidence that µ > 0. As tt,T > 0, (1−N(tt,T )) ∈ [0, 1
2 ].

In case we want to construct a trend-following signal ranging from 0 to 1,

we can show that the linear combination 2 ·N(tt,T )−1 achieves that goal.

Similarly we consider the case when the estimated average return is

negative:

H0 : µ = 0 H1 : µ < 0

In this case, the smaller is N(tt,T ), the greater the confidence with which

we can reject H0. We want to map N(tt,T ) ∈ [0, 1
2 ] to a signal ranging

from [−1,0]. Again, the linear transformation that achieves this goal is

2 ·N(tt,T )−1.

In the end, we can construct our trend-following signal: 2 ·N(tt,T )−1.
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The stylized facts of the trend-following fund’s performance profile is

the so-called “CTA” smile which has always been thought to resemble the

P&L of a straddle. Besides, the trend-following also tends to exhibit pos-

itive convexity. For example, [65] used lookback straddles to replicate the

track record of actual trend-followers. Below we make an explicit link be-

tween our trend-following signal and the typical option strategies.

In the Black-Scholes world, the delta of a straddle is given by 2N(d1t)−

1. Let’s assume that the strike of the option is set to the price T days ago

and the maturity of the option is T. Under the assumption of zero interest

rate,

d1t =
1

σ
√

T − t
[ln(

St

K
)+(r+

σ2

2
)(T − t)] =

1
σ
√

T
(ln(

St

St−T
)+

σ2T
2

)

Using the assumptions of the Geometric Brownian Motion and intro-

ducing εt ∼ N(0,1), we can write

(2.2.1)

d1t =
1

σ
√

T
[

t

∑
s=t−T+1

ln(
Ss

Ss−1
)+

σ2T
2

] =
1

σ
√

T
[

t

∑
s=t−T+1

(µ +σεs)]

=
1

σ
√

T
(

t

∑
s=t−T+1

Rs) =

√
T ¯Rt,T

σ
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If we plug in an estimate of the volatility σ , we arrive at d1t = tt,T .

Hence, the delta of a straddle with appropriately chosen strike and maturity

can also be viewed as a trend-following signal 2N(tt,T )−1.

2.2.2. Profit drivers of “delta-straddle’ trend-following signals. The

profit generation mechanism of trend-following has not been well com-

prehended beyond the general statement that “trend-following is profitable

when there are strong trends.” The sections below analyze the interactions

between the Sharpe ratio of the asset and the Sharpe ratio of the trend-

following and demonstrate that trend-following exhibits a straddle-like P&L

profile. We also derive expressions for the expected transaction costs and

elaborate on the trade-off implications between having a reactive trend-

following system and keeping a lid on the costs.

2.2.2.1. Gross P&L. In the Appendix, we derived the relationship be-

tween the gross P&L of the trend-following strategy and its lookback win-

dow, underlying assets’ Sharpe ratio and the time series’ autocorrelation.

We deviate from the assumptions of the Black-Scholes world and assume

the underlying assets follows AR(1) process.

PROPOSITION 1. Assume that underlying asset returns follow an AR(1)

model: Rt = a+ρRt−1+εt where εt ∼N(0,σ2
ε ) and |ρ|< 1. It follows that

Rt ∼ N( a
1−ρ

, σε

1−ρ2 ) ∼ N(µ,σ2). The expected gross P&L for a “straddle”

signal based on a lookback T is:

70



(2.2.2) E(PLt,T ) = 2
µ

σ
Φ(

µd1√
1+σ2

d1

)− µ

σ
+2φ

σd1√
1+σd1

f (
µd1√

1+σ2
d1

)

where µd1,σd1and φ are functions of µ,σ2,ρ and T , Φ stands for the

standard normal c.d.f and f for the standard normal p.d.f.

In case ρ = 0 (B-S assumption), it follows that E(PLt,T )=
µ

σ
(2Φ(µ

σ

√
T√
2
)−

1).

Similarly, if µ = 0,we obtain that E(PLt,T ) =
2ρ(1−ρT )√

2π

√
2T (1−ρ)−2ρ(1−ρT )

In 2.2.1, we show the profile of the gross P&L for various lookbacks

and Sharpe ratios of the underlying asset for the case ρ = 0. It is obvious

the P&L of the trend-following strategy based on our proposed signal has

the typical straddle P&L payoff. Both positive and negative drift (positive

and negative values of µ) can produce positive profit. Besides, we shows

analytically the profitability of the strategy is linked to the Sharpe ratio of

the underlying asset (µ/σ ). We can also notice the convexity exists in the

strategy. Especially, when the lookback period is relatively large and the

Sharpe ratio of the asset is sizable, the Sharpe ratio of the trend-following

strategy exceeds the underlying’s. This is desirable when the Sharpe ratio

of the underlying is sizably negative. A subtle implication of this result is

that if the Sharpe ratio of an asset is stable and below 1, an investor might

be better off holding the asset rather pursuing a trend-following strategy.
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FIGURE 2.2.1. Sharpe ratio of the trend-following strategy
v.s. the Sharpe ratio of the underlying (ρ = 0)

In 2.2.2 and 2.2.3, we plot the Sharpe ratio of the trend-following strat-

egy for various positive and negative values of the autocorrelation when

there is no drift (µ = 0). As expected, positive autocorrelation leads to

profits for the trendfollowing strategy and vice versa. Besides, there are

two important conclusions from the results.

First, the impact of autocorrelation is more pronounced for the profits

produced by the signals based on short-term lookback periods. The P&L

of the signals based on longer-term lookback periods is expected to be im-

mune to the impact of autocorrelation. Hence, the signals based on the

longer-term lookback periods will tend to be pure trend-following play for

reasonable values of the autoregressive coefficients. For sufficently large T

and realistic values of ρ it follows
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E(PLt+1,T )=
2ρ(1−ρT )√

2π
√

2T (1−ρ)−2ρ(1−ρT )
∼ 2ρ√

2π
√

2T (1−ρ)−2ρ
∼ 0

Second, even small values of autocorrelation can lead to a substantial

positive or negative P&L when signals are based on short-term lookback

periods. For example, when the autocorrelation coefficient is 0.1 a trend-

following strategy based on a lookback period of 4 days is expected to pro-

duce a Sharpe ratio above 0.8.

FIGURE 2.2.2. TF Sharpe Ratio v.s. Positive Autocorrela-
tion for the underlying AR(1)

2.2.2.2. Transaction Costs. To implement every systematic strategy, it

is important to have a good understanding of the transaction costs of the

strategy. There are two types of transaction costs: running and execution.

The running costs are the cost to maintain the position which is linked to

the size of the position. The execution costs are the bid-ask spread cost in

our case which is linked to the change in the position.
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FIGURE 2.2.3. TF Sharpe Ratio v.s. Negative Autocorrela-
tion for the underlying AR(1)

PROPOSITION 2. Under the assumption that the underlying assets re-

turns follows an AR(1) and denote the unit running cost as RC, the expected

running costs of the strategy based on a lookback of T are:

(2.2.3) E(RUt,T ) = (2Φ(µd1/
√

σ2
d1
+1)+2Φ(−µd1/σd1)

−4BvN(µd1/
√

σ2
d1
+1,−µd1/σd1;corr =−σd1/

√
σ2

d1
+1))RC/σ

where BvN(U,W;ρ) stands for the c.d.f of the standard bivariate normal

distribution with correlation ρ evaluated at U and W. µd1,σd1and φ are

functions of µ ,σ2,ρ and T . Φ stands for the standard normal c.d.f.

Under assumption that µ = 0 and ρ = 0 (i.e. Gaussian noise), it follows

that
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(2.2.4) E(RUt,T ) =−2
asin(− 1√

2
)

π

RC
σ

=
1
2
· RC

σ

All other things equal, the running costs are an increasing function of

the ratio between the unit running cost and the volatility. In the case when

returns are a Gaussian white noise, the running costs are equal to half of

that ratio. Furthermore, the graph below show expected annualized running

costs as a percentage of employed capital4. The running costs are increasing

with the lookback period and the absolute value of the Sharpe Ratio of the

underlying. Such results are intuitive as higher in magnitude Sharpe ratios

generated more significant signals and positions. For the same Sharpe ratio,

the signals based on the longer-term periods are more significant than the

signals based on the shorter-term periods. In general, the magnitude of the

running costs is small and rarely exceeds the underlying asset’s running

cost.

In the case of pure autoregressive (no drift), the running costs have a

flat structure across various lookback periods and autocorrelation coeffi-

cients. Note that the coeffient in the bivariate normal distribution corr =

−σd1/
√

σ2
d1
+1 is decreasing in ρ and T when ρ > 0 and increasing in ρ

and T when ρ < 0. Therefore, the running costs are increasing in ρ and

T when ρ > 0 and decreasing in ρ and T when ρ < 0. Given the P&L

4We assume that we target 10% annualized volatility and hence the employed capital is
10×annualized volatility
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FIGURE 2.2.4. Annualized Expected Running Costs

arguments discussed before, the estimated running cost structure supports

focusing on shorter term lookback periods when the strategies are designed

to benefit from the autocorrelation properties.

FIGURE 2.2.5. Annualized running costs as a % of capital
for positive autocorrelation

2.2.2.3. Execution Cost.
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FIGURE 2.2.6. Annualized running costs as a % of capital
for negative autocorrelation

PROPOSITION 3. Under the assumption that the underlying asset re-

turns follow an AR(1) and denote the unit execution cost as EC, the expected

execution costs for a signal based on a lookback of T are:

E(XCt,T ) = 4 · (Φ(
−µd1√
σ2

d1
+1

)(2.2.5)

−BvN(
−µd1√
σ2

d1
+1

,
−µd1√
σ2

d1
+1

;corr = 1−
(1−ρT

T )

1+σ2
d1

))
EC
σ

where BvN(U,W;ρ) stands for the c.d.f. of the standard bivariate normal

distribution with correlation ρ evaluated at U and W. µd1,σd1and φ are

functions of µ,σ2,ρ and T. Φ stands for the standard normal c.d.f.

Under the simplified assumptions that µ = 0 and ρ = 0, it follows that
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(2.2.6) E(XCt,T ) =
2EC
πσ

acos(1− 1
2T

)

Similarly to running costs, the ratio between the unit execution cost and

volatility is important. Under the assumption that returns are a Gaussian

noise, the execution costs are a decreasing function of the lookback period.

When there is no autocorrelation, the execution costs are also decreasing

with the lookback period. The impact of the Sharpe ratio of the underlying

is more pronounced for longer-term lookback periods, and the execution

costs decrease with the absolute value of the Sharpe ratio.

FIGURE 2.2.7. Annualized Expected Execution Costs

In the case of pure autoregressive (no drift), the execution costs are

dependent on the lookback period. The longer lookback periods produce
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smaller execution fees. The execution costs are decreasing in ρ when ρ > 0

and increasing in ρ when ρ < 0. The impact of the autocorrelation is much

more muted in comparison to the period.

FIGURE 2.2.8. Annualized Expected Execution Costs

FIGURE 2.2.9. Annualized Expected Execution Costs
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2.2.2.4. Net P&L. Knowing the the expected P&L and transaction costs,

we can derive the net P&L. We start by assuming the autocorrelation coef-

ficient is zero.

FIGURE 2.2.10. TF Sharpe ratio v.s. Sharpe ratio of the
underlying (ρ = 0)

In 2.2.10 we plot the Sharpe ratio based on the net P&L of the trend-

following strategy for various lookback periods. We use the transaction cost

structure of S&P and assume daily volatility of 1%. It is evident that signals

based on short-term lookbacks can only be profitable if the asset’s Sharpe

ratio is quite sizable in either direction. For example, for a signal based on

2 days we need a Sharpe ratio above 2 and below -2 to assure the strategy’s

profitability. For a signal based on 32 days, the Sharpe ratio should be above

1 or below -1. Even a signal based on a 1 year lookback period requires the

Sharpe ratio’s absolute value to be bigger than 0.5 so that profitability is

assured.
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While such threshold seems quite high, at first sight, the table below

shows that empirically such absolute values of the Sharpe ratios are normal.

It is evident that, empirically, the Sharpe ratios’ absolute values have suf-

ficient magnitude to render the trend-following strategy profitable. Hence,

the persistence of the underlying assets’ Sharpe ratio is very important for

the profitability of the trend-following strategy using the proposed signal.

Besides, the trends should last a sufficiently long time so that the signals

can capture them.

TABLE 1. Average absolute value of the Sharpe ratio over
various timeframes

Asset Class Data Size (in Days)
4 8 16 32 64 126 252 504

Equities 8.4 5.3 3.2 2.2 1.7 1.3 0.8 0.7
FX 8.6 5.1 3.1 2.4 1.6 1.1 0.7 0.7

Commodities 8.3 5.5 3.1 2.2 1.7 1.2 0.6 0.5
Rates 8.2 5.4 3.3 2.1 1.4 1.5 1.1 0.8

Furthermore, we expect the Sharpe ratio of the trend-following strategy

to be below the asset’s Sharpe ratio’s absolute value. A bigger positive or

negative Sharpe ratio of the underlying and long-term lookback period are

both necessary for the TF Sharpe ratio to exceed the absolute value of the

Sharpe of the underlying asset. For example, we need the Sharpe ratio of

the underlying to be bigger in absolute value than 1.5 so that the trend-

following is more profitable than either holding or shorting the asset.

If the asset’s drift is stable, it is much more profitable and cost-efficient

to use signals based on longer lookback periods. For example, if we expect

equities to have a positive drift due to the equity risk premia, it is preferable
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to use signals with longer lookback periods. The shorter term lookback

periods becomes attractive in two scenarios. Firstly, the duration of the

trend might be smaller than a long lookback period. For example, if the

trend changes direction every 3 months, using a signal based on a 6 months

lookback periods will be useless. Secondly, during market sell-offs, signals

based on shorter lookback periods are more reactive.

FIGURE 2.2.11. TF Sharpe ratio after accounting for trans-
action costs v.s. positive autocorrelation

2.2.12 and 2.2.11 shows that when we apply signals based on the short-

term lookback, positive autocorrelations leads profitability even after ac-

counting for costs. But negative autocorrelation of the same magnitude can

lead to two times higher losses when quicker signals are employed. The

profitability of signals based on long term periods remains relatively im-

mune to the autocorrelation. The Sharpe ratio of the P&L generated by a

signal based on a 1 year lookback is 0.06 when the autocorrelation is 0.1

and −0.13 when autocorrelation is −0.1.
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FIGURE 2.2.12. TF Sharpe ratio after accounting for trans-
action costs v.s. negative autocorrelation

Below we have shown the average autocorrelation coefficients through

time for various asset classes and the average value across all asset classes.

While most of the autocorrelation values were positive at the beginning

of our sample, they have gradually turned negative. The autocorrelation

dynamics is important for the profitability of the strategy using the short-

term lookback period.

2.2.2.5. Lookback period selection. In empirical work, the selection of

the size of the lookback window is always tricky. On the one hand, a long

lookback window is needed to produce reliable estimates. On the other

hand, too long a window may not be reactive to recent market development.

The selection of the lookback window size is documented in a host of

literature. The selection is often based on backtested performance. On one

hand, a single window size is selected. [133] document that 12-month hori-

zon generates the largest Sharpe ratio for trend-following strategies across
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FIGURE 2.2.13. Average autocorrelation coefficient per as-
set class

FIGURE 2.2.14. Average autocorrelation coefficient across
all asset classes

each asset class. [72] uses the past 12-month cumulative raw return on the

asset skipping the most recent month’s return. [68] also focused on the 12

month time-series momentum strategy with a 1 month holding period. [66]

make use of a 5 month lookback period.
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On the other hand, several lookback periods are combined to achieve

diversification. [67] use an equally weighted combination of 1-month, 3-

month and 12-month time series momentum strategies. [64] construct an

aggregated signal based on 3 EWMA Crossovers.

In the following, we discuss the optimal way to select the lookback pe-

riods by explicitly considering the properties of the signal. The correlation

between the P&L generated by signals based on various lookback periods

is implemented in our analysis. The relevant derivations can be found in the

Appendix.

PROPOSITION 4. The correlation between the P&L produced by our

proposed signals based on lookback periods T1 and T2 (T1 < T2) is given by

the formula below:

(2.2.7) ρ = 6 ·asin(0.5 ·
√

T1

T2
)/π

The main caveat of the result is that it is the ratio between the lookback

periods T1
T2

is important rather than their difference (T1−T2). For example,

if we plug in T2
T1

= 2 then ρ = 0.69.

In ?? and ?? we show theoretical and empirical correlations for selected

lookback periods. Though the theoretical correlation is derived under the
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simplified assumption, the difference between the theoretical and the em-

pirical values are small enough to neglect. The biggest average absolute

difference is at 0.04.

We can estimate Equal Risk Contribution (ERC) weights based on the

correlation matrix. The optimal weights are pretty close to equal, meaning

that averaging the signals is close to an optimal solution.

TABLE 2. ERC weights

Period 1 2 4 8 16 32 64 126 252 504
Weight 0.120 0.103 0.095 0.092 0.090 0.090 0.092 0.095 0.103 0.120

2.3. Application: A Robust Trend-Following Prototype

2.3.1. Data and Transaction Costs. We collect liquid futures across

equities, currencies, commodities, and fixed income to backtest our trend-

following prototype. More details are documented in Appendix B. We al-

locate equally across the asset classes at the beginning and replace such

allocation with risk budgeting allocation in the next section. Furthermore,

every asset receives a risk weight that reflects its liquidity relative to the rest

of the assets in the same asset class. For futures, we use the daily volumes

from the relevant exchanges to measure the liquidity, while for currencies,

we use the Bank for International Settlements transactions volume data.

As a robustness check, we also analyzed the performance of alternative

datasets. We did not find substantial performance differences, so we do not

present the alternative dataset results. The first alternative dataset shares

the same asset universe, but the weights are equally distributed among the
86



same asset class assets. The second alternative dataset has a larger data

universe, and the weights are also based on liquidity within the same asset

class. More details can be found in the subsequent sections.

We assume a conservative cost structure. The table in Appendix outlines

the average execution and running costs per asset class in various periods.

We assume the transaction costs were on average four times higher than the

current levels and 1.5 times higher between 1993-2002. These adjustments

are in accordance to [62]. 5.

2.3.2. Trend-Following Prototype. We apply the derived theoretical

correlation of the signals with different lookback periods in the previous

section and design our benchmark prototype to use a signal that averages

our proposed signals with lookback periods of 32 days, 64 days, 126 days,

252 days and 504 days. The implications of the earlier results justify the

equally weighting scheme among signals with different lookback periods is

optimal.

We employ standard portfolio and risk management techniques in our

benchmark prototype. Every asset’s position is proportional to the signal

and the risk weight and inversely proportional to its volatility. 6. The port-

folio is dynamically risk-managed on an expanding window basis. We also

5The transaction costs are 6 times higher at the beginning and gradually decrease to 2 times
higher at the end of 1992. From 1993 to 2003 the transaction costs gradually decrease from
2 times higher to the current levels.
6The smoothing parameter used is 0.94 (half-life of approx. 11 days).
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target the annualized volatility of 10% for our portfolio for leveraging pur-

poses.

We also apply a floor on the adjustment of the position. If the absolute

value of the position’s adjustment is below the floor, the position will not

be adjusted. The floor corresponds to a change in the signal of 0.25. Such

a transaction cost mitigating approach has become a standard cost manage-

ment technique. Later in the chapter, we demonstrate the results for various

values of the floor parameter.

2.3.3. Backtest Performance. 3 shows the cumulative performance of

the benchmark prototype in various asset classes and the combined portfo-

lio. Commodities have historically had the most appealing trend-following

track-record (which the CTA industry originated). Equities have historically

been the most challenging for the trend-following.

TABLE 3. Performance Statistics by Asset Class

Commodities Equities Rates FX Combination
Annualized Return 6.82% 3.39% 6.23% 5.74% 9.27%

Annualized Volatility 9.47% 9.73% 9.39% 8.77% 9.04%
Sharpe 0.72 0.35 0.66 0.65 1.03

Max Drawdown -20.93% -23.45% -21.38% -16.37% -13.60%

4 shows there exist substantial diversification benefits due to the very

low average correlation between the trend-following strategies in different

asset classes. 3 demonstrates that the Sharpe ratio of the combined portfolio

is more than 40% greater than the Sharpe ratio of the best performing asset

class – commodities. The combined portfolio’s drawdown is also well-

controlled and stands at less than 1.5 times the annualized volatility.
88



TABLE 4. Correlation Matrix among the P&L in various as-
set classes

Equities FX Commodities Rates
Equities 1.00

FX 0.06 1.00
Commodities 0.03 0.15 1.00

Rates 0.09 0.11 0.04 1.00

We have already discussed the diversification benefits among the vari-

ous lookback periods within our theoretical framework. 5 shows the back-

test results are in line with our theoretical framework. Although the com-

bined portfolio does not substantially improve the Sharpe ratio compared

with the best performing lookback period (1 year), the drawdown is im-

proved by more than 5%. The empirical results also follow theoretical

results suggesting that longer-term lookback periods can do better as the

Sharpe ratio’s threshold value ensures profitability is lower and the over-

all expected transaction costs are lower. The additional pre-requisite for

appealing performance is to have sufficient stability in the trends to be cap-

tured by the signals based on longer-term lookback windows.

TABLE 5. Performance Statistics for Signlas Based on vari-
ous Lookback periods

32 days 64 days 126 days 252 days 504 days Combined
Annualized Return 4.67% 5.55% 6.70% 8.87% 7.28% 9.27%

Annualized Volatility 9.23% 9.23% 9.28% 9.18% 9.15% 9.04%
Sharpe 0.51 0.60 0.72 0.97 0.80 1.03

Max Drawdown -26.67% -23.80% -17.77% -19.05% -22.10% -13.60%

6 shows the strategy would have returned 85bp per month on average.

It is interesting to note the positive skewness of the strategy. While the
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worst monthly return has been -6.38%, the maximum return would have

been 9.63%. Literature often discuss one of the main merits of the trend-

following strategies is the positive skewness. It is known that many typi-

cal risk-premia strategies have negative skewnes such as the short volatility

strategies and carry strategies. [66] documents a strong relationship be-

tween the negative skewness of the risk-premia strategies and the expected

return. Since trend-following exhibits both positive expected return and

positive skewness, Leperiere consider the trend-following strategy is a mar-

ket anomaly rather than a risk-premia strategy. [60] analyzed the skewness

of various non-linear strategies. They argue that even when there are no-

trends, the trend-following’s cumulated return over a certain period also

exhibits skewness. They also show that the skewness peaks at a certain

period. 2.3.1 shows our strategy’s skewness over various periods and we

can indeed notice such a result. However, the transaction costs and nega-

tive autocorrelation can lead to negative skewness over very short periods

in reality.

TABLE 6. Performance statistics for the monthly strategy returns

Average
Monthly
Return

Volatility
of the

Monthly
Return

Min Max Skewness Kurtosis

0.85% 2.88% -6.38% 9.63% 0.33 3.34
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FIGURE 2.3.1. Skewness of the Net Return

2.3.2 shows our benchmark strategy also manages to capture most parts

of the returns of the big trend-following funds as represented by the NEIX-

CTAT Index7. We simulated the performance of our strategy under various

fee assumptions.

The first assumption is a fee structure of 1.5% management fee and 15%

performance fee on average. We impose the typical 2 and 20 fee structure at

the beginning of the period and adjust it to 1 and 10 fee structure following

industry trend on fees. The second assumption is a fee structure of 50bp

flat management fee and no performance fee. The correlation between our

benchmark strategy with different fee structures and the NEIXCTAT Index

is very high, over 0.8. 7 shows our benchmark strategy has a more signif-

icant Sharpe ratio even in the aggressive fee scenario and better-controlled

drawdown.

7The NEIXCTAT Index is designed to track the 10 largest (by AUM) trend following CTAs.
The index is equally weighted, and rebalanced and reconstituted annually.
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FIGURE 2.3.2. Compounded Performance of our Bench-
mark Strategy v.s. NEIXCTAT Index

TABLE 7. Comparative Performance Statistics

Benchmark
1.5 and 15

Fee Structure

Benchmark
50bp

Management
Fee

NEIXCTAT Index

Annualized Return 6.56% 8.61% 4.48%
Annualized Volatility 9.32% 9.43% 9.32%

Sharpe 0.70 0.91 0.48
Max Drawdown -12.26% -11.86% -15.64%

As a robustness check, we have also checked the Z-score signal and the

binary signal. 8 shows our signal outperforms, but all the signals share sim-

ilar characteristics. The average correlation between the three approaches is

0.97. [59] argues many commonly used trend-following signals are equiva-

lent once the lookback periods as appropriately adjusted. As we discussed

earlier, having a robust signal from a theoretical point of view is important,

but the choice (or combined) of the lookback windows is not less important.
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FIGURE 2.3.3. Cumulative Performance of Various trend-
following Signals

TABLE 8. Performance statistics for various signals

Z-Score
Signal

Binary Signal Delta Straddle
Signal

Annualized
Return

8.16% 8.25% 9.27%

Annualized
Volatility

8.98% 9.12% 9.04%

Sharpe 0.91 0.9 1.03
Max

Drawdown
-14.00% -17.70% -13.60%

2.3.4. Trend-following strategies Diversify Long-only Portfolio. In

addition to the attractive feature of positive skewness, trend-following strate-

gies can also add substantial diversification benefits for the long-only port-

folios. As we discussed, the trend-following strategies exhibit convexity so

that its return can more than compensate the loss of the underlying when

the sell-off is sizable enough. We observe CTAs substantially outperformed

in the GFC. It is well-known that the magnitude of the sell-offs is typically

sizable. Hence, the trend-following strategies become appealing to hedge

the long-only portfolio.
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To verify the hypothesis empirically, we construct portfolios that long

positions in the underlying from our asset universe. The portfolios all have

an annualized volatility of 10% target and use the same weights scheme as

our benchmark strategy. We also construct combined portfolios that invest

50% in the long-only portfolio and 50% in our benchmark strategy. 9 and

10 show the diversification benefits are evident in all asset classes except for

fixed income. The market’s directionality has led to much overlap between

our trend-following positions and those of the long-only portfolio in fixed

income.

TABLE 9. Performance Statistics for Fixed income and Equities

Fixed Income Equities
Trend-

Following
Long-
Only

Combo Trend-
Following

Long-
Only

Combo

Return 6.23% 7.23% 6.78% 3.39% 4.20% 3.86%
Vol 9.39% 9.60% 8.47% 9.73% 9.82% 7.56%

Sharpe 0.66 0.75 0.80 0.35 0.43 0.51
Max DD -21.38% -31.34% -22.52% -23.45% -42.90% -14.44%

TABLE 10. Performance Statistics for Commodities and FX

Commodities FX
Trend-

Following
Long-
Only

Combo Trend-
Following

Long-
Only

Combo

Return 6.82% 3.47% 5.14% 5.74% 1.66% 3.70%
Vol 9.47% 10.08% 7.71% 8.77% 9.32% 6.92%

Sharpe 0.72 0.34 0.67 0.65 0.18 0.53
Max DD -20.93% -40.62% -17.55% -16.37% -53.88% -22.29%

2.3.4 and 11 show the diversification benefits stand out too when we

have the multi-asset portfolios. The Sharpe ratio of the combined portfolio

is greater than the trend-following and the drawdown is decreased by more

than 60%.
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FIGURE 2.3.4. Cumulative Returns of Long-only, Trend-
following, and Combo

TABLE 11. Performance Statistics of All Asset Classes Portfolio

All Asset Classes
Trend-Following Long-Only Combo

Annualized Return 9.27% 7.86% 8.61%
Annualized Volatility 9.04% 9.22% 7.31%

Sharpe 1.03 0.85 1.18
Max DD -13.60% -29.15% -11.20%

2.4. Portfolio Management of The Trend-Following Portfolio

2.4.1. Risk Budgeting. So far, we have been constructing portfolios

without considering the correlations among assets. The allocation scheme

in our benchmark portfolio – allocating proportionally to the signal-to-vol

ratio would have been optimal if the underlying assets were perfectly corre-

lated [58]. Next, we aim additionally to incorporate the correlation structure

in our trend-following portfolio.

An asset’s risk contribution is set to be proportional to the absolute value

of the signal and the risk weight. In the optimization procedure, we also

constrain that we have long positions in the assets with positive signals and
95



short positions in the assets with the negative signals. [57] shows such an

optimization problem is well-defined and has a unique solution. A similar

approach has been adopted by [56] but the paper does not consider signals

of different scales, and asset-wise risk weights.

Similarly to the benchmark case, the portfolio volatility is also targeted

to be on average 10%. Note that the portfolio’s volatility can be below or

above the targeted value depending on the signals’ strengths at a certain

point in time. 8We estimate the covariance matrix with the last 252 days

and the forecasted volatilities.

One of the potential dangers with the risk-budgeting allocation scheme

is when short-positions are allowed the scheme may take too much leverage.

It is well known that there is much uncertainty in the estimation of the

covariance matrix. It is often possible that the two assets’ signals are in

opposite directions when the assets’ returns are positively correlated or vice

versa. A potential estimation error in the covariance matrix can lead to

excessive leverage due to an ill-envisaged offset in such situations.

To mitigate the potential danger, we introduce an additional parameter

that limits the size of the offset allowed by the risk budgeting approach.

When the signals’ direction does not match what the correlation coefficient

8The annualized portfolio volatility =

(10%×
n

∑
t=1

abs(Sit)×RiskWeighti)

×t/(
t

∑
s=1

n

∑
i=1

abs(Sis)×RiskWeighti)

, where Sis stands for signal for asset i and time s.
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implies, we compare the absolute value of the correlation coefficient to a

cap parameter. If the absolute value is above the cap, we set the correlation

to the cap parameter and adjust for the original sign of the correlation.

TABLE 12. Performance Statistics of Various Correlation
Floor Parameter

RB, No
Corr Cap

RB, Corr
Cap 0.5

RB, Corr
Cap 0.25

RB, Corr
Cap 0.001

Benchmark
Vol

Targeting
Annualized

Return
7.66% 9.30% 10.03% 9.76% 9.27%

Annualized
Volatility

10.24% 8.07% 9.28% 9.83% 9.04%

Sharpe 0.75 1.15 1.08 0.99 1.03
Maximum
Drawdown

-29.2% -14.3% -21.6% -23.3% -13.60%

12 shows that the optimal choice lies between the extreme values. No

cap setup leads to excessive leverage when the signal predictions turn wrong,

and extreme capping might reduce the underlying assets diversification ben-

efits.

We note that the performance of the risk budgeting approach depends

on a mixture of factors. From a portfolio management point of view, the

risk could be more efficiently distributed if the correlation of the assets

differ significantly. The assets that have lower correlations to others will

receive higher allocations in comparison to our benchmark case. Therefore,

to some extent, the performance will depend on the assets’ trend-following

performance with low correlations.

2.4.2. Costs Control Exploration.
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Reduce Turnover Costs. As discussed, our benchmark prototype imple-

ments a simple mechanism to control the turnover costs. In simple terms, a

trade is executed only when its size is sufficiently large. At every point in

time, the change of the position, which is proportional to the ratio of the sig-

nal and volatility, should be greater than the ratio of cap parameter relative

volatility.

13 shows the results for various values of the floor parameter (up to

a maximum value of 0.25). We observe that even such a simple rule can

improve performance with higher floor parameter values typically produces

a better Sharpe. We select the value of 0.25 as it improves the Sharpe ratio

by around 10% and argues that values beyond 0.25 will affect the system’s

agility.

TABLE 13. Performance Statistics for Various Cap Parameter

Cap=0.25 Cap=0.2 Floor=0.15 Floor=0.1 Floor=0.05 No Floor
Annualized

Return
9.27% 9.11% 8.92% 9.12% 8.56% 8.32%

Annualized
Volatility

9.04% 9.07% 9.06% 9.07% 9.05% 9.04%

Sharpe 1.03 1.00 0.99 1.01 0.95 0.92
Maximum

Draw-
down

-13.60% -13.45% -14.17% -13.54% -14.00% -14.22%

Limiting Costs When No Trend. From the expected transaction costs we

derived in the previous section, we conclude that costs play a much more

significant role when the trend-following strategies are based on short-term

lookback periods. 14 empirical illustrates those results.
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Assuming there is no cost, the performance of our benchmark strategy

has just been marginally improved. In contrast, the Sharpe ratio of a trend-

following strategy with signals based 4, 8, and 16 days of lookbacks moves

from positive to negative after the costs are considered. Our objective in

this subsection is to control the impact of costs while the signals based on

short-term lookback periods are implemented when volatility spikes.

TABLE 14. Performance Statistics for the Trend-following
Strategy With Costs

Trend-
Following No

Costs
(32-504d)

Trend-
Following
With Costs
(32-504d)

Trend-
Following No

Costs
(4,8,16d)

Trend-
Following
With Costs
(4,8,16d)

Annualized
Return

11.00% 9.27% 7.85% -3.26%

Annualized
Volatility

9.10% 9.04% 9.08% 9.06%

Sharpe 1.21 1.03 0.86 -0.36
Maximum
Drawdown

-11.60% -13.60% -28.53% -89.17%

We already discussed in the theoretical part that the most challenging

environment for the trend-following strategy is the lack of trends. The prob-

lem becomes even more acute if volatility is low and the signals are based

on the short-term lookback periods. Below we have plotted the expected

transaction costs per year for various asset classes using the volatility for

the whole sample and the volatility in 2017.9. We observe that the signals

based on the short-term periods can lead to excessive losses in the absence

of trends. The losses have been accentuated with the drop in volatility in

9Targeting annualized volatility on the invested period is 10%.
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2017. In terms of costs, FX and Equities are observed to be the most expen-

sive asset classes due to the low volatility in 2017.

FIGURE 2.4.1. Expected Transaction Costs for Equities in
the Absence of Trends

FIGURE 2.4.2. Expected Transaction Costs for Fixed In-
come in the Absence of Trends
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FIGURE 2.4.3. Expected Transaction Costs for FX in the
Absence of Trends

FIGURE 2.4.4. Expected Transaction Costs for Commodi-
ties in the Absence of Trends

Based on our theoretical framework, we aim to limit the downside in

the case of trendless. We add the signals based on lookback periods of 4, 8,

and 16 days to our benchmark strategy’s signal. Subsequently, we impose a

cap on the costs under the assumption that the market is trendless. In such a
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way, a signal will be excluded if the costs calculated for this signal exceed

the cap. The rest of the signals are aggregated for positioning decisions.

We empirically investigate the cap from 1% to 3%, and we have con-

sidered the performance from 1985 as well as from 2003 due to different

transaction costs in a different era.

2.4.5 shows that the trend-following strategies that include short-term

lookback periods with caps underperform the benchmark strategy since

1985. As we have substantially increased the transaction costs, the cap

can often switch off some signals. In general, the cap approach comes at a

cost. It limits the losses in trendless markets, but potential profits will not

materialize if the markets turn out to be strongly trending.

FIGURE 2.4.5. Cumulative Returns since 1985

2.4.6 shows that the trend-following strategies that employ short-term

lookback periods with the cap approach can produce a performance similar
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FIGURE 2.4.6. Cumulative Returns since 2003

TABLE 15. Performance Statistics for Various Caps with
short-term Signal

Since 1985 Since 2003
Cap=1%
(4-504d)

Cap=2%
(4-504d)

Cap=3%
(4-504d)

Prototype Cap=1%
(4-504d)

Cap=2%
(4-504d)

Cap=3%
(4-504d)

Prototype

Annualized
Return

5.00% 6.27% 7.50% 9.27% 6.64% 6.23% 5.40% 7.12%

Annualized
Volatil-

ity

8.37% 8.58% 8.74% 9.04% 9.04% 8.99% 8.96% 9.34%

Sharpe 0.60 0.73 0.86 1.03 0.73 0.69 0.60 0.76
Maximum

Draw-
down

-21.04% -17.64% -17.33% -13.60% -10.71% -14.08% -15.44% -11.85%

to the benchmark strategy. The 1% cap strategy even has a smaller draw-

down (even after accounting for costs).15

Such a result is quite appealing as employing signals based on a wide

range of lookback periods leads to better diversification and a swifter reac-

tion by the trend-following strategy at inflection points.

Carry Consideration for Short Position. Often the trend-following strate-

gies benefit from the carry present in the underlying futures or FX forwards.

For example, the fixed income trend-following strategies have benefited
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substantially from keeping a long futures position and profiting on slide in

the yield curve. Similarly in FX many of the high-yielding currencies have

tended to appreciate. While trendfollowing in high carry assets on the long

side is to some extent straightforward, having a short position in high carry

assets might is challenging as the trend-following gain might not offset the

loss due to negative carry. For example, the potential reversal in the bullish

fixed income trend might pose challenges in front the trend-following sys-

tems.

Our framework is well-suited to take into account carry within trend-

following. It can consider the carry as an additional component in the ex-

pected P&L calculation and hence link the strength of the signal, the current

trend and the size of the carry within a unified framework.

2.4.7 compares the strategy with the carry to the benchmark strategy.

We observe that the average correlation is 0.13, which needs to be investi-

gated.

TABLE 16. Performance Characteristics in FX with and
without carry considerations

TF with carry consideration Standard Solution
Return 4.47% 5.64%

Vol 8.76% 9.31%
Sharpe 0.51 0.61

Max DD -20.25% -20.28%

2.5. Conclusion

In this chapter, we proposed a trend-following signal based on statis-

tical theory and analytically analyzed factors that have an impact on the
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FIGURE 2.4.7. Cumulative Returns for FX TF strategies
with and without carry

performance of the trend-following strategy. Our theoretical model is able

to justify the empirically observed performance characteristics of the trend-

following funds, such as the so-called "CTA smile" and the convexity. We

argue that the underlying assets’ Sharpe ratio is critical for the profitabil-

ity of the trend-following strategy. Higher underlying assets’ Sharp ratio

leads to better return due to the bigger convexity. Furthermore, we take into

account the time series properties of the underlying assets and show the

autocorrelation is important for the profitability of the strategy with signals

based on shorter lookback periods. The transaction costs’ theoretical results

imply that the costs increase with the bid-ask spread and decrease with the

volatility and the lookback periods. Besides, we derived the correlation be-

tween the performance of the signals with different lookback periods and

demonstrated the conditions that guarantee the optimality of the approach
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that averaging the signals among different lookback periods. Leveraging

the theoretical results, we proposed a benchmark trend-following frame-

work and backtested its performance. The benchmark strategy is compared

to the trend-following index, NEIXCTA Index, under various fee structure

assumptions, and correlation is above 80%. We also discussed the diver-

sification and hedging benefits of our trend-following benchmark strategy

with respect to the long-only portfolio. The benchmark framework allo-

cates capital proportional to the strength of the signal relative to its volatil-

ity. We consider the correlation between different assets by applying the

risk budget portfolio allocation scheme to our framework. The backtests

results show the risk budget approach could enhance our benchmark strat-

egy’s performance. To make our signal more reactive at the inflection points

in a cost-efficient way, we discussed methods to control the costs using a

signal based on short-term lookback periods. Last but not least, we showed

that our model could incorporate the carry effect, and the impact of the

negative carry is discussed.

2.6. Future Research

Firstly, our model assumes the underlying assets’ return follows an AR(1)

process. It is interesting to explore the model results if we assume the under-

lying assets’ return follows a more general ARMA(p,q) process. Secondly,

the momentum effect in academics often refers to cross-sectional momen-

tum. The well-known Famma French Carhart four-factor model adds the
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cross-sectional momentum to Fama French three-factor model. Since our

benchmark strategy, which allows short, is diversified across assets and the

lookback periods. It is interesting to understand the relationship between

the time series momentum and cross-sectional momentum and their con-

tribution to our benchmark strategy. For example, we could decompose

our benchmark strategy’s excess return to time series momentum effect and

cross-sectional momentum effect. Furthermore, we could also further de-

compose the time series momentum into predictability of the futures’ price

and the rolling yield from the shape of the future curve. Finally, it is inter-

esting to explore the links between the excess return of a trend-following

strategy and different types of investors, such as speculators and hedgers.

CFTC records the positions of commercial and non-commercial traders. It

could be used to explore such a link.
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CHAPTER 3

Markov Modulated Bilateral Gamma Mean Reversion

Process

3.1. Introduction

A widely cited cliché of the financial market is that market rides an

escalator up and takes an elevator down. Such references may be found on

the web, and we cite two examples [31]. Such remarks suggests the assets’

prices rise and fall assymmetrically. They invite non-diffusive modeling of

asset returns.

There is extensive literature on such non-diffusive models, and we may

cite [20, 21, 22, 23, 24, 25, 26, 27] as examples. Many of these models

incorporate an exponential tilt to the arrival rate of the jumps that allowing

for higher arrival rates for negative relative to positive moves of the same

size. Such approach is used to differentiate up and down moves. However,

even when there is infinite jumps, the aggregate arrival on the two sides is

comparably modeled. An exception to such a formulation is the bilateral

gamma model of [27].

There are a series of properties making the Bilateral gamma processes

very interesting. Bilateral Gamma distributions are self-decomposable, sta-

ble under convolution, and have simple cumulant generating function and
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characteristic function. The associated Lévy processes are finite-variation

processes making infinitely many jumps at each interval with positive length,

and all their increments are Bilateral gamma distributed. In particular, one

can easily simulate the trajectories of the Bilateral gamma processes. An

extension of this model was studied risk neutrally in [28]. It was observed

that the risk-neutral markets rose with a greater frequency of smaller jumps,

but on the downside, the jumps were fewer and larger.

Besides, there exists other empirical regularities such as volatility clus-

tering and aggregational Gaussianity 1. These regularities imply that a suit-

able model for the asset returns must be able to capture the time variation in

volatility as well as in other higher moments. In particular, the term struc-

ture of volatility and other higher moments imply the model must also allow

for time-inhomogeneity. This is important for the derivative pricing and the

risk management such as the measurement of value-at-risk.

Bilateral gamma processes and other Lévy processes are time homo-

geneous. [34] shows that the theoretical behavior of the term structure of

their moments does not match empirical observations. For example, the

variance theoretically increases with a factor t, skewness decreases with

a factor
√

t, and kurtosis decreases with a factor t. However, the empiri-

cally observed moments do not exhibit patterns that are even close to these

1Volatility clustering is the observed tendency of high volatility periods to be followed
by more high volatility periods, while aggregational Gaussianity is the observation that at
short time scales, the distribution of returns is highly non-normal with fat tails, while at
longer time scales the distribution tends to look more and more normal.
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theoretical results. In order to allow for time-inhomogeneity, there has de-

veloped an interest in markov modulated processes. [29]look at a two states

switching process where the underlying processes are geometric Brownian

motions. [34] consider a two-state Markov chain where the underlying state

processes are VG processes. [34] suggest that more than two states are sup-

posed to be considered. However, the mathematical approach used in their

paper cannot be easily leveraged for more than two states.

In this chapter we extend the work of [34] to more than two states. We

propose the N-state Markov modulated Mean Reversion Bilateral gamma

process. The statistics switch between drift and compensator pairs. We

generalize the underlying process to any pure jump process with triplet

(µ,0,ν). There are several advantages of the model we proposed. The first

is that our model allows for any number of switching states without adding

complexity to the model. The underlying Bilateral gamma processes allow

asymmetries on the up and down moves, and the closed-form representation

is more concise and transparent.

The outline of the rest of the chapter is as follows. Section 3.2 intro-

duces the definition and properties of the Lévy processes. Section 3.3 intro-

duces the Bilateral distribution, Bilateral gamma processes and their proper-

ties. Section 3.4 proposed the Markov modulated Mean Reversion Bilateral

gamma model. The characteristic function is derived. Section 3.5 provides

the estimation of the parameters using a single time series data. We defer
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more rigorous econometric analysis of the estimation to later studies. Sec-

tion 3.6 proposes several potential applications using the model. We defer

more rigorous analysis of the trading implications to later studies.

3.2. Lévy Process and Properties

3.2.1. Definition. Lévy processes play an important role in many fields

of science, such as in engineering, for study of networks, queues and dams;

in economics, for continuous time-series models; and in mathematical fi-

nance to price the different sorts of derivative securities. The most famous

continuous time model is the Black-Scholes model, which assumes the log

return of the underlying asset is normally distributed. Empirically, praction-

ers and academia all found the log returns of most financial assets do not

follow a Normal law. They are skewed and have an actual kurtosis higher

than that of the Normal distibution. So we need more flexible distributions

which generalized Brownian motion.

DEFINITION 5. (Brownian Motion). A stochastic process B = {B(t)}

is a standard Brownian motion on some probability space (Ω,F ,P) if:

(i): B(0) = 0 a.s.

(ii): B has independent increments, i.e. B(t)−B(s) is independent of

Fs, for any 0≤ s < t ≤T

(iii): B has stationary increments, i.e. for any s, t≥ 0 the distribution of

B(t + s)−B(t) doesn’t dependent on t

(iiii): For every t > 0, B has a Normal(0,t) distribution
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Looking at the Brownian motion, we would like to have a similar pro-

cess, based on a more general distribution than the Normal. However, to de-

fine such a stochastic process with independent and stationary increments,

the distribution has to be infinitely divisible. Such processes are called Lévy

processes, in honour of Paul Lévy, the pioneer of the theory.

DEFINITION 6. (Lévy Process). A càdlàg, adapted, real valued stochas-

tic process L = {L(t)t≥0} with L(0) = 0, a.s. is called a Lévy process if the

following conditions are satisfied:

(i): L has independent increments, i.e. L(t)−L(s) is independent of Fs

(ii): L has stationary increments, i.e. for any s, t ≥ 0 the distribution of

L(t + s)−L(t) does not depend on t

(iii): L is stochastically continuous, i.e. for every t ≥ 0 and ε > 0:

lims→tP(|L(t)−L(s)|> ε) = 0

The simplest Lévy process is the linear drift, a deterministic process.

Brownian motion is the only (non-deterministic) Lévy process with contin-

uous sample paths. Other examples of Lévy processes are the Poisson and

compound Poisson processes. Notice that the sum of a linear drift, a Brow-

nian motion and a compound Poisson process is again a Lévy process; it is

often called a jump-diffusion process.

3.2.2. Infinitely Divisible Distribution and the Lévy-Khintchine for-

mula. Let X be a real valued random variable, denotes its characteristic

function by ϕX and its law by PX , hence ϕX(u) =
�
R eiuxPX(dx).
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DEFINITION 7. The law PX of a random variable X is infinitely divisi-

ble, if for all n ∈ Nthere exists i.i.d. random variable X (1/n)
1 , ...,X (1/n)

n such

that

(3.2.1) X = X (1/n)
1 + ...+X (1/n)

n

Alternatively, we can characterize an infinitely divisible random vari-

able using its characteristic function. The law of a random variable X is

infinitely divisible, if for all n ∈ N,there exisits a random variable X1/n,

such that

(3.2.2) ϕX(u) = (ϕX1/n(u))n

The next theorem provides a complete characterization of random vari-

ables with infinitely divisible distributions via their characteristic functions;

this is the celebrated Lévy-Khintchine formula.

THEOREM 8. The law PX of a random variable X is infinitely divisible

if and only if there exists a triplet (µ,c,ν), with µ∈R,c∈R+and a measure

satisfying ν({0}) = 0 and
�
R(1∧|x|

2)ν(dx)< ∞, such taht

(3.2.3) E[eiuX ] = exp
[

iµu− u2c
2

+

�
R
(eiux−1− iux1|x|<1)ν(dx)

]
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Every Lévy process can be associated with the law of an infinitely di-

visible distribution.

THEOREM 9. For every Lévy process L = (Lt)0≤t≤T , we have that

E[eiuLt ] = etψ(u)(3.2.4)

= exp
[

t(iµu− u2c
2

+

�
R
(eiux−1− iux1|x|<1)ν(dx))

]

where ψ(u) is the characteristic exponent of L1, a random variable with

an infinitely divisible distribution.

3.2.3. Analysis of jumps and Poisson random measures. The jump

process ∆L = (∆Lt) associated to the Lévy process L is defined, for each

0≤ t ≤ T , via

∆Lt = Lt−Lt−

where Lt− = lims↑tLs.

A convenient tool for analyzing the jumps of a Lévy process is the ran-

dom measure of jumps of the process. Consider a set A∈B(R\{0}). Define

the random measure of the jumps of the process L by
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µ
L(ω; t,A) = #{s ∈ [0, t] : ∆Ls(ω) ∈ A}](3.2.5)

= ∑
s≤t

1A(∆Ls(ω))

hence, the measure µL(ω; t,A) counts the jumps of the process L of size

in A up to time t. The measure has stationary and independent increments,

so µL(·,A) is a Poisson process and µL is a Poisson random measure. The

intensity of this Poisson process is ν(A) = E[µL(1,A)].

DEFINITION 10. The measure ν defined by

ν(A) = E[µL(1,A)] = E[∑
s≤1

1A(∆Ls(ω))]

is the Lévy measure of the Lévy process L.

Now, we can define an integral with respect to the Poisson random mea-

sure.

THEOREM 11. Consider a set A ∈B(R\{0}) and a function f:R→ R,

Borel measurable and finite on A.

A. The process
� t

0

�
A f (x)µL(ds,dx)0≤t≤T is a compound Poisson pro-

cess with characteristic function

(3.2.6) E[exp(iu
� t

0

�
A

f (x)µL(ds,dx))] = exp(t
�

A
(eiu f (x)−1)ν(dx))
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B. If f∈ L1(A), then

(3.2.7) E[
� t

0

�
A

f (x)µL(ds,dx)] = t
�

A
f (x)ν(dx)

3.2.4. The Lévy-Ito Decomposition.

THEOREM 12. Consider a triplet (µ,c,ν) where µ∈ R,c∈ R+and a

measure satisfying ν({0}) = 0 and
�
R(1 ∧ |x|

2)ν(dx) < ∞. Then, there

exists a probability space (Ω,F ,P) on which four independent Lévy pro-

cesses exist, L(1),L(2),L(3) and L(4), where L(1) is a constant drift, L(2) is a

Brownian motion, L(3) is a compound Poisson process and L(4) is a square

integrable (pure jump) martingale with an a.s. countable number of jumps

of magnitude less than 1 on each finite time interval. Taking L = L(1) +

L(2)+L(3)+L(4), we have that there exists a probability space on which a

Lévy process L with characteristic exponent

(3.2.8) ψ(u) = iµu− u2c
2

+

�
R
(eiux−1− iux1|x|<1)ν(dx)

as follows

(3.2.9)

Lt = µt +
√

cWt +

� t

0

�
|x|≥1

xµ
L(dx,ds)+

� t

0

�
|x|<1

x(µL−ν
L)(ds,dx)
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where νL(dx,ds) = ν(dx)ds.

PROPOSITION 13. Let L be a Lévy process with triplet (µ,c,ν).

A. If ν(R)< ∞, then almost all paths of L have a finite number of jumps

on every compact interval. In that case, the Lévy process has finite activity.

B. If ν(R) = ∞, then almost all paths of L have an infinite number of

jumps on every compact interval. In that case, the Lévy process has infinite

activity.

Whether a Lévy process has finite variation or not also depends on the

Lévy measure (and on the presence or absence of a Brownian part).

PROPOSITION 14. Let L be a Lévy process with triplet (µ,c,ν).

A. If c = 0 and
�
|x|≤1 |x|ν(dx)< ∞, then almost all paths of L have finite

variation.

B. If c 6= 0 or
�
|x|≤1 |x|ν(dx) = ∞, then almost all paths of L have infinite

variation.

If the Lévy process has finite variation, the characteristic exponent is

(3.2.10) ψ(u) = iµu+
� � +∞

−∞

(exp(iux)−1)ν(dx,ds)
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Basically, the sum of all jumps smaller than some ε > 0 doesn’t con-

verge. However, the sum of jumps compensated by their mean does con-

verge. This peculiarity leads to the necessity of the compensator term

iux1|x|<1.

3.2.5. Examples of Lévy Process.

EXAMPLE 15. The Compound Poisson Process

Suppose N = Nt , t ≥ 0 is Poisson process with intensity λ > 0 and that

Zi is an i.i.d. sequence of random variables independent of N and following

a law L, with characteristic function φX(u). Then we could say that

(3.2.11) Xt =
Nt

∑
k=1

Zi, t ≥ 0

is a compound Poisson process. The value of the process at time t, is the

sum of Nt random numbers with law L. The ordinary Poisson process is the

case where Ziwith the law L degenerate at the point 1.

We could write the distribution function of the law L as:

(3.2.12) P(Zi ∈ A) =
ν(A)

λ

where ν(R) = λ < ∞. Then the characteristic function of Xt is given by
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(3.2.13) E[exp(iuXt)] = exp(t
� +∞

−∞

(eiux−1)ν(dx))

= exp(tλ (φZ(u)−1))

From this we can easily obtain the Lévy triplet:

(3.2.14)
[� +1

−1
xν(dx),0,ν(dx)

]

Next, we look at the Gamma process

EXAMPLE 16. The Gamma process

The density function of the Gamma distribution Γ(α,λ ) with parame-

ters α > 0 and λ > 0 is given by

(3.2.15) fGamma(x;α,λ ) =
λ α

Γ(α)
xα−1exp(−xλ ), x > 0

The density function clearly has a semi-heavy (right) tail. The charac-

teristic function is given by

(3.2.16) φGamma(u;α,λ ) = (1− iu/λ )−α
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Clearly, this characteristic function is infinitely divisable. The Gamma

process

(3.2.17) XGamma
t = {XGamma

t , t ≥ 0}

with parameters α,λ > 0 is defined as the stochastic process which

starts at zero and has stationary and i.i.d. Gamma distributed increments.

More precisely, time enters in the first parameter: XGamma
t follows a Gamma(αt,λ )

distribution.

The Lévy triplet of the Gamma process is given by

(3.2.18) [α(1− e−λ )/λ ,0,αe−λxx−11x>0dx]

The properties of the Gamma(α,λ ) could be derived from the character-

istic function. E(X)= α

λ
,Var(X)= α

λ 2 , Skewness(X)= 2α−1/2, Kurtosis(X)=

3(1+2α−1). Note that we also have the following scaling property. If X is

Gamma(α,λ ), then for c> 0,cX is Gamma(α,λ/c). In addition, the sum of

two independent gamma process is also a gamma process: XGamma
1 (t;α1,λ )+

XGamma
2 (t;α2,λ )∼ X(t;α1 +α2,λ ). The gamma process could also be pa-

rameterized in terms of the mean µ =α/λ and variance ν =α/λ 2 of the in-

crease per unit time, which is equivalent to α = µ2/ν and λ = µ/ν . In this
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parametrization, cX is Gamma(cµ,c2ν) and X1(t; µ1,ν) + X2(t; µ2,ν) ∼

X(t; µ1 +µ2,ν +ν).

Next, we look at the CGMY Process

EXAMPLE 17. The CGMY Process

The CGMY distribution and the associated Lévy process was intro-

duced by [50] to model to logreturns of financial assets. We introduce the

four parameter distribution using the notation in [50].

The CGMY distribution with C, G, M and Y is defined through its cu-

mulant function:

(3.2.19) ψCGMY (u) =CΓ(−Y )[(M− iu)Y +(G+ iu)Y −GY ]

CGMY distribution is infinitely divisible and therefore a Lévy process

L(t), where L(1) is CGMY distributed, can be constructed. The Lévy mea-

sure for this process is absolutely continuous with respect to the Lebesgue

measure

(3.2.20) νCGMY (d j) =


C| j|−1−Y exp(−G| j|)d j, j < 0

C| j|−1−Y exp(−M| j|)d j, j > 0
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Here, Y < 2 in order to have a Lévy measure which integrates | j|2

around zero.

From the cumulant function, we could obtain the moment generating

function φ(u) = ψ(−iu):

(3.2.21) φ(u) =CΓ(−Y )[(M−u)Y +(G+u)Y −GY ]

The characteristic function

(3.2.22)

ϕCGMY (u;C,G,M,Y ) = exp(CΓ(−Y )((M− iu)Y −MY +(G+ iu)Y −GY ))

The CGMY distribution is infinitely divisible and we can define the

CGMY Lévy process X (CGMY )=X (CGMY )
t , t ≥ 0, as the process which starts

at zero and has independent and stationary distributed increments and in

which the increment s follows a CGMY (sC,G,M,Y ) distribution; in other

words, the characteristic function of XCGMY
t is given by

E[eiuXCGMY
t ] = φCGMY (u; tC,G,M,Y )

= (φ(u;C,G,M,Y ))t

= exp(CΓ(−Y )((M− iu)Y −MY +(G+ iu)Y −GY ))(3.2.23)
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The first parameter of the Lévy triplet:

(3.2.24) µCGMY =C
(� 1

0
e−Mxx−Y dx−

� 0

−1
eGx|x|−Y dx

)

The range of the parameters are restricted to C,G,M > 0 and Y < 2.

Choosing the Y parameters greater than or equal to 2 does not yield a valide

Lévy measure.

3.3. Bilateral Gamma Distribution and Process

3.3.1. Bilateral Gamma Distribution. A Bilateral gamma distribu-

tion [49] with parameters αp,λp,αn,λn > 0 is defined as the distribution

of Y −Z, where Y and Z are independent gamma variables with shape and

rate parameters, Y ∼ Γ(αp,λp) and Z ∼ Γ(αn,λn). For α,λ > 0 we denote

by Γ(α,λ ) a Gamma distribution, i.e. the absolutely continuous probability

distribution with density

f (x) =
λ α

Γ(α)
xα−1e−λx1{x>0}(x), x ∈ R

with the characteristic function

(3.3.1) ϕ(u) =
(

λ

λ − iu

)α
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The characteristic function of a bilateral Gamma distribution Γ(αp,λp,αn,λn)

is given by

(3.3.2) ϕ(u) = (
λp

λp− iu
)αp(

λn

λn + iu
)αn, u ∈ R

LEMMA 18. (1) Suppose X ∼Γ(α1,p,λp,α1,n,λn) and Y ∼Γ(α2,p,λp,α2,n,λn),

and that X and Y are independent. Then X +Y ∼ Γ(α1,p +α2,p,λp,α1,n +

α2,n,λn).

(2) For X ∼ Γ(αp,λp,αn,λn) and c > 0 it holds cX ∼ Γ(αp,
λp
c ,αn,

λn
c )

As it is seen from 3.3.2, bilateral Gamma distribution is infinitely divis-

ible. The Lévy measure is given by

(3.3.3) ν(dx) =
(

αp

x
e−λpx1(0,∞)(x)+

αn

x
e−λnx1(−∞,0)(x)

)
dx

Thus, we can also express the characteristic function ϕ as

(3.3.4) ϕ(u) = exp
(�

R
(eiux−1)k(x)dx

)
u ∈ R

where k : R→ Ris the function
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(3.3.5) k(x) = αp
e−λpx

x
1(0,∞)(x)+αn

e−λn|x|

|x|
1(−∞,0)(x), x ∈ R

The bilateral Gamma distributions are selfdecomposable. It moreover

holds

�
|x|>1

eux
ν(dx)< ∞ f or all z ∈ (−λn,λp)

Consequently, the cumulant generating function

(3.3.6) Ψ(u) = lnE[euX ]

exists on (−λn,λp), and Ψ and Ψ′ are, with regard to 3.3.2, given by

(3.3.7) Ψ(u) = αpln(
λp

λp−u
)+αnln(

λn

λn +u
), u ∈ (−λn,λp)

(3.3.8) Ψ
′(u) =

αp

λp−u
− αn

λn +u
, u ∈ (−λn,λp)

Hence, the n-th order cumulant is gien by
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(3.3.9) kn = (n−1)!
(

αp

(λp)n +(−1)n αn

(λn)n

)
, n ∈ N={1,2, ...}

Then, we can specify

E[X ] = κ1 =
αp

λp
− αn

λn
,

Var[X ] = κ2 =
αp

(λp)2 +
αn

(λn)2 ,

γ1(X) = κ3/κ
3/2
2 = 2(

αp

(λp)3 −
αn

(λn)3 )/(
αp

(λp)2 +
αn

(λn)2 )
3/2

γ2(X) = 3+κ4/κ
2
2 = 3+6(

αp

(λp)4 +
αn

(λn)4 )/(
αp

(λp)2 +
αn

(λn)2 )
2

3.3.2. Statistics of Bilateral Gamma Distribution. Let X1, ...,Xn be

an i.i.d. sequence of Γ(Θ)-distributed random variables, where Θ=(αp,αn,λp,λn),

and let x1, ...,xn be a realization. We start with the method of moments and

estimate the k-th moments mk = E[Xk
1 ] for k = 1, ...,4 as

(3.3.10) m̂k =
1
n

n

∑
i=1

xk
i

By [47], the following relations between the moments and the cumu-

lants are valid:
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(3.3.11)



k1 = m1

k2 = m2−m2
1

k3 = m3−3m1m2 +2m3
1

k4 = m4−4m3m1−3m2
2 +12m2m2

1−6m4
1

We can solve the system of equations explicitly. In general, if we avoid

the trivila case, it has finite many, but more than one solution. However, in

practice, the restriction αp,αn,λp,λn > 0 ensures uniqueness of the solu-

tion. This procedure yields a vector Θ̂0 as first estimation for the parame-

ters. In order to perform a maximum likelihood estimation, we need ade-

quate representations of their density functions. Since the densities satisfy

the symmetry relation

(3.3.12) f (x;αp,λp,αn,λn) = f (−x;αn,λn,αp,λp) x ∈ R\{0}

We only analyze the density function on the positive real line

(3.3.13)

f (x) =
λ

αp
p λ αn

n

(λp +λn)αnΓ(αp)Γ(αn)
e−λpx

�
∞

0
vαn−1(x+

v
λp +λn

)αp−1e−vdv

127



We can express the density f by means of the Whittaker function Wλ ,µ(z),

which is a well-studied mathematical function. According to [46], the Whit-

taker function has the representation

Wλ ,µ(z) =
zλ e−z/2

Γ(µ−λ +0.5)

�
∞

0
tµ−λ−0.5e−t(1+

t
z
)µ+λ−0.5dt(3.3.14)

f or µ−λ >−0.5

We obtain for x > 0

f (x) =
λ

αp
p λ αn

n

(λp +λn)0.5(αn+αp)Γ(αp)
x

1
2 (αp+αn)−1e−

x
2 (λp−λn)(3.3.15)

×W1
2 (αp−αn),

1
2 (αp+αn−1)(x(λp +λn))

The logarithm of the likelihood function for Θ = (αp,αn,λp,λn) is, by

the symmetry relation and the representation of the density, given by

lnL(Θ) =−n+ln(Γ(αp))−n−ln(Γ(αn))

+n(αpln(λp)+αnln(λn)−
αp +αn

2
ln(λp +λn)(3.3.16)

+(
αp +αn

2
−1)(

n

∑
i=1

ln|xi|)−
λp−λn

2
(

n

∑
i=1

xi)

+
n

∑
i=1

ln(W1
2 sgn(xi)(αp−αn),

1
2 (αp+αn−1)(|xi|(λp +λn))
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where n+denotes the number of positive, and n− the number of negative

observations. We could take the vector Θ̂0, obtained from the method of

moments, as starting point of an algorithm which maximize the logarithmic

likelihood function numerically.

3.3.3. Bilateral Gamma Processes. Bilateral Gamma distributions are

infinitely divisible. The Lévy measure ν(R) = ∞ and
�

R |x|ν(dx) < ∞.

Hence, the Bilateral Gamma processes are finite-variation processes mak-

ing infinitely many jumps at each interval with positive length, and they are

equal to the sum of their jumps

(3.3.17) Xt = ∑
s≤t

∆Xs =

� t

0

�
R

xµ
X(dx,ds), t ≥ 0

where µX denotes the random measure of jumps of X . Bilateral Gamma

processes are special semimartingales with canonical decomposition

(3.3.18) Xt = x∗ (µX − v)t +(
αp

λp
− αn

λn
)t, t ≥ 0

where v is the compensator of µX , which is given by v(dt,dx)= dtk(dx).

(3.3.19) k(x) =
(

αp

x
e−λpx1(0,∞)(x)+

αn

|x|
e−λn|x|1(−∞,0)(x)

)
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We could see that all increments of X have a bilateral gamma distribu-

tion, more precisely

(3.3.20) Xt−Xs ∼ Γ(αp(t− s),λp;αn(t− s),λn) 06 s < t

3.4. Markov Modulated Bilateral Gamma Process with Mean

Reversion

3.4.1. Pure Jump. Consider a real-valued pure jump process L= {Lt , t ≥

0} defined on a probability space (Ω,σ ,P). We can write the process

Lt = L0 + ∑
0≤s≤t

(Ls−Ls−)

So if µLis the random measure which gives the random jump time and

random jump size x = Ls−Ls−, then we can write Lt

Lt = L0 +

� t

0

�
R

xµ
L(dx,ds)

The statistical properties are determined by its compensator. We sup-

pose the Lévy measure ν(dx,ds) = k(x)dxds where k(x) that accounces the

arrival rate of jumps of size x. Then, under P, we have the local martingale

Mt with respect to the filteration generated by X .

Mt = L0 +

� t

0

�
R

x(µL(dx,ds)− k(x)dxds)
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We note that the compensator is unique and must be predictable with

respect to the filtration generated by L. Also, for the pure jump processes

with finite variation and independent and homogeneous increments, then its

characteristic function is uniquely given by the Khintchine theorem in terms

of the drift µ and the Lévy density k(x)

E[eiuLt ] = exp[iuµt + t
�
R
(eiux−1)k(x)dx]

We could easily extend the process X to include a diffusion component.

However, [30] demonstrates that this is unnecessary if we allow for infinite

jump activity by specifying that
�
R k(x)dx = ∞.

3.4.2. Bilateral Gamma Mean Reversion Model. In this section, mo-

tivated by the OU process, we propose a model for asset prices with positive

values such as stocks and VIX. The model intends to capture the mean re-

version feature using a mean reversion drift while capture other empirical

regularities using Bilateral gamma process which is a pure jump process

with finite variation. In order to allow for time-inhomogeneity, we intro-

duce an independent Markov process to modulate the drift. We think the

model could be a good choice to capture the empirical stylized regularities

and also we derived a closed form characteristic function of such a model.

Our model for a price process S will be the exponential of a mean reversion

drift and a pure jump process. There are two ways to show the dynamics,
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SDE and Levy exponential Model. We demonstrates the two approaches

below:

3.4.2.1. SDE and the VIX process. We write the dynamic of the asset

prices is the solution of the following SDE:

(3.4.1) dSt = St−(−a(t)dt +dLt)

The process is then the stochastic exponential of a semimartingale. The

relation between the jump x in Lt and those of St is given by the function

(ex−1). 3.4.13shows such a relation. Hence we can define the martingale

m(t) = (ex−1)∗ (µL−ν
L)(3.4.2)

=

� t

0

�
R
(ex−1)(µL(dx,ds)−ν

L(dx,ds))

We know

(3.4.3) ν
L(dx,ds) = k(x,s)dxds

Let the martingale M(t) be the stochastic exponential of m.
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M(t) = ξ (m)t(3.4.4)

= exp(L(t)−
� t

0

�
R
(ex−1)k(x,s)dxds)

= exp(
� t

0

�
R

xµ
L(dx,ds)−

� t

0

�
R
(ex−1)k(x,s)dxds)(3.4.5)

Further define

(3.4.6) θ(t) =
�
R
(ex−1)k(x, t)dx

By results of stochastic exponentials of semimartingales we have that

St = S0exp
(
(

� t

0
θ(s)−a(s))ds

)
M(t)(3.4.7)

= S0eXt

where

(3.4.8) Xt =−a(t)+
� t

0

�
R

xµ
L(ds,dx)

3.4.2.2. Jump process exponential and the VIX process. In this subsec-

tion, we could first define the process Xt :
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Xt =−a(t)+
� t

0

�
R

xµ
L(ds,dx)(3.4.9)

where µL is the random measure and the νL is the Lévy measure of the

pure jump process Lt which is a compensator of the µL and k(x)dx = ν(dx)

is the Lévy density. Hence, the first term is the mean reversion drift and the

second term is the pure jump process. Also, we know the pure jump process

Xt with Lévy triplet (µ,0,ν) can be written

Let St be the asset price and we take S = {St , t ≥ 0} to be the form

(3.4.10) St = S0eXt

We state a version of Ito’s formula directly to the pure jump semimartin-

gales from [32]
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f (Xt) = f (X0)+

� t

0
f ′(Xs−)dXs + ∑

0<s≤t
[ f (Xs)− f (Xs−)− f ′(Xs−)∆Xs]

(3.4.11)

= f (X0)+

� t

0
f ′(Xs−)dXs +

� t

0

�
R
( f (Xs−+ x)− f (Xs−)

(3.4.12)

− f ′(Xs−)x)µL(ds,dx)

= f (X0)+

� t

0
(−as) f ′(Xs)ds

+

� t

0

�
R
( f (Xs−+ x)− f (Xs−))µ

L(dx,ds)

Let f (Xt) = S0eYt , it gives

St = S0 +

� t

0
(−as)Ssds+

� t

0
Ss−

�
R
(ex−1)µL(dx,ds)(3.4.13)

It shows that the asset price is changed by a factor of ex when a jump

x occurs. It ensures the asset price always stay positive. The ex− 1 term

ensures the existence of the integral
�
R(e

x−1)k(x)dx. We decide the rewrite

the model into a different parameteric form. Define
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θ(t) =
�
R
(ex−1)νL(dx,ds)(3.4.14)

=

�
R
(ex−1)k(x, t)dx

=

�
R
(ex−1)k(x, t)dx

We can rewrite the St as

(3.4.15)

St = S0+

� t

0
Ss(θ(s)−a(s))ds+

� t

0
Ss−

�
R
(ex−1)(µL(dx,ds)−k(x)dxds)

Recall that (ex−1)∗ (µL−νL) is a martingale, define

(3.4.16) Mt =

� t

0

�
R
(ex−1)(µL(dx,ds)− k(x)dxds))

The dynamics of the St becomes

(3.4.17) St = S0 +

� t

0
(θ(s)−a(s))ds+Mt

Therefore, we can also write Xt as
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(3.4.18) Xt = (θt−at)t +
� t

0

�
R

xµ
L(dx,ds)−

� t

0

�
R
(ex−1)k(x)dxds

3.4.3. Characteristic functions. In order to derive the characteristic

function of the Markov modulated process, we derive the characteristic

function of Xt with Lévy density kBG(x). Apply the differentiation rule

we discussed in the last section to the function f (X) = eiuXt . It gives

eiuXt = eiuX0 + iu
� t

0
(−a)eiuXsds(3.4.19)

+

� t

0

�
R

eiuXs−(eiux−1)µL(dx,ds)

= eiuX0 + iu
� t

0
(−as)eiuXsds

+

� t

0

�
R

eiuXs−(eiux−1)(µL(dx,ds)− k(x)dx,ds)

+

� t

0

�
R

eiuXs−(eiux−1)k(x)dxds

The second integral above is a martingale. We take the expected values

ϕXt = E[eiuXt ] = eiuX0 +

� t

0
E(eiuXs)

(
iu(−a)t +

�
R
(eiux−1)k(x)dx

)
ds

(3.4.20)

= exp{iuX0 + iu(−a)t + t
(�

R
(eiux−1)k(x)dx

)
}
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The unit characteristic function is the value when t = 1 and X0 = 0. It

is the Lévy-Khintchine representation of the process Xt . Next, we apply the

bilateral gamma density and it gives:

ϕXBG
1
(u) = exp(iu(−a))ϕBG(u)(3.4.21)

= exp(iu(−a))[(
λp

λp− iu
)αp(

λn

λn + iu
)αn]

Since we are also interested in θ , we find

ϕBG(−i) =
�
R
(ex−1)kBGdx(3.4.22)

= (
λp

λp−1
)αp(

λn

λn +1
)αn

= θ

3.4.4. Markov modulated Mean Reversion Bilateral gamma pro-

cess. The empirical studies indicate that the dynamics of asset prices are

not time-homogenous. In this section, we capture the time-inhomogeneity

by allowing the drift and the compensator measure to switch between a fi-

nite set of drift/measure pairs.

Suppose U = {Ut , t ≥ 0} is a Markov chain, independent of the Bilateral

gamma process (or the genearalized pure jump process), and with a state

space
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{e1,e2,e3, ...,eN}, whereei = (0,0, ...,1,0, ...,0)′ ∈ RN .

Suppose also that the generator, or Q-matrix, of U is Π = {Π ji}, 1 ≤

i, j ≤ N. Π ji represents the rates at which the process U jumps from state i

to state j, that is, the transition rates. Π solves

d pt

dt
= Πpt ,

where pi
t = P(Ut = ei) is the historical probability of being in state i at

time t, and pt = (p1
t , p2

t , ..., pN
t ). Then, from [41], we know that U can be

written as

(3.4.23) Ut =U0 +

� t

0
ΠUsds+Γt ,

where Γ = {Γt , t > 0} is an RN-valued martingale under P with respect

to the filtration generated by U . In the case of Bilateral gamma process, we

suppose for each j there is a drift µ j and Lévy density kBG
j (x) where

(3.4.24) kBG
j (x) =

α
j
p

x
e−λ

j
px1(0,∞)(x)+

α
j

n

|x|
e−λ

j
n |x|1(−∞,0)(x)

Using < ·, · > denote the innter product operator, we can write the

kBG(dx,ds,U) as
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(3.4.25) kBG(dx,ds,U) =
N

∑
j=1

<Us−,e j > kBG
j (x)dxds

and with a = (a1,a2, ...,aN) ∈ RN , the drift at time s is <Us,a >. Then,

St = S0eXt(3.4.26)

= S0exp
{
−
� t

0
<Us,a > ds+

� t

0

�
R

xµ
L(dx,ds)

}

Then, we have that

(3.4.27)

eiuXt = 1+ iu
�
−<Us,a > eiuXsds+

� t

0

�
R

eiuXs−(eiuX −1)µL(dx,ds)

Note that unlike [34] that we only consider one jump process and it is

the drift and the compensator that depends on the state of the Markov chain

U .

Write the {FU } for the filteration generated by U , and for 0 ≤ s ≤ t,

we define

(3.4.28) λ (u,U,s) = E
[
eiuXs|FU

t
]
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Now, the U is independent of X , so conditioning on FU
t and we have

for fixed t that

λ (u,U, t) = 1+ iu
� t

0
−<Us,a > λ (u,U,s)ds(3.4.29)

+
N

∑
j=1

� t

0

�
R
<Us,e j > (eiux−1)λ (u,U,s)k j(x)dxds

Write H j
t =

� t
0 < Us,e j > ds for the amount of time the process U has

spent in state j up to time t. Also, write

(3.4.30) φ j(u) = iu(−a j)+

� +∞

−∞

(eiux−1)k j(x)dx

for the unit log-characteristic function. In the case of Bilateral gamma

process, we have

(3.4.31) φ j(u) = iu(−a j)+α
j
plog(

λ
j
p

λ
j
p− iu

)+α
j

n log(
λ

j
n

λ
j

n + iu
)

Then, noting that <Us,−a >= ∑
N
j=1 <Us−,e j > (−a j), we obtain

(3.4.32) λ (u,U, t) = exp
(
H1

t φ1(u)+H2
t φ2(u)+ ...+HN

t φN(u)
)

The characteristic function of the process Xt is therefore
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(3.4.33)

ϕXt (u) = E
[
eiuXt

]
= E [λ (u,U, t)] = ΦH(t)(φ1(u),φ2(u), ...,φN(u))

where

ΦH(t)(λ ) = ΦH(t)(λ
1,λ 2, ...,λ N)(3.4.34)

= E
[
exp(λ 1H1

t +λ
2H2

t + ...+λ
NHN

t
]

is the Laplace transform of Ht = (H1
t ,H

2
t , ...,H

N
t ).

We still need to obtain the closed form expression for ΦH(t)(λ ). The

proposition below gives a closed form solution.

PROPOSITION 19. For the N-state Markov switching model, the Laplace

transform of the occupation time Ht is given by

ΦH(t)(λ ) = E [exp(< λ ,Ht >)] =< exp{(Π+diag(λ ))t}E[U0], 1̄ >

where 1̄ ∈ RN is a vector of ones and Π is the Q-matrix of the Markove

chain U.

PROOF. For a vector of transform variabls λ = (λ 1,λ 2, ...,λ N) ∈ RN ,

the Laplace transform of H is
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E [exp(< λ ,Ht >)] = E
[
exp(λ 1H1

t )...exp(λ NHN
t )
]

Define Zt as the random vector process

Zt = exp(< λ ,Ht >)Ut = exp(
� t

0
< λ ,Us > ds)Ut

Then Zt ∈ RNand

dZt =< λ ,Ut > Ztdt + exp(
� t

0
< λ ,Us > ds)dUt

Recall that Ut =U0 +
� t

0 ΠUsds+Γt and so we can substitute to get

dZt =< λ ,Ut > Ztdt +ΠZtdt + exp(
� t

0
< λ ,Us > ds)dΓt

Now < λ ,Ut > Zt = diag(λ )Zt , so

Zt =U0 +

� t

0
(Π+diag(λ ))Zsds+

� t

0
exp(

� s

0
< λ ,Uv > dv)dΓs

The last integral is a martingale, and taking expectations gives

E[Zt ] = E[U0]+

� t

0
(Π+diag(λ ))E[Zs]ds

Solving yields
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E[Zt ] = exp{(Π+diag(λ ))t}E[U0]

Observing that E[exp(< λ ,Ht >)] = E[< exp(< λ ,Ht >)Ut , 1̄ >] and

denoting ΦH(t)(λ ) = E[exp(< λ ,Ht >)], we obtain that

ΦH(t)(λ ) =< E[Zt ], 1̄ >

=< E[exp(< λ ,Ht >)Ut ], 1̄ >

=< exp{(Π+diag(λ ))t}E[U0], 1̄ >

=< E[U0],exp{(Π+diag(λ ))t}, 1̄ >

which is the desired result. �

3.5. Parameter Estimation

This section discusses three potential procedures to estimate the param-

eters using the characteristic function we derived from the last section. To

avoid using the filtering method, we assume the return of VIX is in a station-

ary state. The parameters obtained this way will be the real-world param-

eters, which will be different from the risk-neutral parameters. We do not

intend to determine the optimal number of states and the optimal estimation

methodologies in this section. We defer the risk-neutral model’s calibration

and comprehensive econometric analysis of the estimation methodologies

to a later study.
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3.5.1. Stationary Assumption. We assume the return of VIX is in a

stationary state. This imposes a certain restrictions on the initial probabil-

ities so that the initial probabilities cannot be estimated freely. Denote the

initial probability of being in state i as pi
0 = P(U0 = ei) and p0 = (p1

0, ...p
N
0 ).

Recall that the transition rate matrix solves

d pt

dt
= Πpt

For the process to be stationary, we need

d pt

dt
= 0

This is the case if the initial probability distribution p0satisfies

Πp0 = 0

3.5.2. Maximu Likelihood estimation. The probability density func-

tion of the returns could be derived by inverting the characteristic func-

tion ΦSt (z) using inverse Fourier transform. Assuming the individual state

process is a Bilateral gamma process, a maximum likelihood estimation of

the parameters can be calculated. Since the procedure needs to invert the

characteristic function at every return point, a well-established fast Fourier

transform (FFT) can be implemented on binned sampled returns to reduce

the computational intensity.
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However, it is well known that the MLE may suffer degeneracy prob-

lems, especially for the mixtures of distributions. The singularities on the

likelihood surface caused these problems. In such a case, any numerical

routine to maximize the likelihood function will result in unreliable results.

The EM algorithm or the penalized maximum likelihood has been proposed

to deal with such cases.

3.5.3. Generalized method of moments. The generalized method of

moments exploits the characteristic fucntion directly using empirical char-

acteristic function. Applications of the method can be found in [39, 40, 38].

The characteristic function is defined as

ΦXt (u,θ) = E[eiuXt ]

where θ is a set of parameters of the characteristic funciton.

The empirical characteristic function is defined as

Φ̂N(u) =
1
N

N

∑
j=1

eiuX j

Define a partition grid up = (u1,u2, ...,up) of transform variables, which

is used to form the basis of the moment conditions, and let

h(uk,X j,θ) = eiukX j −ΦXt (uk,θ)

so that E[h(uk,Xk,θ)] = 0. Then, the sample moment is derived as
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hN(uk,θ) = Φ̂N(uk)−ΦXt (uk,θ)

which forms a vector of sample moments hN(uq,θ). θ is found by mini-

mizing the quadratic function hN(uq,θ)′WhN(uq,θ), where W is an optimal

weighting matrix. The matrix is the inverse of the covariance matrix asso-

ciated with the moments. Intuitively, the estimator becomes more efficient

as the number of moments gets larger (the partition grid gets finer). How-

ever, the covariance matrix may become singular and cannot be inverted.

To solve the problem, we can formulate the GMM objective problem as a

minimum norm problem on a new space of moment conditions, a spaced

endowed with the norm

‖ hN ‖2=

�
R

hN(z)h̄N(x)π(z)dz

where h̄N(z) is the complex conjugate of hN .π(z) is a Gaussian proba-

bility density function. [36, 37] provides details of the approach which is

called the C-GMM approach.

3.5.4. Tail Moment Matching. To extend the generalized method of

moments, [35] argued that the use of bounded tail probabilities for moment

matching was more reliable than the use of other possibly unbounded mo-

ments. The latter was less susceptible to the present of outliers that naturally

occur when the data is not known to be coming from the proposed model.
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For three state model, the characteristic function may be used to evalu-

ate model probabilities for tail probabilities

P(X(t)< a < 0), P(0 < a < X(t))

From the data we may construct the empirical observations for i =

1, ...,99

i% = P(X(t)< yi)

The points yi may be interpolated from the empirical distribution func-

tion for the required percentiles. The data may then be split into the two

tails by

i% = P(X(t)< yi < 0)

1− i% = P(0 < yi < X(t))

Model parameters are estimated by least squares matching of observed

tail probabilities to model tail probabilities.

3.5.5. Results. Terms such as high and low volatility regimes are fre-

quently used by investors to describe the market environment. Although the

two-state classification is intuitively appealing, we believe a three regime

approach is more appropriate. For example, there exists effective three
148



regime quantitative strategies applied to VSTOXX in industry. Using the

daily data from 1990 to 2018 for the VIX Index, we use the tail moment

matching estimation to calibrate the three states model. We name these

states low, medium and high volatility states.

As we defined in Section 3.4, there are two drifts in the model. One is

the OU mean reversion drift a and the other is the pure jump drift θ . We

found that the mean reversion drift is increasing from the low vol states to

high vol states. It it intuitive because VIX Index reverse to its mean faster

when it is in the high regime. We calculated the total drift of the process

θ − a. We found VIX has a positive drift in low vol regime and negative

drifts in mid and high vol regimes.

Also, we observed the kurtosis is increasing from low vol states to

high vol states and the model well captured the positive skew in different

regimes. We observe that the cnexceeds cp and bp is greater than bn. It illus-

trates that the positive moves are less frequent and larger while the negative

moves are more frequent and small. Usually we can obeserve in the market

that the VIX index have rare big positive jumps and then the index will drift

down. The cn > cp and bn < bp well capture the asymmetries between up

moves and down moves.

These results are only suggestive however, and as mentioned previously,

we defer a more detailed empirical analysis to a later study.
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REMARK. There are two parameterization which are αp = cp and λp =

1
bp

. Parameters in the bracket refer to the equivalent parameters.

TABLE 1. Estimates on VIX Index 1990-2018

State Low Vol Medium Vol High Vol
a 1.0065 1.0082 1.0267
cp 1.0354 1.3820 0.6720
bp 0.0376 0.0376 0.0702
cn 1.2146 1.9828 0.7843
bn 0.0263 0.0266 0.0458
θ 1.0083 1.0009 1.0216

θ −a 0.0016 -0.0073 -0.0128
p 0.3218 0.3514 0.3268

volatility 0.0479 0.0579 0.0703
skewness 0.5958 0.3724 0.8999
kurtosis 5.9922 4.9998 7.8272

3.6. Trading Strategies

3.6.1. Implications for volatility strategies. The identification of volatil-

ity regimes also has important implications for the performance of volatil-

ity strategies. Short volatility strategies tend to perform well in low and

mid volatility regimes, and poorly in high volatility regimes. Therefore,

we would deem low or mid vol regimes to be normalized environments for

monetizing volatility premium. The sharpe ratio of shorting VIX strategies

is demonstrated below.

TABLE 2. Sharpe ratio of short 1M volatility strategy

Low Vol Mid Vol High Vol
Sharpe Ratio 1.5 0.7 -0.3
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3.6.2. Forcasting future volatility and generating trading strategies.

While the model helps us with understanding and describing the behavior of

VIX Index, it can also be used to forecast future values and lead to directly

actionable trading strategies. By simulation, we could obtain a distribution

of the possible terminal values of VIX at the target expiry. By doing so,

we could forecast the probability distribution rather than a point estimate of

futures VIX values, and obtain a better understanding of the risk/reward.

Overlaying the two probability distributions, we can identify the strikes

where the Index options are under or overvalued relative to historically re-

alized. For instance, the VIX options could be underestimate the density on

the left tail and overestimate on the right tail, i.e. the SPY put options are

underpriced and calls are overpriced.

3.7. Conclusion

Popular clichés about markets refer to markets taking escalators up and

elevators down. Such characterizations suggest that one models the rise of

markets differently from the fall. We present a class of Lévy processes for

modeling such market fluctuations: Bilateral gamma processes. Lévy pro-

cesses are time homogenous. We propose a model for asset prices which

is the exponential of the bilateral gamma process whose statistical behav-

ior is allowed to switch between N states. This is achieved by applying

Markov switching drift/compensator pairs. We also added the OU mean

reversion drift to the model so that the resulting asset price model has the
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potential to capture any empirically observed behavior such as different up

and down moves dynamics, term structures of moments, etc. In addition to

the Bilateral gamma processes, we also generalize it to a pure jump process.

We derived the closed-form expression for the characteristic function and

calibrated the model to the VIX Index, assuming stationary distribution.

3.8. Future Research

Firstly, we derived the characteristic function of the proposed model

in a physical world. In order to calibrate the model to option prices, we

can explore the measure change of the process and derive the characteris-

tic function in risk neutral world in the future. Secondly, we assume the

distribution is stationary in this chapter and calibrate the model to the time

series data. In the future, we can explore to use the filter method, such

as Unscented Kalman Filter, to estimate the model without the stationary

assumption. Finally, we only conceptually discussed the model’s potential

application in trading, especially in the short volatility strategy. In the fu-

ture, we could explore to simulate the model and backtest the strategy we

proposed using real data.
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APPENDIX A

Appendix to Chapter 1

A.1. Simulating P/L

We briefly outline details of our daily trades. In all cases, we ignore

transaction costs.

• For 10-year Treasuries, we long the current issue, financing the

bond in an overnight repo including specials. If a new security is

auctioned during the trade period of either one-week or one-month,

we do not roll to the new bond. The performance is given by the

total return, which consists of the change in the bond’s dirty price,

less total repo cost.

• For 10-year matched maturity swap spreads, we long the most re-

cently auctioned 10-year Treasury and long the asset swap to pay

the fixed on a weighted notional of the swap with maturity matched

to the Treasury. We hold the package (10-year Treasury and the

asset swap) for either one week or one month and compute total

return including carry from the package.

• For 1Mx10Y ATMF swaption straddles, we long the straddle for

either one week or one month without delta hedging. For one week

holding period, we compute the change in the premium. For the
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one month holding period, we compare initial premium to terminal

payoff.
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APPENDIX B

Appendix to Chapter 2

B.1. Data Universe

Bloomberg

Ticker

Name of Asset Risk Weight

Asset

Class

Weight

Equities

GX1 Index DAX Index 2.24%

25%

VG1 Index DJ Euro Stoxx 50 3.53%

Z1 Index FTSE100 Index 1.00%

ES1 Index S&P 500 Index 12.06%

FTJGUSSE

Index

Russell 2000

EMini

0.69%

NQ1 Index Nasdaq 100

E-Mini

1.32%

NI1 Index Nikkei 225 Index 1.08%

TP1 Index OSE Japan Topix

Index

0.88%

KM1 Index KOSPI 200 Index 0.94%

HI1 Index Hang Seng Index 1.26%
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Curr

EURUSDCR

Index

EUR Total

Return

9.46%

25%

GBPUSDCR

Index

GBP Total Return 3.87%

SEKUSDCR

Index

SEK Total Return 0.67%

CADUSDCR

Index

CAD Total

Return

1.54%

JPYUSDCR

Index

JPY Total Return 6.75%

AUDUSDCR

Index

AUD Total

Return

2.07%

NZDUSDCR

Index

NZD Total

Return

0.63%

Comm

CO1 Comdty Brent Crude 4.64%

25%

CL1 Comdty WTI Crude 9.75%

HO1 Comdty Heating Oil 1.06%

XB1 Comdty Gasoline 0.96%

NG1 Comdty Natural Gas 1.77%

GC1 Comdty Gold 2.89%

SI1 Comdty Silver 0.60%

HG1 Comdty Comex Copper 0.65%
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C 1 Comdty Corn 0.60%

S 1 Comdty Soybean 2.09%

Fixed

Income

ED4 Comdty Eurodollar 2.52%

25%

TU1 Comdty US Treasury

Note 2Y

1.38%

FV1 Comdty US Treasury

Note 5Y

2.06%

TY1 Comdty US Treasury

Note 10Y

3.83%

US1 Comdty US Treasury

Long Bond

0.85%

DU1 Comdty Euro Schatz (2y) 1.58%

OE1 Comdty Euro Bobl (5y) 2.96%

OAT1 Comdty French Govt.

Bonds (10y)

0.82%

RX1 Comdty Euro Bund (10y) 5.04%

IK1 Comdty Italian Govt.

Bonds (10y)

0.65%

G 1 Comdty Long Gilt (10y) 0.60%

JB1 Comdty Japanese Gov’t

Bond (10y)

1.47%
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YM1 Comdty Australian Gov’t

Bond (3y)

0.56%

XM1 Comdty Australian Gov’t

Bond (10y)

0.66%
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B.2. Monthly Return Series

FIGURE B.2.1. Monthly Return Series

B.3. Correlation between the P&L of Two Trend-Following Signals

PROOF. Assume that the asset’s return Rt is i.i.d. following normal

distribution N(0,σ2).1 Under such assumptions,

1At first sight the assumption of a Gaussian white noise might seem restrictive. In practice
the returns processes over different timeframes may differ. In extreme cases we can even
have trends in opposite direction. Hence, we consider the assumption a good compromise.
Later we show that it is also a realistic one as the theoretical and empirical correlation
matrices are quite close.
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(B.3.1) d1t,T =
ln( St

St−T
)+σ2T/2

σ
√

T
=

∑
t
s=t−T+1 ln( Ss

Ss−1
)+ σ2T

2

σ
√

T

=
∑

t
s=t−T+1 Rs

σ
√

T
=

√
T ¯Rt,T

σ
∼ N(0,1)

where d1t,T is the Black-Scholes d1 statistics calculated at time t, for an

option maturity T and strike St−T and ¯Rt,T is the average asset return from

t−T + 1 to t. If we consider two lookback periods T1and T2 (T1 < T2), it

follows that the correlation .

(B.3.2) ρ(d1t,T1,d1t,T2) = E[d1t,T1d1t,T2] = E[
∑

t
t−T1+1 Rs

σ
√

T1
·

∑
t
t−T2+1 Rs

σ
√

T2
]

=
T1σ2

σ2
√

T1T2
=

√
T1√
T2

Let St,T denote the trend-following signal at time t based on lookback

period T and PLt+1,T is the P&L at time t+1 based on signal St,T . The posi-

tion is proportional to the signal and inversely proportional to the volatility

and hence PLt+1,T = Rt+1St,T/σ . Furthermore, let Φ denote the c.d.f of the

standard normal distribution.
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(B.3.3)

Var[PLt+1,T ] =E[PL2
t+1,T ] =E[Et [PL2

t+1,T ]] =E[S2
t,T E[R2

t+1]/σ ] =E[S2
t,T ]

= E[(2Φ(d1t,T )−1)2] = 4E[(Φ(d1t,T )
2]−4E[Φ(d1t,T )]+1

If a random variable X ∼ N(0,1), we can show that

E[Φ(X)2] =

+∞�

−∞

(Φ(X)2) f (x)dx = 1/3

Var(PLt+1,T ) =
1
3

It follows that

(B.3.4) ρ(PLt+1,T1,PLt+1,T2) =
E[(2Φ(d1t,T1)−1)(2Φ(d1t,T2)−1)]√

Var(PLt+1,T1)Var(PLt+1,T2)

= 12E(Φ(d1t,T1)Φ(d1t,T2))−3

d1t,T1 and d1t,T2 have a bivariate normal distribution with mean vec-

tor µ1 = [0,0] and covariance matrix Σ1 =

 1
√

T1/T2√
T1/T2 1

. Using

Lemma 1 in [55], we can show that E[Φ(d1t,T1)Φ(d1t,T2)] = P(x < 0,y <
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0) where x and y have a bivariate normal distribution with mean vector

µ2 = [0,0] and covariance matrix Σ2 =

 2
√

T1/T2√
T1/T2 2

.2

We can make use of the properties of the bivariate normal distribution

and further conclude that

(B.3.5) E[Φ(d1t,T1)Φ(d1t,T2)] = P(x < 0,y < 0) = P(
x√
2
< 0,

y√
2
< 0)

=
1
4
+

asin(0.5 ·
√

T1
T2
)

2π

3After simplication, we have

(B.3.6) ρ = 6asin(0.5 ·
√

T1

T2
)/π

.

Note that the correlation is soley dependent on the ratio between the

period T1and T2. If we target particular value of ρ , it follows that T1/T2 =

4(sin(ρπ

6 ))2. The correlations can be considered relatively high. For exam-

ple, for T1
T2

= 0.5 it follows that ρ = 0.69. �

2Alternatively, we can use the conditional distribution of d1t,T2given d1t,T1 integrate out
d1t,T2
3The result can be found in [53] and [54]
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B.4. Expected P&L when the Asset’s Return Follows an AR(1)

Process

PROOF. Assume that Rt = a+ρRt−1 + εt where εt ∼ N(0,σ2
ε ). It fol-

lows that Rt ∼N( a
1−ρ

,
σ2

ε

1−ρ2 )∼N(µ,σ2). We know that PLt+1,T =
Rt+1St,T

σ
=

Rt+1(2Φ(d1t,T )− 1)/σ . Note that in the following it is assumed that the

volatility σ2of the AR(1) process is known quantity. In an AR(1) the esti-

mate of the volatility is asymptotically normal, σ̂2 ∼ N(σ2, 2σ4(1+ρ2)
T (1−ρ2)

) (see

[52]). For financial daily data abs(ρ) is sufficiently small and the sam-

ple size dominates the error of the estimate. For example, if we assume

ρ = 0,the standard error of the estimate will be less than 10% of the true

value when T = 252 days. For the subsequent derivations we need to find

the correlation between Rt+1/σ and d1t,T :

(B.4.1)

Cov(
Rt+1

σ
,d1t,T ) =Cov(

Rt+1

σ
,
∑

t
s=t−T+1 Rs

σ
√

T
) =

∑
t
s=t−T+1Cov(Rt+1Rs)

σ2
√

T

=
1√
T
(ρ +ρ

2 + ...+ρ
T ) =

ρ(1−ρT )√
T (1−ρ)

The derivation of Var(d1t,T ) requires more algebraic operations:
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(B.4.2) Var(d1t,T ) =Var(
∑

t
s=t−T+1 Rs

σ
√

T
) =

1
T
(T +2(T −1)ρ

+2(T −2)ρ2 + ...+2ρ
T−1)

=
T (1−ρ2)−2ρ(1−ρT )

T (1−ρ)2

Hence, the correlation between Rt+1
σ

and d1t,T is

(B.4.3) ρ(
Rt+1

σ
,d1t,T ) =

ρ(1−ρT )√
T (1−ρ2)−2ρ(1−ρT )

Now let’s denote X = Rt+1
σ
∼N(µ/σ ,1) and Y = d1t,T ∼N(µd1t,T ,σ

2
d1t,T

)

with µd1t,T =
√

T µ

σ
and σ2

d1t,T
= Var(d1t,T ). Note that X and Y are jointly

bivariate normal with correlation φ = ρ(1−ρT )√
T (1−ρ2)−2ρ(1−ρT )

. Hence,

X |Y ∼ N(
µ

σ
+

φ(Y −µd1t,T )

σd1t,T

,1−φ
2)

Y |X ∼ N(µd1t,T +σd1t,T φ(X− µ

σ
),(1−φ

2)σ2
d1t,T

)

It follows that
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(B.4.4) E[PLt+1,T ] =

� +∞

−∞

� +∞

−∞

x(2Φ(y)−1) f (x,y)dxdy =

2
� +∞

−∞

Φ(y) f (y)
� +∞

−∞

x f (x|y)dxdy−
� +∞

−∞

x f (x)
� +∞

−∞

f (y|x)dydx

Let X∗ ∼ N(0,1) and Y ∗ ∼ N(0,1). Making use of the conditional dis-

tribution of X |Y and Y |X and formulas 10010.8 and 10011.3 in [51] and

with f denoting the c.d.f. of the standard normal distribution, we obtain:

(B.4.5)

E[PLt+1,T ] = 2
� +∞

−∞

Φ(y) f (y)(
µ

σ
+

φ(y−µd1,T )

σd1,T
)dy−

� +∞

−∞

x f (x)dx =

2(
µ

σ
−φ

µd1,T

σd1,T
)

� +∞

−∞

Φ(σd1,T y∗+µd1,T ) f (y∗)dy∗

+2
φ

σd1,T

� +∞

−∞

Φ(σd1,T y∗+µd1,T ) f (y∗)(σd1,T y∗+µd1,T )dy∗− µ

σ

= 2
µ

σ
Φ(

µd1,T√
1+σ2

d1,T

)− µ

σ
−2φ

σd1,T√
1+σ2

d1,T

f (
µd1,T√

1+σ2
d1,T

)

In case ρ = 0,it follows that

(B.4.6) E[PLt+1,T ] =
µ

σ
(2Φ(

µ

σ

√
T√
2
)−1)

Similarly, if µ = 0,we obtain
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(B.4.7) E[PLt+1,T ] =
2ρ(1−ρT )√

2π
√

2T (1−ρ)−2ρ(1−ρT )

Given that we will be using estimates of parameters of the AR(1) pro-

cess, the uncertainty embedded in the estimates based on shorter periods is

greater. Below we make use the Delta Theorem to approximate the volatil-

ity in our estimate of the expected P&L. For simplicity we will assume that

the uncertainty arises only due to estimate µ̂of the mean µ . 4Let’s assume

that f (µ) = E(PLt+1,T ). In an AR(1) process,
√

T (µ̂ − µ) ∼ N(0,σ2(1+

ρ)/(1−ρ)).5 From the Delta Theorem it follows that
√

T ( f (µ̂)− f (µ))∼

N(0,( f (µ)′)2σ2(1+ρ)/(1−ρ)).

The derivative of the expected P&L with respect to µ can be derived

straightforwardly as:

(B.4.8) ( f (µ)′) =
2
σ
·Φ(

µd1,T√
1+σ2

d1,T

)+2
µ

σ
f (

µd1,T√
1+σ2

d1,T

)

√
T/σ√

1+σ2
d1,T

− 1
σ
−2φ

σd1,T√
1+σ2

d1,T

f (
µd1,T√

1+σ2
d1,T

)
µd1,T

1+σ2
d1,T

√
T

σ

�

4An alternative (at the cost of complexity) is to use the variance-covariance matrix of the
estimates of the autoregressive process (µ̂, ρ̂, σ̂2) that can be obtained from Maximum
Likelihood estimation and apply the Delta theorem accordingly.
5See [52]
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B.5. Expected Transaction Costs when the Asset’s Return is an AR(1)

Process

B.5.1. Expected Running Costs.

PROOF. The running costs are proportional to the absolute nominal

value of the position that we hold every day. If RUt,T denotes the running

costs at time t for a signal based on a lookback of T days and RC stands for

the per unit running cost then RUt,T = Abs(St,T ) ·RC/σ . Subsequently,

E(RUt,T ) = (P(St,T > 0)E(St,T |St,T > 0)+P(St,T < 0)E(−St,T |St,T < 0))

(B.5.1)

· RC
σ

Introducing the standard normal variable Z ∼ N(0,1),we obtain

(B.5.2)

P(St,T > 0)E(St,T |St,T > 0) = P(d1t,T > 0)E(2Φ(d1t,T )−1|d1t,T > 0)

= 2P(d1t,T > 0)E(Φ(d1t,T )|d1t,T > 0)−P(d1t,T > 0)

= 2P(Z < d1t,T ,d1t,T > 0)− (1−Φ(−µd1,T/σd1,T ))

We have shown shown in the previous section that if returns follow an

AR(1) process:
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d1t,T ∼ N(µd1,T ,σ
2
d1,T ) = N(

√
T µ

σ
,
T (1−ρ2)−2ρ(1−ρT )

T (1−ρ)2 )

It follows that

(B.5.3) X = Z−d1t,T ∼ N(−µd1,T ,σ
2
d1,T +1)

(B.5.4) Cov(X ,d1t,T ) =Cov((Z−d1t,T ),d1t,T ) =−Var(d1t,T )

(B.5.5) Correlation−ρ(X ,d1t,T ) =−σd1,T/
√

σ2
d1,T +1

It follows that

(B.5.6)

P(Z < d1t,T ,d1t,T > 0) = P(Z < d1t,T )−P(Z < d1t,T ,d1t,T < 0)

= P(X < 0)−P(X < 0,d1t,T < 0)

=Φ(
µd1,T√

σ2
d1,T +1

)−BvN

 µd1,T√
σ2

d1,T +1
,−

µd1,T

σd1,T
;corr =−

σd1,T√
σ2

d1,T +1
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where BvN(U,W ;ρ) stands for the c.d.f of the standard bivariate normal

distribution with correlation ρ evaluated at W.

Similarly,

(B.5.7)

P(St,T < 0)E(−St,T |St,T < 0)=−P(d1t,T < 0)E(2Φ(d1t,T )−1|d1t,T < 0)

=−2BvN

 µd1,T√
σ2

d1,T +1
,−

µd1,T

σd1,T
;corr =−

σd1,T√
σ2

d1,T +1

+Φ(−
µd1,T

σd1,T
)

Therefore,

E[RUt,T ] =(B.5.8)

(2Φ(
µd1,T√

σ2
d1,T +1

)+2Φ(
−µd1,T

σd1,T
)−

4 ·BvN(
µd1,T√

σ2
d1,T +1

,−
µd1,T

σd1,T
;corr =−

σd1,T√
σ2

d1,T +1
))

−1
RC
σ

Under simplified assumptions that µ = 0 and ρ = 0 (i.e. returns are a

Gaussian noise), it follows that

(B.5.9) E(RUt,T ) =−2
asin(− 1√

2
)

π

RC
σ

=
1
2
· RC

σ
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Note that in this case the expected running costs are independent of the

lookback period. For example, if assume 10bp running fee per year and a

volatility of 10%, the expected running costs are 0.3% per year. �

B.5.2. Expected Execution Costs.

PROOF. The execution costs are linked to the absolute value of the

change in nominal position. If XCt,T denotes the execution costs at time

t for a signal based on a lookback period of T and EC is the per unit execu-

tion cost then XCt,T = Abs(St,T −St−1,T ) · EC
σ

.

Let start by analyzing the case when St,T > St−1,T . We are interested in

the expression below:

(B.5.10) E(St,T −St−1,T |St,T > St−1,T )P(St,T > St−1,T )

= 2E(Φ(d1t,T )−Φ(d1t−1,T )|d1t,T > d1t−1,T )P(d1t,T > d1t−1,T )

= 2P(d1t−1,T < Z < d1t,T ) = 2P(d1t−1,T −Z < 0,d1t,T −Z > 0)

where Z ∼ N(0,1)

Let’s assume that returns follow an AR(1) process, i.e. Rt = a+ρRt−1+

εt where εt ∼ N(0,σ2
ε ). It follows that Rt = N

(
a

1−ρ
,

σ2
ε

1−ρ2

)
∼ N(µ,σ2).

Previously we have shown that
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d1t,T ∼ N(µd1,T ,σ
2
d1,T )∼ N

(√
T µ

σ
,
T (1−ρ2)−2ρ(1−ρT )

T (1−ρ)2

)

Let denote X = d1t,T − Z and Y = d1t−1,T − Z. It follows that X ∼

N(µd1,T ,σ
2
d1,T +1) and Y ∼ N(µd1,T ,σ

2
d1,T +1).

Subsequently,

(B.5.11) Cov(d1t,T ,d1t−1,T ) =Cov
(
(
Rt−Rt−T

σ
√

T
+d1t−1,T ),d1t−1,T

)
=

1
σ
√

T
E(Rtd1t−1,T )−

1
σ
√

T
E(Rt−T d1t−1,T )+σ

2
d1,T

Proceeding further,

(B.5.12)
1

σ
√

T
Cov(Rt ,d1t−1,T ) =

∑
t−1
s=t−T (RtRs)

σ2T

=
(ρ +ρ2 + ...+ρT )σ2 +T µ2

σ2T
=

ρ(1−ρT )

T (1−ρ)
+

µ2

σ2

Similarly,

(B.5.13)
1

σ
√

T
Cov(Rt−T ,d1t−1,T ) =

∑
t−1
s=t−T (Rt−T Rs)

σ2T
+

µ2

σ2

=
(ρ +ρ2 + ...+ρT−1)σ2 +T µ2

σ2T
=

(1−ρT )

T (1−ρ)
+

µ2

σ2
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It follows that

(B.5.14) Cov(d1t,T ,d1t−1,T ) =−
1−ρT

T
+σ

2
d1,T

(B.5.15) Cov(X ,Y ) =Cov(d1t,T ,d1t−1,T )+1

(B.5.16) Corr(X ,Y ) = 1− (
1−ρT

T
)/(σ2

d1,T +1)

We can proceed similarly for the case when the position is decreasing:

(B.5.17)

E(St−1,T −St,T |St,T < St−1,T )P(St,T < St−1,T ) = 2P(X < 0,Y > 0)

Subsequently, making use of the bivariate normal distribution:
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(B.5.18) E(XCt,T ) = 2 · (P(Y < 0,X > 0)+P(X < 0,Y > 0)) · EC
σ

= 4
EC
σΦ(

−µd1,T√
σ2

d1,T +1
)−BvN

 −µd1,T√
σ2

d1,T +1
,
−µd1,T√
σ2

d1,T +1
;corr = 1−

(1−ρT

T )

1+σ2
d1,T


In the special case when returns are a Gaussian white noise, it follows

that Corr(d1t,T ,d1t−1,T ) = 1−1/2T . Using the properties of the bivariate

normal distribution, in this case we obtain:

(B.5.19)

E(XCt,T ) = 4(0.25−asin(1− 1
2T

) · 1
2π

)
EC
σ

=
2EC
πσ

acos(1− 1
2T

)

�

B.6. P&L Volatility under AR(1) Return Dynamics

The derivation of the P&L volatility under the general assumption of an

AR(1) return process is quite evolved. We prefer to evaluate numerically

E(PL2
t,T ) when needed.

It is straightforward to calculate the P&L volatility when return process

is a Gaussian white noise with a drift (ρ = 0). Let’s again use the notations

X = Rt+1
σ
∼ N(µ/σ ,1) and Y = d1t,T ∼ N(µd1,T ,σ

2
d1,T ).It follows that
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(B.6.1)

E(PL2
t+1,T ) = E(x2(2Φ(y) − 1)2) = E(x2)E(4Φ(y))2 − 4Φ(y) + 1)

(B.6.2) E(x2) = 1+(
µ

σ
)2

Let Y ∗ ∼ N(0,1) and making use of formulas 10010.8 and 20010.3 in

[51]:

(B.6.3)

E(Φ(Y )2) =

� +∞

−∞

Φ(y)2 f (y)dy =
� +∞

−∞

(Φ(µd1,T +σd1,T y∗))2 f (y∗)dy∗

= BvN(
µd1,T√

1+σ2
d1,T

,
µd1,T√

1+σ2
d1,T

;corr =
σ2

d1,T

(1+σ2
d1,T )

)

(B.6.4) E(Φ(Y )) = Φ(
µd1,T√

1+σ2
d1,T

)

If returns are a Gaussian white noise (µ = 0 and ρ = 0), the P&L volatil-

ity is independent of the lookback period.
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(B.6.5)

Var(PLt,T )=E(PL2
t,T )= 4BvN(0,0;corr =

1
2
)−4Φ(0)+1=

2asin(1
2)

π
=

1
3

B.7. Theoretical Correlation Matrix

TABLE 2. Theoretical correlation matrix for various look-
back periods

Period 1 2 4 8 16 32 64 126 252 504
1 1.00 0.69 0.48 0.34 0.24 0.17 0.12 0.09 0.06 0.04
2 1.00 0.69 0.48 0.34 0.24 0.17 0.12 0.09 0.06
4 1.00 0.69 0.48 0.34 0.24 0.17 0.12 0.09
8 1.00 0.69 0.48 0.34 0.24 0.17 0.12
16 1.00 0.69 0.48 0.34 0.24 0.17
32 1.00 0.69 0.49 0.34 0.24
64 1.00 0.70 0.49 0.34
126 1.00 0.69 0.48
252 1.00 0.69
504 1.00

B.8. Empirical Correlation Matrix

TABLE 3. Empirical correlation matrix for various lookback periods

Period 1 2 4 8 16 32 64 126 252 504
1 1.00 0.70 0.49 0.35 0.25 0.17 0.12 0.07 0.03 -0.01
2 1.00 0.69 0.50 0.35 0.25 0.18 0.10 0.05 0.01
4 1.00 0.70 0.50 0.36 0.25 0.15 0.09 0.03
8 1.00 0.71 0.51 0.37 0.25 0.17 0.09
16 1.00 0.72 0.53 0.38 0.27 0.16
32 1.00 0.74 0.55 0.41 0.26
64 1.00 0.75 0.56 0.38
126 1.00 0.74 0.53
252 1.00 0.74
504 1.00
46 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.04

6Average absolute deviation from theoretical values
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B.9. Average Transaction Costs

TABLE 4. Average Transaction Costs

Periods Equities FX Commodities Fixed Income
Exe
Cost
(bps)

Run
Cost
(bps)

Exe
Cost
(bps)

Run
Cost
(bps)

Exe
Cost
(bps)

Run
Cost
(bps)

Exe
Cost
(bps)

Run
Cost
(bps)

Before
1993

20.0 44.0 18.8 32.0 17.2 39.6 18.4 33.6

1993-
2002

7.5 16.5 7.0 12.0 6.5 14.9 6.9 12.6

Since
2003

5.00 11.00 4.7 8.0 4.3 9.9 4.6 8.4
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