
ABSTRACT

Title of Dissertation: APPLICATIONS AND VERIFICATION OF
QUANTUM COMPUTERS

Shih-Han Hung
Doctor of Philosophy, 2021

Dissertation Directed by: Professor Andrew M. Childs
Department of Computer Science

Quantum computing devices can solve problems that are infeasible for classical com-

puters. While rigorously proving speedups over existing classical algorithms demonstrates

the usefulness of quantum computers, analyzing the limits on efficient processes for compu-

tational tasks allows us to better understand the power of quantum computation. Indeed,

hard problems for quantum computers also enable useful cryptographic applications.

In this dissertation, we aim to understand the limits on efficient quantum computation

and base applications on hard problems for quantum computers. We consider models in

which a classical machine can leverage the power of a quantum device, which may be affected

by noise or behave adversarially. We present protocols and tools for detecting errors in a

quantum machine and estimate how serious the deviation is. We construct a non-interactive

protocol that enables a purely classical party to delegate any quantum computation to an

untrusted quantum prover. In the setting of error-prone quantum hardware, we employ

formal methods to construct a logical system for reasoning about the robustness of a quantum

algorithm design.

We also study the limits of ideal quantum computers for computational tasks and give

asymptotically optimal algorithms. In particular, we give quantum algorithms which provide

speedups for the polynomial interpolation problem and show their optimality. Finally, we

study the performance of quantum algorithms that learn properties of a matrix using queries

that return its action on an input vector. In particular, we show that for various linear algebra

problems, there is no quantum speedup, while for some problems, exponential speedups can

be achieved.

APPLICATIONS AND VERIFICATION OF QUANTUM COMPUTERS

by

Shih-Han Hung

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2021

Advisory Committee:
Professor Andrew M. Childs, Chair/Advisor
Dr. Gorjan Alagic
Professor Dana Dachman-Soled, Dean’s representative
Professor Michael Hicks
Professor Jonathan Katz
Professor Xiaodi Wu

© Copyright by
Shih-Han Hung

2021

Acknowledgments

I am indebted to my advisor, Andrew Childs, for his support and patience throughout

my Ph.D. journey. Andrew has set an example of excellence as a researcher, teacher and

mentor. His advice and courses have allowed me to gain a comprehensive view of quantum

computing. I am grateful to Andrew for always being generous with his time and ideas on

how to set up and approach a research problem, and for helping with improving my

scientific writing skills. Furthermore, Andrew has given me a great amount of freedom to

work on many different problems in collaboration with various groups. This allows me to

expand my research horizons and learn from leading experts in many different areas.

I thank Gorjan Alagic for in-depth collaboration on quantum cryptography. Over the

past four years, we had extensive discussions in various directions. His guidance has helped

me to gain a foundation in the field.

I thank Michael Hicks and Xiaodi Wu for leading me into the research area of

quantum programming language. I am grateful to Mike and Xiaodi for sharing their

insights and experiences about how to choose and conduct research on impactful problems.

I thank Michael Coplan and Charles Clark for my time at the University of

Maryland, and encouraging me to do research on quantum information science. I also

thank Jonathan Katz for supporting me during the summer after my first year.

I thank the members of my dissertation committee, Andrew Childs, Gorjan Alagic,

ii

Dana Dachman-Soled, Michael Hicks, Jonathan Katz and Xiaodi Wu for reading my

dissertation and providing me valuable feedback during the various stages of the

development.

I enjoyed many in-depth discussions with my collaborators, including Manuel

Barbosa, Gilles Barthe, Shouvanik Chakrabarti, Jianxin Chen, Wim van Dam, Leo Fan,

Benjamin Grégorie, Alex Grilo, Kesha Hietala, Jonathan Katz, Liyi Li, Tongyang Li,

Yuxiang Peng, Robert Rand, Igor Shparlinski, Pierre-Yves Strub, Mingsheng Ying,

Chunhao Wang, Xin Wang, Li Zhou, and Shaopeng Zhu. I also thank Alexey Gorshkov,

Stephen Jordan, Brad Lackey, Yi-Kai Liu, and Carl Miller for many stimulating

conversations. It has been a pleasure to work with and learn from you.

My life as a graduate student would not have been enjoyable without friends and

colleagues in CS and QuICS: Aniruddha Bapat, Shouvanik Chakrabarti, Nai-Hui Chia,

Jianxin Chen, Su-Kuan Chu, Abhinav Deshpande, Dhruv Devulapalli, Hong Hao Fu,

James Garrison, Andrew Guo, Wenqi Han, Kesha Hietala, Shelby Kimmel, Tongyang Li,

Cedric Lin, Jin-Peng Liu, Atul Mantri, Aaron Ostrander, Yuxiang Peng, Robert Rand,

Julien Ross, Eddie Schoute, Troy Sewell, Manasi Shingane, Yuan Su, Pattara Sukprasert,

Aarthi Sundaram, Minh Tran, Daochen Wang, Xin Wang, Xingyao Wu, Sheng Yang,

Penghui Yao, Qi Zhao, and Shaopeng Zhu. I would also like to thank QuICS coordinators

Javiera Caceres and Andrea Svejda. They were always there whenever I needed help.

Finally, I would like to thank my family for their love and encouragement over the

years.

iii

Table of Contents

Acknowledgements ii

Table of Contents iv

List of Tables vii

List of Figures viii

Chapter 1: Introduction 1
1.1 Classical verification of quantum computation 4
1.2 Polynomial interpolation . 5
1.3 Query complexity with matrix-vector products 7
1.4 Quantitative robustness analysis . 8

Chapter 2: Non-interactive classical verification of quantum computation 10
2.1 Introduction . 10
2.2 Standard cryptographic primitives . 21

2.2.1 Commitment schemes . 21
2.2.2 Fully homomorphic encryption with circuit privacy 22
2.2.3 NIZK for NP . 24

2.3 Preliminaries . 25
2.3.1 Quantum-prover interactive arguments 25
2.3.2 The local Hamiltonian problem and verification for BQP 26
2.3.3 The Mahadev protocol for BQP verification 28

2.4 Instance-independent key generation . 31
2.5 A parallel repetition theorem for the Mahadev protocol 35

2.5.1 A lemma for the single-copy protocol 36
2.5.2 The parallel repetition theorem . 40

2.6 A classical zero-knowledge argument for QMA 52
2.6.1 Completeness and soundness . 54
2.6.2 The zero-knowledge property . 58

2.7 Round reduction by Fiat-Shamir transformation 62
2.7.1 Fiat-Shamir for Σ-protocols in the QROM 62
2.7.2 Extension to generalized Σ-protocols 65
2.7.3 Non-interactive zero-knowledge for QMA 69

Chapter 3: Polynomial interpolation 70

iv

3.1 Introduction . 70
3.2 Algebraic geometry concepts . 78
3.3 Univariate polynomial interpolation . 79

3.3.1 Preliminaries . 79
3.3.2 The algorithm . 81
3.3.3 Performance using d/2 + 1/2 queries 82
3.3.4 Performance using d/2 + 1 queries . 84
3.3.5 An alternative algorithm . 86
3.3.6 Gate complexity . 88

3.4 Multivariate polynomial interpolation . 99
3.4.1 The query model . 100
3.4.2 The algorithm . 101
3.4.3 Performance . 107

3.5 Optimality . 116

Chapter 4: Matrix-vector products 119
4.1 Introduction . 119
4.2 Preliminaries . 124

4.2.1 The quantum query model . 124
4.2.2 The coset identification problem . 126
4.2.3 The polynomial method . 128

4.3 Equivalence of matrix-vector and vector-matrix-vector products 129
4.3.1 Left and right matrix-vector queries 129
4.3.2 The vector-matrix-vector model . 133

4.4 Linear algebra over finite fields . 135
4.4.1 Trace . 135
4.4.2 Null space . 140
4.4.3 Solving linear systems . 144
4.4.4 Rank testing . 147

Chapter 5: Quantitative robustness analysis 152
5.1 Introduction . 152
5.2 Quantum programs . 153

5.2.1 Syntax . 153
5.2.2 Denotational semantics . 156
5.2.3 Quantum predicates and Hoare logic 157

5.3 Noisy quantum programs . 158
5.3.1 Noise in quantum computation . 158
5.3.2 Syntax . 159
5.3.3 Semantics . 160

5.4 Quantum robustness . 161
5.4.1 Definition . 161
5.4.2 Logic . 166
5.4.3 Soundness . 171
5.4.4 Case studies . 178

v

Chapter 6: Conclusion 180

Bibliography 184

vi

List of Tables

4.1 Comparison of classical and quantum query complexities with matrix-vector
(Mv) and vector-matrix-vector (vMv) product oracles for an m × n matrix.
For trace and linear regression, m = n. Known query complexities over R and
Fq are included for completeness; results over different fields are incomparable
in general. 151

vii

List of Figures

2.1 A variant of the MF protocol. 27
2.2 The Mahadev protocol. 32
2.3 A modified parallel-repeated MF protocol for zxa,b. 33
2.4 Verification with instance-independent setup. 53
2.5 The setup phase setup(λ,N,M). 55
2.6 An interactive zero-knowledge protocol for QMA. 55
2.7 The simulator S(H)V

∗
2 . 59

2.8 A Σ-protocol for a language L. 62
2.9 The FS-transformed protocol for L. 63
2.10 A generalized Σ-protocol. 66
2.11 The FS-transformed generalized Σ-protocol. 66

5.1 The denotational semantics of quantum while programs. 156
5.2 Denotation of noisy unitary operation. 160
5.3 Rules for logic of quantum robustness. 166

viii

Chapter 1: Introduction

It is widely believed that quantum devices can solve computational tasks that are

intractable for classical computers. The advantage of quantum computers is determined

by finding computational tasks for which substantial speedups are possible. Indeed, the

existence of such tasks motivates scientific studies that advance theoretical and experimental

progress in the research area of quantum information processing.

The implementation of quantum algorithms requires qubits to be protected from noise,

but at the same time, must allow external control by users. While it is possible to reduce

the effect of noise by developing quantum error-correction (QEC) protocols, the overhead

introduced by QEC protocols is beyond the capabilities of current devices. In the near

term, realizable quantum computers are so-called noisy intermediate-scale quantum (NISQ)

devices with 50-100 qubits [1, 2]. An active research area in the NISQ era aims to extract

the maximum computational power from such small quantum devices, and, meanwhile, the

quality of computation still meets the demand by the users.

With devices that reach scales beyond achievable in the near term, direct classical sim-

ulation seems impossible for verifying the correctness of quantum computation. Depending

on how the error is provided, the task of verification demands different techniques.

First, to ensure an implementation (e.g., a program or a circuit) or its optimization is

1

correct, one must check if the meaning of the implementation follows the intention. In the

context of quantum computing, a quantum process is often denoted as a quantum channel

which takes exponentially many parameters. Thus the naïve way of verifying correctness

seems classically intractable. To this end, an appealing approach is to apply formal methods

to prove an algorithm design works as intended [3, 4]. In a nutshell, first a syntax is defined

to express an algorithm design in a machine-checkable format, and the semantics is defined

to formally specify what it means by correctness. Then a sound logical system is constructed

to enable a proof search with a computer.

Secondly, to test if a quantum device works as intended, an experimentalist needs to

determine the quality of computation by sending signals to and collecting feedback from

it. In theoretical computer science, such an interactive verification process can be modeled

as a classical interactive proof system, which consists of a classical verifier and a quantum

prover which may deviate from the protocol to an arbitrary degree. In the settings that

the quantum device is efficient, one can rely on hard problems for quantum computers to

establish a cryptographic leash. This restores the symmetry between the quantum prover

and the less powerful classical verifier [5].

The rules of quantum mechanics define the limits on efficient quantum computation.

In particular, showing significant resource requirements for a task rules out the possibility of

developing high-performance quantum algorithms with reasonable resources. Interestingly,

apart from verification of quantum computation [6, 7, 8], constructions based on tasks that

are hard for quantum computers lead to various quantum-secure classical cryptosystems and

quantum-unique applications, including proof of quantumness [9, 10, 11], certifiable ran-

domness expansion [9], certified deletion [12], copy protection [13, 14, 15, 16], and quantum

2

money [13, 17, 18, 19]. While proving quantum hardness for a computational problem uncon-

ditionally, i.e., solely from the rules of quantum mechanics, requires a major breakthrough,

a rigorous reasoning is often formalized in a query model or with respect to widely held

hardness assumptions.

In a query model, an algorithm is given access to an oracle which encodes some in-

formation that is initially unknown, but can be partially extracted by making queries. The

performance of an algorithm is defined as the probability of outputting the correct result,

using a certain number of queries. While proving quantum speedups in a query model

cannot be translated into an efficient quantum algorithm in general, proving a query lower

bound implies (substantial) resource requirement with respect to a general instantiation of

the oracle. To establish a quantum query lower bound, various methods have been proposed,

including the polynomial method [20], the hybrid method [21], and the adversary methods

[22, 23].

In the plain model, i.e., no oracle access is assumed, a hardness result often relies

on a hardness assumption, which may not be proved but widely believed to hold. For

example, learning with errors (LWE) is a computational problem which refers to solving

an erroneous system of linear equations, and is conjectured to be hard to solve, even for

quantum computers [24]. To show a problem P (e.g., breaking a cryptographic construction

with respect to a security notion) is hard based on the hardness of P ′, one aims to give a

reduction: assuming the existence of an algorithm A which solves P , there exists another

algorithm B which simulates A and achieves “too good” performance for P ′, and thus break

the assumption that P ′ is hard.

In this dissertation, we aim to understand the limits on efficients quantum computation

3

for computational tasks and explore the task of verification in different settings. Our results

are briefly summarized as follows.

1.1 Classical verification of quantum computation

While rapid progress has been made toward building quantum devices, it remains

challenging to verify that they work correctly, especially when they reach scales that rule

out direct classical simulation. In a major breakthrough, Mahadev constructed the first

interactive protocol which enables a purely classical party, called the verifier, to delegate any

efficient quantum computation to an untrusted prover for any decision problem solvable in

quantum polynomial time with bounded errors [6]. In Chapter 2, we show the same task

can be achieved non-interactively, and in zero-knowledge.

Our protocols result from a sequence of improvements to the original four-message

protocol due to Mahadev. We begin by making the first message instance-independent and

moving it to an offline setup phase. We then establish a parallel repetition theorem for the

resulting three-message protocol, with the soundness error decreasing at an optimal rate.

This enables an application of the Fiat-Shamir transform, eliminating the public coin sent

by the verifier and giving a non-interactive protocol.

Furthermore, we employ classical non-interactive zero-knowledge arguments for NP

languages and classical fully homomorphic encryption (FHE) to give a zero-knowledge variant

of our non-interactive protocol. This yields the first purely classical NIZK argument for

QMA, a quantum analogue of NP.

We establish the security of our protocols under standard assumptions in quantum

4

secure cryptography. Specifically, the soundness is proved in the quantum random oracle

model (QROM), under the assumption that LWE is hard against quantum algorithms. The

NIZK construction also requires circuit-private FHE, an instantiation of which based on

LWE is known [25].

Chapter 2 is based on the following paper:

[7] Gorjan Alagic, Andrew M. Childs, Alex B. Grilo, and Shih-Han Hung. Non-

interactive classical verification of quantum computation. In Theory of Cryptography Con-

ference, pages 153–180. Springer, 2020. arXiv:1911.08101.

1.2 Polynomial interpolation

Let f ∈ K[x1, . . . , xn] be a degree-d polynomial of n variables over a field K. In the

polynomial interpolation problem, the algorithm is given access to an unknown polynomial

as a black-box for evaluating it on any chosen input, and the task is to determine all the

coefficients. The classical query complexity is well-known: to determine all the coefficients,(
n+d
d

)
queries are sufficient and necessary, regardless of the field K. Shamir [26] used this

fact to construct a protocol for secret sharing: a secret is encoded in a univariate polynomial

f over a sufficiently large finite field and divided into d + 1 shares {(xi, f(xi))}d+1
i=1 . Based

on the classical query complexity, all the parts can be used to infer the secret, and learning

only d parts gives no information.

In Chapter 3, we study the quantum query complexity of the polynomial interpola-

tion problem over finite fields, the real numbers and the complex numbers. Previously, for

univariate polynomial interpolation over a finite field, Kane and Kutin [27] and Meyer and

5

https://arxiv.org/abs/1911.08101

Pommersheim [28] independently showed that d/2 + 1 queries are necessary. We show that

the lower bound is indeed optimal—d/2 + 1 queries are sufficient to learn all the coeffi-

cients with probability 1 − O(1/q) over a field of q elements. Furthermore, the algorithm

can be implemented with gate complexity poly(log q) with negligible decrease in the success

probability.

The optimality of our algorithm is based on the simple fact that any algorithm suc-

cessfully distinguishes n quantum states in an m-dimensional space with probability at most

m/n. Later, Copeland and Pommersheim [29] generalized the idea and gave a representation-

theoretic characterization of the optimal success probability for the coset identification prob-

lem, of which the polynomial interpolation can be viewed as a special case.

For multivariate polynomial interpolation, we show that over the field C of complex

numbers, k = d 1
n+1

(
n+d
d

)
e is sufficient to succeed with probability 1, except for a few special

cases of d and n. Furthermore, over the field R of real numbers and a finite field Fq, we

show that 2k and d d
n+d

(
n+d
d

)
e queries are sufficient to succeed with probability approaching

1. Thus we present a speedup of factor n+ 1, n+1
2
, and n+d

d
over C, R and Fq respectively.

Chapter 3 is partly based on the following papers:

[30] Andrew M. Childs, Wim van Dam, Shih-Han Hung, and Igor E. Shparlinski. Op-

timal quantum algorithm for polynomial interpolation. In 43rd International Colloquium on

Automata, Languages, and Programming (ICALP 2016), volume 55 of Leibniz International

Proceedings in Informatics, pages 16:1–16:13, 2016. arXiv:1509.09271.

[31] Jianxin Chen, Andrew M. Childs, and Shih-Han Hung. Quantum algorithm for

multivariate polynomial interpolation. Proceedings of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 474(2209):20170480, 2018. arXiv:1701.03990.

6

https://arxiv.org/abs/1509.09271
https://arxiv.org/abs/1701.03990

1.3 Query complexity with matrix-vector products

Linear algebra problems including solving linear systems and determining basic prop-

erties of matrices such as rank, determinant, trace, and eigenvalues constitute a fundamental

area of research in applied mathematics and computer science. Algorithmic linear algebra

also provides a fundamental toolbox that can inspire the design of algorithms in general.

Algorithms for solving linear algebra problems can depend significantly on the model

of access to a matrix. One natural model which has received attention recently [32, 33] is the

matrix-vector product (Mv) oracle: for a matrix M over a field K, on input a vector x, the

oracle outputs Mx. Another related model is the vector-matrix-vector (vMv) model, which

returns y>Mx for given input vectors x, y.

In Chapter 4, we study quantum algorithms which learn properties of a matrix in these

models. We show that for computing trace, determinant, rank of a matrix or solving a linear

system that it specifies, quantum computers do not provide an asymptotic speedup over

classical computers. On the other hand, we show that for some properties about the matrix,

such as computing the parities of the rows or coumns, or deciding if there are two identical

rows or columns, quantum computers provide exponential speedups. We demonstrate this

by showing equivalence between models that provide matrix-vector products, vector-matrix

products and vector-matrix-vector products. In contrast, the power of these models can vary

significantly for classical computation.

Chapter 4 is based on the following paper:

[34] Andrew M. Childs, Shih-Han Hung, and Tongyang Li. Quantum Query Complexity

with Matrix-Vector Products. In 48th International Colloquium on Automata, Languages,

7

and Programming (ICALP 2021), volume 198 of Leibniz International Proceedings in Infor-

matics (LIPIcs), pages 55:1–55:19, 2021. arXiv:2102.11349.

1.4 Quantitative robustness analysis

A major challenge to leverage the power of quantum speedups, especially in the near

future, is to deal with errors during execution of quantum algorithms on a quantum device.

Most existing work on the study of quantum algorithms and their implementations assumes

the problem will be solved by the hardware while ignoring the possibility of errors. Unfor-

tunately, providing such a general-purpose, fault-tolerant quantum computing abstraction

appears to be impractical for near-term quantum devices, for which precisely controllable

qubits are scarce and error-prone. As such, research on practical quantum computation must

focus on noisy intermediate-scale quantum (NISQ) computers [1], which will lack general-

purpose fault tolerance. To guide the design of practical applications, it demands a principled

method to estimate the error-affected performance of implementations.

A naïve approach is to directly calculate the distance between the noisy output state

and its ideal equivalent with respect to an appropriate metric, e.g., trace distance. However,

direct calculation is computationally intractable when the programs reach scales that rule

out classical simulation.

In Chapter 5, we apply formal methods to reason about the performance of quantum

programs in the presence of quantum noise. In the classical setting, Carbin, Misalovic, Rinard

[35] gave a logic for reasoning about classical programming on unreliable classical hardware.

Inspired by the previous works, we provide the syntax and semantics of the quantum while

8

https://arxiv.org/abs/2102.11349

language, extended to include noisy operations. We define the notion of quantum robustness,

which describes the closeness between a noisy output and its ideal correspondence when the

input satisfies a property to at least a certain degree. Furthermore, we define a proof system

for reasoning about quantum robustness.

Chapter 5 is based on the following paper:

[36] Shih-Han Hung, Kesha Hietala, Shaopeng Zhu, Mingsheng Ying, Michael Hicks,

and Xiaodi Wu. Quantitative robustness analysis of quantum programs. Proceedings of the

ACM Symposium on Programming Languages, 3(POPL):1–29, 2019. arXiv:1811.03585.

9

https://arxiv.org/abs/1811.03585

Chapter 2: Non-interactive classical verification of quantum computation

2.1 Introduction

Quantum computing devices are expected to solve problems that are infeasible for

classical computers. However, as significant progress is made toward constructing quantum

computers, it is challenging to verify that they work correctly. This becomes particularly

difficult when devices reach scales that rule out direct classical simulation.

This problem has been considered in various models, such as with multiple entangled

quantum provers [37, 38, 39, 40, 41, 42, 43, 44] or with verifiers who have limited quantum

resources [45, 46, 47, 48]. Such solutions are not ideal since they require assumptions about

the ability of the provers to communicate or require the verifier to have some quantum

abilities.

In a major breakthrough, Mahadev recently described the first secure protocol enabling

a purely classical verifier to certify the quantum computations of a single untrusted quantum

prover [6]. The Mahadev protocol uses a quantum-secure cryptographic assumption to give

the classical verifier leverage over the quantum prover. Specifically, the protocol is sound

under the assumption that the Learning with Errors (LWE) problem does not admit a

polynomial-time quantum algorithm. This assumption is widely accepted, and underlies

some of the most promising candidates for quantum-secure cryptography [49].

10

The Mahadev protocol. Mahadev’s result settled a major open question concerning the

power of quantum-prover interactive arguments (QPIAs). In a QPIA, two computationally-

bounded parties (a quantum prover P and a classical verifier V) interact with the goal of

solving a decision problem. Mahadev’s result showed that there is a four-round1 QPIA for

BQP with negligible completeness error and constant soundness error δ ≈ 3/4. The goal

of the protocol is for the verifier to decide whether an input Hamiltonian H from a certain

class (which is BQP-complete) has a ground state energy that is low (YES) or high (NO).

The protocol has a high-level structure analogous to classical Σ-protocols [50]:

1. V generates a private-public key pair (pk, sk) and sends pk to P ;

2. P prepares the ground state of H and then coherently evaluates a certain classical

function fpk. This yields a state of the form

∑
x

αx|x〉X |fpk(x)〉Y , (2.1)

where the ground state is in a subregister of register X. P measures the output

register Y and sends the result y to V . Note that P now holds a superposition over

the preimages of y.

3. V replies with a uniformly random challenge bit c ∈ {0, 1}.

4. If c = 0 (“test round”), P measures the X register in the computational basis and sends

the outcome. If c = 1 (“Hadamard round”), P measures X in the Hadamard basis and

sends the outcome.
1We take one round to mean a single one-way message from the prover to the verifier, or vice-versa. The
Mahadev protocol involves four such messages.

11

After the four message rounds above are completed, the verifier uses their knowledge of H

and the secret key sk to either accept or reject the instance H.

Our results. In this work, we show that the Mahadev protocol can be transformed into

protocols with significantly more favorable parameters, and with additional properties of

interest. Specifically, we show how to build non-interactive protocols (with setup) for the

same task, with negligible completeness and soundness errors. One of our protocols enables

a verifier to publish a single public “setup” string and then receive arbitrarily many proofs

from different provers, each for a different instance. We also construct a non-interactive

protocol that satisfies the zero-knowledge property [51].

In principle, one could ask for a slightly less interactive protocol: one where the prover

and the verifier both receive the instance from some third party, and then the prover simply

sends a proof to the verifier, with no setup required. While we cannot rule such a protocol

out, constructing it seems like a major challenge (and may even be impossible). In such

a setting, the proof must be independent of the secret randomness of the verifier, making

it difficult to apply the “cryptographic leash” technique of Mahadev. On the other hand,

without cryptographic assumptions, such a protocol would result in the unlikely inclusion

BQP ⊆ MA [52].

All of our results are conditioned on the hardness of the LWE problem for quantum

computers; we call this the LWE assumption. This assumption is inherited from the Mahadev

protocol. For the zero-knowledge protocol, we also require fully-homomorphic encryption

(FHE) with circuit privacy [25]. Our security proofs hold in the Quantum Random Oracle

Model (QROM) [53]. For simplicity, in our exposition we assume that the relevant security

12

parameters are polynomial in the input BQP instance size n, so that efficient algorithms run

in time poly(n) and errors are (ideally) negligible in n.

Warmup: A non-interactive test of quantumness. To explain our approach, we first briefly

describe how to make the “cryptographic test of quantumness” (CTQ) of [9] into a non-

interactive protocol (with setup.) This is a significantly simplified version of the Mahadev

protocol: there is no ground state, and the initial state (2.1) is simply in uniform superpo-

sition over X. The soundness error is 1/2, meaning that a classical prover can convince the

verifier to accept with probability at most 1/2 [9]. A quantum prover can easily answer both

challenges, so the completeness is 1.

To reduce the interaction in this protocol, we perform two transformations. First, we

repeat the protocol independently in parallel k times, with the verifier accepting if and only

if all k copies accept. We then remove Round 3 via the Fiat-Shamir transform [54]: the

prover computes the challenges c = (c1, c2, . . . , ck) := H(y1, . . . , yk) themselves via a public

hash function H. This allows the prover to go directly to Round 4, i.e., measuring the X

registers. The verifier then performs the k-fold accept/reject verdict calculations, using coins

c computed in the same manner. The result is a two-message protocol. Moreover, since the

keys are drawn from a fixed distribution, we can give the pkj to the prover and the skj to

the verifier in an offline setup phase, so that the protocol only requires one message in the

online phase. We refer to this protocol as NI-CTQ.

Since the soundness experiment of NI-CTQ only involves classical provers, and the

verifier is also classical, soundness can be deduced from existing classical results. Specifi-

13

cally, standard parallel repetition2 theorems [55, 56, 57] combined with soundness of Fiat-

Shamir [54, 58, 59] yield the fact that NI-CTQ has negligible soundness and completeness

errors, in the Random Oracle Model (ROM).

Transforming the Mahadev protocol. Similar to NI-CTQ above, we will apply various trans-

formations to the Mahadev verification protocol itself:

1. making the first message instance-independent (i.e., moving it to an offline setup

phase);

2. applying parallel repetition, via a new parallel repetition theorem;

3. adding zero-knowledge, by means of classical NIZKs and classical FHE; and

4. applying Fiat-Shamir (in the QROM [53]).

Unlike with NI-CTQ, however, establishing that these transformations satisfy desirable prop-

erties is much more challenging. For instance, since cheating provers can now be quantum,

classical parallel repetition theorems do not apply.

Instance-independent setup. To improve over the instance-dependent key generation in the

original Mahadev protocol, our first transformation is relatively simple to describe, at a

high level. In the Mahadev protocol, the initial message depends on a sequence of basis

choices (X or Z) for measuring the ground state of a ZX Hamiltonian. These choices need

to be consistent with a particular two-local term drawn from some distribution D. Clearly,

a random choice is correct with probability 1/4. Now, if we consider multiple copies of the
2A subtlety is that this is a private-coin protocol. However, the c = 0 branch is publicly simulable so [55]
applies. Alternatively, one can apply the techniques of [56].

14

ground state, and each copy is assigned both a random choice of bases and a random term

from D, then about 1/4 of the copies get a consistent assignment. We can then make the

initial message instance-independent by increasing the number of copies of the ground state

in the Mahadev protocol by a constant factor. We establish this fact3 in Lemma 2.4.1 below.

We refer to the result as “the three-round Mahadev protocol,” and denote it by M.

Parallel repetition. The k-fold sequential repetition of a protocol is a simple way of decreas-

ing the original soundness error δ to δk, at the cost of multiplying the number of interaction

rounds by k. Parallel repetition is much more desirable because it does not increase the

number of rounds. However, even in the case of purely classical protocols, proving that

parallel repetition reduces soundness error is often quite difficult, and may require adapting

the protocol itself [56, 60].

Does parallel repetition work for quantum-prover interactive arguments? The Mahadev

protocol is a natural case to consider since it already exhibits the full decisional power of

QPIAs, namely BQP. However, several complications arise when attempting to establish

parallel repetition using classical techniques. First, the Mahadev protocol is clearly private-

coin, precisely the category that is challenging even classically [56, 60]. Second, classical

proofs of parallel repetition typically involve constructing a prover (for the single-copy pro-

tocol) that uses many rounds of nested rejection sampling. The quantum analogue of such a

procedure is quantum rewinding, which can only be applied in special circumstances [61, 62]

and seems difficult to apply to parallel repetition.

In this work, we establish a new parallel repetition theorem with alternative techniques,
3More precisely, we apply this transformation at the level of the Morimae-Fitzsimons protocol [47], an
important building block of the Mahadev protocol.

15

suited specifically for the Mahadev protocol. We show that, for NO instances, the accepting

paths of the verifier for the two different challenges (c = 0 and c = 1) correspond to two

nearly (computationally) orthogonal projectors. We also establish that this persists in k-

fold parallel repetition, meaning that each pair of distinct challenge strings c, c′ ∈ {0, 1}k

corresponds to nearly orthogonal projectors. From there, a straightforward argument shows

that the prover cannot succeed for more than a non-negligible fraction of challenge strings.

Our result shows that k-fold parallel repetition yields the same optimal soundness error δk

as sequential repetition.

Taken together with the first transformation, the result is a three-round QPIA (with

offline setup) for verifying BQP, with negligible completeness and soundness errors. We

denote this protocol by Mk.

Theorem 2.1.1. Under the LWE assumption, the k-fold parallel repetition Mk of the three-

round Mahadev protocol M is a three-round protocol (with offline setup) for verifying BQP

with completeness 1− negl(n) and soundness error 2−k + negl(n).

Zero-knowledge. Zero-knowledge is a very useful cryptographic property of proof systems.

Roughly, a protocol is zero-knowledge if the verifier “learns nothing” from the interaction

with the honest prover, besides the fact that the relevant instance is indeed a “yes” instance.

This notion is formalized by requiring an efficient simulator whose output distribution is

indistinguishable from the distribution of the outcomes of the protocol.

In our next result, we show how to modify the protocol Mk of Theorem 2.1.1 to achieve

zero-knowledge against arbitrary classical verifiers. Our approach is similar to that of [63],

but uses a purely classical verifier. Instead of the prover providing the outcomes of the

16

measurements to be checked by the verifier (as in Mk), a classical non-interactive zero-

knowledge proof (NIZK) is provided. However, the NP statement “the measurements will

pass verification” depends on the inversion trapdoor of the verifier, which must remain secret

from the prover. To overcome this obstacle, we use classical fully homomorphic encryption

(FHE). In the setup phase, an encryption of the verifier’s secret keys is provided to the

prover, enabling the prover to later compute the NIZK homomorphically. To establish the

zero-knowledge property, we require the FHE scheme to have circuit privacy, which means

that the verifier cannot learn the evaluated circuit from the ciphertext provided by the

prover. To prove the zero-knowledge property, we also need the extra assumption that the

setup phase is performed by a trusted third party, since we cannot rely on the verifier to

perform it honestly anymore.

In classical zero-knowledge arguments, it is common to consider efficient provers who

are provided an NP-witness of the statement to prove. In the quantum setting, if we as-

sume that the quantum polynomial-time prover has access to a quantum proof of a QMA

statement,4 we achieve the following.

Theorem 2.1.2 (informal). Under the LWE assumption, if circuit-private FHE exists, then

there exists a three-round zero-knowledge argument for QMA (with trusted setup) with neg-

ligible completeness and soundness error.

Fiat-Shamir transformation. Note that in the protocols discussed above (both Mk and

its ZK-variant), the second message of the verifier to the prover is a uniformly random

c ∈ {0, 1}k. In the final transformation, we eliminate this “challenge” round. This is done
4QMA is a decision problem class which is a quantum analogue of NP. In QMA, an untrusted quantum
proof is provided to a quantum poly-time verifier.

17

via the well-known Fiat-Shamir transform [54]: we ask the prover to generate the challenge

bits c ∈ {0, 1}k themselves by evaluating a public hash function H on the transcript of

the protocol thus far. In our case, recalling (2.1), this means that the prover selects c :=

H(H, pk, y). Note that pk and y are now both k-tuples, since we are transforming k-fold

parallel-repeated protocols. Of course, the verifier also needs to adapt their actions at the

verdict stage, using c = H(H, pk, y) when deciding whether to accept or reject. The resulting

protocols now only have a setup phase and a single message from the prover to the verifier.

A standard approach with Fiat-Shamir (FS) is to establish security in the Random

Oracle Model, in the sense that FS preserves soundness up to a loss that is negligible provided

H has a superpolynomially-large range [58, 59]. It is straightforward to see that this last

condition is required; it is also the reason that we applied parallel repetition prior to FS. A

well-known complication in the quantum setting is that quantum computers can evaluate any

public classical function H in superposition via the unitary operator UH : |x〉|y〉 7→ |x〉|y ⊕

H(x)〉. This means that we must work in the Quantum Random Oracle Model (QROM)

[53], which grants all parties oracle access to UH. Proving the security of transformations

like FS in the QROM is the subject of recent research, and newly developed techniques have

largely shown that FS in the QROM preserves soundness for so-called Σ-protocols [64, 65].

Extending those results to our protocols is relatively straightforward. Applying FS to the

three-round verification protocol from Theorem 2.1.1 then yields the following.

Theorem 2.1.3. Let k = ω(log n), and let FS(Mk) denote the protocol resulting from apply-

ing Fiat-Shamir to the k-fold parallel repetition of the three-round Mahadev protocol. Under

the LWE assumption, in the QROM, FS(Mk) is a non-interactive protocol (with offline setup)

18

for verifying BQP with negligible completeness and soundness errors.

If we instead apply the Fiat-Shamir transform to the zero-knowledge protocol from

Theorem 2.1.2, we achieve the following.5

Theorem 2.1.4 (informal). Under the LWE assumption, in the QROM, there exists a clas-

sical non-interactive zero-knowledge argument (with trusted offline setup) for QMA, with

negligible completeness and soundness errors.

Related results. Broadbent, Ji, Song, and Watrous [66] presented the first quantum zero-

knowledge proofs for QMA with efficient provers. Vidick and Zhang [67] combined this

protocol with the Mahadev protocol [6] to make the communication classical. Broadbent

and Grilo [68] showed a “quantum Σ” zero-knowledge proof for QMA (with a quantum

verifier). In the non-interactive setting, Coladangelo, Vidick, and Zhang [63] constructed a

non-interactive zero-knowledge argument with quantum setup and Broadbent and Grilo [68]

showed a quantum statistical zero-knowledge proof in the secret parameter model.

We remark that Radian and Sattath [69] recently established what they call “a par-

allel repetition theorem for NTCFs,” which are the functions fpk in the Mahadev protocol.

However, the context of [69] is very different from that of our Theorem 2.1.1. They work

with 1-of-2 puzzles, not BQP verification; in particular, their soundness experiment is quite

different. Moreover, their parallel repetition theorem follows from a purely classical result.

After an initial version of our work was made public, showing how the Mahadev pro-

tocol can be reduced to four rounds using parallel repetition and the Fiat-Shamir transform,
5Note that FS(Mk) in Theorem 2.1.3 is also a protocol for verifying QMA with negligible error if the prover
is given a quantum witness.

19

Chia, Chung, and Yamakawa posted a preprint [8] describing the same result, with an alter-

native proof of parallel repetition. They also showed how to make the verifier run in time

polylogarithmic in the instance size using indistinguishability obfuscation. Our work was

performed independently, and we subsequently improved our result to make the protocol

non-interactive with setup and zero-knowledge.

Open questions. This work raises several natural open questions. First, is it possible to

prove the soundness of our protocol when the oracle H is instantiated with a concrete (e.g.,

correlation-intractable [70]) hash function? Our current analysis only applies in an idealized

model.

It is also natural to study parallel repetition for general QPIAs. Natural examples

include the protocols of [9, 67, 71]. It is known that parallel repetition does not reduce the

soundness error even for all classical private-coin protocols [60]. However, if the classical

protocol is slightly modified to include “random terminations” with low probability, then

parallel repetition is in fact possible [55, 56, 57]. It is an open question whether similar mild

relaxations can enable a parallel repetition theorem for any QPIA.

Finally, we remark that a classical NIZK protocol (in the Random Oracle Model with

setup) could also be achieved using the techniques of locally simulatable codes/proofs [68, 72].

We leave as an open problem understanding whether such a protocol could give us useful

properties that are not achieved with our current approach.

Organization. The remainder of the paper is organized as follows. In Section 2.3, we intro-

duce QPIAs, the local Hamiltonian problem as it relates to BQP verification, the Mahadev

20

protocol, and non-interactive zero knowledge. In Section 2.4, we explain how to make the ini-

tial step of the protocol instance-independent. In Section 2.5, we show that parallel repetition

reduces the soundness error of the Mahadev protocol at the optimal rate. In Section 2.6,

we describe how to make the protocol zero-knowledge. Finally, in Section 2.7, we show

that under the Fiat-Shamir transformation, a generalization of Σ-protocols (which includes

the protocols of interest to us) remains secure in the QROM, and we use this to estab-

lish non-interactive protocols (with offline setup) for verifying BQP and for zero-knowledge

verification of QMA.

2.2 Standard cryptographic primitives

2.2.1 Commitment schemes

The following definition is taken from [63] (with modification). A trapdoor commitment

scheme is a tuple of algorithms Com = (gen, commit, verify), described as follows.

1. gen(1λ), on input the security parameter, outputs a public key pk and a secret key sk.6

2. commitpk(b, s), on input the public key pk, a bit b ∈ {0, 1} (to commit to) and a string

s, outputs the commitment z.

3. verifypk(b, z, s), on input the public key pk, a bit b ∈ {0, 1}, a string s, and the com-

mitment z, outputs “accept” or “reject.”

The scheme based on LWE [63] satisfies the following properties.

1. Perfectly binding: if commitpk(b, s) = commitpk(b
′, s′), then b = b′.

6The secret key is never used.

21

2. Quantum computational concealing: for any quantum adversary A,

Pr

A(pk, z) = b

∣∣∣∣∣∣∣∣∣∣∣∣∣

(pk, sk)← gen(1λ)

s← {0, 1}`

z ← commitpk(b, s)

≤ 1

2
+ negl(λ). (2.2)

2.2.2 Fully homomorphic encryption with circuit privacy

A fully homomorphic encryption scheme FHE = (Gen,Enc,Dec,Eval) with malicious

circuit privacy [63, 73] consists of the following algoithms.

1. Gen(1λ): a probabilistic algorithm that, on input 1λ, outputs a secret key sk and a

public key pk.

2. Encpk(x): a probabilistic algorithm that, on input the public key pk and message x,

outputs a ciphertext.

3. Decsk(c): a deterministic algorithm that, on input the secret key sk and ciphertext c,

outputs a message x.

4. Evalpk(C, c1, . . . , cm): a probabilistic algorithm that, on input the public key pk, a

circuit description C ∈ Cλ, and ciphertexts c1, . . . , cm, outputs another ciphertext c′.

The scheme satisfies the following properties for any polynomial-sized classical circuits {Cλ}λ:

22

1. Correctness: for any λ ∈ N, m ∈ {0, 1}∗ and C ∈ Cλ,

Pr

Decsk(c

′) = C(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣

(pk, sk)← Gen(1λ)

c← Encpk(m)

c′ ← Evalpk(C, c)

= 1. (2.3)

2. Semantic security against quantum adversaries: for every λ ∈ N, there exists a negli-

gible function µ such that for any pair of messages m0,m1 of polynomial size and any

quantum adversary A,

Pr

A(pk, c) = b

∣∣∣∣∣∣∣∣∣∣∣∣∣

b← {0, 1}

(pk, sk)← Gen(1λ)

c← Encpk(mb)

≤ 1

2
+ µ(λ). (2.4)

3. Malicious7 circuit privacy: there exist unbounded algorithms Sim, Ext such that for any

x ∈ {0, 1}∗, possibly malformed pk∗, and ct ← Encpk∗(x), we have Extpk∗(1
λ, ct) = x.

Furthermore, for any C and possibly malformed pk∗, ct∗,

Evalpk∗(C, ct
∗) ≈s Simpk∗(C(Extpk∗(ct

∗; 1λ)); 1λ), (2.5)

where ≈s denotes that the two distributions are statistically indistinguishable.

An FHE scheme with malicious circuit privacy [25] is known to exist, assuming that LWE

is (quantum) computationally intractable.
7In contrast to the semi-honest counterpart, it is not required that the public key and the ciphertext to Eval
are well-formed.

23

2.2.3 NIZK for NP

We will use NIZK protocols NIZK = (Setup,P,V, S) for NP. The protocol is described

in terms of the following algorithms.

1. (Setup) Setup(1λ) outputs a common reference string crs on input 1λ.

2. (Prove) P(crs, x, u) outputs a string e on input crs, instance x, and witness u.

3. (Verify) V(crs, x, e) outputs a bit b ∈ {0, 1} on input crs, instance x, and proof e.

4. (Simulate) S(x) outputs a transcript (crs, x, e).

We use the Peikert-Shiehian construction based on LWE [70]. For any NP language L, the

protocol satisfies the following:

1. Completeness: for (x, u) ∈ RL,

Pr

V(crs, x, e) = 1

∣∣∣∣∣∣∣∣
crs← Setup(1λ)

e← P(crs, x, w)

 ≥ 1− negl(n). (2.6)

2. Adaptive soundness: for any quantum adversary A,

Pr

x /∈ L ∧ V(crs, x, e) = 1

∣∣∣∣∣∣∣∣
crs← Setup(1λ)

(x, e)← A(crs)

 ≤ negl(n). (2.7)

3. Zero-knowledge: for (x, u) ∈ RL, the distributions {(crs,P(crs, x, u))} and {S(x)} are

computationally indistinguishable.

24

Remark 2.2.1. In a classical NIZK for QMA, there are several differences from the above:

(i.) the witness provided to the prover is a quantum state |ψ〉 instead of the classical value u,

(ii.) P is a quantum polynomial-time algorithm, with classical output, and (iii.) our NIZK

protocol for QMA works in the random oracle model with setup, instead of the (desired)

common reference string model.

2.3 Preliminaries

2.3.1 Quantum-prover interactive arguments

A quantum-prover interactive argument (QPIA) is an interactive protocol between two

polynomially-bounded parties, a quantum prover and a classical verifier, interacting over a

classical channel. A QPIA is described by a pair of algorithms: the PPT algorithm of the

honest verifier V , and the QPT algorithm of the honest prover P .

Definition 2.3.1. Fix a language L ⊆ {0, 1}∗ and a QPIA (P ,V). We say that (P ,V) is a

QPIA for L with completeness c and soundness error s if

• for all x ∈ L, Pr[P and V accept x] ≥ c.

• for all x /∈ L and for all QPT algorithms P ′, Pr[P ′ and V accept x] ≤ s.

The completeness error is 1− c and the soundness is 1− s.

As discussed above, the soundness of a QPIA can be amplified via sequential repetition,

and in some cases also with parallel repetition.

25

2.3.2 The local Hamiltonian problem and verification for BQP

Any promise problem L = (Lyes, Lno) ∈ QMA can be reduced to the local Hamiltonian

problem such that for x ∈ Lyes, the Hamiltonian Hx has a low-energy ground state |ψx〉,

and for x ∈ Lno, all quantum states have large energy [74]. While the quantum witness |ψx〉

may be hard to prepare for general L ∈ QMA, it can be prepared efficiently if L ∈ BQP.

Furthermore, the problem remains QMA-complete even with a Hamiltonian that can be

measured by performing standard (Z) and Hadamard (X) basis measurements [75, 76].

Problem 1 (The 2-local ZX-Hamiltonian problem [47, 75, 76]). The 2-local ZX-Hamiltonian

promise problem zx = (zxyes, zxno), with parameters a, b ∈ R, b > a and gap (b − a) >

poly(n)−1, is defined as follows. An instance is a local Hamiltonian

H =
∑
i<j

Jij(XiXj + ZiZj) (2.8)

where each Jij is a real number such that 2
∑

i<j |Jij| = 1 and each Xi (resp. Zi) is a Pauli

X (resp. Pauli Z) gate acting on the ith qubit. For H ∈ zxyes, the smallest eigenvalue of H

is at most a, while if H ∈ zxno, the smallest eigenvalue of H is at least b.

Note that given the normalization factors, we can see that each term (XiXj or ZiZj)

is associated with the probability Jij. We denote the 2-local ZX-Hamiltonian problem with

parameters a, b ∈ R by zxa,b.

When working with Hamiltonian terms S, we overload the notation for convenience.

First, we write Sj to denote the Pauli operator assigned by S to qubit j, so that S =
⊗

j Sj.

Second, we write i ∈ S to indicate that i is a qubit index for which S does not act as the

26

identity, i.e., Si 6= 1.

Morimae and Fitzsimons present a protocol (the “MF protocol”) with a quantum prover

and a limited verifier who only needs the ability to perform single-qubit X and Z basis

measurements [47]. The prover P prepares the ground state of the Hamiltonian and sends

it to V , who then samples a term S with probability pS and performs the corresponding

measurement. Notice that to estimate the energy of term S, only Z or X basis measurements

are necessary. In the original protocol of [47], the qubits are sent individually; in the variant

below, we simply have the prover send the entire state all at once.

Setup. P and V receive an instance of Problem 1, namely a Hamiltonian

Hx =
∑
S

pS
1 +mSS

2
, (2.9)

where each S is a tensor product of X,Z,1 and mS ∈ {±1}.
Round 1. P prepares a quantum state ρ and sends it to V .
Verdict. V samples a term S with probability pS and performs the measurement

{M1 = 1+S
2
,M−1 = 1−S

2
} on ρ, getting an outcome e. V accepts if e = −mS.

Protocol 2.1: A variant of the MF protocol.

Since MmS = 1+mSS
2

= 1−M−mS and Hx =
∑

S pSMmS , the success probability of the

protocol with input state ρ is

∑
S

pS tr(M−mSρ) = 1−
∑
s

pS tr(Mmsρ) = 1− tr(Hxρ). (2.10)

Since b − a > poly(|x|)−1, the error in the MF protocol can be made negligible by parallel

repetition: V receives T copies of the ground state of H and performs an independent test on

27

each copy. By accepting if at least (2− a− b)T/4 copies accept, both the completeness and

soundness errors are suppressed to negligible with polynomial T (|x|) (cf. [6, Theorem 8.4]).

For a detailed proof of QMA gap amplification, see [77, Section 3].

In the following discussion, the term S is encoded by an n-bit string h(S): for each qubit

i ∈ S, set hi = 0 for a Z basis measurement and hi = 1 for anX basis measurement. For other

qubits, the choice is irrelevant but we set hi = 0 for concreteness. We let αh,ρ := tr(M−mSρ)

denote the success probability with ρ when h = h(S) is sampled in Protocol 2.1.

2.3.3 The Mahadev protocol for BQP verification

Required primitives. The protocol relies crucially on two special classes of functions: Noisy

Trapdoor Claw-free Functions (NTCFs) F and Noisy Trapdoor Injective Functions (NTIFs)

G. Both classes of functions are constructed based on the presumed hardness of the Learning

with Errors (LWE) problem [6, 9]. We now sketch the properties of these function families.

For complete details, and for the LWE construction, see [9]. Let λ be a security parameter

and let q ≥ 2 be prime. Choose parameters ` = poly(λ), n = Ω(` log q), and m = Ω(n log q).

The NTCF family F = {fpk}pk∈KF is a family of keyed functions

fpk : {0, 1} × X → DY (2.11)

which, on input a public key pk ∈ KF := Zm×nq × Zmq , a bit b, and x ∈ X := Znq , outputs

a distribution fpk(b, x) over Y := Zmq . Each function fpk ∈ F satisfies the injective pair

property: there exists a perfect matching Rpk ⊂ X × X such that fpk(0, x0) = fpk(1, x1) if

and only if (x0, x1) ∈ Rpk.

28

The NTCF family is equipped with the following polynomial-time algorithms:

1. GenF , on input 1λ, outputs a secret-public key pair (pk, sk).

2. ChkF is a deterministic algorithm for checking if (b, x) and y form a preimage-image

pair of fpk. On input b, x, y, ChkF outputs 1 iff y ∈ supp(fpk(b, x)).

3. InvF is a deterministic algorithm for inverting the function fpk. On input secret key

sk, bit b, and image y, InvF returns the preimage xb,y such that y ∈ supp(fpk(b, xb,y)),

or outputs reject if no such preimage exists.

4. SampF is an efficient quantum process which, on input pk and b ∈ {0, 1}, returns a

quantum state negligibly close to

1

|X |1/2
∑
x∈X

|b〉|x〉|ψfpk(b,x)〉, (2.12)

where |ψp〉 :=
∑

y∈Y

√
p(y)|y〉 for distribution p. By the injective pair property,

we have 〈ψfpk(b,x)|ψfpk(b′,x′)〉 = 1 if (b, x) = (b′, x′), or there exists (x0, x1) ∈ Rpk

such that (b, x, b′, x′) = (0, x0, 1, x1) or (1, x1, 0, x0). This implies that the states in

{|ψfpk(b,x)〉} can be perfectly distinguished by performing a standard basis measure-

ment. Thus, intuitively, we may consider an ideal version of these functions, i.e.,

the distribution p is concentrated at a single point. The state in (2.12) describes the

encoding of a single qubit. For encoding a quantum state |b1, . . . , bn〉 using n pub-

lic keys pk = (pk1, . . . , pkn), we run SampF in parallel. For convenience, we define

the distribution fpk(b, x) of density fpk(b, x)(y) :=
∏n

i=1 fpki(bi, xi)(yi) and the state

|ψfpk(b,x)〉 :=
⊗n

i=1|ψfpki (bi,xi)〉 for each b, x.

29

Similarly, the NTIF family G = {gpk}pk∈KG is a family of keyed functions

gpk : {0, 1} × X → DY (2.13)

which, on input a public key pk ∈ KG, a bit b, and x ∈ X , outputs a distribution gpk(b, x) over

Y . Instead of the injective pair property of NTCFs, NTIFs satisfy an injectivity property:

for all (x, b) 6= (x′, b′), suppgpk(b, x) ∩ suppgpk(b
′, x′) = ∅. An NTIF family is also equipped

with a tuple of four polynomial-time algorithms (GenG,ChkG, InvG, SampG), defined exactly

as in the NTCF case (but with g in place of f , and G instead of F .) For convenience,

when describing the encoding of n-qubit state using public keys pk = (pk1, . . . , pkn), we

define the distribution gpk(b, x) for of density gpk(b, x)(y) :=
∏n

i=1 gpki(bi, xi)(yi) and the

state |ψgpk(b,x)〉 :=
⊗n

i=1|ψgpki (bi,xi)〉 for each b, x.

We remark that the states (2.12) prepared by SampF and SampG should be contrasted

with the “idealized” state described in (2.1) in our sketch of the protocol.

The protocol. The Mahadev protocol [6] for BQP verification allows V to request an X or

Z basis measurement outcome without revealing the basis to P . The aim of the protocol is to

verify that the prover’s response, when appropriately decoded, is close to the measurement

outcomes of some n-qubit quantum state ρ. Crucially, this guarantee holds simultaneously

for all basis choices h ∈ {0, 1}n, where 0 denotes a Z basis measurement and 1 denotes

an X basis measurement. With this guarantee, the verifier can then apply the verification

procedure of the MF protocol to the decoded responses of the prover, knowing that this will

correctly decide whether the instance should be accepted or rejected.

30

In the following protocol, for each qubit, if V requests a Z basis measurement, then

an NTIF key is sent; if V requests an X basis measurement, then an NTCF key is sent.

Since ChkF and ChkG are identical, we denote them by Chk. Similarly, SampF and SampG

are identical, so we denote them by Samp.8 We let Gen(1λ, h) for h ∈ {0, 1}∗ denote the

following key generation algorithm: for every bit i of h, run (pki, ski) ← GenG(1
λ) if hi = 0

and (pki, ski) ← GenF(1λ) if hi = 1. Set pk = (pki)i and sk = (ski)i and output the key

pairs (pk, sk).

We now the describe the protocol when V and P are honest.

Theorem 2.3.1 (Theorems 1.1 and 8.6 in [6]). Under the LWE assumption, Protocol 2.2 is

a four-message quantum-prover interactive argument for the class BQP with completeness

error negl(n) and soundness error 3/4 + negl(n).

2.4 Instance-independent key generation

In this section, we modify the MF protocol such that the sampling of the Hamiltonian

term is independent of the performed measurements. This change allows the keys in the

Mahadev protocol to be generated before the parties receive the input Hamiltonian, in an

offline setup phase.

In our variant, for some r = poly(n), the verifier V samples r n-bit strings h1, . . . , hr

uniformly and r independent 2-local terms S1, . . . , Sr according to distribution π (in which

S is sampled with the probability pS from Protocol 2.1). We say the bases hi and the terms

Si are consistent if, when the observable for the jth qubit in Si is Z (resp., X) then the jth
8These algorithms are identical from the instantiation of NTCF/NTIF functions based on LWE, as described
in [6].

31

Setup. Choose a security parameter λ ≥ n. Both P and V receive an instance of
Problem 1, namely H =

∑
S pS

1+mSS
2

.

Round V1. V samples r terms S = (S1, . . . , Sr) and computes h = h(S), the concatena-
tion of h(S1), . . . , h(Sr). V generates the key pair (pk, sk)← Gen(1λ, h) and
sends pk to P .

Round P1. P prepares r copies of the n-qubit ground state |φ〉⊗r =
∑

b∈{0,1}nr φb|b〉W of
H in register W . For j ∈ [r], ` ∈ [n] and each qubit Wj` in W , P performs
Samp on input the key pkj` coherently and yields a quantum state negligibly
close to

1

|X |n/2
∑
x∈Xn

∑
b∈{0,1}nr

φb|b〉W |x〉X |ψfpk(b,x)〉Y , (2.14)

where |ψfpk(b,x)〉 :=
⊗

j∈[r],`∈[n]|ψfpkj` (bj`,xj`)〉. Next, P measures Y and sends
the outcome y to V .

Round V2. V responds with a uniformly random “challenge” bit c ∈ {0, 1}. We call c = 0
“test round” and c = 1 “Hadamard round,” and set labels t = 0 and h = 1.

Round P2. If c = t, P measures WX in the computational basis. If c = h, P measures
WX in the Hadamard basis. In either case, P sends the measurement out-
come (w, t) to V ;

Verdict. In a test round, V accepts if
∧
j∈[r],`∈[n] Chk(pkj`, wj`, tj`, yj`) = 1.

In a Hadamard round, V performs the following: for each copy j and qubit
` ∈ [n],

1. if hj` = 0, run (ej`, xbj`,yj`) ← InvG(skj`, yj`). If hj` = 1, run x0,yj` ←
InvF(skj`, 0, yj`) and x1,yj` ← InvF(skj`, 1, yj`) to get both preimages.
Then compute ej` = tj` · (x0,yj` ⊕ x1,yj`)⊕ wj`.
If any of the above algorithms returns reject for any j, `, or tj` is trivial
(e.g., 0n, see [9]), reject. Otherwise store e = (ej`)j∈[r],`∈[n] as the witness
to the next check.

2. V sets vj = 1 if the witness (ej`)`∈Sj satisfies M−mSj (defined in Proto-
col 2.1).a

Finally, V accepts if
∑

j∈[r] vj ≥ (2− a− b)r/4.
aA string e satisfies a projector M if 〈e|M |e〉 = 1, i.e., |e〉 lies in the support of M , by convention.

Protocol 2.2: The Mahadev protocol.

32

bit of hi is 0 (resp., 1). Since hi is uniformly sampled and Si is 2-local, we have

Pr
Si←π,hi←{0,1}n

[Si and hi are consistent] ≥ 1

4
. (2.15)

In an r-copy protocol, we let A := {i ∈ [r] : hi and Si are consistent} and denote t = |A|.

For each i ∈ A, Vi decides as in the MF protocol: if i /∈ A, then Vi accepts. Thus we consider

the following protocol. For sufficiently large r, with high probability, there are around

Setup. V samples the bases h1, . . . , hr ← {0, 1}n uniformly.

Round 1. P sends the witness state ρ (r copies of the ground state).

Round 2. V measures the quantum state ρ in the bases h1, . . . , hr. For each copy i ∈ [r],
V samples terms S1, . . . , Sr ← π. V records the subset A ⊆ [r] of consistent
copies. For each copy i ∈ A, V sets vi = 1 if the outcome satisfies M−mS and
0 otherwise. V accepts if

∑
i∈A vi ≥ (2− a− b)|A|/4.

Protocol 2.3: A modified parallel-repeated MF protocol for zxa,b.

r/4 consistent copies. Thus to achieve the same completeness and soundness, it suffices to

increase the number of copies by a constant factor. We thus have the following fact.

Lemma 2.4.1. The completeness error and soundness error of Protocol 2.3 are negligible,

provided r = ω
(

logn
(b−a)2

)
copies are used.

Proof. First we observe that for each copy, with probability 1/4, V measures the quantum

state with a term sampled from the distribution π; otherwise V accepts. Thus for an instance

H, the effective Hamiltonian to verify is H̃⊗r where H̃ = 31+H
4

. Following the standard

parallel repetition theorem for QMA, we know that P ’s optimal strategy is to present the

the ground state of H̃, which is also the ground state of H.

33

With probability
(
r
t

)
(1

4
)t(3

4
)r−t, there are t consistent copies. Now for i ∈ A, we let

Xi be a binary random variable corresponding to the decision of Vi. For soundness, by

Hoeffding’s inequality9 the success probability for A such that |A| = t is

Pr[accept|A] = Pr

[
1

t

∑
i∈A

Xi ≥
c+ s

2

]

≤ Pr

[
1

t

∑
i∈A

Xi − s ≥
c− s

2

]
≤ 2e−

tg2

2 , (2.16)

where g = c− s is the promise gap. Then the overall success probability is

Pr[accept] = 2 · 4−r
r∑
t=0

(
r

t

)
3r−te−tg

2/2

= 2

(
e−g

2/2 + 3

4

)r

≤ 2(1− g2/16)r ≤ 2e−rg
2/16 (2.17)

since 1− x/2 ≥ e−x for x ∈ [0, 1] and 1− x ≤ e−x for x ≥ 0. Thus r = ω(g−2 log n) suffices

to suppress the soundness error to n−ω(1). Since g−1 = poly(n), polynomially many copies

suffice to achieve negligible soundness error.

For completeness, again by Hoeffding’s inequality,

Pr[reject|A] = Pr

[
1

t

∑
i∈A

Xi <
c+ s

2

]

≤ Pr

[
c− 1

t

∑
i∈A

Xi >
c− s

2

]
≤ 2e−

tg2

2 . (2.18)

By the same calculation as in (2.17), the completeness error is negligible if we set r =

ω(g−2 log n).
9Pr[1n

∑
iXi − µ ≥ δ] ≤ e−2tδ

2

for i.i.d. X1, . . . , Xn ∈ [0, 1].

34

Remark 2.4.1. We stress that the terms Si are sampled independently of the interaction

in the protocol. We let term(H, s) denote the deterministic algorithm that outputs a term

from H according to distribution π when provided the randomness s ∈ {0, 1}p for sufficiently

large polynomial p. For bases h ∈ {0, 1}nr and s ∈ {0, 1}p, we let αh,s,ρ denote the success

probability when P presents quantum state ρ.

We embed Protocol 2.3 into our classical verification protocol by modifying the Ma-

hadev protocol (Protocol 2.2) as follows. First, note that the measurement in random bases

h can be achieved by sending random keys, so the key generation can be done before the

parties receive the instance. In the Verdict stage, if the protocol enters a test round (i.e.,

c = 0), then V checks as in Protocol 2.2. If the protocol enters a Hadamard round (i.e.,

c = 1), V uses the secret key to compute the measurement outcome, as in check 1 of the Ver-

dict stage of Protocol 2.2. Once the outcomes are successfully computed, V samples terms

S1, . . . , Sr ← π and checks the consistent copies. Since the outcome must be computation-

ally indistinguishable from measuring a quantum state in bases h, Lemma 2.4.1 applies, and

Theorem 2.3.1 holds for our variant protocol. We refer to this variant as “the three-round

Mahadev protocol” and denote it by M.

2.5 A parallel repetition theorem for the Mahadev protocol

In a k-fold parallel repetition of M, the honest prover runs the honest single-fold

prover independently for each copy of the protocol. Meanwhile, the honest verifier runs the

single-fold verifier independently for each copy, accepting if and only if all k verifiers accept.

The completeness error clearly remains negligible. We now analyze the soundness error and

35

establish a parallel repetition theorem.

In preparation, we fix the following notation related to the Verdict stage of M. We will

refer frequently to the notation established in our description of Protocol 2.2 above, which

applies to M as well. First, the check
∧
j∈[r],`∈[n] Chk(pkj`, wj`, tj`, yj`) = 1 in a test round is

represented by a projection Πsk,t acting on registers WXY . Specifically, this is the projector

whose image is spanned by all inputs (w, t, y) that are accepted by the verifier in the Verdict

stage. Note that running Chk does not require the trapdoor sk, but the relation implicitly

depends on it. For notational convenience, we will also denote Πsk,t as Πs,sk,t, though the

projector does not depend on s.

Second, the two Hadamard round checks 1 and 2 of the Verdict stage are represented

by projectors Λsk,h,1 and Λs,sk,h,2, respectively. These two projectors commute since they

are both diagonal in the standard basis. We define the overall Hadamard round projector

Πs,sk,h := Λsk,h,1Λs,sk,h,2.

2.5.1 A lemma for the single-copy protocol

We begin by showing an important fact about the single-copy protocol: the verifier’s

accepting paths associated to the two challenges (denoted t and h for “test” and “Hadamard,”

respectively) correspond to nearly orthogonal10 projectors. Moreover, in a certain sense this

property holds even for input states that are adaptively manipulated by a dishonest prover

after they have learned which challenge will take place. This fact is essential in our analysis

of the parallel repetition of many copies in the following sections.
10Strictly speaking, the projectors are only nearly orthogonal when applied to states prepared by efficient
provers.

36

The setup. As discussed in [6], any prover P can be characterized as follows. First, pick

a state family |Ψpk〉; this state is prepared on registers WXY E after receiving pk. Here Y

is the register that will be measured in Round P1, W and X are the registers that will be

measured in Round P2, and E is the private workspace of P . Then, choose two unitaries

Ut and Uh to describe the Round P2 actions of P before any measurements, in the test

round and Hadamard round, respectively. Both Ut and Uh act on WXY E, but can only

be classically controlled on Y , as they must be implemented after P has measured Y and

sent the result to the verifier. (Of course, a cheating prover is not constrained to follow the

honest protocol, but we can nevertheless designate a fixed subsystem Y that carries their

message.) We will write P = (|Ψpk〉, Ut, Uh), where it is implicit that |Ψpk〉 is a family of

states parameterized by pk.

At the end of the protocol, the registers WXY are measured and given to the verifier.

Recall that we can view the final actions of the verifier as applying one of two measurements:

a test-round measurement or a Hadamard-round measurement. Let Πs,sk,t and Πs,sk,h denote

the “accept” projectors for those measurements, respectively. For a given prover P , we

additionally define

ΠUt
s,sk,t := U †t (Πs,sk,t ⊗ 1E)Ut ,

Π
Uh

s,sk,h := U †h(HWXΠs,sk,hHWX ⊗ 1E)Uh , (2.19)

where HWX denotes the Hadamard transform on registers WX, i.e., the Hadamard gate

applied to every qubit in those registers. These projectors have a natural interpretation:

they describe the action of the two accepting projectors of the verifier on the initial state

37

|Ψpk〉 of the prover, taking into account the (adaptive) attacks the prover makes in Round

P2.

A key lemma. We now prove a fact about the single-copy protocol. The proof is largely a

matter of making some observations about the results from [6], and then combining them in

the right way.

Recall that, after the setup phase, for any instance H of the ZX-Hamiltonian problem

(Problem 1), M begins with the verifier V making a measurement basis choice h ∈ {0, 1}nr

for all the qubits. After interacting with a prover P , the verifier either rejects or produces a

candidate measurement outcome, which is then tested as in Protocol 2.3. We let DP,h denote

the distribution of this candidate measurement outcome for a prover P and basis choice h,

averaged over all measurements and randomness of P and V . It is useful to compare DP,h

with an “ideal” distribution Dρ,h obtained by simply measuring some (nr)-qubit quantum

state ρ (i.e., a candidate ground state) according to the basis choices specified by h, with no

protocol involved.

Lemma 2.5.1. Let P = (|Ψpk〉, Ut, Uh) be a prover in M such that, for every h ∈ {0, 1}nr

and s ∈ {0, 1}p,

E
(pk,sk)←Gen(1λ,h)

[〈Ψpk|ΠUt
s,sk,t|Ψpk〉] ≥ 1− negl(n) . (2.20)

Then there exists an (nr)-qubit quantum state ρ such that, for every h, s,

E
(pk,sk)←Gen(1λ,h)

[〈Ψpk|Π
Uh

s,sk,h|Ψpk〉] ≤ αh,s,ρ + negl(n) , (2.21)

where αh,s,ρ (see Remark 2.4.1) is the success probability in the MF protocol with basis choice

38

h and quantum state ρ.

Proof. Up to negligible terms, (2.20) means that P is what Mahadev calls a perfect prover.

She establishes two results ([6, Claim 7.3] and [6, Claim 5.7]) which, when taken together,

directly imply the following fact about perfect provers. For every perfect prover P , there

exists an efficiently preparable quantum state ρ such that DP,h is computationally indistin-

guishable from Dρ,h for all basis choices h ∈ {0, 1}nr. In particular, the proof is obtained

in two steps. First, for every perfect prover, there exists a nearby “trivial prover” whose

attack in a Hadamard round commutes with standard basis measurement on the committed

state [6, Claim 5.7]. Second, for every trivial prover, the distribution is computationally

indistinguishable from measuring a consistent quantum state ρ in any basis h [6, Claim 7.3].

Mahadev shows this for exactly perfect provers, but the proofs can be easily adapted to our

“negligibly-far-from-perfect” case.

Now consider two ways of producing a final accept/reject output of the verifier. In the

first case, an output is sampled from the distribution DP,h and the verifier applies the final

checks in M. In this case, the final outcome is obtained by performing the measurement

{ΠUh

s,sk,h,1 − Π
Uh

s,sk,h} on the state |Ψpk〉, and accepting if the first outcome is observed. In

the second case, an output is sampled from the distribution Dρ,h and the verifier applies the

final checks in the MF protocol. In this case, the acceptance probability is αh,s,ρ simply by

definition. The result then follows directly.

Notice that for the soundness case, there is no state that succeeds non-negligibly in

the MF protocol. In this case, Lemma 2.5.1 implies that for perfect provers the averaged

projection E(pk,sk)←Gen(1λ,h),h,s[〈Ψpk|Π
Uh

s,sk,h|Ψpk〉] is negligible. In other words, provers who

39

succeed almost perfectly in the test round must almost certainly fail in the Hadamard round.

We emphasize that this is the case even though the prover can adaptively change their state

(by applying Ut or Uh) after learning which round will take place. This formalizes the

intuitive claim we made at the beginning of the section about “adaptive orthogonality” of

the two acceptance projectors corresponding to the two round types.

2.5.2 The parallel repetition theorem

Characterization of a prover in the k-fold protocol. We now discuss the behavior of a general

prover in a k-fold protocol. We redefine some notation, and let V be the verifier and P an

arbitrary prover in the k-fold protocol.

In the Setup phase, the key pairs (pk1, sk1), . . . , (pkk, skk) are sampled according to

the correct NTCF/NTIF distribution.11 The secret keys sk = (sk1, . . . , skk) and the corre-

sponding bases h are given to V , whereas pk = (pk1, . . . , pkk) is given to P (in the register

PK = (PK1, . . . , PKk)).

In Round P1, without loss of generality, the action of P prior to measurement is to

apply a unitary U0 =
∑

pk |pk〉〈pk|PK ⊗ (U0,pk)WXY E to the input state |pk〉PK |0〉WXY E.

Each of W,X, Y is now a k-tuple of registers, and E is the prover’s workspace. To generate

the “commitment” message to V , P performs standard basis measurement on Y . We write

|Ψpk〉WXY E =
∑

y βy|Ψpk,y〉WXE|y〉Y . When the measurement outcome is y, the side state

P holds is then |Ψpk,y〉WXE. In the following analysis of the success probability of P , we

consider the superposition |Ψpk〉WXY E instead of a classical mixture of the states |Ψpk,y〉WXE

using the principle of deferred measurement.
11Recall that the keys are sampled by choosing uniform bases h followed by running Gen(1λ, h).

40

In Round V2, after receiving the commitment y = (y1, . . . , yk) from the prover, V sends

challenge coins c := (c1, . . . , ck) ∈ {0, 1}k. For the remainder of the protocol, we take the

following point of view. We assume that P and V share access to a register Y whose state is

fixed forever to be the standard basis state y. This is clearly equivalent to the real situation,

as there P measured Y and committed to the outcome y by sending it to V .

In Round P2, without loss of generality, the action of P consists of a general operation

(that can depend on c), followed by the honest action. The general operation is some

efficient unitary Uc on WXY E. The honest action is measurement in the right basis, i.e.,

for each i, WiXi is measured in the standard basis (if ci = 0) or the Hadamard basis (if

ci = 1). Equivalently, the honest action is (i.) apply Hc
WX :=

⊗k
i=1(Hci)WiXi , i.e., for each

{i : ci = 1} apply a Hadamard to every qubit of WiXi, and then (ii.) apply standard basis

measurement.

In the Verdict stage, V first applies for each i the two-outcome measurement corre-

sponding to the Πsi,ski,ci from the single-copy protocol. The overall decision is then to accept

if the measurements accept for all i. We let

(Πs,sk,c)WXY
:=

k⊗
i=1

(Πsi,ski,ci)WiXiYi
(2.22)

denote the corresponding acceptance projector for the entire k-copy protocol. The effective

measurement on |Ψpk〉WXY E is then described by the projection

(
ΠUc
s,sk,c

)
WXY E

:= (U †c)WXY E(HcΠs,sk,c,yH
c ⊗ 1E)(Uc)WXY E . (2.23)

41

The success probability of P , which is characterized by the state |Ψpk〉 and family of unitaries

{Uc}c∈{0,1}n , is thus

E
(pk,sk)←Gen(1λ,h),h,s,c

[
〈Ψpk|ΠUc

s,sk,c|Ψpk〉
]
. (2.24)

The proof of parallel repetition. Recall that Lemma 2.5.1 states that the projectors corre-

sponding to the two challenges in M are nearly orthogonal, even when one takes into account

the prover’s adaptively applied unitaries. We show that this property persists in the k-copy

protocol. Specifically, we show that all 2k challenges are nearly orthogonal (in the same sense

as in Lemma 2.5.1) with respect to any state |Ψpk〉 and any post-commitment unitaries Uc

of the prover.

This can be explained informally as follows. For any two distinct challenges c 6= c′,

there exists a coordinate i such that ci 6= c′i, meaning that one enters a test round in that

coordinate while the other enters a Hadamard round. In coordinate i, by the single-copy

result (Lemma 2.5.1), the prover who succeeds with one challenge should fail with the other.

A complication is that, since we are dealing with an interactive argument, we must show

that a violation of this claim leads to an efficient single-copy prover that violates the single-

copy result. Once we have shown this, we can then apply it to any distinct challenge pairs

c 6= c′. It then follows that we may (approximately) decompose |Ψpk〉 into components

accepted in each challenge, each of which occurs with probability 2−k. We can then use this

decomposition to express the overall success probability of P in terms of this decomposition.

As |Ψpk〉 is of course a normalized state, it will follow that the overall soundness error is

negligibly close to 2−k.

42

The “adaptive orthogonality” discussed above is formalized in the following lemma.

Recall that any prover in the k-fold parallel repetition of M can be characterized by a state

family {|Ψpk〉}pk that is prepared in Round P1 and a family of unitaries {Uc}c∈{0,1}k that are

applied in Round P2.

Lemma 2.5.2. Let P be a prover in the k-fold parallel repetition of M that prepares |Ψpk〉

in Round P1 and performs Uc in Round P2. Let a, b ∈ {0, 1}k such that a 6= b and choose

i such that ai 6= bi. Then there is an (nr)-qubit quantum state ρ such that for every basis

choice h and randomness s,

E
(pk,sk)←Gen(1λ,h)

[
〈Ψpk|ΠUb

s,sk,bΠ
Ua
s,sk,a + ΠUa

s,sk,aΠ
Ub
s,sk,b|Ψpk〉

]
≤ 2α

1/2
hi,si,ρ

+ negl(n) , (2.25)

where αhi,si,ρ (see Remark 2.4.1) is the success probability with ρ conditioned on the event

that hi is sampled.

Proof. Since we are proving an upper bound for a quantity that is symmetric under the

interchange of b and a, we can assume that bi = 0 and ai = 1 without loss of generality.

We first claim that there exists a quantum state ρ such that

E
(pk,sk)←Gen(1λ,h)

[
〈Ψpk|ΠUb

s,sk,bΠ
Ua
s,sk,aΠ

Ub
s,sk,b|Ψpk〉

]
≤ αhi,si,ρ + negl(n) (2.26)

for all basis choices h and randomness s. For a contradiction, suppose that is not the case.

Then there exists a basis choice h∗ and s∗ and a polynomial η such that for every state ρ,

E
(pk,sk)←Gen(1λ,h∗)

[
〈Ψpk|ΠUb

s∗,sk,bΠ
Ua
s∗,sk,aΠ

Ub
s∗,sk,b|Ψpk〉

]
> αh∗i ,s∗i ,ρ + 1/η(n) . (2.27)

43

We show that this implies the existence of an efficient prover P∗ for the single-copy three-

round Mahadev protocol M who violates Lemma 2.5.1. Define the following projector on

WXY E:

Σa := U †a(Ha ⊗ 1E)((1⊗ · · · ⊗ 1⊗ Π⊗ 1⊗ · · · ⊗ 1)⊗ 1E)(Ha ⊗ 1E)Ua . (2.28)

Here Π denotes the single-copy protocol acceptance projector for the Hadamard round,

with key ski and basis choice h∗i , s∗i . In the above, Π acts on the ith set of registers, i.e.,

WiXiYi. The projector Σa corresponds to performing the appropriate Hadamard test in

the ith protocol copy, and simply accepting all other copies unconditionally. It follows that

ΠUa
s,sk,a � Σa, and we thus have

E
(pk,sk)←Gen(1λ,h∗)

[
〈Ψpk|ΠUb

s∗,sk,bΣaΠ
Ub
s∗,sk,b|Ψpk〉

]
≥ E

(pk,sk)←Gen(1λ,h∗)

[
〈Ψpk|ΠUb

s∗,sk,bΠ
Ua
s∗,sk,aΠ

Ub
s∗,sk,b|Ψpk〉

]
> αh∗i ,s∗i ,ρ + 1/η. (2.29)

The single-copy prover P∗ interacts with the single-copy verifier V∗ as follows.

• In the Setup phase, after receiving the public key pk∗, initialize k − 1 internally sim-

ulated verifiers, and set pk to be the list of their keys, with pk∗ inserted in the ith

position. Let h = (h1, . . . , hk) be the basis choices, and note that all but hi are known

to P∗.

• Using the algorithms of P , perform the following repeat-until-success (RUS) procedure

44

for at most q = η4 steps.

1. Prepare the state |Ψpk〉 on registers WXY E, and then apply the unitary Ub.

2. Apply the measurement determined by Πs,sk,b (defined in (2.22)); for index i we

can use pk∗ because bi = 0; for the rest we know the secret keys.

3. If the measurement rejects, go to step (1.), and otherwise apply U †b and output

the state.

If the RUS procedure does not terminate within q steps, then P∗ prepares a state12

|Φ∗pk〉 by performing Samp coherently on |0n〉W (see Round 2 of Protocol 2.2).

Note that if P∗ terminates within q steps, the resulting state is

|Φpk〉 :=
ΠUb
s∗,sk,b|Ψpk〉

‖ΠUb
s∗,sk,b|Ψpk〉‖

; (2.30)

otherwise |Φ∗pk〉 is prepared.

• For the Round P1 message, measure the Yi register of |Φpk〉 and send the result to V∗.

• When V∗ returns the challenge bit w in Round 3, if w = bi = 0, apply Ub (resp. 1) to

|Φpk〉 (resp. |Φ∗pk〉), and otherwise apply Ua. Then behave honestly, i.e., measure WiXi

in computational or Hadamard bases as determined by w, and send the outcomes.

By the RUS construction and the fact that bi = 0, the state |Φpk〉 or |Φ∗pk〉 is in the image of

the test-round acceptance projector in the ith coordinate. This means that, when V∗ enters
12To pass the test round, any efficiently preparable state suffices.

45

a test round, i.e., w = 0 = bi, P∗ is accepted perfectly. In other words, P∗ is a perfect

prover13 and thus satisfies the hypotheses of Lemma 2.5.1.

Now consider the case when V∗ enters a Hadamard round, i.e., w = 1. Let

Ω := {(pk, sk) : 〈Ψpk|ΠUb
s∗,sk,b|Ψpk〉 > q−1/2} (2.31)

denote the set of “good” keys. For (pk, sk) ∈ Ω, the probability of not terminating within

q = poly(n) steps is at most (1− q−1/2)q ≤ e−
√
q. Therefore, the success probability of RUS

for the good keys is 1− negl(n). Thus we have

E
sk|Ω

[〈Φpk|Σa|Φpk〉] Pr[Ω] ≤ αh∗i ,s∗i ,ρ + negl(n) (2.32)

where we let EX|E[f(X)] := 1
Pr[E]

∑
x∈E p(x)f(x) denote the expectation value of f(X) con-

ditioned on event E for random variable X over finite set X with distribution p and function

f : X → [0, 1]. Now we divide (2.29) into two terms and find

αh∗i ,s∗i ,ρ + η−1 < E
(pk,sk)

[
〈Ψpk|ΠUb

s∗,sk,bΣaΠ
Ub
s∗,sk,b|Ψpk〉

]
= Pr[Ω] E

(pk,sk)|Ω

[
〈Ψpk|ΠUb

s∗,sk,bΣaΠ
Ub
s∗,sk,b|Ψpk〉

]
+ Pr[Ω] E

(pk,sk)|Ω

[
〈Ψpk|ΠUb

s∗,sk,bΣaΠ
Ub
s∗,sk,b|Ψpk〉

]
≤ Pr[Ω] E

(pk,sk)|Ω

[
〈Ψpk|ΠUb

s∗,sk,bΣaΠ
Ub
s∗,sk,b|Ψpk〉

]
+ q−1/2

≤ αh∗i ,ρ + negl(n) + q−1/2. (2.33)

13While we used Πh∗,sk,b in the RUS procedure, and h∗i is (almost always) not equal to the hi selected by
V∗, the result is still a perfect prover state. This is because, as described in Protocol 2.2, the acceptance
test in the test round is independent of the basis choice.

46

Since q = η4, this is a contradiction. Therefore (2.26) holds for every h, s, i.e.,

E
(pk,sk)←Gen(1λ,h)

[〈Ψpk|ΠUb
s,sk,bΠ

Ua
s,sk,aΠ

Ub
s,sk,b|Ψpk〉] ≤ αhi,si,ρ + negl(n). (2.34)

It then follows that

E
(pk,sk)←Gen(1λ,h)

[
〈Ψpk|ΠUb

h,sk,bΠ
Ua
h,sk,a + ΠUa

h,sk,aΠ
Ub
h,sk,b|Ψpk〉

]
= 2 E

(pk,sk)←Gen(1λ,h)

[
Re(〈Ψpk|ΠUb

h,sk,bΠ
Ua
h,sk,a|Ψpk〉)

]
≤ 2 E

(pk,sk)←Gen(1λ,h)

[
|〈Ψpk|ΠUb

h,sk,bΠ
Ua
h,sk,a|Ψpk〉|

]
≤ 2 E

(pk,sk)←Gen(1λ,h)

[
〈Ψpk|ΠUb

h,sk,bΠ
Ua
h,sk,aΠ

Ub
h,sk,b|Ψpk〉1/2

]
≤ 2 E

(pk,sk)←Gen(1λ,h)

[
〈Ψpk|ΠUb

h,sk,bΠ
Ua
h,sk,aΠ

Ub
h,sk,b|Ψpk〉

]1/2

≤ 2α
1/2
hi,si,ρ

+ negl(n) (2.35)

as claimed.

We remark that this adaptive orthogonality is guaranteed under a computational assumption.

Assuming that no efficient quantum adversary can break the underlying security properties

based on plain LWE, the projections are pairwise orthogonal in the sense of averaging over

the key pairs (pk, sk) and with respect to any quantum state |Ψpk〉 prepared by an efficient

quantum circuit.

We also emphasize that, in Lemma 2.5.2, for each pair a 6= b the left-hand side is

upper-bounded by the acceptance probability of measuring some state ρ in the basis hi, and

the quantum state ρ may be different among distinct choices of (a, b) and i. This implies

47

that if P succeeds with one particular challenge perfectly14 when we average over h and s,

Lemma 2.5.2 and standard amplification techniques (see Section 2.4) imply that it succeeds

on challenge b 6= a with probability at most E(pk,sk)←Gen(1λ)〈Ψpk|Πs,sk,b|Ψpk〉 ≤ negl(n). We

note that this strategy leads to acceptance probability at most 2−k + negl(n).

Unfortunately, the above observation does not rule out that P can succeed on several

challenges with appreciable probability, achieving a better overall success probability. For

instance, one could try to implement this by coherently simulating distinct provers who

perfectly win different challenges.

We rule out this possibility by showing that if the projectors are pairwise nearly or-

thogonal with respect to a quantum state ρ, then the above strategy is optimal with respect

to ρ. Since pairwise orthogonality holds with respect to any efficiently preparable quantum

state by Lemma 2.5.2, our parallel repetition theorem follows.

First, we state a key technical lemma.

Lemma 2.5.3. Let A1, . . . , Am be projectors and |ψ〉 be a quantum state. Suppose there are

real numbers δij ∈ [0, 2] such that 〈ψ|AiAj +AjAi|ψ〉 ≤ δij for all i 6= j. Then 〈ψ|A1 + · · ·+

Am|ψ〉 ≤ 1 +
(∑

i<j δij
)1/2.

Proof. Let α := 〈ψ|A1 + . . .+ Am|ψ〉. We have

α2 ≤ 〈ψ|(A1 + · · ·+ Am)2|ψ〉

= α +
∑
i<j

〈ψ|AiAj + AjAi|ψ〉 (2.36)

≤ α +
∑
i<j

δij (2.37)

14More concretely, if for some fixed a, Πs,sk,a|Ψpk〉 = |Ψpk〉.

48

The first inequality holds since |ψ〉〈ψ| � 1, and thus

〈ψ|(A1 + · · ·+ Am)|ψ〉〈ψ|(A1 + · · ·+ Am)|ψ〉 ≤ 〈ψ|(A1 + · · ·+ Am)2|ψ〉. (2.38)

The equality (2.36) holds since each Ai is idempotent, and thus

〈ψ|(A1 + · · ·+ Am)2|ψ〉 = 〈ψ|A2
1 + · · ·+ A2

m|ψ〉+
∑
i<j

〈ψ|AiAj + AjAi|ψ〉

= 〈ψ|A1 + · · ·+ Am|ψ〉+
∑
i<j

〈ψ|AiAj + AjAi|ψ〉. (2.39)

Now observe that for β > 0, x2 ≤ x+ β implies x ≤ 1
2
(1 +

√
1 + 4β) ≤ 1

2
(1 + (1 + 2

√
β)) =

1 +
√
β. Thus α ≤ 1 +

√∑
i<j δij as claimed.

Observe that when the projectors are mutually orthogonal, we have A1 + · · · + Am � 1

and the bound clearly holds. Lemma 2.5.3 describes a relaxed version of this fact. In our

application, the projectors and the state are parameterized by the key pair, and we use this

bound to show that the average of pairwise overlaps is small. We are now ready to establish

our parallel repetition theorem.

Lemma 2.5.4. Let k be a positive integer and let {Uc}c∈{0,1}k be any set of unitaries that

may be implemented by P after the challenge coins are sent. Let |Ψpk〉 be any state P holds

in the commitment round, and suppose P applies Uc followed by honest measurements when

the coins are c. Then there exists a negligible function ε such that V1, . . . ,Vk accept P with

probability at most 2−k + ε(n).

49

Proof. The success probability of any prover in the k-fold protocol is

Pr[success] = 2−k E
(pk,sk)←Gen(1λ,h),h,s

[〈Ψpk|
∑
c

ΠUc
s,sk,c|Ψpk〉] (2.40)

where h, s are drawn from uniform distributions.

Define a total ordering on {0, 1}k such that a < b if ai < bi for the smallest index i

such that ai 6= bi. Then by Lemma 2.5.3, we have

Pr[success] ≤ 2−k + 2−k E
h,s

[∑
a<b

E
(pk,sk)←Gen(1λ,h)

[〈Ψpk|ΠUa
s,sk,aΠ

Ub
s,sk,b + ΠUb

s,sk,bΠ
Ua
s,sk,a|Ψpk〉]

]1/2

.

(2.41)

By Lemma 2.5.2, there exists a negligible function δ such that

E
(pk,sk)←Gen(1λ,h)

[〈Ψpk|ΠUa
s,sk,aΠ

Ub
s,sk,b + ΠUb

s,sk,bΠ
Ua
s,sk,a|Ψpk〉] ≤ 2α

1/2
hi(a,b),ρab

+ δ (2.42)

for every pair (a, b). Here i(a, b) is the smallest index i such that ai 6= bi and ρab is the

reduced quantum state associated with a, b, as guaranteed by Lemma 2.5.2. Let µ be the

50

soundness error of the MF protocol. We have

Pr[success] ≤ 2−k + 2−k E
h,s

[∑
a<b

(
2α

1/2
hi(a,b),si(a,b),ρab

+ δ
)]1/2

≤ 2−k + 2−k E
h,s

[∑
a<b

2α
1/2
hi(a,b),si(a,b),ρab

]1/2

+ 2−k

√(
2k

2

)
δ1/2

≤ 2−k + 2−k

[∑
a<b

2

(
E
h,s

[αhi(a,b),si(a,b),ρab]

)1/2
]1/2

+ δ1/2

≤ 2−k + 2−k

[∑
a<b

2µ1/2

]1/2

+ δ1/2

≤ 2−k + 2−k
[
2k(2k − 1)µ1/2

]1/2
+ δ1/2

≤ 2−k + µ1/4 + δ1/2 (2.43)

where the second and third inequalities hold by Jensen’s inequality. Amplifying the sound-

ness of the MF protocol, µ is negligible using polynomially many copies by Lemma 2.4.1.

Thus the soundness error is negligibly close to 2−k.

We note that Mahadev shows the soundness error for a single-copy protocol is negligibly

close to 3/4 [6], whereas Lemma 2.5.4 implies the error can be upper bounded by 1/2 +

negl(n). Mahadev obtains soundness error 3/4 + negl(n) by considering a general prover P

who, for each basis h, succeeds in the test round (characterized by Πh,sk,t) with probability

1−ph,t, in the first stage of the Hadamard round (characterized by Λh,sk,h,1) with probability

1 − ph,h, and in the second stage of the Hadamard round (characterized by Λh,sk,h,2) with

probability at most √ph,t + ph,h + αh,ρ + negl(n) for some state ρ [6, Claim 7.1]. These

contributions are combined by applying the triangle inequality for trace distance. This

analysis is loose since Λh,sk,h,1 and Λh,sk,h,2 commute, and P must pass both stages to win

51

the Hadamard round.

Finally, Lemma 2.5.4 immediately implies the following theorem.

Theorem 2.5.1. Let Mk be the k-fold parallel repetition of the three-round Mahadev protocol

M. Under the LWE assumption, the soundness error of Mk is at most 2−k + negl(n).

We conclude with the following three-round protocol.

Theorem 2.5.2. For r = ω(logn
(b−a)2

) and k = ω(log n), Protocol 2.4 is a quantum prover

interactive argument for zxa,b with negligible completeness error and soundness error.

2.6 A classical zero-knowledge argument for QMA

To turn Protocol 2.4 into a zero-knowledge protocol, we first consider an intermediate

protocol in which P first encrypts the witness state |ψ〉⊗rk with a quantum one-time pad.

Then in Round P2, P sends the one-time pad key β, γ along with the response u. In the

verdict stage, V uses the keys to decrypt the response. We denote the verdict function as

verdict′(H, s, sk, y, c, β, γ, u) := verdict(Hβ,γ, s, sk, y, c, u) (2.44)

where Hβ,γ := XβZγHZγXβ is the instance conjugated by the one-time pad.

Obviously, this is not zero-knowledge yet, as the verifier can easily recover the original

measurement outcomes on the witness state. To address this issue, we take the approach of

[63, 66] and invoke a NIZK protocol for NP languages. The language L that we consider is

52

Setup. V samples random bases h ∈ {0, 1}nrk and runs the key generation algorithm
(pk, sk) ← Gen(1λ, h). V samples a string s ∈ {0, 1}prk uniformly. V sends
the public keys pk to P .

Round P1. P queries Samp coherently on the witness state |ψ〉⊗rk, followed by a standard
basis measurement on register Y . The outcome is sent to V .

Round V2. V samples c1, . . . , ck ← {0, 1} and sends c = (c1, . . . , ck) to P .
Round P2. For each i ∈ [k], j ∈ [r], ` ∈ [n],

1. if ci = 0, P performs a standard basis measurement and gets uij` =
(wij`, tij`);

2. if ci = 1, P performs a Hadamard basis measurement and gets uij` =
(wij`, tij`).

P sends u to V .
Verdict. For each i ∈ [k],

1. If ci = 0, V accepts iff
∧
j,` Chk(pkj`, wj`, tj`, yj`) = 1.

2. If ci = 1, V records the set Ai ⊆ [r] of consistent copies. For each j ∈ Ai
and ` ∈ [n]:

(a) If hij` = 0, run (bij, xbij ,yij) ← InvG(skij, yij). Set eij` = bij`; if
hij = 1, compute x0,yij` , x1,yij` and eij` = tij` · (x0,yij` ⊕ x1,yij`)⊕wij.
If any of the algorithms rejects or any of tij` is trivial (e.g., tij` = 0,
see [6]), V sets vij = 0; otherwise enters the next step.

(b) V computes the terms Sij = term(H, sij) for each i ∈ [k], j ∈ [r].
Set vij = 1 if (eij`)`∈Sij satisfies M−mSij and vij = 0 otherwise.

Then V sets vi = 1 if
∑

j∈Ai vij ≥ (2− a− b)|Ai|/4 and 0 otherwise.

V accepts iff vi = 1 for every i ∈ [k].
The verdict function is verdict(H, s, sk, y, c, u) :=

∧k
i=1 vi.

Protocol 2.4: Verification with instance-independent setup.

defined as follows:

L := {(H, s, sk, ξ, y, c, χ) : ∃ τ = (β, γ, u, r1, r2),

ξ = commit(u; r1) ∧ χ = commit(β, γ; r2)

∧ verdict′(H, s, sk, y, c, β, γ, u) = 1}, (2.45)
53

where r1, r2 are the randomness for a computationally secure bit commitment scheme (see

Section 2.2.1). However, this alone is insufficient since, to agree on an instance without

introducing more message exchanges, V must reveal sk, s before P sends a NIZK proof.

Revealing sk, s enables a simple attack on soundness: P can ensure the verifier accepts all

instances by using the secret key to forge a valid response u, committing to it, and computing

the NIZK proof.

The solution is to invoke a quantum-secure classical FHE scheme and to let P homo-

morphically compute a NIZK proof. This requires P to only use an encrypted instance. In

the setup phase, P is given the ciphertexts csk = FHE.Enchpk(sk) and cs = FHE.Enchpk(s).

Next, in Round P2, P computes cx = FHE.Enchpk(x) where x := (H, s, sk, ξ, y, c, χ) since

the partial transcript (y, c, ξ, χ) has already been fixed. P then computes

ce = FHE.Evalhpk(NIZK.P, cc, cx, cτ) = FHE.Enchpk(NIZK.P(crs, x, τ)), (2.46)

where cτ = FHE.Enchpk(τ), and sends ce to V . Finally, V decrypts the encrypted NIZK

proof ce and outputs NIZK.V(crs, x, e). The above transformation yields a three-message

zero-knowledge protocol for quantum computation with trusted setup from a third party,

described as follows.

2.6.1 Completeness and soundness

To prove soundness, we consider the following hybrid protocols:

H0: Protocol 2.4.

54

The algorithm setup takes two integers N,M as input, and outputs two strings stV , stP
with the following steps.

1. Run crs← NIZK.Setup(1λ).

2. Sample uniform bases h← {0, 1}N and run (pk, sk)← Gen(1λ, h).

3. Run the FHE key generation algorithm (hpk, hsk)← FHE.Gen(1λ).

4. Run encryption on the secret key csk ← FHE.Enchpk(sk).

5. Choose keys (β, γ) and randomness r1 uniformly and compute ξ = commit(β, γ; r1).

6. Sample a random string s1, . . . , sM ∈ {0, 1}p (see Remark 2.4.1) uniformly and
compute its encryption cs = FHE.Enchpk(s).

Output stV = (crs, sk, hsk, hpk, ξ) and stP = (crs, pk, hpk, csk, cs, β, γ, r1).

Protocol 2.5: The setup phase setup(λ,N,M).

Setup. Run stV , stP ← setup(λ, nrk, rk) (defined in Protocol 2.5). Send stV =
(crs, sk, hsk, hpk, ξ) to V and stP = (crs, pk, hpk, csk, cs, β, γ, r1) to P .

Round P1. P aborts if pk is invalid. P queries Samp coherently on the witness state
XβZγ|ψ〉⊗rk.

Round V2. V samples c1, . . . , ck ← {0, 1} and sends c = (c1, . . . , ck) to P .
Round P2. For each i ∈ [k], j ∈ [r], ` ∈ [n],

1. if ci = 0, P performs a standard basis measurement and gets uij` =
(wij`, tij`).

2. if ci = 1, P performs a Hadamard basis measurement and gets uij` =
(wij`, tij`).

P sends χ := commit(u; r2) and

ce := FHE.Evalhpk(NIZK.P, cc, cx, cτ), (2.47)

where cc, cx and cτ are the encryptions of crs, x and τ respectively.

Verdict. V accepts if NIZK.V(crs, x,FHE.Dechsk(ce)) = 1.

Protocol 2.6: An interactive zero-knowledge protocol for QMA.

55

H1: Same as H0 except that in the setup phase, P receives uniform one-time pad keys

β, γ and randomness r1 for the commitment and V receives the commitment ξ =

commit(β, γ, r1). Moreover, P reveals β, γ and r1 in Round P2. V accepts if verdict′

returns 1 and ξ = commit(β, γ, r1).

H2: Same as H1 except that P also sends the commitment to u with message χ, and

the randomness r2. V accepts if verdict′ returns 1, ξ = commit(β, γ, r1), and χ =

commit(u, r2).

H3: Same asH2 except that in the setup phase, both V and P also receive csk = FHE.Enchpk(sk)

and cs = FHE.Enchpk(s).

H4: Same as H3 except that in the setup phase both V and P get crs and in Round P3, P

sends ce and in Verdict, V accepts if ce is a valid ciphertext and NIZK.V(crs, x,Dechsk(ce)) =

1. Notice that this is Protocol 2.6.

Let Ai be the maximum acceptance probability of the prover in the hybrid Hi among

all no-instances. We show that Ai ≤ negl(n) for all i ∈ {0, . . . , 4}. Notice that A0 ≤ negl(n)

by Theorem 2.5.2.

Lemma 2.6.1. A1 ≤ negl(n).

Proof. Let the soundness error of H0 be ε = negl(n). First we introduce a hybrid protocol

H0.1, which is the same as H1 except that in the setup phase, both P and V receive a uniform

key pair (β, γ) (and the instance H), and V verifies the instance Hβ,γ, which has the same

ground state energy as H.

56

Conditioned on any key pair (β, γ), let the success probability of any prover P be εβ,γ

in H0.1. Furthermore, since we have fixed a pair (β, γ), H0.1 is exactly the same as H0 except

that H is replaced with Hβ,γ. Thus we conclude that εβ,γ ≤ ε. The success probability of P

is Eβ,γ[εβ,γ] ≤ ε, and thus H0.1 has soundness error ε.

Next, we observe that H1 is the same as H0.1 except that V receives a commitment ξ to

a uniform key pair (β, γ) in the setup phase, and P reveals the key pair in Round P2. Since

V ’s only message (Round V2) does not depend on the key pair in either H0.1 or H1 (public

coins) and the commitment is perfectly binding (and therefore the prover cannot change the

values of β and γ depending on the verifier’s challenge), in the reduction, V does not reject

with higher probability if V knows the keys in an earlier step.

Lemma 2.6.2. A2 ≤ negl(n).

Proof. The difference between H1 and H2 is whether P sends a commitment to u in Round

P2, and V checks if χ is a commitment to u. Since the probability can only become smaller

under this change, the success probability in H2 is negligible.

Lemma 2.6.3. A3 ≤ negl(n).

Proof. Let us suppose that there is a prover who wins H3 with non-negligible probability ε.

We can construct an adversary in H2 that simulates such a prover by providing encryptions

of (0, 0) instead of (s, sk). By the security of the FHE scheme, such an adversary cannot

distinguish both ciphertexts, and therefore H3 would still make the verifier accept with

probability at least ε − negl(n). In this case the adversary in H2 would succeed with the

same probability, which is a contradiction.

Lemma 2.6.4. A4 ≤ negl(n).

57

Proof. In H3, by the perfect binding property of the commitment scheme, for an accept-

ing view x = (H, s, sk, ξ, y, c, χ), there is a unique witness τ = (u, β, γ, r1, r2) such that

verdict′(x, τ) = 1; otherwise x is unsatisfiable. Since no efficient quantum prover can gen-

erate (ξ, y, χ) such that x ∈ L except with negligible probability (otherwise it would be

possible for a prover in H3 to succeed with non-negligible probability), for any prover P and

H ∈ zxno,

Pr
s,sk,c

[(ξ, y, χ)← P : (H, s, sk, ξ, y, c, χ) /∈ L] > 1− δ (2.48)

for some negligible function δ.

By the soundness property of the NIZK scheme, no bounded provers could then provide

a proof that makes the verifier accept such a no instance except with negligible probability.

The fact that the NIZK is encrypted does not change this.

Theorem 2.6.1. Protocol 2.6 has negligible completeness and soundness errors.

Proof. The completeness follows from the correctness of FHE, the completeness of NIZK, and

the completeness of Protocol 2.4. For soundness, we note that H4 is indeed Protocol 2.6. By

Lemma 2.6.4, the soundness error is negligible.

2.6.2 The zero-knowledge property

To show Protocol 2.6 is zero-knowledge, we consider the following simulator.

Finally, S outputs (stV , ξ, y, c, χ, ce).

To prove zero-knowledge, we consider an intermediate (quantum) simulator SQ that

58

Setup. S samples pair stV , stP according to the correct distributions.

P1. For each bit, S samples random bij`, xij` and queries the function fpkij` to
get a sample yij`. S computes ξ = commit(β, γ; r1) for random β and γ and
feeds V∗ with y.

V2. S queries V∗2 to get coins c = (c1, . . . , ck).

P2. S uses stV to compute a valid response u.a S computes the commitment
χ = commit(u; r2) and ce = FHE.Enchpk(NIZK.S(x)).

aThe response u is computed as follows: for each i such that ci = 0, S sets uij` = (bij`, xij`). For
each i such that ci = 1, S computes the terms Sij = term(H, sij). For each copy i, j such that Sij is
consistent with hij , do the following: S samples nontrivial tij` uniformly and uses the secret key skij`
to compute the hardcore bit oij` = tij` · (x0yij` ⊕x1yij`). Then for each copy i, j and qubits `1, `2 ∈ Sij
such that Sij`1 = X (and Sij`2 = Z), set b′ij`2 randomly and b′ij`1 = βij` ⊕ bij`2 ⊕

1−mSij

2 ; for ` /∈ Sij ,
samples b′ij` uniformly. The response uij` = (b′ij` ⊕ oij` ⊕ γij`, tij`). For inconsistent copies, S samples
a random response.

Protocol 2.7: The simulator S(H)V
∗
2 .

simulates the interaction between P and V∗, but that sets the last message as ce = FHE.Enchpk(NIZK.S(x))

instead of the NIZK proof.

Lemma 2.6.5. The output distributions of the original protocol and SQ are computationally

indistinguishable.

Proof. We prove this by showing an intermediate quantum simulator as follows:

1. S̃0: A quantum simulator that fully simulates P and V in the original protocol.

2. S̃1: Same as S̃0, except that S̃1 sets ce = FHE.Enchpk(NIZK.P(crs, x, τ)), instead of

computing it homomorphically (this is possible since the simulator has access to the

private keys).

3. S̃2: Same as S̃1, except that S̃2 sets ce = FHE.Enchpk(NIZK.S(x)). Notice that this is

SQ.

59

The output distribution of S̃0 is indistinguishable from the output of S̃1 by the circuit

privacy property of the FHE scheme and that the encryption of sk and s are provided by a

trusted party.

The output distribution of S̃1 is indistinguishable from the output of S̃2 by the com-

putational zero-knowledge property of NIZK.

Lemma 2.6.6. The output distributions of SQ and S are computationally indistinguishable.

Proof. The main difference between the protocols is that the instance x for the NP language

L is generated by the quantum simulator SQ, who honestly measures the quantum witness.

Here again we introduce an intermediate step S̃Q which is the same as SQ but the commitment

ξ′ = commit(β′, γ′; r1) is provided instead of the commitment of the one-time pad key β, γ,

for uniformly independently random β′ and γ′.

Notice that the output distribution of SQ is computationally indistinguishable from

the output of S̃Q from the hiding property of the commitment scheme, and we just need to

argue now that the output of S̃Q is computationally indistinguishable from the output of S.

Since the last message is obtained by homomorphic evaluation of NIZK.S on the encryp-

tion of crs and x, it suffices to show the instances from the simulators are computationally

indistinguishable.

Notice that in S̃Q, ξ′ is independent of the other parts of the message, and in particular

there is no information leaked from β and γ that were used to one-time pad the state. In

this case, the distribution of the output Samp on the maximally mixed state, i.e., for each

qubit (i, j, `) ∈ [k]× [r]× [n], yij` is obtained by measuring Samp(pk,1/2), is negligibly close

60

to

1

2|X |
∑

b∈{0,1}

∑
x,x′∈X

|b〉〈b|Wij`
⊗ |x〉〈x′|Xij` ⊗ |ψfpk(b,x)〉〈ψfpk(b,x′)|Yij` . (2.49)

Measuring register Yij`, by the injective pair property, there exists a unique x such that y

lies in the support of fpk(b, x), and thus upon measurement the state collapses to

1

2|X |
∑
b,x

∑
y

fpk(b, x)(y)|b〉〈b|Wij`
⊗ |x〉〈x|Xij` ⊗ |y〉〈y|Yij` , (2.50)

which is identical to the state obtained by querying fpk on uniform b, x. This implies that

the marginal distributions of y on the two experiments are statistically close. By the hiding

property of the commitment scheme, the distributions over ξ are computationally indistin-

guishable.15

In Round V2, since the distribution over c depends on stV , ξ, y, the distributions over

(stV , ξ, y, c) are computationally indistinguishable.

In Round P2, by the hiding property, conditioned on (stV , ξ, y, c), the distributions over

χ are computationally indistinguishable.16

From Lemma 2.6.5 and Lemma 2.6.6, we conclude the following theorem.

Theorem 2.6.2. Assuming the existence of a non-interactive bit commitment scheme with

perfect binding and computational hiding, Protocol 2.6 is zero-knowledge.
15Note that y of S is independent of β, γ, whereas in Protocol 2.6, y, (β, γ) may not be independent; for
example, consider the special case where the witness is |ψ〉 = |0n〉.

16Namely, the commitment to a response sampled from P’s witness state is computationally indistinguishable
from a deterministically computed response by S.

61

2.7 Round reduction by Fiat-Shamir transformation

In this section we show that the Fiat-Shamir transformation can be used make the

k-fold parallel three-round Mahadev protocol M non-interactive with a setup phase, while

keeping both the completeness and the soundness errors negligible. This will also be the case

for the zero-knowledge variant of the same, i.e., Protocol 2.6.

2.7.1 Fiat-Shamir for Σ-protocols in the QROM

The Fiat-Shamir (FS) transformation turns any public-coin three-message interactive

argument, also called a Σ-protocol, into a single-message protocol in the random oracle model

(ROM). A Σ-protocol consists of the following type of interaction between V and P :

V and P receive an input x.

Round 1. P sends a message y (called the commitment).

Round 2. V samples a random c (called the challenge) uniformly from a finite set C.
Round 3. P responds with a message m (called the response).

Verdict. V outputs V (x, y, c,m), where V is some Boolean function.

Protocol 2.8: A Σ-protocol for a language L.

In the Fiat-Shamir transformation, the prover generates their own challenge by making

a query to hash function H, and then computing their response m as usual. The transformed

protocol thus does not require V to send any messages.

In the standard approach, one proves that the Fiat-Shamir transformation preserves

soundness in the ROM. In this idealized cryptographic model, all parties receive oracle

62

VFS and PFS receive an input x and are given access to a random oracle H.

Round 1. PFS sends a message (y,m).

Verdict. VFS outputs V (x, y,H(x, y),m).

Protocol 2.9: The FS-transformed protocol for L.

access to a uniformly random function H. Against quantum adversaries, there is a well-

known complication: a quantum computer can easily evaluate any actual instantiation of H

(with a concrete public classical function) in superposition via

UH : |x, y〉|z〉 7→ |x, y〉|z ⊕H(x, y)〉 . (2.51)

We thus work in the Quantum Random Oracle Model (QROM), in which all parties receive

quantum oracle access to UH.

While this is nontrivial to prove, the Fiat-Shamir transformation remains secure in

the QROM, up to some mild conditions on the Σ-protocol [64]. The proof proceeds by a

reduction that uses a successfully cheating prover AH in the FS-transformed protocol to

build a successfully cheating prover S in the Σ-protocol. This can actually be done in a

black-box way, so that S only needs to query A.

We let Y,C,M,E denote the registers storing the commitment, challenge, response,

and prover workspace, respectively. A q-query prover AH is characterized by a sequence of

unitaries A0, A1, . . . , Aq on registers Y,C,M,E. After i queries, it is in the state

|ψHi 〉 := AiUHAi−1UH . . . A1UHA0|0〉Y CME . (2.52)

63

In a normal execution, AH first prepares |ψHq 〉, then measures Y andM in the standard basis

and sends the outcome to VFS (see Protocol 2.9). The success probability is

Pr
H

[V (x, y,H(x, y),m) = 1, (y,m)← AH(x)]. (2.53)

The prover SA begins by internally instantiating a quantum-secure pseudorandom

function17 F [78]. It then chooses a random index i ∈ {0, . . . , q} and prepares the state

|ψFi 〉. Note that the queries of A are answered using F . Next, the simulator performs a

standard basis measurement on register Y and sends the outcome y to V . After V returns a

random challenge Θ, SA constructs a reprogrammed oracle, denoted by F ∗Θy, with

F ∗Θy(x, y′) =

Θ if y′ = y

F(x, y′) otherwise

(2.54)

which will be used for the remaining simulation of A. SA then tosses a random coin b and

performs the following:

1. If b = 0, SA runs A with the reprogrammed oracle F ∗Θy for query i+ 1, . . . , q.

2. If b = 1, SA runs A with the original oracle F for query i + 1 and with F ∗ Θy for

query i+ 2, . . . , q.

To generate the message to V , SA measures registers Y,M and obtains the outcomes y′′,m.

If y′′ 6= y then SA aborts; otherwise SA outputs the measurement outcome (y,m). The
17If an upper bound on q is known, a 2q-wise independent function would suffice.

64

success probability of SA is

Pr
Θ

[V (x, y,Θ,m) = 1 : (y,m)← 〈SA,Θ〉], (2.55)

where 〈SA,Θ〉 denotes the interaction between V , who sends a challenge Θ, and SA in the

Σ-protocol. Theorem 2.7.1 by [64] establishes that the success probabilities of SA and AH

are polynomially related.

Theorem 2.7.1 (Quantum security of Fiat-Shamir [64, Theorem 2]). For every QPT prover

AH in Protocol 2.9, there exists a QPT prover S for the underlying Σ-protocol such that

Pr
Θ

[V (x, y,Θ,m) = 1 : (y,m)← 〈SA,Θ〉]

≥ 1

2(2q + 1)(2q + 3)
Pr
H

[V (x, y,H(x, y),m) = 1, (y,m)← AH(x)]− 1

(2q + 1)|Y|
. (2.56)

In the above, (y,m) ← 〈SA,Θ〉 indicates that y and m are the first-round and third-

round (respectively) messages of SA, when it is given the random challenge Θ in the second

round.

2.7.2 Extension to generalized Σ-protocols

In this section, we show that Fiat-Shamir also preserves soundness for a more general

family of protocols, which we call “generalized Σ-protocols.” In such a protocol, V can begin

the protocol by sending an initial message to P .

Notice that the original Mahadev protocol [6] is a generalized Σ-protocol: the distribu-

tion D describes the distribution for the secret key, and f computes the public key. Similarly,

65

Select a public function f : R×L →W , a finite set C, and a distribution D over R. The
protocol begins with P and V receiving an input x.

Round 1. V samples randomness r ∈ R from distribution D and computes message
w = f(r, x), which is sent to P .

Round 2. P sends a message y to V .
Round 3. V responds with a uniformly random classical challenge c ∈ C.
Round 4. P sends a response m to V .
Verdict. V outputs a bit computed by a Boolean function V (r, x, y, c,m).

Protocol 2.10: A generalized Σ-protocol.

the k-fold parallel repetition of our instance-independent protocol is also a generalized Σ-

protocol since our trusted setup phase can be seen as a message from the verifier.

Fiat-Shamir for generalized Σ protocols. The FS transformation for generalized Σ-protocols

is similar to standard ones: in the Verdict stage, V computes c = H(x,w, y) and accepts if

and only if V (r, x, y, c,m) = 1.

Select a public function f : R×L →W , a finite set C, and a distribution D over R. P
and V receive an input x and are given access to a random oracle H.

Round 1. V samples randomness r ∈ R from distribution D, and computes message
w = f(r, x), which is sent to P .

Round 2. P sends a message (y,m) to V .
Verdict. V computes c = H(x,w, y) and then outputs a bit computed by a Boolean

function V (r, x, y, c,m).

Protocol 2.11: The FS-transformed generalized Σ-protocol.

To show that generalized Σ-protocols remain secure under FS transformation, similarly

to the idea for Σ-protocols in Section 2.7.1, we give a reduction. Conditioned on any random-

66

ness r, the prover AHr (x) := AH(x, f(r, x)) is characterized by unitaries A0,f(r,x), . . . , Aq,f(r,x).

The prover B in the Σ-protocol runs SAr and outputs its decision. Given the success prob-

ability of A, we establish a lower bound on that of B, formally stated as follows.

Lemma 2.7.1 (Fiat-Shamir transformation for generalized Σ-protocols). Suppose that

Pr
r,H

[V (r, x, y,H(x, f(r, x), y),m) = 1 : (y,m)← AH(x, f(r, x))] = ε. (2.57)

Then

Pr
r,Θ

[V (r, x, y,Θ,m) = 1 : (y,m)← 〈B,Θ〉] ≥ ε

2(2q + 1)(2q + 3)
− 1

(2q + 1)|Y|
. (2.58)

Proof. Conditioned on r = r∗, the success probability of A is

Pr
H

[V (r, x, y,H(x, f(r, x), y),m) = 1 : (y,m)← AH(x, f(x, r))|r = r∗]

= Pr
Hr∗

[V (r∗, x, y,Hr∗(x, y),m) = 1 : (y,m)← AHr∗(x)] =: ε(r∗), (2.59)

where Hr∗(x, y) := H(x, f(r, x), y) and by definition Er[ε(r)] = ε. Since H is a random

function over L×W ×Y → C, for any r∗, Hr∗ is a random function over L×Y → C. Then

by Theorem 2.7.1, the success probability of SAr∗ is

Pr
Θ

[V (r∗, x, y,Θ,m) = 1 : (y,m)← 〈SAr∗ ,Θ〉] ≥ ε(r∗)

2(2q + 1)(2q + 3)
− 1

(2q + 1)|Y|
. (2.60)

67

Taking the average over r∗, we have

Pr
r,Θ

[V (r, x, y,Θ,m) = 1 : (y,m)← 〈B,Θ〉]

= E
r∗

[
Pr
Θ

[V (r∗, x, y,Θ,m) = 1 : (y,m)← 〈SAr∗ ,Θ〉|r = r∗]
]

= E
r∗

[
ε(r∗)

2(2q + 1)(2q + 3)
− 1

(2q + 1)|Y|

]
=

ε

2(2q + 1)(2q + 3)
− 1

(2q + 1)|Y|
(2.61)

as claimed.

Lemma 2.7.1 immediately gives the following theorem.

Theorem 2.7.2. If a language L admits a generalized Σ-protocol with soundness error s,

then after the Fiat-Shamir transformation, the soundness error against provers who make

up to q queries to a random oracle is O(sq2 + q|Y|−1).

Proof. Suppose that there is a prover who succeeds in the transformed protocol with success

probability ε. Then by Lemma 2.7.1, we may construct a prover who succeeds with prob-

ability at least ε
O(q2)

− O
(

1
q|Y|

)
. By the soundness guarantee, we have ε

O(q2)
− O

(
1
q|Y|

)
≤ s

and thus ε ≤ O(q2s+ q|Y|−1).

By Theorem 2.7.2, if both s and |Y|−1 are negligible in security parameter λ, the

soundness error of the transformed protocols remains negligible against an efficient prover

who makes q = poly(λ) queries. Theorem 2.1.3 follows directly from Theorem 2.7.2.

68

2.7.3 Non-interactive zero-knowledge for QMA

We now show that, using the Fiat-Shamir transformation, our three-round protocol

proposed in Protocol 2.6 can be converted into a non-interactive zero-knowledge argument

(with trusted setup) for QMA in the Quantum Random Oracle model. The resulting protocol

is defined exactly as Protocol 2.6, with two modifications: (i.) instead of Round V2, the

prover P computes the coins c by evaluating the random oracle H on the protocol transcript

thus far, and (ii.) the NIZK instance x is appropriately redefined using these coins.

We remark that since the setup in this protocol is trusted, it follows from Theorem 2.7.2

that the compressed protocol is complete and sound, and therefore we just need to argue

about the zero-knowledge property.

Theorem 2.7.3. The Fiat-Shamir transformation of Protocol 2.6 is zero-knowledge.

Proof. The simulator SV∗2 can sample the trapdoor keys for NTCF/NTIF functions and

private keys for the FHE scheme, enabling simulation of the transcript for every challenge

sent by the verifier. In particular, one can run the same proof of Section 2.6.2 with the

variant SH that queries the random oracle H for the challenges instead of receiving it from

a malicious verifier V∗.

69

Chapter 3: Polynomial interpolation

3.1 Introduction

Let f(X) = cdX
d + · · · + c1X + c0 ∈ Fq[X] be an unknown polynomial of degree d,

specified by its coefficient vector c ∈ Fd+1
q . Suppose q and d are known1 and we are given a

black box that evaluates f on any desired x ∈ Fq. In the polynomial interpolation problem,

our goal is to learn f—that is, to determine the vector c—by querying this black box. We

would like to determine how many queries are required to solve this problem.

The classical query complexity of polynomial interpolation is well known: d+1 queries

to f are clearly sufficient and are also necessary to determine the polynomial, even with

bounded error. Shamir [26] used this fact to construct a cryptographic protocol that divides

a secret into d+ 1 parts such that knowledge of all the parts can be used to infer the secret,

but any d parts give no information about the secret. The security of this protocol relies

on the fact that if f is chosen uniformly at random, and if we only know d function values

f(x1), . . . , f(xd), then we cannot guess the value f(xd+1) for a point xd+1 /∈ {x1, . . . , xd}

with probability greater than 1/q (that is, there is no advantage over random guessing).

This example motivates understanding the query complexity of polynomial interpolation

precisely, since a single query can dramatically increase the amount of information that can
1We assume q > d so that different coefficients correspond to distinct functions f : Fq → Fq.

70

be extracted.

The quantum query complexity of polynomial interpolation has also been studied pre-

viously. Kane and Kutin [27] and Meyer and Pommersheim [28] independently showed that

d/2 + 1/2 quantum queries are needed to solve the problem with bounded error. Further-

more, Kane and Kutin conjectured that d + 1 quantum queries might be necessary. This

was refuted by Boneh and Zhandry, who showed that d quantum queries suffice to solve the

problem with probability2 1−O(1/q) [79]. To show this, they described a 1-query quantum

algorithm that determines a linear polynomial with probability 1 − O(1/q). The result for

general d follows because d− 1 classical queries can be used to reduce the case of a degree-d

polynomial to that of a linear polynomial. However, this work left a substantial gap between

the lower and upper bounds.

Here we present an improved quantum algorithm for polynomial interpolation. We

show that the aforementioned lower bounds are tight: with d fixed, k = d/2 + 1/2 queries

suffice to solve the problem with constant success probability. While the success probability

at this value of k has a q-independent lower bound, it decreases rapidly with k, scaling like

1/k!. This raises the question of how the success probability increases as we make more

queries. We show that there is a sharp transition as k is increased: in particular, with

k = d/2 + 1 queries, the algorithm succeeds with a probability that approaches 1 for large q.

Our algorithm is motivated by the pretty good measurement (pgm) approach to the

hidden subgroup problem (hsp) [80]. In this approach, one queries the black box on uniform

superpositions to create coset states and then makes entangled measurements on several
2While the notation O(·) only indicates an asymptotic upper bound on the absolute value, we sometimes
write 1−O(·) to indicate a bound on a quantity that is at most 1.

71

coset states to infer the hidden subgroup. As in the pgm approach (and in other approaches

to the hsp using the so-called standard method), our algorithm makes nonadaptive queries

to the black box and performs collective postprocessing. Also, similarly to previous analysis

of the pgm approach, we can express our success probability in terms of the number of

solutions of a system of polynomial equations.

However, our approach to polynomial interpolation also has significant differences from

the pgm approach to the hsp. In particular, we introduce a different way to query the black

box that simplifies both the algorithm and its analysis. In the pgm approach, we query

the black box on a uniform superposition and then uncompute uniform superpositions over

certain sets. For polynomial interpolation, we instead query a carefully-chosen non-uniform

superposition of inputs so that the subsequent uncomputation is classical. Furthermore, the

success probability of our method is higher, and its analysis is more straightforward, than

if we used a direct analog of the pgm approach. We hope that these techniques will prove

useful for other quantum algorithms, perhaps for the hidden subgroup problem or for other

applications of the pgm approach [81, 82].

We also show that our strategy is precisely optimal: for any number of queries k, we

describe a k-query algorithm with the highest possible success probability. We give a simple

algebraic characterization of this success probability, as follows.

Theorem 3.1.1. The maximum success probability of any k-query quantum algorithm for in-

terpolating a polynomial of degree d over Fq is |Rk|/qd+1, where Rk := Z(Fkq×Fkq) is the range

of the function Z : Fkq × Fkq → Fd+1
q defined by Z(x, y)j :=

∑k
i=1 yix

j
i for j ∈ {0, 1, . . . , d}.

We present an explicit quantum algorithm that achieves this success probability, and

72

we show that no algorithm can do better. We establish optimality with an argument based

on the dimension of the space spanned by the possible output states, which appears to be

distinct from arguments using the two main approaches to proving limitations on quantum

algorithms, the polynomial and adversary methods. Instead, our approach is closely related

to a linear-algebraic lower bound technique of Radhakrishnan, Sen, and Venkatesh [83] and

to the “rank method” of Boneh and Zhandry [79].

We characterize the query complexity by proving bounds on |Rk|, as follows.

Theorem 3.1.2. For any fixed positive integer d, the success probability of Theorem 3.1.1

is

(i) |Rk|/qd+1 = 1
k!

(1−O(1/q)) if d is odd and k = d
2

+ 1
2
, and

(ii) |Rk|/qd+1 = 1−O(1/q) if d is even and k = d
2

+ 1.

To show the former bound, we explicitly characterize the possible (x, y) ∈ Fkq ×Fkq such

that Z(x, y) takes a particular value. We prove the latter bound in a completely different

way, using a second moment argument.

Theorem 3.1.2 shows that the success probability has a sharp transition as a function of

k, from subconstant for k < d/2 + 1/2 (by known lower bounds [27, 28]), to a (d-dependent)

constant for k = d/2 + 1/2, to 1 − o(1) for k = d/2 + 1. Note that since k must be an

integer, the success probability varies differently with k depending on whether d is odd or

even. For fixed even d, k = d/2+1 queries give success probability 1−o(1), whereas k = d/2

queries give success probability o(1). For fixed odd d, the success probability is o(1) for

k = d/2 − 1/2 and constant for k = d/2 + 1/2. To achieve higher success probability, we

can make k = d/2 + 3/2 queries and treat f as a polynomial of degree d+ 1 with cd+1 = 0,

73

giving success probability 1− o(1).

In light of these results, polynomial interpolation is reminiscent of the task of computing

the parity of n bits, where the classical query complexity is n (even for bounded error)

and the quantum query complexity is n/2 [20, 84]. More generally, a similar factor-of-two

improvement is possible for the oracle interrogation problem, where the goal is to learn

the entire n-bit string encoded by a black box [85]. However, polynomial interpolation is

qualitatively different in that the oracle returns values over Fq rather than F2. Note that for

the oracle interrogation problem over Fq, one can only achieve speedup by a factor of about

1− 1/q [79, Section 4], which is negligible for large q.

Our algorithm improves results of Boneh and Zhandry giving quantum attacks on

certain cryptographic protocols [79]. For a version of the Shamir secret sharing scheme [26]

where the shares can be quantum superpositions, their d-query interpolation algorithm shows

that a subset of only d parties can recover the secret. Our algorithm considerably strength-

ens this, showing that a subset of d/2 + 1/2 parties can recover the secret with constant

probability, and d/2 + 1 can recover it with probability 1 − O(1/q). Boneh and Zhandry

also formulate a model of quantum message-authentication codes (macs), where the goal is

to tag messages to authenticate the sender. Informally, a mac is called d-time if, given the

ability to create d valid message-tag pairs, an attacker cannot forge another valid message-

tag pair. Boneh and Zhandry show that there are (d + 1)-wise independent functions that

are not d-time quantum macs. Our result improves this to show that there are (d+ 1)-wise

independent functions that are not (d/2 + 1/2)-time quantum macs.

We consider the gate complexity of polynomial interpolation. We call an algorithm

gate-efficient if it can be implemented with a number of 2-qubit gates that is only larger

74

than its query complexity by a factor of poly(log q). We construct a gate-efficient variant of

our algorithm that achieves almost the same success probability.3

Theorem 3.1.3. For any fixed positive integer d, there is a gate-efficient quantum algorithm

for interpolating a polynomial of degree d over Fq using

(i) k = d
2

+ 1
2
queries, succeeding with probability 1

k!
(1−O(1/q)), if d is odd; and

(ii) k = d
2

+ 1 queries, succeeding with probability 1− o(1), if d is even.

The main step in implementing the algorithm is to invert the function Z described in

the statement of Theorem 3.1.1, i.e., to find some x, y ∈ Fkq so that Z(x, y) takes a given

value. We achieve this by characterizing the solutions in terms of a polynomial equation and

a system of linear equations.

For multivariate polynomials, in [30], we conjectured that a straightforward analog of

the univariate algorithm solves the interpolation problem with probability 1 − o(1) using

b 1
n+1

(
n+d
d

)
c+ 1 queries. However, while that conjecture is natural, the analysis of the al-

gorithm appeared to require solving a difficult problem in algebraic geometry and was left

open. (In addition, Montanaro considered the quantum query complexity of interpolating a

multilinear polynomial [86], but this is quite different from the general multivariate case.)

To the best of our knowledge, all previous work on quantum algorithms for polyno-

mial interpolation has focused on finite fields. Cryptographic applications of interpolation

typically use finite fields, and the multivariate case could lead to new applications in that

domain. However, polynomial interpolation over infinite fields is also a natural problem,
3Note that while our algorithm for k = d/2 + 1/2 has gate complexity polynomial in both log q and d, the
algorithm for k = d/2 + 1 has gate complexity k! poly(log q). Improving the dependence on d is a natural
open question.

75

especially considering the ubiquity of real- and complex-valued polynomials in numerical

analysis.

We propose an approach to the quantum query complexity of polynomial interpola-

tion in the continuum limit. To obtain a well-defined initial state, the algorithm prepares a

superposition over a bounded working region. The bounded region limits the precision that

can be achieved due to the uncertainty principle, but the algorithm can be made arbitrarily

precise by taking an arbitrarily large region. Using this strategy, we present a quantum

algorithm for multivariate polynomial interpolation over the real and complex numbers. To

simplify the analysis, we allow the algorithm to work with arbitrarily precise inputs and out-

puts over R or C; in practice, sufficiently fine discretization of the space could achieve similar

performance. We also consider multivariate polynomial interpolation over finite fields, where

our algorithm can be viewed as a generalization of the univariate polynomial interpolation

algorithm proposed in [30].

To analyze the success probability of our approach, we relate it to the tensor rank

problem. The rank of a given tensor, which is the smallest integer k such that the tensor can

be decomposed as a linear combination of k simple tensors (i.e., those that can be written as

tensor products), was first introduced nearly a century ago. A half century later, with the

advent of principal component analysis on multidimensional arrays, the study of tensor rank

attracted further attention. However, it has recently been shown that most tensor problems,

including tensor rank, are NP-hard [87, 88, 89], and restricting these problems to symmetric

tensors does not seem to alleviate their NP-hardness [88, 89]. More specifically, tensor rank

is NP-hard over any field extension of Q and NP-complete over a finite field Fq.

Fortunately, analyzing the success probability of multivariate polynomial interpolation

76

does not require exactly computing the rank of a symmetric tensor. The number of queries

needed to achieve success probability 1 can be translated to the smallest integer k such that

almost every symmetric tensor can be decomposed as a linear combination of no more than k

simple tensors. In turn, this quantity can be related to properties of certain secant varieties,

which lets us take advantage of recent progress in algebraic geometry [90, 91].

The success probability of our algorithm behaves differently as a function of the number

of queries for the three fields we consider. Specifically, by introducing

kC(n, d) :=

n+ 1 d = 2, n ≥ 2;

d 1
n+1

(
n+d
d

)
e+ 1 (n, d) = (4, 3), (2, 4), (3, 4), (4, 4);

d 1
n+1

(
n+d
d

)
e otherwise,

(3.1)

we have the following upper bounds on the query complexity:

Theorem 3.1.4. For positive integers d and n, there exists a quantum algorithm for inter-

polating an n-variate polynomial of degree d over the field K using at most

1. d
n+d

(
n+d
d

)
queries for K = Fq, succeeding with probability 1−O(1/q);

2. 2kC queries for K = R, succeeding with probability 1;

3. kC queries for K = C, succeeding with probability 1.

The remainder of the paper is organized as follows. After introducing some definitions

in Section 3.3.1, we describe our k-query algorithm in Section 3.3.2. We analyze the success

probability of this algorithm for k = d/2 + 1/2 in Section 3.3.3, and for k = d/2 + 1 in

Section 3.3.4. We also show in Section 3.3.5 that essentially the same performance can

77

be achieved using k independent queries to the oracle, each on a uniform superposition of

inputs (which might make some cryptographic attacks easier, depending on the model). In

Section 3.3.6, we describe the gate-efficient version of our algorithm.

For multivariate polynomial interpolation, we describe the query model in Section 3.4.1

and present our algorithms in Section 3.4.2. We then analyze the algorithm to establish our

query complexity upper bounds in Section 3.4.3.

Finally, we establish optimality of our algorithm over finite fields in Section 3.5.

3.2 Algebraic geometry concepts

A subset V of Kn is an algebraic set if it is the set of common zeros of a finite collection

of polynomials g1, g2, . . . , gr with gi ∈ K[x1, x2, . . . , xn] for 1 ≤ i ≤ r.

A finite union of algebraic sets is an algebraic set, and an arbitrary intersection of alge-

braic sets is again an algebraic set. Thus by taking the open subsets to be the complements

of algebraic sets, we can define a topology, called the Zariski topology, on Kn.

A nonempty subset V of a topological space X is called irreducible if it cannot be

expressed as the union of two proper (Zariski) closed subsets. The empty set is not considered

to be irreducible. An affine algebraic variety is an irreducible closed subset of some Kn.

We define projective n-space, denoted by Pn, to be the set of equivalence classes of

(n + 1)-tuples (a0, . . . , an) of complex numbers, not all zero, under the equivalence relation

given by (a0, . . . , an) ∼ (λa0, . . . , λan) for all λ ∈ K, λ 6= 0.

A notion of algebraic variety may also be introduced in projective spaces, giving the

notion of a projective algebraic variety: a subset V ⊆ Pn is an algebraic set if it is the

78

set of common zeros of a finite collection of homogeneous polynomials g1, g2, . . . , gr with

gi ∈ K[x0, x1, . . . , xn] for 1 ≤ i ≤ r. We call open subsets of irreducible projective varieties

quasi-projective varieties.

For any integers n and d, we define the Veronese map of degree d as

Vd : [x0 : x1 : · · · : xn] 7→ [xd0 : xd−1
0 x1 : · · · : xdn] (3.2)

where the notation with square brackets and colons denotes homogeneous coordinates and

the expression in the output of Vd ranges over all monomials of degree d in x0, x1, . . . , xn.

The image of Vd is an algebraic variety called a Veronese variety.

Finally, for an irreducible algebraic variety V , its kth secant variety σk(V) is the Zariski

closure of the union of subspaces spanned by k distinct points chosen from V .

For more information about Veronese and secant varieties, refer to Example 2.4 and

Example 11.30 in [92].

3.3 Univariate polynomial interpolation

3.3.1 Preliminaries

Let f(X) = cdX
d + · · ·+ c1X + c0 ∈ Fq[X] be an unknown polynomial of degree d that

is specified by the vector of coefficients c ∈ Fd+1
q , where q = pr a power of a prime p. Access

to f is provided by a black box acting as |x, y〉 7→ |x, y + f(x)〉 for all x, y ∈ Fq.

Let e : Fq → C be the exponential function e(z) = e2πi TrFq/Fp (z)/p, where the trace

function TrFq/Fp : Fq → Fp is defined by TrFq/Fp(z) = z + zp + zp
2

+ · · ·+ zp
r−1 . The Fourier

79

transform over Fq is the unitary transformation acting as |x〉 7→ 1√
q

∑
y∈Fq e(xy)|y〉 for all

x ∈ Fq.

We can compute the value of f into the phase by Fourier transforming the second

query register. If we apply the inverse Fourier transform, perform a query, and then apply

the Fourier transform, we have the transformation

|x, y〉 7→ 1
√
q

∑
z∈Fq

e(−yz)|x, z〉

7→ 1
√
q

∑
z∈Fq

e(−yz)|x, z + f(x)〉

7→ 1

q

∑
z,w∈Fq

e(−yz + (z + f(x))w)|x,w〉

= e(yf(x))|x, y〉 (3.3)

for any x, y ∈ Fq, where we used the fact that
∑

z∈Fq e(zv) = qδz,v. We call the transformation

|x, y〉 7→ e(yf(x))|x, y〉 a phase query. Since a phase query can be implemented with a single

standard query and vice versa, the query complexity of a problem does not depend on which

type of query we use.

For vectors x, y ∈ Fkq , we denote the inner product over Fq by x · y :=
∑k

i=1 xiyi. The

k-fold Fourier transform (i.e., the Fourier transform acting independently on each register)

acts as |x〉 7→ 1√
qk

∑
y∈Fkq

e(x · y)|y〉 for any x ∈ Fkq .

80

3.3.2 The algorithm

We now describe our algorithm for polynomial interpolation. An ideal algorithm would

produce the Fourier transform of the coefficient vector c ∈ Fd+1
q , that is, the state

|ĉ〉 =
1√
qd+1

∑
z∈Fd+1

q

e(c · z)|z〉. (3.4)

Instead we use k quantum queries to create the approximate state

|ĉRk〉 :=
1√
|Rk|

∑
z∈Rk

e(c · z)|z〉 (3.5)

for some set Rk ⊆ Fd+1
q . A measurement of this state in the Fourier basis gives c with

probability |〈ĉRk |ĉ〉|2 = |Rk|/qd+1.

Our algorithm performs k phase queries in parallel, each acting on a separate register.

On input |x, y〉 for x, y ∈ Fkq , these k queries introduce the phase e(
∑k

i=1 yif(xi)). To define

the set Rk, recall the function Z : Fkq × Fkq → Fd+1
q defined by

Z(x, y)j :=
k∑
i=1

yix
j
i for j ∈ {0, 1, . . . , d}. (3.6)

Then we have
∑k

i=1 yif(xi) =
∑k

i=1

∑d
j=0 yicjx

j
i = c · Z(x, y) for all x, y ∈ Fkq . The range

Rk := Z(Fkq × Fkq) of the function Z is the set

Rk = {Z(x, y) : (x, y) ∈ Fkq × Fkq} ⊆ Fd+1
q . (3.7)

81

For each z ∈ Rk we choose a unique (x, y) ∈ Fkq ×Fkq such that Z(x, y) = z. Let Tk ⊆ Fkq ×Fkq

be the set of these representatives. Clearly, Z : Tk → Rk is a bijection.

To create the state |ĉRk〉, we prepare a uniform superposition over Tk, perform k phase

queries, and compute Z in place (i.e., perform the unitary transformation |x, y〉 7→ |Z(x, y)〉),

giving

1√
|Tk|

∑
(x,y)∈Tk

|x, y〉 7→ 1√
|Tk|

∑
(x,y)∈Tk

e(c · Z(x, y))|x, y〉

7→ 1√
|Rk|

∑
z∈Rk

e(c · z)|z〉. (3.8)

The above procedure is a k-query algorithm for polynomial interpolation that succeeds

with probability |Rk|/qd+1, establishing the lower bound on the success probability stated in

Theorem 3.1.1. To analyze the algorithm, it remains to lower bound |Rk| as a function of k.

3.3.3 Performance using d/2 + 1/2 queries

We now consider the performance of the above algorithm using k = d/2 + 1/2 queries.

Let

Z−1(z) = {(x, y) ∈ Fkq × Fkq : Z(x, y) = z} (3.9)

be the set of those (x, y) ∈ Fkq × Fkq corresponding to a particular z ∈ Fd+1
q . Clearly |Rk|

is the number of values of z such that Z−1(z) is nonempty. To analyze this, we focus on

“good” values of (x, y). Define Xgood
k := {x ∈ Fkq : xi 6= xj ∀ i 6= j} and Y good

k := (F×q)k and

let Z−1(z)good := Z−1(z) ∩ (Xgood
k × Y good

k). We claim the following:

82

Lemma 3.3.1. If k = d/2 + 1/2, then for all z ∈ Fd+1
q , either |Z−1(z)good| = 0 or

|Z−1(z)good| = k!.

Proof. We can write the condition Z(x, y) = z in the form
∑

i yixi = z, where xi :=

(1, xi, x
2
i , . . . , x

d
i). We claim that for a given z ∈ Fd+1

q , the values (x, y) ∈ Xgood× Y good that

satisfy this equation are unique up to a permutation of the indices. To see this, suppose that

Z(x, y) = Z(u, v) for some good values (x, y) 6= (u, v). By permuting the indices, we can

ensure that xi = ui for i ∈ {1, . . . ,m} and xi 6= ui for i ∈ {m + 1, . . . , k}, where m is the

number of positions at which x and u agree. Then we have

m∑
i=1

(yi − vi)xi +
k∑

i=m+1

yixi +
k∑

i=m+1

viui = 0. (3.10)

It is well known that the Vandermonde matrix

1 1 · · · 1

x1 x2 · · · xd+1

x2
1 x2

2 · · · x2
d+1

...
...

...

xd1 xd2 · · · xdd+1

(3.11)

is invertible provided the values x1, x2, . . . , xd+1 are distinct. Because the values xi for

i ∈ {1, . . . , k} and ui for i ∈ {m+1, . . . , k} are all distinct, and because the number of terms

in (3.10) is at most 2k ≤ d+1, the vectors xi for i ∈ {1, . . . , k} and ui for i ∈ {m+1, . . . , k}

are linearly independent. Thus we have yi = vi for all i ∈ {1, . . . ,m} and yi = vi = 0 for

all i ∈ {m + 1, . . . , k}. Since y ∈ Y good, we cannot have yi = 0 for any i, so we must have

83

m = k. Therefore x = u and y = v. It follows that the only way to obtain a distinct

(x, y) is to permute the indices, and therefore we either have |Z−1(z)good| = 0 (if there is no

(x, y) ∈ Xgood × Y good such that Z(x, y) = z) or |Z−1(z)good| = k!.

Using Lemma 3.3.1, we can show that k = d/2 + 1/2 queries suffice to perform poly-

nomial interpolation with probability that is independent of q, but that decreases with d.

Proof of Theorem 3.1.2(i): k = d/2 + 1/2. We have |Xgood
k | = q!/(q − k)! and |Y good

k | =

(q − 1)k, so

∑
z∈Fd+1

q

|Z−1(z)good| = |Xgood
k | · |Y good

k | = q!

(q − k)!
(q − 1)k = q2k(1−O(1/q)). (3.12)

Thus, invoking Lemma 3.3.1, the number of values of z for which |Z−1(z)good| = k! is at least

q2k

k!
(1−O(1/q)). Since k = d/2 + 1/2, it follows that |Rk|/qd+1 is at least 1

k!
(1−O(1/q)), as

claimed.

3.3.4 Performance using d/2 + 1 queries

Next we show that with more than d/2+1/2 queries, the success probability approaches

1 for large q.

Proof of Theorem 3.1.2(ii): k = d/2 + 1. Under the uniform distribution on z ∈ Fd+1
q , we

have

|Rk|/qd+1 = 1− Pr[|Z−1(z)| = 0]. (3.13)

84

We use a second moment argument to upper bound the number of z ∈ Fd+1
q for which

|Z−1(z)| = 0. The mean of |Z−1(z)| is

µ :=
1

qd+1

∑
z∈Fd+1

q

|Z−1(z)| = q2k−(d+1). (3.14)

Let δ[P] be 1 if P is true and 0 if P is false. For the second moment, we compute

∑
z∈Fd+1

q

|Z−1(z)|2 =
∑

u,v,x,y∈Fkq

δ[Z(u, v) = Z(x, y)]

=
∑

u,v,x,y∈Fkq

1

qd+1

∑
λ∈Fd+1

q

e(λ · (Z(u, v)− Z(x, y)))

=
q4k

qd+1
+

1

qd+1

∑
λ∈Fd+1

q \(0,...,0)

(∑
x,y∈Fq

e

(
y

d∑
j=0

λjx
j

))2k

= q4k−(d+1) +
1

qd+1

∑
λ∈Fd+1

q \(0,...,0)

(
q
∑
x∈Fq

δ

[
d∑
j=0

λjx
j = 0

])2k

≤ q4k−(d+1) + (qd)2k. (3.15)

Thus for the variance, we have

σ2 :=
1

qd+1

∑
z∈Fd+1

q

|Z−1(z)|2 − µ2 ≤ (qd)2k

qd+1
. (3.16)

(note that σ2 ≥ 0 by the Cauchy inequality). Applying the Chebyshev inequality, we find

Pr[Z−1(z) = 0] ≤ σ2

µ2
≤ (qd)2k/qd+1

q4k−2(d+1)
= d2kqd+1−2k. (3.17)

85

Therefore |Rk|/qd+1 = 1− Pr[Z−1(z) = 0] ≥ 1− d2kqd+1−2k. With k = d/2 + 1, we have

|Rk|/qd+1 ≥ 1− d2k/q = 1−O(1/q) (3.18)

as claimed.

Note that one can improve the dependence on d in (3.16) using results on the distri-

bution of zeros in random polynomials [93].

3.3.5 An alternative algorithm

The algorithm described above queries the oracle nonadaptively, that is, all k queries

can be performed in parallel. However, the input state to these queries is correlated across

all k copies. In this section, we describe an alternative algorithm that queries the black box

on a state that is independent and identical for each of the k queries, namely, a uniform

superposition over all inputs. This algorithm is suboptimal, but its performance is not

significantly worse than that of the optimal algorithm described in Section 3.3.2.

Analogous to the so-called standard method for the hidden subgroup problem, querying

f on a uniform superposition gives the state 1√
q

∑
x∈Fkq
|x, f(x)〉. If we use k queries to prepare

k copies of this state and then perform the Fourier transform on the second register (or

equivalently, perform k independent phase queries), we obtain the state

1

qk

∑
x,y∈Fkq

e(c · Z(x, y))|x, y〉 =
1

qk

∑
z∈Fd+1

q

e(c · z)
√
|Z−1(z)| |Z−1(z)〉 (3.19)

where |Z−1(z)〉 :=
∑

(x,y)∈Z−1(z)|x, y〉/|Z−1(z)|1/2. Motivated by the pgm approach to the

86

hidden subgroup problem [80], suppose we perform the transformation |Z−1(z)〉 7→ |z〉, giving

the state

|φck〉 :=
1

qk

∑
z∈Fd+1

q

e(c · z)
√
|Z−1(z)| |z〉. (3.20)

Measuring this state in the Fourier basis gives the outcome c with probability

|〈φck|ĉ〉|2 =
1

q2k+d+1

(∑
z∈Fd+1

q

√
|Z−1(z)|

)2

. (3.21)

If k = d/2 + 1/2, we claim that this algorithm succeeds with constant probability.

From the proof of Theorem 3.1.2 for k = d/2 + 1/2, we have that |Z−1(z)| ≥ k! for at least

q2k

k!
(1−O(1/q)) values of z. Therefore the success probability is at least 1

k!
(1−O(1/q)).

If k = d/2 + 1, then this algorithm succeeds with probability that approaches 1 for

large q. To see this, recall from the proof of Theorem 3.1.2 for k = d/2 + 1 that, under

a uniform distribution over z ∈ Fd+1
q , the quantity Z−1(z) has mean µ = q and standard

deviation σ =
√
qdk. Thus, by the Chebyshev inequality, we have

Pr
[
|Z−1(z)| ≤ q − α√qdk

]
≤ 1

α2
. (3.22)

It follows that

|〈φck|ĉ〉|2 ≥
(

1− αdk
√
q

)(
1− 1

α2

)2

. (3.23)

Choosing α = Θ(q1/6), this gives a success probability of |〈φck|ĉ〉|2 = 1 − O(q−1/3), which

87

approaches 1 for large q.

3.3.6 Gate complexity

In Section 3.3, we analyzed the query complexity of our polynomial interpolation algo-

rithm. Here we describe a (d/2 + 1/2)-query algorithm whose gate complexity is poly(log q),

and whose success probability is close to that of the best algorithm using this number of

queries (in particular, for fixed d it still succeeds with constant probability). We also give an

algorithm for the case k = d/2 + 1 whose gate complexity is larger by a factor of poly(log q),

but with an additional factor of k!.

3.3.6.1 Algorithm for k = d/2 + 1/2 queries

To simplify the computation of unique representatives of values z ∈ Rk, we restrict

attention to the “good” case considered in Section 3.3.3. Let

Rgood
k := {Z(x, y) : x ∈ Xgood

k , y ∈ Y good
k }. (3.24)

For any z ∈ Rgood
k , we show how to efficiently compute representative values x ∈ Xgood

k and

y ∈ Y good
k with Z(x, y) = z, defining a set of representatives T good

k . Then we consider an

algorithm as described in Section 3.3.2, but with Rk replaced by Rgood
k and Tk replaced by

T good
k . Clearly the success probability of this algorithm is |Rgood

k |/qd+1. Our lower bound on

|Rk| in Section 3.3.3 was actually a bound on |Rgood
k |, so this algorithm still succeeds with

probability 1
k!

(1 +O(1/q)).

To give a gate-efficient algorithm, it suffices to show how to efficiently compute the

88

function Z−1 : Rgood
k → T good

k (that is, to compute this function using poly(log q) gates).

Lemma 3.3.2. Suppose there is an efficient algorithm to compute Z−1 : Rgood
k → T good

k .

Then the algorithm of Section 3.3.2 can be made gate-efficient (with Rk replaced by Rgood
k

and Tk by T good
k).

Proof. It is trivial to compute Z : T good
k → Rgood

k efficiently. Given an efficient procedure for

computing Z−1 : Rgood
k → T good

k , this gives us the ability to efficiently compute Z in place

(that is, to perform the transformation |x, y〉 7→ |z〉 as required by the algorithm). To do

this, we first compute z in an ancilla register by evaluating Z (which only requires arithmetic

over Fq) and then uncompute (x, y) by applying the circuit for Z−1 in reverse.

It remains to prepare the initial uniform superposition over T good
k . This can also be

done using the ability to compute Z−1. Suppose we create a uniform superposition over all

of z ∈ Fd+1
q and then attempt to compute Z−1. If z /∈ Rgood

k , this is detected, and we can set

a flag qubit indicating failure. Thus we can prepare a state of the form

1√
qd+1

(∑
(x,y)∈T good

k

|Z(x, y), 0, x, y〉+
∑

z∈Fd+1
q \Rgood

k

|z, 1, 0, 0〉

)
. (3.25)

A measurement of the flag qubit gives the outcome 0 with probability |Rgood
k |/qd+1. Since

this is our lower bound on the success probability of the overall algorithm, we do not

have to repeat this process too many times before we successfully prepare the initial state

(and by sufficiently many repetitions, we can make the error probability arbitrarily small).

When the measurement succeeds, we can uncompute the first register to obtain the state∑
(x,y)∈T good

k
|x, y〉/|T good

k |1/2 as desired.

89

In the remainder of this section, we describe how to efficiently compute Z−1(z) for

z ∈ Rgood
k . Our approach appeals to “Prony’s method” [94] (a precursor to Fourier analysis)

and the theory of linear recurrences. We start with the following technical result, where ej

denotes the jth elementary symmetric polynomial in k variables, i.e.,

ej(x1, . . . , xk) =
∑

1≤i1<i2<···<ij≤k

xi1xi2 · · ·xij . (3.26)

Lemma 3.3.3. We have

xki = −
k∑
j=1

xk−ji (−1)jej(x1, . . . , xk) (3.27)

for all i ∈ {1, . . . , k}.

Proof. Observe that it suffices to prove the lemma for i = 1, since if we interchange the roles

of x1 and x` in (3.27) with i = 1, we obtain (3.27) with i = `.

We apply induction on k. If k = 1 then the claim is trivial. Now suppose the claim

holds for a given value of k. We have

ej(x1, . . . , xk+1) = ej(x1, . . . , xk) + xk+1ej−1(x1, . . . , xk)

= ej(x1, . . . , xk) + xk+1
∂

∂xk+1
ej(x1, . . . , xk+1). (3.28)

90

Therefore

−
k+1∑
j=1

xk+1−j
1 (−1)jej(x1, . . . , xk+1) = −

k+1∑
j=1

xk+1−j
1 (−1)j

[
ej(x1, . . . , xk)

+ xk+1
∂

∂xk+1
ej(x1, . . . , xk+1)

]
= xk+1

1 − xk+1
∂

∂xk+1
xk+1
i

= xk+1
1 (3.29)

(where the second equality uses the induction hypothesis).

Using this fact, we can show that each component of Z(x, y) satisfies a kth-order linear

recurrence.

Lemma 3.3.4. If zj =
∑k

i=1 yix
j
i for all nonnegative integers j, then we have (for all non-

negative integers n)

zn+k = −
k−1∑
j=0

(−1)k−jek−j(x1, . . . , xk)zn+j. (3.30)

Proof. The right-hand side of (3.30) is

−
k−1∑
j=0

(−1)k−jek−j(x1, . . . , xk)
k∑
i=1

yix
n+j
i = −

k∑
i=1

yi

k−1∑
j=0

(−1)k−jek−j(x1, . . . , xk)x
n+j
i

= −
k∑
i=1

yi

k∑
j=1

(−1)jej(x1, . . . , xk)x
n+k−j
i

=
k∑
i=1

yix
n+k
i = zn+k (3.31)

as claimed, where the third equality uses Lemma 3.3.3.

91

We are now ready to describe the gate-efficient algorithm for polynomial interpolation.

Proof of Theorem 3.1.3(i): k = d/2 + 1/2. By Lemma 3.3.2, it suffices to give an efficient

algorithm for computing a representative (x, y) ∈ Z−1(z)good for any given z ∈ Rgood
k .

By Lemma 3.3.4, the coefficients aj = −(−1)k−jek−j(x1, . . . , xk) of the linear recurrence

(3.30) satisfy

Hk

a0

a1

...

ak−1

=

zk

zk+1

...

z2k−1

, where Hk :=

z0 z1 · · · zk−1

z1 z2 · · · zk

...
...

zk−1 zk . . . z2(k−1)

(3.32)

is a Hankel matrix. Observe that

Hk = V >k

y1 0 · · · 0

0 y2 0

...

0 0 · · · yk

Vk, where Vk :=

1 x1 x2
1 · · · xk−1

1

1 x2 x2
2 · · · xk−1

2

...
...

...
...

1 xk x2
k · · · xk−1

k

. (3.33)

For x ∈ Xgood
k , the Vandermonde matrix Vk (and its transpose) are invertible, and for

92

y ∈ Y good
k , the diagonal matrix is invertible. Then Hk is invertible, and we have

a0

a1

...

ak−1

= H−1

k

zk

zk+1

...

z2k−1

. (3.34)

We claim that for any (x, y) ∈ Z−1(z)good, the values x1, . . . , xk must be roots of the

characteristic polynomial

χ(x) := xk −
k−1∑
j=0

ajx
j. (3.35)

To see this, observe that

zk

zk+1

...

z2k−1

−Hk

a0

a1

...

ak−1

= V >k

χ(x1)

χ(x2)

...

χ(xk)

. (3.36)

This must be the zero vector, and since the Vandermonde matrix is invertible, we see that

χ(xi) = 0 for all i ∈ {1, . . . , k}.4

4Since a polynomial of degree k can have at most k roots, this shows that the values x1, . . . , xk are unique
up to permutation, giving |Z−1(z)good| = k! as shown in Lemma 3.3.1.

93

Finally, observe that the values y1, . . . , yk satisfy

V >k

y1

...

yk

 =

z0

z1

...

zk−1

. (3.37)

Since the Vandermonde matrix is invertible, we see that y is uniquely determined by z and

x.

To compute a unique representative of a given z ∈ Rgood
k , we use equation (3.34) to

efficiently compute the coefficients a0, . . . , ak−1 of the characteristic polynomial χ(x). We

can then determine x ∈ Xgood
k by finding the roots of this polynomial, which can be done in

time poly(k, log q) using a randomized algorithm [95, Chapter 14]. Finally, we can determine

y ∈ Y good
k by solving a linear system of equations, namely (3.37).

This procedure does not uniquely specify (x, y) because any permutation of the indices

(acting identically on x and y) gives an equivalent solution. To choose a unique (x, y) ∈ T good
k ,

we simply require that the entries of x occur in lexicographic order with respect to some

fixed representation of Fq.

3.3.6.2 Algorithm for k = d/2 + 1 queries

We now present a similar algorithm for the case k = d/2 + 1 that also has gate

complexity poly(log q), although it has more overhead as a function of d.

To apply the approach of Section 3.3.6.1, we again focus on solutions of Z(x, y) = z

94

with (x, y) ∈ Xgood×Y good. However, recall that our lower bound on the success probability

for k = d/2+1 in Section 3.3.4 used all solutions (x, y) ∈ Fkq×Fkq . Thus we begin by showing

that the success probability of the algorithm remains close to 1 even when restricted to good

solutions.

Lemma 3.3.5. If k = d/2 + 1, then |Rgood
k |/qd+1 = 1−O(1/q).

Proof. We repeat the second moment argument of Section 3.3.4, but now restricted to good

solutions. Under the uniform distribution on z ∈ Fd+1
q , we have

µgood :=
1

qd+1

∑
z∈Fd+1

q

|Z−1(z)good| = q2k−(d+1)(1−O(1/q)) (3.38)

by (3.12). Similarly to the previous second moment calculation, we have

∑
z∈Fd+1

q

|Z−1(z)good|2 =
∑

u,x∈Xgood
k

∑
v,y∈Y good

k

δ[Z(u, v) = Z(x, y)]

= qd+1(µgood)2 +
1

qd+1

∑
u,x∈Xgood

k

∑
v,y∈Y good

k

∑
λ∈Fd+1

q

e(λ · (Z(u, v)− Z(x, y))).

(3.39)

95

Thus we have

(σgood)2 :=
1

qd+1

∑
z∈Fd+1

q

|Z−1(z)good|2 − (µgood)2

=
1

q2(d+1)

∑
λ∈Fd+1

q

∑
u,x∈Xgood

k

∑
v,y∈Y good

k

k∏
i=1

e(vi
∑d

j=0 λju
j
i) e(−yi

∑d
j=0 λjx

j
i)

=
1

q2(d+1)

∑
λ∈Fd+1

q

∑
u,x∈Xgood

k

k∏
i=1

(q δ[
∑d

j=0 λju
j
i = 0]− 1)(q δ[

∑d
j=0 λjx

j
i = 0]− 1)

≤ 1

q2(d+1)

∑
λ∈Fd+1

q

∑
u,x∈Fkq

k∏
i=1

(q δ[
∑d

j=0 λju
j
i = 0] + 1)(q δ[

∑d
j=0 λjx

j
i = 0] + 1)

≤ (q(d+ 1))2k

qd+1
(3.40)

(which is identical to the previous bound for σ2 except that d is replaced by d+1). Therefore,

by the Chebyshev inequality, we have

Pr[Z−1(z)good] ≤ (σgood)2

(µgood)2
≤ (d+ 1)2kqd+1−2k. (3.41)

With k = d/2 + 1, we find

|Rgood
k |
qd+1

= 1− Pr[Z−1(z)good = 0] ≥ 1− (d+ 1)2k

q
= 1−O(1/q) (3.42)

as claimed.

Now consider the problem of computing a value (x, y) ∈ Xgood × Y good such that

Z(x, y) = z for some given z ∈ Rgood
k . We can approach this task using the strategy outlined

in Section 3.3.6.1. With k = d/2 + 1, we have 2k− 1 = d+ 1, so the last entry in the vector

96

on the right-hand side of (3.34) is not specified. Nevertheless, for any fixed (x, y) ∈ Fkq ×Fkq ,

the value zd+1 = Z(x, y)d+1 is well-defined by extending (3.6) to j = d + 1, so we can find

(x, y) ∈ Xgood × Y good by searching for some value of zd+1 ∈ Fq for which the algorithm

of Section 3.3.6.1 succeeds at finding k distinct roots x1, . . . , xk ∈ Fq of the characteristic

polynomial (3.35).

We claim that choosing a random zd+1 ∈ Fq gives a solution with probability nearly

1/k!.

Lemma 3.3.6. Suppose z = (z0, . . . , zd) is chosen uniformly at random from Fd+1
q . Then

with probability 1− o(1) (over the choice of z), choosing zd+1 uniformly at random from Fq

and solving for (x, y) ∈ Z−1(z)good as in the proof of Theorem 3.1.3(ii) gives a solution with

probability (1− o(1))/k! (over the choice of zd+1).

Proof. For any z ∈ Rgood
k , each value of zd+1 ∈ Fq gives a unique set of roots of the character-

istic polynomial (3.35), and hence corresponds to either 0 or k! solutions (x, y) ∈ Z−1(z)good.

By a similar second moment argument as in (3.22), but using the mean (3.38) and variance

(3.40) of Z−1(z)good, we have |Z−1(z)good| = q(1 − o(1)) with probability 1 − o(1) over the

uniform choice of z ∈ Fd+1
q . Thus the number of values of zd+1 that lead to a valid solution

(x, y) ∈ Z−1(z)good is at least q(1 − o(1))/k! with probability 1 − o(1) over the choice of z.

Since there are q possible values of zd+1, choosing zd+1 at random leads to a valid represen-

tative (x, y) ∈ Z−1(z)good with probability (1− o(1))/k!, again with probability 1− o(1) over

the uniform choice of z.

Lemma 3.3.6 gives a method for computing a representative (x, y) ∈ Xgood×Y good such

that Z(x, y) = z: simply choose zd+1 ∈ Fq at random until we find a solution. Repeating

97

this process O(k!) times suffices to find a solution with constant probability (for almost all

z). However, since this approach constructs a random (x, y) ∈ Z−1(z)good rather than a

unique representative, it does not define a set T good
k , and it cannot be directly applied to our

quantum algorithm as described so far. Instead, we construct an equivalent algorithm that

represents the sets Z−1(z)good using quantum superpositions.

Lemma 3.3.7. Suppose there is an efficient algorithm to generate the quantum state

|Z−1(z)good〉 :=
1√

|Z−1(z)good|

∑
(x,y)∈Z−1(z)good

|x, y〉 (3.43)

for any given z ∈ Rgood
k . Then there is a gate-efficient k-query quantum algorithm for the

polynomial interpolation problem, succeeding with probability |Rgood
k |/qd+1.

Proof. We essentially replace (x, y) ∈ T good
k by |Z−1(Z(x, y))good〉 throughout the algorithm.

More concretely, we proceed as follows.

Observe that the ability to perform the given state generation map |z〉 7→ |z〉|Z−1(z)good〉

implies the ability to perform the in-place transformation

|z〉 7→ |Z−1(z)good〉. (3.44)

After applying the state generation map, we simply uncompute the map Z to erase the

register |z〉.

The algorithm begins by creating a uniform superposition over all of z ∈ Fd+1
q and

applying the map (3.44). As in the proof of Lemma 3.3.2, we can detect whether z /∈ Rgood
k ,

and we can postselect on the outcomes for which z ∈ Rgood
k with reasonable overhead, giving

98

the state
∑

z∈Rgood
k
|Z−1(z)good〉/|Rgood

k |1/2. Then perform k phase queries and apply the

inverse of the transformation (3.44), giving the state

1√
|Rgood

k |

∑
z∈Rgood

k

e(c · z)|Z−1(z)good〉 7→ 1√
|Rgood

k |

∑
z∈Rgood

k

e(c · z)|z〉. (3.45)

As discussed in Section 3.3.2, measuring this state gives c with probability |Rgood
k |/qd+1.

Finally, we show how to prepare |Z−1(z)good〉 and thereby give a gate-efficient quantum

algorithm for polynomial interpolation with k = d/2 + 1 queries.

Proof of Theorem 3.1.3(ii): k = d/2 + 1. We use |Z−1(z)good〉 as a quantum representative

of the set of solutions Z−1(z)good as described in Lemma 3.3.7. We claim that we can

efficiently perform the transformation |z〉 7→ |Z−1(z)good〉 for a fraction 1 − o(1) of those

z ∈ Rgood
k , which in turn are a fraction 1− o(1) of all z ∈ Fd+1

q (by Lemma 3.3.5), giving the

claimed success probability.

To prepare |Z−1(z)good〉, we first prepare a uniform superposition over zd+1 ∈ Fq and use

the procedure of Section 3.3.6.1 to compute the corresponding (x, y), if it exists. Lemma 3.3.6

shows that a fraction (1− o(1))/k! of the values of zd+1 correspond to a valid (x, y), so this

process can be boosted to prepare a state close to |Z−1(z)good〉 with overhead O(k!) (or with

amplitude amplification, O(
√
k!)), which in particular is independent of q. We can easily

uncompute zd+1 given (x, y), giving the desired transformation.

3.4 Multivariate polynomial interpolation

99

3.4.1 The query model

Using the standard concept of phase kickback, we encode the results of queries in the

phase by performing standard queries in the Fourier basis. We briefly explain these queries

for the three types of fields we consider.

3.4.1.1 Finite field Fq

As in the univariate case, our algorithm is nonadaptive, making all queries in parallel

for a carefully chosen superposition of inputs. With k parallel queries, we generate a phase∑k
i=1 yif(xi) =

∑k
i=1

∑
j∈J yix

j
icj for the input (x, y) ∈ Fkq × Fkq . For convenience, we define

Z : Fnkq × Fkq → FJq by Z(x, y)j =
∑k

i=1 yixi
j for j ∈ J, so that

∑k
i=1 yif(xi) = Z(x, y) · c.

3.4.1.2 Real numbers R

As in the finite field case, we construct a phase query by making a standard query in

the Fourier basis, giving

∫
R2

dx dy ψ(x, y)|x, y〉 7→
∫
R2

dx dy e(yf(x))ψ(x, y)|x, y〉. (3.46)

An algorithm making k parallel queries generates a phase Z(x, y) · c, where we similarly

define Z : Rnk × Rk → RJ by Z(x, y)j =
∑k

i=1 yixi
j for j ∈ J.

100

3.4.1.3 Complex numbers C

An algorithmmaking k parallel queries generates a phase
∑k

i=1 yif(xi) =
∑k

i=1

∑
j∈J yix

j
icj.

We define Z : Cnk×Ck → CJ satisfying Z(x, y)j =
∑k

i=1 yixi
j for j ∈ J, so that

∑k
i=1 yif(xi) =

Z(x, y) · c.

3.4.2 The algorithm

Our algorithm follows the same idea as in [30]: we perform k phase queries in parallel

for a carefully-chosen superposition of inputs, such that the output states corresponding to

distinct polynomials are as distinguishable as possible. For a k-query quantum algorithm,

we consider the mapping Z : Knk × Kk → KJ defined in Section 3.4.1 for K = Fq, R, and

C. Reference [30] gave an optimal algorithm for n = 1 using a uniform superposition over a

unique set of preimages of the range Rk := Z(Knk,Kk) of Z, so we apply the same strategy

here. For each z ∈ Rk, we choose a unique (x, y) ∈ Knk ×Kk such that Z(x, y) = z. Let Tk

be some set of unique representatives, so that Z : Tk → Rk is a bijection.

3.4.2.1 K = Fq

The algorithm generates a uniform superposition over Tk, performs k phase queries,

and computes Z in place, giving

1√
|Tk|

∑
(x,y)∈Tk

|x, y〉 7→ 1√
|Tk|

∑
(x,y)∈Tk

e(Z(x, y) · c)|x, y〉 7→ 1√
|Rk|

∑
z∈Rk

e(z · c)|z〉. (3.47)

We then measure in the basis of Fourier states |c̃〉 := 1√
qJ

∑
z∈FJq

e(z · c)|z〉. A simple

101

calculation shows that the result of this measurement is the correct vector of coefficients

with probability |Rk|/qJ .

3.4.2.2 K = R

We consider a bounded subset S ⊆ RJ and a set T ′k of unique preimages of each element

in Rk ∩ S such that Z(T ′k) = Rk ∩ S and Z : T ′k → Rk ∩ S is bijective. The algorithm on

input |ψ〉 with support supp(ψ) ⊆ Rk ∩ S gives

|ψ〉 =

∫
Rk∩S

dJz ψ(z)|z〉 7→
∫
Rk∩S

dJz ψ(z)|z〉|Z−1(z)〉

7→
∫
Rk∩S

dJz ψ(z)e(z · c)|z〉|Z−1(z)〉

7→
∫
Rk∩S

dJz ψ(z)e(z · c)|z〉 =: |ψc〉. (3.48)

The choice of S constrains the set of inputs that can be perfectly distinguished by this

procedure, as captured by the following lemma.

Lemma 3.4.1 (Orthogonality). For positive integer n, let m(A) :=
∫
A

dnz be the measure

of the set A ⊆ Rn. Let S be a bounded subset of Rn with nonzero measure. Let |c̃〉 =

1√
m(S)

∫
S

dnz e(c · z)|z〉 and let U be the maximal subset of Rn such that for any c, c′ ∈ U

with c 6= c′,

〈c̃′|c̃〉 =
1

m(S)

∫
S

dnz e((c− c′) · z) = 0. (3.49)

Then there is a lattice Λ such that U ∈ Rn/Λ.

102

Proof. By definition, c − c′ must be a zero of the Fourier transform F(IS) of the indicator

function IS(z). We denote Λ := {c : F(IS)(c) = 0} ∪ {0} and let c0 ∈ U . Clearly U ⊆ c0 + Λ

as Λ contains all zeros. Since 〈c̃+ c0|c̃0〉 = 0 for all c ∈ Λ\{0}, we have c0 + Λ ⊆ U and

U = c0 + Λ. If c ∈ Λ\{0}, then 〈c̃0 + c|c̃0〉 = 〈c̃0|c̃0 − c〉 = 0 implies that −c ∈ Λ. If

c, c′ ∈ Λ\{0}, then 〈c̃+ c0|−̃c′ + c0〉 = 〈 ˜c+ c′ + c0|c̃0〉 = 0 implies c+ c′ ∈ Λ\{0}. Therefore

Λ is an additive subgroup of Rn.

Now we prove that Λ is a lattice. For ε > 0, δ ∈ B(ε), and c ∈ Λ,

|〈c̃+ δ|c̃〉|2 =

∣∣∣∣∫
S

dnz e(δ · z)

∣∣∣∣2 ≥ ∣∣∣∣∫
S

dnz cos(2πδ · z)

∣∣∣∣2 > 0 (3.50)

if S ⊆ B(r) for r < 1
4ε
. Thus B(ε) contains exactly one element in Λ and hence Λ is

discrete.

Roughly speaking, Lemma 3.4.1 is a consequence of the uncertainty principle: restrict-

ing the support to a finite window limits the precision with which we can determine the

Fourier transform. In the proof, note that a larger window offers better resolution of the

coefficients.

We have shown that the set Λ of perfectly distinguishable coefficients forms a lattice.

We also require the set {|c̃〉 : c ∈ Λ} to be a complete basis. Since 〈z|c̃〉 = 1√
m(S)

e(z · c),

completeness implies that |z〉 is of the form
∑

c∈Λ e(−z ·c)|c̃〉 up to a normalization constant.

More formally, we have the following lemma.

Lemma 3.4.2 (Completeness). For positive integer n, let m(A) :=
∫
A

dnz be the measure

of the set A ⊆ Rn. Let Λ be a discrete additive subgroup of Rn. Let S be a bounded set

103

with nonzero measure and |c̃〉 = 1√
m(S)

∫
S

dnz e(z ·c)|z〉. Then {|c̃〉 : c ∈ Λ} forms a complete

basis over support S if and only if S is a fundamental domain of the dual lattice of Λ.

Proof. Let Λ̃ be the dual lattice of Λ. We observe that (ignoring the normalization constant)

∑
c∈Λ

e(−z · c)|c̃〉 =

∫
S

dJz′
∑
c∈Λ

e((z′ − z) · c)|z′〉 =

∫
S

dJz′
∑
z0∈Λ̃

δ(z′ − z − z0)|z′〉

=
∑
z0∈Λ̃

IS(z + z0)|z + z0〉 = |(z + Λ̃) ∩ S〉. (3.51)

In (3.51),
∑

c∈Λ e(z · c) =
∑

z0∈Λ̃ δ(z − z0) up to a constant factor [96, Section 7.2]. The set

(z+ Λ̃)∩S cannot be empty, so a fundamental domain of Λ̃ is a subset of S. For z, z′ ∈ Rn,

〈(z+ Λ̃)∩S|(z′+ Λ̃)∩S〉 = 0 if z′ /∈ z+ Λ̃, which implies that S is a subset of a fundamental

domain of Λ̃.

Lemma 3.4.2 further restricts the bounded set S has to be a fundamental region of

Λ̃. Without loss of generality, one may choose S to be a fundamental domain of a lattice

centered at zero. In the last step, the algorithm applies the unitary operator

1√
m(S)

∑
c′∈Λ

∫
S

dJz e(−z · c′)|c′〉〈z| (3.52)

to the state |ψc〉 in (3.48). The algorithm outputs c′ ∈ Λ with probability

1

m(Rk ∩ S)m(S)

∣∣∣∣∫
Rk∩S

dJz ψ(z)e(z · (c− c′))
∣∣∣∣2 ≤ m(Rk ∩ S)

m(S)
, (3.53)

where the upper bound follows from the Cauchy-Schwarz inequality. The maximum is

reached if ψ(z) = 1√
m(Rk∩S)

IRk∩S(z) and c happens to be a lattice point. If c /∈ Λ, the

104

algorithm returns the closest lattice point with high probability.

To achieve arbitrarily high precision, one may want to take S → RJ . In this limit, the

basis of coefficients is normalized to the Dirac delta function, i.e., 〈c̃′|c〉 = δ(J)(c−c′). In this

case, Λ → RJ and the unitary operator in (3.52) becomes the J-dimensional QFT over the

real numbers. However, for the interpolation problem, the success probability m(Rk∩S)
m(S)

is not

well-defined in the limit S → RJ since different shapes for S can give different probabilities.

Thus it is necessary to choose a bounded region, and we leave the optimal choice as an open

question.

Though the size of the fundamental domain S affects the resolution of the coefficients, it

does not affect the maximal success probability m(Rk∩S)
m(S)

. This can be seen by scale invariance:

for every z ∈ Rk, there is a preimage (x, y) such that Z(x, y) = z. Then λz ∈ Rk since

Z(x, λy) = λz for any λ ∈ R. In terms of the bijection ` : z 7→ λz for λ ∈ R×, we have

`(Rk) = Rk and `(Rk ∩ S) = Rk ∩ `(S). Then m(Rk ∩ `(S)) = m(`(Rk ∩ S)) = λJm(Rk ∩ S)

and hence m(Rk∩`(S))
m(`(S))

= m(Rk∩S)
m(S)

. Thus we can make the precision arbitrarily high by taking

S arbitrarily large, and we call m(Rk∩S)
m(S)

the success probability of the algorithm.

3.4.2.3 K = C

We consider a bounded set S ⊆ CJ and a set T ′k of unique preimages of each element

in Rk ∩ S such that Z(T ′k) = Rk and Z : T ′k → Rk ∩ S is bijective. The algorithm on input

105

|ψ〉 with support supp(ψ) ⊆ Rk ∩ S gives

|ψ〉 =

∫
φ(Rk∩S)

d2Jzψ(z)|z〉 7→
∫
φ(Rk∩S)

d2Jzψ(z)|z〉|φ(Z−1(z))〉

7→
∫
φ(Rk∩S)

d2Jzψ(z)e(z · c)|z〉|φ(Z−1(z))〉

7→
∫
φ(Rk∩S)

d2Jzψ(z)e(z · c)|z〉 =: |ψc〉. (3.54)

By Lemma 3.4.1 and Lemma 3.4.2, the set S must be a fundamental domain in CJ .

Let {|c̃〉 : c ∈ Λ} be the measurement basis. In the last step of the algorithm, we apply the

unitary operator

1√
m(S)

∑
c′∈φ(Λ)

∫
φ(S)

d2Jz e(−z · c′)|c′〉〈z| (3.55)

to the state |ψc〉 in (3.54). The algorithm outputs c′ ∈ Λ with probability

1

m(Rk ∩ S)m(S)

∣∣∣∣∫
φ(Rk∩S)

d2Jzψ(z)e(z · (c− c′))
∣∣∣∣2. (3.56)

Again, since |ψ〉 is normalized, (3.56) cannot be arbitrarily large. By the Cauchy-Schwarz

inequality, (3.56) is upper bounded by m(Rk∩S)
m(S)

; this maximal success probability is obtained

if ψ(z) = 1√
m(Rk∩S)

Iφ(Rk∩S)(z) and c happens to be a lattice point. If c /∈ Λ, the algorithm

returns the closest lattice point with high probability.

By the same argument as in Section 3.4.2.2, we can show scale invariance holds for

complex numbers: for ` : z 7→ λz where z ∈ CJ and λ ∈ R×, m(Rk∩S)
m(S)

= m(Rk∩`(S))
m(`(S))

. Thus we

can make the precision of the algorithm arbitrarily high by taking S arbitrarily large without

106

affecting the maximal success probability.

3.4.3 Performance

We have shown in Section 3.4.2.1 that the optimal success probability is at most |Rk|/qJ

for K = Fq. For real and complex numbers, we consider a bounded support S in which the

algorithm is performed. The success probability of the algorithm with this choice is at most

m(Rk∩S)
m(S)

, as shown in (3.53) and (3.56). To establish the query complexity, first we show that

if dimRk = J , the algorithm outputs the coefficients with bounded error.

Lemma 3.4.3. For positive integers n, k, d, let J :=
(
n+d
d

)
and let m(A) :=

∫
A

dJz be the

volume of A ⊆ RJ . Let Z : Knk ×Kk → KJ , Z(x, y) =
∑k

i=1 yix
j
i for an infinite field K. Let

Rk = Z(Knk,Kk) be the range of Z. If dimRk = J , then m(Rk∩S)
m(S)

> 0 if S is a fundamental

domain centered at 0.

Proof. Rk is a constructible set for K = C and it is a semialgebraic set for K = R. By [90]

and [91], Rk has non-empty interior if dim(Rk) = J for both cases.

S is a fundamental domain centered at 0 with finite measure, so we only need to prove

that m(Rk∩S) is of positive measure, or equivalently, that the interior of Rk and the interior

of S have non-empty intersection.

If this is not the case, then any interior point of S cannot be in the interior of Rk.

By scale invariance of Rk, any point in Kn except 0 cannot be in the interior of Rk, which

contradicts the fact that Rk has non-empty interior given dim(Rk) = J .

Lemma 3.4.3 shows that for infinite fields, although we perform the algorithm over a

bounded support, the query complexity can be understood by considering the dimension of

107

the entire set Rk. Moreover, by invoking recent work on typical ranks, we can establish the

minimum number of queries to determine the coefficients almost surely.

Now let vd(x1, x2, . . . , xn) be the
(
n+d
d

)
-dimensional vector that contains all monomials

with variables x1, . . . , xn of degree no more than d as its entries. Let

Xn,d := {vd(x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ K} (3.57)

where K is a given ground field. For example, we have

X3,2 = {(x2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3, x1, x2, x3, 1)> : x1, x2, x3 ∈ K}. (3.58)

Our question is to determine the smallest number k such that a generic vector in K(n+dd) can

be written as a linear combination of no more than k elements from Xn,d. More precisely,

we have Rk = {
∑k

i=1 civi : ci ∈ K, vi ∈ Xn,d}, and we ask what is the smallest number k

such that Rk has full measure in K(n+dd).

Our approach requires basic knowledge of algebraic geometry—specifically, the con-

cepts of Zariski topology, Veronese variety, and secant variety. Formal definitions can be

found in Section 3.2. For the reader’s convenience, we also explain these concepts briefly

when we first use them.

Now we make two simple observations.

1. In general, vd(x1, x2, . . . , xn) can be treated as an
(
n+d
d

)
-dimensional vector that con-

tains all monomials with variables x1, . . . , xn, xn+1 of degree d as its entries, by simply

taking the map (x1, x2, . . . , xn) 7→ (x1
xn+1

, . . . , xn
xn+1

) and multiplying by xdn+1. For ex-

108

ample, applying this mapping to X3,2 gives

X ′3,2 = {(x2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3, x1x4, x2x4, x3x4, x

2
4)> : x1, x2, x3, x4 ∈ K}.

The new set X ′n,d is slightly bigger than Xn,d since it also contains those points cor-

responding to xn+1 = 0, but this will not affect our calculation since the difference is

just a measure zero set in X ′n,d.

2. The set X ′n,d is the Veronese variety. One may also notice that this set is isomorphic

to
(
(x1, x2, . . . , xn+1)>

)⊗d in the symmetric subspace.

These observations imply that instead of studying Rk, we can study the new set

R′k =

{
k∑
i=1

civ
′
i : ci ∈ K, v′i ∈ X ′n,d

}
. (3.59)

In general, we have a sequence of inclusions:

X ′n,d = R′1 ⊆ R′2 ⊆ · · · ⊆ R′k ⊆ · · · ⊆ K(n+dd). (3.60)

By taking the Zariski closure, we also have

X ′n,d = R′1 ⊆ R′2 ⊆ · · · ⊆ R′k ⊆ · · · ⊆ K(n+dd) (3.61)

where R′k is the kth secant variety of the Veronese variety X ′n,d.

Palatini showed the following [97, 98]:

109

Lemma 3.4.4. If dimR′k+1 ≤ dimR′k + 1, then R′k+1 is linear.

In particular, this shows that if dimR′k =
(
n+d
d

)
, then R′k = K(n+dd).

For an infinite field K, define kK to be the smallest integer such that m(RkK∩S)

m(S)
= 1.

Thus kK represents the minimal number of queries such that our algorithm succeeds with

probability 1. For the finite field case K = Fq, we only require that
m(RkFq

∩S)

m(S)
goes to 1 when

q tends to infinity.

3.4.3.1 K = C

A theorem due to Alexander and Hirschowitz [99] implies an upper bound on the query

complexity of polynomial interpolation over C.

Theorem 3.4.1 (Alexander-Hirschowitz Theorem, [99]). The dimension of R′k satisfies

dimR′k =

k(n+ 1)− k(k−1)
2

d = 2, 2 ≤ k ≤ n;

(
n+d
d

)
− 1 (d, n, k) = (3, 4, 7), (4, 2, 5), (4, 3, 9), (4, 4, 14);

min{k(n+ 1),
(
n+d
d

)
} otherwise.

(3.62)

Thus, the minimum k to make R′k = C(n+dd) is

kC(n, d) :=

n+ 1 d = 2, n ≥ 2;

d 1
n+1

(
n+d
d

)
e+ 1 (n, d) = (4, 3), (2, 4), (3, 4), (4, 4);

d 1
n+1

(
n+d
d

)
e otherwise.

(3.63)

By parameter counting, we see that Rk is of full measure in R′k. It remains to show that R′k

110

is of full measure in its Zariski closure R′k:

Theorem 3.4.2. R′k is of full measure in R′k.

Proof. R′k is just the image of the map (Q1, Q2, . . . , Qk) 7→ (Q1 +Q2 + · · ·+Qk). By Exercise

3.19 in Chapter II of [100], R′k is a constructible set, so it contains an open subset of each

connected component of R′k. Therefore its complement is of measure 0.

This immediately implies the following:

Corollary 3.4.1. Rk has measure 0 in C(n+dd) for k < kC(n, d) and measure 1 in C(n+dd) for

k ≥ kC(n, d).

Thus, as the integer k increases, m(R′k∩S)

m(S)
suddenly jumps from 0 to 1 at the point

kC(n, d), and so does m(Rk∩S)
m(S)

. This implies part (3) of Theorem 3.1.4.

3.4.3.2 K = R

Now consider the case K = R. For d = 2, (n+ 1)-variate symmetric tensors are simply

(n+ 1)× (n+ 1) symmetric matrices, so a random (n+ 1)-variate symmetric tensor will be

of rank n + 1 with probability 1. However, if the order of the symmetric tensors is larger

than 2, the situation is much more complicated. For example, a random bivariate symmetric

tensor of order 3 will be of two different ranks, 2 and 3, both with positive probabilities.

From the perspective of algebraic geometry, it still holds that R′k = R(n+dd) for k ≥

kC(n, d), and for k < kC(n, d), R′k is of measure zero in R(n+dd). It also holds that Rk

is of full measure in R′k. However, the claim that R′k has full measure in R′k no longer

holds over R. As we explained in the proof of Theorem 3.4.2, R′k is the image of the map

111

(Q1, Q2, . . . , Qk) 7→ (Q1 + Q2 + · · · + Qk). For an algebraically closed field K, it is known

that the image of any map is always a constructible set in its Zariski closure. Thus R′k is of

full measure in R′k. Over R, it is easy to verify that the image may not be of full measure

in its Zariski closure (a simple counterexample is x 7→ x2). Consequently, over C, R′k has

non-empty interior for a unique value of k, and this value of k is called the generic rank.

Over R, R′k is just a semialgebraic set and it has non-empty interior for several values of k,

which are called the typical ranks.

For the univariate case, we have the following theorem:

Theorem 3.4.3 ([101, 102]). For n = 1, all integers from kC = dd+1
2
e to kR = d are typical

ranks.

For the multivariate case n ≥ 2, it still holds that kC(n, d) defined in Section 3.4.3.1

is the smallest typical rank [91]. According to [90], every rank between kC(n, d) and the top

typical rank kR(n, d) is also typical. Thus we only need to study the top typical rank kR(n, d).

Unfortunately, the top typical rank in general is not known. In the literature, considerable

effort has been devoted to understanding the maximum possible rank kmax(n, d), which, by

definition, is also an upper bound for kR(n, d). In particular, we have kmax(n, 2) ≤ n+ 1 for

n ≥ 2, kmax(2, 4) ≤ 11, kmax(3, 4) ≤ 19, kmax(4, 4) ≤ 29, kmax(4, 3) ≤ 15, and kmax(n, d) ≤

2d 1
n+1

(
n+d
d

)
e otherwise [91].

The above result implies kR(n, d) ≤ kmax(n, d) ≤ 2kC(n, d). We also mention a few

other upper bounds on kmax(n, d). Trivially we have kmax(n, d) ≤
(
n+d
d

)
. In [103, 104], this

was improved to kmax(n, d) ≤
(
n+d
d

)
− n. Later work showed that kmax(n, d) ≤

(
n+d−1
n

)
[105].

Jelisiejew then proved that kmax(n, d) ≤
(
n+d−1
n

)
−
(
n+d−5
n−2

)
[106], and Ballico and De Paris

112

then improved this to kmax(n, d) ≤
(
n+d−1
n

)
−
(
n+d−5
n−2

)
−
(
n+d−6
n−2

)
[107]. For small cases, these

bounds may be stronger than the bound kmax(n, d) ≤ 2kC(n, d) mentioned above.

To summarize, we have the following, which implies part (2) of Theorem 3.1.4:

Theorem 3.4.4. As the integer k increases from kC(n, d)−1 to kR(n, d) ≤ 2kC(n, d), m(R′k∩S)

m(S)

forms a strictly increasing sequence from 0 to 1, and so does m(Rk∩S)
m(S)

.

3.4.3.3 K = Fq

We link the finite field case with the complex case using the Lang-Weil theorem:

Theorem 3.4.5 (Lang-Weil Theorem, [108]). There exists a constant A(n, d, r) depending

only on n, d, r such that for any variety V ⊆ Pn with dimension r and degree d, if we define

V over a finite field Fq, the number of points in V must satisfy

|N − qr| ≤ (d− 1)(d− 2)qr−
1
2 + A(n, d, r)qr−1. (3.64)

The Lang-Weil theorem shows that when q is large enough, the number of points in a

variety over Fq is very close to qdimV . So it actually tells us that m(R′k∩S)

m(S)
= 0 if k < kC(n, d).

It remains unclear whether m(R′k∩S)

m(S)
> 0 for k = kC(n, d). Once again, for the finite field

case, when we talk about the measure, we always assume q is sufficiently large. As in the

real field case, the main challenge now is to study the measure of R′k in R′k.

For the upper bound, recall our notation that vd(x1, x2, . . . , xn) is the
(
n+d
d

)
-dimensional

vector that contains all monomials with degree no more than d as its entries.

Here we make a slight change to the definition in which we require all those xis in vd

to be nonzero. We can similarly define X ′′n,d and R′′k. We prove the following:

113

Lemma 3.4.5. Let rn,d be the minimum number such that |R′′rn,d| = q(
n+d
d) − O(q(

n+d
d)−1).

Then rn,d ≤ rn−1,d + rn,d−1.

Proof. The proof is by induction on n+ d.

For n + d = 2, it is easy to verify r2,2 = 3 ≤ r1,2 + r2,1 = 2 + 1. Assume Lemma 3.4.5

holds for n + d ≤ m − 1 and consider the pair (n, d) with n + d = m. For the sake of

readability, we first explain how the induction works for the specific example (n, d) = (3, 2),

and then generalize our idea to any (n, d).

The vector

v2(x1, x2, x3) = (x2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3, x1, x2, x3, 1)> ∈ X ′′3,2 (3.65)

can be rearranged as (x3, x3x1, x3x2, x
2
3, x

2
1, x

2
2, x1x2, x1, x2, 1)>. The first 4 entries can be

rewritten as x2
3(1
x3
, x1
x3
, x2
x3
, 1)> = x2

3v1(1
x3
, x1
x3
, x2
x3

), and the last 6 entries form v2(x1, x2).

When (x1, x2, x3) ranges over all 3-tuples in Fq \ {0}, (1
x3
, x1
x3
, x2
x3

) also ranges over all

possible 3-tuples in Fq \ {0}. By assumption, if we take linear combinations of r3,1 vectors

chosen from X ′′3,2, the first 4 entries will range over no fewer than q(
3+1
1)−O(q(

3+1
1)−1) different

vectors in F(3+1
1)

q .

For any such linear combination, we can add r2,2 extra vectors from X3,2 with the

restriction that x3 = 0, which will guarantee these extra vectors do not affect the first 4

entries. By assumption, the last 6 entries will range over no fewer than q(
2+2
2) −O(q(

2+2
2)−1)

different vectors in F(2+2
2)

q .

Thus, in total, we have
(
q(

3+1
1) −O(q(

3+1
1)−1)

)(
q(

2+2
2) −O(q(

2+2
2)−1)

)
different vectors in

F(3+2
2)

q if we take linear combinations of r3,1 + r2,2 vectors from X ′′3,2, which implies r3,2 ≤

114

r3,1 + r2,2.

For general (n, d), the analogous partition of vd(x1, x2, . . . , xn) is still valid. Those(
n+d
d

)
−
(
n−1+d

d

)
=
(
n+d−1
d−1

)
entries involving xn will form xd−1

n vd−1(1
xn
, x1
xn
, . . . , xn−1

xn
) and the

rest will form vd(x1, x2, . . . , xn−1). All arguments follow straightforwardly, so we have rn,d ≤

rn−1,d + rn,d−1 for n+ d = m and for any (n, d) by induction.

Corollary 3.4.2. rn,d ≤
(
n+d−1
d−1

)
.

Proof. We use induction on n+d. For n+d = 2, it is easy to verify. If it is true for n+d = m,

then for n+ d = m+ 1, we have rn,d ≤ rn−1,d + rn,d−1 ≤
(
n+d−2
d−1

)
+
(
n+d−2
d−2

)
=
(
n+d−1
d−1

)
.

R′′k is obviously a subset of R′k, so kFq(n, d) ≤ rn,d. By combining Theorem 3.4.5 and

Corollary 3.4.2, we have the following, which implies part (1) of Theorem 3.1.4:

Corollary 3.4.3. kC(n, d) ≤ kFq(n, d) ≤ rn,d ≤
(
n+d−1
d−1

)
= d

n+d

(
n+d
d

)
.

Remark 3.4.1. By combining Corollary 3.4.2 with the fact rn,2 ≥ kC(n, 2), we have rn,2 =

n+ 1.

Remark 3.4.2. It was previously known that rn,1 = 1 [109, 110] and r1,d = dd+1
2
e [30]. We

can further refine the upper bound using these boundary conditions:

rn,d ≤
d−2∑
i=0

(
n− 2 + i

i

)
r1,d−i +

(
d+ n− 3

d− 1

)
≤

d−2∑
i=0

(
n− 2 + i

i

)
d− i+ 3

2
+

(
d+ n− 3

d− 1

)

=
n+ d+ 2

2

(
n+ d− 3

n− 1

)
− n− 1

2

(
n+ d− 2

n

)
+

(
d+ n− 3

d− 1

)
. (3.66)

115

3.5 Optimality

In this section, we show that the query complexity of our algorithms over a finite

field is precisely optimal: no k-query algorithm can succeed with a probability larger than

|Rk|/qd+1. We begin with a basic result showing that m states spanning an n-dimensional

subspace can be distinguished with probability at most n/m.

Lemma 3.5.1. Suppose we are given a state |ψc〉 with c ∈ C chosen uniformly at random.

Then the probability of correctly determining c with some orthogonal measurement is at most

dim span{|ψc〉 : c ∈ C}/|C|.

Proof. Consider a measurement with orthogonal projectors Ec, and let Π denote the projec-

tion onto span{|ψc〉 : c ∈ C}. Then we have

Pr[success] =
1

|C|
∑
c∈C

〈ψc|Ec|ψc〉 ≤
1

|C|
∑
c∈C

tr(EcΠ) =
tr(Π)

|C|
=

dim span{|ψc〉 : c ∈ C}
|C|

(3.67)

as claimed.

We apply this lemma where |ψc〉 is the final state of a given quantum query algorithm

when the black box contains c ∈ FJq . There is no loss of generality in considering an orthog-

onal measurement at the end of the algorithm since we allow the use of an arbitrary-sized

ancilla.

Lemma 3.5.2. Let J =
(
n+d
d

)
and |ψc〉 be the state of any quantum polynomial interpolation

algorithm after k queries, where the black box contains c ∈ FJq . Then dim span{|ψc〉 : c ∈

116

FJq } ≤ |Rk|.

Proof. We claim that

|ψc〉 =
∑
x,y∈Fkq

e(Z(x, y) · c)|φx,y〉 (3.68)

for some set of (unnormalized) states {|φx,y〉 : x ∈ Fnkq , y ∈ Fkq} that do not depend on c.

Then the result follows, since

|ψc〉 =
∑

z∈Fd+1
q

e(z · c)
∑

x,y∈Z−1(z)

|φx,y〉 ∈ span

{ ∑
x,y∈Z−1(z)

|φx,y〉 : z ∈ FJq
}
, (3.69)

which has dimension at most |Rk| = |{Z(x, y) : (x, y) ∈ Fnkq × Fkq}|.

To see the claim, consider a general k-query algorithm UkQcUk−1 . . . QcU1QcU0 acting

on states of the form |x, y, w〉 for an arbitrary-sized workspace register |w〉, starting in the

state |x0, y0, w0〉 = |0, 0, 0〉. Here Qc : |x, y, w〉 7→ e(yf(x))|x, y, w〉 is a phase query. The

final state |ψc〉 equals

∑
x∈Fnkq y∈Fkq

xk+1∈Fnq ,yk+1∈Fq
w∈Ik+1

e

(k∑
j=1

yjf(xj)

)(k∏
j=0

〈xj+1, yj+1, wj+1|Uj|xj, yj, wj〉
)
|xk+1, yk+1, wk+1〉, (3.70)

with x0 = y0 = w0 = 0, x = (x1, . . . , xk), y = (y1, . . . , yk), w = (w1, . . . , wk+1), and I some

appropriate index set. This expression has the claimed form when we define

|φx,y〉 =
∑

xk+1∈Fnq ,yk+1∈Fq
w∈Ik+1

(k∏
j=0

〈xj+1, yj+1, wj+1|Uj|xj, yj, wj〉
)
|xk+1, yk+1, wk+1〉.

117

We can now prove our upper bound on the success probability of quantum algorithms

for polynomial interpolation.

Proof of Theorem 3.1.1 (upper bound on success probability). By combining Lemma 3.5.1 with

Lemma 3.5.2, we see that if the coefficients c ∈ FJq are chosen uniformly at random, no al-

gorithm can succeed with probability greater than |Rk|/qJ . Since the minimum cannot be

larger than the average, this implies a lower bound on the success probability in the worst

case of |Rk|/qJ .

This result also shows that the exact quantum query complexity of univariate polyno-

mial interpolation is maximal.

Corollary 3.5.1. The exact quantum query complexity of interpolating a degree-d univariate

polynomial is d+ 1.

Proof. This follows from Theorem 3.1.1 and the fact that if k < d+ 1, we have |Rk| < qd+1.

To see this, observe that if k < d + 1, then vectors of the form (0, . . . , 0, zd) for zd 6= 0

are not in the range of Z. We can assume there is an (x, y) ∈ Z−1(z) with x1, . . . , xk all

distinct, since if xi = xj for some i 6= j, then we could delete index j and replace yi by

yi+yj. Then in equation (3.37), the Vandermonde matrix on the left-hand side is invertible,

so y1 = · · · = yk = 0. However, this implies that
∑

i yix
d
i = 0 6= zd.

118

Chapter 4: Matrix-vector products

4.1 Introduction

Algorithms for linear algebra problems—for example, solving linear systems and de-

termining basic properties of matrices such as rank, trace, determinant, eigenvalues, and

eigenvectors—constitute a fundamental research area in applied mathematics and theoret-

ical computer science. Such tasks have widespread applications in scientific computation,

statistics, operations research, and many other related areas. Algorithmic linear algebra also

provides a fundamental toolbox that can inspire the design of algorithms in general.

There are several possible models of access to a matrix, and linear-algebraic algorithms

can depend significantly on how the input is represented (as discussed further below). One

natural model is the matrix-vector product (Mv) oracle. For a matrix M ∈ Fn×m in a given

field F, the Mv oracle takes x ∈ Fm as input and outputs Mx ∈ Fn. Matrix-vector products

arise, for example, as the elementary step of the power method (and the related Lanczos

method) for computing the largest eigenvector of a matrix. Matrix-vector products also

commonly appear in streaming algorithms, especially in the technique of sketching (see the

survey [111] for more information).

Recent work has studied the classical complexity of various basic problems in the

Mv model. Specifically, Sun, Woodruff, Yang, and Zhang [32] studied the complexities of

119

various linear algebra, statistics, and graph problems using matrix-vector products, and

Braverman, Hazan, Simchowitz, and Woodworth [33] proved tight bounds on maximum

eigenvalue computation and linear regression in this model. Rashtchian, Woodruff, and Zhu

[112] considered a generalization to the vector-matrix-vector product (vMv) oracle, which

returns x>My for given input vectors x ∈ Fn, y ∈ Fm, and studied the complexity of various

linear algebra, statistics, and graph problems in this setting. Table 4.1 includes a partial

summary of these results.

Quantum computers can solve certain problems much faster than classical computers,

so it is natural to study quantum query complexity with matrix-vector products. Lee, Santha,

and Zhang recently studied the quantum query complexity of graph problems with cut queries

[113], which are closely related to matrix-vector queries. For a weighted graph G = (V,w)

where |V | = n and w assigns a nonnegative integer weight to each edge, the input of a

cut query is a subset S ⊆ V and the output is |w(S, V \ S)|, the total weight of the edges

between S and V \S. This can be viewed as a version of the vMv model over Z, with the extra

assumptions that x ∈ {0, 1}n, y ∈ {0, 1}m are both boolean and M is a symmetric matrix

with nonnegative integer entries. Reference [113] gives quantum algorithms for determining

all connected components of G with O(log6 n) quantum cut queries, and for outputting a

spanning forest of G with O(log8 n) quantum cut queries. Both problems require Ω(n/ log n)

classical cut queries, so the quantum algorithms provide exponential speedups.

In other recent work on structured queries for graph problems, Montanaro and Shao

studied the problem of learning an unknown graph with “parity queries” [114]: for an un-

known graph with adjacency matrix A, the parity oracle takes as input a string x that

encodes a subset of the vertices, and returns x>Ax mod 2. This query model is the vMv

120

model over F2 with the extra restriction that the left and right vectors are identical.

Van Apeldoorn and Gribling studied Simon’s problem for linear functions over a prime

field Fp [115]. In this problem, the oracle encodes a linear function f : Fp → Fp, and the

task is to determine if the function is one-to-one, or if there is a one-dimensional subspace

H ⊂ Fp such that for every x, x′ ∈ Fnp , f(x) = f(x′) if and only if x − x′ ∈ H. Such a

function can be represented by a square matrix over Fp, and the problem is equivalent to

determining whether that matrix is full rank or has nullity 1 using matrix-vector product

queries.

Other past work has developed linear algebraic quantum algorithms using different

input models. Quantum algorithms for high-dimensional linear algebra have been studied

extensively since Harrow, Hassidim, and Lloyd introduced a method for generating a quan-

tum state proportional to the solution of a large, sparse system of linear equations [116].

This algorithm assumes a quantum oracle that determines the locations and values of the

nonzero entries of a matrix in any given row or column, and the ability to generate a quan-

tum state that encodes the right-hand side of the linear system. Subsequent work has led to

improved and generalized algorithms under similar assumptions. However, it is challenging

to find practical applications that achieve speedup over classical computation [117, 118].

Recent work by Apers and de Wolf [119] gives polynomial quantum speedup for produc-

ing an explicit classical description of the solution of a Laplacian linear system, assuming

adjacency-list access to the underlying graph of the Laplacian. Note also that for various

problems including determinant estimation, rank testing, linear regression, etc., there is a

large separation between the classical query complexities under Mv and entrywise queries

(Θ̃(n) [32] and Θ(n2), respectively). These results show how the model of access to a ma-

121

trix can significantly impact the complexity of solving linear-algebraic problems. A better

understanding of the quantum matrix-vector oracle could therefore provide a useful tool for

the design of future quantum algorithms.

Contributions. We conduct a systematic study of quantum query complexity with a matrix-

vector oracle for a matrix M ∈ Fm×nq , where Fq is a given finite field. Using this model, we

provide results on the quantum query complexities of linear algebra and statistics problems.

First, we prove that various linear algebra problems, including computing the trace

tr(M) of M ∈ Fn×nq ; computing the determinant det(M) of M ∈ Fn×nq ; solving the linear

system Ax = b for A ∈ Fn×nq ; and testing whether rank(M) = n or rank(M) ≤ n/2 for

a matrix M ∈ Fm×nq ; require Ω(n) quantum queries to the Mv oracle. Since O(n) queries

suffice to determine the entire matrix, even classically, these results show that no quantum

speedup is possible. (As a side effect, we improve the Ω(n/ log n) classical lower bound for

trace computation [32] to Ω(n).)

Our quantum lower bound for trace computation applies results of Copeland and Pom-

mersheim [29] by viewing the problem as a special case of coset identification. Our lower

bounds for other linear algebra problems are all proved by the polynomial method [20, 120].

We show how to symmetrize the success probability to a univariate polynomial, and then

give a lower bound on the polynomial degree using an observation of Koiran, Nesme, and

Portier [121].

On the other hand, we determine the matrix-vector quantum query complexity of

several statistics problems, including computing the row and column parities, deciding if

there exist two identical columns, and deciding if there exist two identical rows forM ∈ Fm×n2 .

122

Specifically, we prove that their quantum query complexities with an Mv oracle are O(1),

O(log n), and O(logm), respectively. Compared to the classical bounds using either the Mv

oracle [32] or the vMv oracle [112], our quantum algorithms achieve exponential quantum

speedups.

Technically, these results build upon our observation that the quantum query complex-

ities in the Mv model under left or right multiplication are identical (Theorem 4.3.1). In

particular, one right Mv query can be simulated using one left Mv query, and vice versa. In

contrast, classically there is a significant difference between matrix-vector (Mv) and vector-

matrix (vM) queries—for example, computing the parity of rows over F2 only takes O(1)

Mv queries, but computing the parity of columns over F2 requires Θ(n) Mv queries. In con-

trast, for both problems a quantum computer can achieve the smaller query complexity by

switching to the easier side.

Our results are summarized in Table 4.1, including some implications of our results for

classical query complexity and a few additional results over R. Note that there can be large

gaps between the classical query complexities with Mv and vMv queries, but they are the

same in the quantum setting due to an equivalence between quantum Mv and vMv queries

(Theorem 4.3.3), which follows along similar lines to the equivalence between Mv and vM

queries. The Mv–vMv equivalence is closely related to a similar equivalence shown in the

work of Lee, Santha, and Zhang [113], as we discuss further in Section 4.3.2.

Open questions. Our paper leaves several natural open questions for future investigation:

First of all, for linear algebra problems such as those we studied, can we also prove quantum

query lower bounds for matrices over the real field R? Our proofs rely on the polynomial

123

method, and it is unclear how to adapt them to a setting with continuous input.

Can we prove a quantum lower bound for the task of minimizing a quadratic form

f(x) = 1
2
x>Ax+b>x, where A ∈ Rn×n and b ∈ Rn? Note that f is minimized at x = −A−1b,

and we can determine the vector b and implement Mv queries to the matrix A using fast

quantum gradient computation [122], so this is closely related to the previous open question.

Quadratic form minimization is a special case of optimizing a convex function f : Rn → R

by quantum evaluation queries, where previous works [123, 124, 125] left a quadratic gap

between the best known quantum upper and lower bounds of Õ(n) and Ω(
√
n), respectively.

For the finite field case, can we identify other problems with quantum speedup over the

classical matrix-vector oracle, or find advantage compared to other quantum oracles such as

entrywise queries?

Organization. We review necessary background in Section 4.2. We prove the equivalence

of quantum matrix-vector and vector-matrix-vector product oracles in Section 4.3. In Sec-

tion 4.4, we prove tight quantum query complexity lower bounds on various linear algebra

problems, including trace, determinant, linear systems, and rank.

4.2 Preliminaries

4.2.1 The quantum query model

Given a set X and an abelian group G, let f : X → G be a function. Access to f

is provided by a black-box unitary operation Uf : |x, y〉 7→ |x, y + f(x)〉 for all x ∈ X and

y ∈ G. We call an application of Uf a (standard) query.

124

For a finite abelian group G, the Fourier transform over G is

FG :=
1

|G|1/2
∑
x∈G

∑
y∈Ĝ

χy(x)|y〉〈x|, (4.1)

where Ĝ is a complete set of characters of G, and χy : G → C denotes the yth character

of G. Since Ĝ ∼= G, we label elements of Ĝ using elements of G. Note that χy is a

group homomorphism, i.e., χy(x + z) = χy(x)χy(z). In addition, the characters satisfy the

orthogonality condition

1

|G|
∑
z∈G

χy(z)∗χw(z) = δyw. (4.2)

A phase query is defined as a standard query conjugated by the Fourier transform

acting on the output register. In other words, for x ∈ X and y ∈ G, a phase query acts as

|x, y〉
1⊗F †G7−−−→ 1

|G|1/2
∑
z∈G

χy(z)∗|x, z〉

Uf7−→ 1

|G|1/2
∑
z∈G

χy(z)∗|x, z + f(x)〉

1⊗FG7−−−→ 1

|G|
∑
z∈G

χy(z)∗χw(z + f(x))|x,w〉 = χy(f(x))|x, y〉. (4.3)

The equality in (4.3) follows from the orthogonality condition in (4.2). Since one can simulate

a phase query using a single standard query and vice versa, the query complexities of any

problem are equal with these two models.

Over a finite field Fq for prime power q = pr, the Fourier transform over Fq is the unitary

transformation |x〉 7→ q−1/2
∑

y∈Fq e(xy)|y〉, where the exponential function e : Fq → C is

125

defined as e(z) := e2πiTrFq/Fp (z)/p and the trace function TrFq/Fp : Fq → Fp is defined as

TrFq/Fp(z) := z + zp + zp
2

+ · · ·+ zp
r−1 .

Over the field of real numbers, the quantum Fourier transform is

FR :=

∫
R

dy

∫
R

dx e2πiyx|y〉〈x|. (4.4)

The basis states {|x〉 : x ∈ R} are normalized to the Dirac delta function, i.e., for x, x′ ∈ R,

〈x′|x〉 = δ(x− x′). Here the Dirac delta function δ satisfies
∫
R dx′ δ(x− x′)f(x′) = f(x) for

any function f . Furthermore, we have
∫
R dy e2πiy(x−x′) = δ(x − x′). By direct calculation

using these facts, F †RFR =
∫
R dx |x〉〈x| = 1.

While we can formally consider a model of query complexity over R with arbitrary pre-

cision, its practical instantiation requires discrete approximation. We can achieve precision

ε by approximating real numbers with s = O(log(1/ε)) bits, and can then replace the con-

tinuous Fourier transform with the discrete Fourier transform over Z2s . It is straightforward

to show that a discretized phase query over Z2s can be implemented by Fourier transforming

a standard query that maps discretized inputs to discretized function values.

4.2.2 The coset identification problem

Copeland and Pommersheim studied a kind of quantum query problem that they call

the coset identification problem [29]. They define this problem in a generalized query model

where the black box does not necessarily perform a standard or phase query, although their

definition includes those cases. In the coset identification problem, we fix a finite group G

and a subgroup H ≤ G. The algorithm is given access to a unitary transformation π(g),

126

where π is a representation of G on vector space V . When π is given, the vector space V is

called the representation space (or simply, the representation) of G [126, Chapter 1]. The

goal is to determine which coset of H the unknown element g ∈ G belongs to.

Definition 4.2.1 (Coset identification problem [29]). A coset identification problem for a

finite group G and subgroup H ≤ G is a 3-tuple (π, V, F) such that

• π is a unitary representation of G in the complex vector space V , and

• F is a function constant on left cosets of H ≤ G and distinct on distinct cosets, i.e.,

F (g) = F (g′) if and only if g′ = gh for some h ∈ H.

Given a black box that performs the unitary transformation π(g), the goal is to compute F (g).

Copeland and Pommersheim show that the optimal success probability of a t-query

algorithm for a coset identification problem can be calculated by taking, over all irreps Y

of H, the maximum of the fraction of the induced representation Y ↑ of G shared with V ⊗t.

Furthermore, the optimal algorithm can be non-adaptive. For a representation V , let I(V)

denote the set of irreducible characters of G appearing in V .

Theorem 4.2.1 (Optimal success probability of coset identification [29, Corollary 5.7]). The

optimal success probability of any t-query quantum algorithm A for the coset identification

problem (π, V, F) for finite group G and subgroup H ≤ G, under uniformly random inputs

in G, is

Pr[Aπ(g) = F (g)] = max
Y

dimY ↑V ⊗t

dimY ↑
, (4.5)

where the probability is maximized over all irreducible representations Y of H, Y ↑ is the in-

127

duced representation of G, and AB is the maximal subrepresentation of A such that I(AB) ⊆

I(B) for representations A,B.

The oracle discrimination problem is the special case of the coset identification problem

where H is the trivial group, i.e., the function F is injective. In this case, Y ↑ = span{|g〉 :

g ∈ G}.

Corollary 4.2.1 (Optimal success probability of oracle discrimination [29, Theorem 4.2]).

The optimal success probability of the oracle discrimination problem is 1
|G|
∑

i∈I(V ⊗t) d
2
i , where

I(V ⊗t) is the irrep content of (π⊗t, V ⊗t) and di is the dimension of irrep i ∈ I(V ⊗t).

We consider the complexity of standard queries in the matrix-vector model. In this

model, oracle access to a matrix M ∈ Fm×n for field F and positive integers m,n is the

unitary operation U(M) : |x, y〉 7→ |x, y+Mx〉. The map U is a representation of the additive

group of matrices since it is a group homomorphism satisfying U(M)U(N) = U(M +N) for

all matrices M,N of the same dimensions. A phase query is also a unitary representation

since it is a standard query conjugated by a fixed unitary matrix (the quantum Fourier

transform).

4.2.3 The polynomial method

We will use the polynomial method to obtain quantum lower bounds. Here we state a

version for non-boolean functions as used in [120].

Lemma 4.2.1. Let A be a t-query quantum algorithm given access to the input x ∈ [m]n

for m,n ∈ Z through oracle Ux : |i, j〉 7→ |i, j + xi〉 for i ∈ [n] and j ∈ [m]. The acceptance

probability of A on input x is a degree-(2t) polynomial in x1, . . . , xn.

128

4.3 Equivalence of matrix-vector and vector-matrix-vector products

In this section, we show that the matrix-vector and vector-matrix-vector models are

equivalent, i.e., for any problem, the quantum query complexities in these models differ by at

most a constant factor. Furthermore, we show that in the matrix-vector model, left matrix-

vector products and right matrix-vector products are equivalent. This is in stark contrast

to the classical case where these query complexities can differ significantly, as mentioned in

Section 4.1 and discussed further below.

4.3.1 Left and right matrix-vector queries

We first show that left matrix-vector products and right matrix-vector products are

equivalent.

Theorem 4.3.1. Quantum query complexities in the left and right matrix-vector models over

a finite field are identical. In particular, one right Mv query can be simulated using one left

Mv query, and vice versa.

Proof. For input matrix M ∈ Fn×mq , a matrix-vector (Mv) query applies the unitary trans-

formation

UMv(M) : |x, y〉 7→ |x, y +Mx〉 (4.6)

for every x ∈ Fmq and y ∈ Fnq . Conjugating by a quantum Fourier transform on the output

129

register yields a phase query

|x, y〉
1⊗F †Fnq7−−−−→ q−1/2

∑
z

e(−y>z)|x, z〉

UMv(M)7−−−−→ q−1/2
∑
z

e(−y>z)|x, z +Mx〉

1⊗FFnq7−−−−→ q−1
∑
z,w

e(−y>z + w>(z +Mx))|x,w〉

=
∑
w

δ[y = w]e(−y>z + w>(z +Mx))|x,w〉

= e(y>Mx)|x, y〉. (4.7)

We denote this unitary transformation by U M̃v(M).

Conjugating a phase query by a swap gate, we have

|x, y〉 SWAP7−−−→ |y, x〉

U M̃v(M)7−−−−→ e(x>My)|y, x〉

SWAP7−−−→ e(x>My)|x, y〉

= e(y>M>x)|x, y〉. (4.8)

This yields U M̃v(M>), which in turn gives UMv(M>) upon conjugation by an inverse quantum

Fourier transform on the output register. Thus one can simulate the oracle UMv(M>) using

one query to UMv(M), showing equivalence of the two models.

In contrast to Theorem 4.3.1, Sun, Woodruff, Yang, and Zhang show that for the task

of computing the row parities of an m × n matrix M over F2, the left query complexity is

130

Ω(m), whereas the right query complexity is 1 [32]. Thus we have shown that computing

column parities over F2 in the Mv model has quantum query complexity 1, significantly less

than the classical query complexity of Ω(n).

Corollary 4.3.1. The query complexity of computing the row parities and the column parities

of an m× n matrix over F2 is 1.

Note that it is easy to understand the randomized query complexities of these problems

in the vMv model.

Lemma 4.3.1. The randomized query complexities of computing the row parities and the

column parities of an m× n matrix over F2 are Θ(m) and Θ(n), respectively.

Proof. Each query reveals one bit of information, while the row parities conveym bits, giving

a lower bound of Ω(m). An algorithm querying (e1, 1
n), . . . , (em, 1

n) learns the row parities

with probability 1, giving an upper bound of m. The query complexity of column parities

follows immediately from the symmetry of the vMv oracle.

The randomized query complexities of determining if there exist identical columns or

identical rows are Θ(n/m) and Θ(logm), respectively [32]. Theorem 4.3.1 implies that for

identical columns, there is an exponential quantum speedup.

Corollary 4.3.2. The query complexities of deciding if there exist two identical columns and

rows in a m× n matrix over F2 are O(log n) and O(logm), respectively.

Proof. By Theorem 4.3.1, it suffices to give an algorithm for determining if there are two

identical rows. To make the proof self-contained, we describe the algorithm of Sun, Woodruff,

Yang, and Zhang [32, Section 4.2]. The algorithm makes q random queries v1, . . . , vq, the

131

entries of which are sampled uniformly. The algorithm outputs 1 if and only if there exist

two entries i, j such that (Mvk)i = (Mvk)j for k ∈ [q].

To analyze the performance, for any two identical rows m>i ,m>j , Prv[m
>
i v = m>jv] = 1.

For mi 6= mj, Prv[m
>
i v = m>jv] ≤ 1/2. Therefore for a matrix that has two identical rows,

the algorithm outputs 1 with probability 1. On the other hand, for a matrix that has no

identical rows, the algorithm outputs 1 with probability

Pr
v1,...,vq

[∃i, j ∈ [m], ∀` ∈ [q],m>i v` = m>jv`] ≤
∑

i,j∈[m],i 6=j

Pr
v1,...,vq

[∀` ∈ [q],m>i v` = m>jv`]

≤
(
m

2

)
2−q. (4.9)

Taking q = 2 logm, the probability is no more than 1
2
− 1

2m
.

The equivalence of left and right queries also holds over the reals.

Theorem 4.3.2. Quantum query complexities in the left and the right matrix-vector models

over R are identical. In particular, one right Mv query can be simulated using one left Mv

query, and vice versa.

Proof. The same idea as in the proof of Theorem 4.3.1 applies. First, a phase query can

be simulated by conjugating a standard query by the quantum Fourier transform. This

yields U M̃v(M). Conjugating a phase query by a swap gate gives U M̃v(M>) with the same

calculation as in (4.8). This in turn yields UMv(M>) upon conjugating U M̃v(M>) by an

inverse quantum Fourier transform.

Note that with finite precision, a phase query can be simulated using the quantum

Fourier transform over an integer modulus (see Section 4.2.1 for details).

132

As an example, we determine the query complexity of the majority of rows or columns:

given a binary matrix M ∈ {0, 1}m×n, compute the majority of each row or column over R.

Corollary 4.3.3. The query complexities of computing the majorities of rows and columns

of an m× n matrix over R are 1.

Proof. By Theorem 4.3.2, it suffices to show the query complexity of the majority of rows is

1. With a single query (1, 1, . . . , 1)>, the majority of each row is determined.

This result is not significantly affected by considering computation with finite precision.

The number of 1s in each row and each column is an integer in [0, k] for k = max{m,n}.

Thus a truncation with O(log k) bits suffices to perform the computation with no error.

4.3.2 The vector-matrix-vector model

We now relate the power of the matrix-vector and vector-matrix-vector query models.

In the vector-matrix-vector model, the algorithm is given access to M via U vMv : |x, y, a〉 7→

|x, y, a+ y>Mx〉. We can simulate one vMv query using two Mv queries and an ancilla space

storing a matrix-vector product:

|x, y, a〉 UMv(M)7−−−−→ |x, y, a〉|Mx〉

7−→ |x, y, a+ y>Mx〉|Mx〉

UMv(M)†7−−−−−→ |x, y, a+ y>Mx〉|0〉. (4.10)

On the other hand, an Mv phase query (defined previously in (4.7)) can be simulated

133

using a vMv phase query by setting a = 1:

|x, y, 1〉 7−→ e(y>Mx)|x, y, 1〉. (4.11)

Such a vMv phase query can be constructed using one application of U vMv:

|x, y, a〉
1⊗1⊗F †Fq7−−−−−→

∑
b

e(−ab)|x, y, b〉

UvMv(M)7−−−−−→
∑
b

e(−ab)|x, y, b+ y>Mx〉

1⊗1⊗FFq7−−−−−→
∑
bc

e(−ab+ c(b+ y>Mx))|x, y, c〉

= e(ay>Mx)|x, y, a〉. (4.12)

Thus we have shown the following.

Theorem 4.3.3. Quantum query complexities in the matrix-vector and vector-matrix-vector

models differ by at most a constant factor. In particular, one vMv query can be simulated

using two Mv queries, and one Mv query can be simulated using one vMv query.

This is again in stark contrast to the classical case, where the Mv model can be much

more powerful than the vMv model. For example, for distinguishing a full-rank matrix from

a rank-(n − 1) matrix, the randomized query complexity in the vMv model is Ω(n2) [112],

while the randomized query complexity in the Mv model is O(n) [32].

Note that Lee, Santha, and Zhang [113] previously studied the equivalence between

quantum Mv and vMv oracles. They focus on the special case where the matrix M is the

adjacency matrix of a graph with nonnegative integer weights and the inputs x ∈ {0, 1}n, y ∈

134

{0, 1}m are boolean. In that setting, they prove equivalence between the vMv oracle and the

additive oracle a : 2[n] → Z that returns a(S) =
∑

(u,v)∈S(2) w(u, v) for S ⊆ [n], where S(2)

denotes the set of cardinality-2 subsets of S. They also study relationships with other oracles

that encode specific information about graphs (cuts, disjoint cuts, etc.; see Section 4 of [113]).

In contrast, our Theorem 4.3.1, Theorem 4.3.2, and Theorem 4.3.3 work for inputs and

matrices in fields, and do not apply to other graph oracles. While these results are, strictly

speaking, incomparable, they are closely related, both following from a generalization of the

Bernstein-Vazirani algorithm [109].

4.4 Linear algebra over finite fields

We now consider the quantum query complexity of particular linear algebra prob-

lems in the matrix-vector query model. Specifically, we consider learning the trace (Sec-

tion 4.4.1), computing the null space and determinant (Section 4.4.2), solving linear systems

(Section 4.4.3), and estimating the rank (Section 4.4.4).

4.4.1 Trace

In this section, we show that the quantum query complexity of computing the trace of

an n× n matrix over Fq is Θ(n). Since there is a trivial algorithm that computes the trace

by learning the entire matrix using n queries, we focus on the lower bound.

Learning the trace can be regarded as a coset identification problem (defined in Sec-

tion 4.2.2) in the group G = Fn×nq with subgroup H = {M ∈ Fn×nq : trM = 0} ∼= Fn2−1
q .

The irreducible characters χZ of H are indexed by Z ∈ Zn×nm with Znn = 0, and satisfy

135

χZ(M) = e(〈Z,M〉) where 〈Z,M〉 :=
∑n

i,j=1 ZijMij.

4.4.1.1 Learning the trace over F2

First we consider the case q = 2. Then the irreducible characters χZ of H for Z ∈ Zn×nm

(with Znn = 0) satisfy

χZ(M) = (−1)〈Z,M〉. (4.13)

For irredicible character Z, the induced representation can be decomposed into two irre-

ducible characters of G:

χZ,0(M) = (−1)〈Z,M〉; χZ,1(M) = (−1)〈Z,M〉+trM . (4.14)

It is easy to check that forM ∈ G, χZ,0(M+Enn) = χZ,0(M) and χZ,1(M+Enn) = −χZ,1(M),

where Eij is an n× n matrix whose entries are zero except that (Eij)ij = 1. We emphasize

that in (4.14), M ∈ G (rather than in H since we are now looking at the representations of

the entire group), and Znn = 0.

On the other hand, recall that the phase query oracle is U(M) : |x, y〉 7→ (−1)y
>Mx|x, y〉,

which is a unitary representation ofM with character ξ(M) := tr(U(M)) =
∑

x,y∈Fn2
(−1)y

>Mx.

To determine the optimal success probability, we calculate the irrep content of U⊗t. The

136

character of U⊗t is ξt, satisfying

tr(U⊗t(M)) = tr(U(M))t = (ξ(M))t

=

 ∑
x,y∈Fn2

(−1)y
>Mx

t

=
∑

x1,...,xt,y1,...,yt∈Fn2

(−1)
∑
i yiMxi . (4.15)

Thus it has non-zero Fourier coefficient at W if and only if W ∈ Rt, where Rt is the set of

matrices of rank no more than t.

We now check containment of the irreps (4.14) in U⊗t. We find

m
(t)
Z,0 = 〈ξt, χZ,0〉 > 0 ⇐⇒ Z ∈ Rt, m

(t)
Z,1 = 〈ξt, χZ,0〉 > 0 ⇐⇒ Z + 1n ∈ Rt. (4.16)

By Theorem 4.2.1, to succeed with probability better than 1/2, we must choose a Z such

that both m(t)
Z,0 > 0 and m(t)

Z,1 > 0. However, now we show this is impossible with t < n/2.

Lemma 4.4.1. The set {Z : m
(t)
Z,0 > 0 ∧m(t)

Z,1 > 0} is empty for t < n/2.

Proof. We show that the set is non-empty only if t ≥ n/2. Suppose there exists Z such that

mZ,0 > 0 and mZ,1 > 0. By (4.16), Z ∈ Rt and Z + 1n ∈ Rt. Since the ranks of Z and

Z + 1n are no more than t, we conclude that the rank of 1n = Z + Z + 1n is no more than

2t. Therefore t ≥ n/2.

This implies an n/2 lower bound, formally stated as follows.

Lemma 4.4.2. For t < n/2, any t-query quantum algorithm computing the trace of an n×n

matrix over F2 succeeds with probability at most 1/2.

Proof. By Theorem 4.2.1 and Lemma 4.4.1, the optimal success probability for a uniformly

137

random matrix in Fn×n2 is

1

2
max
Z

1∑
b=0

δ[mZ,b > 0] ≤ 1

2
(4.17)

for t < n/2.

On the upper bound side, we present an dn/2e-query quantum algorithm, showing that

the above lower bound is achievable.

Lemma 4.4.3. In the matrix-vector query model, there exists an dn/2e-query quantum al-

gorithm that computes the trace of an n× n matrix over F2 with probability 1.

Proof. First we pad the matrix with one extra zero row and one extra zero column if n is

odd, and denote the padded matrix by M ′. Let ` = dn/2e. It is clear that one query to

M ′ ∈ F2`×2`
2 can be simulated using one query to M . By Theorem 4.2.1, it suffices to find

an irreducible character such that both mZ,0 > 0 and mZ,1 > 0. Now consider

Z =

 1` 0

0 0

 =
∑̀
i=1

eie
>
i , Z + 12` =

 0 0

0 1`

 =
2∑̀

i=`+1

eie
>
i . (4.18)

The algorithm first prepares the state

|ψ0〉 =
1√
2
|e1, . . . , e`〉|e1, . . . , e`〉+

1√
2
|e`+1, . . . , e2`〉|e`+1, . . . , e2`〉. (4.19)

138

Making ` phase queries in parallel, we have

|ψM〉 = U M̃v(M ′)|ψ0〉

=
1√
2

(−1)
∑`
i=1M

′
ii|e1, . . . , e`〉|e1, . . . , e`〉

+
1√
2

(−1)
∑2`
i=`+1M

′
ii |e`+1, . . . , e2`〉|e`+1, . . . , e2`〉. (4.20)

Measuring in the basis {|ψ0〉〈ψ0|, |ψ1〉〈ψ1|}, where

|ψ1〉 =
1√
2
|e1, . . . , e`〉|e1, . . . , e`〉 −

1√
2
|e`+1, . . . , e2`〉|e`+1, . . . , e2`〉, (4.21)

the algorithm outputs the trace with probability 1.

The results of this section are summarized in the following theorem.

Theorem 4.4.1. In the matrix-vector query model, no quantum algorithm can compute the

trace of an n×n matrix over F2 with probability better than 1/2 using fewer than n/2 queries,

and there exists a quantum algorithm that succeeds with probability 1 using dn/2e queries.

4.4.1.2 Learning the trace over Fq

Now we prove a linear lower bound for the task of learning the trace over Fq. The

proof idea is the same as in the case q = 2, generalized to any finite field.

Theorem 4.4.2. In the matrix-vector query model over Fq, computing the trace of an n×n

matrix with probability more than 1/q requires at least n/2 queries.

Proof. The induced representation of Z (defined in the second paragraph of Section 4.4.1)

139

can be decomposed into q 1-dimensional irreps whose characters are

χZ,s(M) = e(〈Z,M〉+ s · trM) = e(〈Z + s1n,M〉) (4.22)

for s ∈ Fq. Again, recall that a phase query oracle U(M) : |x, y〉 7→ e(y>Mx)|x, y〉 is a unitary

representation ofM . The character of U is the trace ξ(M) := tr(U(M)) =
∑

x,y∈Fnq
e(y>Mx).

The optimal success probability is determined by the irrep content of U⊗t, and the character

of U⊗t is ξt, satisfying

tr(U⊗t(M)) = ξt(M) =
∑

x1,...,xt,y1,...,yt∈Fnq

e

(
t∑
i=1

y>iMxi

)
. (4.23)

Thus for every s ∈ Zm,

m
(t)
Z,s = 〈ξt, χZ,s〉 > 0 ⇐⇒ Z + s · 1n ∈ Rt, (4.24)

where Rt is the set of matrices of rank no more than t. Since 1n /∈ Rn−1, we conclude for

t < n/2 the success probability is at most 1/q, as claimed.

4.4.2 Null space

In this section, we show a linear lower bound on the matrix-vector quantum query

complexity of computing the rank of a matrix M ∈ Fm×nq for m ≥ n. This is without loss

of generality since for m < n, by Theorem 4.3.1, we can simulate oracle access to M> using

one query to M .

140

The rank problem is an instance of the hidden subgroup problem (HSP) over Fmq

since two vectors map to the same value if and only if their difference is in the null space.

However, the lower bound for the abelian HSP [121] does not directly apply to this problem

since the instance is more structured—specifically, the subgroup hiding function is a linear

transformation.

We recall some standard facts from linear algebra over finite fields. For ` ≥ m, let(
`
m

)
q

:=
∏m−1
i=0 (q`−qi)∏m−1
i=0 (qm−qi) denote a Gaussian binomial coefficient.

Lemma 4.4.4. The number of m-dimensional subspaces of an `-dimensional space over Fq

is
(
`
m

)
q
.

Lemma 4.4.5. For integers k ≤ m ≤ ` and any k-dimensional space V over Fq, the number

of m-dimensional subspaces of an `-dimensional space containing V is
(
`−k
m−k

)
q
.

For proofs of these facts, see for example [127, Lemma 9.3.2].

Computing the rank. Now we consider the problem of computing the rank of a matrix

M ∈ Fm×nq for m ≥ n. A matrix M has rank r if and only if its null space is (n − r)-

dimensional.

By Lemma 4.2.1, the success probability of a t-query algorithm is a degree-2t polyno-

mial in δxy. This polynomial P can be written as

P (δ) =
∑

S⊆Fnq×Fmq

cS
∏

(x,y)∈S

δxy, (4.25)

with cS = 0 for |S| > deg(P). For an input M , the assignments to these variables are

δxy = δ[Mx = y]; we will sometimes write δxy = δxy(M) to emphasize that δ is a function of

141

M .

Now symmetrize by averaging over all matrices with nullity d, giving

Q(d) := E
M∼Yd

[P (δ(M))]

=
∑

S⊆Fnq×Fmq

cS E
M∼Yd

[∏
(x,y)∈S

δxy(M)

]

=
∑

S⊆Fnq×Fmq

cS Pr
M∼Yd

[Mx = y ∀(x, y) ∈ S], (4.26)

where Yd is the set of matrices of nullity d. Here M is drawn uniformly from Yd. Since

0 ≤ P (δ(M)) ≤ 1, we have 0 ≤ Q(d) ≤ 1. The following lemma states that we can

approximate Q(d) with a low-degree polynomial. Van Apeldoorn and Gribling previously

showed the same statement in their proof of a lower bound for Simon’s problem for linear

functions [115, Lemma 3]. That problem can be viewed as a special case of our problem with

m = n. We observe that essentially the same proof establishes this lemma for m ≥ n.

Lemma 4.4.6. There exists a polynomial R of degree at most 2t such that for each d ∈ [n],

R(qd) = Q(d).

We emphasize that we do not bound the degree of Q(d) because we do not know how

to represent it as a polynomial in d. Instead, the lower bound is established by showing (i)

a lower bound on the degree of the polynomial R and (ii) that the degree of R is no more

than 2t.

Next, recall a lemma by Koiran, Nesme, and Portier [121, Lemma 5].

Lemma 4.4.7. Let c > 0 and ξ > 1 be constants and let f be a real polynomial with the

following properties:

142

1. for any integer 0 ≤ i ≤ n, |f(ξi)| ≤ 1;

2. for some real number 1 ≤ x0 ≤ ξ, |f ′(x0)| ≥ c.

Then deg f = Ω(n).

Lemma 4.4.6 and Lemma 4.4.7 imply an Ω(min{m,n}) lower bound for distinguishing a

matrix is full-rank or has nullity 1. The case m = n was previously shown by van Apeldoorn

and Gribling [115, Theorem 1]. We briefly explain the main ideas for completeness. By

Lemma 4.4.6, for d ∈ {0, 1, . . . , n− 1}, R(qd) = Q(d) and deg(R) ≤ 2t. For distinguishing a

full-rank matrix (i.e., d = 0) from a rank n− 1 matrix (i.e, d = 1), we set R(1) ≥ 1− ε and

R(q) ≤ ε. There exists x0 ∈ [1, q] such that R′(x0) ≥ |R(q)−R(1)|
q−1

≥ 1−2ε
q−1

. By Lemma 4.4.7,

t = Ω(n) for m ≥ n. For m < n, an Ω(m) lower bound follows from Theorem 4.3.1. Overall,

this gives the following.

Theorem 4.4.3. The bounded-error matrix-vector quantum query complexity of deciding if

an m× n matrix over Fq is full-rank is Ω(min{m,n}). In particular, Ω(min{m,n}) queries

are needed to decide whether the matrix is full-rank or has nullity 1.

There is a trivial algorithm that learns an entire m×n matrix using min{m,n} queries.

Thus the query complexity of computing the rank is Θ(min{m,n}).

Corollary 4.4.1. The bounded-error query matrix-vector quantum complexity of computing

the rank of an m× n matrix over Fq is Θ(min{m,n}).

With the same argument, the quantum query complexity of computing the determinant

of an n × n matrix over Fq is Θ(n). Moreover, the classical query complexity is Θ(n2),

implied by the Ω(n2) lower bound for rank testing by Rashtchian, Woodruff, and Zhu [112,

Theorem 3.3].

143

Corollary 4.4.2 (Determinant). The bounded-error classical and quantum query complexi-

ties of computing the determinant of an n×n matrix over Fq through matrix-vector products

are Θ(n2) and Θ(n), respectively.

4.4.3 Solving linear systems

In this section, we consider the quantum query complexity of solving the linear system

Ax = b for A ∈ Fn×nq is Θ(n). Since there is an n-query algorithm learning the entire matrix

using n matrix-vector queries, we focus on the lower bound.

Our proof is based on a randomized reduction from deciding whether a submatrix is

full rank. For a square matrix A, let Aij be the submatrix obtained by deleting the ith row

and the jth column, and let Aij denote the (i, j) element of A. The elements of A−1 can be

computed as

(A−1)ij =
detAij

detA
. (4.27)

Given an invertible A, one can use a linear system solver to decide whether (A−1)11 is non-

zero, and thus decide if the minor A11 is full-rank.

In our reduction, to decide whetherM ∈ Fn×nq is full-rank given access to matrix-vector

products, we pad M with one extra random row and one extra random column, giving a

matrix A ∈ F(n+1)×(n+1)
q . We show that with sufficiently high probability, the padded matrix

is full-rank. Thus, invoking a linear system solver with b = e1, we learn whether detM = 0.

Thus the linear regression lower bound follows from Theorem 4.4.3.

Theorem 4.4.4. The bounded-error matrix-vector quantum query complexity of solving an

144

n× n linear system is Ω(n).

Proof. Assume toward contradiction that A is a t-query quantum algorithm for determining

whether (A−1)11 is non-zero for any invertible A ∈ F(n+1)×(n+1)
q , succeeding with probability

p ≥ 1/3 with t = o(n). We present a t-query algorithm for determining whether an n × n

matrix is full-rank with probability p(1− 1/q)2 ≥ 1/12.

Given access to M ∈ Fn×nq , the algorithm first samples two random vectors u, v ∈ Fnq

and a random element a ∈ Fq to give the padded matrix

A =

 a u>

v M

. (4.28)

The matrix-vector product A(x0, x
>)> for x0 ∈ Fq, x ∈ Fnq can be computed using one Mv

query to Mx since

A

 x0

x

 =

 a0 + u>x

x0v +Mx

. (4.29)

We show that with probability at least (1 − 1/q)2, the matrix A is invertible (i.e.,

detA 6= 0) given that rank(M) ≥ n − 1. If M is invertible, the submatrix B = (v,M) is

full-rank. If rank(M) = n− 1, then without loss of generality, we consider the case that the

first n − 1 rows of M are linearly independent, and the last row is a linear combination of

the first n − 1 rows, since other cases can be handled accordingly by rearranging the rows.

145

We let

M =

 M ′

w>

. (4.30)

for an (n− 1)×n matrix M ′ and an n× 1 vector w. Since w> is a linear combination of the

first n− 1 rows, we write w> = c>M ′ for an (n− 1)× 1 vector c. Since M ′ is full-rank, the

vector c satisfying w> = c>M ′ is unique. Now write the vector

v =

 z

b

 (4.31)

for an (n − 1) × 1 matrix z and b ∈ Fq. The matrix B is not full rank if and only if the

last row is a linear combination of the first n − 1 rows, i.e., c>z = b, since the first n − 1

rows of B are linearly independent. Since v is a random vector with each element chosen

independently, we have

Pr[B is not full-rank] = Pr
z,b

[c>z = b] = 1/q. (4.32)

Thus with probability at least 1− 1/q the matrix B is full-rank.

Conditioned on B being full-rank, the matrix A is not full-rank if and only if the vector

(a, u>) is in the vector space spanned by the rows of B. The number of vectors in the vector

space is q(n−1). Thus

Pr
a,u,v

[A is not full-rank | B is full-rank] = 1/q. (4.33)

146

Therefore with probability at least 1 − 1/q, A is invertible. Conditioned on successfully

simulating Mv queries of an invertible A, the algorithm A determines whether (A−1)11 is

nonzero with probability p. Thus the algorithm succeeds with probability at least p(1 −

1/q)2 ≥ 1/12 using t = o(n) queries to M . By Theorem 4.4.3 we have a contradiction.

The same proof idea shows that a lower bound for rank testing implies a lower bound

for linear regression in the vMv model. Rashtchian, Woodruff, and Zhu show that the query

complexity of distinguishing rank-n matrices from rank-(n − 1) matrices over Fq is Ω(n2)

[112, Theorem 3.3].

Corollary 4.4.3. The bounded-error classical vMv query complexity of solving an n × n

linear system over Fq is Ω(n2).

Proof. By the same idea as in the proof of Theorem 4.4.4, it suffices to show that one vMv

query to the (n + 1) × (n + 1) matrix A in (4.28) can be simulated with one vMv query

to the n × n matrix M . For any query x, y, we let x = (x0, x
>
1)> and y = (y0, y

>
1)> for

n × 1 matrices x1, y1. The product y>Ax can be computed using one vMv query to M

since y>Ax = ay0x0 + y0u
>x1 + y>1vx0 + y>1Mx1. Since no o(n2)-query classical algorithm can

distinguish rank-nmatrices from rank-(n−1) matrices [112, Theorem 3.3], the bounded-error

query complexity of solving linear systems is Ω(n2).

4.4.4 Rank testing

In this section, we show a linear lower bound on distinguishing whether an m × n

matrix M has rank(M) = n or rank(M) ≤ n/2, where m ≥ n. First we show the following

lemma using ideas from [121].

147

Lemma 4.4.8. Let ξ ≥ 2 and let n be an even integer. Then any polynomial f satisfying

1. 0 ≤ f(ξi) ≤ 1 for i ∈ {0, 1, . . . , n− 1} and

2. f(1) ≤ 1/3 and f(ξi) ≥ 2/3 for i ∈ {n/2, n/2 + 1, . . . , n− 1}

has deg(f) = Ω(n).

Proof. Let d = deg(f). Toward contradiction, we assume d = o(n). For intervals Si :=

[ξi, ξi+1), since deg(f ′), deg(f ′′) = o(n), there exists an index a ∈ {9n/10, . . . , n − 3, n − 2}

such that none of the roots of f ′ and f ′′ has its real part in Sa. This implies that f ′ is

monotonically increasing or decreasing in Sa, i.e., f is concave or convex. In each case,

f(ξ
a+ξa+1

2
) ∈ [0, 1]. If f is convex in Sa,

∣∣∣∣f ′(ξa + ξa+1

2

)∣∣∣∣ ≤ 1

ξa+1 − ξa+1+ξa

2

=
2

ξa+1 − ξa
≤ 2

ξa
≤ 2ξ−9n/10. (4.34)

If f is concave in Sa, reflecting about the x-axis gives the same bound.

By the second constraint, there exists x0 ∈ [1, ξn/2] such that

|f ′(x0)| ≥ |f(ξn/2)− f(1)|
ξn/2 − 1

≥ ξ−n/2/3. (4.35)

Therefore

∣∣∣∣∣f ′(ξ
a+ξa+1

2
)

f ′(x0)

∣∣∣∣∣ ≤ 6ξ−2n/5 ≤ ξ3−2n/5. (4.36)

148

On the other hand, since deg(f ′) = d−1, denoting the roots a1, . . . , ad−1 ∈ C, we write

f ′(x) = λ

d−1∏
i=1

(x− ai). (4.37)

Thus

∣∣∣∣∣f ′(ξ
a+ξa+1

2
)

f ′(x0)

∣∣∣∣∣ =
d−1∏
i=1

∣∣∣∣∣ ξ
a+ξa+1

2
− ai

x0 − ai

∣∣∣∣∣ =
d−1∏
i=1

|g(ai)|, (4.38)

where

g(x) =
x− ξa+ξa+1

2

x− x0

. (4.39)

Our goal is to show that for each i, |g(ai)| ≥ 1
2ξ
. Recall that for each i, Re(ai) /∈ Sa.

Also for real x /∈ Sa, x ≥ x0, we have |g(x)| ≥ ξ−1
2ξ
≥ 1

2ξ
. For real roots, |g(ai)| ≥ 1

2ξ
. Now

we consider the case where ai = α + βi for β 6= 0, giving

|g(α + βi)|2 =
(α− ξa+ξa+1

2
)2 + β2

(α− x0)2 + β2
. (4.40)

If (α− ξa+ξa+1

2
)2 ≥ (α− x0)2, then |g(α + βi)| ≥ 1. Otherwise,

|g(α + βi)| ≥

∣∣∣∣∣α− ξa+ξa+1

2

α− x0

∣∣∣∣∣ ≥ 1

2ξ
. (4.41)

149

We have shown that |g(ai)| ≥ 1
2ξ

for every root ai. Now we have

∣∣∣∣∣f ′(ξ
a+ξa+1

2
)

f ′(x0)

∣∣∣∣∣ =
d−1∏
i=1

|g(ai)| ≥ (2ξ)−d+1 ≥ ξ2−2d. (4.42)

Thus by (4.36), we have ξ3−2n/5 ≥ ξ2−2d and conclude d ≥ n/5−1/2 = Ω(n)—a contradiction.

Lemma 4.4.6 and Lemma 4.4.8 imply the following theorem.

Theorem 4.4.5. The bounded-error matrix-vector quantum query complexity of determining

whether a matrix M ∈ Fm×nq has rank(M) = n or rank(M) ≤ n/2 is Ω(n).

150

Problem Classical Mv Classical vMv Quantum (this paper)

Trace

O(n),Ω(n/ log n) for
matrix with entries in
{0, 1, . . . , n3} & queries
with entries in
{0, 1, . . . , nC}, C ∈ N [32];
Θ(n) over Fq
(Theorem 4.4.2)

O(n),Ω(n/ log n) for
matrix with entries in
{0, 1, . . . , n3} & queries
with entries in
{0, 1, . . . , nC}, C ∈ N [112];
Θ(n) over Fq
(Theorem 4.4.2)

Θ(n) over Fq
(Theorem 4.4.2)

Linear regression
Θ(n) over R [33];
Θ(n) over Fq
(Theorem 4.4.4)

Θ(n2) over Fq
(Corollary 4.4.3)

Θ(n) over Fq
(Theorem 4.4.4)

Rank testing

k + 1 to distinguish rank
≤ k from k′ > k over R
[32];
Θ(n) over Fq
(Theorem 4.4.5)

Ω(k2) to distinguish rank k
from k + 1 over Fq [112];
Ω(n2−O(ε)) for
non-adaptive
(1± ε)-approximation over
R [112]

Θ(min{m,n}) to
distinguish rank
min{m,n} from
≤ 1

2 min{m,n} over Fq
(Theorem 4.4.5)

Two identical
columns

O(n/m), m = Ω(log(n/ε))

over F2 [32]
O(n log n),Ω(n) over F2

[112]
O(log n) over F2

(Corollary 4.3.2)

Two identical
rows O(logm) over F2 [32] O(n log n),Ω(n) over F2

[112]
O(logm) over F2

(Corollary 4.3.2)

Majority of
columns

Ω(n/ log n) for binary
matrices over R [32] Θ(n2) over F2 [112]

O(1) for binary
matrices over R
(Corollary 4.3.3)

Majority of rows
O(1) for binary matrices
over R [32]

Θ(n2) over F2 [112]
O(1) for binary
matrices over R
(Corollary 4.3.3)

Parity of columns Θ(n) over F2 [32] Θ(n) over F2

(Lemma 4.3.1)
O(1) over F2

(Corollary 4.3.1)

Parity of rows O(1) over F2 [32] Θ(m) over F2

(Lemma 4.3.1)
O(1) over F2

(Corollary 4.3.1)

Table 4.1: Comparison of classical and quantum query complexities with matrix-vector (Mv) and
vector-matrix-vector (vMv) product oracles for an m × n matrix. For trace and linear
regression, m = n. Known query complexities over R and Fq are included for complete-
ness; results over different fields are incomparable in general.

151

Chapter 5: Quantitative robustness analysis

5.1 Introduction

In this chapter, we apply formal methods to reason about the quality of error-affected

programs, in the following steps. First, we extend the syntax and semantics to include noisy

operations. In particular, we modify the quantum gate applications to express noisy oper-

ations Φ (a superoperator) occurring with probability p. This approach permits modeling

any local noise occurring during the execution of a quantum program, which is the standard

noise model considered in the study of quantum error correction and fault-tolerant quantum

computation [128].

Secondly, we define the notion of quantum robustness. In particular, we say a noisy

program is ε-robust under (Q, λ) if it computes a quantum state at most ε distance away

from that of its ideal equivalent when starting both from states satisfying quantum predicate

Q to degree λ (see Section 5.2.3 for definition).

Thirdly, we define a logic for reasoning about quantum robustness, with judgment

in this form (Q, λ) ` P̃ ≤ ε. The judgment states that for any input state satisfying the

predicate Q to degree λ, the distance between the denotation of P̃ (a superoperator) and that

of its ideal equivalent P is at most ε. Imposing the constraint on the input state satisfying Q

to degree λ allows us to leverage prior knowledge about input states to obtain more accurate

152

bounds.

We prove our logic is sound. A particular challenge is the rule for loops, owing to

the termination problem first studied by Li and Ying [129]. In particular, if the loop body

generates some error and the loop does not terminate, it is hard to prove any non-trivial

bound on the final accumulated error. To avoid this difficulty in the setting of approximate

computing, Carbin, Misailovic and Rinard [35, 130] simply assume that the loop will ter-

minate within a bounded number of iterations or a trivial upper bound will be applied. To

capture more complicated cases, we introduce a concept called the (a, n)-boundedness of the

loop. Intuitively, a loop is (a, n)-bounded if, for every input state, after n iterations it is

guaranteed that with probability at least 1−a it has exited the loop. The probability is due

to the quantum measurement in the loop guard. It is easy to see that (a, n)-boundedness

implies the termination of the loop. Pleasantly, (a, n)-bounding the ideal loop is sufficient

to reason about a noisy loop with any error model Φ in the loop body.

5.2 Quantum programs

5.2.1 Syntax

Define Var as the set of quantum variables. We use the symbol q as a metavariable

ranging over quantum variables and define a quantum register q to be a finite set of distinct

variables. For each q ∈ Var , its state space is denoted by Hq. The quantum register q is

associated with the Hilbert space Hq =
⊗

q∈qHq. If type(q) = Bool then Hq is the two-

dimensional Hilbert space with basis {|0〉, |1〉}. If type(q) = Int then Hq is the Hilbert space

153

with basis {|n〉 : n ∈ Z}. The syntax of a quantum while program P is defined as follows.

P ::= skip | q := |0〉 | q := U [q] | P1;P2 |

case M [q] = m→ Pm end | while M [q] = 1 do P1 done (5.1)

The language constructs above are similar to their classical counterparts:

1. skip does nothing.

2. q := |0〉 sets quantum variable q to the basis state |0〉.

3. q := U [q] applies the unitary U to the qubits in q.

4. Sequencing P1;P2 has the same behavior as its classical counterpart.

5. case M [q] = m→ Pm end performs the measurement M = {Mm} on the qubits in

q, and executes program Pm if the outcome of the measurement is m. The bar over

m→ Pm indicates that there may be one or more repetitions of this expression.1

6. while M [q] = 1 do P1 done performs the measurement M = {M0,M1} on the qubits

in q, and executes P1 if measurement produces the outcome corresponding to M1 or

terminates if measurement produces the outcome corresponding to M0.

We highlight two differences between quantum and classical while languages:

• Qubits may only be initialized to the basis state |0〉. There is no quantum analogue

for initialization to any expression (i.e. x := e) because of the no-cloning theorem of
1Our syntax for conditional/case statements differs from that presented by [131] to make it more clear that
there are multiple programs Pm.

154

quantum states. Any state |ψ〉 ∈ Hq, however, can be constructed by applying some

unitary U to |0〉.2

• Evaluating the guard of a case statement or loop, which performs a measurement,

potentially disturbs the state of the system.

We now present an example program written in the quantum while-language syntax.

The quantum walk [132] is a widely considered example in quantum programming, quantum

algorithms, and quantum simulation literature [133, 134]. Here we consider a quantum walk

on a circle with n points. We let the initial position of the walker be 0, and say that the

program halts if and only if the walker arrives at position 1.

Example 5.2.1 (Quantum Walk). Define the coin (or "direction") space Hc to be the 2-

dimensional Hilbert space with orthonormal basis states |L〉 and |R〉, for Left and Right

respectively. Define the position space Hp to be the n-dimensional Hilbert space with or-

thonormal basis states |0〉, |1〉, ..., |n−1〉, where vector |i〉 represents position i for 0 ≤ i < n.

Now the state space of the walk is H = Hc ⊗Hp and the initial state is |L〉|0〉. In each step

of the walk:

1. Measure the position of the system to determine whether the walker has reached position

1. If the walker has reached position 1, the walk terminates. Otherwise, it continues.

We use the measurement M = {|1〉〈1|,
∑

i 6=1|i〉〈i|}.

2. Apply the “coin-tossing” operator H to the coin space Hc.
2In our examples, we may write q := |ψ〉 for some fixed basis state |ψ〉. What we mean in this case is
q := |0〉; q := U [q] where U is the unitary operation that transforms |0〉 into |ψ〉.

155

3. Perform the shift operator S defined by S|L, i〉 = |L, i− 1(mod n)〉, S|R, i〉 = |R, i+

1(mod n)〉 for i = 0, 1, ..., n− 1 to the space H. The S operator can be written as

S =
n−1∑
i=0

|L〉〈L| ⊗ |i− 1(mod n)〉〈i|+
n−1∑
i=0

|R〉〈R| ⊗ |i+ 1(mod n)〉〈i|.

In this algorithm, the walker takes one step left or one step right corresponding to the coin

flip result |L〉 or |R〉. However, unlike the classical case, the result of the coin flip may

be a superposition of |L〉 and |R〉, allowing the walker to take a step to the left and right

simultaneously. This quantum walk can be described by the following program

QWn ≡ p := |0〉; c := |L〉;while M [p] = 1 do c := H[c]; c, p := S[c, p] done. (5.2)

5.2.2 Denotational semantics

The denotational semantics of a quantum while program is given in Figure 5.1. It

defines [[P]] as a superoperator that acts on ρ ∈ HVar [131]. The semantics of each term

[[skip]]ρ = ρ

[[q := |0〉]]ρ =

{
Ebool
q→0(ρ) if type(q) = Bool
E int
q→0(ρ) if type(q) = Int

[[q := U [q]]]ρ = UρU †

[[P1;P2]]ρ = [[P2]]([[P1]]ρ)
[[case M [q] = m→ Pm end]]ρ =

∑
m[[Pm]](MmρM

†
m)

[[while M [q] = 1 do P1 done]]ρ =
⊔∞
k=0[[while(k)]]ρ

Figure 5.1: The denotational semantics of quantum while programs.

156

is given compositionally. We write while(k) for the kth syntactic approximation (i.e., un-

rolling) of while and
⊔

for the least upper bound operator in the complete partial or-

der generated by Löwner comparison. The superoperators Ebool
q→0 and E int

q→0, which initial-

ize the variable q in ρ to the zero state, is defined as Ebool
q→0(ρ) =

∑1
b=0|0〉q〈b|ρ|b〉q〈0| and

E int
q→0(ρ) =

∑∞
n=−∞|0〉q〈n|ρ|n〉q〈0|. For more detail on the semantics of loops, we refer the

reader to [131, 135].

The semantics presented so far assume that no noise will occur during computation.

In Section 5.3, we extend the semantics to include possible errors that may occur during

unitary application.

5.2.3 Quantum predicates and Hoare logic

A quantum predicate is a Hermitian operator M such that 0 v M v I [136]. For a

predicateM and state ρ, tr(Mρ) is the expectation of the truth value of predicateM in state

ρ. Restricting M to be between 0 and I ensures that 0 ≤ tr(Mρ) ≤ 1 for any ρ ∈ D(H). A

quantum state ρ satisfying predicate M to degree λ if tr(Mρ) = λ.

The identity matrix corresponds to the true predicate because for any density operator

ρ, tr(Iρ) = 1. The zero matrix corresponds to the false predicate because for any density

operator ρ, tr(0ρ) = 0. For example, |0〉〈0| is the predicate that says that a state is in the

subspace spanned by |0〉. The density operator ρ0 corresponding to the state |0〉 is such that

tr(|0〉〈0|ρ0) = 1, and the density operator ρ1 corresponding to the state
√

1/3|0〉+
√

2/3|1〉

is such that tr(|0〉〈0|ρ1) = 1
3
.

Ying [131, 135] uses quantum predicates as the basis for defining quantum preconditions

157

and postconditions in his quantum Hoare logic. Let M and N be quantum predicates and

let P be a quantum while program. Then M is a precondition of N with respect to P ,

written {M}P{N}, if

∀ρ. tr(Mρ) ≤ tr(N [[P]]ρ). (5.3)

This inequality can be seen as the quantum analogue of the following statement: if state

ρ satisfies predicate M , then after applying the program P the resulting state will satisfy

predicate N . If we include an auxiliary space A, then the equivalent statement is

∀ρ. tr((M ⊗ IA)ρ) ≤ tr((N ⊗ IA)([[P]]⊗ IA)(ρ)). (5.4)

5.3 Noisy quantum programs

In this section, we present the syntax and semantics for the quantum while-language

with noise, as an extension of the quantum while-language. Our syntax allows one to

explicitly encode any error model that describes local noise during the execution of a quantum

program.

5.3.1 Noise in quantum computation

Here we briefly discuss how noise is modeled in the study of quantum error correction

and fault-tolerant quantum computation [128], which in turn comes from the noise model in

quantum physical experiments. It is a convention to only consider local noise rather than

correlated noise, because benign white noise is more likely than adversarial noise in actual

quantum devices. A few types of natural local noise arise in realistic quantum systems, which

158

generalize classical bit-flip errors, including:

• The bit flip noise flips the state with probability p, and can be represented by

Φp,bit = (1− p)I ◦ I + pX ◦X. (5.5)

• The phase flip noise flips the phase with probability p, and can be represented by

Φp,phase = (1− p)I ◦ I + pZ ◦ Z. (5.6)

Other types of noise include depolarization, amplitude damping, and phase damping [137].

This model of noise is used by experimental physicists for building and benchmarking

quantum devices in both academia and industry [138]. Noisy information of specific quantum

devices can also be publicly available (e.g., the IBM Q-experience3).

5.3.2 Syntax

The syntax of a noisy quantum program P̃ is defined as follows

P̃ ::= skip | q := |0〉 | q :∼=p,Φ U [q] | P̃1; P̃2 |

case M [q] = m→ P̃m end | while M [q] = 1 do P̃1 done (5.7)

This syntax is identical to that of the standard quantum while language described in Sec-

tion 5.2.1, except that we have annotated the unitary application construct with an error
3https://www.research.ibm.com/ibm-q/technology/devices/.

159

https://www.research.ibm.com/ibm-q/technology/devices/

probability p and an error model Φ, which is the superoperator of the noisy operation. The

statement q :∼=p,Φ U [q] will apply the correct operation U on q with probability 1 − p and

will apply the noisy (or erroneous) operation Φ on q with probability p. The nature of Φ

will depend on the underlying hardware, and is a parameter to our language.

For any noisy program P̃ , its corresponding ideal program can be obtained by simply

replacing any noisy unitary operations by their ideal versions (i.e., we ignore p and Φ). We

write ideal(P̃) for this program, or simply P when there is no ambiguity.

We remark that noisy unitary operations are already expressive enough to capture

many types of noise. First, any noise can depend on the quantum state of the system by the

nature of modeling it as a quantum operation Φ. Second, noisy initialization can be modeled

as initialization followed by application of a noisy identity operation, and noisy measurement

can be modeled as application of a noisy identity operation followed by measurement. Third,

errors that occur between applications of subsequent unitaries can also be modeled by noisy

identity operations.

5.3.3 Semantics

[[q :∼=p,Φ U [q]]]ρ = (1− p)UρU † + pΦ(ρ)

Figure 5.2: Denotation of noisy unitary operation.

The denotational semantics of noisy quantum while programs are also identical to

those of the standard quantum while programs, except that the rules related to unitary

160

application now include an error term, as shown in Figure 5.2. Note that we do not require

p and Φ to be the same in every instance of a unitary application. They may depend on

the type of unitary being applied, or on other features of the program such as the number

of operations performed so far. We use explicit characterizations of the noise given by Φ

to enable us to argue about the effect of error-correcting gadgets explicitly written in the

program. If we only considered error probability (like [35]) then we could only reason about

error as accumulating throughout the program, and we would not be able to show that

error-correcting gadgets reduce noise by cancelling previous errors.

5.4 Quantum robustness

This section defines a notion of quantum robustness, which bounds the distance between

the output of a noisy execution of a program and the ideal (noise-free) execution of the same

program. We first introduce distance measures in quantum information, and then present

the semantic definition of robustness and define a logic for reasoning about it, which we

prove sound.

5.4.1 Definition

To capture how noise (error) impacts the execution of quantum program P̃ , we want

to compare [[P̃]] and [[P]], which are superoperators representing the execution of quantum

program P with and without noise respectively. A natural candidate is to use the aforemen-

tioned diamond norm to measure the distance between [[P̃]] and [[P]]. To account for prior

knowledge of the input state, we extend the definition of the diamond norm to consider only

161

input states that satisfy predicate Q to degree at least λ. More explicitly, we have

Definition 5.4.1 ((Q, λ)-diamond norm). Given superoperators E, E ′, quantum predicate Q

over H, and 0 ≤ λ ≤ 1, the (Q, λ)-diamond norm between E and E ′, denoted ‖E − E ′‖Q,λ, is

defined by

‖E − E ′‖Q,λ ≡ max
ρ∈D(H⊗A) : tr(ρ)=1, tr(Qρ)≥λ

T(E ⊗ IA(ρ), E ′ ⊗ IA(ρ)), (5.8)

where A is any auxiliary space.

We remark that A can be assumed to be H without loss of generality due to a similar

reason for the original diamond norm (see, for example, [139, Chapter 3]).

We argue that the (Q, λ)-diamond norm is a seminorm. Intuitively, this is conceivable

since we only restrict the input state from all density operators to a convex subset satisfying

tr(Qρ) ≥ λ. Note that, by definition, ‖·‖� ≡ ‖·‖I,λ for any 0 ≤ λ ≤ 1.

Theorem 5.4.1. The (Q, λ)-diamond norm is a seminorm.

Proof. Recall that 0 ≤ T(E⊗IA(ρ), E ′⊗IA(ρ)) ≤ 1 for any quantum state ρ, so ‖E − E ′‖Q,λ ≥

0.

1. Positive scalability: This property is inherited directly from the diamond norm. One

may also observe that for any α ∈ C,

T(E ⊗ IA(αρ), E ′ ⊗ IA(αρ)) = T(α(E ⊗ IA(ρ)), α(E ′ ⊗ IA(ρ)))

= αT(E ⊗ IA(ρ), E ′ ⊗ IA(ρ)). (5.9)

162

2. Triangle Inequality: For quantum superoperators E,E′,F ,F ′, we have

‖(E − E ′) + (F − F ′)‖Q,λ = max
ρ∈D(H⊗A) :

tr(ρ)=1, tr(Qρ)≥λ

T((E + F)⊗ IA(ρ), (E ′ + F ′)⊗ IA(ρ)).

(5.10)

Suppose the maximal value on the right hand side is attained at a state ρ∗ ∈ D(H⊗A).

Note that, by definition, this requires ρ∗ to satisfy tr(ρ∗) = 1, tr(Qρ∗) ≥ λ. Then,

‖(E − E ′) + (F − F ′)‖Q,λ

= max
0vPvI

tr(P ((E − E ′)⊗ IA(ρ∗) + (F − F ′)⊗ IA(ρ∗)))

≤ max
0vP1vI

tr(P1((E − E ′)⊗ IA(ρ∗))) + max
0vP2vI

tr(P2(F − F ′)⊗ IA(ρ∗)))

≤ max
ρ1∈D(H⊗A) :

tr(ρ1)=1, tr(Qρ1)≥λ

(
max

0vP1vI
tr(P1((E − E ′)⊗ IA(ρ1)))

)

+ max
ρ2∈D(H⊗A) :

tr(ρ2)=1, tr(Qρ2)≥λ

(
max

0vP2vI
tr(P2((F − F ′)⊗ IA(ρ2)))

)

= max
ρ1∈D(H⊗A) :

tr(ρ1)=1, tr(Qρ1)≥λ

T(E ⊗ IA(ρ1), E ′ ⊗ IA(ρ1))

+ max
ρ2∈D(H⊗IA) :

tr(ρ2)=1, tr(Qρ2)≥λ

T(F ⊗ IA(ρ2), F ′ ⊗ IA(ρ2))

= ‖E − E ′‖Q,λ + ‖F − F ′‖Q,λ. (5.11)

Let E and E ′ be superoperators over H. By extending [140], we show that ‖E − E ′‖Q,λ

163

can be efficiently computed by the following semidefinite program (SDP):

max tr(J(Φ)W)

s.t. W ≤ IH ⊗ ρ, tr(Qρ) ≥ λ,

ρ ∈ D(H), W is a positive semidefinite operator over H⊗H, (5.12)

where Φ = E − E ′ and J(Φ) is the Choi-Jamiolkowski representation of Φ. Note that the

above SDP is identical to the SDP used in [140, Section 4] to compute ‖E − E ′‖�, except that

we have added the additional constraint tr(Qρ) ≥ λ to capture the requirement on input

states. The correctness of the above SDP then basically follows from the analysis of [140]

and the definition of (Q, λ)-diamond norm.

The standard diamond norm and (Q, λ)-diamond norm can be significantly different for

the same pair of superoperators E , E ′. For example, consider E = H ◦H and E ′ = HZ ◦ZH.

We can show4 that ‖E − E ′‖� = 1, whereas ‖E − E ′‖|0〉〈0|, 3
4

=
√

3/2. Thus, the (Q, λ)-

diamond norm can help us leverage prior knowledge about input states to obtain more

accurate bounds.

Using the (Q, λ)-diamond norm, we define a notion of quantum robustness as follows.

Definition 5.4.2 (Quantum Robustness). The noisy program P̃ (over H, having ideal pro-
4For the normal diamond norm, consider the input state to be ρ = |+〉〈+| ⊗ σ for some ancilla state σ. It is
easy to see that E(ρ) = |0〉 and E ′(ρ) = |1〉, which are perfectly distinguishable. For the (|0〉〈0|, 34)-diamond
norm, without loss of generality, consider any input state |ψ〉 = cos θ|0〉|ψ0〉+ sin θ|1〉|ψ1〉 where θ ∈ [0, π2].
Requiring |ψ〉 to satisfy |0〉〈0| to degree at least 3

4 , we have cos2 θ ≥ 3
4 and therefore θ ∈ [0, π6]. Simple

calculation gives H|ψ〉 = cos θ|+〉|ψ0〉+sin θ|−〉|ψ1〉 and HZ|ψ〉 = cos θ|+〉|ψ0〉−sin θ|−〉|ψ1〉. The projector
that maximally distinguishes these states is |0〉〈0| ⊗ I, so we have

‖E − E ′‖|0〉〈0|,3/4 =
1

2

(
(cos θ + sin θ)2 − (cos θ − sin θ)2

)
= sin 2θ ≤

√
3

2
,

the equality of which holds when θ = π/6.

164

gram P = ideal(P̃)) is ε-robust under (Q, λ) if and only if

∥∥∥[[P̃]]− [[P]]
∥∥∥
Q,λ
≤ ε. (5.13)

Here, Q is a quantum predicate over H and 0 ≤ λ, ε ≤ 1.

By the definition of the (Q, λ)-diamond norm and the trace distance, (5.13) can be

equivalently stated as the following.

∀ρ ∈ D(H⊗H), tr(Qρ) ≥ λ tr(ρ)⇒ 1

2

∥∥∥[[P̃]]⊗ IH(ρ)− [[P]]⊗ IH(ρ)
∥∥∥

1
≤ ε tr(ρ). (5.14)

Since ε measures the distance between [[P̃]] and [[P]], the smaller ε is, the closer the

noisy program P̃ is to the ideal program P . One could think of ε as measuring both the

probability that noise can happen and intensity of that noise. When the noise is strong, a

noisy program P̃ being ε-robust implies that the probability of noise is at most ε. When the

noise is weak, it could occur with greater probability, but its effect will be much smaller.

Intuitively, the use of precondition Q can help us obtain more accurate bounds. For

example, one can use Q to characterize prior information about the input state due to

the nature of underlying physical systems. Even without any prior knowledge about the

input state, preconditions can still be leveraged for different branches of the program in case

statements and loops.

165

5.4.2 Logic

A program’s robustness can be proved by working out the (denotational) semantics

of programs P and P̃ and applying Definition 5.4.2 directly. However, the computation is

difficult in general, since the complexity of computing the semantics of a quantum program

scales exponentially in the size of the program. As an alternative, we present a logic for

proving judgments of the form (Q, λ) ` P̃ ≤ ε, meaning that program P̃ is ε-robust under

(Q, λ). In Section 5.4.3 we prove the logic is sound.

(Q, λ) ` skip ≤ 0
(Skip)

(Q, λ) ` (q := |0〉) ≤ 0
(Init)∥∥U ◦ U † − Φ

∥∥
Q,λ
≤ ε

(Q, λ) ` (q :∼=p,Φ U [q]) ≤ pε
(Unitary)

(Q′, λ′) ` P̃ ≤ ε′ ε′ ≤ ε Q v Q′ λ′ ≤ λ

(Q, λ) ` P̃ ≤ ε
(Weaken)

(Q/δ, λ/δ) ` P̃ ≤ ε 0 v Q,Q/δ v I 0 ≤ λ, λ/δ ≤ 1

(Q, λ) ` P̃ ≤ ε
(Rescale)

(Q1, λ) ` P̃1 ≤ ε1 (Q2, λ) ` P̃2 ≤ ε2 {Q1}P1{Q2}
(Q1, λ) ` (P̃1; P̃2) ≤ ε1 + ε2

(Sequence)

∀m, (Qm, 1− δ) ` P̃m ≤ ε t, δ ∈ [0, 1]

(
∑

mM
†
mQmMm, 1− tδ) ` (case M [q] = m→ P̃m end) ≤ (1− t)ε+ t

(Case)

(Q, λ) ` P̃1 ≤ ε {Q}P1{λM †
0M0 +M †

1QM1}
P̃ ≡ while M [q̄] = 1 do P̃1 done P is (a, n)-bounded

(λM †
0M0 +M †

1QM1, λ) ` P̃ ≤ nε/(1− a)
(While-Bounded)

(Q, λ) ` (while M [q̄] = 1 do P̃1 done) ≤ 1
(While-Unbounded)

Figure 5.3: Rules for logic of quantum robustness.

The rules for our logic are given in Figure 5.3.

166

5.4.2.1 Simple rules

The Skip and Init rules say that the skip and initialization operations are always error-

free. These operations will not increase the distance between [[P]] and [[P̃]]. The Unitary rule

says that if we can bound the (Q, λ)-diamond norm between the intended operation U and

the noise operation Φ by ε, then we can bound the total distance by pε. The Weaken rule

says that we can always safely make the precondition more restrictive, increase the degree to

which an input state must satisfy the predicate, or increase the upper bound on the distance

between the noisy and ideal programs. The Rescale rule says that equivalent forms of our

judgment can be obtained by rescaling Q and λ. Note that the Rescale rule does not weaken

the judgment, but rather provides some flexibility in choosing Q, λ compatible with other

rules; one can scale by δ so long as Q/δ and λ/δ are still well defined.

The Sequence rule allows us to compose two judgments by summing their computed

upper bounds. Note that in the Sequence andWhile-Bounded rules we define Hoare triples as

in Section 5.2.3. While providing an accurate precondition (Q, λ) allows a better estimation

on the error bound, it remains a practical challenge to compute the postcondition Q2. To

tackle the issue, Tao, Shi, Yao, Hui, Chong, and Gu [141] propose a method for automatedly

computing the postcondition using matrix product state tensor network.

5.4.2.2 The case rule

The Case rule says that, given appropriate bounds for every branch of a case state-

ment, we can bound the error of the entire case statement. Note that
∑

mM
†
mQmMm is

the weakest precondition of the case construct in quantum Hoare logic [131]. In a logic for

167

classical programs, one might expect each branch of a case statement to satisfy the precon-

dition perfectly. However, in a quantum logic, as we will discuss in the soundess proof (see

Section 5.4.3), this is not necessarily true. To see this, note that in our rule we start with

the precondition
∑

mM
†
mQmMm and λ = 1 − tδ on the input state to the case statement,

but we can only guarantee that a weighted fraction of 1− t of the branches satisfy a weaker

precondition Qm and λ′ = 1 − δ for some choice of t ∈ [0, 1]. (Note that 1 − δ ≤ 1 − tδ for

t, δ ∈ [0, 1].)

When applying this rule, one can make 1− δ and ε the same for every P̃m by applying

the Weaken and/or Rescale rules. The choice of t will represent a tradeoff between a lower

error bound and a more restrictive requirement on the satisfaction of the predicate.

5.4.2.3 The loop rule

Finally, the While-Bounded and While-Unbounded rules allow us to compute an upper

bound for the distance between the noisy and ideal versions of a while loop. The While-

Unbounded rule is a trivial bound on the distance. The While-Bounded rule, however,

demonstrates a non-trivial upper bound with an assumption called (a, n)-boundedness. Such

an assumption is necessary for us to get around the potential issue of termination and to be

able to reason about interesting programs in our case study.

Intuitively, (a, n)-boundedness is a condition on how fast the ideal loop will converge,

which is inherent to the control flow of the program and does not depend on any specific

error model. We view this as an advantage as we do not need a new analysis for every

possible noise model.

168

Definition 5.4.3 ((a, n)-boundedness). A while loop P ≡ while M [q] = 1 do P1 done is

said to be (a, n)-bounded for 0 ≤ a < 1 and integer n ≥ 1 if

(E∗)n(M †
1M1) v aM †

1M1 (5.15)

where the linear map E(ρ) is defined as [[P1]](M1ρM
†
1) and E∗ is the dual map of E.5

Intuitively speaking, a loop is (a, n)-bounded if, for every state ρ, after n iterations

it is guaranteed that at least a (1 − a)-fraction of the state has exited the loop. A while

loop with this nice property is guaranteed to terminate with probability 1 on all input

states, which helps avoid the termination issue. As we will show in the examples that follow

and in Section 5.4.4, specific (a, n) can be derived analytically or numerically for concrete

programs.6 We also remark that by assuming (a, n)-boundedness, we avoid weakening λ like

in the Case rule.

In [35], loops are assumed to have a bounded number of iterations or a trivial upper

bound will be used (i.e, our ruleWhile-Unbounded). Because of the use of (a, n)-boundedness,

we can handle more complicated loops. One also has the freedom to choose appropriate values

of Q for different purposes. A simple choice is Q = λI. A less trivial choice of Q is shown in

the following example.

Example 5.4.2 (Slow state preparation). In this example, we consider the following program

5If [[P1]] can be written as
∑
k Fk ◦ F

†
k for some set of Kraus operators {Fk}k, the Kraus form of E∗ is∑

kM
†
1F
†
k ◦ FkM1.

6The rough idea is to guess (or enumerate) n and prove a either analytically or numerically (with a simple
SDP).

169

which prepares the standard basis state |1〉:

SSP ≡ q := |0〉;while M [q] = 0 do q := H[q]; q := I[q] done, (5.16)

where M is the standard basis measurement {|0〉〈0|, |1〉〈1|}. We consider the case where

there is a bit flip error with probability 0.01 when applying the I gate, i.e., the ideal and the

noisy loop bodies are P1 ≡ q := H[q]; q := I[q]; and P̃1 ≡ q := H[q]; q :∼=0.01,X I[q]. Then

[[P1]] = H ◦ H and [[P̃1]] = 0.99H ◦ H + 0.01XH ◦ HX. Consider Q = |0〉〈0| and λ = 1.

Since [[P1]](|0〉〈0|) = [[P̃1]](|0〉〈0|) = |+〉〈+|, we have that
∥∥∥[[P1]]− [[P̃1]]

∥∥∥
|0〉〈0|,1

= 0, and by the

Unitary rule, (|0〉〈0|, 1) ` P̃1 ≤ 0.

We can use this choice of Q and λ when applying the While-Bounded rule. First, note

that the statement {Q}P1{λM †
0M0 +M1QM

†
1} holds because λM

†
0M0 +M1QM

†
1 = I for our

choice of M0,M1, Q, λ. Next, we need to show (a, n)-boundedness of the loop. This requires

us to consider the behavior of E∗ where E∗ is the dual of E = HM1 ◦M1H. We claim that

the while loop is (1/2, 1)-bounded because

E∗(M †
1M1) = |0〉〈0|H|0〉〈0|H|0〉〈0| = 1

2
|0〉〈0| = 1

2
M †

1M1. (5.17)

Now by the While-Bounded rule, we have that (I, 1) ` S̃SP ≤ 0, i.e., the program is perfectly

robust.

In Example 5.4.2, if we use the precondition I in our judgment of the robustness of

the loop body, the best upper bound we can argue is ε = 0.01, i.e., (I, 1) ` P̃1 ≤ 0.01.

Then, applying the While-Bounded rule yields (I, 1) ` S̃SP ≤ 0.02 since nε
1−a = 2ε =

170

0.02. Therefore, restricting the state space with the predicate Q = |0〉〈0|, as we did in

Example 5.4.2, was a better choice, as it yielded a better bound. Moreover, this choice of Q

is natural since the post-measurement state entering the loop satisfies Q perfectly. We note

that the program SSP might look contrived for preparing |1〉 when compared to the more

straightforward program SP ≡ q := |0〉; q := X[q]. We argue that SSP might be preferred

over SP in the presence of noise. Consider the same noise model as above. Namely, let

S̃P ≡ q := |0〉; q := X[q]; q :∼=0.01,X I[q]. We have shown that (I, 1) ` S̃SP ≤ 0 given this

noise model, which says that S̃SP is perfectly robust. By directly applying Definition 5.4.2,

we can show that S̃P is 0.01-robust given the same noise model,7 which suggests that S̃P is

less desirable in this situation.

5.4.3 Soundness

In this section, we show that logic given in Figure 5.3 is sound.

Theorem 5.4.3 (Soundness). If (Q, λ) ` P̃ ≤ ε then P̃ is ε-robust under (Q, λ).

Proof. The proof proceeds by induction on the derivation (Q, λ) ` P̃ ≤ ε. We will work

primarily from definition of robustness given in (5.14). We note that superoperators [[P̃]]

and [[P]] apply on the same space. By the definition of the (Q, λ)-diamond norm, we need

to consider [[P̃]] ⊗ I and [[P]] ⊗ I. However, to simplify the presentation, we will omit “⊗I”

in the following proof whenever there is no ambiguity.

Now we consider each possible rule used in the final step of the derivation.

7Note that [[S̃P]] = 0.99X ◦X + 0.01I ◦ I, and hence we have
∥∥∥[[SP]]− [[S̃P]]

∥∥∥
I,1

= 0.01‖X ◦X − I ◦ I‖I,1 =

0.01.

171

1. Skip: This rule holds by observing [[s̃kip]] = [[skip]], i.e., they refer to the same super-

operator. Thus, any (Q, λ)-diamond norm between them is 0. We choose Q = I and

λ = 0.

2. Init: for the same reason as the proof for Skip.

3. Unitary: For every state ρ satisfying tr(Qρ) ≥ λ,

1

2
‖[[q̄ :∼=p,Φ U [q̄]]]ρ− [[q̄ := U [q̄]]]ρ‖1 =

1

2

∥∥((1− p)UρU † + pΦ(ρ)
)
− UρU †

∥∥
1

=
p

2

∥∥UρU † − Φ(ρ)
∥∥

1
≤ p
∥∥U · U † − Φ

∥∥
Q,λ

≤ pε. (5.18)

The second from last inequality holds by the definition of the (Q, λ)-diamond norm

and the last inequality follows from the premise.

4. Weaken: By induction, the premise (Q′, λ′) ` P̃ ≤ ε′ implies

∀ρ, tr(Q′ρ) ≥ λ′ tr(ρ) =⇒ 1

2

∥∥∥[[P̃]]ρ− [[P]]ρ
∥∥∥

1
≤ ε′ tr(ρ). (5.19)

For any density matrix ρ, constants 0 ≤ λ′ ≤ λ ≤ 1, and predicates Q v Q′, tr(Qρ) ≥

λ tr(ρ) implies that tr(Q′ρ) ≥ λ′ tr(ρ). And for 0 ≤ ε′ ≤ ε ≤ 1, 1
2

∥∥∥[[P̃]]ρ− [[P]]ρ
∥∥∥

1
≤

ε′ tr(ρ) implies that 1
2

∥∥∥[[P̃]]ρ− [[P]]ρ
∥∥∥

1
≤ ε tr(ρ). Therefore, we have that

∀ρ, tr(Qρ) ≥ λ tr(ρ) =⇒ 1

2

∥∥∥[[P̃]]ρ− [[P]]ρ
∥∥∥

1
≤ ε tr(ρ). (5.20)

172

So P̃ is ε-robust under (Q, λ).

5. Rescale: This rule follows by observing that the condition tr(ρQ) ≥ λ is equivalent to

the condition tr(ρQ/δ) ≥ λ/δ for δ > 0. We only require that Q,Q/δ and λ, λ/δ are

well defined, namely, 0 v Q,Q/δ v I and 0 ≤ λ, λ/δ ≤ 1.

6. Sequence: For every state ρ,

∥∥∥[[P̃1; P̃2]]ρ− [[P1;P2]]ρ
∥∥∥

1
=
∥∥∥[[P̃2]][[P̃1]]ρ− [[P2]][[P1]]ρ

∥∥∥
1

≤
∥∥∥[[P̃2]][[P̃1]]ρ− [[P̃2]][[P1]]ρ

∥∥∥
1

+
∥∥∥[[P̃2]][[P1]]ρ− [[P2]][[P1]]ρ

∥∥∥
1

≤
∥∥∥[[P̃1]]ρ− [[P1]]ρ

∥∥∥
1

+
∥∥∥[[P̃2]][[P1]]ρ− [[P2]][[P1]]ρ

∥∥∥
1
. (5.21)

The inequality
∥∥∥[[P̃2]][[P̃1]]ρ− [[P̃2]][[P1]]ρ

∥∥∥
1
≤
∥∥∥[[P̃1]]ρ− [[P1]]ρ

∥∥∥
1
follows because quantum

superoperators are contractive.

Now assume that tr(Q1ρ) ≥ λ tr(ρ). By induction, the premise (Q1, λ) ` P̃1 ≤ ε1

implies that 1
2

∥∥∥[[P̃1]]ρ− [[P1]]ρ
∥∥∥

1
≤ ε1 tr(ρ). Also, by the premise {Q1}P1{Q2}, we have

that tr(Q2[[P1]]ρ) ≥ tr(Q1ρ) ≥ λ tr(ρ) ≥ λ tr([[P1]]ρ). Now we can use our induction

hypothesis and the premise (Q2, λ) ` P̃2 ≤ ε2 to conclude 1
2

∥∥∥[[P̃2]][[P1]]ρ− [[P2]][[P1]]ρ
∥∥∥

1
≤

ε2 tr([[P1]]ρ). So, finally, we have that

1

2

∥∥∥[[P̃1; P̃2]]ρ− [[P1;P2]]ρ
∥∥∥

1
≤ ε1 tr(ρ) + ε2 tr([[P1]]ρ) ≤ (ε1 + ε2) tr(ρ). (5.22)

7. Case: Let P̃ = case M [q] = m→ P̃m end. Assume the input state ρ to the case

statement satisfies
∑

mM
†
mQmMm to degree λ′, i.e.,

∑
m tr(M †

mQmMmρ) ≥ λ′ tr(ρ). To

173

leverage the premise (Qm, λ) ` P̃m ≤ ε and the induction hypothesis to conclude that

1
2

∥∥∥[[P̃m]]ρ− [[Pm]]ρ
∥∥∥

1
≤ ε tr(ρ), one must show the precondition (Qm, λ) holds for state ρ

entering branch m. A naive approach is to show that tr(M †
mQmMmρ) ≥ λ tr(M †

mMmρ)

holds for every branch m, which implies that tr(QmMmρM
†
m) ≥ λ tr(MmρM

†
m) where

MmρM
†
m is the (sub-normalized) post-measurement state entering branch m. We ar-

gue that this is in general impossible when λ′ = λ. For instance, consider a collec-

tion of projective measurement operators {Mm}m. If there exists a branch i and a

state ρ supported on Mi such that tr(M †
iQiMiρ) ≥ λ tr(ρ) for some λ > 0, obviously∑

mM
†
mQmMmρ ≥ λ tr(ρ), but none of the preconditions is satisfied except for the one

for branch i since tr(M †
jQjMjρ) = 0 for each j 6= i.

Instead, we show that for a majority of the clauses tr(M †
mQmMmρ) ≥ λ tr(M †

mMmρ)

holds for some λ strictly less than λ′. To that end, let pm = tr(M †
mMmρ) and qm =

tr(M †
mQmMmρ). Define δm to be such that qm = (1 − δm)pm. Note that 0 ≤ δm ≤ 1

because 0 ≤ qm ≤ pm for every m. Without loss of generality we assume tr(ρ) = 1.

Let S(ρ) denote the collection of branches such that the precondition (Qm, λ) holds,

i.e., S(ρ) = {m : qm ≥ λpm, i.e., δm ≤ 1 − λ}. We will determine a lower bound for∑
m∈S(ρ) pm for each state ρ using a probabilistic argument.

First, note that {pm} is a probability distribution since
∑

m pm = 1 and pm ≥ 0

for each m. Also, since (by our assumption)
∑

m qm ≥ λ′
∑

m pm = λ′, we have

that
∑

m δmpm ≤ (1 − λ′). Now we can define a random variable ∆ to be such that

Pr[∆ = δm] = pm for eachm. The expected value of ∆ is E[∆] ≤ (1−λ′), and Markov’s

174

inequality yields

∑
m/∈S(ρ)

pm = Pr[∆ ≥ 1− λ] ≤ E[∆]

1− λ
≤ 1− λ′

1− λ
=: t. (5.23)

This says that a weighted fraction t of the branches will not satisfy the precondition

(Qm, λ). Note that t ∈ [0, 1] since λ ≤ λ′. For m /∈ S(ρ), only the trivial upper bound

εm = 1 is guaranteed. Therefore, for each state ρ,

1

2

∥∥∥[[P̃]]ρ− [[P]]ρ
∥∥∥

1
=

1

2

∥∥∥∥∥∑
m

(
[[P̃m]](MmρM

†
m)− [[Pm]](MmρM

†
m)
)∥∥∥∥∥

1

≤ 1

2

∑
m

∥∥∥[[P̃m]](MmρM
†
m)− [[Pm]](MmρM

†
m)
∥∥∥

1

≤
∑

m∈S(ρ)

tr(MmρM
†
m)ε+

∑
m/∈S(ρ)

tr(MmρM
†
m)

≤ (1− t)ε+ t = ((1− t)ε+ t) tr(ρ). (5.24)

Rewriting λ = 1 − δ for ease of notation, we have λ′ = 1 − tδ. Finally, we note that

the case t = 0 implies that the precondition of each branch is satisfied, and the error

of the case statement can be bounded by ε.

8. While-Bounded: Let P ≡ while M [q] = 1 do P1 done. Let Sk be the bounded

while loop of k iterations. Define the linear maps E(ρ) := [[P1]](M1ρM
†
1) and Ẽ(ρ) :=

[[P̃1]](M1ρM
†
1) and let [[Sk]]ρ = M0ρM

†
0 + [[Sk−1]](E(ρ)) for k ≥ 1 (with [[S0]]ρ = ρ). In

order to bound the distance between [[P]] and [[P̃]], we first upper bound the distance

175

between [[Sk]] and [[S̃k]] and then take the limit as k →∞. We then have

1

2

∥∥∥[[S̃k]]ρ− [[Sk]]ρ
∥∥∥

1
≤ 1

2

∥∥∥[[S̃k−1]](Ẽ(ρ))− [[Sk−1]](E(ρ))
∥∥∥

1

≤ 1

2

∥∥∥Ẽ(ρ)− E(ρ)
∥∥∥

1
+

1

2

∥∥∥[[S̃k−1]](E(ρ))− [[Sk−1]](E(ρ))
∥∥∥

1
(5.25)

≤ 1

2

k−1∑
i=0

∥∥∥Ẽ(E i(ρ))− E i+1(ρ)
∥∥∥ (5.26)

≤ ε
k−1∑
i=0

tr(M †
1M1E i(ρ)) (5.27)

≤ nε tr(M †
1M1ρ)

1− adk/ne

1− a
. (5.28)

The second inequality (5.25) follows from a technique similar to the one used in the

proof of the Sequence rule. We bound the first term in (5.25) by ε tr(M1ρM
†
1) by ap-

plying the premise (Q, λ) ` P1 ≤ ε and the induction hypothesis. We will prove the

post-measurement state M1ρM
†
1 indeed satisfies the precondition (Q, λ) later. Simi-

larly, each term in (5.26) is bounded above by ε tr(M †
1M1E i(ρ)) and thus the inequality

in (5.27) holds.

To establish the inequality in (5.28), let bi := tr(M †
1M1E i(ρ)). Then the sequence {bk}k

is non-negative and non-increasing. We now prove an upper bound of the series. Since

P is (a, n)-bounded, we know that

tr(M †
1M1En(σ)) = tr((E∗)n(M †

1M1)σ) ≤ a tr(M †
1M1σ), where a < 1 (5.29)

for every state σ, and therefore bi+n ≤ abi for every i. Since bk is non-increasing, we

176

know that

k−1∑
i=0

bi =

dk/ne−1∑
m=0

(bnm + . . .+ bnm+n−1)

≤ n

dk/ne−1∑
m=0

bnm ≤ n

dk/ne−1∑
m=0

amb0 =
n(1− adk/ne)b0

1− a
. (5.30)

Thus the inequality in (5.28) holds. Since b0 = tr(M †
1M1ρ) ≤ tr(ρ), we have

1

2

∥∥∥[[S̃k]]ρ− [[Sk]]ρ
∥∥∥

1
≤ nε(1− adk/ne)

1− a
tr(ρ). (5.31)

Taking the limit as k →∞, we have that adk/ne → 0, which shows that 1
2

∥∥∥[[S̃k]]ρ− [[Sk]]ρ
∥∥∥

1
≤

nε
1−a tr(ρ), as desired.

In order to apply the premise (Q, λ) ` P1 ≤ ε to states of the formM1E i(ρ)M †
1 , we need

to show that tr(QM1E i(ρ)M †
1) ≥ λ tr(M1E i(ρ)M †

1) for each i. We can prove this by

induction. For the base case i = 0, by the precondition (λM †
0M0 +M †

1QM1, λ) on the

input state to the loop, we have tr(M †
1QM1ρ) ≥ λ tr(ρ)−λ tr(M †

0M0ρ) = λ tr(M †
1M1ρ).

Therefore, tr(QM1E0(ρ)M †
1) ≥ λ tr(M1E0(ρ)M †

1)

For the inductive step, observe that the Hoare triple {Q}P1{R} yields tr(R[[P1]]σ) ≥

tr(Qσ) for R ≡ λM †
0M0 + M †

1QM1 and all states σ. By the induction hypothesis, we

177

have

tr(R[[P1]](M1E i(ρ)M †
1)) ≥ tr(QM1E i(ρ)M †

1)

≥ λ tr(M1E i(ρ)M †
1)

≥ λ tr(E i+1(ρ)), (5.32)

where the last inequality holds because quantum operations are trace-non-increasing

(applied to [[P1]]). Note that [[P1]](M1E iM †
1) = E i+1. Now by substituting R, we have

tr(M †
1QM1E i+1(ρ)) ≥ λ tr(E i+1(ρ))− λ tr(M †

0M0E i+1(ρ)) = λ tr(M †
1M1E i+1(ρ)).

(5.33)

Or equivalently, tr(QM1E i+1(ρ)M †
1) ≥ λ tr(M1E i+1(ρ)M †

1), which concludes the proof.

9. While-Unbounded: the proof is trivial as we use the trivial upper bound 1.

5.4.4 Case studies

As a case study, we analysis the robustness of quantum walk on a circle, introduced in

Section 5.2.1, with our logic. For more examples, see [36].

The noisy quantum walk on a circle with n points can be written as the following

178

program:

Q̃W n ≡ p := |0〉;

c := |L〉;while M [p] = 1 do c :∼=pH ,ΦH H[c]; c, p :∼=pS ,ΦS S[c, p] done. (5.34)

Now we show that (I, 0) ` Q̃W 6 ≤ 30(εH + εS) where εH = pH
∥∥ΦH −H ◦H†

∥∥
� and

εS = pS
∥∥ΦS − S ◦ S†

∥∥
� are the errors due to noisy application of H and S respectively. First,

by the Sequence and Unitary rules, we bound the error in the loop body by εH+εS. Next, we

numerically test increasing values of (a, n) until we find a pair that satisfies (5.15). For this

program, we find that the pair (5
6
, 5) satisfies the inequality, i.e., (E∗)5(M †

1M1) v 5
6
M †

1M1

where E∗ = (M †
1 ◦ M1) ◦ [[c, p := S[c, p]]]∗ ◦ [[c := H[c]]]∗. This implies that the loop is

(5
6
, 5)-bounded. Note that here, unlike in the previous example, we have computed the (a, n)

values numerically. This may be useful in cases where direct deduction of a and n is difficult.

Now we can use the While-Bounded rule to conclude that the error bound for the loop is

5(εH+εS)

1− 5
6

= 30(εH + εS), and therefore (I, 0) ` (while M [p] = 1 do P̃1 done) ≤ 30(εH + εS)

where P̃1 is the body of the loop. Two additional applications of the Sequence rule conclude

the proof.

As an example, consider the program Q̃W 6 where only the Hadamard gate may be

faulty, i.e., pS = 0. Say that noisy Hadamard application is characterized by pH = 5× 10−5

and ΦH(ρ) = 1
4
(ρ+XρX + Y ρY +ZρZ), the 2-dimensional depolarizing channel. Applying

an SDP solver [140, 142, 143] for the calculation of the diamond norm, we find that εH =

5× 10−5 × 0.75 = 3.75× 10−5. Therefore the error of Q̃W 6 is 30εH = 1.125× 10−3.

179

Chapter 6: Conclusion

This dissertation included selected topics in quantum cryptography, quantum algo-

rithms and query lower bounds, and formal verification of quantum information processes.

Apart from the open questions mentioned in each chapter, we now summarize our results

and discuss some future directions that extend our work, as follows.

In Chapter 2, we constructed a protocol which enables a purely classical party to del-

egate any quantum computation to an untrusted quantum prover non-interactively. Our

protocols result from a sequence of significant improvements to the original four-message

protocol of Mahadev. We begin by making the first message instance-independent and move

it to an offline setup phase. Then we established a parallel repetition theorem for the re-

sulting three-message protocol. This enables an application of the Fiat-Shamir transform,

eliminating the public-coin toss and yielding a non-interactive protocol. Furthermore, in-

voking a commitment scheme, a non-interactive zero-knowledge argument for NP, and a

circuit-private classical fully homomorphic encryption scheme, we showed the same task can

be performed in zero-knowledge.

In the verification protocols, the honest prover must make one query to the trapdoor

claw-free functions or the trapdoor injective functions for each qubit, to generate the response

to the verifier. While making such function queries enables the verifiability of the prover’s

180

computation, it introduces a large overhead. Recently, new protocols for demonstrating

quantum advantage are proposed, based on various hardness assumptions with an estimation

of required resources [10, 11]. In particular, the adaptive hardcore bit property is not required

to prove the soundness. It is unclear whether these protocols, when basing on post-quantum

assumptions, lead to not only protocols for quantum advantage, but also more efficient

protocols for verifying quantum computation. Moreover, the same LWE-based hash functions

can also be used to generate certifiable randomness [9]. Is it possible to give a randomness

generation protocol using a single near-term device? The analysis of the protocol is based

on the adaptive hardcore bit property, which is known to hold with the LWE assumption.

It is unclear yet interesting to know whether one can give a randomness expansion protocol

from other standard assumptions.

In Chapter 3, we determined the quantum query complexity for the polynomial inter-

polation problem, which is a fundamental task in numerical analysis and cryptography. In

particular, we showed that for a degree-d polynomial of n variables, the query complexity

over a finite field Fq of q elements, complexity numbers C and real numbers R, the query

complexities are O(d
n+d

(
n+d
d

)
), O(1

n+1

(
n+d
d

)
) and O(2

n+1

(
n+d
d

)
) for the success probablities

asymptotically approaching 1, except for a few cases in n and d. Furthermore, we showed

that for univariate polynomial interpolation, the query complexity is d/2+1, and the optimal

algorithm is non-adaptive and gate-efficient.

Our model assumes the oracle encodes a function f which is a polynomial, the degree

of which is known. Given access to oracles which encode non-polynomial functions, can we

give quantum algoithms which output a polynomial that approximates the function? Our

current algorithms do not seem robust in this sense, and the algorithm in this setting may

181

depend on how the closeness is defined.

In Chapter 4, we studied quantum algorithms that learn properties of a matrix using

queries that return its action on an input vector. We showed that for determining various

problems, including trace, determinant, rank testing, and solving linear systems, the query

complexity is linear in the dimension of the matrix. This implies quantum computers do

not provide speedups for these problems. In contrast to the classical setting, we showed

the equivalence between models which provide matrix-vector, vector-matrix, and vector-

matrix-vector products. This, in turn, implies that quantum computers provide exponential

speedups for problems including the parities of rows and deciding if there are two identical

columns.

As results over different fields are in general incomparable, it remains open whether

one can establish a tight quantum lower bound for the problems we studied over the real

numbers. Furthermore, many problems in these models remain unexplored. For example,

what are the query complexities of computing matrix norms, e.g., Schatten p-norms, or

other functions of the matrix singular values? The models of matrix-vector products and

vector-matrix-vector products are closely related to data streaming models which have been

extensively studied in various classical settings [111]. Would quantum speedups be possible

in quantum analogues of data streaming models?

In Chapter 5, we applied formal methods to reason about the robustness of erroneous

execution of quantum processes for local noise models. We provided the syntax and semantics

of the quantum while language, extended to include noisy operations. We defined the notion

of quantum robustness, which describes the closeness between a noisy output and its ideal

correspondence when the input satisfies a property to at least a certain degree. Furthermore,

182

we defined a proof system for reasoning about quantum robustness. In particular, for noisy

while loops, we showed so long as after n iterations, with probability at least 1 − a, every

input state has exited the ideal equivalent, there is a non-trivial upper bound on the final

accumulated error.

An interesting question is whether our logic can be adapted to apply in other contexts.

For example, is it possible to give a system for estimating the expected running time, circuit

depth, or gate counts for quantum programs, when compiled into quantum circuits? Our

logic can be seen as a special case that the error rate is the resource to estimate.

183

Bibliography

[1] John Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, 2018.
arXiv:1801.00862.

[2] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-
Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann,
Tim Menke, et al. Noisy intermediate-scale quantum (NISQ) algorithms. 2021.
arXiv:2101.08448.

[3] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. A
verified optimizer for quantum circuits. Proceedings of the ACM on Programming
Languages, 5(POPL):1–29, 2021. arXiv:1912.02250.

[4] Kesha Hietala, Robert Rand, Shih-Han Hung, Liyi Li, and Michael Hicks. Proving
quantum programs correct. 2020. arXiv:2010.01240.

[5] Thomas Vidick. Verifying quantum computations at scale: A cryptographic leash on
quantum devices. Bulletin of the American Mathematical Society, 57(1):39–76, 2020.

[6] Urmila Mahadev. Classical verification of quantum computations. In FOCS 2018,
pages 259–267, 2018. arXiv:1804.01082.

[7] Gorjan Alagic, Andrew M. Childs, Alex B. Grilo, and Shih-Han Hung. Non-interactive
classical verification of quantum computation. In Theory of Cryptography Conference,
pages 153–180. Springer, 2020. arXiv:1911.08101.

[8] Nai-Hui Chia, Kai-Min Chung, and Takashi Yamakawa. Classical verification of quan-
tum computations with efficient verifier. In Theory of Cryptography Conference, pages
181–206. Springer, 2020. arXiv:1912.00990.

[9] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh Vazirani, and Thomas
Vidick. A cryptographic test of quantumness and certifiable randomness from a single
quantum device. In FOCS 2018, pages 320–331, 2018. arXiv:1804.00640.

[10] Zvika Brakerski, Venkata Koppula, Umesh Vazirani, and Thomas Vidick. Simpler
proofs of quantumness. In 15th Conference on the Theory of Quantum Computation,
Communication and Cryptography (TQC 2020). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020. arXiv:2005.04826.

184

https://arxiv.org/abs/1801.00862
https://arxiv.org/abs/2101.08448
https://arxiv.org/abs/1912.02250
https://arxiv.org/abs/2010.01240
https://arxiv.org/abs/1804.01082
https://arxiv.org/abs/1911.08101
https://arxiv.org/abs/1912.00990
https://arxiv.org/abs/1804.00640
https://arxiv.org/abs/2005.04826

[11] Gregory D. Kahanamoku-Meyer, Soonwon Choi, Umesh V. Vazirani, and Norman Y.
Yao. Classically-verifiable quantum advantage from a computational Bell test. 2021.
arXiv:2104.00687.

[12] Anne Broadbent and Rabib Islam. Quantum encryption with certified deletion. In
Theory of Cryptography Conference, pages 92–122. Springer, 2020. arXiv:1910.03551.

[13] Scott Aaronson. Quantum copy-protection and quantum money. In 2009 24th An-
nual IEEE Conference on Computational Complexity, pages 229–242. IEEE, 2009.
arXiv:1110.5353.

[14] Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe Zhang. New
approaches for quantum copy-protection. 2020. arXiv:2004.09674.

[15] Prabhanjan Ananth and Rolando L. La Placa. Secure software leasing. 2020.
arXiv:2005.05289.

[16] Shalev Ben-David and Or Sattath. Quantum tokens for digital signatures. 2016.
arXiv:1609.09047.

[17] Scott Aaronson and Paul Christiano. Quantum money from hidden subspaces. In
Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages
41–60, 2012. arXiv:1203.4740.

[18] Mark Zhandry. Quantum lightning never strikes the same state twice. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
pages 408–438. Springer, 2019. https://eprint.iacr.org/2017/1080.

[19] Andrea Coladangelo and Or Sattath. A quantum money solution to the blockchain
scalability problem. Quantum, 4:297, 2020. arXiv:2002.11998.

[20] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf.
Quantum lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001.
arXiv:quant-ph/9802049.

[21] Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths
and weaknesses of quantum computing. SIAM journal on Computing, 26(5):1510–1523,
1997. arXiv:quant-ph/9701001.

[22] Andris Ambainis. Quantum lower bounds by quantum arguments. Journal of Com-
puter and System Sciences, 64(4):750–767, 2002. arXiv:quant-ph/0002066.

[23] Peter Høyer, Troy Lee, and Robert Spalek. Negative weights make adversaries stronger.
In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing,
pages 526–535, 2007. arXiv:quant-ph/0611054.

[24] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC ’05, pages 84–93, 2005.

185

https://arxiv.org/abs/2104.00687
https://arxiv.org/abs/1910.03551
https://arxiv.org/abs/1110.5353
https://arxiv.org/abs/2004.09674
https://arxiv.org/abs/2005.05289
https://arxiv.org/abs/1609.09047
https://arxiv.org/abs/1203.4740
https://eprint.iacr.org/2017/1080
https://arxiv.org/abs/2002.11998
https://arxiv.org/abs/quant-ph/9802049
https://arxiv.org/abs/quant-ph/9701001
https://arxiv.org/abs/quant-ph/0002066
https://arxiv.org/abs/quant-ph/0611054

[25] Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky. Maliciously
circuit-private FHE. In CRYPTO 2014, pages 536–553, 2014. https://eprint.iacr.
org/2013/307.

[26] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[27] Daniel M. Kane and Samuel A. Kutin. Quantum interpolation of polynomials. Quan-
tum Information and Computation, 11(1):95–103, 2011. arXiv:0909.5683.

[28] David A. Meyer Meyer and James Pommersheim. On the uselessness of quantum
queries. Theoretical Computer Science, 412(51):7068–7074, 2011. arXiv:1004.1434.

[29] Daniel Copeland and Jamie Pommersheim. Quantum query complexity of symmetric
oracle problems. Quantum, 5:403, 2021. arXiv:1812.09428.

[30] Andrew M. Childs, Wim van Dam, Shih-Han Hung, and Igor E. Shparlinski. Optimal
quantum algorithm for polynomial interpolation. In 43rd International Colloquium on
Automata, Languages, and Programming (ICALP 2016), volume 55 of Leibniz Inter-
national Proceedings in Informatics, pages 16:1–16:13, 2016. arXiv:1509.09271.

[31] Jianxin Chen, Andrew M. Childs, and Shih-Han Hung. Quantum algorithm for mul-
tivariate polynomial interpolation. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 474(2209):20170480, 2018. arXiv:1701.03990.

[32] Xiaoming Sun, David P. Woodruff, Guang Yang, and Jialin Zhang. Querying a matrix
through matrix-vector products. In 46th International Colloquium on Automata, Lan-
guages, and Programming. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.
arXiv:1906.05736.

[33] Mark Braverman, Elad Hazan, Max Simchowitz, and Blake Woodworth. The gradient
complexity of linear regression. In Conference on Learning Theory, pages 627–647,
2020. arXiv:1911.02212.

[34] Andrew M. Childs, Shih-Han Hung, and Tongyang Li. Quantum Query Complexity
with Matrix-Vector Products. In 48th International Colloquium on Automata, Lan-
guages, and Programming (ICALP 2021), volume 198 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 55:1–55:19, 2021. arXiv:2102.11349.

[35] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. Verifying quantitative relia-
bility for programs that execute on unreliable hardware. In OOPSLA, 2013.

[36] Shih-Han Hung, Kesha Hietala, Shaopeng Zhu, Mingsheng Ying, Michael Hicks, and
Xiaodi Wu. Quantitative robustness analysis of quantum programs. Proceedings of the
ACM Symposium on Programming Languages, 3(POPL):1–29, 2019. arXiv:1811.03585.

[37] Ben W. Reichardt, Falk Unger, and Umesh Vazirani. Classical command of quantum
systems. Nature, 496(7446):456–460, 2013. arXiv:1209.0448.

186

https://eprint.iacr.org/2013/307
https://eprint.iacr.org/2013/307
https://arxiv.org/abs/0909.5683
https://arxiv.org/abs/1004.1434
https://arxiv.org/abs/1812.09428
https://arxiv.org/abs/1509.09271
https://arxiv.org/abs/1701.03990
https://arxiv.org/abs/1906.05736
https://arxiv.org/abs/1911.02212
https://arxiv.org/abs/2102.11349
https://arxiv.org/abs/1811.03585
https://arxiv.org/abs/1209.0448

[38] Matthew McKague. Interactive proofs for BQP via self-tested graph states. Theory of
Computing, 12(3):1–42, 2016. arXiv:1309.5675.

[39] Alexandru Gheorghiu, Elham Kashefi, and Petros Wallden. Robustness and de-
vice independence of verifiable blind quantum computing. New Journal of Physics,
17(8):083040, 2015. arXiv:1502.02571.

[40] Michal Hajdušek, Carlos A. Pérez-Delgado, and Joseph F. Fitzsimons. Device-
independent verifiable blind quantum computation, 2015. arXiv:1502.02563.

[41] Joseph F. Fitzsimons and Michal Hajdušek. Post hoc verification of quantum compu-
tation, 2015. arXiv:1512.04375.

[42] Anand Natarajan and Thomas Vidick. A quantum linearity test for robustly verifying
entanglement. In STOC 2017, pages 1003–1015, 2017. arXiv:1610.03574.

[43] Andrea Coladangelo, Alex B. Grilo, Stacey Jeffery, and Thomas Vidick. Verifier-on-
a-leash: New schemes for verifiable delegated quantum computation, with quasilinear
resources. In EUROCRYPT 2019, pages 247–277, 2019. arXiv:1708.07359.

[44] Alex B. Grilo. A simple protocol for verifiable delegation of quantum computation in
one round. In ICALP 2019, pages 28:1–28:13, 2019. arXiv:1711.09585.

[45] Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind quantum
computation. In FOCS 2009, pages 517–526, 2009. arXiv:0807.4154.

[46] Anne Broadbent. How to verify a quantum computation. Theory of Computing,
14(11):1–37, 2018. arXiv:1509.09180.

[47] Tomoyuki Morimae and Joseph F. Fitzsimons. Post hoc verification with a single
prover, 2016. arXiv:1603.06046.

[48] Dorit Aharonov, Michael Ben-Or, Elad Eban, and Urmila Mahadev. Interactive proofs
for quantum computations. 2017. arXiv:1704.04487.

[49] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David N. Cooper, Quynh Dang,
Yi-Kai Liu, Carl Frederick Miller, Dustin Moody, Rene Peralta, Ray Perlner, Angela
Robinson, and Daniel Smith-Tone. Status report on the first round of the NIST post-
quantum cryptography standardization process. 2019.

[50] Ivan Damgård. On Σ-protocols. Lecture Notes, University of Aarhus, Department for
Computer Science, 2002.

[51] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications. In STOC 1988, page 103–112, 1988.

[52] Scott Aaronson. BQP and the polynomial hierarchy. In STOC 2010, pages 141–150,
2010. arXiv:0910.4698.

187

https://arxiv.org/abs/1309.5675
https://arxiv.org/abs/1502.02571
https://arxiv.org/abs/1502.02563
https://arxiv.org/abs/1512.04375
https://arxiv.org/abs/1610.03574
https://arxiv.org/abs/1708.07359
https://arxiv.org/abs/1711.09585
https://arxiv.org/abs/0807.4154
https://arxiv.org/abs/1509.09180
https://arxiv.org/abs/1603.06046
https://arxiv.org/abs/1704.04487
https://arxiv.org/abs/0910.4698

[53] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and
Mark Zhandry. Random oracles in a quantum world. In ASIACRYPT 2011, pages
41–69, 2011. arXiv:1008.0931.

[54] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In CRYPTO 1986, pages 186–194, 1986.

[55] Johan Håstad, Rafael Pass, Douglas Wikström, and Krzysztof Pietrzak. An efficient
parallel repetition theorem. In TCC 2010, pages 1–18, 2010.

[56] Iftach Haitner. A parallel repetition theorem for any interactive argument. In FOCS
2009, pages 241–250, 2009.

[57] Itay Berman, Iftach Haitner, and Eliad Tsfadia. A tight parallel repetition theorem for
partially simulatable interactive arguments via smooth KL-divergence, 2019. https:
//eprint.iacr.org/2019/393.

[58] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In CCS 1993, pages 62–73, 1993.

[59] David Pointcheval and Jacques Stern. Security arguments for digital signatures and
blind signatures. Journal of Cryptology, 13(3):361–396, 2000.

[60] Mihir Bellare, Russell Impagliazzo, and Moni Naor. Does parallel repetition lower the
error in computationally sound protocols? In FOCS 1997, pages 374–383, 1997.

[61] John Watrous. Zero-knowledge against quantum attacks. SIAM Journal on Comput-
ing, 39(1):25–58, 2009. arXiv:quant-ph/0511020.

[62] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks on classi-
cal proof systems: The hardness of quantum rewinding. In FOCS 2014, pages 474–483,
2014. https://eprint.iacr.org/2014/296.

[63] Andrea Coladangelo, Thomas Vidick, and Tina Zhang. Non-interactive zero-knowledge
arguments for QMA, with preprocessing, 2019. arXiv:1911.07546.

[64] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security of the
fiat-shamir transformation in the quantum random-oracle model. In CRYPTO 2019,
pages 356–383, 2019. https://eprint.iacr.org/2019/190.

[65] Qipeng Liu and Mark Zhandry. Revisiting post-quantum Fiat-Shamir. In CRYPTO
2019, 2019. https://eprint.iacr.org/2019/262.

[66] Anne Broadbent, Zhengfeng Ji, Fang Song, and John Watrous. Zero-knowledge proof
systems for QMA. In FOCS 2016, pages 31–40, 2016. arXiv:1604.02804.

[67] Thomas Vidick and Tina Zhang. Classical zero-knowledge arguments for quantum
computations, 2019. arXiv:1902.05217.

188

https://arxiv.org/abs/1008.0931
https://eprint.iacr.org/2019/393
https://eprint.iacr.org/2019/393
https://arxiv.org/abs/quant-ph/0511020
https://eprint.iacr.org/2014/296
https://arxiv.org/abs/1911.07546
https://eprint.iacr.org/2019/190
https://eprint.iacr.org/2019/262
https://arxiv.org/abs/1604.02804
https://arxiv.org/abs/1902.05217

[68] Anne Broadbent and Alex B. Grilo. Zero-knowledge for QMA from locally simulatable
proofs, 2019. arXiv:1911.07782.

[69] Roy Radian and Or Sattath. Semi-quantum money, 2019. arXiv:1908.08889.

[70] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain)
learning with errors, 2019. https://eprint.iacr.org/2019/158.

[71] Alexandru Gheorghiu and Thomas Vidick. Computationally-secure and composable
remote state preparation, 2019. arXiv:1904.06320.

[72] Alex Bredariol Grilo, William Slofstra, and Henry Yuen. Perfect zero knowledge
for quantum multiprover interactive proofs. In FOCS 2019, pages 611–635, 2019.
arXiv:1905.11280.

[73] Nir Bitansky and Omri Shmueli. Post-quantum zero knowledge in constant rounds,
2019. https://eprint.iacr.org/2019/1279.

[74] Alexei Yu. Kitaev, Alexander H. Shen, and Mikhail N. Vyalyi. Classical and quantum
computation. American Mathematical Society, 2002.

[75] Jacob D. Biamonte and Peter J. Love. Realizable Hamiltonians for universal adiabatic
quantum computers. Physical Review A, 78(1):012352, 2008. arXiv:0704.1287.

[76] Toby Cubitt and Ashley Montanaro. Complexity classification of local Hamiltonian
problems. SIAM Journal on Computing, 45(2):268–316, 2016. arXiv:1311.3161.

[77] Thomas Vidick and John Watrous. Quantum proofs. Foundations and Trends in
Theoretical Computer Science, 11(1-2):1–215, 2016. arXiv:1610.01664.

[78] Mark Zhandry. How to construct quantum random functions. In FOCS 2012, pages
679–687, 2012. https://eprint.iacr.org/2012/182.

[79] Dan Boneh and Mark Zhandry. Quantum-secure message authentication codes. In
Proceedings of Eurocrypt, pages 592–608. 2013. https://eprint.iacr.org/2012/606.

[80] Dave Bacon, Andrew M. Childs, and Wim van Dam. From optimal measurement to
efficient quantum algorithms for the hidden subgroup problem over semidirect product
groups. In Proceedings of the 46th IEEE Symposium on Foundations of Computer
Science, pages 469–478. 2005. arXiv:quant-ph/0504083.

[81] Andrew M. Childs and Wim van Dam. Quantum algorithm for a generalized hid-
den shift problem. In Proceedings of the 18th ACM-SIAM Symposium on Discrete
Algorithms, pages 1225–1234. 2007. arXiv:quant-ph/0507190.

[82] Thomas Decker, Jan Draisma, and Pawel Wocjan. Efficient quantum algorithm for
identifying hidden polynomials. Quantum Information and Computation, 9(3):215–
230, 2009. arXiv:0706.1219.

189

https://arxiv.org/abs/1911.07782
https://arxiv.org/abs/1908.08889
https://eprint.iacr.org/2019/158
https://arxiv.org/abs/1904.06320
https://arxiv.org/abs/1905.11280
https://eprint.iacr.org/2019/1279
https://arxiv.org/abs/0704.1287
https://arxiv.org/abs/1311.3161
https://arxiv.org/abs/1610.01664
https://eprint.iacr.org/2012/182
https://eprint.iacr.org/2012/606
https://arxiv.org/abs/quant-ph/0504083
https://arxiv.org/abs/quant-ph/0507190
https://arxiv.org/abs/0706.1219

[83] Jaikumar Radhakrishnan, Pranab Sen, and S. Venkatesh. The quantum complexity of
set membership. Algorithmica, pages 462–479, 2002. arXiv:quant-ph/0007021.

[84] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Limit on
the speed of quantum computation in determining parity. Physical Review Letters,
81(24):5442–5444, 1998. arXiv:quant-ph/9802045.

[85] Wim van Dam. Quantum oracle interrogation: Getting all information for almost half
the price. In Proceedings of the 39th IEEE Symposium on Foundations of Computer
Science, pages 362–367. 1998. arXiv:quant-ph/9805006.

[86] Ashley Montanaro. The quantum query complexity of learning multilinear polynomials.
Information Processing Letters, 112(11):438–442, 2012. arXiv:1105.3310.

[87] Johan Håstad. Tensor rank is NP-complete. Journal of Algorithms, 11(4):644–654,
1990.

[88] Christopher J. Hillar and Lek-Heng Lim. Most tensor problems are NP-hard. Journal
of the ACM, 60(6):45:1–45:39, 2013. arXiv:0911.1393.

[89] Yaroslav Shitov. How hard is the tensor rank?, 2016. arXiv:1611.01559.

[90] Alessandra Bernardi, Grigoriy Blekherman, and Giorgio Ottaviani. On real typical
ranks, 2015. arXiv:1512.01853.

[91] Grigoriy Blekherman and Zach Teitler. On maximum, typical and generic ranks. Math-
ematische Annalen, 362(3-4):1021–1031, 2015. arXiv:1402.2371.

[92] Joe Harris. Algebraic Geometry: A First Course, volume 133 of Graduate Texts in
Mathematics. Springer, 1992.

[93] Arnold Knopfmacher and John Knopfmacher. Counting polynomials with a given
number of zeros in a finite field. Linear and Multilinear Algebra, 26(4):287–292, 1990.

[94] Gerald M. Pitstick, João R. Cruz, and Robert J. Mulholland. A novel interpretation
of Prony’s method. Proceedings of the IEEE, 76(8):1052–1053, 1988.

[95] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge
University Press, 2013.

[96] Lars Hörmander. The Analysis of Linear Partial Differential Operators: Distribution
Theory and Fourier Analysis. Springer, 1983.

[97] F. Palatini. Sulle varietà algebriche per le quali sono di dimensione minore
dell’ordinario, senza riempire lo spazio ambiente, una o alcune delle variet‘a formate
da spazi seganti. Atti. Accad. Torino, 44:362–374, 1909.

[98] Bjorn Adlandsvik. Joins and higher secant varieties. Mathematica Scandinavica,
61:213–222, 1987.

190

https://arxiv.org/abs/quant-ph/0007021
https://arxiv.org/abs/quant-ph/9802045
https://arxiv.org/abs/quant-ph/9805006
https://arxiv.org/abs/1105.3310
https://arxiv.org/abs/0911.1393
https://arxiv.org/abs/1611.01559
https://arxiv.org/abs/1512.01853
https://arxiv.org/abs/1402.2371

[99] James Alexander and André Hirschowitz. Polynomial interpolation in several variables.
Journal of Algebraic Geometry, 4(2):201–222, 1995.

[100] Robin Hartshorne. Algebraic Geometry, volume 52 of Graduate Texts in Mathematics.
Springer, 1977.

[101] Pierre Comon and Giorgio Ottaviani. On the typical rank of real binary forms. Linear
and multilinear algebra, 60(6):657–667, 2012. arXiv:0909.4865.

[102] Antonio Causa and Riccardo Re. On the maximum rank of a real binary form. Annali
di Matematica Pura ed Applicata, 190(1):55–59, 2011. arXiv:1006.5127.

[103] Anthony V. Geramita. Inverse systems of fat points: Waring’s problem, secant vari-
eties of Veronese varieties and parameter spaces for Gorenstein ideals. In The Curves
Seminar at Queen’s, volume 10, pages 2–114, 1996.

[104] Joseph M. Landsberg and Zach Teitler. On the ranks and border ranks of sym-
metric tensors. Foundations of Computational Mathematics, 10(3):339–366, 2010.
arXiv:0901.0487.

[105] Andrzej Białynicki-Birula and Andrzej Schinzel. Representations of multivariate poly-
nomials by sums of univariate polynomials in linear forms. Colloquium Mathematicum,
112(2):201–233, 2008.

[106] Joachim Jelisiejew. An upper bound for the Waring rank of a form, 2013.
arXiv:1305.6957.

[107] Edoardo Ballico and Alessandro De Paris. Generic power sum decompositions and
bounds for the waring rank, 2013. arXiv:1312.3494.

[108] Serge Lang and André Weil. Number of points of varieties in finite fields. American
Journal of Mathematics, 76(4):819–827, 1954.

[109] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal on
Computing, 26(5):1411–1473, 1997.

[110] J. Niel de Beaudrap, Richard Cleve, and John Watrous. Sharp quantum vs. clas-
sical query complexity separations. Algorithmica, 34:449–461, 2002. arXiv:quant-
ph/0011065.

[111] David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and
Trends in Theoretical Computer Science, 10(1–2):1–157, 2014. arXiv:1411.4357.

[112] Cyrus Rashtchian, David P. Woodruff, and Hanlin Zhu. Vector-matrix-vector
queries for solving linear algebra, statistics, and graph problems. In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.
arXiv:2006.14015.

191

https://arxiv.org/abs/0909.4865
https://arxiv.org/abs/1006.5127
https://arxiv.org/abs/0901.0487
https://arxiv.org/abs/1305.6957
https://arxiv.org/abs/1312.3494
https://arxiv.org/abs/quant-ph/0011065
https://arxiv.org/abs/quant-ph/0011065
https://arxiv.org/abs/1411.4357
https://arxiv.org/abs/2006.14015

[113] Troy Lee, Miklos Santha, and Shengyu Zhang. Quantum algorithms for graph problems
with cut queries. In Proceedings of the 32nd ACM-SIAM Symposium on Discrete
Algorithms, pages 939–958. SIAM, 2021. arXiv:2007.08285.

[114] Ashley Montanaro and Changpeng Shao. Quantum algorithms for learning graphs and
beyond, 2020. arXiv:2011.08611.

[115] Joran van Apeldoorn and Sander Gribling. Simon’s problem for linear functions, 2018.
arXiv:1810.12030.

[116] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear
systems of equations. Physical Review Letters, 103(15):150502, 2009. arXiv:0811.3171.

[117] Andrew M. Childs. Equation solving by simulation. Nature Physics, 5:861, 2009.

[118] Scott Aaronson. Read the fine print. Nature Physics, 11(4):291, 2015.

[119] Simon Apers and Ronald de Wolf. Quantum speedup for graph sparsification, cut ap-
proximation and laplacian solving. In Proceedings of the 61st IEEE Annual Symposium
on Foundations of Computer Science, pages 637–648. IEEE, 2020. arXiv:1911.07306.

[120] Scott Aaronson. Quantum lower bound for the collision problem. In Proceedings of
the 34th Annual ACM Symposium on Theory of Computing, pages 635–642, 2002.
arXiv:quant-ph/0111102.

[121] Pascal Koiran, Vincent Nesme, and Natacha Portier. The quantum query complexity
of the abelian hidden subgroup problem. Theoretical Computer Science, 380(1-2):115–
126, 2007.

[122] Stephen P. Jordan. Fast quantum algorithm for numerical gradient estimation. Physical
Review Letters, 95(5):050501, 2005. arXiv:quant-ph/0405146.

[123] Ankit Garg, Robin Kothari, Praneeth Netrapalli, and Suhail Sherif. No quantum
speedup over gradient descent for non-smooth convex optimization. In 12th Innovations
in Theoretical Computer Science Conference (to appear), 2021. arXiv:2010.01801.

[124] Shouvanik Chakrabarti, Andrew M. Childs, Tongyang Li, and Xiaodi Wu. Quan-
tum algorithms and lower bounds for convex optimization. Quantum, 4:221, 2020.
arXiv:1809.01731.

[125] Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. Convex
optimization using quantum oracles. Quantum, 4:220, 2020. arXiv:1809.00643.

[126] Jean-Pierre Serre. Linear Representations of Finite Groups, volume 42 of Graduate
Texts in Mathematics. Springer, 1977.

[127] Andries E. Brouwer, Arjeh M. Cohen, and Arnold Neumaier. Distance-Regular Graphs.
Springer-Verlag, 1989.

192

https://arxiv.org/abs/2007.08285
https://arxiv.org/abs/2011.08611
https://arxiv.org/abs/1810.12030
https://arxiv.org/abs/0811.3171
https://arxiv.org/abs/1911.07306
https://arxiv.org/abs/quant-ph/0111102
https://arxiv.org/abs/quant-ph/0405146
https://arxiv.org/abs/2010.01801
https://arxiv.org/abs/1809.01731
https://arxiv.org/abs/1809.00643

[128] Daniel Gottesman. An introduction to quantum error correction and fault-tolerant
quantum computation. Proceedings of Symposia in Applied Mathematics: Quantum
Information Science and Its Contributions to Mathematics, 68, 2010. arXiv:0904.2557.

[129] Yangjia Li and Mingsheng Ying. Algorithmic analysis of termination problems for
quantum programs. In POPL, 2018.

[130] Michael Carbin, Deokhwan Kim, Sasa Misailovic, and Martin C. Rinard. Proving
acceptability properties of relaxed nondeterministic approximate programs. In PLDI,
2012.

[131] Mingsheng Ying. Foundations of Quantum Programming. Morgan Kaufmann, 2016.

[132] Dorit Aharonov, Andris Ambainis, Julia Kempe, and Umesh Vazirani. Quantum walks
on graphs. In STOC, 2001. arXiv:quant-ph/0012090.

[133] Iulia Georgescu, Sahel Ashhab, and Franco Nori. Quantum simulation. Reviews of
Modern Physics, 86(1), 2014. arXiv:1308.6253.

[134] Mingsheng Ying, Shenggang Ying, and Xiaodi Wu. Invariants of quantum programs:
Characterisations and generation. In POPL, 2017.

[135] Mingsheng Ying. Floyd–Hoare logic for quantum programs. ACM Transactions on
Programming Languages and Systems, 33(6), 2011.

[136] Ellie D’Hondt and Prakash Panangaden. Quantum weakest preconditions. Mathemat-
ical Structures in Computer Science, 16(3), 2006. arXiv:quant-ph/0501157.

[137] Michael A. Nielsen and Isaac Chuang. Quantum Computation and Quantum Informa-
tion. Cambridge University Press, 2000.

[138] Barbara M. Terhal. Quantum error correction for quantum memories. Reviews of
Modern Physics, 87(2), 2015. arXiv:1302.3428.

[139] John Watrous. The Theory of Quantum Information. Cambridge University Press,
2018.

[140] John Watrous. Semidefinite programs for completely bounded norms. Theory of Com-
puting, 5(11), 2009. arXiv:0901.4709.

[141] Runzhou Tao, Yunong Shi, Jianan Yao, John Hui, Frederic T. Chong, and Ronghui Gu.
Gleipnir: Toward practical error analysis for quantum programs (extended version).
2021. arXiv:2104.06349.

[142] Marcus P. da Silva. matlab-diamond-norm: A MATLAB function for computing the
diamond norm (completely bounded induced 1-norm on linear superoperators), 2015.

[143] John Watrous. Simpler semidefinite programs for completely bounded norms. Chicago
Journal of Theoretical Computer Science, 2013(8), 2013. arXiv:1207.5726.

193

https://arxiv.org/abs/0904.2557
https://arxiv.org/abs/quant-ph/0012090
https://arxiv.org/abs/1308.6253
https://arxiv.org/abs/quant-ph/0501157
https://arxiv.org/abs/1302.3428
https://arxiv.org/abs/0901.4709
https://arxiv.org/abs/2104.06349
https://arxiv.org/abs/1207.5726

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Classical verification of quantum computation
	Polynomial interpolation
	Query complexity with matrix-vector products
	Quantitative robustness analysis

	Non-interactive classical verification of quantum computation
	Introduction
	Standard cryptographic primitives
	Commitment schemes
	Fully homomorphic encryption with circuit privacy
	NIZK for NP

	Preliminaries
	Quantum-prover interactive arguments
	The local Hamiltonian problem and verification for BQP
	The Mahadev protocol for BQP verification

	Instance-independent key generation
	A parallel repetition theorem for the Mahadev protocol
	A lemma for the single-copy protocol
	The parallel repetition theorem

	A classical zero-knowledge argument for QMA
	Completeness and soundness
	The zero-knowledge property

	Round reduction by Fiat-Shamir transformation
	Fiat-Shamir for -protocols in the QROM
	Extension to generalized -protocols
	Non-interactive zero-knowledge for QMA

	Polynomial interpolation
	Introduction
	Algebraic geometry concepts
	Univariate polynomial interpolation
	Preliminaries
	The algorithm
	Performance using d/2 + 1/2 queries
	Performance using d/2 + 1 queries
	An alternative algorithm
	Gate complexity

	Multivariate polynomial interpolation
	The query model
	The algorithm
	Performance

	Optimality

	Matrix-vector products
	Introduction
	Preliminaries
	The quantum query model
	The coset identification problem
	The polynomial method

	Equivalence of matrix-vector and vector-matrix-vector products
	Left and right matrix-vector queries
	The vector-matrix-vector model

	Linear algebra over finite fields
	Trace
	Null space
	Solving linear systems
	Rank testing

	Quantitative robustness analysis
	Introduction
	Quantum programs
	Syntax
	Denotational semantics
	Quantum predicates and Hoare logic

	Noisy quantum programs
	Noise in quantum computation
	Syntax
	Semantics

	Quantum robustness
	Definition
	Logic
	Soundness
	Case studies

	Conclusion
	Bibliography

