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Current public key cryptosystems that are based on the hardness of integer

factorization and discrete logarithm are insecure in the presence of large-scale quan-

tum computers. Much effort has been devoted to replacing the quantum-insecure

cryptosystems with newly developed “post-quantum” cryptosystem candidates, con-

jectured to be secure against quantum attack. Lattice-based cryptography has been

widely recognized as a prominent candidate for practical post-quantum security.

This dissertation improves the robustness and versatility of lattice-based cryp-

tography through the following three contributions:

1. Chapter 3 introduces a constant-round protocol for unauthenticated group

key exchange (i.e., with security against a passive eavesdropper). Group key-

exchange protocols allow a set of N parties to agree on a shared, secret key by

communicating over a public network. Our protocol is based on the hardness

of a lattice problem, which hence yields (plausible) post-quantum security.



2. In Chapter 4, we propose a framework for cryptanalysis of lattice-based schemes

when certain types of information about the secret are leaked. Our framework

generalizes the primal lattice reduction attack. The generalization allows for

integrating the leaked information progressively before running a final lattice

reduction step. Our framework can estimate the amount of security loss caused

by the leaked information, and perform lattice reduction attacks with leaked

information when computationally feasible.

3. Chapter 5 introduces an approach towards a ring analogue of the Leftover

Hash Lemma (LHL). The LHL is a mathematical tool often used in the anal-

ysis of various lattice-based cryptosystems, as well as their leakage-resilient

counterparts. However, it does not hold in the ring setting, which is typi-

cal for efficient cryptosystems. Lyubashevsky et al. (Eurocrypt ’13) proved

a “regularity lemma,” which is used in the ring setting instead of the LHL;

however, this applies only for centered, spherical Gaussian inputs, while the

LHL applies when the input is drawn from any high min-entropy distribu-

tion. Our approach generalizes the “regularity lemma” of Lyubashevsky et al.

to certain conditional distributions. A number of Ring-Learning with Errors

based cryptosystems can achieve certain leakage resilience properties using our

results.
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Chapter 1: Introduction

As Shor’s algorithm solves integer factorization and discrete logarithm in poly-

nomial time [106], all public key cryptosystems that are based on hardness of integer

factorization and discrete logarithm are insecure in the presence of large-scale quan-

tum computers. Much effort has been made to replace standardized public key

cryptosystems, which are quantum-insecure, with newly developed post-quantum

cryptosystems, conjectured to be secure against quantum attack.

One promising candidate for practical, post-quantum cryptography are the

cryptosystems based on the hard lattice problems – lattice-based cryptography.

There are several lattice problems, which have been extensively studied for decades,

that are believed to be hard, even against a quantum computer; for example, short-

est vector problem (SVP), closest vector problem (CVP), etc. Cryptosystems have

been built from such problems, beginning from a seminal work by Ajtai [3]. One rel-

evant hard lattice problem to our work is the Learning with Errors (LWE) problem

introduced by Regev [103]. The (Decisional) LWE problem is defined as the problem

of distinguishing between the two distributions (A,As + e) and (A,u), where s is a

secret vector, matrix A and vector u are uniform, and vector e has a small norm.

LWE is proved to be as hard to solve as several worst-case standard lattice prob-

1



lems (e.g. [95,103]). To improve the efficiency of lattice-based cryptosystems, lattices

with additional algebraic structure were introduced [84,109]. Specifically, a ring ver-

sion of the LWE (Ring-LWE) problem is defined as the problem of distinguishing

(a, b = a · s + e) ∈ Rq × Rq from random pairs, where s ∈ Rq is a secret, a ∈ Rq is

uniform and the error term e ∈ R has a small norm, where Rq := Zq[x]/xn + 1.

Lattice-based cryptography has been recognized for its versatility in realizing

cryptographic applications. Hardness of lattice problems, especially LWE and Ring-

LWE, have been relied upon as security assumptions for key exchange (e.g. [9]), pub-

lic key encryption (e.g., [85]), digital signature (e.g., [56]), pseudorandom functions

(e.g., [12]), attribute-based encryption (e.g., [21]), fully homomorphic encryption

(e.g., [29]), non-interactive zero-knowledge [98], etc.

NIST has initiated a standardization process for quantum-resistant public-key

cryptographic algorithms. One concern that arises is the potential security loss in

the process of transitioning theoretical work with provable security into practice.

Although the best-known algorithms for solving the LWE problem run in exponen-

tial time, faulty parameter instantiation, incorrect implementation, or attacks on

implementation may lead to severe security risks, which is often not considered in

the scenarios of the original provable security claim. Such scenarios are referred

to as “imperfect” scenarios. Various efforts have been made to analyze security of

lattice schemes under “imperfect” scenarios (see [6, 64,97] for examples).
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1.1 Our Contributions

This dissertation improves the robustness and versatility of lattice-based cryp-

tography through analyzing the security impact of potential information leakage on

lattice cryptosystems [44,47] and designing a lattice-based crypto application [10].

1.1.1 Lattice Cryptographic Protocol Construction

Group Key Exchange Protocol. In Chapter 3, we propose a constant-round

group key exchange protocol based on the hardness of the Ring-LWE problem.

Group key exchange is a protocol that allows a set of N parties to agree on a shared,

secret key by communicating over a public network. A number of solutions to this

problem have been proposed over the years, mostly based on variants of Diffie-

Hellman (two-party) key exchange. There has been relatively little work, however,

looking at candidate post-quantum group key-exchange protocols. Our protocol

is constructed by generalizing the Burmester-Desmedt protocol to the Ring-LWE

setting, which requires addressing several technical challenges.

This work was originally published in PQC 2019 [10], in collaboration with

Daniel Apon, Dana Dachman-Soled, and Jonathan Katz.
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1.1.2 Security of Lattice-Based Cryptography under “Imperfect” Sce-

narios

Security of Learning with Errors with Side Information. In Chapter 4, we

propose a framework for the cryptanalysis of lattice-based schemes for which certain

types of side information about the secret and/or error are available.

While there are many prior works addressing the concern of security impact

under “imperfect” scenarios for specific cryptosystems (See [6, 25] for side channel

attacks examples), these prior works use either ad-hoc statistical methods to re-

cover the secret key, requiring new techniques to be developed for each setting, or

require substantial amounts of information leakage to efficiently recover the secret.

As a general framework, our framework can estimate how much the leaked informa-

tion reduces the security level, with no requirement for the amount of information

leakage.

Our framework generalizes the primal lattice reduction attack and allows the

progressive integration of the side information before running a final lattice reduction

step. Our techniques for integrating side information include sparsifying the lattice,

projecting onto and intersecting with hyperplanes, and/or altering the distribution of

the secret vector. Our main contribution is to propose a toolbox and a methodology

to integrate such information into lattice reduction attacks and to predict the cost of

these lattice attacks with side information. In addition, we implement our framework

on Sage 9.0 and provide three examples that exploit side information leaked through

side-channel information, decryption failures, and constraints imposed by certain

4



schemes (LAC, Round5, NTRU).

This work was originally published in Crypto 2020 [44], in collaboration with

Dana Dachman-Soled, Léo Ducas, and Mélissa Rossi.

A Generalized Regularity Lemma over Ideal Lattice. In Chapter 5, we fo-

cus on proving a ring analogue of the leftover hash lemma (LHL). LHL is used in

the analysis of various integer lattice-based cryptosystems as well as their leakage-

resilient counterparts; however, it does not hold in the ring setting, which is typical

for efficient cryptosystems. Lyubashevsky et al. (Eurocrypt ’13) proved a “regular-

ity lemma,” which can be used instead of the LHL, but applies only for centered,

spherical Gaussian inputs, while LHL applies when the input is drawn from any high

min-entropy distribution. We present an approach for generalizing the “regularity

lemma” of Lyubashevsky et al. to certain conditional distributions.We assume the

input was sampled from a discrete Gaussian distribution and consider the induced

distribution, given side-channel leakage on the input. We present three instanti-

ations of our approach, proving that the regularity lemma holds for three natural

conditional distributions. Since applications of the regularity lemma in lattice-based

cryptography are widespread, a number of Ring-LWE cryptosystems can achieve

certain leakage resilience properties using our results.

This work was originally published in MathCrypt 2019 [47], in collaboration

with Dana Dachman-Soled, Mukul Kulkarni, and Aria Shahverdi.
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Chapter 2: Preliminary

2.1 Notation

Let Z be the ring of integers, and let [N ] = {1, . . . , N} for a positive integer

N . If S is a set, then x1, x2, . . . , x` ← S denotes uniformly sampling each xi from S;

if χ is a probability distribution, then x1, x2, . . . , x` ← χ denotes independently

sampling each xi according to that distribution. Let χ(E) denote the probability

that event E occurs under distribution χ. We let Supp(χ) = {x : χ(x) 6= 0}. Given

an event E, we let E denote its complement. Given a polynomial pi, let (pi)j denote

the jth coefficient of pi. We use log(X) to denote log2(X), and exp(X) to denote eX .

We let λ denote a computational security parameter, and ρ a statistical security

parameter.

We denote vectors in boldface x and matrices using capital letters A. For

vector x over Rn or Cn, define the `2 norm as ‖x‖2 = (
∑

i |xi|
2)

1/2
. We write this

as ‖x‖ for simplicity.
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2.2 Probability and Statistics

2.2.1 Rényi divergence

For two discrete probability distributions P and Q with Supp(P ) ⊆ Supp(Q),

their Rényi divergence is defined as

RD2(P‖Q) =
∑

x∈Supp(P )

P (x)2

Q(x)
.

We use the following results (see [79,84,111] for proofs):

Theorem 2.1. For discrete distributions P and Q with Supp(P ) ⊆ Supp(Q) and

any f , we have

RD2(f(P )||f(Q)) ≤ RD2(P ||Q).

Theorem 2.2. For discrete distributions P and Q with Supp(P ) ⊆ Supp(Q), let

E ⊆ Supp(Q) be an arbitrary event. We have

Q(E) ≥ P (E)2/RD2(P ||Q).

The second property implies, roughly, that as long as RD2(P‖Q) is bounded

by some polynomial, then any event E that occurs with negligible probability Q(E)

under distribution Q also occurs with negligible probability P (E) under distribu-

tion P .

The following theorem bounds the Rényi divergence between the 1-dimensional
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discrete Gaussian distribution centered at the origin and one centered at a point near

the origin.

Theorem 2.3 ( [17]). Fix m, q, λ ∈ Z, a bound βRényi, and σ with βRényi < σ < q.

Let e ∈ Z be such that |e| ≤ βRényi. Then

RD2((e+DZq ,σ)m||Dm
Zq ,σ) ≤ exp(2πm(βRényi/σ)2).

(Here, χm denotes m independent samples from distribution χ.)

The above theorem implies that if σ = Ω(βRényi

√
m/ log λ) for some security

parameter λ, then RD2((e+DZq ,σ)m||Dm
Zq ,σ) = poly(λ).

2.2.2 Statistics

Random variables, i.e., variables whose values depend on outcomes of a random

phenomenon, are denoted in lowercase calligraphic letters, e.g., a, b, e. Random

vectors are denoted in uppercase calligraphic letters, e.g., C ,X ,Z.

Before hints are integrated, we will assume that the secret and error vectors

follow a multidimensional normal (Gaussian) distribution. Hints will typically cor-

respond to learning a (noisy, modular or perfect) linear equation on the secret. We

must then consider the altered distribution on the secret, conditioned on this infor-

mation. Fortunately, this will also be a multidimensional normal distribution with

an altered covariance and mean. In the following, we present the precise formulae

for the covariance and mean of these conditional distributions.
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Definition 2.4 (Multidimensional normal distribution). Let d ∈ Z, for µ ∈ Zd and

Σ being a symmetric matrix of dimension d×d, we denote by Dd
Σ,µ the multidimen-

sional normal distribution supported by µ + Span(Σ) by the following

x 7→ 1√
(2π)rank(Σ) · rdet(Σ)

exp

(
−1

2
(x− µ) ·Σ∼ · (x− µ)T

)
.

The following states how a normal distribution is altered under linear trans-

formation.

Lemma 2.5. Suppose X has a Dd
Σ,µ distribution. Let A be a n × d matrix. Then

X AT has a Dn
AΣAT ,µAT distribution.

Lemma 2.6 shows the altered distribution of a normal random variable con-

ditioned on its noisy linear transformation value, following from [82, Equations (6)

and (7)].

Lemma 2.6 (Conditional distribution X |X AT + b from [82]). Suppose that X ∈ Zd

has a Dd
Σ,µ distribution, and b ∈ Zn has a Dn

Σb ,0
distribution. Let us fix A as

a n × d matrix and z ∈ Zn. The conditional distribution of X
∣∣∣ (X AT + b = z

)
is

Dd
Σ′,µ′, where

µ′ = µ + (z− µAT )(AΣAT + Σb)
−1AΣ

Σ′ = Σ−ΣAT (AΣAT + Σb)
−1AΣ.

Corollary 2.7 (Conditional distribution X |〈X ,v〉+ e). Suppose that X ∈ Zd has a

Dd
Σ,µ distribution and e has a D1

σ2
e ,0

distribution. Let us fix v ∈ Rd as a nonzero

9



vector and z ∈ Z. We define the following scalars:

y = 〈X ,v〉+ e, µ2 = 〈v,µ〉 and σ2 = vΣvT + σ2
e

If σ2 6= 0, the conditional distribution of X
∣∣∣ (y = z

)
is Dd

Σ′,µ′, where

µ′ = µ +
(z − µ2)

σ2

vΣ, Σ′ = Σ− ΣvTvΣ

σ2

. (2.1)

If σ2 = 0, the conditional distribution of X
∣∣∣ (y = z

)
is Dd

Σ,µ.

Remark 2.8. We note that Corollary 2.7 is also useful to describe for X |〈X ,v〉 by

letting σe = 0.

2.3 Lattice-based Cryptography

2.3.1 Lattice over Rm

A lattice, denoted as Λ, is a discrete additive subgroup of Rm, which is gener-

ated as the set of all linear integer combinations of n (m ≥ n) linearly independent

basis vectors {bj} ⊂ Rm, namely,

Λ :=
{∑

j
zjbj : zj ∈ Z

}
,

We say that m is the dimension of Λ and n is its rank. A lattice is full rank if

n = m. A matrix B having the basis vectors as rows is called a basis. The volume

of a lattice Λ is defined as Vol(Λ) :=
√

det(BBT ). The dual lattice of Λ in Rn is

10



defined as follows.

Λ∗ := {y ∈ Span(B) | ∀x ∈ Λ, 〈x,y〉 ∈ Z}.

Note that, (Λ∗)∗ = Λ, and Vol(Λ∗) = 1/Vol(Λ).

Lemma 2.9 ( [87, Proposition 1.3.4]). Let Λ be a lattice and let F be a subspace of

Rn. If Λ∩F is a lattice, then the dual of Λ∩F is the orthogonal projection onto F

of the dual of Λ. In other words, each element of Λ∗ is multiplied by the projection

matrix ΠF :

(Λ ∩ F )∗ = Λ∗ ·ΠF .

Lemma 2.10 ( [87, Proposition 1.2.9]). Let Λ be a lattice in Rn, let F be a subspace

of Rn such that Λ∩ F is a lattice and let Π⊥F be the orthogonal projection onto F⊥.

Then

Vol(Λ ·Π⊥F ) = Vol(Λ)(Vol(Λ ∩ F )−1).

Definition 2.11 (Primitive vectors). A set of vectors y1, . . . ,yk ∈ Λ is said to be

primitive with respect to Λ if Λ ∩ Span(y1, . . . ,yk) is equal to the lattice generated

by y1, . . . ,yk. Equivalently, it is primitive if it can be extended to a basis of Λ. If

k = 1, this is equivalent to y1/i 6∈ Λ for any integer i ≥ 2.

2.3.2 Lattice over the space H

Let T = R/Z denote the cycle, i.e. the additive group of reals modulo 1.

We also denote by Tq its cyclic subgroup of order q, i.e., the subgroup given by
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{0, 1/q, . . . , (q − 1)/q}.

Let H be a subspace, defined as H ⊆ CZ∗m , (for some integer m ≥ 2),

H = {x ∈ CZ∗m : xi = xm−i, ∀i ∈ Z∗m}.

A lattice is a discrete additive subgroup of H. We exclusively consider the

full-rank lattices, which are generated as the set of all linear integer combinations

of some set of n linearly independent basis vectors B = {bj} ⊂ H:

Λ = L(B) =

{∑
j

zjbj : zj ∈ Z

}
.

The determinant of a lattice L(B) is defined as |det(B)|, which is independent of

the choice of basis B. The minimum distance λ1(Λ) of a lattice Λ (in the Euclidean

norm) is the length of a shortest nonzero lattice vector.

The dual lattice of Λ ⊂ H is defined as following, where 〈·, ·〉 denotes the inner

product.

Λ∨ = {y ∈ H : ∀x ∈ Λ, 〈x,y〉 =
∑
i

xiyi ∈ Z}.

Note that, (Λ∨)∨ = Λ, and det(Λ∨) = 1/det(Λ).

2.3.2.1 Discretization

Discretization is an important procedure used in applications based on lattices,

such as converting continuous Gaussian distribution (defined in Appendix 2.4.2)

into a discrete Gaussian distribution (Definition 2.29). Given a lattice Λ = L(B)
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represented by some “good” basis B = {bi}, a point x ∈ H, and a point c ∈ H

representing a lattice coset Λ+c, the discretization process outputs a point y ∈ Λ+c

such that the length of y − x is not too large. This is denoted as y ← bxeΛ+c. A

discretization procedure is called valid if it is efficient; and depends only on the

lattice coset Λ + (c − x), not on particular representative used to specify it. Note

that for a valid discretization, bz + xeΛ+c and z + bxeΛ+c are identically distributed

for any z ∈ Λ. For more details and actual description of algorithms used for

discretization we refer the interested reader to [85].

2.3.3 Algebraic Number Theory

For a positive integer m, the mth cyclotomic number field is a field extension

K = Q(ζm) obtained by adjoining an element ζm of order m (i.e., a primitive mth

root of unity) to the rationals. The minimal polynomial of ζm is the mth cyclotomic

polynomial

Φm(X) =
∏
i∈Z∗m

(X − ωim) ∈ Z[X],

where ωm ∈ C is any primitive mth root of unity in C.

For every i ∈ Z∗m, there is an embedding σi : K → C, defined as σi(ζm) = ωim.

Let n = ϕ(m), the totient of m. The trace Tr : K → Q and norm N : K → Q can

be defined as the sum and product, respectively, of the embeddings:

Tr(x) =
∑
i∈[n]

σi(x) and N(x) =
∏
i∈[n]

σi(x).
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For any x ∈ K, the lp norm of x is defined as ‖x‖p = ‖σ(x)‖p = (
∑

i∈[n] |σi(x)|p)1/p.

We omit p when p = 2. Note that the appropriate notion of norm ‖·‖ is used

throughout this paper depending on whether the argument is a vector over Cn, or

whether the argument is an element from K; whenever the context is clear.

2.3.3.1 Ring of Integers and Its Ideals

Let R ⊂ K denote the set of all algebraic integers in a number field K. This set

forms a ring (under the usual addition and multiplication operations in K), called

the ring of integers of K. The ring of integers in K is written as R = Z[ζm].

The (absolute) discriminant ∆K of K measures the geometric sparsity of its

ring of integers. The discriminant of the mth cyclotomic number field K is

∆K =

 m∏
prime p|m

p1/(p−1)


n

≤ nn,

in which the product in the denominator runs over all the primes dividing m.

An (integral) ideal I ⊆ R is a non-trivial (i.e. I 6= ∅ and I 6= {0}) additive

subgroup that is closed under multiplication by R, i,e., r · a ∈ I for any r ∈ R

and a ∈ I. The norm of an ideal I ⊆ R is the number of cosets of I as an

addictive subgroup in R, defined as index of I, i.e., N(I) = |R/I|. Note that

N(IJ ) = N(I)N(J ).

A fractional ideal I in K is defined as a subset such that I ⊆ R is an integral

ideal for some nonzero d ∈ R. Its norm is defined as N(I) = N(dI)/N(d). An

ideal lattice is a lattice σ(I) embedded from a fractional ideal I by σ in H. The
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determinant of an ideal lattice σ(I) is det(σ(I)) = N(I) ·
√

∆K . For simplicity,

however, most often when discussing about ideal lattice, we omit mention of σ since

no confusion is likely to arise.

Lemma 2.12 ( [85]). For any fractional ideal I in a number field K of degree n,

√
n · N1/n(I) ≤ λ1(I) ≤

√
n · N1/n(I) ·

√
∆

1/n
K .

For any fractional ideal I in K, its dual ideal is defined as

I∨ = {a ∈ K : Tr(aI) ⊂ Z}.

Definition 2.13. For R = Z[ζm], define g =
∏

p(1 − ζp) ∈ R, where p runs over

all odd primes dividing m. Also, define t = m̂
g
∈ R, where m̂ = m

2
if m is even,

otherwise m̂ = m.

The dual ideal R∨ of R is defined as R∨ = 〈t−1〉, satisfying R ⊆ R∨ ⊆ m̂−1R.

For any fractional ideal I, its dual is I∨ = I−1 · R∨. The quotient R∨q is defined as

R∨q = R∨/qR∨.

Fact 2.14 ( [85]). Assume that q is a prime satisfying q = 1 mod m, so that 〈q〉

splits completely into n distinct ideals of norm q. The prime ideal factors of 〈q〉 are

qi = 〈q〉+ 〈ζm − ωim〉, for i ∈ Z∗m. By Chinese Reminder Theorem, the natural ring

homomorphism R/〈q〉 →
∏

i∈Z∗m
(R/qi) ∼= (Znq ) is an isomorphism.
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2.3.4 Ring Learning with Errors

Informally, the (decisional) version of the Ring Learning with Errors (Ring-

LWE) problem is: for some secret ring element s, distinguish many random “noisy

ring products” with s from elements drawn uniformly from the ring. More precisely,

the Ring-LWE problem is parameterized by (R, q, χ, `) where:

1. R = Z[X]/(f(X)) is a ring, where f(X) is an irreducible polynomial f(X) in

the indeterminate X. In this paper, we restrict to the case of f(X) = Xn + 1,

where n is a power of 2.

2. q is a modulus defining the quotient ring Rq := R/qR = Zq[X]/(f(X)). We

restrict to the case where q is prime with q = 1 mod 2n.

3. χ = (χs, χe) is a pair of noise distributions over Rq (with χs the secret-key

distribution and χe the error distribution) that are concentrated on “short”

elements, for an appropriate definition of “short.”

4. ` is the number of samples provided to the adversary.

Formally, the Ring-LWE problem is to distinguish between ` samples inde-

pendently drawn from one of two distributions. In the first case, the samples are

generated by choosing s← χs and then outputting

(ai, bi = s · ai + ei) ∈ Rq ×Rq

for i ∈ [`], where each ai is uniform in Rq and each ei ← χe is drawn from the
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error distribution χe. In the second case, each sample (ai, bi) is uniformly and

independently drawn from Rq×Rq. We let AdvRLWE
n,q,χs,χe,`(B) denote the advantage of

algorithm B in distinguishing these two cases, and define AdvRLWE
n,q,χs,χe,`(t) to be the

maximum advantage of any algorithm running in time t. If χ = χs = χe, we write

Advn,q,χ,` for simplicity.

The noise distribution. The noise distribution χ = χs = χe is usually a discrete

Gaussian distribution on Rq. For power-of-2 cyclotomic rings of the form we con-

sider here, it is possible to sample a polynomial from this distribution by drawing

each coefficient of the polynomial independently from the 1-dimensional discrete

Gaussian distribution over Zq with parameter σ. This distribution, supported on

{x ∈ Z;−q/2 < x < q/2}, has density function

DZq ,σ(x) =
e
−πx2

σ2∑∞
x=−∞ e

−πx2

σ2

.

2.3.4.1 Formal Definitions of Ring-LWE in LPR13 [85]

Lemma 2.15. [85, Lemma 2.23] Let p and q be positive coprime integers, and b·e

be a valid discretization to (cosets of) pR∨. There exists an efficient transformation

that on input w ∈ R∨p and a pair in (a′, b′) ∈ Rq × (KR/qR
∨), outputs a pair (a =

pa′mod qR, b) ∈ Rq×R∨q with the following guarantees: if the input pair is uniformly

distributed then so is the output pair; and if the input pair is distributed according

to the RLWE distribution As,ψ for some (unknown) s ∈ R∨ and distribution ψ over

KR, then the output pair is distributed according to As,χ, where χ = bp · ψew+pR∨.

17



Lemma 2.16. [85, Lemma 2.24] Let p and q be positive coprime integers, b·e be

a valid discretization to (cosets of) pR∨, and w be an arbitrary element in R∨p . If

R-DLWEq,ψ is hard given l samples, then so is the variant of R-DLWEq,ψ in which

the secret is sampled from χ := bp · ψew+pR∨, given l − 1 samples.

2.4 The Remaining Mathematical Background

2.4.1 Linear Algebra

We use bold lower case letters to denote vectors, and bold upper case letters

to denote matrices. We use row notations for vectors, and start indexing from 0.

Let Id denote the d-dimensional identity matrix. Let 〈·, ·〉 denote the inner product

of two vectors of the same size. Let us introduce the row span of a matrix (denoted

Span(·)) as the subspace generated by all R-linear combinations of the rows of its

input.

Definition 2.17 (Positive Semidefinite). A n× n symmetric real matrix M is pos-

itive semidefinite if scalar xMxT ≥ 0 for all x ∈ Rn; if so we write M ≥ 0. Given

two n× n real matrix A and B, we note A ≥ B if A−B is positive semidefinite.

Definition 2.18. A matrix M is a square root of Σ, denoted
√

Σ, if

MT ·M = Σ,

Our techniques involve keeping track of the covariance matrix Σ of the secret

and error vectors as hints are progressively integrated. The covariance matrix may
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become singular during this process and will not have an inverse. Therefore, in the

following we introduce some degenerate notions for the inverse and the determinant

of a square matrix. Essentially, we restrict these notions to the row span of their in-

put. For X ∈ Rd×k (with any d, k ∈ N), we will denote ΠX the orthogonal projection

matrix onto Span(X). More formally, let Y be a maximal set of independent row-

vectors of X; the orthogonal projection matrix is given by ΠX = YT ·(Y ·YT )−1 ·Y.

Its complement (the projection orthogonally to Span(X)) is denoted Π⊥X := Id−ΠX.

We naturally extend the notation ΠF and Π⊥F to subspaces F ⊂ Rd. By definition,

the projection matrices satisfy Π2
F = ΠF , ΠT

F = ΠF and ΠF ·Π⊥F = Π⊥F ·ΠF = 0.

Definition 2.19 (Restricted inverse and determinant). Let Σ be a symmetric ma-

trix. We define a restricted inverse denoted Σ∼ as

Σ∼ := (Σ + Π⊥Σ)−1 −Π⊥Σ.

It satisfies Span(Σ∼) = Span(Σ) and Σ ·Σ∼ = ΠΣ.

We also denote rdet(Σ) as the restricted determinant defined as follows.

rdet(Σ) := det(Σ + Π⊥Σ).

The idea behind Definition 2.19 is to provide an (artificial) invertibility prop-

erty to the input Σ by adding the missing orthogonal part and to remove it after-

wards. For example, if Σ =

A 0

0 0

 where A is invertible,
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Σ∼ =


A 0

0 0

+

0 0

0 1



−1

−

0 0

0 1

 =

A−1 0

0 0

 and rdet Σ = det(A).

Fact 2.20 (Lattice volume under linear transformations). Let Λ be a lattice in Rn,

and M ∈ Rn×n a matrix such that ker M = Span(Λ)⊥. Then we have Vol(Λ ·M) =

rdet(M) Vol(Λ).

2.4.2 Regularity and Fourier Transforms

Let ρs,c denote an n-dimensional Gaussian function with parameter s and mean

c.

One and Multi-Dimensional Gaussians. For s > 0, c ∈ R, x ∈ R, define the

Gaussian function ρ1
s,c : R→ (0, 1] as

ρ1
s,c(x) := e

−π(x−c)2

s2 .

When c = 0, we write for simplicity,

ρ1
s(x) := e

−π(x)2

s2 .

By normalizing this function we obtain the continuous Gaussian probability distri-

bution ψ1
s,c (resp. ψ1

s) of parameter s, whose density is given by s−1 · ρ1
s,c(x) (resp.

s−1 · ρ1
s(x)).
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We denote by ρ(s1,...,sn),(c1,...,cn) the distribution over Rn with the following pdf:

Let ρ1
s,c denote a one-dimensional Gaussian function as above with standard

deviation s and mean c.We denote by ρ(s1,...,sn),(c1,...,cn) the distribution over Rn with

the following pdf:

ρ(s1,...,sn),(c1,...,cn)(x1, . . . , xn) := ρ1
s1,c1

(x1) · · · ρ1
sn,cn(xn).

When c = 0, we again write for simplicity, ρ(s1,...,sn). Moreover, when s1 = · · · = sn

and the dimension is clear from context we write for simplicity ρs,(c1,...,cn) (resp. ρs).

Normalizing as above, we obtain the corresponding continuous Gaussian probability

distribution ψ(s1,...,sn),(c1,...,cn) (resp. ψ(s1,...,sn), ψs,(c1,...,cn), ψs).

Definition 2.21 (Fourier Transform). Given an integrable function f : Rn → C,

we denote by f̂ : Rn → C the Fourier transform of f , defined as

f̂(y) :=

∫
Rn
f(x)e−2πi〈x,y〉 dx.

Theorem 2.22 (Poisson Summation Formula). Let Λ ⊂ Rn be an arbitrary lattice

of dimension n, and let f : Rn → C be an appropriate function 1 Then

f(Λ) =
1

det(Λ)
f̂(Λ∨),

where Λ∨ is the dual lattice of Λ and f̂ is a Fourier transform of f .

1Assume that (1).
∫
Rn |f(x)|dx < ∞ . (2). Function f(Λ + u) is continuous on Rn. (3). The

series f̂(Λ∨) is absolutely convergent. (See [59] for details)
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Definition 2.23. For an n-dimensional lattice Λ, and positive real ε > 0, we define

its smoothing parameter ηε(Λ) to be the smallest s such that ρ1/s(Λ
∨ \ {0}) ≤ ε.

Lemma 2.24. [42,91] For any n-dimensional lattice Λ, we have

√
ln(1/ε)

√
πλ1(Λ∨)

≤ ηε(Λ) ≤
√
n

λ1(Λ∨)
, for ε ∈ [2−n, 1].

Claim 2.25 ( [85]). For any n-dimensional lattice Λ and ε, s > 0,

ρ1/s(Λ) ≤ max

(
1,

(
ηε(Λ

∨)

s

)n)
(1 + ε).

Lemma 2.26. For any n-dimensional lattice Λ and ε > 0, s := (s1, . . . , sn) ∈ Rn
>0,

and c := (c1, . . . , cn) ∈ Rn, if all of s1, . . . , sn < ηε(Λ
∨) then

ρ(1/s1,...,1/sn),(c1,...,cn)(Λ) ≤
(
ηε(Λ

∨)

s1

· · · ηε(Λ
∨)

sn

)
(1 + ε).

Proof. Applying Poisson summation formula twice, using the fact that for all vectors

x ∈ Rn, ρ̂(1/s1,...,1/sn),(c1,...,cn)(x) ≤ (s1)−1 · · · (sn)−1 · ρ(s1,...,sn)(x), and the fact that

ρ̂ηε(Λ∨) = ηε(Λ
∨)n · ρ1/ηε(Λ∨), we have:

ρ(1/s1,...,1/sn),(c1,...,cn)(Λ) ≤ det(Λ)−1(s1)−1 · · · (sn)−1 · ρ(s1,...,sn)(Λ
∨)

≤ det(Λ)−1(s1)−1 · · · (sn)−1 · ρηε(Λ∨)(Λ
∨)

= (s1)−1 · · · (sn)−1 · ηε(Λ∨)n · ρ1/ηε(Λ∨)(Λ)

≤
(
ηε(Λ

∨)

s1

· · · ηε(Λ
∨)

sn

)
(1 + ε).

where the last inequality follows from the definition of ηε(Λ
∨).
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Lemma 2.27. [91, Lemma 3.6] For any lattice Λ, positive real s > 0 and a vector

c, ρs,c(Λ) ≤ ρs(Λ).

Definition 2.28. Let Λ be an n-dimensional lattice and Ψ a probability distribution

over Rn. Define the discrete probability distribution of Ψ over Λ to be:

DΛ,Ψ(x) =
Ψ(x)

Ψ(Λ)
,∀x ∈ Λ.

Definition 2.29. Let Λ be an n-dimensional lattice, define the discrete Gaussian

probability distribution over Λ with parameter (s1, . . . , sn) and center (c1, . . . , cn) as

DΛ,(s1,...,sn),(c1,...,cn)(x) =
ρ(s1,...,sn),(c1,...,cn)(x)

ρ(s1,...,sn),(c1,...,cn)(Λ)
,∀x ∈ Λ.

Remark 2.30. Whenever Ψ is Gaussian with parameter (s1, . . . , sn) and center

(c1, . . . , cn) we denote it’s discrete Gaussian probability by DΛ,(s1,··· ,sn),(c1,...,cn). If s =

s1 = · · · = sn (resp. c = c1 = · · · = cn) we write DΛ,s,(c1,...,cn) (resp. DΛ,(s1,...,sn),c).

If c1 = · · · = cn = 0 we write DΛ,(s1,··· ,sn).

Lemma 2.31. [91, Lemma 4.4] For any n′-dimensional lattice Λ, and reals 0 <

ε < 1, s ≥ ηε(Λ), we have

Pr
x∼DΛ,ψs

(
‖x‖ > s

√
n′
)
≤ 1 + ε

1− ε
· 2−n′ .

The following is a modified version of Lemma 3.8 from [103].
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Lemma 2.32. Let Λ be an n-dimensional lattice and Ψ a probability distribution

over Rn. If |Ψ̂|(Λ∨ \ {0}) ≤ ε, then for any c ∈ Rn, Ψ(Λ + c) ∈ det(Λ∨)(1 ± ε),

where |Ψ̂|(Λ∨ \ {0}) denotes the summation of the absolute value of the function at

each point in Λ∨ \ {0}.

Proof. First, since Ψ is a pdf, we have that Ψ̂(0) = 1. We have:

Ψ(Λ + c) = det(Λ∨)
∑
y∈Λ∨

Ψ̂(y)e2πi<c,y>

∈ det(Λ∨)

1±
∑

y∈Λ∨\{0}

|Ψ̂(y)e2πi<c,y>|


⊆ det(Λ∨)

1±
∑

y∈Λ∨\{0}

Ψ̂(y)


⊆ det(Λ∨)(1± ε),

where the equality follows from properties of the Fourier transform.

The proof of the following lemma proceeds as the proof of Corollary 2.8 in [63].

Lemma 2.33. Let Λ′ be an n-dimensional lattice and Ψ a probability distribution

over Rn. Assume that for all c ∈ Rn it is the case that

Ψ(Λ′ + c) ∈
[

1− ε
1 + ε

,
1 + ε

1− ε

]
·Ψ(Λ′),

Let Λ be an n-dimensional lattice such that Λ′ ⊆ Λ then the distribution of (DΛ,Ψ

mod Λ′) is within statistical distance of at most 4ε of uniform over (Λ mod Λ′).

Definition 2.34. For a matrix A ∈ Rk×l
q we define Λ⊥(A) = {z ∈ Rl : Az =
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0 mod qR}, which we identify with a lattice in H l. Its dual lattice (which is again a

lattice in H l) is denoted by Λ⊥(A)∨.

Theorem 2.35. [85] Let R be the ring of integers in the mth cyclotomic number

field K of degree n, and q ≥ 2 an integer. For positive integers k ≤ l ≤ poly(n), let

A = [Ik|Ā] ∈ (Rq)
k×l, where Ik ∈ (Rq)

k×k is the identity matrix and Ā ∈ (Rq)
k×(l−k)

is uniformly random. Then for all s ≥ 2n,

EĀ
[
ρ1/s

(
Λ⊥(A)∨

)]
≤ 1 + 2(s/n)−nlqkn+2 + 2−Ω(n).

In particular, if s > 2n · qk/l+2/(nl) then EĀ
[
ρ1/s

(
Λ⊥(A)∨

)]
≤ 1 + 2−Ω(n), and so by

Markov’s inequality, η2−Ω(n)(Λ⊥(A)) ≤ s except with probability at most 2−Ω(n).

The following corollary was presented in [85].

Corollary 2.36. Let R, n, q, k and l be as in Theorem 2.35. Assume that A =

[Ik|Ā] ∈ (Rq)
k×l is chosen as in Theorem 2.35. Then, with probability 1 − 2−Ω(n)

over the choice of Ā, the distribution of Ax ∈ Rk
q , where each coordinate of x ∈ Rl

q

is chosen from a discrete Gaussian distribution of parameter s > 2n · qk/l+2/(nl) over

R, satisfies that the probability of each of the qnk possible outcomes is in the interval

(1±2−Ω(n))q−nk (and in particular is within statistical distance 2−Ω(n) of the uniform

distribution over Rk
q ).

We next state an additional corollary of the regularity theorem from [85].

Corollary 2.37. Let R, n, q, k and l be as in Theorem 2.35. Assume that A =

[Ik|Ā] ∈ (Rq)
k×l is chosen as in Theorem 2.35. Then, with probability 1 − 2−Ω(n)
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over the choice of Ā, the shortest non-zero vector in Λ⊥(A)∨ has length at least
√
n/π

2n·qk/l+2/(nl) .

26



Chapter 3: Constant-Round Group Key Exchange

Protocols for (authenticated) key exchange are among the most fundamental

and widely used cryptographic primitives. They allow parties communicating over

an insecure public network to establish a common secret key, called a session key,

permitting the subsequent use of symmetric-key cryptography for encryption and

authentication of sensitive data. They can be used to instantiate so-called “secure

channels” upon which higher-level cryptographic protocols often depend.

Most work on key exchange, beginning with the classical paper of Diffie and

Hellman, has focused on two-party key exchange. However, many works have also

explored extensions to the group setting [1, 2, 13, 14, 18, 19, 30–33, 35, 36, 41, 71, 73,

76,78,107,110,113] in which N parties wish to agree on a common session key that

they can each then use for encrypted communication with the rest of the group.

The recent effort by NIST to evaluate and standardize one or more quantum-

resistant public-key cryptosystems is entirely focused on digital signatures and two-

party key encapsulation/key exchange,1 and there has been an extensive amount of

research over the past decade focused on designing such schemes. In contrast, we

are aware of almost no2 work on group key-exchange protocols with post-quantum

1Note that CPA-secure key encapsulation is equivalent to two-round key-exchange (with passive
security).

2Exceptions include the work of Ding et al. [52], which lacks a proof of security; the work of
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security beyond the observation that a post-quantum group key-exchange protocol

can be constructed from any post-quantum two-party protocol by having a desig-

nated group manager run independent two-party protocols with the N − 1 other

parties, and then send a session key of its choice to the other parties encrypted/au-

thenticated using each of the resulting keys. Such a solution is often considered

unacceptable since it is highly asymmetric, requires additional coordination, is not

contributory, and puts a heavy load on a single party who becomes a central point

of failure.

3.1 Our High-Level Approach

In this work, we propose a constant-round group key-exchange protocol based

on the hardness of the Ring-LWE problem [84], and hence with (plausible) post-

quantum security. In this work, we focus on constructing an unauthenticated protocol—

i.e., one secure against a passive eavesdropper—since known techniques such as the

Katz-Yung compiler [75] can then be applied to obtain an authenticated protocol

secure against an active attacker.

The starting point for our work is the two-round group key-exchange protocol

by Burmester and Desmedt [35, 36, 76], which is based on the decisional Diffie-

Hellman assumption. Assume a group G of prime order q and a generator g ∈ G

are fixed and public. The Burmester-Desmedt protocol run by parties P0, . . . , PN−1

then works as follows:

Boneh et al. [22] shows a framework for group key-exchange protocols with plausible post-quantum
security but without a concrete instantiation.
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1. In the first round, each party Pi chooses uniform ri ∈ Zq and broadcasts

zi = gri to all other parties.

2. In the second round, each party Pi broadcasts Xi = (zi+1/zi−1)ri (where the

parties’ indices are taken modulo N).

Each party Pi can then compute its session key ski as

ski = (zi−1)Nri ·XN−1
i ·XN−2

i+1 · · ·Xi+N−2.

One can check that all the keys are equal to the same value gr0r1+···+rN−1r0 .

In attempting to adapt their protocol to the Ring-LWE setting, we could fix

a public ring Rq and a uniform element a ∈ Rq. Then:

1. In the first round, each party Pi chooses “small” secret value si ∈ Rq and

“small” noise term ei ∈ Rq (with the exact distribution being unimportant in

the present discussion), and broadcasts zi = asi + ei to the other parties.

2. In the second round, each party Pi chooses a second “small” noise term e′i ∈ Rq

and broadcasts Xi = (zi+1 − zi−i) · si + e′i.

Each party can then compute a session key bi as

bi = N · si · zi−1 + (N − 1) ·Xi + (N − 2) ·Xi+1 + · · ·+Xi+N−2.

The problem, of course, is that (due to the noise terms) these session keys computed

by the parties will not be equal. They will, however, be “close” to each other if the
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{si, ei, e′i} are all sufficiently small, so we can add an additional reconciliation step

to ensure that all parties agree on a common key k.

This gives a protocol that is correct, but proving security (even for a passive

eavesdropper) is more difficult than in the case of the Burmester-Desmedt protocol.

Here we informally outline the main difficulties and how we address them. First, we

note that trying to prove security by direct analogy to the proof of security for the

Burmester-Desmedt protocol (cf. [75]) fails; in the latter case, it is possible to use

the fact that, for example,

(z2/z0)r1 = zr2−r01 ,

whereas in our setting the analogous relation does not hold. In general, the natural

proof strategy here is to switch all the {zi} values to uniform elements of Rq, and

similarly to switch the {Xi} values to uniform subject to the constraint that their

sum is approximately 0 (i.e., subject to the constraint that
∑

iXi ≈ 0). Unfor-

tunately this cannot be done by simply invoking the Ring-LWE assumption O(N)

times; in particular, the first time we try to invoke the assumption, say on the pair

(z1 = as1 + e1, X1 = (z2 − z0) · s1 + e′1), we need z2 − z0 to be uniform—which, in

contrast to the analogous requirement in the Burmester-Desmedt protocol (for the

value z2/z0), is not the case here. Thus, we must somehow break the circularity in

the mutual dependence of the {zi, Xi} values.

Toward this end, let us look more carefully at the distribution of
∑

iXi. We

may write ∑
iXi =

∑
i(ei+1si − ei−1si) +

∑
i e
′
i.
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Consider now changing the way X0 is chosen: that is, instead of choosing X0 =

(z1−zN−1)s0+e′0 as in the protocol, we instead set X0 = −
∑N−1

i=1 Xi+e
′
0 (where e′0 is

from the same distribution as before). Intuitively, as long as the standard deviation

of e′0 is large enough, these two distributions of X0 should be “close” (as they both

satisfy
∑

iXi ≈ 0). This, in particular, means that we need the distribution of e′0

to be different from the distribution of the {e′i}i>0, as the standard deviation of the

former needs to be larger than the latter.

We can indeed show that when we choose e′0 from an appropriate distribution

then the Rényi divergence between the two distributions of X0, above, is bounded

by a polynomial. With this switch in the distribution of X0, we have broken the

circularity and can now use the Ring-LWE assumption to switch the distribution of

z0 to uniform, followed by the remaining {zi, Xi} values.

Unfortunately, bounded Rényi divergence does not imply statistical closeness.

However, polynomially bounded Rényi divergence does imply that any event oc-

curring with negligible probability when X0 is chosen according to the second dis-

tribution also occurs with negligible probability when X0 is chosen according to

the first distribution. For these reasons, we change our security goal from an

“indistinguishability-based” one (namely, requiring that the real session key k is

indistinguishable from uniform) to an “unpredictability-based” one (namely, requir-

ing that it is infeasible for an attacker to compute the real session key k). In the

end, though, once the parties agree on an unpredictable value k they can hash it to

obtain the final session key sk = H(k); this final value sk will be indistinguishable

from uniform if H is modeled as a random oracle.
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3.2 Security Model

A group key-exchange protocol allows a session key to be established among

N > 2 parties. Following prior work [31–33, 75], we will use the term group key

exchange (GKE) to denote a protocol secure against a passive (eavesdropping) ad-

versary, and use the term authenticated group key exchange (GAKE) to denote a

protocol secure against an active adversary who controls all communication chan-

nels. Fortunately, the work of Katz and Yung [75] presents a compiler that takes

any GKE protocol and transforms it into a GAKE protocol. The underlying tool

required for this transform is any secure signature scheme; if post-quantum security

is needed, then any post-quantum signature scheme can be used. We thus focus our

attention on achieving GKE in the remainder of this work.

In the security definition for group key exchange, the adversary observes a

single transcript generated by an execution of the protocol. The adversary’s goal

is then to distinguish the real session key generated in that execution of the pro-

tocol from a key that is generated uniformly and independently of that transcript.

Formally, given a GKE protocol Π we let ExecuteΠ(λ) denote an execution of the

protocol (on security parameter λ), resulting in a transcript trans of all messages

sent during the course of that execution, along with the session key sk computed

by the parties. Protocol Π is secure if the following distribution ensembles are
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computationally indistinguishable:

{(trans, sk)← ExecuteΠ(1λ) : (trans, sk)}1λ∈N,

{(trans, sk)← ExecuteΠ(1λ), sk′ ← {0, 1}1λ : (trans, sk′)}1λ∈N.

Our protocol Π will be analyzed in the random-oracle model. In this case, fixing

some λ, we let AdvGKE
Π (A) denote the advantage of an adversary A in distinguish-

ing between the distributions above, and define AdvGKE
Π (t, q) to be the maximum

advantage of any adversary running in time t and making at most q queries to the

random oracle.

3.3 Group Key Exchange Protocol

In this section, we present a group key exchange protocol Π for N parties

P0, . . . , PN−1. Our protocol relies on a key-reconciliation mechanism KeyRec (pa-

rameterized by a bound βRec) as a subroutine.
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3.3.1 Generic Key Reconciliation

In this subsection, we define a generic, one round, two-party key reconciliation

mechanism (tailored to the Ring-LWE setting) that allows two parties to derive a

shared key if they begin holding “close” ring elements. Formally, a key-reconciliation

mechanism KeyRec consists of two algorithms recMsg and recKey, parameterized by

a bound βRec (that may depend on the security parameter). The first algorithm takes

as input the security parameter 1λ and a value b ∈ Rq, and outputs a reconciliation

message rec and a key k ∈ {0, 1}λ. The second algorithm takes as input 1λ, a value

b′ ∈ Rq, and rec, and outputs k′ ∈ {0, 1}λ.

Correctness requires that whenever b, b′ are “close,” then k′ = k. Specifically,

for any b, b′ for which each coefficient of b−b′ is bounded by βRec, if we run (rec, k)←

recMsg(1λ, b) followed by k′ := recKey(1λ, b′, rec) then k = k′.

Security requires that if b is uniform and we derive (rec, k) ← recMsg(1λ, b),

then k is computationally indistingiushable from uniform even for an attacker given rec.

Formally, the following two distribution ensembles must be computationally indis-

tinguishable:

{
b← Rq; (rec, k)← recMsg(1λ, b) : (rec, k)

}
λ∈N ,{

b← Rq; (rec, k)← recMsg(1λ, b); k′ ← {0, 1}λ : (rec, k′)
}
λ∈N ,

For some fixed value of λ we denote by AdvKeyRec(B) the advantage of adversary B in

distinguishing these distributions, and let AdvKeyRec(t) be the maximum advantage
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of any such adversary running in time t.

Key-reconciliation mechanisms from the literature. The notion of key rec-

onciliation was first introduced by Ding et al. [52], and was later used in several

works on two-party key exchange [9, 96, 115]. In the key reconciliation mechanisms

of Peikert [96], Zhang et al. [115] and Alkim et al. [9], the agreed-upon key k = k′ is

close to each of the original values b, b′ held by the parties. When instantiating our

group key exchange (GKE) protocol with this type of key-reconciliation mechanism,

our final GKE protocol is contributory. In other cases [8], the agreed-upon key is

determined by the randomness used when running recMsg; instantiating our GKE

protocol with this type of key-reconciliation mechanism yields a non-contributory

protocol.
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3.3.2 Construction

The overall structure of the protocol is as follows. The first two rounds allow

the parties to agree on “close” keys b0 ≈ · · · ≈ bN−1. Player N −1 then initiates the

key-reconciliation mechanism to allow all parties to agree on the same key k = k0 =

· · · = kN−1 ∈ {0, 1}λ. Since we are only able to prove that k is difficult to compute

for an eavesdropping adversary (but may not be indistinguishable from random),

we then have each party hash k (using a hash function H) to obtain the final shared

key sk.

Our protocol is parameterized by noise distributions χσ1 , χσ2 , and assumes

public parameters Rq = Zq[x]/(xn + 1) along with a uniform value a ∈ Rq. The

protocol proceeds as follows:

Round 1: Each player Pi samples si, ei ← χσ1 and broadcasts zi = asi + ei.

Round 2: Player P0 samples e′0 ← χσ2 and each of the other players Pi samples

e′i ← χσ1 . Each Pi broadcasts Xi = (zi+1 − zi−1)si + e′i.

Round 3: Player PN−1 samples e′′N−1 ← χσ1 and computes

bN−1 = zN−2NsN−1 + (N − 1) ·XN−1 + (N − 2) ·X0 + · · ·+XN−3 + e′′N−1.

It then computes (rec, kN−1) = recMsg(bN−1) and broadcasts rec. Finally, it

outputs the session key skN−1 = H(kN−1).
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Key computation: Each player Pi (except PN−1) computes

bi = zi−1Nsi + (N − 1) ·Xi + (N − 2) ·Xi+1 + · · ·+Xi+N−2.

It then sets ki = recKey(bi, rec), and outputs the session key ski = H(ki).

The following shows a condition under which each party derives the same

session key with all but negligible probability.

Theorem 3.1. Fix ρ, and assume

(N2 + 2N) ·
√
n ρ3/2 σ2

1 + (
N2

2
+ 1) · σ1 + (N − 2) · σ2 ≤ βRec.

Then all parties output the same key except with probability at most 2−ρ+1.

Proof. We begin by introducing the following lemmas to analyze probabilities that

each coordinate of si, ei, e
′
i, e
′′
N−1, e

′
0 are “short” for all i, and conditioned on the first

event, siei is “short”.

Lemma 3.2. Given si, ei, e
′
i, e
′′
N−1, e

′
0 for all i as defined in the group key exchange

protocol, fix c =
√

2ρ
π log e

, and let boundρ denote the event that for all i and all

coordinate indices j, |(e′0)j| ≤ cσ2 and |(si)j|, |(ei)j|, |(e′′N−1)j| ≤ cσ1, and that for

all i > 0 and all j it holds that |(e′i)j| ≤ cσ1, we have

Pr[boundρ] ≥ 1− 2−ρ.
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Proof. Using the fact that erfc(x) = 2√
π

∫∞
x
e−t

2
dt ≤ e−x

2
, we obtain

Pr[|v| ≥ cσ + 1; v ← DZq ,σ] ≤ 2
∞∑

x=bcσ+1e

DZq ,σ(x) ≤ 2

σ

∫ ∞
cσ

e−
πx2

σ2 dx

=
2√
π

∫ ∞
√
π
σ

(cσ)

e−t
2

dt ≤ e−c
2π.

Note that there are 3nN coordinates sampled from distribution DZq ,σ1 , and n co-

ordinates sampled from distribution DZq ,σ2 in total. Under the assumption that

3nN + n ≤ ec
2π/2 (which holds for all reasonable settings for the parameters), we

have:

Pr[boundρ] =
(
1− Pr[|v| ≥ cσ1 + 1; v ← DZq ,σ1 ]

)3nN

·
(
1− Pr[|e′0| ≥ cσ2 + 1; e′0 ← DZq ,σ2 ]

)n
≥ 1− (3nN + n)e−c

2π ≥ 1− e−c2π/2 ≥ 1− 2−ρ.

Lemma 3.3. Given boundρ as defined in Lemma 3.2, let productsi,ej
denote the event

that, for all v, |(siej)v| ≤
√
nρ3/2σ2

1,

Pr[productsi,ej
| boundρ] ≥ 1− 2n · 2−2ρ.

Proof. For t ∈ {0, . . . , n− 1}, Let (si)t denote the tth coefficient of si ∈ Rq, namely,

si =
∑n−1

t=0 (si)tX
i. (ej)t is defined analogously. Since we have Xn + 1 as modulo of

R, it is easy to see that (siej)v = cvX
v, where cv =

∑n−1
u=0(si)u(ej)

∗
v−u. If v − u ≥ 0,
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(ej)
∗
v−u = (ej)v−u. (ej)

∗
v−u = −(ej)v−u+n otherwise. Thus, conditioned on |(si)t| ≤

cσ1 and |(ej)t| ≤ cσ1 (for all i, j, t) where c =
√

2ρ
π log e

, by Hoeffding’s Inequality [68],

we derive

Pr[|(siej)v| ≥ δ | boundρ] = Pr

[∣∣∣∣∣
n−1∑
u=0

(si)u(ej)
∗
v−u

∣∣∣∣∣ ≥ δ

]
≤ 2 exp

(
−2δ2

n(2c2σ2
1)2

)
,

as each product (si)u(ej)
∗
v−u in the sum is an independent random variable with

mean 0 in the range [−c2σ2
1, c

2σ2
1]. By fixing δ =

√
nρ3/2σ2

1, we obtain

Pr[|(siej)v| ≥
√
nρ3/2σ2

1 | boundρ] ≤ 2−2ρ+1. (3.1)

Finally, via a union bound, we thus have

Pr[productsi,ej
|boundρ] = Pr[∀v : |(siej)v| ≤

√
nρ3/2σ2

1] ≥ 1− 2n · 2−2ρ. (3.2)

Now we begin analyzing the chance that not all parties agree on the same final

key. The correctness of KeyRec guarantees that this group key exchange protocol

has agreed session key among all parties. Formally, if for all i and j that the jth

coefficient of |bN−1 − bi| ≤ βRec, then for all i, ki = kN−1.

For better illustration, we first write X0, . . . , XN−1 in form of linear system as
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follows. X = [X0 X1 X2 · · · XN−1]T

=



1 0 0 0 . . . 0 −1

−1 1 0 0 . . . 0 0

0 −1 1 0 . . . 0 0

0 0 −1 1 . . . 0 0

...
...

...
. . .

...

0 0 0 0 . . . −1 1


︸ ︷︷ ︸

M



as0s1

as1s2

as2s3

as3s4

...

asN−2sN−1

asN−1s0


︸ ︷︷ ︸

S

+



s0e1 − s0eN−1 + e′0

s1e2 − s1e0 + e′1

s2e3 − s2e1 + e′2

s3e4 − s3e2 + e′3

...

sN−2eN−3 − sN−2eN−3 + e′N−2

sN−1e0 − sN−1eN−2 + e′N−1


︸ ︷︷ ︸

E

.

(3.3)

We denote the matrices above by M,S,E from left to right and have the linear

system as X = MS + E. Let Bi = [i − 1 i − 2 · · · 0 N − 1 N − 2 · · · i]

as a N-dimensional row vector. We can then write bi as Bi · X + N(asisi−1 +

siei−1) = BiMS + BiE + N(asisi−1 + siei−1) for i 6= N − 1 and write bN−1 as

BN−1MS+BN−1E+N(asN−1sN−2 +sN−1eN−2)+e′′N−1. It is straightforward to see

that, entries of MS and Nasisi−1 are eliminated through the process of computing

bN−1 − bi. Thus we obtain

40



bN−1 − bi = (BN−1 −Bi) E +N(sN−1eN−2 − siei−1) + e′′N−1

= (N − i− 1) ·

 ∑
j∈Z∩[0,i−1]
and j=N−1

sjej+1 − sjej−1 + e′j

+ e′′N−1

+ (−i− 1)

(
N−2∑
j=i

sjej+1 − sjej−1 + e′j

)
+N(sN−1eN−2 − siei−1)

Observe that for an arbitrary i ∈ {0, 1, ..., N − 1}, and in any coordinate of the sum

above, there are at most (N2 + 2N) terms in form of suev, at most N2/2 terms in

form of e′w sampled from χσ1 , at most N − 2 terms of e′0 sampled from χσ2 , and one

term of e′′N−1.

Let productALL denote the event that for all the terms in form of suev observed

above, each coefficient of such term is bounded by
√
nρ3/2σ2

1. Under that assumption

that assuming 2n(N2 + 2N) ≤ 2ρ (which holds for all reasonable settings of the

parameters) and using a union bound, it is straightforward to see

Pr[productALL|boundρ] ≤ (N2 + 2N) · 2n2−2ρ ≤ 2−ρ.

Let fail be the event that not all parties agree on the same final key. Given

the constraint (N2 + 2N) ·
√
nρ3/2σ2

1 + (N
2

2
+ 1)σ1 + (N − 2)σ2 ≤ βRec satisfied, we
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have

Pr[fail] = Pr[fail|boundρ] · Pr[boundρ] + Pr[fail|boundρ] · Pr[boundρ] (3.4)

≤ Pr[productALL] · 1 + 1 · Pr[boundρ] ≤ 2 · 2−ρ, (3.5)

which completes the proof.

3.4 Proof of Security

Here we prove security of our protocol Π. We remark that our proof considers

only a classical attacker; in particular, we only allow the attacker classical access

to H. We leave proving the protocol can be proven secure even against attackers

that are allowed to make quantum queries to H to future work.

Theorem 3.4. Assume 2N
√
nλ3/2 σ2

1 + (N − 1) · σ1 ≤ βRényi and βRényi < σ2 < q,

and model H as a random oracle. Then

AdvGKE
Π (t, q) ≤ 2−λ+1

+

√(
N · AdvRLWE

n,q,χσ1 ,3
(t1) + AdvKeyRec(t2) +

q

21λ

)
·

exp
(
2πn (βRényi/σ2)2)
1− 2−λ+1

,

where t1 = t+O(N ·tring), t2 = t+O(N ·tring) and tring is the time required to perform

operations in Rq.

Proof. Let Expt0 refer to the experiment in which protocol Π is executed to obtain
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output (T, sk), where T = ({zi}, {Xi}, hint) is the transcript of the execution and

sk is the final shared session key (more formally, the session key output by PN−1).

We also then provide the attacker A with (T, sk), and then allow A to interact with

the random oracle used when executing Π. Our goal is to bound the advantage of

an attacker in distinguishing between samples (T, sk) distributed according to Expt0

and samples (T, sk′) in which T is distributed the same way but sk′ is a uniform key

(chosen independently of T). To do so, we show that the probability that A queries

kN−1 to the random oracle (which we denote by the event Query) is small; since that

is the only way an attacker can distinguish sk = H(kN−1) from an independent,

uniform value, that allows us to prove our desired result. In proving our result, we

consider a sequence of experiments, and let Pri[·] denote the probability of an event

in Experiment i.

For completeness, we write out the distribution of (T, sk) in Expt0:

43



Expt0 :=



a← Rq; ∀i : si, ei ← χσ1 ; zi = asi + ei;

e′1, . . . , e
′
N−1 ← χσ1 ; e′0 ← χσ2 ;

∀i : Xi = (zi+1 − zi−1)si + e′i;

e′′N−1 ← χσ1 ; : (T, sk)

bN−1 = e′′N−1 + zN−2NsN−1 +XN−1 · (N − 1)+

X0 · (N − 2) + · · ·+XN−3;

(hint, kN−1) = recMsg(bN−1); sk = H(kN−1);

T = (z0, . . . , zN−1, X0, . . . , XN−1, hint)



.

Since AdvGKE
Π (t, q) ≤ Pr0[Query], we focus on bounding Pr0[Query] for the rest of the

proof.

Experiment 1. In this experiment, X0 is replaced by X ′0 = −
∑N−1

i=1 Xi + e′0. The
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corresponding distribution of (T, sk) is thus as follows:

Expt1 :=



a← Rq; ∀i : si, ei ← χσ1 ; zi = asi + ei;

e′1, . . . , e
′
N−1 ← χσ1 ; e′0 ← χσ2

X ′0 = −
N−1∑
i=1

Xi + e′0;

∀i > 0 : Xi = (zi+1 − zi−1)si + e′i : (T, sk)

e′′N−1 ← χσ1 ;

bN−1 = e′′N−1 + zN−2NsN−1 +XN−1 · (N − 1)+

X ′0 · (N − 2) + · · ·+XN−3;

(hint, kN−1) = recMsg(bN−1); sk = H(kN−1);

T = (z0, . . . , zN−1, X
′
0, . . . , XN−1, hint)



.

The following claim, which is the crux of our proof, relates the probabilities

of Query in Expt0 and Expt1.

Claim 3.5. If 2N
√
nλ3/2 σ2

1 + (N − 1) · σ1 ≤ βRényi, then

Pr0[Query] ≤
√

Pr1[Query] · exp(2πn(βRényi/σ2)2)

1− 2−λ+1
+ 2−λ+1. (3.6)

Proof. Note that we may define the random variables X0, X
′
0 in both experiments

Expt0 and Expt1. Define the random variable Error (in either experiment) as

Error =
N−1∑
i=0

(siei+1 + siei−1) +
N−1∑
i=1

e′i.
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Defining

main = as1s0 − asN−1s0 − Error,

it is straightforward to verify that

X0 = main + Error + e′0

X ′0 = main + e′0,

where e′0 is sampled from χσ2 . Our aim is to apply Theorem 2.3 to show that the

Rényi divergence between X0 and X ′0 (and hence between Expt0 and Expt1) is small.

To do so, we must first show that the absolute value of each coefficient of Error is

bounded by βRényi with all but negligible probability.

Let boundErr be the event that for all j we have |Errorj| ≤ βRényi. Note that

|Errorj| =

∣∣∣∣∣∣
(
N−1∑
i=0

(siei+1 + siei−1) +
N−1∑
i=1

e′i

)
j

∣∣∣∣∣∣ .

Fix c =
√

2λ
π log e

, and let bound be the event that for all i, j we have |(e′0)j| ≤ cσ2

and |(si)j|, |(ei)j|, |(e′′N−1)j| ≤ cσ1, and that for all i > 0 and all j it holds that

|(e′i)j| ≤ cσ1. Applying Lemmas 3.2 and 3.3 (with ρ = λ), we see that

Pr[bound] ≥ 1− 2−λ

and

Pr
[
|(siej)v| ≥

√
nλ3/2σ2

1 | bound
]
≤ 2−2λ+1.
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Via a union bound, we thus have

Pr
[
∀j : |Errorj| ≤ 2N

√
nλ3/2σ2

1 + (N − 1)σ1 | bound
]
≥ 1− 4N · n · 2−2λ.

Under the assumption that 4Nn ≤ 2λ (which holds for all reasonable settings of

the parameters) and using a similar argument as in the proof of Lemma 3.3, we

conclude that

Pr[boundErr] ≥ 1− 2−λ+1. (3.7)

When boundErr occurs, Theorem 2.3 tells us that

RD2(Error + χσ2||χσ2) ≤ exp(2πn(βRényi/σ2)2). (3.8)

Therefore,

Pr0[Query] ≤ Pr0[Query | boundErr] + Pr0[boundErr]

≤ Pr0[Query | boundErr] + 2−λ+1

≤
√

Pr1[Query | boundErr] · exp(2πn(βRényi/σ2)2) + 2−λ+1

≤

√
Pr1[Query] · exp(2πn(βRényi/σ2)2)

Pr1[boundErr]
+ 2−λ+1

≤
√

Pr1[Query] · exp(2πn(βRényi/σ2)2)

1− 2−λ+1
+ 2−λ+1.

This completes the proof of the claim.

Recall that Experiment 0 is the real world experiment. We have that AdvGKE
Π (t, q) ≤

47



Pr0[Query], where Query is the event that kN−1 is among the adversary A’s random

oracle queries and Pri[Query] is the probability that event Query happens in Exper-

iment i.

In Experiment 1, we switched from X0 as sampled in the real world to X ′0 =

−
∑N−1

i=1 Xi + e′0 and showed (see Equation 3.6) that

Pr0[Query] ≤
√

Pr1[Query] · exp(2πn(βRényi/σ2)2)

1− 2−λ+1
+ 2−λ+1.

Therefore, to prove the theorem, it remains to show that

Pr1[Query] ≤
(
N · AdvRLWE

n,q,χσ1 ,3
(t1) + AdvKeyRec(t2) +

q

21λ

)
.

We do so by considering a sequence of experiments as follows:

Experiment 2. In this experiment, z0 is replaced by a uniform element in Rq. The
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corresponding distribution of (T, sk) is thus as follows:

Expt2 :=



a, z0 ← Rq; ∀i ≥ 1 : si, ei ← χσ1 ; zi = asi + ei;

e′1, . . . , e
′
N−1 ← χσ1 ; e′0 ← χσ2

X0 = −
N−1∑
i=1

Xi + e′0,∀i ≥ 1 : Xi = (zi+1 − zi−1)si + e′i : (T, sk)

e′′N−1 ← χσ1 ;

bN−1 = e′′N−1 + zN−2NsN−1 +XN−1 · (N − 1)+

X0 · (N − 2) + · · ·+XN−3;

(hint, kN−1) = recMsg(bN−1); sk = H(kN−1);

T = (z0, . . . , zN−1, X0, . . . , XN−1, hint).



.

Claim 3.6. For any algorithm A running in time t, we have

|Pr2[Query]− Pr1[Query]| ≤ AdvRLWE
n,q,χσ1 ,3

(t1), (3.9)

where t1 = t+O(N · tring) and tring is the time required to perform operations in Rq.

Proof. We first consider an experiment Expt′1 which is identical to Expt1 except for

(a, z0) given as input. For algorithm A running in time t, let B be an algorithm

running in time t1 which takes as input (a, z0), generates (T, sk) according to Expt′1,

runs A(T, sk) as a subroutine and outputs whatever A outputs. t1 is then equal to

t plus a minor overhead for the simulation of the security experiment for A.

It is straightforward to see that if (a, z0) is sampled from An,q,χσ1
, then Expt′1
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is identical to Expt1, and if (a, z0) is sampled from R2
q , Expt′1 is identical to Expt2.

Therefore the difference of algorithm A’s success probability in Experiment 1

and Experiment 2 is bounded by probability that B running in time t1 distinguishes

An,q,χσ1
from R2

q given one sample. Since

AdvRLWE
n,q,χσ1 ,3

(t1) ≥ AdvRLWE
n,q,χσ1 ,2

(t1) ≥ AdvRLWE
n,q,χσ1 ,1

(t1),

for simplicity, we conclude that:

|Pr2[Query]− Pr1[Query]| ≤ AdvRLWE
n,q,χσ1 ,3

(t1), (3.10)

Recall that in the previous experiment, we switched z0 to be uniformly dis-

tributed in Rq. In next two experiments, we switch z1, X1 to be elements uniformly

distributed in Rq.

Experiment 3. In this experiment, z0 is replaced by z2 − r1, and X1 is replaced

by r1s1 + e′1, where r1 is uniform in Rq. The corresponding distribution of (T, sk) is

thus as follows:

Since r1 is uniform, then z2 − r1 is also uniform. Thus, we conclude that

Experiment 3 is identical to Experiment 2 up to variable substitution, namely

Pr3[Query] = Pr2[Query]. (3.11)
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Expt3 :=



a, r1 ← Rq; ∀i ≥ 1 : si, ei ← χσ1 ; zi = asi + ei;

z0 = z2 − r1;

∀i ≥ 1 : e′i ← χσ1 ; e′0 ← χσ2 ;

X0 = −
N−1∑
i=1

Xi + e′0;X1 = r1s1 + e′1; : (T, sk)

∀i ≥ 2 : Xi = (zi+1 − zi−1)si + e′i;

e′′N−1 ← χσ1 ;

bN−1 = e′′N−1 + zN−2NsN−1 +XN−1 · (N − 1)+

X0 · (N − 2) + · · ·+XN−3;

(hint, kN−1) = recMsg(bN−1); sk = H(kN−1);

T = (z0, . . . , zN−1, X0, . . . , XN−1, hint).



.

Experiment 4. In this experiment, z1, X1 are replaced by uniform elements in Rq.

The corresponding distribution of (T, sk) is thus as follows:
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Expt4 :=



a, r1 ← Rq; ∀i ≥ 2 : si, ei ← χσ1 ; zi = asi + ei;

z0 = z2 − r1, z1 ← Rq;

e′2, . . . , e
′
N−1 ← χσ1 ; e′0 ← χσ2 ;

X0 = −
N−1∑
i=1

Xi + e′0, X1 ← Rq;

∀i ≥ 2 : Xi = (zi+1 − zi−1)si + e′i, : (T, sk)

e′′N−1 ← χσ1 ;

bN−1 = e′′N−1 + zN−2NsN−1 +XN−1 · (N − 1)+

X0 · (N − 2) + · · ·+XN−3;

(hint, kN−1) = recMsg(bN−1); sk = H(kN−1);

T = (z0, . . . , zN−1, X0, . . . , XN−1, hint).



.

Claim 3.7. For any algorithm A running in time t, we have

|Pr4[Query]− Pr3[Query]| ≤ AdvRLWE
n,q,χσ1 ,3

(t1), (3.12)

where t1 = t+O(N · tring) and tring is the time required to perform operations in Rq.

Proof. We first consider an experiment Expt′3 which is identical to Expt3 except for

(a, z1), (r1, X1) given as input. For algorithm A running in time t, let B be an

algorithm running in time t1 that takes as input (a, z1), (r1, X1), generates (T, sk)

according to Expt′3. B then runs A(T, sk) as a subroutine and outputs whatever A
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outputs. t1 is then equal to t plus a minor overhead for the simulation of the security

experiment for A.

It is clear to see that if (a, z1) and (r1, X1) are sampled from An,q,χσ1
, then

Expt′3 is identical to Expt3. If (a, z1) and (r1, X1) are sampled from U(R2
q), Expt′3 is

identical to Expt4.

Therefore the difference of algorithm A successful probability in Experiment

3 and Experiment 4 is bounded by the advantage of adversary B running in time t1

in distinguishing An,q,χσ1
from U(R2

q) given two samples. Thus, we conclude

|Pr4[Query]− Pr3[Query]| ≤ AdvRLWE
n,q,χσ1 ,3

(t1). (3.13)

Experiment 5. In this experiment, z0 is replaced by a uniform element in Rq. The

corresponding distribution is denoted as Expt5. We leave the formal definition of

Expt5 implicit for simplicity

It is easy to see that the corresponding distribution Expt5 is identical to Expt4

by substituting variable z0 for z2 − r1. Thus,

Pr5[Query] = Pr4[Query]. (3.14)

In the case that N ≥ 3, we present the following sequence of experiments

from Experiment 6 to Experiment 3N − 4. For i = 2, 3, . . . , N − 2, we define three

experiments Experiment 3i, Experiment 3i + 1, Experiment 3i + 2. It is ensured
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that in the experiments prior to Experiment 3i, we already switched zj, Xj for all

0 ≤ j ≤ i − 1. In Experiment 3i, Experiment 3i + 1 and Experiment 3i + 2, we

replace zi and Xi by random elements in Rq. Experiment 3i, Experiment 3i + 1,

Experiment 3i+ 2 are formally defined as follows:

Experiment 3i. The experiment proceeds exactly the same as Experiment 3i− 1,

except for setting zi−1 = zi+1 − ri, Xi = risi + e′i, where r1 is uniform in Rq. The

corresponding distribution of (T, sk) is thus as follows, denoted Expt3i:

Experiment 3i+ 1. In this experiment, zi, Xi are replaced by uniform elements in

Rq. The corresponding distribution of (T, sk) is thus as follows, denoted Expt3i+1:

Experiment 3i + 2. In this experiment, zi−1 is replaced by a uniform element in

Rq. The corresponding distribution is denoted as Expt3i+2. We leave the formal

definition of Expt3i+2 implicit for simplicity.
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Expt3i :=



a, ri ← Rq; ∀j ≥ i : sj, ej ← χσ1 ; zj = asj + ej;

z0, . . . , zi−2 ← Rq, zi−1 = zi+1 − ri;

e′i, . . . , e
′
N−1 ← χσ1 , e

′
0 ← χσ2 ;

X0 = −
N−1∑
i=1

Xi + e′0, X1, . . . , Xi−1 ← Rq; : (T, sk)

Xi = risi + e′i; ∀j ≥ i : Xj+1 = (zj+2 − zj)sj+1 + e′j+1

e′′N−1 ← χσ1 ;

bN−1 = e′′N−1 + zN−2NsN−1 +XN−1 · (N − 1)+

X0 · (N − 2) + · · ·+XN−3;

(hint, kN−1) = recMsg(bN−1); sk = H(kN−1);

T = (z0, . . . , zN−1, X0, . . . , XN−1, hint).



.
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Expt3i+1 :=



a, ri ← Rq; ∀j ≥ i+ 1 : sj, ej ← χσ1 ; zj = asj + ej;

z0, . . . , zi−2 ← Rq, zi−1 = zi+1 − ri, zi ← Rq,

e′1, . . . , e
′
N−1 ← χσ1 ; e′0 ← χσ2

X0 = −
N−1∑
i=1

Xi + e′0, X1, . . . , Xi ← Rq, : (T, sk)

∀j ≥ i+ 1, Xj = (zj+1 − zj1)sj + e′j;

e′′N−1 ← χσ1 ;

bN−1 = e′′N−1 + zN−2NsN−1 +XN−1 · (N − 1)+

X0 · (N − 2) + · · ·+XN−3;

(hint, kN−1) = recMsg(bN−1); sk = H(kN−1);

T = (z0, . . . , zN−1, X0, . . . , XN−1, hint).



.

Using similar arguments as proving (in)equalities (3.11), (3.12) and (3.14), we

conclude that:

Pr3i[Query] = Pr3i−1[Query]; (3.15)

|Pr3i+1[Query]− Pr3i[Query]| ≤ AdvRLWE
n,q,χσ1 ,3

(t1); (3.16)

Pr3i+2[Query] = Pr3i+1[Query]; (3.17)

Note that in Experiment 3N − 4, the last experiment of the experiment se-

quence above, we already switched all the zi, Xi up to zN−1, XN−1. We construct
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the next two experiments to switch zN−1, XN−1, bN−1.

Experiment 3N − 3. The experiment proceeds exactly the same as Experiment

3N − 4, except for setting zN−2 = r2, XN−1 = r1sN−1 + e′N−1, z0 = r1 + r2, where

r1, r2 are uniform in Rq. The corresponding distribution is thus as follows:

Since r1, r2 are uniform, r1 + r2 is then also uniform. Thus we conclude that

Experiment 3N − 3 is identical to Experiment 3N − 4 up to variable substitution,

namely,

Pr3N−3[Query] = Pr3N−4[Query]; (3.18)

Expt3N−3 :=



a, r1, r2 ← Rq, sN−1, eN−1 ← χσ1 ; z0 = r1 + r2,

z1, . . . , zN−3 ← Rq, zN−2 = r2,

zN−1 = asN−1 + eN−1; e′0 ← χσ2 ; e′N−1 ← χσ1 ;

X0 = −
N−1∑
i=1

Xi + e′0, X1, . . . , XN−2 ← Rq,

XN−1 = r1sN−1 + e′N−1; e′′N−1 ← χσ1 ; : (T, sk)

bN−1 = e′′N−1 + r2NsN−1 +XN−1 · (N − 1)+

X0 · (N − 2) + · · ·+XN−3;

(hint, kN−1) = recMsg(bN−1); sk = H(kN−1);

T = (z0, . . . , zN−1, X0, . . . , XN−1, hint).



.
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Experiment 3N−2. In this experiment, zN−1, XN−1, bN−1 are replaced by uniform

elements in Rq. The corresponding distribution is thus as follows: :

Expt3N−2 :=



a← Rq;∀i : zi ← Rq;

e′0 ← χσ2 ; r1, r2 ← Rq

X0 = −
N−1∑
i=1

Xi + e′0, X1, . . . , XN−1 ← Rq : (T, sk)

bN−1 ← Rq;

(hint, kN−1) = recMsg(bN−1); sk = H(kN−1);

T = (z0, . . . , zN−1, X0, . . . , XN−1, hint).



.

Claim 3.8. For any algorithm A running in time t, we have

|Pr3N−2[Query]− Pr3N−3[Query]| ≤ AdvRLWE
n,q,χσ1 ,3

(t1), (3.19)

where t1 = t+O(N · tring) and tring is the time required to perform operations in Rq.

Proof. Since r2 is uniform in Rq and N is invertible over Rq, then r2N is uniformly

distributed in Rq. It is easy to see that (sN−1, r2NsN−1 + e′′N−1) forms an RLWE

instance. We let bRLWE = r2NsN−1 + e′′N−1.

We consider an experiment Expt′3N−3 which is identical to Expt3N−3 except

for (a, zN−1), (r1, XN−1), and (r2N, bRLWE) given as input. Given an algorithm A

running in time t, let B be an algorithm that takes as input (a, zN−1), (r1, XN−1),

and (r2N, bRLWE), generates (T, sk) according to Expt′3N−3. B runs A(T, sk) as a

subroutine and outputs whatever A outputs. Running time t1 of B then equals to
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t plus a minor overhead for the simulation of the security experiment for A.

It is straightforward to see that if (a, zN−1), (r1, X1), and (r2N, bRLWE) are sam-

pled from An,q,χσ1
, then Expt′3N−3 is identical to Expt3N−3. If (a, zN−1), (r1, XN−1),

and (r2N, bRLWE) are sampled from R2
q , then Expt′3N−3 is identical to Expt3N−2, since

when bRLWE is sampled uniformly at random, bRLWE + XN−1 · (N − 1) + X0 · (N −

2) + · · ·+XN−3 is also uniformly distributed over Rq.

Therefore the difference of algorithm A’s success probability in Experiment 3N

- 2 and Experiment 3N - 3 is bounded by the advantage of adversary B running in

time t1 in distinguishing Ring-LWE from Rq given three samples. Thus, we conclude

that

|Pr3N−2[Query]− Pr3N−3[Query]| ≤ AdvRLWE
n,q,χσ1 ,3

(t1), (3.20)

Experiment 3N − 1. In this experiment, kN−1 is replaced by random element in

{0, 1}1λ . The corresponding distribution is thus as follows:
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Exptfinal :=



a← Rq; z0, . . . , zN−1 ← Rq; e
′
0 ← χσ1 ;

X0 = −
N−1∑
i=1

Xi + e′0, X1, . . . , XN−1 ← Rq

bN−1 ← Rq; (hint, kN−1) = recMsg(bN−1) : (T, sk)

k′N−1 ← {0, 1}λ; sk = H(k′N−1);

T = (z0, . . . , zN−1, X0, . . . , XN−1, hint);



.

Given transcript T, and bN−1 which is uniformly distributed, using a straight

forward reduction, we obtain advantage of adversary B running in time t2 in dis-

tinguishing kN−1 computed by recMsg(bN−1) from a uniform bit string k′N−1 with

length λ is at least |Pr3N−1[Query]− Pr3N−2[Query]|, namely,

|Pr3N−1[Query]− Pr3N−2[Query]| ≤ AdvKeyRec(t2). (3.21)

Note that t2 equals to the running time of adversary A attacking the protocol Π,

plus a minor overhead for simulating experiment for A.

Finally, since adversary attacking the GKE protocol Π makes at most q queries

to the random oracle, Pr3N−1[Query] = q

21λ
∈ negl(1λ). Combining Equations (3.9)

- (3.21), we have

Pr1[Query] ≤ N · AdvRLWE
n,q,χσ1 ,3

(t1) + AdvKeyRec(t2) +
q

21λ
. (3.22)
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The theorem now follows immediately from Equations (3.6), and (3.22).

Parameter constraints. Beyond the parameter settings required for hardness of

the Ring-LWE problem, the parameters N, n, σ1, σ2, λ, ρ of the protocol are also

required to satisfy the following:

(N2 + 2N) ·
√
nρ3/2σ2

1 + (
N2

2
+ 1)σ1 + (N − 2)σ2 ≤ βRec (correctness) (3.23)

2N
√
nλ3/2σ2

1 + (N − 1)σ1 ≤ βRényi (security) (3.24)

σ2 = Ω(βRényi

√
n/ log 1λ). (security) (3.25)

Thus, fixing the ring, the noise distributions, and the security parameters λ, ρ in-

duces a bound on the maximum number of parties the protocol can support.

Chapter 4: LWE with Side Information: Attacks and Concrete Se-

curity Estimation

4.1 Overview

The ongoing standardization process and anticipated deployment of lattice-

based cryptography raises an important question: How resilient are lattices to side-

channel attacks or other forms of side information? While there are numerous works

addressing this question for specific cryptosystems (See [6,25,34,66,101,102] for side
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LWE/BDD
Kannan−−−−→ uSVPΛ′

Sec 4.2.5−−−−−−→ Lattice
reduction

Figure 4.1: Primal attack without hints (prior art).

channel attacks targeting lattice-based NIST candidates), these works use rather ad-

hoc methods to reconstruct the secret key, requiring new techniques and algorithms

to be developed for each setting. For example, the work of [25] uses brute-force

methods for a portion of the attack, while [23] exploits linear regression techniques.

Moreover, ad-hoc methods do not allow (1) to take advantage of decades worth

of research and (2) optimization of standard lattice attacks. Second, most of the

side-channel attacks from prior work consider substantial amounts of information

leakage and show that it leads to feasible recovery of the entire key, whereas one

may be interested in more precise tradeoffs in terms of information leakage versus

concrete security of the scheme. The above motivates the focus of this work: Can one

integrate side information into a standard lattice attack and if so, by how much does

the information reduce the cost of this attack? Given that side-channel resistance

is the next step toward the technological readiness of lattice-based cryptography,

and that we expect numerous works in this growing area, we believe that a general

framework and prediction software are in order.

Contributions. First, we propose a framework that generalizes the so-called pri-

mal lattice reduction attack, and allows the progressive integration of “hints” (i.e. side

information that takes one of several forms) before running the final lattice reduc-

tion step. This contribution is summarized in Figures 4.1 and 4.2 and developed in
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Section 4.2.1.

Second, we implement a Sage 9.0 toolkit to actually mount such attacks with

hints when computationally feasible, and to predict their performance on larger in-

stances. Our predictions are validated by extensive experiments. Our tool and these

experiments are described in Section A1.2. Our toolkit is open-source, available at:

https://github.com/lducas/leaky-LWE-Estimator.

Third, we demonstrate the usefulness of our framework and tool via three

example applications. Our main example (Section 4.3.1) revisits the side channel

information obtained from the first side-channel attack of [25] against Frodo. In

that article, it was concluded that a divide-and-conquer side-channel template at-

tack would not lead to a meaningful attack using standard combinatorial search

for reconstruction of the secret. Our technique allows to integrate this side-channel

information into lattice attacks, and to predict the exact security drop. For exam-

ple, the CCS2 parameter set very conservatively aims for 128-bits of post-quantum

security (or 448 “bikz” as defined in Section 4.2.5); but after the leakage of [25] we

predict that its security drops to 29 “bikz”, i.e. that it can be broken with BKZ-29,

a computation that should be more than feasible, but would require a dedicated

re-implementation of our framework.

Interestingly, we note that our framework is not only useful in the side-channel

scenario; we are for example also able to model decryption failures as hints fitting

our framework. This allows us to reproduce some predictions from [49]. This is

discussed in Section 4.3.2.

Perhaps more surprisingly, we also find a novel improvement to attack a few
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LWE/BDD
Sec 4.2.3−−−−−−→ DBDDΛ0,Σ0,µ0

Sec 4.2.6

yHint

DBDDΛ1,Σ1,µ1

...

Sec 4.2.6

yHint

DBDDΛh,Σh,µh

Sec 4.2.4−−−−−−→ uSVPΛ′
Sec 4.2.5−−−−−−→ Lattice

reduction
Figure 4.2: The primal attack with hints (our work).

schemes (LAC [83], Round5 [62], NTRU [116]) without any side-channel or oracle

queries. Indeed, such schemes use ternary distribution for secrets, with a prescribed

number of 1 and −1: this hint fits our framework, and leads to a (very) minor

improvement, discussed in Section 4.3.3.

Lastly, our framework also encompasses and streamlines existing tweaks of

the primal attack: the choice of ignoring certain LWE equations to optimize the

volume-dimension trade-off, as well as the re-centering [94] and isotropization [39,69]

accounting for potential a-priori distortions of the secret. It also implicitly solves the

question of the optimal choice of the coefficient for Kannan’s Embedding from the

Bounded Distance Decoding problem (BDD) to the unique Shortest Vector Problem

(uSVP) [72] (See Remark 4.9).

As a side contribution, we also propose in Section A1.1 a refined method to es-

timate the required blocksize to solve an LWE/BDD/uSVP instance. This refinement

was motivated by the inaccuracy of the standard method from the literature [7,9] in

experimentally reachable blocksizes, which was making the validation of our contri-

bution difficult. While experimentally much more accurate, this new methodology

certainly deserves further scrutiny.
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4.2 Framework

4.2.1 Overview of Our Framework

Our work is based on a generalization of the Bounded Distance Decoding

problem (BDD) to a Distorted version (DBDD), which allows to account for the

potentially non-spherical covariance of the secret vector to be found.

Each hint will affect the lattice itself, the mean and/or the covariance param-

eter of the DBDD instance, making the problem easier (see Figure 4.2). At last, we

make the distribution spherical again by applying a well-chosen linear transforma-

tion, reverting to a spherical BDD instance before running the attack. Thanks to

the hints, this new instance will be easier than the initial one. Let us assume that

v, l, k and σ are parameters known by the attacker. Our framework can handle

four types of hints on the secret s or on the lattice Λ.

• Perfect hints: 〈s, v〉 = l intersect the lattice with an hyperplane.

• Modular hints : 〈s, v〉 = l mod k sparsify the lattice.

• Approximate hints : 〈s, v〉 = l + εσ decrease the covariance of the secret.

• Short vector hints : v ∈ Λ project orthogonally to v.

While the first three hints are clear wins for the performance of lattice attacks, the

last one is a trade-off between the dimension and the volume of the lattice. This last

type of hint is in fact meant to generalize the standard trick consisting of ‘ignoring’
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certain LWE equations; ignoring such an equation can be interpreted geometrically

as such a projection orthogonally to a so-called q-vector.

All the transformations of the lattice above can be computed in polynomial

time. However, computing with general distribution in large dimension is not pos-

sible; we restrict our study to the case of Gaussian distributions of arbitrary covari-

ance, for which such computations are also poly-time.

Some of these transformations remain quite expensive, in particular because

they involve rational numbers with very large denominators, and it remains rather

impractical to run them on cryptographic-grade instances. Fortunately, up to a

necessary hypothesis of primitivity of the vector v (with respect to either Λ or its

dual depending on the type of hint), we can also predict the effect of each hint on

the lattice parameters, and therefore run faster predictions of the attack cost.

From Leaks to Hints. At first, it may not be so clear that the types of hints

above are so useful in realistic applications, in particular since they need to be linear

on the secret. Of course our framework can handle rather trivial hints such as the

perfect leak of a secret coefficient si = l. Slightly less trivial is the case where only

the low-order bits leaks, a hint of the form si = l mod 2.

We note that most of the computations done during an LWE decryption are

linear: leaking any intermediate register during a matrix vector product leads to a

hint of the same form (possibly mod q). Similarly, the leak of a NTT coefficient of

a secret in a Ring/Module variant can also be viewed as such.

Admittedly, such ideal leaks of a full register are not the typical scenario and

66



leaks are typically not linear on the content of the register. However, such non-

linearities can be handled by approximate hints. For instance, let s0 be a secret

coefficient (represented by a signed 16-bits integer), whose a priori distribution is

supported by {−5, . . . , 5}. Consider the case where we learn the Hamming weight

of s0, say H(s0) = 2. Then, we can narrow down the possibilities to s0 ∈ {3, 5}.

This leads to two hints:

• a modular hint: s0 = 1 mod 2,

• an approximate hint: s0 = 4 + ε1, where ε1 has variance 1.

While closer to a realistic scenario, the above example remains rather simpli-

fied. A detailed example of how realistic leaks can be integrated as hint will be given

in Section 4.3.1, based on the leakage data from [25].

4.2.2 Definition of Distorted Bounded Distance Decoding

We first recall the definition of the (search) LWE problem, in its short-secret

variant which is the most relevant to practical LWE-based encryption.

Definition 4.1 (Search LWE problem with short secrets.). Let n,m and q be positive

integers, and let χ be a distribution over Z. The search LWE problem (with short

secrets) for parameters (n,m, q, χ) is:

Given the pair
(
A ∈ Zm×nq ,b = zAT + e ∈ Zmq

)
where:

1. A ∈ Zm×nq is sampled uniformly at random,
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2. z ← χn, and e ← χm are sampled with independent and identically dis-

tributed coefficients following the distribution χ.

Find z.

The primal attack (See for example [7]) against (search)-LWE proceeds by

viewing the LWE instance as an instance of a Bounded Distance Decoding (BDD)

problem, converting it to a uSVP instance (via Kannan’s embedding [72]), and finally

applying a lattice reduction algorithm to solve the uSVP instance. The central tool

of our framework is a generalization of BDD that accounts for potential distortion

in the distribution of the secret noise vector that is to be recovered.

Remark 4.2 (Adaptation to the dual attack). In principle, our techniques could

be adapted to the dual attack as well. We focus on only one for conciseness, and

the primal attack appears more pertient and more convenient. Indeed, the dual

attack is very rarely better than the primal one [5], and this despite making more

simplifications in favor of the attacker. Furthermore, the dual attack has not been

the object of experimental verification studies, unlike the primal one. At last, the

cost of the dual attack is not necessarily indepedent of the underlying SVP-algorithm;

some analysis for example exploit the fact that sieving outputs many short vectors

rather than one.

Definition 4.3 (Distorted Bounded Distance Decoding problem). Let Λ ⊂ Rd be a

lattice, Σ ∈ Rd×d be a symmetric matrix and µ ∈ Span(Λ) ⊂ Rd such that

Span(Σ) ( Span(Σ + µT · µ) = Span(Λ). (4.1)
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The Distorted Bounded Distance Decoding problem DBDDΛ,µ,Σ is the following prob-

lem:

Given µ,Σ and a basis of Λ.

Find the unique vector x ∈ Λ ∩ E(µ,Σ)

where E(µ,Σ) denotes the ellipsoid

E(µ,Σ) := {x ∈ µ + Span(Σ)|(x− µ) ·Σ∼ · (x− µ)T ≤ rank(Σ)}.

We will refer to the triple I = (Λ,µ,Σ) as the instance of the DBDDΛ,µ,Σ problem.

Intuitively, Definition 4.3 corresponds to knowing that the secret vector x to

be recovered follows a distribution of variance Σ and average µ. The quantity

(x − µ) · Σ∼ · (x − µ)T can be interpreted as a non-canonical Euclidean squared

distance ‖x − µ‖2
Σ, and the expected value of such a distance for a Gaussian x of

variance Σ and average µ is rank(Σ). One can argue that, for such a Gaussian,

there is a constant probability that ‖x−µ‖2
Σ is slightly greater than rank(Σ). Since

we are interested in the average behavior of our attack, we ignore this benign tech-

nical detail. In fact, we will typically interpret DBDD as the promise that the secret

follows a Gaussian distribution of center µ and covariance Σ.

The ellipsoid can be seen as an affine transformation (that we call “distortion”)

of the centered hyperball of radius rank(Σ). Let us introduce a notation for the
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hyperball; for any d ∈ N

Bd := {x ∈ Rd | ‖x‖2 ≤ d}. (4.2)

One can thus write using Definition 2.18:

E(µ,Σ) = Brank(Σ) ·
√

Σ + µ. (4.3)

From the Span inclusion in Equation (4.1), one can deduce that the condition is

equivalent to requiring µ /∈ Span(Σ) and rank(Σ+µT ·µ) = rank(Σ)+1 = rank(Λ).

This technical detail is necessary for embedding it properly into a uSVP instance

(See later in Section 4.2.4).

Particular cases of Definition 4.3. Let us temporarily ignore the condition in Equa-

tion (4.1) to study some particular cases. As shown in Figure 4.3, when Σ = Id,

DBDDΛ,µ,Id is BDD instance. Indeed, the ellipsoid becomes a shifted hyperball

E(µ, Id) = {x ∈ µ + Rd×d | ‖x − µ‖2 ≤ d} = Bd + µ. If in addition µ = 0,

DBDDΛ,0,Id becomes a uSVP instance on Λ.

4.2.3 Embedding LWE into DBDD

In the typical primal attack framework (Figure 4.1), one directly views LWE as

a BDD instance of the same dimension. For our purposes, however, it will be useful

to apply Kannan’s Embedding at this stage and therefore increase the dimension
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DBDD BDD uSVP

Figure 4.3: Graphical intuition of DBDD, BDD and uSVP in dimension two: the
problem consists in finding a nonzero element of Λ in the colored zone. The identity
hyperball is larger for uSVP to represent the fact that, during the reduction, the
uSVP lattice has one dimension more than for BDD.

of the lattice by 1. While it could be delayed to the last stage of our attack, this

extra fixed coefficient 1 will be particularly convenient when we integrate hints (see

Remark 4.9 in Section 4.2.6). It should be noted that no information is lost through

this transformation, since the parameters µ and Σ allow us to encode the knowledge

that the solution we are looking for has its last coefficient set to 1 and nothing else.

In more details, the solution s := (e, z) of an LWE instance is extended to

s̄ := (e, z, 1) (4.4)

which is a short vector in the lattice Λ =
{

(x,y, w) |x + yAT − bw = 0 mod q
}

.

A basis of this lattice is given by the row vectors of


qIm 0 0

AT −In 0

b 0 1

 .

Denoting µχ and σ2
χ the average and variance of the LWE distribution χ (See

Definition 4.1), we can convert this LWE instance to a DBDDΛ,µ,Σ instance with
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µ = [µχ · · ·µχ 1] and Σ =
[
σ2
χIm+n 0

0 0

]
. The lattice Λ is of full rank in Rd where

d := m + n + 1, and its volume is qm. Note that the rank of Σ is only d − 1: the

ellipsoid has one less dimension than the lattice. It then validates the requirement

of Equation (4.1).

Remark 4.4. Typically, Kannan’s embedding from BDD to uSVP leaves the bottom

right matrix coefficient as a free parameter, say c, to be chosen optimally. The

optimal value is the one maximizing

‖(z; c)‖
det(Λ)1/d

=
(m+ n)σχ + c

(c · qm)1/d
,

namely, c = σχ according to the arithmetic-geometric mean inequality. Some prior

works [7,11] instead chose c = 1. While this is benign since σχ is typically not too far

from 1, it remains a sub-optimal choice. Looking ahead, in our DBDD framework,

this choice becomes irrelevant thanks to the isotropization step introduced in the next

section; we can therefore choose c = 1 without worwsening the attack.

4.2.4 Converting DBDD to uSVP

In this Section, we explain how a DBDD instance (Λ,µ,Σ) is converted into

a uSVP one. Two modifications are necessary. First, we need to homogeneize the

problem. Let us show that the ellipsoid in Definition 4.3 is contained in a larger

centered ellipsoid (with one more dimension) as follows:

E(µ,Σ) ⊂ E(0,Σ + µT · µ). (4.5)
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Using Equation (4.3), one can write

E(µ,Σ) = Brank(Σ) ·
√

Σ + µ ⊂ Brank(Σ) ·
√

Σ± µ,

where Brank(Σ) is defined in Equation (4.2). And, with Equation (4.1), one can

deduce rank(Σ + µT · µ) = rank(Σ) + 1, then:

Brank(Σ) ·
√

Σ± µ ⊂ Brank(Σ)+1 ·


√

Σ

µ

 .

We apply Definition 2.18 which confirms the inclusion of Equation (4.5):

E(µ,Σ) ⊂ Brank(Σ)+1 ·


√

Σ

µ

 = E(0,Σ + µT · µ).

Thus, we can homogenize and transform the instance into a centered one with

Σ′ := Σ + µT · µ.

Secondly, to get an isotropic distribution (i.e. with all its eigenvalues being 1),

one can just multiply every element of the lattice with the pseudoinverse of
√

Σ′.

We get a new covariance matrix Σ′′ =
√

Σ′
∼ ·Σ′ ·

√
Σ′
∼T

= ΠΣ′ ·ΠΣ′
T . And since

ΠΣ′ = ΠT
Σ′ and Π2

Σ′ = ΠΣ′ (see Section 2.4.1), Σ′′ = ΠΣ′ = ΠΛ, the last equality

coming from Equation (4.1).
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In summary, one must make by the two following changes:

homogenize: (Λ,µ,Σ) 7→ (Λ,0,Σ′ := Σ + µT · µ)

isotropize: (Λ,0,Σ′) 7→ (Λ ·M,0,ΠΛ)

where M := (
√

Σ′)∼. From the solution x to the uSVPΛ·M problem, one can derive

x′ = xM∼ the solution to the DBDDΛ,µ,Σ problem.

Remark 4.5. One may note that we could solve a DBDD instance without isotropiza-

tion simply by including the ellipsoid in a larger ball, and directly apply lattice reduc-

tion before the second step. This leads, however, to less efficient attacks. One may

also note that the first homogenization step “forgets” some information about the

secret’s distribution. This, however, is inherent to the conversion to a unique-SVP

problem which is geometrically homogeneous, and is already present in the original

primal attack.

4.2.5 Security estimates of uSVP: bikz versus bits

The attack on a uSVP instance consists of applying BKZ-β on the uSVP lattice

Λ for an appropriate block size parameter β. The cost of the attack grows with

β, however, modeling this cost precisely is at the moment rather delicate, as the

state of the art seems to still be in motion. Numerous NIST candidates choose to

underestimate this cost, keeping a margin to accommodate future improvements,

and there seems to be no clear consensus on which model to use (see [5] for a

summary of existing cost models).
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While this problem is orthogonal to our work, we still wish to be able to

formulate quantitative security losses. We therefore express all concrete security

estimates using the blocksize β as our measure of the level of security, and treat the

latter as a measurement of the security level in a unit called the bikz. We thereby

leave the question of the exact bikz-to-bit conversion estimate outside the scope of

this paper, and recall that those conversion formulae are not necessarily linear, and

may have small dependency in other parameters. For the sake of concreteness, we

note that certain choose, for example, to claim 128 bits of security for 380 bikz, and

in this range, most models suggest a security increase of one bit every 2 to 4 bikz.

Remark 4.6. We also clarify that the estimates given in this paper only concern the

pure lattice attack via the uSVP embedding discussed above. In particular, we note

that some NIST candidates with ternary secrets [83] also consider the hybrid attack

of [70], which we ignore in this work. We nevertheless think that the compatibility

with our framework is plausible, with some effort.

Predicting β from a uSVP instance The state-of-the-art predictions for solving

uSVP instances using BKZ were given in [7,9]. Namely, for Λ a lattice of dimension

dim(Λ), it is predicted that BKZ-β can solve a uSVPΛ instance with secret s when

√
β/ dim(Λ) · ‖s‖ ≤ δ

2β−dim(Λ)−1
β · Vol(Λ)1/ dim(Λ) (4.6)
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where δβ is the so called root-Hermite-Factor of BKZ-β. For β ≥ 50, the Root-

Hermite-Factor is predictable using the Gaussian Heuristic [38]:

δβ =

(
(πβ)

1
β · β

2πe

)1/(2β−2)

. (4.7)

Note that the uSVP instances we generate are isotropic and centered so that

the secret has covariance Σ = I (or Σ = ΠΛ if Λ is not of full rank) and µ = 0.

Thus, on average, we have ‖s‖2 = rank(Σ) = dim(Λ). Therefore, β can be estimated

as the minimum integer that satisfies

√
β ≤ δ

2β−dim(Λ)−1
β · Vol(Λ)1/dim(Λ). (4.8)

While β must be an integer as a BKZ parameter, we nevertheless provide a contin-

uous value, for a finer comparison of the difficulty of an instance. Below, we will

call this method the ”GSA-Intersect” method.

Remark 4.7. To predict security, one does not need the basis of Λ, but only its

dimension and its volume. Similarly, it is not necessary to explicitly compute

the isotropization matrix M of Section 4.2.4, thanks to Fact 2.20: Vol(Λ ·M) =

rdet(M) Vol(Λ) = rdet(Σ′)−1/2 Vol(Λ). These two shortcuts will allow us to ef-

ficiently make predictions for cryptographically large instances, in our lightweight

implementation of Section A1.2.

Refined prediction for small blocksizes For experimental validation purposes of

our work, we prefer to have accurate prediction even for small blocksizes; a regime
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where those predictions are not accurate with the current state of the art. We

therefore present a refined strategy using BKZ-simulation and a probabilistic model

in Appendix A1.1.

4.2.6 Hints and their integration

In thie section, we define several categories of hints—perfect hints, modular

hints, approximate hints (conditioning and a posteriori), and short vector

hints—and show that these types of hints can be integrated into a DBDD instance.

Hints belonging to these categories typically have the form of a linear equation in

s (and possibly additional variables). As emphasized in Section 4.1, these hints

have lattice-friendly forms and their usefulness in realistic applications may not be

obvious. We refer to Section 4.3 for detailed applications of these hints.

The technical challenge, therefore, is to characterize the effect of such hints

on the DBDD instance—i.e. determine the resulting (Λ′,µ′,Σ′) of the new DBDD

instance, after the hint is incorporated.

Henceforth, let I = DBDDΛ,µ,Σ be a fixed instance constructed from an LWE

instance with secret s = (z, e). Each hint will introduce new constraints on s and

will ultimately decrease the security level.

Non-Commutativity. It should be noted that many types of hints commute:

Integrating them in any order will lead to the same DBDD instance. Potential ex-

ceptions are non-smooth modular hints (See later in Section 4.2.6.2) and apos-

teriori approximate hints (See later in Section 4.2.6.4): they do not always
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commute with the other types of hints, and do not always commute between them-

selves, unless the vectors v’s of those hints are all orthogonal to each other. The

reason is: in these cases, the distribution in the direction of v is redefined which

erases the prior information.

4.2.6.1 Perfect Hints

Definition 4.8 (Perfect hint). A perfect hint on the secret s is the knowledge of

v ∈ Zd−1 and l ∈ Z, such that

〈s, v〉 = l.

A perfect hint is quite strong in terms of additional knowledge. It allows

decreasing the dimension of the lattice by one and increases its volume. One could

expect such hints to arise from the following scenarios:

• The full leak without noise of an original coefficient, or even an unreduced

intermediate register since most of the computations are linear. For the second

case, one may note that optimized implementations of NTT typically attempt

to delay the first reduction modulo q, so leaking a register on one of the first

few levels of the NTT would indeed lead to such a hint.

• A noisy leakage of the same registers, but with still a rather high guessing

confidence. In that case it may be worth making the guess while decreasing

the success probability of the attack.1 This could happen in a cold-boot attack

1One may then re-amplify the success probability by retrying the attack making guesses at
different locations.
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scenario. This is also the case in the single trace attack on Frodo [25] that we

will study as one of our examples in Section 4.3.1.

• More surprisingly, certain schemes, including some NIST candidates offer such

a hint ‘by design’. Indeed, LAC, Round5 and NTRU-HPS all choose ternary

secret vectors with a prescribed number of 1’s and −1’s, which directly induce

one or two such perfect hints. This will be detailed in Section 4.3.3.

Integrating a perfect hint into a DBDD instance Let v ∈ Zd−1 and l ∈ Z be such

that 〈s,v〉 = l. Note that the hint can also be written as

〈s̄, v̄〉 = 0,

where s̄ is the extended LWE secret as defined in Equation (4.4) and v̄ := (v ; −l).

Remark 4.9. Here we understand the interest of using Kannan’s embedding be-

fore integrating hints rather than after: it allows to also homogenize the hint, and

therefore to make Λ′ a proper lattice rather than a lattice coset (i.e. a shifted lattice).

Including this hint is done by modifying the DBDDΛ,µ,Σ to DBDDΛ′,µ′,Σ′ ,

where:

Λ′ = Λ ∩
{
x ∈ Zd | 〈x, v̄〉 = 0

}
Σ′ = Σ− (v̄Σ)T v̄Σ

v̄Σv̄T
(4.9)

µ′ = µ− 〈v̄,µ〉
v̄Σv̄T

v̄Σ (4.10)
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We now explain how to derive the new mean µ′ and the new covariance Σ′.

Let y be the random variable 〈s̄, v̄〉, where s̄ has mean µ and covariance Σ. Then

µ′ is the mean of s̄ conditioned on y = 0, and Σ′ is the covariance of s̄ conditioned

on y = 0. Using Corollary 2.7, we obtain the corresponding conditional mean and

covariance.

We note that lattice Λ′ is an intersection of Λ and a hyperplane orthogonal to

v̄. Given B as basis of Λ, by Lemma 2.9 a basis of Λ′ can be computed as follows:

1. Let D be dual basis of B. Compute D⊥ := D ·Π⊥v̄ .

2. Apply the LLL algorithm on D⊥ to eliminate linear dependencies. Then delete

the first row of D⊥ (which is 0 because with the hyperplane intersection, the

dimension of the lattice is decremented).

3. Output the dual of the resulting matrix.

While polynomial time, the above computation is quite heavy, especially as there is

no convenient library offering a parallel version of LLL. Fortunately, for predicting

attack costs, one only needs the dimension of the lattice Λ and its volume. These

can easily be computed assuming v̄ is a primitive vector (see Definition 2.11) of the

dual lattice: the dimension decreases by 1, and the volume increases by a factor

||v̄||. This is proved by the following Lemma.

To predict the hardness of the lattice reduction on altered instances, we must

compute the volume of the final transformed lattice. We devise a highly efficient

way to do this, by observing that each time a hint is integrated, we can update the
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volume of the transformed lattice, given only the volume of the previous lattice and

information about the current hint (under mild restrictions on the form of the hint).

Lemma 4.10 (Volume of a lattice slice). Given a lattice Λ with volume Vol(Λ), and

a primitive vector v with respect to Λ∗. Let v⊥ denote subspace orthogonal to v.

Then Λ ∩ v⊥ is a lattice with volume Vol(Λ ∩ v⊥) = ‖v‖ · Vol(Λ).

Proof. Let use denote Λ′ = (Λ ∩ v⊥) = {x ∈ Λ | 〈x,v〉 = 0}. We now compute

Vol(Λ′) as follows

Vol(Λ′) =
1

Vol(Λ′∗)
=

1

Vol(Λ∗ ·Π⊥v )
(4.11)

=
Vol (Λ∗ ∩ Span(v))

Vol(Λ∗)
(4.12)

= Vol (Λ∗ ∩ Span(v)) Vol(Λ),

where Equation (4.11) follows from Lemma 2.9, and Equation (4.12) follows from

Lemma 2.10. By Definition 2.11, v generates the one-dimensional lattice Λ∗ ∩

Span(v), and Vol(Λ∗ ∩ Span(v)) = ‖v‖. Therefore we have Vol(Λ′) = ‖v‖ · Vol(Λ).

Intuitively, the primitivity condition is needed since then one can scale the leak

to 〈s, fv〉 = fl for any non-zero factor f ∈ R and get an equivalent leak; however

there is only one factor f that can ensure that f v̄ ∈ Λ∗, and is primitive in it.

Remark 4.11. Note that if v̄ is not in the span of Λ—as typically occurs if other

non-orthogonal perfect hints have already been integrated—Lemma 4.10 should be
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applied to the orthogonal projection v̄′ = v̄ ·ΠΛ of v̄ onto Λ. Indeed, the perfect hint

〈s̄, v̄′〉 = 0 replacing v̄ by v̄′ is equally valid.

4.2.6.2 Modular Hints

Definition 4.12 (Modular hint). A modular hint on the secret s is the knowledge

of v ∈ Zd−1, k ∈ Z and l ∈ Z, such that

〈s, v〉 = l mod k.

We can expect such hints to arise from several scenarios:

• obtaining the value of an intermediate register during LWE decryption would

likely correspond to giving such a modular equation modulo q. This is also

the case if an NTT coefficient leaks in a Ring-LWE scheme. It can also occur

“by design” if the LWE secret is chosen so that certain NTT coordinates are

fixed to 0 modulo q, as is the case in some instances of Order LWE [20].

• obtaining the absolute value a = |s| of a coefficient s implies s = a mod 2a,

and such a hint could be obtained by a timing attack on an unprotected

implementation of a table-based sampler, in the spirit of [34].

• obtaining the Hamming weight of the string b1b2 . . . b
′
1b
′
2 . . . used to sample

a centered binomial coefficient s =
∑
bi −

∑
b′i (as done in NewHope and

Kyber [100, 105]) reveals in particular s mod 2. Indeed, the latter string (or

at least some parts of it) is more likely to be leaked than the Hamming weight
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of s.

Integrating a modular hint into a DBDD instance. Let v ∈ Zd−1; k ∈ Z and l ∈ Z

be such that 〈s,v〉 = l mod k. Note that the hint can also be written as

〈s̄, v̄〉 = 0 mod k (4.13)

where s̄ is the extended LWE secret as defined in Equation 4.4 and v̄ := (v ; −l).

We refer to Remark 4.9 for the legitimacy of such dimension increase.

Smooth case. Intuitively, such a hint should only sparsify the lattice, and leave

the average and the variance unchanged. This is not entirely true, this is only

(approximately) true when the variance is sufficiently large in the direction of v to

ensure smoothness, i.e. when k2 � vΣvT ; one can refer to [91, Lemma 3.3 and

Lemma 4.2] for the quality of that approximation. In this smooth case, we therefore

have:

Λ′ = Λ ∩
{
x ∈ Zd | 〈x, v̄〉 = 0 mod k

}
(4.14)

µ′ = µ (4.15)

Σ′ = Σ (4.16)

On the other hand, if k2 � vΣvT , then the residual distribution will be highly

concentrated on a single value, and one should therefore instead use a perfect

〈s, v〉 = l + ik for some i.
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General case. In the general case, one can resort to a numerical computation of

the average µc and the variance σ2
c of the one-dimensional centered discrete Gaussian

of variance σ2 = vΣvT over the coset l + kZ, and apply the corrections:

µ′ = µ +
µc − 〈v̄,µ〉

v̄Σv̄T
v̄Σ (4.17)

Σ′ = Σ +

(
σ2
c

(v̄Σv̄T )2
− 1

v̄Σv̄T

)
(v̄Σ)T (v̄Σ) (4.18)

Intuitively, these formulae completely erase prior information on 〈s, v̄〉, before it is

replaced by the new average and variance in the adequate direction. Both can be

derived2 using Corollary 2.7.

As for perfect hints, the computation of Λ′ can be done by working on the

dual lattice. More specifically:

1. Let D be dual basis of B.

2. Redefine v̄← v̄ ·ΠΛ, noting that this does not affect the validity of the hint.

3. Append v̄/k to D and obtain D′

4. Apply the LLL algorithm on D′ to eliminate linear dependencies. Then delete

the first row of D′ (which is 0 since we introduced a linear dependency).

5. Output the dual of the resulting matrix.

Also, as for perfect hints the parameters of the new lattice Λ′ can be predicted: the

2We are thankful to Thibauld Feneuil for pointing out an incorrect equation in a previous
version of this paper.
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dimension is unchanged, and the volume increases by a factor k under a primitivity

condition, which is proved by the following lemma.

Lemma 4.13 (Volume of a sparsified lattice). Let Λ be a lattice, v ∈ Λ∗ be a

primitive vector of Λ∗, and k > 0 be an integer. Let Λ′ = {x ∈ Λ | 〈x,v〉 = 0 mod k}

be a sublattice of Λ. Then Vol(Λ′) = k · Vol(Λ).

Proof. Because v̄ is a dual vector of Λ, we have 〈v̄,Λ〉 ⊂ Z. Let ` be such that,

〈v̄,Λ〉 = `Z. Note that v̄/` ∈ Λ∗, therefore, by primitivity of v̄, we have ` = 1. In

particular, the group morphism φ : x ∈ Λ 7→ 〈x, v̄〉 mod k is surjective. Note that

Λ′ = kerφ, therefore we have |Λ/Λ′| = |Zk| = k. We conclude.

4.2.6.3 Approximate Hints (conditioning)

Definition 4.14 (Approximate hint). An approximate hint on the secret s is the

knowledge of v ∈ Zd−1 and l ∈ Z, such that

〈s, v〉+ e = l,

where e models noise following a distribution N1(0, σ2
e), independent of s.

One can expect such hints from:

• any noisy side channel information about a secret coefficient. This is the case

of our study in Section 4.3.1.

• decryption failures. In Section 4.3.2, we show how this type of hint can repre-

sent the information gained by a decryption failure.
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To include this knowledge in the DBDD instance, we must combine this knowledge

with the prior knowledge on the solution s of the instance.

Integrating an approximate hint into a DBDD instance Let v ∈ Zd−1 and l ∈ Z be

such that 〈s,v〉 ≈ l. Note that the hint can also be written as

〈s̄, v̄〉+ e = 0 (4.19)

where s̄ is the extended LWE secret as defined in Equation (4.4), v̄ := (v ; −l), and

e has N1(0, σ2
e) distribution. The unique shortest non-zero solution of DBDDΛ,µ,Σ,

is also the unique solution of the instance DBDDΛ′,µ′,Σ′ where

Λ′ = Λ (4.20)

Σ′ = Σ− (v̄Σ)T v̄Σ

v̄Σv̄T + σ2
e

(4.21)

µ′ = µ− 〈v̄,µ〉
v̄Σv̄T + σ2

e

v̄Σ (4.22)

We note that Equation (4.20) comes from

Λ′ := Λ ∩
{
x ∈ Zd | 〈x, v̄〉+ e = 0, for all possible e ∼ N1(0, σ2

e)
}

= Λ.

The new covariance and mean follow from Corollary 2.7.

Consistency with Perfect Hint Note that if σe = 0, we fall back to a perfect hint

〈s,v〉 = l. The above computation of Σ′ (4.21) (resp. µ′ (4.22)) is indeed equivalent
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to Equation (4.9) (resp. Equation (4.10)) from Section 4.2.6.1. Note however, in our

implementation, that to avoid singularities, we require the span of Span(Σ+µTµ) =

Span(Λ) (See the requirement in Equation (4.1)): If σe = 0, one must instead use a

Perfect hint.

Multi-dimensional approximate hints The formulae of [82] are even more general,

and one could consider a multidimensional hint of the form sV + e = l, where V ∈

Rn×k and e a gaussian noise of any covariance Σe. However, those general formulae

require explicit matrix inversion which becomes impractical in large dimension. We

therefore only implemented full-dimensional (k = n) hint integration in the super-

lightweight version of our tool, which assumes all covariance matrices to be diagonal.

These will be used for hints obtained from decryption failures in Section 4.3.2.

4.2.6.4 Approximate Hint (a posteriori)

In certain scenarios, one may more naturally obtain directly the a posteriori

distribution of 〈s,v〉, rather than a hint 〈s,v〉+ e = l for some error e independent

of s. Such a scenario is typical in template attacks, as we exemplify via the single

trace attack on Frodo from [25], which we study in Section 4.3.1.

Given the a posteriori distribution of 〈s̄, v̄〉, one can derive its mean µap and

variance σ2
ap and apply the corrections to compute the new mean and covariance
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exactly as in Equations (4.17) and (4.18).

Λ′ = Λ (4.23)

µ′ = µ +
µap − 〈v̄,µ〉

v̄Σv̄T
v̄Σ (4.24)

Σ′ = Σ +

(
σ2

ap

(v̄Σv̄T )2
− 1

v̄Σv̄T

)
(v̄Σ)T (v̄Σ) (4.25)

4.2.6.5 Short vector hints

Definition 4.15 (Short vector hint). A short vector hint on the lattice Λ is the

knowledge of a short vector v̄ such that

v̄ ∈ Λ.

Note that such hints are not related to the secret, and are not expected to be

obtained by side-channel information, but rather by the very design of the scheme. In

particular, the lattice Λ underlying LWE instance modulo q contains the so-called q-

vectors, i.e. the vectors (q, 0, 0, . . . , 0) and its permutations. These vectors are in fact

implicitly exploited in the literature on the cryptanalysis of LWE since at least [81].

Indeed, in some regimes, the best attacks are obtained by ‘forgetting’ certain LWE

equations, which can be geometrically interpreted as a projection orthogonally to a

q-vector. Note that, among all hints, the short vector hints should be the last to be

integrated. In our context, we need to generalize this idea beyond q-vector because

the q-vectors may simply disappear after the integration of a perfect or modular
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hint. For example, after the integration of a perfect hint 〈s, (1, 1, . . . , 1)〉 = 0, all

the q-vectors are no longer in the lattice, but (q,−q, 0, . . . , 0) still is, and so are all

its permutations.

Resolving the DBDD problem resulting from this projection will not directly

lead to the original secret, as projection is not injective. However, as long as we

keep n+ 1 dimensions out of the n+m+ 1 dimensions of the original LWE instance,

we can still efficiently reconstruct the full LWE secret by solving a linear system over

the rationals.

Integrating a short vector hint into a DBDD instance It is the case when the secret

vector is short enough to be a solution after applying projection Π⊥v̄ on DBDDΛ,Σ,µ

.

Λ′ = Λ ·Π⊥v̄ (4.26)

Σ′ = (Π⊥v̄ )T ·Σ ·Π⊥v̄ (4.27)

µ′ = µ ·Π⊥v̄ (4.28)

To compute a basis of Λ′ one can simply apply the projection to all the vectors

of its current basis, and then eliminate linear dependencies in the resulting basis

using LLL.

Remark 4.16. Once a short vector hint v̄ ∈ Λ has been integrated, Λ has been

transformed into Λ′. And, if one has to perform another short vector hint integra-

tion v̄1 ∈ Λ, v̄1 should be projected onto Λ′ with v̄ ·ΠΛ′ ∈ Λ′. In our implementation
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however, this has been taken into account and one can simply apply the same trans-

formation as above, replacing a single vector v̄ by a matrix V.

The dimension of the lattice decreases by one (or by k, if one directly integrates

a matrix of k vectors) and the volume of the lattice also decreases according to

Fact 4.17.

Fact 4.17 (Volume of a projected lattice). Let Λ be a lattice, v ∈ Λ be a primitive

vector of Λ. Let Λ′ = Λ · Π⊥v be a sublattice of Λ. Then Vol(Λ′) = Vol(Λ)/‖v‖.

More generally, if V is a primitive set of vectors of Λ, then Λ′ = Λ ·Π⊥V has volume

Vol(Λ′) = Vol(Λ)/
√

det(VVT ).

One can also predict the decrease of the determinant of Σ via the identity:

rdet(Σ′) = rdet(Σ) · ‖v̄‖
2

v̄Σv̄T
, or rdet(Σ′) = rdet(Σ) · det(VVT )

det(VΣVT )
. (4.29)

Worthiness and choice of short vector hints Integrating such a hint induces a trade-

off between the dimension and the volume, and therefore it is not always advanta-

geous to integrate.

This raises the following potentially hard problem: given a set W of short

vectors of Λ (viewed as a matrix), which subset V ⊂W of size k lead to the easiest

DBDD instance? Because the hardness of the new problem grows with

rdet(Σ′)

Vol(Λ′)2
=

rdet(Σ)

Vol(Λ)2
· det(VVT )2

det(VΣVT )
(4.30)

In the case of an un-hinted DBDD instance directly obtained from the LWE
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problem, for V being the set of (primitive) q-vectors, the problem is easier: all

subsets of size k lead to instances with the same parameters.

But this is not true anymore as soon as Σ has been altered or if the set W is

arbitrary. For example, setting Σ = I, one simply wishes to minimize det(VVT );

but for an arbitrary set W the problem of finding the optimal subset V ⊂ W is

NP-hard [77], and remains NP-hard up to exponential approximation factors.

A natural approach to try to get an approximate solution in polynomial time

consists in making sequential greedy choices. This involves computing |V|·|W|many

matrix-vector products over increasingly large rationals, and appeared painfully slow

in practice for making prediction on cryptographically large instances. Fortunately,

in the typical cases where the vectors of W are the q-vectors, this can be made

somewhat practical (See Section 4.3.3 for example).

Remark 4.18. When the basis of an LWE-lattice is given in its systematic form, the

q-vectors are already explicitly given to lattice reduction algorithms, and these algo-

rithms will implicitly make use of them when they are worthy, as if we had integrated

them. The reason is that lattice reduction algorithm naturally work with projected

sublattices, and if a q-vector is shorter than what the algorithm can produce, those

q-vectors will remain untouched at the beginning of the basis; the reduction algorithm

will effectively work on the lattice projected orthogonally to them. In other words,

integrating q-vectors is important to understand and predict how lattice reduction

algorithm will work, but, in certain cases they may be automatically detected and

exploited by lattice reduction algorithms themselves.
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4.3 Applications examples

4.3.1 Hints from side channels

In [25], W. Bos et al. study the feasibility of a single-trace power analysis of

the Frodo Key Encapsulation Mechanism (FrodoKEM) [92]. Specifically, in the first

approach, they analyze the possibility of a divide-and-conquer attack targeting a

multiplication in the key generation. This attack was claimed unsuccessful in [25]

because the bruteforce phase after recovering a candidate for the private key was

too expensive. Along with this unsuccessful result, a successful powerful extend-

and-prune attack is provided in [25].

We emphasize that the purpose of this section is to exemplify our tool on a

standard side-channel attack, and this is why we choose the former unsuccessful

divide-and-conquer attack of [25]. The point of this section is to show that our

framework can indeed lead to improvements in the algorithmic phase of a side-

channel attack, once the leak has been fixed.

FrodoKEM. FrodoKEM is based on small-secret-LWE; we outline here some de-

tails necessary to understand the attack. Note that we use different letter notations

from [92] for consistency. For parameters n and q, the private key is (z ∈ Znq , e ∈ Znq )

where the coefficients of z and e, denoted zi and ei, can take several values in a

small set that we denote L. The public key is
(
A ∈ Zn×nq ,b = zA + e

)
. The goal

of the attack is to recover z by making measurements during the multiplication
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between z and A when computing b in the key generation. Note that there is

no multiplication involving e and thus it is not targeted in this attack. Six sets

of parameters are considered: CCS1, CCS2, CCS3 and CCS4 introduced in [24]

and NIST1 and NIST2 introduced in [92]. For example, with NIST1 parameters,

n = 640, q = 215 and L = {−11, · · · , 11}.

n = 640, q = 215 and L = {−11, · · · , 11}.

Side-channel simulation. The divide-and-conquer attack provided by [25] simulates

side-channel information using ELMO, a power simulator for a Cortex M0 [89]. This

tool outputs simulated power traces using an elaborate leakage model with Gaussian

noise. Thus, it is parametrized by the standard deviation of the side-channel noise.

For proofs of concept, the authors of [89] suggest to choose the standard deviation

of the simulated noise as σSimNoise := 0.0045 for realistic leakage modeling. This

standard deviation was also the one chosen in [25, Fig. 2b] and W. Bos et al. imple-

mented a Matlab script that calls ELMO to simulate the side-channel information

applied on Frodo. This precise side-channel simulator was provided to us by the

authors of [25] and we were able to re-generate all their data with Matlab, again

using σSimNoise = 0.0045.

Template attack. The divide-and-conquer side-channel attack proposed by W. Bos

et al. belongs in the template attack family. Template attacks were introduced

in [37]. In a nutshell, these attacks include a profiling phase and an online phase.
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Let us detail the template attack for Frodo implemented in [25].

1. The profiling phase consists in using a copy of the device and recording a

large number of traces using many different known secret values. From these

measures, the attacker can derive the multidimensional distribution of several

points of interest when the traces share the same secret coefficient. More

precisely, in the case of FrodoKEM, for a given index i ∈ [0, n−1], the points of

interest will be the instants in the trace when zi is multiplied by the coefficients

of A (n interest points in total). Let us define

ci := (T [ti,0], . . . , T [ti,n−1]) c ∈ Rn, (4.31)

where T denotes the trace measurement and (ti,k) denotes the instants of the

multiplication of zi with the coefficients Ai,k for (i, k) ∈ [0, n−1]. The random

variable vector associated to ci is denoted by Ci. For each i ∈ [0, n − 1] and

x ∈ L, the goal of the profiling phase is to learn the center of the probability

distribution

Ai,x(c) := P [Ci = c | zi = x] .

By hypothesis, for template attacks (see [37, Section 2.1]), Ai,x is assumed to

follow a multidimenstional normal distribution of standard deviation σSimNoise ·

In. Thus, the attacker recovers the center of Ai,x for each i ∈ [0, n − 1] and

x ∈ L by averaging all the measured ci that validate zi = x. The center of Ai,x

is denoted ti,x and we call it a template. W. Bos et al. [25] actually assume that
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ti,x depends only on x and is independent from the index i. Thus, ti,x = tx.

Essentially, this common assumption implies that the index i ∈ [0, n−1] of the

target coefficient does not influence the leakage. Consequently, the attacker

only has to derive t0,x, for example.

2. In a second step, the attacker knows the templates tx for all x ∈ L. She also

knows the points of interest ti,k as defined above in Equation 4.31. She will

construct a candidate z̃ for the secret z by recovering the coefficients one by

one. For each unknown secret coefficient zi, she takes the measurement ci

as defined in Equation 4.31. Using this measurement, she can derive an a

posteriori probability distribution: With her fixed i ∈ [0, n− 1] and measured

ci ∈ R, she computes for all x ∈ L,

P [zi = x | Ci = ci] =
P [zi = x]

P [Ci = ci]
· P [Ci = ci | zi = x] (4.32)

∝ P [zi = x] · exp

(
−‖ci − tx‖2

2

2σ2
SimNoise

)
(4.33)

In [25], a score table, denoted (Si[x])x∈L is derived from the a posteriori dis-

tribution as follows,

Si[x] := ln (P [zi = x | Ci = ci]) (4.34)

= ln (P [zi = x])− ‖ci − tx‖2
2

2σ2
SimNoise

. (4.35)

Finally, the output candidate for zi is z̃i := argmaxx∈L(Si[x]).
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zi
S

-11 -10 -9 -8 -7 -6 -5 -4
0 -4098 -3918 -4344 -2580 -3212 -3108 -3758 -3155
1 -3273 -3114 -3491 -1951 -2495 -2405 -2972 -2445
−1 -341 -335 -352 -465 -358 -369 -329 -362
−1 -306 -298 -319 -414 -314 -323 -290 -317

. . . -3 -2 -1 0 1 2 3
0 . . . -3583 -3498 -3900 -340 -380 -367 -452
1 . . . -2819 -2744 -3098 -365 -325 -328 -338
−1 . . . -331 -334 -328 -3712 -3079 -3195 -2656
−1 . . . -291 -293 -291 -3608 -2982 -3097 -2564

. . . 4 5 6 7 8 9 10 11
0 . . . -818 -975 -933 -1084 -368 -459 -453 -592
1 . . . -546 -657 -627 -737 -333 -344 -342 -407
−1 . . . -1696 -1461 -1521 -1329 -3231 -2648 -2685 -2201
−1 . . . -1617 -1385 -1444 -1256 -3132 -2556 -2593 -2115

Table 4.1: Examples of scores associated to the secret values si ∈ {0,±1}, after
the side-channel analysis of [25] for NIST1 parameters. The best score in each score
table is highlighted. This best guess is correct for the first 3 score table, but incorrect
for the last one.

One can use the presented attack as a “black-box” to generate the score tables

using the script from [25]. As an example, using the NIST1 parameters, we show

several measured scores (S[−11], · · · , S[11]) corresponding to several secret coeffi-

cients in Table 4.1. The first line corresponds to a secret equal to 0, the second

line to 1 and the third and fourth line to −1. The last line is an example of failed

guessing because we see that the outputted candidate is not −1. We remark that

the values having the opposite sign are assigned a very low score, we conjecture that

it is because the sign is filling the register and then the Hamming weight of the

register will be very far from the correct one.

With this template attack, one can recover z̃ ≈ z. However, W. Bos et al. [25]
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could not conclude the attack with a key recovery even though much information

leaked about the secret. Frustratingly, a bruteforce phase to derive z from z̃ did not

lead to any security threat as stated in [25, Section 3]. They actually pointed out

an interesting open question of whether “novel lattice reduction algorithms [can]

take into account side-channel information”. Our work solves this open question by

combining the knowledge obtained in the divide-and-conquer template attack of [25]

with our framework.

From scores to hints. We first instantiate a DBDD instance with a chosen set of

parameters. Then we assume that, for each secret coefficient zi, we are given the

associated score table Si, thanks to the template attack that has already been car-

ried out. We go back to the a posteriori distribution in Equation 4.33 by applying

the exp() function and renormalizing the score table. As an example, we show the

probability distributions derived from Table 4.1, along with their variances and cen-

ters, in Table 4.2.

Finally, we use our framework to introduce n a posteriori approximate hints

to our DBDD instance with the derived centers and variances for each score table.

When the variance is exactly 0, we integrate perfect hints instead.

Results. One can reproduce this attack using the Sage 9.0 script

exploiting SCA from Bos et al.sage. The experimentally derived data containing the

score tables is in the folder Scores tables SCA for which, as mentioned earlier, was
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zi
A posteriori distribution

−11 −10 −9 −8 −7 −6 −5 −4 −3
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0.26 0 0.04
−1 0 0 0 0 0 0 0.56 0 0.21

. . . −2 −1 0 1 2 3 4 5
0 . . . 0 0 1 0 0 0 0 0
1 . . . 0 0 0 0.95 0.04 0 0 0
−1 . . . 0.00 0.70 0 0 0 0 0 0
−1 . . . 0.03 0.21 0 0 0 0 0 0

. . . 6 7 8 9 10 11 center variance
0 . . . 0 0 0 0 0 0 0 0
1 . . . 0 0 0.01 0 0 0 1.05 0.06
−1 . . . 0 0 0 0 0 0 -2.11 3.11
−1 . . . 0 0 0 0 0 0 -3.68 2.63

Table 4.2: Probability distributions derived from Table 4.1, along with variances
and centers.

generated with a simulated noise variance of 0.0045. One can note that the obtained

security fluctuates a bit from instance to instance, as it depends on the strength of

the hints, which themselves depend on the randomness of the scheme. In the first

two lines of Table 4.3, we show the new security with the inclusion of the approxi-

mate hints averaged on 50 tests per set of parameters.
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NIST1 NIST2 CCS1 CCS2 CCS3 CCS4

Attack without hints 487 708 239 448 492 584

Attack with hints 330 423 128 123 219 230

Attack with hints & guesses 292 298 70 29 124 129

Number of guesses g 100 250 200 300 250 250

Success probability 0.86 0.64 0.87 0.77 0.81 0.84

Table 4.3: Cost of the attacks in bikz without/with hints without/with guesses.

Guessing. To improve the attack further, one can note from Table 4.2 that certain

key values have a very high probability of being correct, and assuming each of these

values are correct, one can replace an approximate hint with a perfect one. For

example, considering the second line of Table 4.2, the secret has a probability of

0.95 to be 1 and thus guessing it trades a perfect hint for a decrease of the success

probability of the attack by 5%. This hybrid attack exploiting hints, guesses and

lattice reduction, works as follows. Let g be a parameter.

1. Include all the approximate and perfect hints given by the score tables,

2. Order the coefficients of the secret zi according to the maximum value of their

a posteriori distribution table,

3. Include perfect hints for the g first coefficients and then solve and check the

solution.

Increasing the number of guesses g leads to a trade-off between the cost of the attack
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and its success probability. We have chosen here a success probability larger than

0.6, while reducing the attack cost by 38 to 145 bikz depending on the parameter set.

Given that 1 bit of security corresponds roughly to 3 or 4 bikz, this is undoubtedly

advantageous.

Remark 4.19. The refinement presented above are very recent (lastly improved on

June 2020). We are grateful to the authors of [25] of for helping us reconstructing

distributions from the score table.

We remark that, with these results, the attacks with guesses on the parameters

CCS1 and CCS2 seem doable in practice while it was not the case with our original

results. However, some improvements of the implementation remain to be done in

order to actually mount the attack. The full-fledged implementation cannot handle

in reasonable time the large matrices of the original DBDD instance. We require

another class of implementation which fully maintains all information about the

instance, like the DBDD class, and assumes that the covariance matrix Σ is diagonal

to simplify the computations, like the DBDD predict diag class. We hope to report

on such an implementation in a future update of this report.

Remark 4.20. It should be noted that, given a single trace, one cannot naively

retry the attack to boost its success probability. Indeed, the “second-best” guess

may already have a much lower success probability than the first. Setting up such an

hybrid attack mixing lattice reduction within our framework and key-ranking appears

to be an interesting problem.
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4.3.2 Hints from decryption failures

Another kind of hint our framework can model are hints provided by decryp-

tion failures. For a single-bit LWE encryption scheme, a decryption failure occurs

when the random short vector w used during encryption is such that |〈s,w〉| ≥ t

for some t, typically t = q/4.

In fact, we can even assume to know the “side” of the decryption failure, i.e. we

can assume we know that 〈s,w〉 ≥ t. Indeed, this can be guessed with probability

1/2 for the first failure, and it can be deduced for subsequent failures using the

fact that those sides are strongly correlated (see Section 4.3 in [49] for example).

For multi-bit encryption, using either ring-element or matrices for secrets, similar

techniques allow to “locate” the failure, and therefore obtain information of this

form.

We will here consider the case of the Chosen-Ciphertext-Attack (CCA) secure

variant of such schemes, typically obtained by variants of the Fujikasi-Okamoto

transform. In this case, the attacker does not control the short vector w, as it is

generated following the randomness of a hash function.

Following our framework, it would be tempting to simply construct the con-

ditional distribution of 〈s,w〉 given that |〈s,w〉| ≥ t, and integrate this as an a

posteriori hint with v = w. However, this modeling would actually lose a lot of

information. Indeed, such hints are designed in the case where one first chooses w

independently of s, and then learns partial information on 〈s,w〉. The setting here

is quite different: one instead samples w following a prescribed distribution, until
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failure occurs. In other word, w is sampled on a prescribed distribution, and con-

ditioned on 〈s,w〉 ≥ t. In particular it is not sampled independently of the secret

s, and it carries information on s in all directions.

For the sake of simplicity, let us assume that the norm of s is exactly ` =
√
nσ;

making such a guess is rather inconsequential given how concentrated the norm of

a high dimensional Gaussian is. Let us assume that w also follows a Gaussian of

covariance τ 2I, before imposing the condition. After conditioning, w decomposes as

w = αs/`+w′, where w′ is a Gaussian of covariance τ 2Π⊥s , and α is independent of

w′ and follows a distribution that we denote G
≥t/`
τ , the unidimensional Gaussian of

variance τ 2 conditioned on α ≥ t/`. One can check that the E
X←G≥t/`τ

[(t/`−X)2] ≤

τ 2 for any t/` ≥ 0. This means that we can write w = t/`2 · s + e for some error e

of (ill-centered) covariance Σe ≤ τI.

Rewriting the above equality, we finally obtain a full dimensional approximate

hint of the form

s =
`2

t
w + e′

with an error e′ = − `2

t
e of (uncentered) covariance τ 2`4/t2 · I.

We can now compare the results of our prediction to prior work that used

several other methodologies such as [48,49,58,67]. We choose to compare with [49]

on FRODOKEM-976, for which the data can be reproduced3, and for which w is

indeed very close to Gaussian. We note that both methods use different simplications

or heuristics, nevertheless they produce essentially similar predictions, as shown

3https://github.com/KULeuven-COSIC/PQCRYPTO-decryption-failures/
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Figure 4.4: Security decrease as a function of the number of failure in FRODOKEM-
976.

in Figure 4.4. The data using our framework has been acquired with the script

exploiting decryption failures.sage.

Furthermore, one could try to refine the estimate of the average and variance

of e, which can improve in direction of w. However, this would force us to deal

with non-diagonal covariance matrices, which generically significantly slows down

our script, and would require further optimizations to be doable in practice. The

exploration of such improvements is left as future work.

4.3.3 Structural hints from Design

LAC is a Ring-LWE round two candidate of the NIST post-quantum compe-

tition [83]. The secrets are two polynomials s0, s1 (denoted s and e in the specifi-

cations) whose coefficients follow a distribution ψn,h, the uniform distribution over

ternary vectors {−1, 0, 1}n with exactly h/2 ones and h/2 minus ones. Thus, two
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LAC-128 LAC-192 LAC-256

without hints 509.03 985.64 1104.83
with 2 hints 505.94 982.74 1101.61

R5ND {1}KEM 0d R5ND {3}KEM 0d R5ND {5}KEM 0d

without hints 494.39 658.67 877.71
with 1 hint 492.94 657.23 876.24

ntruhps2048509 ntruhps2048677 ntruhps4096821

without hint 372.58 515.36 617.71
with 1 hint 371.23 513.95 616.39
with hint + 6 guesses 365.79 508.47 611.00

Table 4.4: New security estimates in bikz (GSA-Intersect method)

ntruhps2048509 ntruhps2048677 ntruhps4096821

without hints 379.61 526.17 631.84
with 1 hint 378.22 524.74 630.49
with hint + 6 guesses 372.64 519.11 624.94
with hint + multi-target 367.58 512.68 618.24

Table 4.5: New security estimates in bikz (Probabilistic-Simulation method)
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structural perfect hints can be derived:

n−1∑
i=0

s0[i] = 0 and
n−1∑
i=0

s1[i] = 0.

The same structure appears in the submissions Round5, and NTRU-HPS, but yields

only one perfect hint on half of the secret as they also require the number of −1 coef-

ficients to be balanced with the number of 1 coefficients of their ternary polynomial.

In fact, exploiting this information was already mentionned in the cryptanalysis of

the original NTRU scheme [43]. While it is clear that each such equation it decreases

the dimension by 1, its effect on the volume of the lattice seems not to have been

analyzed so far; according to Lemma 4.10, the volume is increased by a factor
√
n.

This new knowledge has been included in the security analysis and the re-

sults are stored in Table 4.4. One can check the experiments by running the scripts

exploiting design LAC.sage, exploiting design round5.sage and exploiting design ntru.sage.

For Round5, we arbitrarily chose for our testing the parameter set R5ND {1, 3, 5}KEM 0d.

Remark 4.21. Note, however, that integrating such hints removes some q-vectors

from the lattice. For NTRU-HPS and Round5, there remain half of them, and this

is sufficient to find the optimal volume-dimension trade-off.4 For LAC, we note

that while q-vectors are not in the lattice, a difference of 2 such vectors is still in

it, for example the short vector hint (q,−q, 0, 0, . . . , 0) ∈ Λ. We iteratively integrate

(q,−q, 0, 0, . . . , 0), (0, q,−q, 0, . . . , 0), (0, 0, q,−q, . . . , 0), . . . until such hints are not

worthy anymore, i.e. until such hints do not decrease the cost of the attack anymore.

4In a previous version of this paper, we treated NTRU-HPS and Round5 in the same way as
LAC, and used (q,−q)-vectors rather than q-vectors, which lead to a somewhat suboptimal attack.
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The case of NTRU. A first remark is that the NTRU problem is somewhat different

from the BDD problem, in the sense that it is homogenoues already: there is no need

to apply Kannan’s embedding to make it into a short vector problem. This means

in particular that the dimension of the input lattice is 2n and not 2n + 1. More

specifically, the secret consists of two ternary elements of the cyclic convolution ring

f, g ∈ Z[X]/(Xn − 1) =: R, and the public key h = f/g mod q. One can directly

construct the lattice Λ = {(x, y) ∈ R2 | x− hy = 0 mod q} and search for (f, g) as

a short vector in that lattice.

Secondly, the lattice enjoys a rotational symmetry of order n; in particular

there is not only a single short vector in that lattice, but n linearly independent

such short vectors: (f, g), (X · f,X · g), (X2 · f,X2g), . . . (Xn−1 · f,Xn−1 · g).5

A third remark is that, even without hints, and using the same GSA-interesect

method, our tool gives about 10 extra bikz of security to NTRU-HPS compared to

the analysis given in the standardization document [116]. The largest part of this

difference is to be accounted on the fact that [116] uses a lower-bound on the length

of one half of the secret. Such a simplification avoid the need for an isotropization

step, which would complicate an ad-hoc script, but is fully automatized by our tool.

One last remark is that [116] does also perform a dimension-reduction, but it is

not equivalent to the one discussed above. More specifically, they suggest to reduce

the problem modulo Φn where Φn = Xn−1 + Xn−2 + · · · + X + 1 denotes the n-th

cyclotomic polynomial for n a prime. Using the coefficient embedding to define the

5We remark that such a symmetries can also appear in Cyclotomic Ring-LWE, but at the cost
of increasing the lattice dimension from 2n+ 1 to 3n.
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geometry, this decreases dimension by 1, and leaves the volume unchanged; however

such a reduction can significantly increase the length of the secret vectors to be

found, when the leading coefficient of the secret polynomial (i.e. the last coefficient

of the secret vector) is not 0. Fortunately, because of the rotational symmetries,

there should some short vectors for which this reduction does not affect its length.6

A posteriori, this dimension reduction techniques essentially boils down to making

a guess fn = 0, knowing that this guess are likely satified by one of the many short

secrets; in our framework this is merely a perfect hint, and we predict, as in [116]

that it decreases dimension by one without affecting the volume.

These remarks suggests several refinements. The first is that we can combine

the integration of the hint
∑
fi = 0 and of a guess fn = 0. In fact, we can follow

the attack of May and Silverman [88], and integrate several such guesses so as to

fully exploit symmetries. Roughly, given that the secret are essentially uniform

and ternary, one can hope that one of the n short vectors will satisfy log3(n) ≈ 6

equations of the form fi = 0.

Yet, we can also wonder wether making such symmetry-breaking guesses is

really advantageous, as it could be that lattice reduction already internally benefits

from the presence of many short vectors. Under the GSA-interesect model, this does

not seem to be the case, as this model would predict that all the short vectors are

detected at the same time. However, the refined method of Section 4.2.5 can indeed

the account for the accumulated probability over multiple targeted short vectors.7

6We are greatful to John Schanck for this clarification.
7To apply the probabilistic-simulation for such large parameters, we only account for the prob-

ability of detecting the vector at position d−β, so as to avoid numerical issues raised by the rest of
this probability computation. However, the probability to be lifted back to the front once detected
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Our results are compiled in Table 4.4 and Table 4.5, and the conclusion is,

according to the probabilistic simulation method, that it is seems preferable to not

make any guesses, and let lattice reduction naturally exploit the presence of many

short vectors. However, due to the other approximations made in [116], our refined

analysis does not invalidate the original security claims. We nevertheless think that

this revised analysis clarify the phenomena at play during lattice attacks on NTRU.

Remark 4.22. A similar structure is present in the candidate NTRU-Prime in its

streamlined and LPR versions [15]. In the secret vector, the number of ±1’s is fixed

to an integer w without knowing the exact number of positive and negative ones.

Thus, one can include a modular hint

n−1∑
i=0

s0[i] = w mod 2.

The loss of security is however essentially negligible.

at position d− β is very close to 1 for such a large β, as already argued in [7].
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Chapter 5: Towards a Ring Analogue of the Leftover Hash Lemma

The leftover hash lemma (LHL) is used in the analysis of various lattice-based

cryptosystems. Specifically, it is often useful to argue that for high-min entropy

input x ∈ Zmq and random matrix A ← Zn×mq , Ax is uniform random, given A.

The above fact is used in the proof of security for both the Regev and Dual-Regev

encryption schemes. More sophisticated proof approaches that utilize the LHL along

with the structure of the matrix A have been used to argue leakage resilience of these

cryptosystems, such as in [4, 53].

Analogues of the statement above do not necessarily hold in the ring setting:

The ring setting. Consider the number field K = Q[x]/Φm(x), where Φm(x) is

the m-th cyclotomic polynomial of degree ϕ(m). The ring of integers, R ⊂ K, is

defined as R = Z[x]/Φm(x). Rq := Zq[x]/Φm(x) denotes the set of polynomials

obtained by taking an element of Z[x]/Φm(x) and reducing each coefficient modulo

q. In this paper, we further assume that m is a power of two, so Φm(x) = xn+ 1 has

degree n = m/2, and set q to be a prime such that q ≡ 1 mod m. In this case Φm(x)

completely splits into n factors in Zq[x]. This is the setting favored in practice since

0For example, techniques include decomposition of the matrix A into two random matrices of
varying dimensions [4].
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it allows for optimizations in the implementation, such as fast arithmetic over the

ring Rq.

A Ring Analogue of the LHL. For rings Rq such as the above, a result anal-

ogous to the leftover hash lemma—proving that al+1 =
∑

i∈[l] aixi is indistinguish-

able from random, given a2, . . . , al, as long as x1, . . . , xl has sufficiently high min-

entropy—is impossible. For example, if the j-th NTT coordinate of each ring ele-

ment in x = x1, . . . , xl is leaked, then the j-th NTT coordinate of al+1 =
∑

i∈[l] aixi

is known1, and so al+1 is very far from uniform. Yet this is only a 1/n leakage rate!2

Nevertheless, Lyubashevsky et al. [85] proved a “regularity lemma” showing

that for matrix A = [Ik|Ā] ∈ (Rq)
k×l, where Ik ∈ (Rq)

k×k is the identity matrix

and Ā ∈ (Rq)
k×(l−k) is uniformly random, and x chosen from a discrete Gaussian

distribution (centered at 0) over Rl
q, the distribution over Ax is (close to) uniform

random. A similar result was proven by Micciancio [90], but requires super-constant

dimension l, thus yielding non-compact cryptosystems. In contrast, the regularity

lemma of [85] holds even for constant dimension l as small as 2. The fundamental

technical question we consider in this work is:

For which distributions D over x ∈ Rl
q, is the distribution over Ax (close

to) uniform random, for R, q, A as above and constant l?

1Applying NTT to ai, xi ∈ Rq—resulting in n-dimensional vectors, âi, x̂i ∈ Zn
q —allows for

component-wise multiplication/addition, so the j-th NTT coordinate of aixi, i ∈ [l] will be known
and so the j-th NTT coordinate of al+1 is known.

2We thank an anonymous reviewer for pointing out this counterexample to us.
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5.1 Overview of Our Work

We prove a “regularity lemma” for three conditional distributions, which we

describe next. Only the parameter s–the standard deviation of the discrete Gaussian

for sampling each coordinate of x–differs in each setting.

Conditional Distribution I. We assume a secret key x = (x1, . . . , xl), where each

xi ∈ Rq. Moreover, each xi itself is represented as an n-dimensional vector. So in

total, x is an l ·n-dimensional vector. We consider the conditional distribution on x

when the sum of x and e is revealed, where each coordinate of e is a Gaussian random

variable with standard deviation at least s. This setting captures leakage on x by

an adversary who uses a fast, but inaccurate device to obtain noisy measurements of

each sampled coordinate of the secret key (e.g. through a power or timing channel).

We prove that it is sufficient to set s ≥
√

2 · 2n · qk/l+2/(nl). See Theorem 5.2 and

Corollary 5.3.

Conditional Distribution II. We consider the conditional distribution over x =

(x1, . . . , xl) when we leak ` coordinates from each xi, i ∈ [l]. and we set parameters

such that the fraction of leaked coordinates– `·l
n·l–is constant. The ` leaked coordi-

nates are arbitrary, but the same ` coordinates must be leaked from each xi, i ∈ [l].3

Low noise is added to each leaked coordinate (only 2n standard deviation, as op-

posed to
√

2 · 2n · qk/l+2/(nl) standard deviation as in Conditional Distribution I).

3Alternatively, we can view the leakage as ` completely arbitrary coordinates, with leakage rate
of `/(n · l), which remains constant for constant l.
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No information at all is leaked about the remaining coordinates. This setting cor-

responds to a side-channel attack launched during the sampling of x, where the

attacker has a slower, but more accurate device which allows it to obtain more ac-

curate measurements for a constant fraction of the coordinates of the secret key, but

no information for the remaining coordinates. 4 We prove that it is sufficient to set

s ≥ 2n · q
kn+2
l(n−`) , where ` · l is the number of leaked coordinates. See Theorem 5.4 and

Corollary 5.8.

Conditional Distribution III. Here, we consider the conditional distribution on x,

when the magnitude of x with Gaussian channel error e is revealed (note that e is a

scalar). We assume e is sampled from a univariate Gaussian with standard deviation

s. A motivation for this type of leakage is that (discrete) Gaussian sampling of x

is often implemented via rejection sampling in practice [28, 51]. E.g. a vector could

be sampled from a “close” multi-dimensional binomial distribution and rejection

sampling then used to obtain a sample from the correct distribution. The rejection

condition depends on the weight of x under the target distribution, which in turn

depends on the magnitude of x, and so this information is vulnerable to leakage

during computation. 5 We prove that it is sufficient to set s ≥
√

14/5 · (n′/n) · lnn′ ·

2n · qk/l+2/(nl), where n′ = n · l + 1. See Theorem 5.12 and Corollary 5.13.

4Here we assume that the secret key is stored as a vector in the canonical embedding (in the
other leakage scenarios, the result holds when the secret key is stored in using the polynomial
representation or is stored as a vector in the canonical embedding).

5For example, a power analysis attack on the BLISS signature scheme [60] exploited the rejection
sampling procedure to recover the magnitude (norm) of certain secret values, which then led to a
full break of the scheme.
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Applications to leakage resilience. Since applications of the LHL/Regularity Lemma

in lattice-based cryptography are widespread, a number of Ring-LWE (RLWE) cryp-

tosystems achieve certain leakage resilience properties using our results. Such cryp-

tosystems include the ring analogues of Regev encryption [84], Dual-Regev encryp-

tion [85], and identity-based encryption (IBE) based on Dual-Regev encryption [63]

(see ring version in [16]). Specifically, by substituting our “regularity lemma” for the

original “regularity lemma” in the security proofs, those schemes still enjoy security

guarantees even given certain leakage on the randomness for encryption (for Regev)

the secret key (for Dual-Regev), and the secret key corresponding to the challenge

identity (for IBE).

5.1.1 Our High-Level Approach

For a matrix A = [Ik|Ā] ∈ (Rq)
k×l, where Ik ∈ (Rq)

k×k is the identity matrix

and Ā ∈ (Rq)
k×(l−k) is uniformly random, we define Λ⊥(A) = {z ∈ Rl : Az =

0 mod qR}. If [x mod Λ⊥(A)] is uniform random (over cosets of Λ⊥(A)), then the

distribution of Ax is also uniform random over cosets of (qR)k. The input/output

distributions can then be discretized over the ring R. Therefore, the goal is to

show that when x is sampled from continuous distribution D, we have that [x

mod Λ⊥(A)] is uniform random. Consider the case where the distribution D is

exactly a Gaussian distribution with mean 0 and standard deviation s. In this case,

if s is greater than or equal to the smoothing parameter of Λ⊥(A), this by definition

ensures that the distribution [x mod Λ⊥(A)] is uniform random. Thus, [85] prove
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their regularity lemma by showing that with high probability over choice of A, the

smoothing parameter, ηε(Λ
⊥(A)), is upperbounded by s.

Before presenting our approach to extending the above result, it is instructive

to give a high-level recap of how to derive upper bounds on the smoothing parameter.

Let ρs := e−π
〈x,x〉
s2 and let ψs (the normalization of ρs) correspond to the proba-

bility density function (PDF) of the normalized n-dimensional Gaussian distribution

with mean 0 and standard deviation s. In the following, for a function f we con-

cisely represent
∑

v∈Λ f(v) by f(Λ). To show that the distribution over [x mod Λ]

is (close to) uniform when x is sampled from a distribution with PDF ψs, one needs

to show that for every coset (Λ + c) of the lattice, ψs(Λ + c) ≈ 1
det(Λ)

. Focusing on

the zero coset, where c = 0, we can prove this using the Poisson summation formula,

which says that for any lattice Λ and integrable function ρs: ψs(Λ) = 1
det(Λ)

· ψ̂s(Λ∨),

where for a function f , f̂ denotes the n-dimensional Fourier transform of f and Λ∨

is the dual lattice of Λ (see Section 2.3.2). It remains to show that ψ̂s(Λ
∨) is close

to 1 (i.e. is upperbounded by 1 + ε).

The proof approach outlined above can be applied to (integrable) normalized

PDF Ψ that are not Gaussians centered at 0: To show that the distribution over [x

mod Λ] is (close to) uniform when x is sampled from a distribution with PDF Ψ, it

is sufficient to show that Ψ̂(Λ∨) is upperbounded by 1 + ε.

In this work, we consider PDF’s, Ψ, that correspond to the PDF of x, from

the point of view of the adversary, given the leakage. The technical contribution

of this work is to show that, for each conditional distribution, (with overwhelming

probability over choice of Ā) Ψ̂(Λ⊥(A)∨) is close to 1. Specifically, for each distribu-
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tion, our approach requires: (1) Determining the PDF Ψ, (2) Computing (an upper

bound for) the multi-dimensional Fourier transform of Ψ (denoted Ψ̂), (3) Proving

that Ψ̂((Λ⊥(A))∨) is upperbounded by 1+ε (or, equivalently that Ψ̂((Λ⊥(A))∨\{0})

is upperbounded by ε).

5.1.2 Related Work

Leakage-resilient cryptography. There is a significant body of work on leakage-

resilient cryptographic primitives, beginning with the work of Dziembowski and

Pietrzak [57] on leakage-resilient stream-ciphers. Other constructions include [4,26,

27, 54, 74, 74, 80, 80, 86, 93, 99]. With the exception of [4], most of these results con-

struct new cryptosystems from the bottom up. In our work, we consider whether

we can prove that an existing cryptosystem enjoys leakage resilience, without mod-

ification of the scheme.

Lattice-based & leakage-resilient cryptography. Goldwasser et al. [64] initiated the

study of leakage resilience of lattice based cryptosystems. This was followed by series

of works [4,53,55], all these papers however study leakage resilience of schemes based

on standard LWE problem in both symmetric as well as public key setting.

Robustness of Ring-LWE To the best of our knowledge the ePrint version [45] of

this work is the first effort to study the robustness of RLWE based cryptosystems

under leakage. Subsequent to the publishing of ePrint [47], interest has sparked in

analyzing the RLWE-based schemes and their leakage resilience. Albrecht et.al [6]

investigatedcold boot attack on RLWE based KEM schemes and compared the num-
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ber of operations required to mount the attack when secret is stored with different

encodings. Recently, Bolboceanu et.al [20] studied the hardness of RLWE problem

in cases where the secret is sampled from distributions other than uniform random

distribution over the ring. In [46] it is shown that under specific structured leakage

on the NTT encoding of secret key, it is possible to recover the entire secret key

given multiple RLWE samples and they implement the attack to recover the secret

in real world parameter settings.

Other variants of LHL Stehlé and Steinfeld [108] studied the leftover hash lemma

in the ring setting for power of 2 cyclotomics and Rosca et.al [104] generalized their

result to non-cyclotomic rings. However, both these results study the case where

input is sampled from discrete Gaussian distribution.

5.2 Extending the Regularity Lemma

Our results are applicable when R is the ring of integers in the mth cyclotomic

number field K of degree n, m = 2n is a power of 2 and prime q is s.t. q ≡ 1

mod m. We denote by Ik ∈ (Rq)
k×k the identity matrix.

5.2.1 Conditional Distribution I

Recall that x = (x1, . . . , xl), where each coordinate of each xi ∈ Rq is sampled

from a discrete Gaussian with standard deviation s and each xi is represented as

a vector in either the polynomial or canonical basis.6 We assume leakage of all

6Either representation works since for power-of-two cyclotomics, spherical Gaussians in the
polynomial basis correspond to spherical Gaussians in the canonical basis.
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coordinates, with Gaussian noise of standard deviation v = τ · s added. It turns

out that this conditional distribution is fairly simple to handle since if X and Y

are independent Gaussian random variables, then the distribution of X conditioned

on X + Y is also a Gaussian that is not centered at 0. Fortunately, the regularity

lemma of [85] straightforwardly extends to Gaussians that are not centered at 0.

We discuss formal details next, however, we mainly view Conditional Distribution I

as a warm-up to the more difficult Conditional Distributions II and III.

We begin by defining some notation, which will be useful in all of the Con-

ditional Distributions when manipulating Gaussian-distributed random variables.

We write probability density function of random variable X at value x, sampled

from n-dimensional Gaussian distribution with each component of variable pairwise

independent, as

ψs,u(X = x) =
∏
i∈[n]

1

si
exp

(
−π(xi − ui)2

s2
i

)
,

with mean u = (u1, . . . , un) and standard deviation s = (s1, . . . , sn). The probability

density function of Y at value y, sampled from n-dimensional Gaussian distribution

with each component of variable pairwise independent, can be written as

ψv,µ(Y = y) =
∏
i∈[n]

1

vi
exp

(
−π(yi − µi)2

v2
i

)
,

with mean µ = (µ1, . . . , µn) and standard deviation v = (v1, . . . , vn).

We now consider the distribution of X, conditioned on knowledge of X + Y .
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We proceed with the following straightforward lemma:

Lemma 5.1. Given two independent random variables X and Y . Suppose that the

distribution of X is a n-dimensional Gaussian distribution with mean u and standard

deviation s, each component of X pairwise independent, and the distribution of Y is

a n-dimensional Gaussian distribution with mean µ and standard deviation v, each

component of Y pairwise independent. Then the distribution of X conditioned on

X+Y is also a n-dimensional Gaussian distribution, where each component of X is

pairwise-independent with mean c := (c1, . . . , cn) where ci :=

ui
s2
i

− µi
v2
i

+
zi
v2
i(

1

s2
i

+ 1

v2
i

) and standard

deviation σ := (σ1, . . . , σn), where σi :=
√

1
1

s2
i

+ 1

v2
i

.

Proof. We have FZ|A(Z = b) generically represent the probability density function

of random variable Z at value b, conditioned on event A.

We can then derive the density function of X given the value z = (z1, . . . , zn)

of X + Y by computing

FX|X+Y=z(X = x) =
ψs,u(X = x)ψv,µ(Y = y),∫

Rn
ψs,u(X = x)ψv,µ(Y = y) dx

=

∏
i∈[n]

1
sivi

e−
π(xi−ui)

2

v2 e
−π(zi−xi−µ)2

vi
2

∏
i∈[n]

∫∞
−∞

1
sivi

e−
π(xi−ui)2

v2 e
−π(zi−xi−µ)2

vi
2 dx

=
∏
i∈[n]

√
1

s2
i

+
1

v2
i

exp

−π( 1

s2
i

+
1

v2
i

)(
xi −

ui
s2i
− µi

v2
i

+ zi
v2
i

1
s2i

+ 1
v2
i

)2


Hence FX|X+Y=z(X = x) is also in the form of probability density function of

X on value x sampled n-dimensional Gaussian distribution, where each component

xi is generated independently with mean

ui
s2
i

− µi
v2
i

+
zi
v2
i(

1

s2
i

+ 1

v2
i

) , and variance parameter 1
1

s2
i

+ 1

v2
i

.

118



Specifically, Lemma 5.1 shows that, conditioned on leakage, each coordinate

xi of the secret key is sampled from a multivariate Gaussian distribution ρσ,ci with

mean ci := (ci1, . . . , c
i
n), where cij :=

zj
τ2+1

and σ = s
√

τ2

τ2+1
. The entire secret key is

then sampled from ρσ,c, where c = [ci]i∈l. We have the following theorem:

Theorem 5.2. For positive integers k ≤ l ≤ poly(n), let A = [Ik|Ā] ∈ (Rq)
k×l,

where Ā ∈ (Rq)
k×(l−k) is uniformly random. Then for all σ ≥ 2n · qk/l+2/(nl) and

c ∈ Rn·l then

ρ̂σ,c
(
Λ⊥(A)∨

)
≤ 1 + 2−Ω(n),

except with probability at most 2−Ω(n) over choice of Ā.

Proof. The theorem follows from Lemma 2.27 and the regularity lemma from [85].

The following corollary follows from Lemmas 2.32 and 2.33 and Theorem 5.2.

Corollary 5.3. Let R, n, q, k, l, c, σ be as in Theorem 5.2. Assume that A =

[Ik|Ā] ∈ (Rq)
k×l is chosen as in Theorem 5.2. Then, with probability 1 − 2−Ω(n)

over the choice of Ā, the distribution of Ax ∈ Rk
q , where x ∈ Rl is chosen from

DΛ,σ,c, the discrete Gaussian probability distribution over Rl with parameter σ and

center c, satisfies that the probability of each of the qnk possible outcomes is in the

interval (1 ± 2−Ω(n))q−nk (and in particular is within statistical distance 2−Ω(n) of

the uniform distribution over Rk
q ).
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In particular, this means that the standard deviation used to sample x should

be increased from 2n · qk/l+2/(nl) (as in [85]) to
√

1+τ2

τ2 · 2n · qk/l+2/(nl). Setting τ = 1,

we obtain the parameters described in the introduction.

5.2.2 Conditional Distribution II

Recall that x = (x1, . . . , xl), where each xi ∈ Rq and each xi is represented as

a vector in the canonical embedding. We assume leakage of ` coordinates—with low

noise added—of each xi for i ∈ [l] and restrict the coordinates leaked across each xi

to be the same. Let S ⊆ [n], where |S| = ` denote the set of positions (from each xi)

that are leaked. Lemma 5.1 shows that, conditioned on leakage, each component

xji , i ∈ [l], j ∈ S, (resp. /∈ S) is sampled from Gaussian distribution with mean

cji :=
nzji
n+ 1

s2
(resp. 0), and variance σ2

j ≥ 4n2 (resp. σ2
j = s2).

Theorem 5.4. For positive integers k ≤ l ≤ poly(n), let A = [Ik|Ā] ∈ (Rq)
k×l,

where Ā ∈ (Rq)
k×(l−k) is uniformly random. Let σ := (σ1, . . . , σn) ∈ Rn

>0 and

c := (c1, . . . , cln) ∈ Rln be vectors, where ` positions in σ are set to 2n, and all

others are set to s. Let k, l, ` be such that l− k − l · `/n > 0 and l− k − 1 ≥ 1, and

let s ≥ 2n · q
kn+2
l(n−`) then ρ̂σl,c

(
Λ⊥(A)∨

)
≤ 1 + 2−Ω(n) except with probability at most

2−Ω(n) over choice of Ā.

For proving Theorem 5.4, we begin with exposition on the forms of the Ideals

qR∨ ⊆ J ⊆ R∨ in power-of-two cyclotomics as well as some lemmas.

To generate the set T of ideals J such that qR∨ ⊆ J ⊆ R∨ we take each

ideal I s.t. qR ⊆ I ⊆ R and set J := qI∨. Recall from Fact 2.14 that 〈q〉 splits
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completely into n distinct ideals of norm q, i.e. qR = Πi∈[n]pi. Therefore, the set of

all ideals I such that qR ⊆ I ⊆ R, is exactly the set S := {Πi∈Spi | S ⊆ [n]}. Thus,

the number of ideals I such that qR ⊆ I ⊆ R (and hence also the number of ideals

J ∈ T ) is exactly 2n. Moreover, note that for each ideal J ∈ T ,

|J /qR∨| = |R/qJ ∨| = N(qJ ∨).

Thus, we see that for each J ∈ T, 1 ≤ |J /qR∨| ≤ qn.

Let T1 denote the set of ideals J ∈ T such that |J /qR∨| < 2n. Let T2 denote

the set of ideals J such that |J /qR∨| ≥ 2n. Furthermore, let T 1
2 be the set of

J ∈ T2 such that s ≥ η2−2n((1
q
J )∨) (where η2−2n denotes the smoothing parameter

and s is fixed as above). Let T 2
2 := T2 \ T 1

2 . Let σ := (σ1, . . . , σn) ∈ Rn
>0 be a vector

with ` positions are set to 2n, while the other positions are set to value s.

Lemma 5.5. For ideals J ∈ T1,

η2−2n

(
(
J
q

)∨
)
≤ 2n.
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Proof.

η2−2n

(
(
J
q

)∨
)
≤

√
n

λ1

(
(J
q

)∨
) (5.1)

≤
(
N

(
J
q

))−1/n

(5.2)

≤ (|J /qR∨| · nn)
1/n

(5.3)

≤ (2n · nn)1/n (5.4)

= 2n,

where (5.1) follows from Lemma 2.24, (5.2) follows from Lemma 2.12, and (5.3)

follows from the fact that
(
N
(
J
q

))−1

= |J /qR| = |R∨/R| · |J /qR∨| = ∆K |J /qR|

(for example, see [40, page. 63]), and (5.4) follows from the definition of T1.

Lemma 5.6. For ideals J ∈ T 1
2

|J /qR∨|−(l−k)

(
ρ1/σ1,...,1/σn

(
1

q
J
)l)

≤ 2−n(l−k),

where ρ1/σ1,...,1/σn is an n-dimensional Gaussian function with coordinate-wise stan-

dard deviation 1/σi, i ∈ [n] and center 0 (see beginning of Appendix 2.4.2).

Proof. Recall that σ := (σ1, . . . , σn) ∈ Rn
>0 is defined as a vector such that ` positions

are set to 2n, while the other positions are set to s. Define z1, . . . , zn in the following

way: For i ∈ [n], if σi = s then zi = σi. Otherwise, zi = η2−2n

(
(1
q
J )∨

)
. Applying

Poisson summation twice we arrive at:
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ρ1/σ1,...,1/σn

(
1

q
J
)

= 1/det(
1

q
J ) · (1/σ1 · · · 1/σn)ρσ1,...,σn

(
(
1

q
J )∨

)
(5.5)

≤ 1/det(
1

q
J ) · (1/σ1 · · · 1/σn)ρz1,...,zn

(
(
1

q
J )∨

)
(5.6)

=

(
η2−2n((1

q
J )∨)

2n

)`

· ρ1/z1,...,1/zn

(
1

q
J
)

(5.7)

≤ (1 + 2−2n) ·

(
η2−2n((1

q
J )∨)

2n

)`

, (5.8)

where (5.6) follows from definitions of ρ and zi. To derive (5.7), let us first

introduce the following claim.

Claim 5.7. For any lattice L∨,

ρs1,...,sn(L) = s1 · s2 · . . . · sn ·
1

det(L)
· ρ1/s1,...,1/sn(L∨)

Proof. It can be easily verified by combining Poisson Summation formula and the

fact that ρ̂s1,...,sn = s1 · · · snρ1/s1,...,1/sn .

By replacing si with 1/zi for all i and replacing L with 1
q
J , we have

1/det(
1

q
J ) · ρz1,...,zn

(
(
1

q
J )∨

)
= z1 · · · zn · ρ1/z1,...,1/zn

(
1

q
J
)
.

By plugging into (5.6), we have

(
z1

σ1

· · · zn
σn

)
· ρ1/z1,...,1/zn

(
1

q
J
)
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By definition of zi,
zi
σi

= 1 when σi = s and zi
σi

=
η2−2n (( 1

q
J )∨)

2n
, when σi = 2n. Since

there are ` positions in σ when σi = 2n, we obtain (5.7). Finally (5.8) follows by

definition of smoothing parameter η2−2n((1
q
J )∨).

Now, using the fact that η2−2n ≤ (∆K |J /qR∨|)1/n, the fact that ∆K = nn and

the fact that |J /qR∨| ≥ 2n, and the set of parameters, we have that

|J /qR∨|−(l−k)

(
ρ1/σ1,...,1/σn

(
1

q
J
)l)

≤ |J /qR∨|−(l−k−l·`/n)(1 + 2−2n)l · 2−`·l

≤ 2−n(l−k)

which completes the proof of the lemma.

We now conclude the proof of Theorem 5.4.

Proof of Theorem 5.4. Since by Lemma 2.27 we have that for any (n · l)-dimensional

vectors, c, x and any n-dimensional vector σ = (σ1, . . . , σn):

ρ̂σl,c (x) ≤ ρ̂σl (x) = ρ(1/σ1,...,1/σn)l (x) ,

then following the proof of [85] step-by-step, it is sufficient to show that

∑
J∈T

|J /qR∨|−(l−k) ·

(
ρ(1/σ1,...,1/σn)

(
1

q
J
)l
− 1

)
≤ 2−Ω(n).
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We will show that

∑
J∈T 1

2

|J /qR∨|−(l−k)

(
ρ(1/σ1,...,1/σn)

(
1

q
J
)l
− 1

)
≤ 2−Ω(n), (5.9)

and that

∑
J∈(T1∪T 2

2 )

|J /qR∨|−(l−k)

(
ρ1/σ1,...,1/σn

(
1

q
J
)l
− 1

)
≤ 2−Ω(n) (5.10)

To show (5.10), note that by Lemma 5.5, for ideals J ∈ T1 (we have that

η2−2n((J
q

)∨) ≤ 2n. This means that for each i ∈ [n], σi ≥ η2−2n , which implies that

ρ1/σ1,...,1/σn

(
1
q
J
)l
≤ (1 + 2−2n)l.

On the other hand, by definition of T 2
2 , for ideals J ∈ T 2

2 , we have that

σi < η2−2n , for each i ∈ [n]. Thus, by Lemma 2.26 we have that ρ1/σ1,...,1/σn

(
1
q
J
)
≤(

η2−2n ((J
q

)∨)

σ1
· · · η2−2n ((J

q
)∨)

σn

)
· (1 + 2−2n). Since η2−2n((J

q
)∨)n ≤ |J /qR∨|∆K , and

plugging in the proper values for σ1, . . . , σn, we have that ρ1/σ1,...,1/σn

(
1
q
J
)l
≤

(|J /qR∨|∆Ks
−n+` · (2n)−`)l · (1 + 2−2n)l. Combining the above, we get that for

J ∈ T1 ∪ T 2
2 ,

ρ1/σ1,...,1/σn

(
1

q
J
)l
≤ max(1, (|J /qR∨|∆Ks

−n+` · (2n)−`)l) · (1 + 2−2n)l.
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Similarly to [85], using the lower bound of s from Theorem 5.4, we bound

∑
J∈(T1∪T 2

2 )

|J /qR∨|−(l−k)

(
ρ1/σ1,...,1/σn

(
1

q
J
)l
− 1

)

≤
∑

J∈(T1∪T 2
2 )

|J /qR∨|−(l−k) ·max(1, (|J /qR∨|∆Ks
−n+` · (2n)−`)l) · (1 + ε)l

≤
∑
J∈T

|J /qR∨|−(l−k) ·max(1, (|J /qR∨|∆Ks
−n+` · (2n)−`)l) · (1 + ε)l

≤ 2−Ω(n) + 2(s/n)−nlqkn+2
( s

2n

)l·`
∈ 2−Ω(n).

Moreover, by Lemma 5.6 and the fact that |T 1
2 | ≤ |T | = 2n, we can bound

∑
J∈T 1

2

|J /qR∨|−(l−k)

(
ρ1/σ1,...,1/σn

(
1

q
J
)l
− 1

)
≤ 2n · 2−n(l−k) ∈ 2−Ω(n),

where the last line follows from the setting of parameters in Theorem 5.4.

This completes the proof.

The following corollary follows from Lemmas 2.32 and 2.33 and Theorem 5.4.

Corollary 5.8. Let k, l, `, σ and c be as in Theorem 5.4. Assume that A = [Ik|Ā] ∈

(Rq)
k×l is chosen as in Theorem 5.4. Then, with probability 1 − 2−Ω(n) over the

choice of Ā, the distribution of Ax ∈ Rk
q , where x ∈ Rl is chosen from DRl,σl,c, the

discrete Gaussian probability distribution over Rl with parameter σl and center c,

satisfies that the probability of each of the qnk possible outcomes is in the interval

(1±2−Ω(n))q−nk (and in particular is within statistical distance 2−Ω(n) of the uniform

distribution over Rk
q ).
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In particular, this means that the standard deviation used to sample x should

be increased from 2n · qk/l+2/(nl) (as in [85]) to 2n · q
kn+2
l(n−`) .

5.2.3 Conditional Distribution III

We slightly change the dimensions so that x is represented by a vector of

dimension n′ := l · n + 1. When n is a power of two, a spherical Gaussian in the

coefficient representation is also a spherical Gaussian in the canonical embedding

representation [84]. So we can assume that x is generated using the coefficient

representation, where each coordinate is sampled independently from a discrete

Gaussian, DZ,s′ . During sampling of x, an additional coordinate is sampled and

stored together with the remainder of the secret.

Recall that a generic PDF of one dimensional Gaussian distribution is defined

as:

ψs,u(x) =
1

s
exp

(
−π(x− u)2

s2

)
,

where u is mean, and s is standard deviation of the distribution. We write prob-

ability density function of secret key X at value x = (x1, . . . , xn′), of which each

coordinate is independently sampled from a Gaussian distribution with center at 0

and standard deviation s, as

ψs(X = x) =
∏
i∈[n′]

1

s
exp

(
−πx2

i

s2

)
=

1

sn′
exp

(
−πr2

s2

)
= ψs(‖X‖ = r),

where r is the magnitude of x. It also can be viewed as probability density function
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of secret key for its magnitude ‖X‖ = r, denoted as ψs(‖X‖ = r). The error is

sampled from a 1-dimensional Gaussian distribution with center at 0. We write

probability density function of error E at value y is

ψv(E = y) =
1

v
exp

(
−πy2

v2

)
.

Let FZ|A(f(Z) = b) generically represent the probability density function of

random variable Z at value b of f(Z), conditioned on event A.

We now derive the density function of secret key X given the value z of |‖X‖+

E|. The weight placed on a value x = (x1, . . . , xn′) by the conditional distribution

depends only on the magnitude of x (i.e. r = ‖x‖) and can be computed as:

F
X

∣∣|‖X‖+E|=z(‖X‖ = r) =
FX,E(‖X‖ = r, ‖X‖+ E| = z)

FX,E(‖X‖+ E| = z)

=
ψs(‖X‖ = r)ψv(E = z − r) + ψs(‖X‖ = r)ψv(E = −z − r)

FX,E(‖X‖+ E = z) + FX,E(‖X‖+ E = −z)

=
ψs(‖X‖ = r)ψv(E = z − r) + ψs(‖X‖ = r)ψv(E = −z − r)∫

Rn′
ψs(‖X‖ = ‖x‖)ψv(E = z − ‖x‖) + ψs(‖X‖ = ‖x‖)ψv(E = −z − ‖x‖) dx

=
e
−( π

s2
+ π
v2 )

(
r− zs2

v2+s2

)2

+ e
−( π

s2
+ π
v2 )

(
r+ zs2

v2+s2

)2

nVn
∫∞
−∞ e

−( π
s2

+ π
v2 )

(
r− zs2

v2+s2

)2

rn−1dr

=
e
−( π

s2
+ π
v2 )

(
r− zs2

v2+s2

)2

+ e
−( π

s2
+ π
v2 )

(
r+ zs2

v2+s2

)2

N
, (5.11)

where N is the normalization factor.

F
X

∣∣|‖X‖+E|=z(‖X‖ = r) is the sum of two Gaussian functions centered at zs2

v2+s2

and − zs2

v2+s2
respectively with the same standard deviation σ. Suppose v = s, we

have σ = s√
2
.
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Lemma 5.9. Suppose v = s, we bound the center zs2

v2+s2
from Equation 5.11 by

Pr
(

zs2

v2+s2
≥ s
√
n′
)
∈ 2−Ω(n), where the probability is taken over choice of x and e.

We first present the following lemma, and then use it to prove Lemma 5.9.

Lemma 5.10. Given a random variable Y chosen from a Gaussian distribution

GE(y, v) = 1
v

exp
(
−πy2

v2

)
, Y is upper bounded by v

√
n′ except for negligible probabil-

ity, written as Pr
(
Y ≥ v

√
n′
)
∈ 2−Ω(n).

Proof. Pr (Y ≥ y) = Pr (X ≥ x), where X =
√

2πY
v

is a standard normal, x =
√

2πy
v

.

By using Chernoff bound and calculating exponential moment of standard normal

distribution, we have, for any λ > 0.

Pr (X ≥ x) ≤
E
[
eλX
]

eλx
=
eλ

2/2

eλx
,

Set λ = x and y = v
√
n′, then Pr

(
Y ≥ v

√
n′
)
≤ e−x

2/2 = e−πn
′
. The lemma

follows.

Proof of Lemma 5.9. Using union bound, we have

Pr

(
zs2

v2 + s2
≥ s
√
n′
)

= Pr
(z

2
≥ s
√
n′
)

≤Pr
(
R + E ≥ 2s

√
n′
)

+ Pr
(
−R− E ≥ 2s

√
n′
)

≤Pr
(
R ≥ s ·

√
n′
)

+ Pr
(
E ≥ v

√
n′
)

+ Pr
(
E ≥ v

√
n′
)

Note that since s > n, and using the fact that λ1((Rl × Z)∨) ≥ λ1(R∨) ≥
√
nN

1
n (R∨) =

√
n · (∆−1

k )
1
n ≥
√
n
(

1
nn

) 1
n = 1√

n
(See Lemma 2.12), by Lemma 2.24,
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we ensure s > η2−n(Rl×Z). Then by Lemma 2.31 and Lemma 5.10, we deduce that

Pr
(

zs2

v2+s2
≥ s
√
n′
)
∈ 2−Ω(n).

Let Ψσ,c(x) := F
X

∣∣|‖X‖+E|=z(‖X‖ = ‖x‖) be the normalization of the function

f(x) := e−
π(‖x‖−c)2

σ2 + e−
π(‖x‖+c)2

σ2 . By Lemma 5.9, we have that with all but negligible

probability, c := zs2

v2+s2
≤
√

2 · σ
√
n′.

For the proof, we will require certain properties of the Fourier transform of

Ψσ,c, when c is bounded as above. We state those properties in the following theorem,

which is proved in Appendix A2.1.

Theorem 5.11. Let n′ := l · 2a + 1, where l, a are positive integers and a > 2,

and c ≤
√

2 · σ ·
√
n′. Let Ψσ,c denote the normalized pdf corresponding to the non-

normalized function f(x) := e−
π(‖x‖−c)2

σ2 + e−
π(‖x‖+c)2

σ2 , where x is a vector over n′

dimensions. and let Ψ̂σ,c(y) denote the n′-dimensional Fourier transform of Ψσ,c.

Then |Ψ̂σ,c(y)| ≤ n′n
′
· e−π‖y‖2σ2

for ‖y‖ > 1/σ.

We next present the main theorem of this section.

Theorem 5.12. For positive integers k ≤ l ≤ poly(n), let A = [Ik|Ā] ∈ (Rq)
k×l,

where Ā ∈ (Rq)
k×(l−k) is uniformly random. Let c ≤

√
2 ·
√
n′ · σ and let σ ≥√

7
5
· n′
n

lnn′ · 2n · qk/l+2/(nl). Define Λ⊥(A)+ as a direct product of Λ⊥(A) and Z,

written as Λ⊥(A)+ := Λ⊥(A) × Z. Then Ψσ,c

(
Λ⊥(A)+

)
≤ 1

det(Λ⊥(A)+)
(1 + 2−Ω(n))

except with probability at most 2−Ω(n).

Proof. Note that Λ⊥(A) is a lattice of even dimension l · n (where n is a power of

two), but Theorem 5.11 holds only for n′ equal to l · 2a + 1. Therefore, we define
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n′ := l · n + 1, and we have the n′-dimensional lattice Λ⊥(A)+ := Λ⊥(A) × Z. We

have the following properties of Λ⊥(A)+, which can be verified by inspection:

(a) (Λ⊥(A)+)∨ := Λ⊥(A)∨ × Z;

(b) the shortest non-zero vector in (Λ⊥(A)+)∨ is at least min(λ1(Λ⊥(A)∨), 1), where

λ1(Λ⊥(A)∨) denotes the shortest non-zero vector in Λ⊥(A)∨;

By Poisson summation formula, it is sufficient to show that with probability

1 − 2−Ω(n) over choice of A, |Ψ̂σ,c|(Λ⊥(A)+)∨) ≤ 1 + 2−Ω(n), where Ψ̂σ,c denotes

the Fourier transform of Ψσ,c over n′ dimensions and the notation |Ψ̂σ,c| means the

summation of the absolute value of the function over the lattice Λ⊥(A)+)∨.

We first note that, over n′ dimensions, Ψ̂σ,c(0) = 1. This follows due to the

fact that by definition of Fourier transform, Ψ̂σ,c(0) :=
∫
Rn′ Ψσ,c(x) dx. Since Ψσ,c is

a normalized PDF, it must be the case that
∫
Rn′ Ψσ,c(x) dx = 1.

Thus, it remains to show that
∣∣∣Ψ̂σ,c

∣∣∣ ((Λ⊥(A)+)∨ \ {0}
)
≤ 2−Ω(n).

Towards showing this, we first let β = 2n · qk/l+2/(nl) for simplicity, and then

use Theorem 5.11 to show that, when κ = |y| ≥
√
n/π

β
,

|Ψ̂σ,c(y)| ≤ n′
n′ · e−(σ2·π·κ2) ≤ n′

n′ · e−5(σ2·π·κ2)/7 · e−2(σ2·π·κ2)/7 ≤ e−2(σ2·π·κ2)/7,

where the last line follows since σ :=
√

7n′

5n
lnn′ · 2n · qk/l+2/(nl) =

√(
7n′

5n

)
lnn′ · β is

chosen so that when κ ≥
√
n/π

β
, e5(σ2·π·κ2)/7 ≥ n′n

′
= en

′ lnn′ .

Let Q :=
∑

y∈(Λ⊥(A)+)∨\{0} e
−2(σ2·π·κ2)/7. Combining the above inequalities

which hold when κ ≥
√
n/π

β
, together with (b) and Corollary 2.37, which states

131



that with probability 1 − 2−Ω(n) over choice of A, the shortest non-zero vector in

Λ⊥(A)∨ has length κ ≥
√
n/π

β
, we conclude that an upper bound on Q yields an

upper bound on the desired quantity,
∣∣∣Ψ̂σ,c

∣∣∣ ((Λ⊥(A)+)∨ \ {0}
)
.

Additionally note that when κ ≥
√
n/π

β
, then

e−2(σ2·π·κ2)/7 = e−(σ2·π·κ2)/7 · e−(σ2·π·κ2)/7 ≤ e−1/5·n′ lnn′ · e−(σ2·π·κ2)/7, (5.12)

where the inequality follows since (by above) e5(σ2·π·κ2)/7 ≥ n′n
′

= en
′ lnn′ . so

e−(σ2·π·κ2)/7 ≤ n′−1/5·n′ = e−1/5·n′ lnn′ . Moreover, recall that two applications of

Poisson summation give:

∑
y∈(Λ⊥(A)+)∨

e−(σ2·π·κ2)/7 ≤ 2n
′ ·

∑
y∈(Λ⊥(A)+)∨

e−2(σ2·π·κ2)/7 (5.13)

Combining the above, we have that

Q ≤
∑

y∈(Λ⊥(A)+)∨

e−1/5·n′ lnn′ · e−(σ2·π·κ2)/7

≤ e−1/5·n′ lnn′ · 2n′ ·
∑

y∈(Λ⊥(A)+)∨

e−2(σ2·π·κ2)/7

= e−1/5·n′ lnn′ · 2n′(1 +Q),

where the first inequality follows from (5.12) and the definition of Q, the second

inequality from (5.13), and the final equality from the definition of Q.

Thus we have that (1− e−1/5·n′ lnn′ · 2n′)Q ≤ e−1/5·n′ lnn′ · 2n′ which implies that

Q ≤ 2 · e−1/5n′ lnn′ · 2n′ ≤ 2−n
′+1 ≤ 2−Ω(n), assuming n′ is at least 210.
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Corollary 5.13. Let k, l, σ and c be as in Theorem 5.12. Assume that A = [Ik|Ā] ∈

(Rq)
k×l is chosen as in Theorem 5.12. Then, with probability 1 − 2−Ω(n) over the

choice of Ā, the distribution of Ax ∈ Rk
q , where (x, xn′) ∈ Rl × Z is chosen from

DRl×Z,Ψσ,c satisfies that the probability of each of the qnk possible outcomes is in the

interval (1 ± 2−Ω(n))q−nk (and in particular is within statistical distance 2−Ω(n) of

the uniform distribution over Rk
q ).

Proof. Ψσ,c

(
Λ⊥(A)+ + (b, b′)

)
∈ det((Λ⊥(A)+)∨)(1± 2−Ω(n)), which means that if

we choose a n′-dimensional vector from distribution DRl×Z,Ψσ,c , written as x′ =

(x, xn′), and let (b, bn′) = x′ mod (Λ⊥(A)+), then the resulting distribution is

within statistical distance 2−Ω(n) to uniform distribution over (Rl × Z) modulo

(Λ⊥(A)+). Due to the structure of Λ⊥(A)+, this also implies that the marginal

distribution over b is uniform over (Rl) modulo (Λ⊥(A)). Moreover, we can easily

see that for x′ = (x, xn′), if x′ mod (Λ⊥(A)+) = (b, bn′), then Ax = Ab. Finally,

since when b is uniform random over Rl modulo Λ⊥(A), we have that Ab is uniform

random over Rk
q , the corollary follows.

Given the corollary, the analysis of Conditional Distribution III is complete.

In particular, this means that the standard deviation used to sample x should be

increased from 2n · qk/l+2/(nl) (as in [85]) to
√

14/5 · n′/n · lnn′ · 2n · qk/l+2/(nl).
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A1: Appendix of Learning with Errors with Side Information

A1.1 Refined prediction via BKZ-simulation and a probabilistic

model

The work of [7] warns about a regime where those predictions are not accurate,

due to a so-called second-intersection between the predicted lengths of the Gram-

Schmidt vectors and the successive projections of the secret. This phenomenon

only appears for small blocksizes β, which is not relevant for cryptographically hard

instances. However, we would still like to be able to make reliable predictions for

small blocksizes as well, so as to test the validity of our predictions with and without

hints.

Other sources of inaccuracy of this model are the so-called head and tails

phenomenon [11, 114], as well as the fact that one can be lucky: the projected

length of the secret can vary, making it plausible that the secret will be found with

a slightly smaller blocksize. For example, in [7] more than 50% of the attacks were

already successful by running BKZ with blocksize βpred − 5.

Furthermore, the predictions of [7] work under the assumption that as soon as

the projected secret vector has been detected at position d − β, it will be “pulled-
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back” to the front by the run of LLL that is typically executed between BKZ tours.

For large block-sizes β this event is indeed very likely as argued and experimentally

verified in [7], but may not occur in small or intermediate dimension. In fact, the

issue of double-intersection is precisely related to this assumption.

For experimental validation purposes of our work, we prefer to have accurate

prediction even for small blocksizes. We therefore devise a refined strategy. First,

we resort to the so called BKZ-simulator [38] to predict more accurately the length

`i of the Gram-Schmidt vectors. Secondly, we do not assume that the projected

secret πi(s) (projected orthogonally to the i− 1 first vectors of the reduced basis, as

in [7]) has exactly length
√
n− i, but simply treat it as a spherical Gaussian. We

can therefore compute the probability that it is detected at position i by considering

the CDF of χ2
n−i, the chi-square distribution with n− i degrees of freedom.

At last, we do not only account for the detectability of the secret vector at

position i = n− β, but also check whether it is likely that the vector will be pulled

to the front (not by the interleaved LLL, by BKZ itself, which is more powerful).

That is, we consider the probability that:

Ei : ‖πi(s)‖ ≤ `i simultaneously for all i ∈ {d− β, d− 2β + 1, d− 3β + 2, . . . }.

Those events are not perfectly independent, which makes computing the prob-

ability of the conjunction of those more painful.1 For simplicity, we only account

for dependence between consecutive events Ei and Ei+1 and therefore avoid having

1The expert reader may note that, for s uniformly distributed over a sphere, such conjunction
correspond to a cylinder interesection, as used for pruning in enumeration [61].
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Figure A1.1: The difference ∆β = real − predicted, as a function of the average
experimental beta β. The experiment consists in running a single tour of BKZ-β
for β = 2, 3, 4, . . . until the secret short vector is found. This was averaged over
256 many LWE instances per data-point, for parameters q = 3301, σ = 20 and
n = m ∈ {30, 32, 34, . . . , 88}.

to resort to numerical computation of nested integrals. We iteratively compute the

success probability for each tour of BKZ-β for increasing β, and from there deduce

the average successful β.

As depicted in Figure A1.1, this methodology (coined Probabilistic-simulation)

leads to much more satisfactory estimates compared to the model from the litera-

ture [7, 9]. In particular, for low blocksize the literature widely underestimates the

required blocksize, which is due to only considering detectability at position d− β.

For large blocksize, it somewhat overestimates it, which could be attributed to the

fact that it does not account for luck. On the contrary, our new methodology seems

quite precise in all regimes, making errors of at most 1 bikz. This new methodology

certainly deserves further study and refinement, which we leave to future work.
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A1.2 Implementation

A1.2.1 Our Sage implementation

We propose three implementations of our framework, all following the same

python/sage 9.0 API.2 More specifically, the API and some common functions are

defined in DBDD generic.sage, as a class DBDD Generic. Three derived classes are

then given:

1. The class DBDD (provided in DBDD.sage) is the full-fledged implementation:

i.e. it fully maintains all information about a DBDD instance as one integrates

hints: the lattice Λ, the covariance matrix Σ and the average µ. While poly-

nomial time, maintaining the lattice information can be quite slow, especially

since consecutive intersections with hyperplanes can lead to manipulations on

rationals with large denominators. It also allows to finalize the attack, run-

ning the homogenization, isotropization and lattice reduction, based on the

fplll [50] library available through sage.

We note that if one were to repeatedly use perfect or modular hints, a lot of

effort would be spent on uselessly alternating between the primal and the dual

lattice. Instead, we implement a caching mechanism for the primal and dual

basis, and only update them when necessary.

2. The class DBDD predict (provided in DBDD predict.sage) is the lightweight

2While we would have preferred a full python implementation, we are making a heavy use of
linear algebra over the rationals for which we could find no convenient python library.
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implementation: it only fully maintains the covariance information, and the

parameters of the lattice (dimension, volume). It must therefore work under

assumptions about the primitivity of the vector v; in particular, it cannot

detect hints that are redundant. If one must resort to this faster variant on

large instances, it is advised to consider potential (even partial) redundancy

between the given hints, and to run a comparison with the previous on small

instances with similarly generated hints.

3. The class DBDD predict diag (provided in DBDD predict diag.sage) is the

super-lightweight implementation. It maintains the same information as the

above, but requires the covariance matrix to remain diagonal at all times. In

particular, one can only integrate hints for which the directional vector v is

colinear with a canonical vector.

A1.2.2 Tests and validation

We implement two tests to verify the correctness of our scripts, and more

generally the validity of our predictions.

Consistency checks. Our first test (check consistency.sage) simply verifies that all

three classes always agree perfectly. More specifically we run all three versions on a

given instances, integrating the same random hint in all of them, and compare their

hardness prediction. We first test using the full-fledged version that the primitivity

condition does hold, and discard the hint if not, as we know that predictions cannot

be correct on such hints. This verification passes.
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Prediction verifications. We now verify experimentally the prediction made by our

tool for various types of hints, by comparing those predictions to actual attack

experiments (see compare usvp models.sage for the prediction without hints and pre-

diction verifications.sage for the prediction with hints). This is done for a given set of

LWE parameters, and increasing the number of hints. The details of the experiments

and the results are given in Figure A1.2.

While our predictions seem overall accurate, we still note a minor discrepancy

of up to 2 or 3 bikz in the low blocksize regime. This exceeds the error made by

prediction on the attack without any hint, which was below 1 bikz, even in the same

low blocksize regime. We suspected that this discrepancy is due to residual q-vectors,

or small combinations of them, that are hard to predict for randomly generated

hints, but would still benefit by lattice reduction. We tested that hypothesis by

running similar experiments, but leaving certain coordinates untouched by hints, so

to still explicitly know some q-vectors for short-vector hint integration, if they are

“worthy”. This didn’t to improve the accuracy of our prediction, which infirms our

suspected explanation. We are at the moment unable to explain this innacuracy. We

nevertheless find our predictions satisfactory, considering that even without hints,

previous predictions [7] were much less accurate (see Figure A1.1).
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A2: Appendix of Towards a Ring Analogue of the Leftover Hash

Lemma

A2.1 Proof of Theorem 5.11

In this section, we prove the following theorem, which provides an upper bound

on the Fourier transform of a pdf for the analysis of Conditional Distribution III in

Section 5.2.3.

Theorem 5.11. Let n′ := l · 2a + 1, where l, a are positive integers and a > 2,

and c ≤ σ ·
√

2 ·
√
n′. Let Ψσ,c denote the normalized pdf corresponding to the non-

normalized function f(x) := e−
π(‖x‖−c)2

σ2 + e−
π(‖x‖+c)2

σ2 , where x is a vector over n′

dimensions. and let Ψ̂σ,c(y) denote the n′-dimensional Fourier transform of Ψσ,c.

Then |Ψ̂σ,c(y)| ≤ n′n
′
· e−π‖y‖2σ2

for ‖y‖ > 1/σ.

The following lemma computes a lower bound of the normalization factor of

the pdf in Theorem 5.11. Once we prove the lemma, we proceed to the proof of

Theorem 5.11.

Lemma A2.1. Let n′ ∈ N be odd, x ∈ Rn′, c ∈ R. Then

∫
Rn′

e−
π(‖x‖−c)2

σ2 + e−
π(‖x‖+c)2

σ2 dx ≥ σn
′
.

141



Proof. Let f(x) := e−
π(‖x‖−c)2

σ2 +e−
π(‖x‖+c)2

σ2 . Let r = ‖x‖. Since f is a radial function,

we slightly abuse notation and denote by f(r) := e−
π(r−c)2

σ2 +e−
π(r+c)2

σ2 . Now, we have

that ∫
Rn
′
f(x) dx = n′Vn′

∫ ∞
0

rn
′−1f(r) dr, (A2.1)

where Vn′ denotes the volume of n′-dimensional ball Vn′ = πn
′/2

Γ(1+n′/2)
. Since f is an

even function and n′ is odd, so rn
′−1 is an even function, we have that rn

′−1f(r) is

even and so ∫ ∞
0

rn
′−1f(r) dr = 1/2

∫ ∞
−∞

rn
′−1f(r) dr. (A2.2)

Let a = π/σ2. Since n′ is odd, we now have that

∫ ∞
−∞

e−a(r−c)2

rn
′−1 dr

=

∫ ∞
−∞

e−at
2

(t+ c)n
′−1 dt =

∫ ∞
−∞

e−at
2
n′−1∑
j=0

(
n′ − 1

j

)
cjtn

′−1−j dt

=
n′−1∑
j=0

(
n′ − 1

j

)
cj
∫ ∞
−∞

e−at
2

tn
′−1−j dt

=
n′−1∑
j=0

(
n′ − 1

j

)
cj

1

2
(−1)j

(
(−1)n

′+1 + (−1)j
)
a

1
2

(−n′+j)Γ

(
n′ − j

2

)

=

n′−1
2∑
j=0

(
n′ − 1

2j

)
c2ja

1
2

(−n′+2j)Γ

(
n′ − 2j

2

)

≥ a−
1
2
n′Γ

(
n′

2

)

Combining the above with (A2.1) and (A2.2) and substituting for a, we get that∫
Rn′

f(x) dx ≥ σn
′
, which completes the proof of the lemma.
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Proof of Theorem 5.11. Let N be the normalization of f(x) over n′ dimensions. We

have from Lemma A2.1 that N ≥ σn
′
Thus, it remains to show that for n′ := l ·2a+1

and c ≤ σ ·
√

2 ·
√
n′, f̂(y) ≤ σn

′ · n′5/4 · e−π‖y‖2σ2
.

Let r := ‖x‖, we slightly abuse notation and view f as a function of r, f(r) :=

e−
π(r−c)2

σ2 + e−
π(r+c)2

σ2 . Since Ψσ,c is a radial function, so is its Fourier transform, thus,

we again slightly abuse notation and view F := f̂ as a function of κ := ‖y‖. We may

now use the formula for the radial Fourier transform of an n′-dimensional, radial

function f to find F [65]:

F (κ) = κ
−(n′−2)

2 (2π)

∫ ∞
0

r
n′−2

2 f(r)Jn′−2
2

(2πκr)r dr, (A2.3)

where Jn′−2
2

denotes the Bessel function of the first kind of order n′−2
2

. The Bessel

function of first kind of order ν is defined as [112, Page 40]:

Jν(z) :=
∞∑
j=0

(−1)j(1
2
z)ν+2j

Γ(ν + j + 1)j!
. (A2.4)

For half-integer order ν := n + 1
2
, there is a closed-form representation of Jν .

Specifically, it can be expressed as [112, Page 298]:

Jn+ 1
2
(z) := Rn, 1

2
(z)

(
2

πz

) 1
2

sin z −Rn−1, 3
2
(z)

(
2

πz

) 1
2

cos z. (A2.5)

where Rn, 1
2
(z) and Rn−1, 3

2
(z) are Lommel polynomials defined as [112, Page

143



296]:

Rn,ν(z) =

[n/2]∑
j=0

(−1)j(n− j)!Γ(ν + n− j)
j!(n− 2j)!Γ(ν + j)

(z
2

)2j−n
, (A2.6)

where the [x] means the largest integer not exceeding x.

We now have:

|F (κ)| =

∣∣∣∣∣κ−(n′−2)
2 (2π)

∫ ∞
0

r
n′−2

2 f(r)Jn′−2
2

(2πκr)r dr

∣∣∣∣∣
=

∣∣∣∣∣κ−(n′−2)
2 (2π)

(∫ ∞
0

r
n′−2

2 f(r)

( [n
′−3
4

]∑
j=0

cj

(2πκr

2

)2j−n
′−3
2

)(
2

2π2κr

) 1
2

sin(2πκr)r dr−

∫ ∞
0

r
n′−2

2 f(r)

( [n
′−5
4

]∑
j=0

c′j

(2πκr

2

)2j−n
′−5
2

)(
2

2π2κr

) 1
2

cos(2πκr)r dr

)∣∣∣∣∣
≤ κ

−(n′−2)
2 (2π)

(∣∣∣∣∣∣∣
∫ ∞

0
r
n′−2

2 f(r)

( [n
′−3
4

]∑
j=0

cj

(2πκr

2

)2j−n
′−3
2

)(
2

2π2κr

) 1
2

sin(2πκr)r dr

∣∣∣∣∣∣∣+∣∣∣∣∣∣∣
∫ ∞

0
r
n′−2

2 f(r)

( [n
′−5
4

]∑
j=0

c′j

(2πκr

2

)2j−n
′−5
2

)(
2

2π2κr

) 1
2

cos(2πκr)r dr

∣∣∣∣∣∣∣
)
, (A2.7)

where the first equality follows from (A2.3), the second equality follows

from (A2.5), (A2.6) and the settings of cj :=
(−1)j(n

′−3
2
−j)!Γ( 1

2
+n′−3

2
−j)

j!(n
′−3
2
−2j)!Γ( 1

2
+j)

and c′j :=

(−1)j(n
′−5
2
−j)!Γ( 1

2
+n′−3

2
−j)

j!(n
′−5
2
−2j)!Γ( 1

2
+1+j)

.

In order to bound (A2.7), we will individually upper bound

I:

∣∣∣∣∣∣∣
∫ ∞

0

r
n′−2

2 f(r)

( [n
′−3
4

]∑
j=0

cj

(2πκr

2

)2j−n
′−3
2

)(
2

2π2κr

) 1
2

sin(2πκr)r dr

∣∣∣∣∣∣∣
and

II:

∣∣∣∣∣∣∣
∫ ∞

0

r
n′−2

2 f(r)

( [n
′−5
4

]∑
j=0

c′j

(2πκr

2

)2j−n
′−5
2

)(
2

2π2κr

) 1
2

cos(2πκr)r dr

∣∣∣∣∣∣∣ .
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Recalling that f(r) = e−
π(r−c)2

σ2 + e−
π(r+c)2

σ2 , we have that

II =

∣∣∣∣∣∣∣
∫ ∞

0
r
n′−2

2 f(r)

( [n
′−5
4

]∑
j=0

c′j

(2πκr

2

)2j−n
′−5
2

)(
2

2π2κr

) 1
2

cos(2πκr)r dr

∣∣∣∣∣∣∣
= 1/2

∣∣∣∣∣∣∣
∫ ∞
−∞

r
n′−2

2 f(r)

( [n
′−5
4

]∑
j=0

c′j

(2πκr

2

)2j−n
′−5
2

)(
2

2π2κr

) 1
2
(
ei2πκr + e−i2πκr

2

)
r dr

∣∣∣∣∣∣∣
= 1/2

(
1

4π2κ

) 1
2

∣∣∣∣∣∣∣
∫ ∞
−∞

r
n′−1

2 f(r)

( [n
′−5
4

]∑
j=0

c′j

(2πκr

2

)2j−n
′

2
+ 5

2

)
(ei2πκr + e−i2πκr) dr

∣∣∣∣∣∣∣
≤ 1/2

(
1

4π2κ

) 1
2

[n
′−5
4

]∑
j=0

|c′j |
(
πκ
)2j−n

′
2

+ 5
2

∣∣∣∣∣
∫ ∞
−∞

r2j+2
(
e
−π(r−c)2

σ2 + e
−π(r+c)2

σ2

)
(ei2πκr + e−i2πκr) dr

∣∣∣∣∣ , (A2.8)

where the second equality follows since f(r) is an even function, cos(2πκr) is an

even function and for n′ = l · 2a + 1, all powers of r in the integrand are even, which

means that the entire integrand is an even function.

To compute an upper bound on

∣∣∣∣∫ ∞
−∞

r2j+2
(
e−

π(r−c)2

σ2 + e−
π(r+c)2

σ2

)
(ei2πκr + e−i2πκr) dr

∣∣∣∣ (A2.9)

as above, we integrate each term separately. Since the analysis is essentially the same

for each term, we focus on upper bounding the term A :=

∣∣∣∣∫∞−∞ e−π(r−c)2

σ2 ei2πκr dr

∣∣∣∣ =∣∣∣e−πκ2σ2+2πiκc
∫∞
−∞ e

−πσ−2(r−(c+iκσ2))2
dr
∣∣∣:
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A =
∣∣∣e−πκ2σ2+2πiκc

∣∣∣ · ∣∣∣∣∫ ∞
−∞

r2j+2e−πσ
−2(r−(c+iκσ2))2

dr

∣∣∣∣
≤ e−πκ

2σ2

∣∣∣∣∫ ∞
−∞

( σ√
π
r′ + (c+ iκσ2)

)2j+2

e−r
′2 σ√

π
dr′
∣∣∣∣

= e−πκ
2σ2

∣∣∣∣∫ ∞
−∞

σ2j+2
( 1√

π
r′ + (

c

σ
+ iκσ)

)2j+2

e−r
′2 σ√

π
dr′
∣∣∣∣

≤ e−πκ
2σ2

∣∣∣∣∫ ∞
−∞

σ2j+2
( 1√

π
r′ + (

c

σ
+ κσ)

)2j+2

e−r
′2 σ√

π
dr′
∣∣∣∣

≤ e−πκ
2σ2
( σ√

π

)2j+3( c
σ

+ κσ
)2j+2

(
2j + 2

j + 1

)∫ ∞
−∞

r′2j+2e−r
′2

dr

≤ e−πκ
2σ2
( σ√

π

)2j+3( c
σ

+ κσ
)2j+2

(
2j + 2

j + 1

)
1

2
(1 + (−1)2j)Γ

(3

2
+ j
)

≤ e−πκ
2σ2
( σ√

π

)2j+3( c
σ

+ κσ
)2j+2

(
2j + 2

j + 1

)
Γ
(3

2
+ j
)

Thus, we have that

(A2.9) ≤
( σ√

π

)2j+3

e−πκ
2σ2

Γ(
3

2
+ j)

(
2j + 2

j + 1

)[
4(
c

σ
+ κσ)2j+2

]

Plugging the above back into (A2.8), and recalling that |c′j| =
(n
′−5
2
−j)!Γ( 1

2
+n′−3

2
−j)

j!(n
′−5
2
−2j)!Γ( 1

2
+1+j)

,

we have that

II ≤ 1/2

(
1

4π2κ

) 1
2

[n
′−5
4

]∑
j=0

|c′j |
(
πκ
)2j−n

′
2

+ 5
2
( σ
√
π

)2j+3
e−πκ

2σ2
Γ(

3

2
+ j)

(2j + 2

j + 1

)2( c
σ

)2j+2(
κσ
)2j+2

≤ 1/2

(
1

2π

)
e−πκ

2σ2
[n
′−5
4

]∑
j=0

(π)j−
n′
2

+1
(n′−5

2
− j

j

)(2j + 2

j + 1

)2

Γ
(n′

2
− 1− j

)
σ2j+3 c2j+2

(
κ
)4j−n

′
2

+4

≤ 1/2

(
1

2π

)
e−πκ

2σ2
(
n′ · 2

n′
2 · n′

n′
2

) [n
′−5
4

]∑
j=0

σ2j+3 c2j+2
(
κ
)4j−n

′
2

+4

Where the last inequality follows since
(
n
i

)
≤ 2n and n! ≤ nn. We now turn to
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upper-bounding I. Recalling that f(r) = e−
π(r−c)2

σ2 + e−
π(r+c)2

σ2 , we have that

I =

∣∣∣∣∣∣∣
∫ ∞

0
r
n′−2

2 f(r)

( [n
′−3
4

]∑
j=0

cj

(2πκr

2

)2j−n
′−3
2

)(
2

2π2κr

) 1
2

sin(2πκr)r dr

∣∣∣∣∣∣∣
= 1/2

∣∣∣∣∣∣∣
∫ ∞
−∞

r
n′−2

2 f(r)

( [n
′−3
4

]∑
j=0

cj

(2πκr

2

)2j−n
′−3
2

)(
2

2π2κr

) 1
2
(
ei2πκr − e−i2πκr

2i

)
r dr

∣∣∣∣∣∣∣
≤ 1/2 ·

(
1

4π2κ

) 1
2

∣∣∣∣∣∣∣
∫ ∞
−∞

r
n′−1

2 f(r)

( [n
′−3
4

]∑
j=0

cj

(2πκr

2

)2j−n
′−3
2

)
(ei2πκr − e−i2πκr) dr

∣∣∣∣∣∣∣
≤ 1/2 ·

(
1

4π2κ

) 1
2

[n
′−3
4

]∑
j=0

|cj |
(
πκ
)2j−n

′
2

+ 3
2

∣∣∣∣∣
∫ ∞
−∞

r2j+1
(
e
−π(r−c)2

σ2 + e
−π(r+c)2

σ2

)
(ei2πκr − e−i2πκr) dr

∣∣∣∣∣ ,
(A2.10)

where the second equality follows since f(r) is an even function, sin(2πκr) is

an odd function and for n′ = l · 2a + 1, all powers of r in the integrand are odd,

which means that the entire integrand is an even function.

To compute an upper bound on

∫ ∞
−∞

r2j+1
(
e−

π(r−c)2

σ2 + e−
π(r+c)2

σ2

)
(ei2πκr − e−i2πκr) dr (A2.11)

as above, we integrate each term separately. Since the analysis is essentially

the same for each term, we focus on the term B :=

∣∣∣∣∫∞−∞ e−π(r−c)2

σ2 ei2πκr dr

∣∣∣∣ =∣∣∣e−πκ2σ2+i2πκc
∫∞
−∞ e

−πσ−2(r−(c+iκσ2))2
dr
∣∣∣:
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B =
∣∣∣e−πκ2σ2+i2πκc

∣∣∣ · ∣∣∣∣∫ ∞
−∞

r2j+1e−πσ
−2(r−(c+iκσ2))2

dr

∣∣∣∣
≤ e−πκ

2σ2

∣∣∣∣∫ ∞
−∞

r2j+1e−πσ
−2(r−(c+iκσ2))2

dr

∣∣∣∣
= e−πκ

2σ2

∣∣∣∣∫ ∞
−∞

( σ√
π
r′ + (c+ iκσ2)

)2j+1

e−r
′2 σ√

π
dr′
∣∣∣∣

≤ e−πκ
2σ2

∣∣∣∣∫ ∞
−∞

( σ√
π
r′ + (c+ κσ2)

)2j+1

e−r
′2 σ√

π
dr′
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≤ e−πκ
2σ2

(
σ√
π

)2j+2( c
σ

+ κσ
)2j+1

(
2j + 1

j + 1

)∫ ∞
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r′2je−r
′2

dr

≤ e−πκ
2σ2

(
σ√
π

)2j+2( c
σ

+ κσ
)2j+1

(
2j + 1

j + 1

)
1

2
(1 + (−1)2j)Γ

(1

2
+ j
)

≤ e−πκ
2σ2

(
σ√
π

)2j+2( c
σ

+ κσ
)2j+1

(
2j + 1

j + 1

)
Γ
(1

2
+ j
)

Thus, we have that

(A2.11) ≤
(
σ√
π

)2j+2

e−πκ
2σ2

Γ(
1

2
+ j)

(
2j + 1

j + 1

)[
4(
c

σ
+ κσ)2j+1

]

Plugging the above back into (A2.10), and recalling that |cj| =
(n
′−3
2
−j)!Γ( 1

2
+n′−3

2
−j)

j!(n
′−3
2
−2j)!Γ( 1

2
+j)

, we have that

I ≤ 1/2
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1

4π2κ

) 1
2
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4
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+ 3
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(
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Where the last inequality follows since
(
n
i

)
≤ 2n and n! ≤ nn. Finally, plugging
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into (A2.7), and recalling that c ≤ σ ·
√

2 ·
√
n′ and κ > 1

σ
, we obtain:

|F (κ)| ≤ 1/2 e−πκ
2σ2

(
n′ · 2

n′
2 · n′

n′
2

)( [n
′−5
4

]∑
j=0

σ2j+3 c2j+2 κ4j−n′+5 +

[n
′−3
4

]∑
j=0

σ2j+2 c2j+1 κ4j−n′+4

)

≤ σn
′
· n′n

′
· e−πκ

2σ2
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[8] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
NewHope without reconciliation. Cryptology ePrint Archive, Report
2016/1157, 2016. http://eprint.iacr.org/2016/1157.
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[24] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig,
Valeria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take
off the ring! Practical, quantum-secure key exchange from LWE. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and
Communications Security, pages 1006–1018, Vienna, Austria, October 24–28,
2016. ACM Press.

[25] Joppe W. Bos, Simon Friedberger, Marco Martinoli, Elisabeth Oswald, and
Martijn Stam. Assessing the feasibility of single trace power analysis of frodo.
In SAC, 2018.

152

http://eprint.iacr.org/2006/214


[26] Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient signatures.
Journal of Cryptology, 26(3):513–558, July 2013.

[27] Zvika Brakerski, Yael Tauman Kalai, Jonathan Katz, and Vinod Vaikun-
tanathan. Overcoming the hole in the bucket: Public-key cryptography re-
silient to continual memory leakage. In 51st Annual Symposium on Founda-
tions of Computer Science, pages 501–510, Las Vegas, NV, USA, October 23–
26, 2010. IEEE Computer Society Press.

[28] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien
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