
ABSTRACT

Title of Dissertation: SOCIAL ASPECTS OF ALGORITHMS: FAIRNESS,
DIVERSITY, AND RESILIENCE TO STRATEGIC
BEHAVIOR

Saba Ahmadi
Doctor of Philosophy, 2021

Dissertation Directed by: Professor Samir Khuller
Department of Computer Science

With algorithms becoming ubiquitous in our society, it is important to

ensure that they are compatible with our social values. In this thesis, we

study some of the social aspects of algorithms including fairness, diversity,

and resilience to strategic behavior of individuals.

Lack of diversity has a potential impact on discrimination against marginal-

ized groups. Inspired by this issue, in the first part of this thesis, we study a

notion of diversity in bipartite matching problems. Bipartite matching where

agents on one side of a market are matched to one or more agents or items

on the other side, is a classical model that is used in myriad application areas

such as healthcare, advertising, education, and general resource allocation. In

particular, we consider an application of matchings where a firm wants to hire,

i.e. match, some workers for a number of teams. Each team has a demand

that needs to be satisfied, and each worker has multiple features (e.g., country

of origin, gender). We ask the question of how to assign workers to the teams

in an efficient way, i.e. low-cost matching, while forming diverse teams with

respect to all the features. Inspired by previous work, we balance whole-match

diversity and economic efficiency by optimizing a supermodular function over

the matching. Particularly, we show when the number of features is given as

part of the input, this problem is NP-hard, and design a pseudo-polynomial

time algorithm to solve this problem.

Next, we focus on studying fairness in optimization problems. Particu-

larly, in this thesis, we study two notions of fairness in an optimization problem

called correlation clustering. In correlation clustering, given an edge-weighted

graph, each edge in addition to a weight has a positive or negative label.

The goal is to obtain a clustering of the vertices into an arbitrary number

of clusters that minimizes disagreements which is defined as the total weight

of negative edges trapped inside a cluster plus the sum of weights of positive

edges between different clusters. In the first fairness notion, assuming each

node has a color, i.e. feature, our aim is to generate clusters with minimum

disagreements, where the distribution of colors in each cluster is the same as

the global distribution. Next, we switch our attention to a min-max notion

of fairness in correlation clustering. In this notion of fairness, we consider a

cluster-wise objective function that asks to minimize the maximum number of

disagreements of each cluster. In this notion, the goal is to respect the quality

of each cluster. We focus on designing approximation algorithms for both of

these notions.

In the last part of this thesis, we take into consideration, the vulnerability

of algorithms to manipulation and gaming. We study the problem of how to

learn a linear classifier in presence of strategic agents that desire to be classified

as positive and that are able to modify their position by a limited amount,

making the classifier not be able to observe the true position of agents but

rather a position where the agent pretends to be. We focus on designing

algorithms with a bounded number of mistakes for a few different variations

of this problem.

SOCIAL ASPECTS OF ALGORITHMS: FAIRNESS,
DIVERSITY, AND RESILIENCE TO STRATEGIC

BEHAVIOR

by

Saba Ahmadi

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2021

Advisory Committee:
Professor Samir Khuller, Chair/Advisor
Professor Avrim Blum
Professor John P. Dickerson
Professor David Mount
Professor Louiqa Raschid

c© Copyright by
Saba Ahmadi

2021

Acknowledgments

First and foremost, I would like to thank my advisor Samir Khuller for

his constant and reliable support during my PhD. Under his guidance I grew

up to be a better researcher. Despite being the department chair, he has

always made himself available for help and advice. Especially I would like to

thank him for letting me patiently to explore a wide range of research. I have

been extremely fortunate to have him as an advisor, mentor and a friend.

I want to thank my committee members Avrim Blum, John P. Dickerson,

David Mount, and Louiqa Raschid for serving as my thesis committee. Avrim

has been a great mentor, and his valuable insights, and his ability to explain

difficult concepts intuitively has helped me a lot. I would also like to thank

him for hosting me as an intern. John always makes himself available for

help and advice to the students, and it was a pleasure to work with him. I

am thankful to Barna Saha for hosting me for a visit to the University of

Massachusetts Amherst. During that visit, I got interested into the problem

of correlation clustering which eventually resulted into the Chapters 3 and 4.

I would like to thank Alejandro A. Schaffer and Eytan Ruppin for introducing

ii

me to the area of cancer research. All of this work would not have been possible

without my other amazing collaborators, Faez Ahmed, Natalie Artzi, Hedyeh

Beyhaghi, Mark Fuge, Sainyam Galhotra, Manish Purohit, Keziah Naggita,

Roy Schwartz, Pattara Sukprasert, Rahulsimham Vegesna, and Sheng Yang.

Special thanks to Niklas Karlossn for hosting me as an intern.

I am thankful to the other members of the theory group. Especially, I

am thankful to my labmates, Ioana Bercea, Brian Brubach, Aounoun Kumar,

Saurabh Kumar, Manish Purohit, and Pattara Sukprasert, and Sheng Yang for

their friendship, and interesting discussions. I would like to convey my warm

regards to the entire staff of the Computer Science department, in particular

- Tom Hurst, Jodie Gray, Sharron McElroy, and Adelaide Findlay, for their

support.

During the past two years, I was visiting the Computer Science Depart-

ment at Northwestern University. I would like to thank the theory group at

Northwestern University for their friendly and welcoming environment. I am

thankful to the department staff at Northwestern University for their help

during my visit.

A huge thanks to my beloved friends Ali, Alireza, Amin, Hadi, Hamed,

Hamid, Hedyeh, Jerry, Kiana, Mahsa, Parsa, Saeed, Soheil for making some

of the dearest of my memories during the past few years.

iii

My deepest gratitude to my family Parvin, Asghar and Bahar for their

everlasting love and support.

iv

Table of Contents

Acknowledgements ii

List of Tables viii

List of Figures ix

Chapter 1:Introduction 1
1.1 Diverse Matching . 3
1.2 Fair Correlation Clustering . 4
1.3 Min-max Correlation Clustering via MultiCut 7
1.4 The Strategic Perceptron . 8

Chapter 2:Diverse Matchings 10
2.1 Introduction . 10
2.2 Related Work . 13
2.3 Preliminaries . 16
2.4 Negative-Cycle-Detection-based Algorithms 24
2.5 Proof of Optimality . 27
2.6 Diverse Weighted Bipartite b-Matching 32
2.7 Experimental Validation & Discussion 33
2.8 Authors . 36

Chapter 3:Fair Correlation Clustering 38
3.1 Introduction . 38

Contributions & Roadmap . 42
3.2 Related Work . 46
3.3 Preliminaries . 48
3.4 Warmup: 2 Colors with Ratio 1:1 49
3.5 Generalization . 54

Two Colors with Ratio 1:p . 54
Multiple Colors . 58

v

Avoiding Over-representation 61
Hardness . 69

3.6 Experiments . 72
Solution Quality . 74

3.7 Authors . 76

Chapter 4:Min-Max Correlation Clustering via MultiCut 77
4.1 Introduction . 77
4.2 Results & High-Level Ideas . 80

High-Level Ideas . 83
4.3 Min-Max Multicut . 86

SDP Relaxation . 89
Approximation Algorithm . 91
Analysis . 92
Covering & Aggregation . 98

4.4 Analysis of Algorithm for Min-Max Correlation Clustering . . 103
4.5 Min-Max Correlation Clustering and Min-Max Multicut in Minor-

Closed Graph Families . 108
4.6 Min-Max Correlation Clustering on Complete Graphs 112

Approximation Algorithm . 114
Rounding Algorithm for a particular guess 117
Covering and Partitioning . 121

4.7 Authors . 122

Chapter 5:The Strategic Perceptron 124
5.1 Introduction . 124
5.2 Model and Preliminaries . 132

Model . 133
Non-Strategic Setting and the Perceptron Algorithm 135
Failure of the Perceptron Algorithm in Strategic Settings . . . 136

5.3 Known `2 Costs . 140
5.4 Known Weighted `1 Costs . 147
5.5 Unknown Costs . 154

`2 Costs . 155
Weighted `1 Costs . 162

5.6 Different Costs . 162
5.7 Target Classifier Not Crossing the Origin 164
5.8 Conclusions and Open Problems 169
5.9 Authors . 173

vi

Chapter 6:Conclusion 174

Bibliography 178

vii

List of Tables

2.1 Matrix representation of three teams and workers from two
countries and two genders. Dummy team T0 accommodates
unassigned workers. Arrows represent a local exchange. 22

2.2 Matrix representation embedding w.r.t country. 22
2.3 Matrix Representation Embedding w.r.t to gender. 23
2.4 Maximal cycle decomposition 28
2.5 Comparison of MIQP and our method for UIUC reviewer dataset

with each paper needing 4 reviewers. 37

viii

List of Figures

2.1 An illustrative example of single feature diverse matching (left)
versus multi-feature diverse matching (right); here, the match-
ing creates teams with workers from each country and gender. 11

2.2 Local exchange operation (in matching representation). 23
2.3 A local Exchange in graph representation. 27

3.1 Example set of matched nodes for our algorithm. 52
3.2 Red edges have negative labels, and black edges have positive

labels. 70
3.3 Comparison of total disagreements for the different baselines

with a constraint of ratio of two colors to be between 1:1 and 1:2. 74
3.4 Distribution of nodes of different colors in top 5 clusters gener-

ated by the algorithms. 75
3.5 Comparison of clusters returned by our algorithm and baselines

for instances with more than two colors for Adult dataset. We
omit CCMerge as it does not generate fair clusters. 75

5.1 Example 1 shows the classic Perceptron algorithm can make
an unbounded number of mistakes in the strategic setting. . . 138

5.2 Example 2 shows the non-zero threshold Perceptron algorithm
can make an unbounded number of mistakes in the strategic
setting. 139

5.3 Strategic Perceptron with known manipulation cost. The dashed
line represents the manipulation hyperplane discussed in Ob-
servation 1. The margin of width α is the forbidden region,
discussed in Observation 2. 140

5.4 Strategic Perceptron with unknown manipulation cost, when
α ≥ α′. The top dashed line represents the manipulation hy-
perplane. The margin between the two dashed lines represents
the forbidden region. 155

ix

5.5 Example 3 shows Algorithm 9 makes an unbounded number of
mistakes, where there is a separator with bounded hinge-loss.
The dotted line in each figure shows the current w, and the solid
line shows the current classifier. The arrows show the positive
direction of each classifier. 172

x

1 Introduction

Algorithms are used ubiquitously in everyday life. They are used to make

high-stakes decisions, for example, assessing credit score of a loan application,

or evaluating job applicants. As a result, it is important to ensure these

algorithms are compatible with social values. In this thesis, we take a step

towards designing a few algorithmic paradigms while trying to address some

key social concerns including fairness, diversity, and resilience to the strategic

behavior of individuals.

Algorithmic fairness has gotten increasingly more important as more

decisions are made by automated systems. Algorithms have been used tradi-

tionally for the purpose of credit decisions [1], and more recently for hiring

decisions [2], and criminal justice sentencing [3]. Many automated algorithms

were shown to have implicit biases against certain demographics [2]. Due to

their growing impact on different aspects of everyday life, it is crucial to focus

on designing algorithms that are inclusive, unbiased, and helpful to the entire

1

population.

Lack of diversity in team formation has a potential impact on discrimina-

tion against marginalized groups. When a homogenous team produces a tech-

nology, their outcome best serves a specific population. For example, Google

searches have displayed less well-paid jobs to women compared to men [4].

Sometimes automated decision systems are made by learning from data that

comes from society and has its own built-in biases. One way of mitigating in-

herent biases is to form a diverse team working on designing such algorithms

to ensure our own privileged position does not make us completely blind to

the experiences of others.

Another growing concern with respect to automated algorithms is their

vulnerability to manipulation and gaming. When individuals have information

about a decision rule, they may try to alter their attributes even artificially to

achieve a better outcome. For example, consider the credit score system in the

United States, where individuals participate in artificial actions like opening

multiple credit lines in order to improve their credit score. As a result, it is

important to design algorithms that are resilient to the strategic behavior of

individuals.

In this dissertation we take an algorithmic approach towards increasing

fairness, diversity, and resilience to the strategic behavior of individuals. The

2

following sections describe the problems that we consider and give a brief

overview of our contributions and techniques.

1.1 Diverse Matching

Many applications of automated algorithms can be captured as a bi-

partite matching problem, e.g. healthcare, advertising, and general resource

allocation. Ahmed et al. [5] introduced the notion of diverse bipartite b-

matchings where the goal is to simultaneously maximize the efficiency of an

assignment along with its diversity. For example, a firm might want to hire

several highly skilled workers, but if that firm also cares about diversity it may

want to ensure that some of those hires occur across marginalized categories of

employees. They captured this problem as optimizing a submodular function

over the matching.

In Chapter 2, we generalize the diverse matching problem and introduced

matchings where each worker has multiple features (e.g., country of origin, gen-

der) and our goal is to form diverse teams with respect to all these features.

We show that unlike maximizing diversity along a single feature, the problem

of simultaneously maximizing diversity along several features (e.g., country of

citizenship, gender, skills) when the number of features is part of the input is

3

NP-hard. Next, we provide the first pseudo-polynomial time algorithm for the

diverse bipartite b-matching with respect to multiple features problem with

class-specific weights. That is, under conditions when the cost of assigning all

items from one feature set to an item on the other side of the graph is the

same. The key insight lies in detecting negative cycles in an auxiliary graph

representation, which we use to either provide incremental improvements to

the incumbent diverse matching or prove that our negative-cycle-detection

algorithms have found a globally-optimal matching. We then extend the algo-

rithm to the diverse bipartite b-matching problems with general edge weights,

where edge weights of nodes within a category can be different. Lastly, we

demonstrate our algorithm’s applicability to a multi-aspect review assignment

evaluation dataset [6], a benchmark dataset from UIUC, and show our algo-

rithm takes less time to converge to an optimal solution than a proposed Mixed

Integer Quadratic Programming approach (using a state-of-the-art commercial

solver).

1.2 Fair Correlation Clustering

Many of the typical application scenarios where fairness has been iden-

tified to be crucial (e.g. lending, marketing, job selection etc.) requires clus-

4

tering large datasets with sensitive features. These datasets often come as a

network. In order to incorporate fairness into clustering, the seminal work by

Chierichetti et al. [7] proposed that each cluster has proportional represen-

tation from different demographic groups. They designed new approximation

algorithms for the classic k-center and k-median clustering objectives with this

notion of fairness. The fairness notion for k-center and k-median was further

refined by Bercea et al. [8] and Bera et al. [9] by making sure that the demo-

graphic distribution of each cluster is the same as the global distribution of

the demographics.

We considered a fair variant of the classic optimization problem of corre-

lation clustering [10]. In the classic correlation clustering problem introduced

by Bansal et al. [11], we are given a complete graph where each edge is labeled

positive or negative. The goal is to obtain a clustering of the vertices that min-

imizes disagreements – the number of negative edges trapped inside a cluster

plus positive edges between different clusters. Correlation clustering has many

applications in social network analysis, data mining, computational biology,

business and marketing [12–14]. In our work, our aim is to generate clusters

with minimum disagreements, where the distribution of a feature (e.g. gender)

in each cluster is same as the global distribution. For the case of two colors

when the desired ratio of the number of colors in each cluster is 1 to p, we get

5

O(p2)-approximation algorithm. When there exists more than one color and

the ratio of the number of nodes of color c1 to color ci is 1 : pi (∀1 < i ≤ |C|),

where pi ∈ Z≥1, we propose an algorithm where the distribution of colors in

each cluster is the same as the global distribution, and the total number of

disagreements is at most O((max
|C|
i=1{pi})2 · |C|2) · OPT . Next, we show how

to avoid over-representation of any color in each cluster. For the case of two

colors, given two ratios 1 : p and 1 : q, we propose an algorithm that gives a

clustering where the ratio of number of red nodes to blue nodes in each cluster

is between 1 : q and 1 : p, and the total number of disagreements is at most

O(q2) · OPT . When there exists more than one color and the ratio of the

number of nodes of color c1 to color ci needs to be between 1 : qi and 1 : pi

where pi, qi ∈ Z≥1, pi ≤ qi, we propose an algorithm that gives a clustering

where ∀1 < i ≤ |C|, the ratio of number of nodes of color c1 to color ci in each

cluster is between 1 : qi and 1 : pi, and the total number of disagreements is

at most O((max
|C|
i=1{qi})2) ·OPT .

6

1.3 Min-max Correlation Clustering via

MultiCut

In Chapter 4, we consider a different notion of group fairness for cor-

relation clustering. We define a cluster-wise objective function that asks to

minimize the maximum number of disagreements of each cluster. This cap-

tures the case when we wish to create communities that are harmonious, as

minimizing the total number of disagreements could create an imbalanced com-

munity structure. This new local objective guarantees fairness to communities

instead of individuals.

In recent work, Puleo and Milenkovic [15] introduced a local vertex-

wise min-max objective for correlation clustering which bounds the maximum

number of disagreements on each node. This problem arises in many commu-

nity detection applications in machine learning, social sciences, recommender

systems and bioinformatics [16–18]. This objective function makes sure each

individual has a minimum quality within the clusters. They showed this prob-

lem is NP-hard even on un-weighted complete graphs, and developed an O(1)

approximation algorithm for unweighted complete graphs. Charikar et al. [19]

improved upon the work by Puleo et al. [15] for complete graphs by giving a

7

7-approximation. For general weighted graphs, their approximation bound is

O(
√
n) where n is the number of vertices. Kalhan et al. [20] later improved

the bound for complete graphs to 5-approximation.

For the cluster-wise objective, we provide the first nontrivial approxima-

tion algorithm for this problem achieving anO(
√

log n ·max{log(|E−|), log(k)})

approximation for general weighted graphs, where |E−| denotes the number of

negative edges and k is the number of clusters in the optimum solution. To do

so, we also obtain a corresponding result for multicut where we wish to find

a multicut solution while trying to minimize the total weight of cut edges on

every component. The results are then further improved to obtain (i) O(r2)-

approximation for min-max correlation clustering and min-max multicut for

graphs that exclude Kr,r minors (ii) a 14-approximation for the min-max cor-

relation clustering on complete graphs.

1.4 The Strategic Perceptron

Automated classification systems make decisions based on perceived at-

tributes of individuals. However, when individuals have information about the

classifier, they may try to alter their attributes even artificially to achieve a

better outcome. In Chapter 5, we consider the problem of learning a linear

8

classifier in presence of strategic agents. Consider the problem of learning a

linear classifier when the data is unmanipulated and linearly separable, i.e.

the feature space is divided into two half spaces with positive data points in

one and negative data points in the other, and a nonzero margin between

them. In this scenario, the Perceptron algorithm learns a linear classifier in

a bounded number of mistakes. When individuals can manipulate, in each

step, an individual with feature vector z that is not classified as positive, may

prefer to pay a cost and pretend to have feature vector x, if x gets classified as

positive. The cost function can be either `2 or `1. In the former case, the cost

is proportional to the Euclidean distance between z and x. In the latter case,

we assume agents can move along specific directions, and the total cost that

needs to be paid for reaching from z to x is a weighted function of separate

costs in each direction.

In Chapter 5, first we show that the original Perceptron algorithm fails

to learn a linear classifier when individuals can manipulate their attributes

even when a perfect classifier under manipulation exists. Next, we propose an

algorithm robust to manipulation that finds a linear classifier in a bounded

number of mistakes, for both scenarios when the cost of manipulation is `2 or

weighted `1. Finally, we generalize our algorithm to the setting with unknown

manipulation costs in the `2 case.

9

2 Diverse Matchings

2.1 Introduction

The bipartite matching problem occurs in many applications such as

healthcare, advertising, and general resource allocation. Weighted bipartite b-

matching is a generalization of this problem where each node on one side of the

market can be matched to many items from the other side, and where edges

may also have associated real-valued weights. Examples of weighted bipartite

b-matching include medical interns or residents to hospitals [21], assigning

children to schools [22,23], reviewers to manuscripts [24,25], and donor organs

to patients [26, 27].

Ahmed et al. [28] introduced the notion of diverse bipartite b-matching,

where the goal was to simultaneously maximize the “efficiency” of an assign-

ment along with its “diversity.” For example, a firm might want to hire several

highly skilled workers, but if that firm also cares about diversity, it may want

10

!"#$!

!"#$"

%&'()*+#

%&'()*+$

!"#$!

!"#$"

%&'()*+#

%&'()*+$

Figure 2.1: An illustrative example of single feature diverse matching (left)
versus multi-feature diverse matching (right); here, the matching creates teams
with workers from each country and gender.

to ensure that some of those hires occur across marginalized categories of em-

ployees. They proposed an objective which combined economic efficiency and

diversity demonstrating that, in practice, reducing the efficiency of a match-

ing by small amounts can often lead to significant gains in diversity across

a matching. However, their formulation was limited to diversity for a single

feature. It also relied on solving a general Mixed-Integer Quadratic Program

(MIQP), which is flexible but computationally intractable.

In this work, we generalize the diverse matching problem and introduce

matchings where each worker has multiple features (e.g., country of origin,

gender) and our goal is to form diverse teams with respect to all these features.

We found that the problem with a single feature, studied by Ahmed et al. [28],

can be reduced to a minimum quadratic cost maximum flow formulation and

solved in polynomial time by an existing algorithm designed by Minoux [29].

In contrast, we provide NP-hardness results for the general case of multiple

11

features.

Our contributions. Our main contributions are as following:

• We provide the first pseudo-polynomial time algorithm for the diverse bipar-

tite b-matching w.r.t. multiple features problem with class-specific weights.1

The key insight lies in detecting negative cycles in an auxiliary graph repre-

sentation, which we use to either provide incremental improvements to the

incumbent diverse matching or prove that our negative-cycle-detection algo-

rithms have found a globally-optimal matching. We also provide a general

MIQP formulation for this problem.

• We then extend the algorithm to the diverse bipartite b-matching problems

with general edge weights, where edge weights of nodes within a category

can be different.

• Lastly, we demonstrate our algorithm’s applicability to paper-reviewer match-

ing. Our algorithm takes less time to converge to an optimal solution than

the proposed MIQP approach (using a state-of-the-art commercial solver).

1That is, under conditions when the cost of assigning all items from one feature set to
an item on the other side of the graph is the same. This holds when, e.g., one is matching
academic papers to reviewers where each reviewer can specify exactly one field of expertise
and the cost of assigning a paper to any of the reviewers within the same field is the same
but differs across fields.

12

2.2 Related Work

Matching people to form diverse teams leverages the intersection of two

past areas of research: the role of team diversity in collaborative work and

how diversity among groups of resources is measured and used to form/match

teams. Compared to related work, our work provides a practical, high-performing

method to perform diverse b-matching that can enable applications like diverse

team formation or diverse resource allocation. Below we will use the example

of diverse team formation (for example, in project teams within a company)

to provide a concrete example to place prior work in context; however, our

proposed approach is generally applicable to any diverse matching problem.

In the example of forming teams, the traditional approach is to use

weighted bipartite b-matching (WBM) methods [30]. These methods maximize

the total weight of the matching while satisfying some constraints. However,

there are two major issues with these approaches. First, it assumes that the

value provided by a person in a team is always fixed and independent of who

else is in the team. This assumption may not hold in many cases. A new team

member may provide more added value to the team if she is added to a smaller

team compared to the case if she is added to a larger team. This property of

diminishing marginal utility can be mathematically captured by a family of

13

functions called submodular functions, which we define later. Second, existing

approaches do not account for diversity within a team, where teams with

workers from different backgrounds may be desirable. For example, different

types of worker diversity have a direct impact on the success rate of tasks [31].

Likewise, firms with a higher number of employees with higher education and

diversity in the types of educations have a higher likelihood of innovating [32]

and increasing revenue for firms [33]. In this chapter, we address both these

issues.

Past researchers have generally measured diversity by defining some no-

tion of coverage—that is, a diverse set is one that covers the space of available

variation. Mathematically, researchers have done so via the use of submodular

functions, which encode the notion of diminishing returns [34]; that is, as one

adds items to a set that are similar to previous items, one gains less utility if

the existing items in the set already “cover” the characteristics added by that

new item. For example, many previous diversity metrics used in the informa-

tion retrieval or search communities—including Maximum Marginal Relevance

(MMR) [35] and Determinantal Point Processes [36]—are instances of submod-

ular functions. These functions can model notions of coverage, representation,

and diversity [37] and they have been shown to achieve top results on com-

mon automatic document summarization benchmarks—e.g., at the Document

14

Understanding Conference [34].

Within matching, our work is closest to that of Ahmed et al. [28], which

used a supermodular function to propose a diverse matching optimization

method. Other researchers have also approached similar problems, with di-

versity either as an objective or as a constraint. For instance, Gölz and Pro-

caccia [38] match migrants to localities in a way that maximizes the expected

number of migrants who find employment. Benabbou et al. [39] study the

trade-off between diversity and social welfare for the Singapore housing al-

location. They model the problem as an extension of the classic assignment

problem, with additional diversity constraints. Lian et al. [40] solve the as-

signment problem when preferences from one side over the other side are given

and both sides have capacity constraints. They use order weighted averages

to propose a polynomial-time algorithm which leads to high quality and more

fair assignments. Agrawal et al. [41] show that a simple iterative propor-

tional allocation algorithm can be tuned to produce maximum matching with

high entropy. Finally, Kobren et al. [42] proposed two fairness-promoting

algorithms for the paper-reviewer matching problem. They demonstrate that

their algorithm achieves higher utility compared to state of the art matching

algorithms that optimize for fairness only. In contrast, our goal is to develop

an algorithm for finding the optimal assignment which maximizes utility as

15

well as diversity along multiple features as an objective—along with having

constraints on workload.

We define a utility function that can be tuned to balance the diversity and

total weight of matching. The diversity function is inspired by the Herfindahl

index [43], which is a statistical measure of concentration and commonly used

in economics. We provide a new algorithm that models the problem using

an auxiliary graph and uses a heuristic improvement of the negative cycle

detection of Bellman-Ford by Goldberg and Radzik [44]2 to find negative cycles

and cancel them on a new graph to obtain an optimal solution for the original

problem.

2.3 Preliminaries

In this section, we first define the preliminaries for a diverse matching

problem, where workers are to be matched to teams and each team wants

workers belonging to a diverse set of features. In our problem, we are given a

set of features for the workers. Let F = {f1, · · · , f|F|} denote the feature set

for the workers. An example of a feature set could be {country of citizenship,

gender}. Each feature fk ∈ F has one of the values Fk = {fk,1, · · · , fk,|Fk|}.
2We used the negative cycle detection algorithm by [44]. Cherkassky et al. [45] com-

pared the performance of multiple negative cycle detection algorithms, and the algorithm
by Goldberg and Radzik [44] was one of the fastest.

16

Let |Fk,k′ | denote the number of workers having value fk,k′ for feature fk.

The set of workers is denoted by X = {x1, . . . , xn}. X is partitioned into

|V| subsets V1, · · · , V|V|, where each subset Vj corresponds to a feature set

vj = {vj,1, · · · , vj,|F|}, where ∀1 ≤ k ≤ |F|, vj,k ∈ Fk.

We wish to form a set of teams {T1, . . . , Tt} of the workers where each

team Ti has a demand of di, specifying the number of workers that need to be

assigned to it. Each worker can be assigned to at most one team.

The diversity loss of an assignment is denoted by D and is equal to∑|F|
k=1 λkDk, where Dk shows the diversity loss w.r.t. feature fk, and λk ∈ Z≥0

is a constant. Let ci,k,k′ denote the number of workers in Ti having value

fk,k′ ∈ Fk for feature fk. Then, Dk =
∑t

i=1

∑|Fk|
k′=1 c

2
i,k,k′ . The cost of assigning

each worker having value fk,k′ ∈ Fk for feature fk to team Ti is denoted by

ui,k,k′ ∈ Z≥0. We assume all costs are integers. The total cost of an assignment

is TU =
∑|F|

k=1 TUk where TUk =
∑t

i=1

∑|Fk|
k′=1 ci,k,k′ · ui,k,k′ .

Our goal is to minimize the objective function which is equal toD+λ0TU ,

where λ0 ∈ Z≥0. To understand why minimizing Dk makes an assignment

more diverse w.r.t fk, consider Figure 2.1. In the left assignment, D2 = 8,

and in the right assignment D2 = 4, and the right assignment is more diverse

w.r.t f2, i.e. gender. By setting λ parameters, we assume that the relative

importance between factors is not qualitative and can be quantified. Next, we

17

provide Theorem 1, which shows that this problem is NP-hard.

Theorem 1. Minimizing the supermodular diversity loss function w.r.t mul-

tiple features is NP-hard.

Proof. First, we define a slight variation of 3-Color in the following:

OUR-3-Color: Given a graph G = (V,E) with n vertices, does there

exist a coloring of all the vertices of G with 3 colors c1, c2, c3 such that no

two adjacent vertices receive the same color, and n1 vertices are colored c1, n2

vertices are colored c2, and n3 vertices receive color c3.

In Lemma 1, we show OUR-3-Color is NP-hard by showing a reduction

from 3-Color. For the sake of completeness, we define the problem 3-Color

in the following:

3-Color: Given a graph G = (V,E) with n vertices, does there exist a

coloring of vertices with 3 colors such that no two adjacent vertices receive the

same color, and all the vertices are colored?

Lemma 1. Problem OUR-3-Color is NP-hard.

Proof. We show a reduction from 3-Color to OUR-3-Color as following:

Given an instance of 3-Color, consider all triples (n1, n2, n3) such that n1 +

n2+n3 = n, if for at least one triple, the answer to the OUR-3-Color problem

is positive, so is the answer to the 3-Color. Since the number of triples is

18

Ω(n3), the reduction is poly-time and therefore OUR-3-Color problem is

NP-hard.

Next, we show multiple-attribute diverse matching problem is NP-hard

by showing a reduction from OUR-3-Color. Given an instance (G(V,E), n1, n2, n3)

of OUR-3-Color, we define a feature fe corresponding to each edge of e ∈ E,

and a worker per each node of G, and look for a solution consisting of 3 teams

with demands n1, n2, n3 (each team corresponding to one color) that mini-

mizes the objective function of multiple-attribute diverse matching problem.

For each feature fe corresponding to the edge e ∈ E, each worker is assigned

a unique value for it, except the workers corresponding to the endpoints of e

who get assigned the same value for this feature. Formally, assign a feature fk

to each edge ek = (vk1 , vk2) ∈ E. Let fk,i denote the value of fk for the worker

corresponding to vi ∈ V . Let fk,i = i if i 6= k1, k2. Otherwise, let fk,i = 0.

In the following, we show if the optimum solution of multiple-attribute

diverse matching problem has value greater than some threshold (which is

explained formally below), then it is clear that two workers having the same

value for a feature are in the same team—which is equivalent to assigning the

same color to the endpoints of an edge. Therefore, by looking at the optimum

solution of multiple-attribute diverse matching problem we can realize whether

OUR-3-Color instance is feasible or not.

19

To put it formally, consider an arbitrary edge ek(vk1 , vk2) ∈ E. If the

workers corresponding to the endpoints of ek belong to different teams, fk

contributes n1 +n2 +n3 to the objective function since all the workers inside a

team have different values for fk. Otherwise, it contributes n1 +n2 +n3−2+22

since workers corresponding to vk1 , vk2 are the only workers having the same

value for fk and they are assigned to the same team. If the cost of the optimal

solution for the diverse matching problem is (n1 + n2 + n3) · |E|, then there

does not exist a pair of workers in a team where the vertices corresponding to

them are neighboring in G; which means in OUR-3-Color instance, no two

adjacent vertices receive the same color, and the OUR-3-Color instance is

feasible. Otherwise, if the cost of the optimal solution to the multiple-attribute

diverse matching problem is more than (n1 +n2 +n3) · |E|, the OUR-3-Color

instance is infeasible.

We are interested in solving this NP-hard problem. We begin by present-

ing two different representations of instances of the problem: one in matrix

form (used for expositional ease), and the other in graph form (used to build

our optimal diverse matching algorithm in Section 2.4).

Matrix Representation. An example of matrix representation with three teams

and two countries and two genders is shown in Table 2.1. Each column cor-

20

responds to a feature set and each row corresponds to a team. Entry wi,j

shows the number of workers with feature set vj assigned to Ti. We introduce

a dummy team T0, and w0,j shows the number of workers with feature set vj

who are not assigned to any team.

Matching Representation. In this representation, a bipartite graph G = (X ∪

T , E) is given. The nodes in X correspond to the workers, and are partitioned

into |V| subsets where each subset corresponds to a feature set. Each vertex

in T corresponds to a team in {T0, T1, T2, · · · , Tt}. The assignment of workers

to teams forms a b-matching, where the degree of each node Ti for 1 ≤ i ≤ t

is di. All workers who are not assigned to any team T1, · · · , Tt get assigned to

the dummy team T0. Degree of each node x ∈ X is exactly one.

Local Exchange. A local exchange happens when a group of teams decides to

transfer one or more workers between each other while maintaining the total

number of workers in each of them. The exchange is done in a way that the

initial demands of all the teams are fulfilled. Arrows in Table 2.1 show a local

exchange in a matrix representation.

In this exchange, one worker from V2 is moved from T3 to T1. Two

workers from V1 are moved. One is moved from T1 to T2, and the other

one is moved from T2 to T3. The set of edges of local exchange in a matrix

21

country1, g1 country1, g2 country2, g1 country2, g2

T0 w0,1 w0,2 w0,3 w0,4

T1 w1,1 w1,2 w1,3 w1,4

T2 w2,1 w2,2 w2,3 w2,4

T3 w3,1 w3,2 w3,3 w3,4

Table 2.1: Matrix representation of three teams and workers from two countries
and two genders. Dummy team T0 accommodates unassigned workers. Arrows
represent a local exchange.

country1 country2

T0 c0,1,1 = w0,1 + w0,2 c0,1,2 = w0,3 + w0,4

T1 c1,1,1 = w1,1 + w1,2 c1,1,2 = w1,3 + w1,4

T2 c2,1,1 = w2,1 + w2,2 c2,1,2 = w2,3 + w2,4

T3 c3,1,1 = w3,1 + w3,2 c3,1,2 = w3,3 + w3,4

Table 2.2: Matrix representation embedding w.r.t country.

representation is called a cycle. The source-transitions of a cycle are the cells

without any input edges, and the sink-transitions are the cells without any

output edges. In Table 2.1, the cells corresponding to w3,2 and w1,1 are source-

transitions, and the cells corresponding to w1,2 and w3,1 are sink-transitions.

Figure 2.2 shows the same local exchange operation using a matching

representation. In this figure, the black matching shows the initial assignment,

and the dotted matching shows the assignment after the exchange operation

is done.

22

g1 g2

T0 c0,2,1 = w0,1 + w0,3 c0,2,2 = w0,2 + w0,4

T1 c1,2,1 = w1,1 + w1,3 c1,2,2 = w1,2 + w1,4

T2 c2,2,1 = w2,1 + w2,3 c2,2,2 = w2,2 + w2,4

T3 c3,2,1 = w3,1 + w3,3 c3,2,2 = w3,2 + w3,4

Table 2.3: Matrix Representation Embedding w.r.t to gender.

!"#$!

!"#$"%&'()*+#

!"#$%

Figure 2.2: Local exchange operation (in matching representation).

Gain of a local exchange. Our goal is to minimize the objective function f , by

doing some local exchanges. To find out, we first calculate the marginal gain

from a given exchange operation which is the difference between the objective

values before and after a local exchange. In order to simplify this concept, we

use the following definition:

Embedding of Matrix Representation. Consider a given matrix representa-

tion M , it can be embedded into a matrix Mk for a fixed feature fk in

the following way: all the columns in M corresponding to the same value

fk,k′ of fk, are combined into a single column in Mk. For example, embed-

ding of the matrix representation in Table 2.1 into M1,M2 w.r.t. the fea-

tures country and gender are shown in Tables 2.2 and 2.3. Since in M1, the

23

number of people assigned from each country to each team is not changed,

∆1 = ∆(λ0 · TU1 + λ1D1) = 0. According to M2, ∆2 = ∆(λ0 · TU2 + λ2D2) =

λ0

(
− u3,2,2 + u1,2,2 − u1,2,1 + u3,2,1

)
+ λ2

(
(c3,2,2 − 1)2 − (c3,2,2)2 + (c1,2,2 + 1)2 −

(c1,2,2)2 + (c1,2,1 − 1)2 − c2
1,2,1 + (c3,2,1 + 1)2 − c2

3,2,1

)
.

It can be seen that the contribution of the cells which are not source-

transition or sink-transition to the gain of a local exchange is zero (all the

cells in the local exchange in Table 2.2, and the node corresponding to c2,2,1

in M2). If the net gain, i.e. ∆1 + ∆2, is negative, then the local exchange can

be considered beneficial, and we can transfer the workers.

2.4 Negative-Cycle-Detection-based Al-

gorithms

In this section, we explain our algorithm for finding the optimum assign-

ment. First, we build an auxiliary graph G′. For each team Ti ∈ {T0, · · · , Tt},

there is a switch in G′ with |V| input ports, and |V| output ports. Each port

is a node in G′, and each switch is a directed bipartite graph, with edges going

from its input ports (nodes) to its output ports. In Figure 2.3, each box is a

switch. Inside a switch Ti, there is a directed edge from each input port to

each output port. If the directed edge is connecting two ports such that their

24

corresponding combinations of features do not have the same value for any

features, the weight of this edge is equal to zero. Otherwise, per each feature

fk that has the same value, −2λk is added to the weight of this edge.

The reason behind assigning these weights to the edges is to make sure

in a local exchange, considering a fixed feature fk, the cells which are not

a source-transition or a sink-transition w.r.t. Mk, have zero contribution to

∆(Dk).

For each pair of teams Ti1 and Ti2 where i1 6= i2, and for each feature

combination vj, there is a directed edge from output port Oi1
j of switch Ti1 to

the input port I i2j of switch Ti2 , and weight of this edge captures the difference

in the objective function when in the matrix representation a person in column

Vj (with feature set vj) is moved from Ti1 to Ti,2.

Each cycle in this graph corresponds to a cycle in a matrix representation

and local exchanges along them have the same gain. Figure 2.3 shows a cycle

which is corresponding to the cycles in Table 2.1 and Figure 2.2.

After constructing the auxiliary graph, we run Algorithm 1. Algorithm 1

moves workers from one team to another if it detects a negative cycle.

Algorithm 1 takes as input an initial feasible solution Q as input. To find

Q, we first find a feasible solution, which satisfies all the demand constraints.

In order to find an initial feasible solution, in each iteration, consider the first

25

Algorithm 1: Find optimal diverse b-matching

Input : Directed weighted graph G′, initial feasible b-matching Q
which satisfies team demands.

Output: Optimal diverse b-matching
while ∃ a negative cycle C ∈ G′ do

// Perform a local exchange operation along C;
for e ∈ C do

// Assume edge e is from output port Oi1
j of team Ti1 to input

port I i2j of another team Ti2 ;
// Move one worker with feature set vj = {f1,k′1

, · · · , f|F|,k′|F|}
from team Ti1 to team Ti2 :
∀k ∈ {1, · · · , |F|}: ci1,k,k′k− = 1, ci2,k,k′k+ = 1;
Update weight of edges of G′ w.r.t to the new values of ci1,k,k′k ,

and ci2,k,k′k ;

subset of workers in the the bipartite graph G (Vj) with at least one un-assigned

worker, and the first team (Ti) such that the number of workers assigned to

it is less than its demand (In the first iteration, we start with V1, T1, and

all the workers are un-assigned). Assign un-assigned workers from Vj to Ti,

until either demand of Ti is fully satisfied, in this case, move to the next team

(i = i+ 1), or all the workers from Vj are assigned, then let j = j + 1. Repeat

this procedure until all the demand constraints are satisfied. Time complexity

of this procedure is O(|V|+ t).

In Algorithm 1, any negative cycle detection algorithm can be used to

detect negative cycles in G′. We use a heuristic improvement of Bellman-Ford

proposed by Goldberg and Radzik [44] in our experiments.

26

!!

,!! ,"! ,%! ,&!

-!! -"! -%! -&!

!"

,!" ,"" ,%" ,&"

-!" -"" -%" -&"

!"

,!% ,"% ,%% ,&%

-!% -"% -%% -&%

"!

""

"%

"&

"'

"(

Figure 2.3: A local Exchange in graph representation.

2.5 Proof of Optimality

In this section, we prove that Algorithm 1 gives the optimum solution

for diverse bipartite b-matching problem.

Assume after the algorithm ends, the final assignment is a local optimum

P , and the optimum solution is P ∗. Consider the matching representations

of P and P ∗. Since all the nodes in P and P ∗ are matched, the symmetric

difference of P and P ∗ (P ⊕ P ∗) can be decomposed into a set of alternating

even cycles. Each local exchange along an alternating cycle corresponds to a

cycle in the matrix representation.

Before proving Thm. 2, we need the following definitions:

Maximal Cycle. A cycle y in a matrix representation M is maximal if its

source-transitions and sink-transitions are source-transition and sink-transition

27

country1, g1 country1, g2 country2, g1 country2, g2

T0 w0,1 w0,2 w0,3 w0,4

T1 w1,1 w1,2 w1,3 w1,4

T2 w2,1 w2,2 w2,3 w2,4

T3 w3,1 w3,2 w3,3 w3,4

Table 2.4: Maximal cycle decomposition

w.r.t all the edges in M as well. For example, consider Table 2.4. Let’s call

the dotted cycle yg, the dashed cycle yr, and the solid-line cycle yb. yg has two

source-transitions w1,1, w0,3, and it has two sink-transitions w0,1, w1,3. Since

there are no edges going out of w1,3, w0,1, and no edges going into w0,3, w1,1,

yg is a maximal cycle. Cycles yr, yb are maximal cycles as well. Therefore,

{yg, yb, yr} gives a maximal cycle decomposition for M . However, if we con-

sider embedding of M w.r.t gender (M2), then yr is not a maximal cycle

anymore, and {yg, yr ∪ yb} gives a maximal cycle decomposition w.r.t M2 and

M1(embedding w.r.t countries). A cycle is called all-maximal cycle if it is

maximal w.r.t all the matrix representations M1, · · · ,M|F|. In this example,

{yg, yr ∪ yb} gives an all-maximal cycle decomposition.

Lemma 2. The set of all the edges of P ⊕P ∗ can be decomposed into a set of

all-maximal cycles.

Proof. Consider an arbitrary decomposition of the edges of P ⊕ P ∗ in the

28

matrix representation into a set of cycles {y1, · · · , y`}. If there exists a cycle

in P ⊕ P ∗ without any source-transitions and sink-transitions, it means the

gain of this cycle is zero and it could be discarded. If there exists any cycle

yp which is not all-maximal, then there exists another cycle yq which makes

yp not to be maximal w.r.t some features. For example in Figure 2.4, yr is

not maximal because of yb. In this case, union yp and yq, and make yp ∪ yq a

single cycle in the decomposition. At the end, all the edges in P ⊕ P ∗ will be

decomposed into a set of all-maximal cycles. Let’s call the set of all-maximal

cycles {y′1, · · · , y′`′}.

Theorem 2. Algorithm 1 finds the global optimum for the diverse b-matching

problem.

Proof. Let f(P) show the value of the objective function for the assignment

P . f(P ∗)− f(P) < 0 therefore:

f(P ∗)− f(P) = gain(y′1,1) + gain(y′2,2) + · · ·+ gain(y′`′,`′) < 0

Where y′k (1 ≤ k ≤ `′) is the kth cycle in the all-maximal cycle decomposition,

and y′k,k is applying the local exchange of the cycle y′k at step k. The initial

step is the assignment P . Since f(P ∗) − f(P) < 0, there must be a maximal

cycle y′g such that gain(y′g,g) < 0. We wish to show gain(y′g,1) < 0, which

implies starting from the initial assignment P , a local exchange can be done

29

with a negative gain, and P is not a local optimum which is a contradiction.

Let D(y′g,g), U(y′g,g) denote respectively the change in the diversity loss,

and the change in the utility when applying a local exchange y′g in step g. Let

Dfk(y′g,g), Ufk(y′g,g) denote the change in the diversity loss w.r.t the feature fk,

when applying y′g,g. Therefore:

gain(y′g,g) =
∑
k∈|F|

(
Dfk(y′g,g) + Ufk(y′g,g)

)

Lemma 3 shows if Dfk(y′g,g) < 0, then Dfk(y′g,1) < 0. As a result, D(y′g,g) < 0

implies D(y′g,1) < 0. It is easy to see that U(y′g,g) = U(y′g,1). Therefore,

gain(y′g,g) < 0 implies gain(y′g,1) < 0, and the proof is complete.

Lemma 3. If Dfk(y′g,g) < 0, then Dfk(y′g,1) < 0.

Proof. Consider y′g,g embedded into Mk. There are four types of vertices in

y′g,g:

• Vertices in the form of w0,j where 1 ≤ j ≤ |V|. These vertices have

contribution zero to both Dfk(y′g,g) and Dfk(y′g,1).

• Vertices that are not sink-transition or source-transition, i.e. w2,2 in

Figure 2.1, w.r.t Mk. It could be seen that contribution of these nodes

to both Dfk(y′g,g) and Dfk(y′g,1) is zero.

• Sink-transitions: Consider an arbitrary sink-transition v in y′g,g. Assume

30

the value of this node at the beginning of step g is vg. The contribution

of v to Dfk(y′g,g) is λk
(
(vg + 1)2 − v2

g

)
> 0. Since v is a sink-transition,

vg ≥ v1. Therefore, λk
(
(vg + 1)2 − v2

g

)
≥ λk

(
(v1 + 1)2 − v2

1

)
.

• Source-transitions: Consider an arbitrary source-transition v in y′g,g. The

contribution of v to Dfk(y′g,g) is λk
(
(vg − 1)2 − v2

g

)
. Since v is a source-

transition v1 ≥ vg, and therefore λk
(
(vg− 1)2− v2

g

)
≥ λk

(
(v1− 1)2− v2

1

)
.

At the end, contribution of all the vertices to Dfk(y′g,1) is upper bounded by

their contribution to Dfk(y′g,g). Therefore if Dfk(y′g,g) < 0, then Dfk(y′g,1) <

0.

Theorem 3. The running time of the algorithm is O((λmax · |F| · n2 + λ0U) ·

|V|2 ·t2(|V|+t)), where U is the maximum cost of an initial feasible b-matching

and λmax = max{λ1, · · · , λ|F|}.

In order to prove this theorem, first we show the following lemmas hold.

Lemma 4. The number of iterations of our algorithm is at most λmax · |F| ·

n2 + λ0U .

Proof. The initial state of the algorithm is a feasible b-matching with cost

at most U . Diversity loss of any matching is at most λmax · |F| · n2. At each

iteration, we find a negative weight cycle and since all the weights are integers,

31

its weight can be at most −1. Therefore, the objective function decreases by

at least 1 at each step, and since the value of the objective function is always

positive, the number of iterations is at most λmax · |F| · n2 + λ0U .

Lemma 5. The complexity of each iteration of the algorithm is O(|V|2 ·t2(|V|+

t)).

Proof. At each iteration, we use a negative cycle detection algorithm with

running time O(|V | · |E|) (where |V | is the number of nodes in the auxiliary

graph and |E| is the number of edges). The number of nodes in the graph is

2|V| · (t + 1), since there are t + 1 switches in the graph and each switch has

exactly 2|V| ports and each port is a node in the graph. The number of edges

incident on each port is |V|+ t. Therefore, the total number of edges is O(|V| ·

t(|V|+ t)). Hence, the complexity of each iteration is O(|V|2 · t2(|V|+ t)).

Combining Lemma 4 with Lemma 5, and considering O(|V| + t) time

complexity for finding an initial feasible solution, yields Theorem 3.

2.6 Diverse Weighted Bipartite b-Matching

In this section, we extend our algorithm to solve the case where the cost of

assigning workers from the same feature set to a team can be different. First, in

each switch we put input and output ports for each worker. Inside each switch,

32

there is a complete bipartite graph from input ports to the output ports.

Consider an edge between an input port to an output port corresponding to

workers xi and xj. Per each feature fk where xi, xj have the same values for

fk, −2λk is added to the weight of the edge between xi, xj.

Consider an edge from output port xi1k of switch Ti1 to input port xi2k of

switch Ti2 , where xk ∈ Vj. The weight of this edge is equal to the change in

the objective function by moving one worker from Vj out of Ti1 , and adding

that worker to Ti2 . The proof of the following theorem is similar to Thm. 3.

Theorem 4. The running time of the algorithm for general weights is O((λmax·

|F| · n2 + λ0U) · n2 · t2(n + t)), where U is the maximum cost of any feasible

b-matching.

2.7 Experimental Validation & Discus-

sion

To demonstrate the effectiveness of the proposed method, we apply it

to a dataset of reviewer paper matching. First, we find the optimal solution

for multi-feature reviewer paper matching and compare it to the single feature

diverse matching method. We also provide the MIQP formulation of the same

33

problem based on literature and show how our algorithm is faster to the Gurobi

based MIQP solver.

For the reviewer assignment problem, where each reviewer has multiple

features, we want to match each paper with reviewers who are not only from

different expertise areas (clusters), but also belong to different genders. We

use the multi-aspect review assignment evaluation dataset [6], a benchmark

dataset from UIUC. It contains 73 papers accepted by SIGIR 2007, and 189

prospective reviewers who had published in the main information retrieval

conferences. The dataset provides 25 major topics and for each paper in the

set, an expert provided 25-dimensional label on that paper based on a set

of defined topics. Similarly for the 189 reviewers, a 25-dimensional expertise

representation is provided.

To compare our method (Algorithm 1) with a baseline, we formulate

a multi-feature MIQP variant of our problem, which is an extension of the

single-feature formulation provided in [28] and is given by:

minλ0

|F|∑
k=1

t∑
i=1

|Fk|∑
k′=1

ui,k,k′ · ci,k,k′ +
|F|∑
k=1

λk

t∑
i=1

|Fk|∑
k′=1

c2
i,k,k′

|F|∑
k=1

|Fk|∑
k′=1

ci,k,k′ = di,∀1 ≤ i ≤ t

t∑
i=0

ci,k,k′ = |Fk,k′ |, 1 ≤ k ≤ |F|, 1 ≤ k′ ≤ |Fk|

34

To set up the graph for our method, we first cluster the reviewers into 5

clusters based on their topic vectors using spectral clustering. To calculate the

relevance of each cluster for any paper, we take the average cosine similarity of

label vectors of reviewers in that cluster and the paper. We set the constraints

such that each paper matches with exactly 4 reviewers, and no reviewer is

allocated more than 1 paper. To increase dataset size, we double the number

of reviewers by creating a copy of each reviewer. As the original dataset lacks

gender information, we added a new feature to each reviewer in this dataset by

randomly adding one of two gender labels (Male or Female) to each reviewer.

We set λ0 = λ1 = λ2 = 1 for our experiments. Note that by varying these

parameters, one can create the Pareto optimal frontier too.

We run the negative cycle detection algorithm, and the MIQP solver

using Gurobi to find the optimum solution. On converging to the optimal

solution, we find that all 73 papers receive two male reviewers and two female

reviewers, which shows that the method was capable of balancing gender di-

versity. Each paper receives reviewers from four different clusters. If we only

optimize for cluster diversity, it is possible that the gender ratio for individual

paper gets skewed. When we run the same model with λg = 0 (no weight

to gender diversity), we find that out of 73 papers, 12 papers receive all four

reviewers of the same gender and 41 papers receive three reviewers of the same

35

gender. Hence, only 27.3% teams of reviewers are gender balanced. However,

one should note that when we do not keep gender as an objective, the resultant

allocation is random and different skewness can be observed in different runs

based on the initial solution.

Finally, we compare the timing performance of our algorithm with MIQP

by changing the number of papers that need to be reviewed on a Dell XPS 13

laptop with i7 processor. For MIQP, we set a maximum run time of four hours

(14400 seconds) for Gurobi solver, at which we report the current best MIQP

solution. Table 2.5 shows that for all cases with the number of papers greater

than 13, MIQP does not converge within four hours, while our method finds

the optimum solution in lesser time. Interestingly, MIQP current solutions are

found to be the same as the optimum solution found by our method, which

shows that for this application, MIQP was able to search the solution but it

was not able to prove that the solution is optimum. In contrast, our method

finds the solution faster as well as guarantees that it is optimum.

2.8 Authors

This Chapter was written by Saba Ahmadi, Faez Ahmed, John P. Dick-

erson, Mark Fuge, and Samir Khuller. It was published at the International

36

Papers # Reviewers MIQP Time (s) Our Method Time (s)

03 378 24.68 0.18
13 378 3979.90 14.84
23 378 14400.00 122.96
33 378 14400.00 400.56
43 378 14400.00 825.95
53 378 14400.00 2837.15
63 378 14400.00 5453.58
73 378 14400.00 11040.55

Table 2.5: Comparison of MIQP and our method for UIUC reviewer dataset
with each paper needing 4 reviewers.

Joint Conferences on Artificial Intelligence (IJCAI) 2020 [46].

37

3 Fair Correlation Clustering

3.1 Introduction

The ubiquitous use of Machine learning tools for everyday decision mak-

ing has brought the issue of fairness to the forefront. Many automated algo-

rithms were shown to have implicit biases against certain demographics. In

order to build machine learning algorithms that are inclusive, unbiased and

helpful to the entire population, the recent years have seen a surge of research

related to fairness. Many of the typical application scenarios where fairness

has been identified to be crucial (e.g. lending, marketing, job selection etc.)

requires clustering large datasets with sensitive features. These datasets often

come as a network. In order to incorporate fairness into clustering, the semi-

nal work by Chierichetti, Kumar, Lattanzi, and Vassilvitskii [7] incorporated

a notion of group fairness into k-center and k-median clustering algorithms.

Their goal was to form clusters such that given two groups, no group was

38

over-represented or under-represented in any cluster. The fairness notion was

further refined by Bercea et al. [47] and Bera et al. [9] by making sure that the

demographic distribution of each cluster is the same as the global distribution

of the demographics. Subsequently, Schmidt, Schwiegelshohn, and Sohler [48]

extended the framework to k-means clustering. While these works study clus-

tering algorithms over a metric space, many clustering applications work over

network data, and that calls for designing graph clustering algorithms that

are fair to all demographics. In a very recent work, Kleindessner, Samadi,

Awasthi and Morgenstern [49] consider the problem of fair spectral cluster-

ing . They prove rigorous theoretical bounds for their algorithms over the

stochastic block model. However, the analysis over arbitrary networks is still

not known. In particular, the use of triangle inequalities makes the analysis

of metric based fair clustering easier compared to graph clustering where the

metricity is lacking.

In this paper, we consider a fair variant of the classic optimization prob-

lem of correlation clustering. Correlation clustering is one of the most widely

used clustering paradigms, and as claimed by Bonchi et al. [13] “arguably the

most natural formulation of clustering”. Given a set of objects and a pairwise

similarity measure between them, the objective is to partition the objects so

that, to the best possible extent, similar objects are put in the same cluster

39

and dissimilar objects are put in different clusters. This is represented by

constructing a complete graph where edges are either labeled positive (simi-

lar objects) or negative (dissimilar objects). The edges can also be weighted.

An algorithm for correlation clustering aims to minimize the disagreements

among vertices, calculated as the weight of negative edges trapped inside a

cluster plus positive edges between different clusters. As it just requires a def-

inition of similarity, it can be applied broadly to a wide range of problems in

different contexts such as social network analysis, data mining, computational

biology, business and marketing [12–14].

Similar to other clustering algorithms, the known algorithms for corre-

lation clustering may produce significantly biased output. In this work, we

study a fair variant of the correlation clustering problem where each vertex

has a given color, and the goal is to make sure that the distribution of the

colors is the same as the global distribution in each cluster. This is the same

notion of fairness studied by Bercea et al. [47] and Bera et al. [9] on k-center

and k-median. In another variation, the goal is to make sure the number

of nodes of a specific feature ci in a cluster of size n is between n
qi
, n
pi

where

pi ≤ qi ∈ Z≥1, and pi, qi are specified per each feature ci. This later model

was originally proposed by Ahmadian, Epasto, Kumar and Mahdian [50]

with only the upper bound and later Bera et al. [9] generalized it to consider

40

lower bound (both pi and qi). Having a lower bound ensures that every color

is represented in each cluster. They studied the k-center problem under this

framework. In all our algorithms, we maintain the fairness constraints strictly,

and optimize the objective function. That is, we give exact approximation

algorithms, as opposed to bi-criteria approximation.

In a parallel independent work, Ahmadian et al. [51], study the problem

of fairness in correlation clustering. Their work considers an upper bound

constraint on the number of nodes of each color (e.g. 1 : t) as opposed to con-

sidering both lower and upper bounds. Additionally, our algorithm guarantees

identifying clusters that satisfy the fairness constraints exactly as opposed to

a bi-criterion solution of Ahmadian et al. [51]. In their approach, they may

violate the desired ratio of each color in each cluster by a factor of 2. Their

approach does not violate the fairness constraints in the following two special

cases, where the desired number of vertices of each color is equal in every

cluster.

• For two colors Ahmadian et al. [51] achieve 256-approximation as op-

posed to 10.18-approximation in our work (Theorem 5).

• For more than two colors (say C), Ahmadian et al. [51] and our algorithm

has O(C2) approximation (Corollary 1).

41

Contributions & Roadmap

Our contributions are as follows.

For the first fairness variant, we can assume that each node has a color,

and the goal is to keep the distribution of the colors in each cluster same as

the global distribution. First, we show our results for the case of 2 colors, and

later we extend the results to an arbitrary number of colors. Our approach

for 2 colors has some similarities to the approach proposed by Chierichetti

et al. [7] for the k-center and k-median problems. The analysis of fair clus-

ters with centroid based objectives leverages triangle inequality to bound the

total objective value of the returned clusters. However, calculating the to-

tal disagreements for correlation clustering requires us to analyze the graph

properties, leading to a completely different analysis as compared to [7].

Assume nodes in the input graph are either red or blue and the goal is to

have a ratio of 1 : p of the number of red nodes to the number of blue nodes,

where p ∈ Z≥1. In Section 3.5, we design a new algorithm with the following

guarantees:

Theorem 6 (Two Colors). Given a complete unweighted graph G = (V,E)

where edges are labeled positive or negative, and the nodes are either red or

blue where the ratio of number of red nodes to the number of blue nodes is

42

1 : p for p ∈ Z≥1, there exists an algorithm which gives a clustering with ratio

1 : p of number of red to blue nodes in each cluster and at most O(p2) · OPT

disagreements.

Before explaining the general result for handling a ratio of 1 : p, in

Section 3.4, we explain a simpler scenario where the desired ratio of red to

blue in each cluster is 1 : 1. In this section, the following theorem is proved:

Theorem 5 (Warm-up). Given a complete unweighted graph G = (V,E)

where edges are labeled positive or negative, and the nodes are either red or blue,

with an equal number of red and blue nodes, there exists an algorithm which

gives a clustering with equal number of red and blue nodes in each cluster and

at most (3α + 4) · OPT disagreements, where α is the best approximation ra-

tio for correlation clustering on a complete unweighted graph with minimizing

disagreements objective.1

In Section 3.5, we generalize our results and prove the following theorem:

Theorem 7 (Multiple Colors). Given a complete unweighted graph G = (V,E)

where edges are labeled positive or negative, and each node has exactly one of

the colors {c1, · · · , c|C|}, and the ratio of the number of nodes of color c1 to

1The best known value of α = 2.06, giving 10.18-approximation of our algorithm.

43

color ci is 1 : pi (∀1 < i ≤ |C|), where pi ∈ Z≥1, there exists an algorithm where

the distribution of colors in each cluster is the same as the global distribution,

and the total number of disagreements is at most O((max
|C|
i=1{pi})2 ·|C|2)·OPT .

For a special case where pi = 1,∀i, we get the following Corollary.

Corollary 1 (Multiple Colors). Given a complete unweighted graph G =

(V,E) where edges are labeled positive or negative, and each node has exactly

one of the colors {c1, · · · , c|C|}, and equal number of nodes of each color, there

exists an algorithm such that the total number of disagreements is at most

O(|C|2) ·OPT .

In Section 3.5, we prove NP-hardness of fair correlation clustering prob-

lem on complete unweighted graphs even for 2 colors. Note that the hardness

result does not directly follow from the hardness result of the original correla-

tion clustering.

In Section 3.5, we consider the fairness model studied by Ahmadian et

al. [50] for k-center problem without over-representation. We are inspired by

their definition of over-representation, and show the following theorem holds:

Theorem 8 (Avoiding Over-Representation). Given a complete unweighted

graph G = (V,E) where edges are labeled positive or negative, and nodes are

colored red or blue, and two ratios 1 : p, 1 : q where p, q ∈ Z≥1, p ≤ q, where

44

ratio of the total number of red nodes to the total number of blue nodes is

between 1 : q and 1 : p, there exists an algorithm which gives a clustering

where the ratio of number of red nodes to blue nodes in each cluster is between

1 : q and 1 : p, and the total number of disagreements is at most O(q2) ·OPT .

We extend Theorem 8 to the case with multiple colors.

Theorem 9 (Avoiding Over-Representation with Multiple Colors). Given a

complete unweighted graph G = (V,E) where edges are labeled positive or

negative, and each node has exactly one of the colors {c1, · · · , cC}, and two

ratios 1 : pi, 1 : qi for each color ci where pi, qi ∈ Z≥1, pi ≤ qi, where ratio

of the total number of nodes of color c1 to the total number of nodes of color

ci needs to be between 1 : qi and 1 : pi, there exists an algorithm which gives

a clustering where ∀1 < i ≤ |C|, the ratio of number of nodes of color c1 to

color ci in each cluster is between 1 : qi and 1 : pi, and the total number of

disagreements is at most O((max
|C|
i=1{qi})2) ·OPT .

In Section 3.6, we perform an extensive evaluation on real world datasets

to demonstrate the unfair results generated by the classical correlation cluster-

ing algorithm and evaluate the ability of our algorithm to generate fair clusters

without much loss of solution quality.

45

3.2 Related Work

Introduced by Bansal, Blum and Chawla in 2004 [11], correlation clus-

tering has received tremendous attention in the past decade. The problem is

NP-complete, and a series of follow-up work have resulted in better approx-

imation ratio, generalization to weighted graphs etc. [52–54]. This problem

captures a wide range of applications including clustering gene expression pat-

terns [55, 56], and the aggregation of inconsistent information [57].

The research in fairness in machine learning has focused on two main

directions, coming up with proper notions of fairness and designing fair algo-

rithms. The first direction includes results on statistical parity [58], disparate

impact [59], and individual fairness [60]. Second direction includes a bulk of

work including fair rankings [61], fair clusterings [7,9,47,50,62], fair voting [63],

and fair optimization with matroid constraints [64].

Puleo and Milencovic [65] studied a new version of correlation clus-

tering, where the objective was to make sure the maximum number of dis-

agreements on each vertex is minimized. Their motivation was to make sure

individuals are treated fairly. For the case of complete graphs, the result was

first improved by Charikar et al. [19] to 7-approximation, and it was fur-

ther improved by Kalhan et al. [20] to 5-approximation. The best known

46

bound for the case of general graphs is O(
√
n) approximation [19]. In a

subsequent work, Ahmadi et al. [66] studied the local correlation cluster-

ing problem where the objective was to make sure the maximum number of

disagreements on each cluster is minimized, and the communities are treated

fairly. They achieved an O(
√

log n ·max{log(|E−|), log(k)}) approximation

for general weighted graphs, where |E−| denotes the number of negative edges

and k is the number of clusters in the optimum solution. Their result was

improved by Kalhan et al. [20] to (2 + ε)-approximation.

Chierichetti et al. [7] extended the notion of disparate impact to k-center

and k-median, and studied these problems for the case of two groups. Their

result was later generalized to multiple groups by Rösner and Schmidt [62]. In

this work, we generalize the notion of disparate impact to correlation clustering

for multiple colors, and our goal is to make sure the distribution of colors in

each cluster is identical to the global distribution. Next, we extend the model

introduced by Ahmadian et al. [50] on k-center to correlation clustering to

show no color is overrepresented or underrepresented in each cluster.

47

3.3 Preliminaries

In the correlation clustering problem, an input graph G = (V,E) is

given where each edge is labeled positive or negative. The goal is to obtain

a clustering that minimizes the total number of disagreements, defined as the

number of negative edges trapped inside a cluster plus positive edges that are

cut between clusters.

Inspired by the recent developments on fairness in clustering [7, 9, 47],

we define a fair variant of correlation clustering problem. In fair correlation

clustering problem, given an input graph G = (V,E) each node has a color

from set of colors {c1, · · · , c|C|}. The desired ratio of the number of nodes from

color c1 to color ci is 1 : pi,∀1 ≤ i ≤ |C| where ∀1 ≤ i ≤ |C| : pi ∈ Z≥1. The

goal is to find a clustering which guarantees the desired ratios in each cluster

while minimizing the total number of disagreements. First, we study fair

correlation clustering problem for 2 colors and then extend it to an arbitrary

number of colors.

In Section 3.5, we consider the problem of given an instance of correlation

clustering where nodes are either red or blue and the ratio of the number of

red nodes to blue nodes is between 1 : q, 1 : p, where p, q ∈ Z≥1, p ≤ q. The

goal is to form a clustering where the ratio of the number of red nodes to blue

48

Algorithm 2: Fair Correlation Clustering

Input : G = (V = VB ∪ VR, E = E+ ∪ E−)
Output: clustering C ′
E ′ ← φ;
for u ∈ VB do

for v ∈ VR do
E ′ ← E ′ ∪ (u, v);
w(u, v)←

∑
w∈V \{u,v}

1(u,w)∈E+,(v,w)∈E− + 1(u,w)∈E−,(v,w)∈E+ ;

C ′ ← ClassicCorrClust(VR, E ∩ VR × VR);
M ← min-weight-matching(V,E ′, w);
∀v ∈ VB, assign v to same cluster as M(v);
return C ′;

nodes in each cluster is between 1 : q and 1 : p. Throughout the paper, we

use OPT interchangeably for the optimum solution and minimum number of

disagreements.

3.4 Warmup: 2 Colors with Ratio 1:1

The goal is to find a clustering which minimizes the total number of

disagreements, and the number of red and blue vertices in each cluster are

equal. We show a constant approximation algorithm for this problem.

Algorithm 2 presents our approach to generate clusters that obey the

fairness constraint while minimizing the total disagreements. First, a weighted

bipartite graph from VB to VR is constructed (lines 2-8) in the following way:

consider a pair of vertices (x, y) where x ∈ VB and y ∈ VR, weight of this edge

49

w(x, y) is initially set to zero. If (x, y) is a negative edge, increase w(x, y) by

1. For each vertex z ∈ V \ {x, y}, if the labels of edges (z, x) and (z, y) are

different, increase w(x, y) by 1 (line 6). In this way, w(x, y) shows how much

the total disagreement increases if x and y are clustered together. Run an α-

approximation algorithm for minimizing disagreements on VR with no fairness

constraints (line 9). Since VR ⊂ G and there are no fairness constraints on

VR, OPTVR ≤ OPTG. Next, find a minimum weighted matching M from VB

to VR (line 10). In the end assign each blue vertex to the same cluster as its

matched red node (line 11), and return the new clustering. Let w(M) denote

weight of this matching. First, we show the following lemma holds:

Lemma 6. w(M) ≤ 2 ·OPTG.

Proof. Consider the optimal solution and construct an arbitrary matching

where both endpoints of each matched edge are in the same cluster. Call

this matching M ′ and assign weights to each matched edge as described in Al-

gorithm 2. First, we show w(M ′) ≤ 2 ·OPTG. Consider an edge (vi, vj), if they

are matched by the M ′, M ′ and OPT are paying the same cost for this edge,

since the matching is paying for this edge if and only if it is a negative edge

trapped inside a cluster, in this case OPT is also paying for it. Assume the

case where vi, vj are not matched in M ′. Let’s assume vi is matched to vi′ , and

vj is matched to vj′ . The matching M ′ could pay for the edge (vi, vj) at most

50

twice, once if the edges (vi, vj) and (vi′ , vj) have disagreeing labels, and once

if (vi, vj) and (vi, vj′) have disagreeing labels. Therefore, w(M ′) ≤ 2 · OPT .

Therefore, w(M) ≤ w(M ′) ≤ 2 ·OPT since we are finding a min cost matching

M .

In the following we show this algorithm gives a 3α + 4-approximation

and prove Theorem 5.

Theorem 5 (Warm-up). Given a complete unweighted graph G = (V,E)

where edges are labeled positive or negative, and the nodes are either red or blue,

with an equal number of red and blue nodes, there exists an algorithm which

gives a clustering with equal number of red and blue nodes in each cluster and

at most (3α + 4) · OPT disagreements, where α is the best approximation ra-

tio for correlation clustering on a complete unweighted graph with minimizing

disagreements objective.2

Proof. Consider vertices x, x′ ∈ VB and y, y′ ∈ VR, where (x, y) ∈ M and

(x′, y′) ∈M (Figure 3.1(a)). In the following, we show that we can pay for all

the disagreements within our (3α + 4) ·OPT budget.

Case 1: If a disagreement happens on a matched edge (x, y), meaning

(x, y) is a negative edge, it is counted in w(M).

Case 2: If a disagreement is on (x′, y), two cases may arise:

2The best known value of α = 2.06, giving 10.18-approximation of our algorithm.

51

!"

!′"′

$! $"

(a) Warm-up case

%#
&#

%$

&$

$! $"

%%

%&

(b) General case

Figure 3.1: Example set of matched nodes for our algorithm.

• Case 2.1: If (x′, y) and (y′, y) have the same label, since x′ and y′ are

in the same cluster, having a disagreement on (x′, y) implies having a

disagreement on (y′, y). Therefore, if we double the budget needed to

pay for the mistakes in VR, we can also pay for the mistakes of this type.

• Case 2.2: If (x′, y) and (y′, y) do not have the same label, we are making

exactly one mistake on these two edges and the min cost matching M is

paying for it.

Case 3: If a disagreement occurs on (x, x′), the following cases might

happen:

• Case 3.1: If (x, x′), (x′, y) have different labels, we are making exactly

one mistake on these two edges and the min cost matching M is paying

for it.

• Case 3.2: If (x′, x) and (x′, y) have the same labels, two cases might

52

happen:

– Case 3.2.1: (x′, y) and (y, y′) have the same labels. In this case,

(x′, x) and (y′, y) have the same labels, and x′, y′ are in the same

cluster, also x, y are in the same cluster. Therefore, there is a

disagreement on (x′, x) if and only if there is a disagreement on

(y, y′). By adding another α · OPT to the budget, we can pay for

these types of disagreements.

– Case 3.2.2: (x′, y) and (y′, y) have different labels. In this case,

exactly one mistake occurred on (x′, y) and (y, y′) and matching

was paying for it. If no mistakes occur on (x′, y), there will be no

mistake on (x, x′) as well. If a disagreement happens on (x′, y),

then a disagreement occurs on (x′, x). Since M is paying for the

disagreement occurred on (x′, y), doubling the cost of M in the

budget pays for the mistake on (x, x′) as well.

At the end, we get a 3α + 4-approximation algorithm, which complete

proof of Theorem 5.

53

3.5 Generalization

In this section, we generalize the previously considered model to allow

the ratio of colors to be 1 : p where p ∈ Z≥1 in Section 3.5 and allow more

than 2 colors in Section 3.5.

Two Colors with Ratio 1:p

The algorithm for this case is similar to Algorithm 2 with some minor

differences; the matching M constructed from VR to VB is a b-matching where

the degrees of vertices in VR are p, and the degrees of vertices in VB are 1.

Let w(M) denote weight of this matching. Next, run an α-approximation

correlation clustering on a subset of G which includes the red vertex from

each hyper-node (i.e. a collection of matched nodes). Theorem 6 shows a

guarantee for this algorithm. Before proving Theorem 6, we need to show the

following lemma holds:

Lemma 7. w(M) ≤ 2p ·OPT .

Proof. Consider the OPT solution, and construct an arbitrary b-matching M ′

from red nodes to blue nodes where degree of each red node is p, and degree

of each blue node is 1, and for each matched edge both its endpoints belong to

54

the same cluster. Call this matching M ′. First, we show w(M ′) ≤ 2p ·OPTG.

Consider an edge between arbitrary vertices vi and vj, such that they are

not matched in M ′. If a disagreement occurs on the edge between (vi, vj) in

OPTG, this disagreement could have been counted at most 2p times in w(M ′).

Therefore w(M ′) ≤ 2p · OPTG. Since M is a min cost b-matching satisfying

degree constraints: w(M) ≤ w(M ′) ≤ 2p ·OPTG

Now we are ready to prove Theorem 6.

Theorem 6 (Two Colors). Given a complete unweighted graph G = (V,E)

where edges are labeled positive or negative, and the nodes are either red or

blue where the ratio of number of red nodes to the number of blue nodes is

1 : p for p ∈ Z≥1, there exists an algorithm which gives a clustering with ratio

1 : p of number of red to blue nodes in each cluster and at most O(p2) · OPT

disagreements.

Proof. In the following, we show we can pay for all the disagreements within

a
(

(p2 + 2p) · α + 4p2
)
·OPT budget.

Case 1: In Figure 3.1(b), consider a disagreement between a red vertex

(r1) and a blue (b3) node from different hyper-nodes. Two cases might happen:

• Case 1.1: If edges (r1, b3) and (r1, r2) have disagreeing labels, then cost

of the edge (r2, b3) counted in the matching is paying for it.

55

• Case 1.2: If edges (r1, b3) and (r1, r2) have the same signs, the disagree-

ment on (r1, b3) could be charged to the edge (r1, r2). The number of

such edges charged to (r1, r2) is at most 2p.

Case 2: There exists disagreement between two blue nodes from different

hyper-nodes, like (b1, b3) in Figure 3.1(b).

• Case 2.1: Edges (b1, b3) and (r1, b3) are disagreeing. Then the cost of

edge (r1, b1) included in the cost of the matching is paying for it.

• Case 2.2: Edges (b1, b3) and (r1, b3) have the same labels and have dif-

ferent labels with (r1, r2). We charge the disagreement on (b1, b3) to the

edge (r2, b3). There are p choices for b1, therefore at most p edges of this

type, plus the edge (r1, b3) are charged to the edge (r2, b3), whereas M

is paying 1 for the disagreement between (r1, r2) and (r1, b3). Therefore,

we need to account for p + 1 times the matching cost to account for all

edges of this type.

• Case 2.3: Edges (b1, b3), (r1, b3), (r1, r2) all have the same labels. There

are p2 choices for a pair of blue nodes like (b1, b3), and disagreements on

these edges could be charged to (r1, r2).

Case 3: A disagreement between two blue nodes in the same hyper-node,

b1 and b2 which means (b1, b2) is a negative edge. If (r1, b1) is positive then

(r1, b2)’s contribution in the matching cost captures it. Similarly, if (r1, b2) is a

56

Algorithm 3: Fair Correlation Clustering for Multiple Colors

Input : G = (V = Vc1 ∪ Vc2 · · · ∪ VcC , E = E+ ∪ E−)
Output: clustering C ′
for 1 < i ≤ |C| do

E ′i ← φ;
for u ∈ Vci do

for v ∈ Vc1 do
E ′i ← E ′i ∪ (u, v);
w(u, v)←

∑
w∈Vi\{u,v}

1(u,w)∈E+,(v,w)∈E− + 1(u,w)∈E−,(v,w)∈E+ ;

Mi ← min-weight-b-matching(V1 ∪ Vci , E ′i, w)
C ′ ← ClassicCorrClust(Vc1 , E ∩ Vc1 × Vc1);
for 1 < i ≤ |C| do
∀v ∈ Vci , assign v to the same cluster as Mi(v);

return C ′;

positive edge then the (r1, b2)’s contribution in matching cost captures this. If

both (r1, b1) and (r1, b2) are negative edges then we can charge both the edges

1/2. The total number of times an edge (r1, b1) is charged is at most p− 1 as

there can be a maximum of p− 1 negative edges from b1.

There is a total of p2 +2p charges on edges between red nodes (Cases 1.2

and 2.3) accounting for the total cost to be (p2 + 2p)C, where C is the corre-

lation clustering objective on red vertices. Similarly, we charge each matched

edge at most p+1 times their weight in Case 2.2 and at most p−1 times their

weight in Case 3, the total contribution to the final objective is 2p ·w(M). All

charges required to handle cases 1.1 and 2.1 do not add any additional cost to

the objective as they are already accounted for edges considered in 2p ·w(M).

Hence, by applying Lemma 7, the total objective value of returned clusters is

57

at most:

(p2 + 2p)C + (p+ 1) · w(M) ≤
(

(p2 + 2p) · α + 2p× 2p
)
·OPT

Therefore the approximation ratio is O(p2), and this completes proof of The-

orem 6.

Multiple Colors

Our results could be extended to the case of multiple colors. Assume

there are C colors {c1, c2, · · · , c|C|}, and the ratio of number of nodes of color

c1 to color ci is 1 : pi (∀1 < i ≤ |C|), where pi ∈ Z≥1. In this case, we get an

approximation ratio of O((max
|C|
i=1{pi})2 · |C|2). Algorithm 3 is a generalization

of Algorithm 2. In this algorithm a set of b-matchings {Mi : 1 < i ≤ |C|} are

constructed. Each matching Mi is between nodes of color c1 and ci and degree

of each node of color c1 is pi, and degree of each node of color ci is 1. Analysis

of this algorithm is similar to the analysis of the algorithm for 2 colors. First,

we need to show the following lemma holds, which can be proved similar to

the way Lemma 7 was proved.

Lemma 8. In each matching Mi constructed in Algorithm 3, w(Mi) ≤ 2pi ·

OPT .

58

Now we are ready to prove the following theorem holds:

Theorem 7 (Multiple Colors). Given a complete unweighted graph G = (V,E)

where edges are labeled positive or negative, and each node has exactly one of

the colors {c1, · · · , c|C|}, and the ratio of the number of nodes of color c1 to

color ci is 1 : pi (∀1 < i ≤ |C|), where pi ∈ Z≥1, there exists an algorithm where

the distribution of colors in each cluster is the same as the global distribution,

and the total number of disagreements is at most O((max
|C|
i=1{pi})2 ·|C|2)·OPT .

Proof. Let pmax = max
|C|
i=1{pi}. In the following we show how to pay for all

the disagreements within a O((pmax)2 · |C|2) · OPT budget. For simplicity we

assume color c1 is red, and there are at least two other colors blue (c2) and

green (c3). Consider the following cases:

Case 1: This case is similar to Case 1 in Section 3.5. Consider a dis-

agreement between a red vertex (let’s say r1), and a node of a different color

(let’s say blue node b3) such that r1 and b3 are not matched by matching M2.

Let’s assume M2 matches b3 to r2.

• Case 1.1: If edges (r1, b3) and (r1, r2) have disagreeing labels, then cost

of the edge (r2, b3) counted in the w(M2) is paying for it.

• Case 1.2: If edges (r1, b3) and (r1, r2) have the same signs, the disagree-

ment on (r1, b3) could be charged to the edge (r1, r2). The number of

such edges charged to (r1, r2) is 2p2 (and 2pi in general if instead of b3

59

we considered a node of color ci).

Case 2: There exists a disagreement between two non-red nodes from two dif-

ferent hyper nodes, let’s say between nodes b1, g1. Let’s assume b1 is matched

to r1 by M2 (the matching between red and blue nodes), and g1 is matched to

r2 by M3 (the matching between red and green nodes).

• Case 2.1: Edges (b1, g1) and (r1, g1) are disagreeing. Then the cost of

edge (r1, b1) included in the cost of w(M2) is paying for it.

• Case 2.2: Edges (b1, g1) and (r1, g1) have the same labels and have dif-

ferent labels with (r1, r2). We charge the disagreement on (b1, g1) and

(r1, g1) to the edge (r2, g1). There are (|C| − 1) · pmax choices for b1

which are all the nodes that are matched to r1 in all the matchings

M2, · · · ,M|C|. Therefore in this case, at most (|C| − 1) · pmax + 1 edges,

are charged to the edge (r2, g1), when the matching edge between (r2, g1)

is paying 1 for the disagreement between (r1, r2) and (r1, g1).

• Case 2.3: Edges (b1, g1), (r1, g1), (r1, r2) all have the same labels. We

charge disagreements on these edges to (r1, r2). There are at most ((|C|−

1) · pmax)2 choices for a pair of non-red nodes like (b1, g1), charged to

(r1, r2).

Case 3: This case captures the disagreement between two non-red nodes in

the same hyper-node and is similar to Case 3 in Section 3.5.

60

There is a total of ((|C| − 1) · pmax)2 + 2pmax charges on edges between

red nodes (Cases 1.2 and 2.3) accounting for the total cost to be (((|C| − 1) ·

pmax)2+2pmax)C, where C is the correlation clustering objective on red vertices.

Similarly, we charge each matched edge |C| · pmax + 1 times (Case 2.2) and

pmax−1 times (Case 3), thereby contributing
∑|C|

i=2((|C|+ 1) ·p max) ·w(Mi) to

the final objective. Considering Lemma 8, we can conclude the approximation

ratio is O((pmax)2 · |C|2), and this completes the proof.

Note: When pmax = 1, we can perform classical correlation clustering on

nodes of any color Ci ∈ C and picking the one that has minimum value. This

optimization helps reduce the quadratic dependence of total disagreements of

case 2.3 on |C| to linear dependence.

Avoiding Over-representation

In this section, we consider the model defined by Ahmadian et al. [50]

for k-center problem. Their goal is to make sure given a parameter 0 ≤ α ≤ 1,

maximum fraction of nodes in a cluster having a specific color is at most α

times the size of the cluster. We consider the following problem: consider two

colors red and blue. Our goal is to make sure the ratio of the number of red

nodes to the number of blue nodes in each cluster is between 1 : q and 1 : p

61

where 1 ≤ p ≤ q and p, q ∈ Z≥1. The algorithm discussed in Section 3.5

could be modified to handle this variation of the problem in the following way:

when finding a minimum cost b-matching M , put the degree constraint on each

red node to be between p and q, and let the degree constraint on each blue

node to be 1. Therefore in the minimum cost matching M , each connected

component has 1 red node and at least p and at most q blue nodes. Next, run

an α-approximation correlation clustering on a subset of G which includes the

red vertex from each hyper-node (i.e. a collection of matched nodes). The rest

of the algorithm is similar to the algorithm discussed in Section 3.5. Using a

similar analysis, we show the approximation ratio is O(q2). First, we need to

show the following lemma holds:

Lemma 9. w(M) ≤ 2q ·OPT .

Proof. Given the optimum solution OPT , we can show a b-matching M ′ could

be constructed where endpoints of each matched edge belong to the same

cluster, and the degree of each red node is at least p and at most q. In the

OPT solution, in each cluster, the ratio of the number of red to blue nodes is

between 1 : q and 1 : p. Consider a specific cluster X in the OPT solution,

let nr, nb denote the number of red and blue nodes in this cluster respectively.

Therefore, nr · p ≤ nb ≤ nr · q. Construct a b-matching inside X as following:

first assign p distinct blue nodes to each red node in X . If any blue nodes in

62

X are left un-assigned, assign them to any red node in X which is assigned

to less than q blue nodes. Since nb ≤ q · nr, we can find a b-matching with

desired properties in each cluster of the OPT solution. M ′ is the union of the

b-matchings formed in all the clusters. First, we show w(M ′) ≤ 2q · OPTG.

Consider an edge between arbitrary vertices vi and vj, such that they are

not matched in M ′. If a disagreement occurs on the edge between (vi, vj) in

OPTG, this disagreement could have been counted at most 2q times in w(M ′).

Therefore w(M ′) ≤ 2q · OPTG. Since M is a min cost b-matching satisfying

degree constraints:

w(M) ≤ w(M ′) ≤ 2q ·OPTG

Now we are ready to show the following theorem holds:

Theorem 8 (Avoiding Over-Representation). Given a complete unweighted

graph G = (V,E) where edges are labeled positive or negative, and nodes are

colored red or blue, and two ratios 1 : p, 1 : q where p, q ∈ Z≥1, p ≤ q, where

ratio of the total number of red nodes to the total number of blue nodes is

between 1 : q and 1 : p, there exists an algorithm which gives a clustering

where the ratio of number of red nodes to blue nodes in each cluster is between

1 : q and 1 : p, and the total number of disagreements is at most O(q2) ·OPT .

63

Proof. In the following, we show we can pay for all the disagreements within

a
(

(q2 + 2q) · α + 4q2
)
·OPT budget.

Case 1: In Figure 3.1(b), consider a disagreement between a red vertex

(r1) and a blue (b3) node from different hyper-nodes. Two cases might happen:

• Case 1.1: If edges (r1, b3) and (r1, r2) have disagreeing labels, then cost

of the edge (r2, b3) counted in the matching is paying for it.

• Case 1.2: If edges (r1, b3) and (r1, r2) have the same signs, the disagree-

ment on (r1, b3) could be charged to the edge (r1, r2). The number of

such edges charged to (r1, r2) is at most 2q.

Case 2: There exists a disagreement between two blue nodes from two differ-

ent hyper-nodes, like (b1, b3) in Figure 3.1(b).

• Case 2.1: Edges (b1, b3) and (r1, b3) are disagreeing. Then the cost of

edge (r1, b1) included in the cost of the matching is paying for it.

• Case 2.2: Edges (b1, b3) and (r1, b3) have the same labels and have dif-

ferent labels with (r1, r2). We charge the disagreement on (b1, b3) to the

edge (r2, b3). There are p choices for b1, therefore at most p edges of this

type, plus the edge (r1, b3) are charged to the edge (r2, b3), when M is

paying 1 for the disagreement between (r1, r2) and (r1, b3). Therefore,

we need to account for at most q+ 1 times the matching cost to account

for all edges of this type.

64

• Case 2.3: Edges (b1, b3), (r1, b3), (r1, r2) all have the same labels. There

are at most q2 choices for a pair of blue nodes like (b1, b3), and disagree-

ments on these edges could be charged to (r1, r2).

Case 3: A disagreement between two blue nodes in the same hyper-node,

b1 and b2 which means (b1, b2) is a negative edge. If (r1, b1) is positive then

(r1, b2)’s contribution in the matching cost captures it. Similarly, if (r1, b2) is a

positive edge then the (r1, b2)’s contribution in matching cost captures this. If

both (r1, b1) and (r1, b2) are negative edges then we can charge both the edges

1/2. The total number of times an edge (r1, b1) is charged is at most q − 1 as

there can be a maximum of q − 1 negative edges from b1.

There is a total of q2 +2q charges on edges between red nodes (Cases 1.2

and 2.3) accounting for the total cost to be (q2 + 2q)C, where C is the corre-

lation clustering objective on red vertices. Similarly, we charge each matched

edge at most q + 1 times their weight in Case 2.2 and at most q − 1 times

their weight in Case 3, the total contribution to the final objective is at most

(2q) · w(M). All the charges required to handle cases 1.1 and 2.1 do not add

any additional cost to the objective as they are already accounted for the edges

considered in (2q) · w(M). Hence, by applying Lemma 9, the total objective

65

value of returned clusters is at most:

(q2 + 2q)C + (q + 1) · w(M) ≤
(

(q2 + 2q) · α + 2q × 2q
)
·OPT

Therefore the approximation ratio is O(q2), and this completes proof of The-

orem 8.

In the case of multiple colors, where the goal is that in each cluster the

ratio of the number of nodes of color c1 to color ci be between 1 : pi and 1 : qi

where ∀1 < i ≤ |C|, pi ≤ qi and pi, qi ∈ Z≥1, Algorithm 3 could be modified to

handle this case: in each iteration, find a minimum cost weighted b-matching

Mi where the degree of each node of color c1 is between pi and qi, and the

degree of each node of color ci is 1. By applying Lemma 9 to each matching

Mi, one can see w(Mi) ≤ 2qi ·OPT . Next, we run an α-approximation on the

nodes of color c1, and for each fixed vertex u of color c1, all the vertices that

are matched to u using any of the matchings {M2, · · · ,M|C|} go to the same

cluster as u. We show the following theorem holds for this scenario:

Theorem 9 (Avoiding Over-Representation with Multiple Colors). Given a

complete unweighted graph G = (V,E) where edges are labeled positive or

negative, and each node has exactly one of the colors {c1, · · · , cC}, and two

ratios 1 : pi, 1 : qi for each color ci where pi, qi ∈ Z≥1, pi ≤ qi, where ratio

66

of the total number of nodes of color c1 to the total number of nodes of color

ci needs to be between 1 : qi and 1 : pi, there exists an algorithm which gives

a clustering where ∀1 < i ≤ |C|, the ratio of number of nodes of color c1 to

color ci in each cluster is between 1 : qi and 1 : pi, and the total number of

disagreements is at most O((max
|C|
i=1{qi})2) ·OPT .

Proof. Let qmax = max{q2, · · · , q|C|}. In the following we show how to pay for

all disagreements within a O((q2
max) · |C|2) · OPT budget. For simplicity let’s

assume color c1 is red, and there are at least two other colors blue (c2) and

green (c3). Consider the following cases:

Case 1: Consider a disagreement between a red vertex (let’s say r1),

and a node of a different color (let’s say blue node b3) such that r1 and b3 are

not matched by matching M2. Let’s assume M2 matches b3 to r2.

• Case 1.1: If edges (r1, b3) and (r1, r2) have disagreeing labels, then cost

of the edge (r2, b3) counted in the w(M2) is paying for it.

• Case 1.2: If edges (r1, b3) and (r1, r2) have the same signs, the disagree-

ment on (r1, b3) could be charged to the edge (r1, r2). The number of

such edges charged to (r1, r2) is at most 2q2 (and 2qi in general if instead

of b3 we considered a node of color ci).

Case 2: There exists a disagreement between two non-red nodes from two dif-

ferent hyper nodes, let’s say between nodes b1, g1. Let’s assume b1 is matched

67

to r1 by M2 (the matching between red and blue nodes), and g1 is matched to

r2 by M3 (the matching between red and green nodes).

• Case 2.1: Edges (b1, g1) and (r1, g1) are disagreeing. Then the cost of

edge (r1, b1) included in the cost of w(M2) is paying for it.

• Case 2.2: Edges (b1, g1) and (r1, g1) have the same labels and have dif-

ferent labels with (r1, r2). We charge the disagreement on (b1, g1) and

(r1, g1) to the edge (r2, g1). There are (|C| − 1) · qmax choices for b1

which are all the nodes that are matched to r1 in all the matchings

M2, · · · ,M|C|. Therefore in this case, at most (|C| − 1) · qmax + 1 edges,

are charged to the edge (r2, g1), when the matching edge between (r2, g1)

is paying 1 for the disagreement between (r1, r2) and (r1, g1).

• Case 2.3: Edges (b1, g1), (r1, g1), (r1, r2) all have the same labels. We

charge disagreements on these edges to (r1, r2). There are at most ((|C|−

1) · qmax)2 choices for a pair of non-red nodes like (b1, g1), charged to

(r1, r2).

Case 3: This case captures the disagreement between two non-red nodes in

the same hyper-node and is similar to Case 3 in Section 3.5.

There is a total of ((|C| − 1) · qmax)2 + 2qmax charges on edges between

red nodes (Cases 1.2 and 2.3) accounting for the total cost to be (((|C| − 1) ·

qmax)2+2qmax)C, where C is the correlation clustering objective on red vertices.

68

Similarly, we charge each matched edge |C| · qmax + 1 times (Case 2.2) and

qmax−1 times (Case 3), thereby contributing
∑|C|

i=2((|C|+1)·q max)·w(Mi) to the

final objective. Since w(Mi) ≤ 2qi ·OPT , we can conclude the approximation

ratio is O((qmax)2 · |C|2), and this completes proof of Theorem 7.

Hardness

Consider a complete graph G = (V,E = E+ ∪ E−). Consider a new

complete graph H of 2|V | nodes which is constructed by duplicating the nodes

of G (say V and V ′ = {u′ | u ∈ V }). We can assume the nodes of V to be

colored red and V ′ can be considered as the mirror image of V colored blue.

Each pair of nodes u, v ∈ V are connected in the same way as E. A positive

edge is added between u and u′ for all u ∈ V , where u′ is the mirror image of

u. For all u ∈ V, v′ ∈ V ′, the edge between (u, v′) has the same label as (u, v)

where v is the mirror of v′. The graph H restricted to vertices V ′ is referred

to as G′ = (V ′, E ′) (as shown in Figure 3.2).

Consider a clustering of H with equal number of red and blue vertices

in each cluster (say C ′). Now, we calculate the disagreements on the edges

between nodes of V and V ′ to bound the total disagreements of C ′. A dis-

agreement edge (u′, v′) ∈ E ′ leads to the following scenarios.

69

'#

'$

$′$

'%

'&

''

'′#

'′$

'′%

'′&

'′'

Figure 3.2: Red edges have negative labels, and black edges have positive
labels.

• Case 1: If (u′, v′) ∈ E−: Therefore nodes u′ and v′ belong to same cluster.

– Case 1.1: If u, v belong to the same cluster as u′ and v′, then edges

(u, v′) and (u′, v) are mistakes.

– Case 1.2: u belongs to same cluster as u′ and v′ but v belongs to a

different cluster. Edges (v, v′) and (u, v′) are the mistakes.

– Case 1.3: u and v belong to different cluster from u′ and v′, edges

(u, u′) and (v, v′) are mistakes

• Case 2: If (u′, v′) is a positive edge. This means u′ and v′ belong to

different clusters.

– Case 2.1: If u belongs to same cluster as u′ and v belongs to same

cluster as v′ then edges (u, v′) and (u′, v) are the mistakes.

– Case 2.2: If u belongs to different cluster from u′ and v belongs to

70

different cluster from v′ then (u, u′) and (v, v′) are the mistakes.

– Case 2.3: If u belongs to different cluster from u′ and v, v′ belong

to the same cluster:

∗ Case 2.3.1: If u and v′ belong to different clusters then (u, v′)

and (u, u′) are mistakes.

∗ Case 2.3.2: If u and v′ belong to the same cluster then (u, u′)

and (u′, v) are mistakes.

This shows that for every disagreement (u′, v′) ∈ E ′, there exist at least 2

disagreements in the edges between {u′, v′} and {u, v}: (u, v′), (u′, v), (u, u′)

and (v, v′). If the disagreements on the subgraph ofH limited to (V ′, E ′) isOG′ ,

then the total disagreements on the edges between V and V ′ is at least 2OG′ .

Hence, the total disagreements of C ′ is at least 3OG′ + OG, where OG is the

disagreements on subgraph limited to G = (V,E). Symmetrically performing

the above-mentioned analysis on (u, v) ∈ E, the total disagreements of C ′ is

at least 3OG +OG′ . Hence the total number of disagreements of C ′ is at least

max{3OG′ + OG, 3OG + OG′}, which is minimized when OG = OG′ = OPTG.

This is minimized when each red node and its mirror image belong to the same

cluster. By discarding the nodes of V ′ from the optimal solution of H, we get

the optimal solution of classical correlation clustering on G.

71

3.6 Experiments

In this section, we empirically evaluate our algorithm along with some

baselines on real world datasets. We show that the clusters generated by

classical correlation clustering algorithm are unfair and our algorithm returns

fair clusters without much loss in the quality of the clusters3.

Datasets. We consider the following datasets.

1. Bank 4. This dataset comprises of phone call records of a marketing

campaign run by a Portuguese bank. The marital status of the clients

is considered feature to ensure fairness.

2. Adult5. Each record in the dataset represents a US citizen whose infor-

mation was collected during 1994 census. We consider the feature sex

for fairness.

3. Medical Expenditure6. The dataset contains medical information of var-

ious patients collected for research purposes. The race attribute is con-

sidered for fairness.

4. Compas7. The dataset comprises of records of criminal trials used to

3We plan to opensource the code repository along with readme files. The code is available
at https://www.dropbox.com/sh/x99fz8mdgfyec8v/AAD174qwFGfBSP2AQyPPwC1Fa?
dl=0

4https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
5https://archive.ics.uci.edu/ml/datasets/adult
6https://meps.ahrq.gov/mepsweb/
7https://github.com/propublica/compas-analysis

72

https://www.dropbox.com/sh/x99fz8mdgfyec8v/AAD174qwFGfBSP2AQyPPwC1Fa?dl=0
https://www.dropbox.com/sh/x99fz8mdgfyec8v/AAD174qwFGfBSP2AQyPPwC1Fa?dl=0
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
https://archive.ics.uci.edu/ml/datasets/adult
https://meps.ahrq.gov/mepsweb/
https://github.com/propublica/compas-analysis

analyze criminal recidivism. We consider race attribute for fairness.

Each record in the above-mentioned datasets are considered as the nodes

of the graph and the edge sign is determined by attribute similarity between

the nodes. We consider a random sample of 1000 nodes in the above datasets

for our experiments.

Baselines. We compare the quality of clusters returned by our algorithm

with the following baselines focused towards minimizing disagreements and

ensure fairness. (i) CC – The classical correlation clustering algorithm [52]

that guarantees a 3-approximation of the optimal solution but does not en-

sure fairness (iii) wMatch – It generates a matching between nodes of different

color as discussed in Algorithm 2 (iv) uFairCC – Same as our algorithm with

a difference that the matching component considers unit weight on inter-color

edge. (v) CCMerge – This algorithm runs classical correlation clustering algo-

rithm to generate initial clusters and then greedily add nodes to the clusters

in decreasing size, so as to ensure fairness constraints.

All the algorithms were implemented by us in Python using the networkx

library on a 64GB RAM server. We run each algorithm 5 times and report

average results. We calculate the total disagreements of the returned clusters

to evaluate their quality. We denote our algorithm by FairCC.

73

 0.6

 0.8

 1

 1.2

 1.4

(a) Bank

T
ot

al
 D

is
ag

re
em

en
ts

Techniques

FairCC CC

 0.6

 0.8

 1

 1.2

 1.4

(b) Adult

T
ot

al
 D

is
ag

re
em

en
ts

Techniques

uFairCC CCMerge

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

(c) Compas

T
ot

al
 D

is
ag

re
em

en
ts

Techniques

wMatch

 0

 0.5

 1

 1.5

 2

 2.5

 3

(d) MEPS

T
ot

al
 D

is
ag

re
em

en
ts

Techniques

Figure 3.3: Comparison of total disagreements for the different baselines with
a constraint of ratio of two colors to be between 1:1 and 1:2.

Solution Quality

This section compares the quality of clusters returned by the different

algorithms for the specified distribution of features in each cluster.

Fair proportion. Figure 3.3 compares the total disagreements of the clusters

returned by different algorithms. We observe similar trends across all the

datasets. The clusters returned by CC do not obey the fairness constraint but

all the other techniques ensure fairness. Across all datasets, FairCC achieves

the minimum value of total disagreements as compared to the baselines that

ensure fairness. Additionally, the loss in quality of clusters to achieve fairness

as compared to CC is quite low. The matching returned by wMatch is same

as that of FairCC but it achieves poor quality due to a number of positive

edges going across the different components. The CCMerge algorithm ends

up merging nodes which are connected by negative edges to ensure fairness,

thereby losing on quality. uFairCC is same as our proposed solution except that

the matching component between nodes of different colors does not consider

74

weights. Superior performance of FairCC as compared to uFairCC justifies

the benefit of our construction of a weighted bipartite graph to match nodes

of different colors.

 0

 0.2

 0.4

 0.6

 0.8

 1

C1 C2 C3 C4 C5

(a) CC-Adult

F
ra

ct
io

n
of

 n
od

es

Clusters

Male Female

 0

 0.2

 0.4

 0.6

 0.8

 1

C1 C2 C3 C4 C5

(b) FairCC-Adult

F
ra

ct
io

n
of

 n
od

es

Clusters

 0

 0.2

 0.4

 0.6

 0.8

 1

C1 C2 C3 C4 C5

(c) CC-Compas

F
ra

ct
io

n
of

 n
od

es

Clusters

Red Blue

 0

 0.2

 0.4

 0.6

 0.8

 1

C1 C2 C3 C4 C5

(d) FairCC-Compas

F
ra

ct
io

n
of

 n
od

es

Clusters

Figure 3.4: Distribution of nodes of different colors in top 5 clusters generated
by the algorithms.

Figure 3.4 shows distribution of top-5 clusters generated by CC and

FairCC on Adult and Compas. The skew in distribution of the nodes of two

colors in the clusters demonstrates the extent of unfairness in the results gener-

ated by classical correlation clustering algorithm. On the other hand, FairCC

achieves the required fairness constraint in all clusters without losing much in

quality. On increasing the range of plausible fraction of two colors, the total

disagreements of FairCC go down but the trends remain similar.

 0.6

 0.8

 1

 1.2

 1.4

(a) Adult - Sex, Race

T
ot

al
 D

is
ag

re
em

en
ts

Techniques

FairCC CC uFairCC

 0.6

 0.8

 1

 1.2

 1.4

(b) Adult - Education

T
ot

al
 D

is
ag

re
em

en
ts

Techniques

wMatch

Figure 3.5: Comparison of clusters returned by our algorithm and baselines
for instances with more than two colors for Adult dataset. We omit CCMerge

as it does not generate fair clusters.

75

Multiple colors. Figure 3.5 compares the performance of FairCC with other

baselines. Similar to the case of 2 colors, the quality of FairCC is not much

worse than that of CC and is better than any other baseline. This comparison

does not plot CCMerge as it does not generate clusters that obey fairness.

Running Time. FairCC runs in two stages. The first stage identifies a

weighted matching between the nodes of different color followed by correlation

clustering on one of the colors. On all the datasets, our algorithm ran in less

than 10 minutes. For a graph of n nodes, with the increase in number of colors

the size of subgraph constructed for matching reduces and total running time

does not increase.

3.7 Authors

This Chapter was written by Saba Ahmadi, Sainyam Galhotra, Barna

Saha, and Roy Schwartz. It is under submission to the Journal of Machine

Learning [10].

76

4 Min-Max Correlation Cluster-

ing via MultiCut

4.1 Introduction

Correlation clustering is a fundamental optimization problem introduced

by Bansal, Blum and Chawla [11]. In this problem, we are given a general

weighted graph where each edge is labeled positive or negative. The goal is

to obtain a partitioning of the vertices into an arbitrary number of clusters

that agrees with the edge labels as much as possible. That is, a clustering

that minimizes disagreements, which is the weight of positive edges between

the clusters plus the weight of negative edges inside the clusters. In addition,

correlation clustering captures some fundamental graph cut problems includ-

ing min s-t cut, multiway cut and multicut. Correlation clustering has been

studied extensively for more than a decade [52,54,67–69]. Most of the papers

77

have focused on a global min-sum objective function, i.e. minimizing total

number of disagreements or maximizing the total number of agreements.

In recent work, Puleo and Milenkovic [15] introduced a local vertex-

wise min-max objective for correlation clustering which bounds the maxi-

mum number of disagreements on each node. This problem arises in many

community detection applications in machine learning, social sciences, recom-

mender systems and bioinformatics [16–18]. This objective function makes

sure each individual has a minimum quality within the clusters. They showed

this problem is NP-hard even on un-weighted complete graphs, and developed

an O(1) approximation algorithm for unweighted complete graphs. Charikar

et al. [19] improved upon the work by Puleo and Milenkovic [15] for complete

graphs by giving a 7 approximation. For general weighted graphs, their ap-

proximation bound is O(
√
n) where n is the number of vertices. Both these

algorithms rely on LP rounding, based on a standard linear program relax-

ation for the problem. In contrast, for the global minimization objective an

O(log n)-approximation can be obtained [69]. Therefore, the local objective

for correlation clustering seems significantly harder to approximate than the

global objective.

In this work, we propose a new local cluster-wise min-max objective for

correlation clustering – minimizing the maximum number of disagreements

78

of each cluster. This captures the case when we wish to create communities

that are harmonious, as global min sum objectives could create an imbalanced

community structure. This new local objective guarantees fairness to commu-

nities instead of individuals. To name a few applications for this new objective,

consider a task of instance segmentation in an image which can be modeled

using correlation clustering [70, 71]. A cluster-wise min-max objective makes

sure each detected instance has a minimum quality. Another example is in

detecting communities in social networks, this objective makes sure there are

no communities with lower quality compared to the other communities. No

hardness results are known for the cluster-wise min-max objective.

A similar objective was proposed for the multiway cut problem by Svitk-

ina and Tardos [72]. In the min-max multiway cut problem, given a graph G

and k terminals the goal is to get a partitioning of G of size k that separates

all terminals and the maximum weight of cut edges on each part is minimized.

Svitkina and Tardos [72] showed an O(log3 n) approximation algorithm for

min-max multiway cut on general graphs (this bound immediately improves

to O(log2 n) by using better bisection algorithms). Bansal et al. [73] studied a

graph partitioning problem called min-max k-partitioning from a similar per-

spective. In this problem, given a graph G = (V,E) and k ≥ 2 the goal is to

partition the vertices into k roughly equal parts S1, · · · , Sk while minimizing

79

maxi δ(Si). They showed an O(
√

log n log k) approximation algorithm for this

problem. They also improved the approximation ratio given by Svitkina et

al. [72] for min-max multiway cut to O(
√

log n log k). Bansal et al.’s seminal

work [73] uses the concept of orthogonal separators introduced by Chlamtac

et al. [74] to achieve their result.

4.2 Results & High-Level Ideas

In this chapter, we propose an approximation algorithm for the problem

of min-max correlation clustering.

Definition 1. (Min-max Correlation Clustering) Let G = (V,E) be an edge-

weighted graph such that each edge is labeled positive or negative. The min-max

correlation clustering problem asks for a partitioning of the nodes (a clustering)

where the maximum disagreement of a cluster is minimized. Disagreement of

a cluster C is the weight of negative edges with both endpoints inside C plus

the weight of positive edges with exactly one endpoint in C.

We prove the following theorem for min-max correlation clustering.

Theorem 1. Given an edge weighted graph G = (V,E) on n vertices such

that each edge is labeled positive or negative, there exists a polynomial time

algorithm which outputs a clustering C = {C1, · · · , C|C|} of G such that the

80

disagreement on each Ci ∈ C is at most O(
√

log n ·max{log(|E−|), log(k)}) ·

OPT ; where OPT is the maximum disagreement on each cluster in an optimal

solution of min-max correlation clustering, k is the number of clusters in the

optimum solution, and |E−| denotes the number of negative edges in G.

In order to prove Theorem 1, we give a reduction from the problem of

min-max correlation clustering to a problem which we call min-max multicut.

Definition 2. (Min-max Multicut) Given an edge weighted graph G = (V,E)

and a set of source-sink pairs {(s1, t1), · · · , (sT , tT}, the goal is to give a par-

titioning P = {P1, P2, · · · , P|P|} of G such that all the source sink pairs are

separated, and max1≤i≤|P| δ(Pi) is minimized.

In min-max multicut, we do not force each part of the partitioning to

have a terminal and there could be some parts without any terminals in the

final solution. However, in the min-max multiway cut problem introduced by

Svitkina and Tardos [72], each part needs to have exactly one terminal. We

prove the following theorem for min-max multicut:

Theorem 2. Given an edge weighted graph G = (V,E) on n vertices, and

a set of source sink pairs SG = {(s1, t1), · · · , (sT , tT)}, there exists a poly-

nomial time algorithm which outputs a partitioning P = {P1, · · · , P|P|} of

81

G, such that all the source sink pairs are separated and max1≤i≤|P| δ(Pi) ≤

O(
√

log n ·max{log(T), log(k)}) · OPT ; where OPT is the value of the op-

timum solution of min-max multicut, and k is the number of clusters in the

optimum solution.

We get improved approximation ratios for min-max correlation cluster-

ing, min-max multicut on graphs excluding a fixed minor.

Theorem 3. Given an edge weighted graph G excluding Kr,r minors, there

exist polynomial time O(r2)-approximation algorithms for min-max correlation

clustering and min-max multicut.

Finally, we get improved approximation ratio for min-max correlation

clustering on complete graphs.

Theorem 4. Given an unweighted complete graph on the set of vertices V

(|V | = n) such that each edge is labeled positive or negative, there exists a

polynomial time algorithm which outputs a clustering C = {C1, · · · , C|C|} of G

such that the disagreement on each Ci ∈ C is at most 14 ·OPT ; where OPT is

the maximum disagreement on each cluster in an optimal solution of min-max

correlation clustering.

82

High-Level Ideas

Most algorithms for correlation clustering with the global minimizing

disagreement objective use a linear programming relaxation [54, 68, 69]. The

recent work of Charikar, Gupta and Schwartz also use a similar linear pro-

gramming relaxation for the vertex-wise min-max objective [19]. Surprisingly,

these relaxations do not work for the min-max correlation clustering problem

considered in this chapter. Indeed, simply obtaining a linear programming

relaxation for the cluster-wise min-max objective looks challenging!

Bansal et al. [73] considered a semidefinite programming (SDP) based

approximation algorithm for min-max k balanced partitioning and min-max

multiway cut with k terminals. In their approach, instead of finding the entire

solution in one shot, they obtain a single part at a time. It is possible to encode

the same problem with a linear program albeit with a worse approximation

guarantee. They use SDP rounding to obtain a part with low cut capacity

and repeat the process until the parts produce a covering of all the vertices.

By properly adjusting the weight of each part, the covering can be obtained

efficiently. Finally, they convert the covering to partitioning.

The problem of extracting a single cluster of min-max correlation clus-

tering can be captured by a semidefinite programming formulation. Here it

83

is not over a cut capacity objective, instead we need to simultaneously con-

sider the intra-cluster negative edges as well as inter-cluster positive edges.

Indeed, even for the global minimization objective, we are not aware of any

good rounding algorithm based on SDP relaxation of correlation clustering.

Therefore, rounding the SDP formulation directly looks difficult. To overcome

this, we instead consider a new problem of min-max multicut. Demaine et

al. [69] have shown an approximation preserving reduction between multicut

and correlation clustering (for the global objective function). By solving the

min-max multicut problem and then using the aforementioned reduction, we

solve the min-max correlation clustering problem.

First, the reduction of Demaine et al. [69] is for the global objective, and

an equivalence in global objective does not necessarily correspond to equiva-

lency in local min-max objective. Fortunately, we could show indeed such an

equivalency can be proven (Section 4.4). Thus, the “multicut” route seems

promising as it optimizes over a cut objective. We consider obtaining each

component of the min-max multicut problem, repeat this process to obtain a

covering [73], and finally convert the covering to a partitioning.

The major technical challenge comes in rounding the SDP relaxation for

the multicut instance where we seek to find a single component with good

cut property. In order for the relaxation to be valid, we have to add new

84

constraints so that no source-sink pair (si, ti) appears together. We also need to

ensure that the component obtained satisfies a weight lower bound by assigning

weights to each vertex. This is important in the next step when we wish to

get a covering of all the vertices: we will decrease the weight of the vertices in

the component recovered and again recompute the SDP relaxation with the

same weight lower bound. This ensures the same component is not repeatedly

recovered and a final covering can be obtained. To solve min-max multiway

cut, Bansal et al. [73] need to separate k terminals. To do so, they can just

guess which of the k terminals if any should appear in the current component

with only k+1 guesses. For us, the number of such guesses would be 3T where

T is the number of source sink pairs since for every pair (si, ti), either si or

ti or none would be part of the returned component. Since T could be O(n2)

such a guessing is prohibitive. We need to come up with a new approach to

address this issue.

We use an SDP relaxation to compute a metric on the graph vertices

and add additional constraints to separate source sink pairs along with the

spreading constraints from Bansal et al. [73] to recover a component of desired

size. Next, we use the SDP separator technique introduced by Bansal et al. [73]

to design a rounding algorithm that returns a set S = {S1, S2, · · · , Sj}, such

that for each Si ∈ S, there are no source-sink pairs in Si. Bansal et al. [73]

85

need to glue the sets in S and report it as a single component, since they wish

to get a solution with specified number of components at the end. However,

in min-max multicut problem, the number of components does not matter.

Therefore, we do not need to union the sets in S, and as a result no source-

sink violations happen.

It is possible to use a linear programming formulation for the detour via

multicut and use LP-separators of Bansal et al. [73] in place of orthogonal

separators and follow our algorithm. This would achieve a similar bound for

min-max multicut and min-max correlation clustering in general graphs, but

a much better bound of O(r2 · OPT) for graphs that exclude Kr,r minors.

Similarly, we use LP formulation of correlation clustering problem to devise a

new algorithm for complete graphs.

4.3 Min-Max Multicut

Given a subset S ⊆ V , let δ(S) denote the number of edges with exactly

one endpoint in S and let the number of source sink pairs (si, ti) such that

both si and ti belong to S be vio(S).

In order to prove Theorem 2, we first wish to find a set S = {S1, · · · , Sj},

such that ∀Si ∈ S, Si ⊆ V , and δ(Si) ≤ O(
√

log n ·max{log(|T |), log(k)}) ·

86

OPT , where OPT is the maximum number of cut edges on each part of the

optimum partitioning for the min-max multicut problem on graph G, k is

the number of clusters in the optimum solution which is guessed, T is the

number of source-sink pairs, and n is the number of vertices in G. In addition,

∀Si ∈ S, vio(Si) = O(1).

Graph G = (V,E) can have arbitrary edge weights, w : E → R+. We

assume graph G = (V,E) is also a vertex-weighted graph, and there is a

measure η on V such that η(V) = 1. This measure is used to get a covering of

all the vertices. In Section 4.3, Theorem 5 is repeatedly applied to generate a

family of sets that cover all the vertices. When a vertex is covered its weight is

decreased so the uncovered vertices have a higher weight. Constraint η(S) ∈

η(S) =
∑j

i=1 η(Si) ∈
[
H/4, 12H

]
makes sure the newly computed family of

sets S has adequate coverage. Parameter H ∈ (0, 1) is equal to 1/k where k

is the number of parts in the optimum partitioning which we guess.

After getting a covering of all the vertices, in Section 4.3, it is explained

how to convert a covering into a partitioning with the properties desired in

Theorem 2. In order to prove Theorem 1, in Section 4.4, we show how a

O(
√

log n ·max{log(|T |), log(k)})-approximation algorithm for min-max mul-

ticut implies a O(
√

log n ·max{log(|E−|), log(k)})-approximation algorithm

for min-max correlation clustering.

87

First, we prove the following theorem:

Theorem 5. We are given an edge-weighted graph G = (V,w), a set of source

sink pairs SG, a measure η on V such that η(V) = 1, and a parameter H ∈

(0, 1). Assume there exists a set S∗ ⊆ V such that η(S∗) ∈ [H, 2H], and

vio(S∗) = 0. We design an efficient randomized algorithm to find a set S,

where S = {S1, · · · , Sj} satisfying ∀Si ∈ S, Si ⊆ V , η(S) =
∑j

i=1 η(Si) ∈[
H/4, 12H

]
, and ∀Si ∈ S, vio(Si) = 0, and:

δ(Si) ≤ O(
√

log n ·max{log(T), log(k)}) ·OPT

where OPT = arg min
{
δ(S∗) : η(S∗) ∈ [H, 2H],∀(si, ti) ∈ SG, |{si, ti} ∩ S∗| ≤

1} and |SG| = T .

In order to prove this theorem, we use the notion of m−orthogonal sepa-

rators, a distribution over subsets of vectors, introduced by Chlamtac et al. [74]

which is explained in the following:

Definition 3. Let X be an `2
2 space (i.e. a finite collection of vectors satisfying

`2
2 triangle inequalities with the zero vector) and m > 0. A distribution over

subsets S of X is an m−orthogonal separator of X with probability scale α >

0, separation threshold 0 < β < 1, and distortion D > 0, if the following

conditions hold:

88

• ∀u ∈ X,Pr(u ∈ S) = α ‖u‖2

• ∀u, v ∈ X if ‖u− v‖2 ≥ βmin{‖u‖2 , ‖v‖2} then Pr(u ∈ S and v ∈

S) ≤ min{Pr(u∈S),Pr(v∈S)}
m

• ∀u, v ∈ X, Pr(IS(u) 6= IS(v)) ≤ αD · ‖u− v‖2, where IS is the indicator

function for the set S.

Operator ‖.‖ shows the `2 norm. Chlamtac et al. [74] proposed an algo-

rithm for finding m-orthogonal separators.

Theorem 6. [74] There exists a polynomial-time randomized algorithm that

given an `2
2 space X containing 0 and a parameter m > 0, and 0 < β < 1,

generates an m−orthogonal separator with distortion D = Oβ(
√

log |X| logm)

and α ≥ 1
poly(|X|) .

SDP Relaxation

In order to prove Theorem 5, we use the following SDP relaxation which

is inspired by Bansal et al. [73] except for Constraints 4.5 and 4.6. In this

relaxation, we assign a vector v̄ for each vertex v ∈ V . The objective is to

minimize the total weight of cut edges. The set of Constraints 4.2 are `2
2

triangle inequalities, and the set of Constraints 4.3 and 4.4 are `2
2 triangle

inequalities with the zero vector. The set of Constraints 4.5 and 4.6 make sure

89

that for each source-sink pair (si, ti), both si and ti do not belong to S since

both vectors s̄i and t̄i could not be 1 for some fixed unit vector simultaneously.

Constraint 4.7 and the set of Constraints 4.8 make sure the returned subgraph

has the desired size. Suppose now that we have approximately guessed the

measure H of the optimal solution H ≤ η(S) ≤ 2H. We can ignore all vertices

v ∈ V with η(v) > 2H since they do not participate in the optimal solution

and thus write the set of Constraints 4.8. Constraints (4.9) are spreading

constraints introduced by Bansal et al. [73] which ensure size of S is small.

min
∑

(u,v)∈E w(u, v) ‖ū− v̄‖2 (4.1)

‖ū− w̄‖2 + ‖w̄ − v̄‖2 ≥ ‖ū− v̄‖2 ∀u, v, w ∈ V (4.2)

‖ū− w̄‖2 ≥ ‖ū‖2 − ‖w̄‖2 ∀u,w ∈ V (4.3)

‖ū‖2 + ‖v̄‖2 ≥ ‖ū− v̄‖2 ∀u, v ∈ V (4.4)

‖s̄i − t̄i‖2 ≥ ‖s̄i‖2 ∀(si, ti) ∈ SG (4.5)

‖s̄i − t̄i‖2 ≥ ‖t̄i‖2 ∀(si, ti) ∈ SG (4.6)∑
v∈V ‖v̄‖

2 η(v) ≥ H (4.7)

‖v̄‖2 = 0 if η(v) > 2H (4.8)∑
v∈V η(v) ·min{‖ū− v̄‖2 , ‖ū‖2} ≥ (1− 2H) ‖ū‖2 ∀u ∈ V (4.9)

Lemma 1. Given S∗ = arg min
{
δ(T) : η(T) ∈ [H, 2H],∀(si, ti) ∈ SG, |{si, ti}∩

T | ≤ 1}, the optimal value of SDP is at most δ(S∗).

Proof. Consider the following solution for the SDP. For each vertex v, if v ∈ S∗

let v̄ = 1 for some fixed unit vector, and v̄ = 0 otherwise. We show this

90

gives a feasible solution for the SDP. Clearly triangle inequalities hold for this

solution. Now we show that Constraints 4.5 hold for S∗. Consider a source-

sink pair (si, ti). Two cases might happen, either s̄i = 0 or t̄i = 0. If s̄i = 1

then t̄i should be zero since si and ti could not both belong to S∗ and the

constraint holds. If s̄i = 0 then RHS is 0 and the constraint holds. A similar

argument shows the set of Constraints 4.6 hold as well. H was guessed such

that H ≤ η(S∗) ≤ 2H therefore Constraints 4.7 and Constraints 4.8 hold.

Now we want to show the set of Constraints (4.9) hold. Consider a fixed

vertex u. If ū = 0 then both sides of the spreading constraint become 0. If

ū = 1 the spreading constraint equals η(V \ S∗) ≥ (1− 2H) which holds since

H ≤ η(S∗) ≤ 2H. Therefore S∗ is a feasible solution and the objective value

of SDP is at most δ(S∗).

Approximation Algorithm

In this section, we prove Theorem 5. We propose an approximation

algorithm which is inspired by Bansal et al.’s [73] algorithm for small-set ex-

pansion (SSE). However, there is a significant difference between our algorithm

and theirs. In the SSE problem, one does not need to worry about separating

source sink pairs.

91

First, we solve the SDP relaxation, and then proceed iteratively. In each

iteration, we sample an (32T · k) - orthogonal separator S with β = 1/2 and

return it (we repeatedly sample S, until a particular function1 f(S) has some

positive value. Details are deferred to Section 4.3). Then, S is removed from

graph G and the SDP solution, by zeroing the weight of edges incident on

S (i.e. discarding these edges), and zeroing the SDP variables corresponding

to vertices in S. The algorithm maintains the subsets of vertices removed

so far in a set U ⊆ V , by initializing U = ∅, and then at each iteration by

updating U = U ∪ {S}. We keep iterating until η(U) =
∑

Si∈U η(Si) ≥ H/4.

After the last iteration, if η(U) > H, we output F = S where S is computed

in the last iteration. Otherwise, we put F = U . Note that in this case,

U = {S1, · · · , S|U |}.

Analysis

First, let’s see what the effect of algorithm’s changes to the SDP solution

is. By zeroing vectors in S and discarding the edges incident on S, the SDP

value may only decrease. Triangle inequalities, and the source-sink constraints

still hold. Constraint
∑

v∈V ‖v̄‖
2 η(v) ≥ H will be violated due to zeroing some

variables. However, since before the last iteration η(U) ≤ H
4

, the following

1defined later

92

constraint still holds:

∑
v∈V ‖v̄‖

2 η(v) ≥ 3H
4

(4.10)

Next, we show the set of spreading constraints (4.9) will remain satisfied after

removing S. Consider the spreading constraint for a fixed vertex u, two cases

might happen:

Case 1: If ∃S ∈ U such that u ∈ S, then u will be removed and ‖ū‖ = 0,

the spreading constraint will be satisfied since RHS is 0.

Case 2: If @S ∈ U such that u ∈ S, the RHS will not change and we

can show that min{‖ū− v̄‖2 , ‖ū‖2} does not decrease. If @S ′ ∈ U such that

v ∈ S ′, then the term min{‖ū− v̄‖2 , ‖ū‖2} does not change. If ∃S ′ ∈ U such

that v ∈ S ′, then min{‖ū− v̄‖2 , ‖ū‖2} = ‖ū‖2 since ‖v̄‖ = 0, and its value

does not decrease.

Therefore, in both these cases, the spreading constraints will not be

violated.

Lemma 2. Let S be a sampled (T · k)-orthogonal separator. Fix a vertex u.

We claim that Pr[η(S) ≤ 12H | u ∈ S] ≥ 7
8
.

Proof. Consider a vertex u and let Au = {v : ‖ū− v̄‖2 ≥ β ‖ū‖2} and Bu =

{v : ‖ū− v̄‖2 < β ‖ū‖2}. Assume for now that u ∈ S. We show with high

93

probability η(Au ∩ S) is small, and η(Bu) is also small. Vertex u satisfies the

spreading constraint. It is easy to see that:

(1−2H) ‖u‖2 ≤
∑

v∈V η(v) ·min{‖ū− v̄‖2 , ‖ū‖2} ≤ β ‖ū‖2 η(Bu)+‖ū‖2 η(Au)

Since η(V) = 1 and Au ∪Bu = V , η(Au) + η(Bu) = 1, and β = 1/2 therefore:

(1− 2H) ≤ βη(Bu) + (1− η(Bu)) (4.11)

∴ η(Bu) ≤
2H

1− β
= 4H (4.12)

Consider an arbitrary vertex v ∈ Au where ‖v̄‖ 6= 0. By definition of Au,

‖ū− v̄‖2 ≥ β ‖ū‖2 ≥ βmin{‖ū‖2 , ‖v̄‖2}. Therefore, by the second property of

orthogonal separators and since we assumed u ∈ S, then Pr[v ∈ S | u ∈ S] ≤

1
32Tk
≤ 1

32k
≤ H.

Now we show a bound for E[η(Au ∩ S) | u ∈ S]:

E[η(Au ∩ S) | u ∈ S] =
∑

v∈Au
η(v) Pr[v ∈ S | u ∈ S] ≤ H

Now, we want to bound Pr[η(S) ≥ 12H |u ∈ S]. The event {η(S) ≥ 12H |u ∈

S} implies the event {η(Au∩S) ≥ 8H |u ∈ S} since η(Bu∩S) ≤ η(Bu) ≤ 4H.

94

(The second inequality holds by (4.12)). Now we are ready to complete the

proof.

Pr[η(S) ≥ 12H|u ∈ S] ≤ Pr[η(Au∩S) ≥ 8H|u ∈ S] ≤ E[η(Au ∩ S) | u ∈ S]

8H
≤ H

8H
= 1/8

We showed Pr[η(S) ≥ 12H | u ∈ S] ≤ 1/8, therefore Pr[η(S) ≤ 12H | u ∈ S] ≥

7/8 and the proof is complete.

Next, we upper bound δ(S). By the third property of orthogonal sepa-

rators:

E[δ(S)] ≤ αD ·
∑

(u,v)∈E ‖ū− v̄‖
2 · w(u, v) ≤ αD · SDP

WhereD = Oβ(
√

log n · log(32T · k)) = O(
√

log n ·max{log(T), log(k)}). Note

that β = 1/2. Consider the function f :

f(S) =

η(S)− δ(S) · H

32D·SDP − 16vio(S) ·Hk if S 6= ∅ and η(S) < 12H

0 otherwise

We wish to lower bound E[f(S)]. First, we lower bound E[η(S)]. As a result

95

of Lemma 2 and the first property of orthogonal separators:

E[η(S)] =
∑

u∈V Pr[u ∈ S ∧ η(S) < 12H] · η(u)

=
∑

u∈V Pr[η(S) < 12H | u ∈ S] · Pr[u ∈ S] · η(u) ≥
∑

u∈V
7α‖ū‖2η(u)

8

In the following we put a bound on E[vio(S)]:

E[vio(S)] =
∑

1≤i≤T

1(si ∈ S∧ti ∈ S) ≤
∑

1≤i≤T

αmin{‖s̄i‖2 , ‖t̄i‖2}
32Tk

≤ αT

32Tk
=

α

32k

Since E[vio(S)] ≤ α
32k

, E[δ(S)] ≤ αD · SDP and using Constraint 4.10:

E[f(S)] ≥
∑

u∈V
7α‖ū‖2η(u)

8
−α·D·SDP · H

32D·SDP−
α

32k
·16Hk ≥ 7α 3H

4

8
−αH

32
−αH

2
= 1

8
αH

We have f(S) ≤ 2nH since ‖ū‖ = 0 whenever η(u) > 2H. Therefore,

Pr[f(S) > 0] ≥
1
8
αH

2nH
= Ω(α

n
). So after O(n2/α) samples, with probabil-

ity exponentially close to 1, the algorithm finds a set S with f(S) > 0. If

f(S) > 0 then η(S) ≥ δ(S) · H
32D·SDP , therefore δ(S) ≤ 32D·SDP ·η(S)

H
.

Additionally, f(S) > 0 implies vio(S) ≤ η(S)
16Hk

< 12
16k

= 3
4k

. The second

inequality holds since η(S) < 12H. Since k ≥ 1, vio(S) < 1 and hence none

of the (si, ti) pairs belong to the same cluster S.

Consider the two possible cases for the output F :

96

Case 1: F = U = {S1, S2, · · · , S|U |}, and η(F) =
∑|U |

i=1 η(Si). In this

case, H
4
≤ η(F) ≤ H. The set U is a set of orthogonal separators and each

Si ∈ U forms a separate part.

Case 2: F = S. In this case, let’s show the last iteration of step 1 as

U = Uold∪{S}. We know η(U) > H, and η(Uold) <
H
4

, therefore η(S) > 3H/4.

Also f(S) > 0 implies η(S) ≤ 12H. Therefore, 3H/4 < η(S) ≤ 12H.

In both cases, H
4
≤ η(F) ≤ 12H.

We showed when a set Si ∈ U is sampled, δ(Si) ≤ 32D·SDP ·η(Si)
H

. However,

in the LHS of this inequality, edges like (u, v) where u ∈ Sj, v ∈ Si and j < i are

not considered. We can show
∑i−1

j=1 δ(Sj, Si) ≤
∑i−1

j=1
32D·SDP ·η(Sj)

H
≤ 32D·SDP

since
∑i−1

j=1 η(Sj) ≤ H. Therefore, δ(Si) ≤ 32D·SDP ·η(Si)
H

+
∑i−1

j=1 δ(Sj, Si) ≤

O(D · SDP) since η(Si) ≤ 12H.

This completes the proof of Theorem 5.

The following corollary is implied from Theorem 5 and is used in the

next section.

Corollary 2. Given an edge-weighted graph G = (V,w), a set of source sink

pairs SG, a measure η on V such that η(V) = 1, and a parameter τ , a set

S = {S1, · · · , Sj} could be found satisfying ∀Si ∈ S, Si ⊆ V, vio(Si) = 0, and

δ(Si) ≤ O(
√

log n ·max{log(T), log(k)})·OPT , where OPT = arg min{δ(S∗) :

η(S∗)
η(V)

≥ τ, vio(S∗) = 0}. In addition, η(S) =
∑j

i=1 η(Si) ≥ Ω(τ · η(V)).

97

Proof. The algorithm guesses H ≥ τ such that H ≤ η(OPT) ≤ 2H. Guessing

is feasible since 0 ≤ η(OPT) ≤ n · η(u), where u is the weight of the heaviest

element in OPT , and H can be chosen from the set {2tη(u) : u ∈ V, t =

0, · · · , log(n)} of size O(n log(n)). Theorem 5 is invoked with parameter H.

The obtained solution S satisfies the properties of this corollary. To be more

specific, by invoking Theorem 5, η(S) =
∑j

i=1 η(Si) ≥ τ
4
· η(V).

Covering & Aggregation

Once we find F , we follow the multiplicative update algorithm of [73]

with some minor modifications, to get a covering of all the vertices. Then, we

use the aggregation step to convert the covering to a partitioning. This step

is simpler than [73] since we are not required to maintain any size bound on

the subgraphs returned after aggregation.

Theorem 7. Given graph G = (V,E) and T pairs of source and sink, running

Algorithm 4 on this instance outputs a multiset S that satisfies the following

conditions:

• for all S ∈ S: δ(S) ≤ D·OPT where D = O(
√

log n ·max{log(T), log(k)}), vio(S) =

0.

• for all v ∈ V , |{S∈S:v∈S}|
|S| ≥ 1

17kn
, where k is the number of parts in the

98

optimal solution which we guess.

Algorithm 4: Covering Procedure for Min-Max Multicut

Set t = 1, S = ∅ and y1(v) = 1 ∀v ∈ V ;

Guess k, which is the number of parts in the optimal solution;

while
∑

v∈V y
t(v) > 1

n
do

Find set St = {S1, · · · , Sj} using Corollary 2, where τ = 1
k

and

∀v ∈ V, η(v) = yt(v)/
∑

v∈V y
t(v);

S = St ∪ S;

// Update the weights of the covered vertices;

for v ∈ V do

Set yt+1(v) = 1
2
· yt(v) if ∃Si ∈ St such that v ∈ Si, and

yt+1(v) = yt(v) otherwise.;

Set t = t+ 1;

return S;

Proof. For an iteration t, let Y t =
∑

v∈V y
t(v). Consider the optimal so-

lution {S∗i }ki=1 to the min-max multicut problem. There exists at least a

S∗j ∈ {S∗i }ki=1 with weight greater than or equal to the average (yt(S
∗
j) ≥ Y t

k
),

vio(S∗j) = 0, and δ(S∗j) ≤ OPT . Therefore by Corollary 2 where H =

1
k
, a set St = {S1, S2, · · · , Sj} could be found where ∀Si ∈ St, δ(Si) ≤

O(
√

log n ·max{log(T), log(k)}) ·OPT , vio(Si) = 0.

Now we show the second property of the theorem holds. Let ` denote

99

the number of iterations in the while loop. Let |{S ∈ S : v ∈ S}| = Nv. By

the updating rules y`+1(v) = 1/2Nv . Therefore 1
2Nv = y`+1(v) ≤ 1/n, which

implies Nv ≥ log(n). By Corollary 2, yt(St) ≥ 1
4k
Y t. Therefore:

Y t+1 = Y t − 1

2
yt(St) ≤ (1− 1

8k
)Y t

Which implies Y ` ≤ (1 − 1
8k

)`−1Y 1 = (1 − 1
8k

)`−1n. Also Y ` > 1/n therefore,

` ≤ 1 + 16k ln(n) ≤ 17k log(n). In each iteration t, the number of sets in St

is at most n (since all the sets in St are disjoint), therefore |S| ≤ 17kn log(n),

and the second property is proved.

Now the covering of G is converted into a partitioning of G without

violating min-max objective by much.

Theorem 8. Given a weighted graph G = (V,E), a set of source-sink pairs

(s1, t1), · · · , (sT , tT), and a cover S consisting of subsets of V such that:

• ∀v ∈ V , v is covered by at least a fraction c
nk

of sets S ∈ S, where k

is the number of partitions of the optimum solution which we guessed in

the covering section, and c = 1/17.

• ∀S ∈ S, δ(S) ≤ B, vio(S) = 0.

We propose a randomized polynomial time algorithm which outputs a partition

P of V such that ∀Pi ∈ P, δ(Pi) ≤ 2B, and vio(Pi) = 0.

100

Algorithm 5: Aggregation Procedure for Min-Max Multicut

Step 1: Sort sets in S in a random order: S1, S2, · · · , S|S|. Let

Pi = Si \ (∪j<iSj).

Step 2: while There is a set Pi such that δ(Pi) > 2B do

Set Pi = Si and for all j 6= i, set Pj = Pj \ Si;

Proof. A similar proof to the one given by Bansal et al. [73] shows after step

2, for each Pi ∈ P , δ(Pi) ≤ 2B. We start by analyzing Step 1. Observe that

after Step 1, the collection of sets {Pi} is a partition of V and Pi ⊆ Si for every

i. Particularly, vio(Pi) ≤ vio(Si). Note, however, that the bound δ(Pi) ≤ B

may be violated for some i since Pi might be a strict subset of Si.

We finish the analysis of Step 1 by proving that E[
∑

i δ(Pi)] ≤ 2knB/c. Fix an

i ≤ |S| and estimate the expected weight of edges E(Pi,∪j>iPj), given that the

ith set in the random ordering is S. If an edge (u, v) belongs to E(Pi,∪j>iPj),

then (u, v) ∈ E(Si, V \Si) = E(S, V \S) and both u, v /∈ ∪j<iSj. For any edge

(u, v) ∈ δ(S) (with u ∈ S, v /∈ S), Pr((u, v) ∈ E(Pi,∪j>iPj) |Si = S) ≤ Pr(v /∈

∪j<iSj |Si = S) ≤ (1− c
nk

)i−1, since v is covered by at least c
nk

fraction of sets

in S and is not covered by Si = S. Hence,

E[w(E(Pi,∪j>iPj)) | Si = S] ≤ (1− c

nk
)i−1δ(S) ≤ (1− c

nk
)i−1B

101

and E[w(E(Pi,∪j>iPj)) ≤ (1− c
nk

)i−1B. Therefore:

E
[∑

i δ(Pi)
]

= 2 · E
[∑

iw(E(Pi,∪j>iPj))
]
≤ 2

∑∞
i=0(1− c

nk
)iB = 2knB/c

Now we want to analyze step 2. Consider potential function
∑

i δ(Pi), we

showed after step 1, E
[∑

i δ(Pi)
]
≤ 2knB/c. We prove that this potential

function reduces quickly over the iterations of Step 2, thus, Step 2 terminates

after a small number of steps. After each iteration of Step 2, the following

invariant holds: the collection of sets {Pi} is a partition of V and Pi ⊆ Si for

all i. Particularly, vio(Pi) ≤ vio(Si). Using an uncrossing argument, we show

at every iteration of the while loop in step 2,
∑

i δ(Pi) decreases by at least

2B.

δ(Si) +
∑

j 6=i δ(Pj \ Si) ≤ δ(Si) +
∑

j 6=i

(
δ(Pj) + w(E(Pj \ Si, Si))− w(E(Si \ Pj, Pj))

)
≤ δ(Si) +

∑
j 6=i

(
δ(Pj)

)
+ w(E(V \ Si, Si))− w(E(Pi, V \ Pi))

=
∑

j

(
δ(Pj)

)
+ 2δ(Si)− 2δ(Pi) ≤

∑
j

(
δ(Pj)

)
− 2B

The above inequalities use the facts that Pi ⊆ Si for all i and that all the

Pj’s are disjoint. The second inequality uses the facts that
∑

j 6=iw(E(Pj \

Si, Si)) = w(E(V \ Si, Si)), and
∑

j 6=iw(E(Si \ Pj, Pj)) ≥ w(E(Pi, V \ Pi)),

which hold since the collection of sets {Pi} is a partition of V , and Pi ⊆ Si.

102

In particular,
∑

j 6=iw(E(Si \ Pj, Pj)) ≥ w(E(Pi, V \ Pi)) holds since for each

edge e if e ∈ E(Pi, Pj) then e ∈ E(Si \ Pj, Pj). The last inequality holds since

δ(Si) ≤ B and δ(Pi) > 2B.

This proves that the number of iterations of the while loop is polynomially

bounded and after step 2, δ(Pi) ≤ 2B for each Pi.

In addition, since each Pi is a subset of Si, vio(Pi) ≤ vio(Si). Therefore

vio(Pi) = 0.

4.4 Analysis of Algorithm for Min-Max

Correlation Clustering

In order to prove Theorem 1, we reduce a correlation clustering instance

to a multicut instance. We follow the reduction shown by Demaine et al. [69].

They proved that the global objective multicut and correlation clustering are

equivalent. However, equivalency of multicut and correlation clustering with

respect to global objective does not immediately imply their equivalency with

respect to min-max objective. In the following, first we mention the reduction,

and then we show how a O(
√

log n ·max{log(|T |), log(k)})-approximation al-

gorithm for min-max multicut implies a O(
√

log n ·max{log(|E−|), log(k)})-

approximation algorithm for min-max correlation clustering.

103

Given a graph G = (V,E) which is an instance of correlation clustering,

we construct a new graph G′ = (V ′, E ′) and a collection of source sink pairs

SG′ = {
〈
si, ti

〉
} as follows: Initially V ′ = V . For every negative edge (u, v) ∈

E− with weight w(u, v), we add a new vertex uv to V ′ and a new edge (u, uv)

to E ′ with weight w(u, v). Also we add a source sink pair (v, uv) to SG′ . For

every positive edge (u, v) ∈ E+ with weight w(u, v), we add (u, v) with weight

w(u, v) to E ′. Now we have a multicut instance on G′ with source sink pairs

SG′ . Using Theorem 2, we find a partitioning P = {P1, P2, · · · , P|P|} of G′.

Next, we show how to convert P into a clustering C for graph G and prove

Theorem 1.

In order to map a partitioning P into a clustering C for graph G, for each

subset Pi ∈ P , create a cluster Ci and for all v ∈ V , if v ∈ Pi, add v to Ci. We

show the number of disagreements on each cluster Ci ∈ C (cost(Ci)) is at most

the cut capacity of the corresponding subset Pi ∈ P (δ(Pi)). Next, we prove

this algorithm gives an O(
√

log n ·max{log(|E−|), log(k)})-approximation al-

gorithm for min-max correlation clustering.

Lemma 10. For all Pi ∈ P and the corresponding cluster Ci, cost(Ci) ≤ δ(Pi).

Proof. We show if Ci pays for an edge, then Pi will also pay for that edge.

Consider an arbitrary edge (u, v), it could be either positive or negative.

Case 1: (u, v) is a positive edge. In this case if Ci is paying for (u, v), which

104

happens when one of u or v is in Ci and the other one is in V \ Ci, without

loss of generality assume u ∈ Ci and v ∈ V \ Ci, then u ∈ Pi and v ∈ V ′ \ Pi.

Therefore Pi will also pay for (u, v).

Case 2: (u, v) is a negative edge. In this case if Ci is paying for (u, v) then

(u, v) is trapped inside Ci. Consider the corresponding multicut instance. In

this instance, u, v ∈ Pi, there is a new vertex uv, a new edge (u, uv) and (v, uv)

is a source-sink pair which implies uv ∈ V ′ \ Pi. Assume uv ∈ Pj, then the

multicut solution pays for edge (u, uv) on both parts Pi and Pj. Therefore if Ci

pays for a negative edge, the corresponding part in the multicut partitioning

will also pay for that edge.

Lemma 11. cost(C∗) ≥ δ(P∗) where C∗ is the optimum solution for the

min-max correlation clustering on G and P∗ is the optimum solution for the

min-max multicut on G′.

Proof. We construct a partitioning P of G′ which separates all the source-sink

pairs in G′, in addition cost(C∗) = cost(P). For each cluster C∗i , construct

a set Pi and ∀v ∈ C∗i , add v to Pi. For all uv ∈ V ′ \ V initially make them

singleton clusters. It is easy to see that all source-sink pairs are separated in

P . Also for all positive edges in G, P and C∗ are paying the same price. The

only difference in the cost of P and C∗ could happen for negative edges. Two

cases might happen: First, consider a negative edge (u, v) ∈ C∗i . In this case

105

C∗i is paying for (u, v). In P , u ∈ Pi and uv is a singleton cluster. Edge (u, uv)

is cut and Pi and the singleton cluster uv are paying for it. Therefore Pi and

C∗i are paying the same price w(u, v) for edge (u, v). The singleton cluster uv

is also paying the same price w(u, v) for that edge. In addition the singleton

cluster uv is not paying for any other edge which means cost of it is at most

cost of C∗i . The other case is when a negative edge (u, v) is between clusters,

i.e. u ∈ C∗i , v ∈ C∗j . Therefore C∗ is not paying for (u, v) but P is paying for

that edge since (u, uv) is cut in P . In this case we move uv into the part Pi.

By doing that, source-sink pair (uv, v) is still separated since uv ∈ Pi, v ∈ Pj.

Also since (u, uv) is not cut anymore, P and C∗ are paying the same price for

edge (u, v).

Therefore:

cost(C∗) = cost(P)

Where cost(C∗) is the maximum number of disagreements on each cluster of

C∗ and cost(P) is the maximum number of cut edges on each part of P .

Also cost(P) ≥ cost(P∗). Therefore cost(C∗) ≥ δ(P∗) and the proof is com-

plete.

Now we are ready to prove Theorem 1.

Theorem 1. Given an edge weighted graph G = (V,E) on n vertices such

106

that each edge is labeled positive or negative, there exists a polynomial time

algorithm which outputs a clustering C = {C1, · · · , C|C|} of G such that the

disagreement on each Ci ∈ C is at most O(
√

log n ·max{log(|E−|), log(k)}) ·

OPT ; where OPT is the maximum disagreement on each cluster in an optimal

solution of min-max correlation clustering, k is the number of clusters in the

optimum solution, and |E−| denotes the number of negative edges in G.

Proof. Let C∗ be the optimum solution for the min-max correlation cluster-

ing on G, and P∗ be the optimum solution for the min-max multicut on

G′. By Theorem 2 we can find a partitioning P of G such that cost(P) ≤

O(
√

log n ·max{log(|T |), log(k)}) · cost(P∗). We convert partitioning P into

a clustering C as it was explained earlier in this section. Therefore:

cost(P∗) ≤ cost(C∗) ≤ cost(C) ≤ cost(P)

The first inequality holds by Lemma 11. The third inequality holds by Lemma

10. Since cost(P) ≤ O(
√

log n ·max{log(|T |), log(k)})·cost(P∗) and the num-

ber of source-sink pairs in the min-max multi-cut is equal to the number of

negative edges in the min-max correlation clustering instance, it could be seen

that:

107

cost(C) ≤ O(
√

log n ·max{log(|E−|), log(k)}) · cost(C∗)

4.5 Min-Max Correlation Clustering and

Min-Max Multicut in Minor-Closed

Graph Families

In this section, we show improved results for min-max correlation clus-

tering and min-max multicut in minor-closed graph families. The procedure is

almost similar to what we did for general graphs. We wish to solve min-max

correlation clustering on a weighted graph G = (V,E) excluding a fixed minor

Kr,r. First, we do the same reduction proposed by Demaine et al. [69] that we

mentioned in Section 4.4 to get a multicut instance G′. In the following, we

show G′ excludes Kr,r minors as well. After that we prove Theorem 9 which

is similar to Theorem 5.

Lemma 3. If G is excluding a fixed minor Kr,r then G′ also excludes minor

Kr,r.

108

Proof. We get G′ from G by deleting some edges and adding some new vertices

and connecting them to exactly one vertex of G. It could be seen if G was

excluding minor Kr,r after these operations G′ will be excluding minor Kr,r as

well.

Theorem 9. Given an edge-weighted graph G = (V,w) excluding Kr,r minors,

a set of source sink pairs SG, a measure η on V such that η(V) = 1 and a

parameter H ∈ (0, 1), there is an efficient algorithm to find a set S, where

S = {S1, · · · , Sj} satisfying ∀Si ∈ S, Si ⊆ V , η(S) =
∑j

i=1 η(Si) ∈
[
H/4, 12H

]
and ∀Si ∈ S, vio(Si) = O(1):

δ(Si) ≤ O(r2) ·min
{
δ(T) : η(T) ∈ [H, 2H],∀(si, ti) ∈ SG, |{si, ti} ∩ T | ≤ 1}

In order to prove Theorem 9, we write an LP which is analogue with the

SDP we used for general graphs. We use some ideas Bansal et al. [73] used

to write an LP for min-max k-partitioning problem in minor-closed graph

families. As Bansal et al. [73] explain, for every vertex u ∈ V we introduce

a variable x(u) such that 0 ≤ x(u) ≤ 1. For every pair of vertices u, v ∈ V

we introduce a variable z(u, v) = z(v, u) taking values in
[
0, 1
]
. The intended

integral solution corresponding to a set S ⊆ V has x(u) = 1 if u ∈ S and

x(u) = 0 otherwise; z(u, v) = |x(u) − x(v)|. One could think of x(u) as

109

an analogue of ‖ū‖2 and of z(u, v) as an analogue of ‖ū− v̄‖2 in the SDP

relaxation. In order to prove Theorem 9, we use a notion of LP-separators

min
∑

(u,v)∈E

w(u, v)z(u, v)

z(u, v) + z(v, w) ≥ z(u,w) ∀u, v, w ∈ V
|x(u)− x(v)| ≤ z(u, v) ∀u, v ∈ V
x(u) + x(v) ≥ z(u, v) ∀u, v ∈ V
|x(si)− x(ti)| ≥ x(si) ∀ source-sink pair (si, ti)

|x(si)− x(ti)| ≥ x(ti) ∀ source-sink pair (si, ti)∑
v∈V

x(v)η(v) ≥ H

x(v) = 0 if η(v) > 2H∑
v∈V

η(v) ·min{x(u), z(u, v)} ≥ (1− 2H)x(u) ∀u ∈ V

x(u), z(u, v) ∈ [0, 1] ∀u, v ∈ V

introduced by Bansal et al. [73].

Definition 4. (LP separator) Given a graph G = (V,E) and numbers {x(u), z(u, v)}u,v∈V ,

a distribution over subsets S ⊆ V is an LP separator with distortion D ≥ 1,

probability scale α > 0 and separation threshold β ∈ (0, 1) if:

• for all u ∈ V , Pr(u ∈ S) = α · x(u)

• for all u, v ∈ V with z(u, v) ≥ β · min{x(u), x(v)}, Pr(u ∈ S and v ∈

S) = 0

• for all (u, v) ∈ E we have Pr(IS(u) 6= IS(v)) ≤ αD · z(u, v), where IS is

110

the indicator function for the set S.

The following theorem was proved by Bansal et. al [73].

Theorem 10. [73] Given a graph G = (V,E) that excludes Kr,r minors,

numbers {x(u), z(u, v)}u,v∈V satisfying the first three constraints of LP and

parameter β ∈ (0, 1), there exists an algorithm which returns an LP separator

with distortion D = O(r2/β), probability scale α = Ω(1/|V |) and separation

threshold β.

By replacing the SDP relaxation with the LP relaxation and the orthog-

onal separators with LP separators, Theorem 9 could be proved. The rest of

procedure is same as what we did for general graphs. At the end, Theorem 3

can be proved.

Bansal et. al [73] showed for genus g graphs, an LP separator with distor-

tion O(log(g)) can be obtained. By following a similar approach an O(log(g))-

approximation for min-max multicut and min-max correlation clustering on

genus g graphs can be obtained.

111

4.6 Min-Max Correlation Clustering on

Complete Graphs

In order to prove Theorem 4, we assume the existence of a measure η

on V such that η(V) = 1. This measure is used to generate a covering of

all the vertices by leveraging Theorem 11 multiple times. When a vertex is

covered, the corresponding weight is decreased so that the uncovered vertices

get a higher weight (Using the multiplicative algorithm of [73]), followed by

partitioning. The covering and partitioning algorithms are same as that of

general graphs (Section 4.3). First, we prove the following theorem, followed

by the covering and partitioning algorithm:

Theorem 11. We are given an unweighted complete graph G on the set of

vertices V (|V | = n) such that each edge is labeled positive or negative, a

measure η on V such that η(V) = 1, and a parameter H ∈ (0, 1). Assume there

exists a set T ⊆ V such that η(T) ≥ H. We design an efficient algorithm to

find a set S, where S = {S1, · · · , Sj} satisfying ∀Si ∈ S, Si ⊆ V , η(∪Si) ≥ H,

and:

cost(Si) ≤ 7 ·min
{
cost(T) : η(T) ≥ H}

To prove Theorem 11, we use the following integer linear program (ILP)

112

that tries to solve for T with minimum cost(T) such that η(T) ≥ H.

min
∑

(u,v)∈E+

d(u, v) +
∑

(u,v)∈E−
(max{x(u), x(v)} − d(u, v)) (4.13)

d(u,w) + d(w, v) ≥ d(u, v), ∀u, v, w ∈ V
(4.14)

|x(u)− x(v)| ≤ d(u, v), ∀u, v ∈ V
(4.15)

d(u, v) ≤ x(u) + x(v), ∀u, v ∈ V
(4.16)

x(u) + x(v) + d(u, v) ≤ 2, ∀u, v ∈ V (4.17)∑
v∈V

x(v)η(v) ≥ H (4.18)

x(u), d(u, v) ∈ {0, 1}, ∀u, v ∈ V
(4.19)

In this LP formulation, every node u has a variable x(u) and every edge

has a disagreement d(u, v) ∀u, v ∈ V . The constraints 4.14 to 4.16 are the

triangle inequality constraints and 4.17 ensures that at most two of the three

variables can have the value of 1. The last constraint ensures that η(T) ≥ H.

Lemma 4. Given T ∗ = arg min
{
cost(T) : η(T) ≥ H}, the optimal value of

Integer LP is at most cost(T ∗).

Proof. Consider a candidate solution, such that x(u) = 1 if u ∈ T ∗ and 0

otherwise. Hence, d(u, v) = 1 only when x(u) = 1 and x(v) = 0 or vice

versa. This variable assignment, satisfies the triangle inequalities and also

113

∑
v∈V η(v)x(v) = η(T ∗) ≥ H. The contribution of the edges to the objective

function is as follows:

1. u, v ∈ T ∗ implies x(u) = x(v) = 1 and d(u, v) = 0. The contribution of

(u,v) is 0 if (u, v) ∈ E+ and 1 otherwise.

2. u, v /∈ T ∗ implies x(u) = x(v) = 0 and d(u, v) = 0. The contribution of

any edge (u, v) when x(u) = x(v) = 0 is 0.

3. u ∈ T ∗, v /∈ T ∗ implies x(u) = 1 and x(v) = 0, hence d(u, v) = 1. The

contribution of (u, v) is 0 if (u, v) ∈ E− and 1 otherwise.

This shows that the objective function captures the number of positive edges

within T ∗ and negative edges to nodes outside T ∗, which is equal to cost(T ∗).

Hence, the optimal solution of this integer program has objective value at most

cost(T ∗).

Approximation Algorithm

We consider LP relaxation of the integer program with constraints 4.19

modified to x(u), d(u, v) ∈ [0, 1],∀u, v ∈ V and use Algorithm 6 to solve for

T . We solve the LP relaxation by guessing a node in the optimal cluster. For

every guess u ∈ V , we add a constraint x(u) = 1 in the above LP relaxation

and identify the corresponding optimal fractional solution. Suppose du and xu

114

is the corresponding optimal fractional solution with objective value ou when u

is the chosen guess. We sort these objective values in non-decreasing order to

get a sorted list O = {o1, . . . , o|V |} such that oi is the optimal objective value

of the LP relaxation when ui ∈ V is chosen as a guess. We process the sorted

list to identify the smallest index λ such that
∑

j<λ η(uj) < H ≤
∑

j≤λ η(uj)

and consider the set of these guesses, Γ = {ui, i ≤ λ}.

Firstly, the objective value oj, ∀j ≤ λ is less than the optimal value of

the integral objective function (oi ≤ OPT, i ≤ λ; See Lemma 5). Secondly,

for each guess ui ∈ Γ, we run the rounding Algorithm 7 to construct an integer

solution (Si ⊇ {ui}) which generates a 7-approximation of the corresponding

fractional solution (cost(Si) ≤ 7oi; See Lemma 6). This guarantees that each

of the integer solution returned by Algorithm 6 is a 7-approximation of the

optimal solution to the integer LP. Additionally, Γ ⊆ ∪Si and
∑

i≤λ η(ui) ≥ H

115

ensures that the η(∪Si) > H. This completes the proof of Theorem 11.

Algorithm 6: Generate Covering

for ui ∈ V do

Let oui , dui , xui be the solution on solving the LP relaxation with an

additional constraint x(ui) = 1
Sort {ou : u ∈ V } in non-decreasing order to generate a sorted list:

{o1, . . . , o|V |}, where oi corresponds to the guess ui

Let λ← mint :
∑t

i=1 η(ui) ≥ H and Γ← {ui : i ≤ λ}

S ← φ

for ui ∈ Γ do

Si ← Use Algorithm 7 to round the LP solution, (dui , xui)

S ← S ∪ {Si}
return S

Now, we prove the following lemma’s :

Lemma 5. For every guess uj, j ≤ λ, the optimal solution of the LP relaxation

oj ≤ OPT , where OPT is the optimal integral solution of the integer program

considered.

Proof. Let C denote the optimal integral solution of the Integer LP i.e. x(v) =

1, ∀v ∈ C and 0 otherwise. Consider the LP relaxation when ui, i ≤ λ is

guessed. If ui ∈ C, then C is a valid solution to the LP relaxation. Hence the

objective value of the LP relaxation, oi ≤ OPT .

Suppose ∃i ≤ λ such that ui /∈ C. In this case,
∑

j<i η(uj) < H because

i ≤ λ. Hence there must exist k such that k > i and uk ∈ C, because

116

∑
u∈C η(u) ≥ H. Since, the objective values oi’s are arranged in non-decreasing

order of objective value, oi ≤ ok and since uk ∈ C, ok ≤ OPT . Hence

oi ≤ OPT .

For every guess u ∈ Γ, we show that the cluster returned by the round-

ing Algorithm 7 is 7-approximation of the optimal objective value of the corre-

sponding LP relaxation. Hence, we will get a candidate solution for each guess.

Below, we show the rounding algorithm and the corresponding approximation

ratio.

Rounding Algorithm for a particular

guess

Our rounding algorithm is motivated by the ball growing approach in

[68]. We consider a ball of radius 2/7 (say T) around the guessed vertex and

try to construct a cluster based on the total fractional disagreements of the

vertices in T . If the total fractional disagreements are larger than 1/7 fraction

of the number of vertices in the ball, it outputs a singleton cluster with the

guessed vertex. On the other hand, if the total disagreements are lower than

117

1/7 fraction, it outputs the complete ball T along with the guess.

Algorithm 7: Rounding Algorithm for a guess u

T = {w ∈ V − {u} : d(u,w) ≤ 2
7
}

if
∑

w∈T d(u,w) ≥ |T |/7 then

Output the cluster {u}

else

Output the cluster {u} ∪ T

Lemma 6. Algorithm 7 identifies a cluster C such that the integral disagree-

ments of C is 7-approximation of the corresponding fractional disagreements.

Proof. We consider two different cases based on the output of the algorithm.

For each case, we show that the integral contribution of an edge (or a combi-

nation of edges) is less than 7 times the fractional contribution of the corre-

sponding edge (or corresponding combination of edges).

Notice that, constraint 4.15 implies that x(u)−x(v) = 1−x(v) ≤ d(u, v)

and, constraint 4.17 implies x(v) ≤ 2 − x(u) − d(u, v) = 1 − d(u, v) hence

x(v) = 1− d(u, v) ≥ 1− 2/7 = 5/7

Case 1: Only the node u is output as the cluster. In this case, the integral

contribution to the objective is the set of positive neighbors of u. Consider

the edge (u, v) such that d(u, v) > 2/7. In this case, the integral contribu-

tion is less than 7/2 times the fractional disagreement of that edge. When

d(u, v) ≤ 2/7, the integral contribution of those edges is at most |T |. Also,

since
∑

w∈T d(u,w) ≥ |T |/7, this means that the integral contribution is less

118

than 7 times the fraction of fractional contribution.

Case 2: When a cluster {u} ∪ T is returned. In this case, there are two sets

of mistakes.

• The negative edges within the cluster. In this case, the contri-

bution of negative edge (v, w), v, w ∈ T to fractional disagreements is

max{x(v), x(w)} − d(v, w) ≥ x(v) − d(v, u) − d(u,w) ≥ x(v) − 2 · 2
7
≥

5/7− 4/7 = 1/7.

• The positive edges to nodes outside the cluster. For the positive

edges, let’s consider a node outside the cluster, z /∈ T ∪{u}. If d(u, z) ≥

3/7, then d(v, z) ≥ d(u, z)− d(u, v) ≥ 3/7− 2/7 = 1/7

If 2/7 < d(u, z) ≤ 3/7, we do the following: The total contribution of

z towards the integral component of the cluster objective is |P | where

P is the set of positive edges between the nodes of T ∪ {u} with z and

the number of negative edges incident on z is |Q| = |T | + 1 − |P |. The

119

fractional contribution of the edges incident on z is

∑
w∈P

d(w, z) +
∑
w∈Q

(max{x(w), x(z)} − d(w, z))

≥
∑
w∈P

(d(u, z)− d(u,w)) +
∑
w∈Q

(x(w)− d(u,w)− d(u, z))

≥ d(u, z)|P |+
∑
w∈Q

(x(w)− d(u, z))−
∑

w∈P∪Q

(d(u,w))

≥ d(u, z)|P |+ |Q|(5/7− d(u, z))−
∑

w∈{u}∪T

(d(u,w))

≥ d(u, z)|P |+ |Q|(5/7− d(u, z))− |P |+ |Q|
7

This equation is a linear function in d(u, z). So, we evaluate its values

at the end points of the line to identify min and max.

– When d(u, z) = 2/7, it evaluates to |P |/7 + 2
7
|Q| > |P |/7

– When d(u, z) = 3/7, it evaluates to
(

2
7

)
|P |+ 1

7
|Q| > 1

7
|P |

This shows that the total integral disagreements of positive edges with any

node z /∈ T is less than 7 times the fractional disagreements of corresponding

edges. Hence, the approximation ratio of Algorithm 7 is 7.

120

Covering and Partitioning

We use the same covering algorithm that uses the multiplicative weights

algorithm from [73] along with the partitioning strategy to generate non-

overlapping clusters. For completeness, we present the modified theorem state-

ments for the complete graphs case.

Theorem 12. Given a complete graph, running Algorithm 42 on the instance

outputs a multiset S that satisfies the following conditions:

• ∀S ∈ S

cost(S) ≤ 7 ·OPT

• ∀v ∈ V ,

|{S ∈ S : v ∈ S}|
|S|

≥ 1

5nk

Proof. Same as Proof of Theorem 7

The covering generated by Algorithm 4 is converted into a partitioning

using Algorithm 5. The following result from Section 4.3 is used to bound to

2For complete graphs, the multiset St in line 4 is generated using Algorithm 6

121

approximation ratio of the generated partitions.

Theorem 13. Given a complete graph and a cover S consisting of subsets of

V such that:

• ∀v ∈ V , v is covered by at least c
nk

sets S ∈ S where k is the number

of partitions in the optimum solution which we guessed in the covering

section and c ∈ (0, 1] and cost(S) ≤ B

We propose a randomized algorithm which outputs a partition P of V such

that ∀Pi ∈ P , cost(Pi) ≤ 2B.

Proof. Same as Theorem 8 for the positive edges. We can ignore the negative

edges in this analysis as the cost of negative edges can never increase on

splitting a cluster.

Using Theorem 12 and 13, we can generate a 14 approximation of the

local correlation clustering problem for complete graphs.

4.7 Authors

This Chapter was written by Saba Ahmadi, Sainyam Galhotra, Samir

Khuller, Barna Saha, and Roy Schwartz. A preliminary version of this work

122

was written by Saba Ahmadi, Samir Khuller, and Barna Saha and appeared at

the Integer Programming and Combinatorial Optimization (IPCO) 2019 [66].

123

5 The Strategic Perceptron

5.1 Introduction

In machine learning, strategic classification deals with the problem of

learning a classifier when the learner relies on data that is provided by strategic

agents [75, 76]. For example, consider deciding eligibility of individuals for

employment or education. In order to be considered eligible, individuals may

engage in activities that do not truly change their qualifications, but affect the

decision made. In the aforementioned settings, these activities include job or

college applicants carefully crafting their application materials and investing in

interview or test preparations. In these scenarios, by using information about

the classifier, individuals alter their features artificially by a limited amount

to achieve their desirable outcome.

Strategic classification is particularly challenging in the online setting,

where data points arrive in an arbitrary sequence, because the way that points

124

manipulate may depend (in a discontinuous way) on the current classifier, and

there is no useful source of unmanipulated data. More specifically, consider a

standard online learning setting as follows. Individuals arrive one at a time,

and based on the individual’s features, the classifier predicts the individual

as positive or negative. The learner is then told the correct classification and

may update its classifier for the next round. The learner’s goal is to minimize

the number of mistakes made. Performing the same procedure in the strategic

setting brings in several challenges. First, since the learner does not observe

the true features, the update is done based on the individual’s manipulated

features. Therefore, at each point in time, the current classifier is built from

manipulated data the learner has observed in the past. Second, each individ-

ual reacts to the current classifier. This means that the individuals’ behaviors

change over time and may be different from behavior of previous individuals

with similar features. Moreover, because data arrives in an arbitrary order,

there is no way to collect a “representative sample” of unmanipulated data by,

say, classifying all examples as negative for an initial period. Finally, manipu-

lation behavior may be a discontinuous function of the classifier’s parameters:

if an individual’s cost to manipulate is slightly less than the benefit of being

classified as positive then it will do so, but if it is slightly greater then it will

not. Due of these issues, as we will show, standard learning algorithms that

125

would make a limited number of mistakes in non-strategic settings may end

up cycling and making unbounded number of mistakes; even if there exists a

perfect classifier they may not find one.

Another challenge in online strategic classification is when the learner is

unaware of the manipulation costs, which determine the extent to which agents

will manipulate their features to achieve a positive classification. In this case,

on top of estimating the individuals’ real attributes based on the observed

data, the learner also needs to estimate the costs. Unreasonable estimate of

costs may lead to poor performance by the learner as the learner may not be

able to distinguish if a classification mistake is due to an improper classifier

or improper estimate of costs. This failure to distinguish correctly may lead

to deterioration of the classifier and divergence from the optimal solution.

We study an online linear classification problem when the individuals are

strategic. To isolate the effect of manipulation, we focus on finding a linear

classifier when the unmanipulated data is linearly separable; i.e., the feature

space is divided into two half spaces: with positive data points in one and

negative data points in the other, and a nonzero margin between them. When

individuals can manipulate, in each step, the arriving individual wishes to be

classified positively. If the individual’s feature vector z is not classified as

positive with the true attributes, they may choose to suffer a cost and pretend

126

to have a feature vector x. More specifically, we consider utility-maximizing

individuals, where utility is defined as value minus cost, who receive value 1

for being classified as positive and 0 for being classified as negative. We then

consider two classes of cost functions: `2 costs (where cost is proportional to the

Euclidean distance moved) and weighted `1 costs (where the cost of reaching

a destination is the sum of separate costs paid in each coordinate direction).

The `2 case represents settings where individuals when manipulating can take

actions that affect multiple attributes. The `1 case represents settings where

there is a specific action associated with each attribute. Note that in both

cases, even though the unmanipulated data is linearly separable, the observed

manipulated data points may no longer be separable.

Our Techniques and Results The main contribution of this paper is solving

the problem of online learning of linear separators in the strategic setting,

making a bounded number of mistakes when the unmanipulated data is lin-

early separable by a nonzero margin. To do this, we build on and adapt the

classic Perceptron algorithm [77], redesigning it to work in various strategic

settings. This classic algorithm makes a bounded number of mistakes in the

nonstrategic case when positive and negative data points are linearly separable.

However, as mentioned earlier, in the strategic case it may cycle indefinitely

127

(much like gradient descent for finding a Nash equilibrium) and make an un-

bounded number of mistakes; see Examples 1 and 2. Our main technique is

to carefully design surrogate data points and feed them as the observed data

to the algorithm. The role of the surrogate is to ensure that the algorithm is

able to make positive progress each time it makes a mistake; however, defining

it requires extra care. In particular, while it is not hard to show we can com-

pute the direction that data points may have manipulated in, we can never be

sure exactly how far (and we are particularly interested in the case that the

amount by which data points can manipulate is large compared to the margin

of separation). Another adaptation is to use a positive threshold for the dot

product with the classifiers weight vector for a point to be classified positive.

Making use of the Perceptron algorithm, surrogate data points, and a

positive linear threshold is central in all the algorithms designed in this paper.

However, additional ideas are needed to handle subtleties of each specific set-

ting. For example, for weighted `1 costs we need to take extra steps to make

the manipulation direction unique and in line with the true classifiers weight

vector, and in the unknown costs setting, we need to distinguish if the cost es-

timates are above or below the true costs. Another case is when the separating

hyperplane does not cross the origin. In this case, the classic approach is to

just add a fake coordinate in which each example has value 1, and then apply

128

the Perceptron algorithm to those extended data points. However, when data

is given by strategic agents, this reduction breaks down and we need to apply

different ideas. There are also some results that hold for the non-strategic

case that we do not know how to achieve, such as obtaining a mistake bound

proportional to the hinge-loss of the best separator when data is not perfectly

separable; for this setting we show examples where our algorithm fails and

propose it as an open problem.

The main contributions of this paper are:

- We give an online learning algorithm robust to manipulation that finds

a linear classifier in a bounded number of mistakes with the knowledge

of costs. The number of mistakes is not much larger than the standard

Perceptron bound in the non-strategic case for `2 costs and is reasonably

bounded in other settings as well, see Theorems 10, 11 and 13.

- We give an online learning algorithm that generalizes the previous al-

gorithm to unknown costs with a bounded number of mistakes. See

Theorem 12.

- We generalize the algorithm for known `2 costs to the case of hetero-

geneous agents whose utility functions differ by a limited amount and

give an online learning algorithm with bounded number of mistakes. See

Corollary 3.

129

Related Work The first studies on strategic classification focused on the of-

fline setting; i.e., where the agents’ true features come from a distribution.

Brückner and Scheffer [75] and later Hardt et al. [76], formalized the strate-

gic classification problem as a Stackelberg competition between a learner and

an agent. They assume the learner has access to the distribution of agents

true features and their cost functions; and use this information to design near-

optimal classifiers.

Dong et al. [78] initiated the study of strategic classification in the on-

line setting where the learner does not know the distribution of agents’ true

features or their cost functions. A key difference between [78] and this paper

is the assumption on the objective of the agents: we consider agents that wish

to be classified as positive, whereas [78] considers agents that wish to increase

their dot-product with the hypothesis vector no matter how they are classified.

Based on this assumption, in [78] the agents behaviors are continuous in the

hypothesis vector. However, in our model, a small change in the hypothesis

vector can cause a drastic (discontinuous) change in agents’ behavior. More

particularly, as a consequence of agents objective and utility structure, each

agent can manipulate by a limited amount. If the classification hyperplane

is closer than this amount, the agent would manipulate to be classified as

positive; however, if it is slightly farther, the agent stays stationary. This dis-

130

continuity in the agents behavior is common in mechanism design and occurs

in other problems such as pricing and auction design.

Chen et al. [79] also study an online learning problem where agents can

manipulate by a bounded distance. However, while there are similarities be-

tween the setting studied in [79] and our `2 cost model, explained in more

detail in Section 5.2, [79] does not consider a fixed utility model and instead

considers a regret term that is worst-case over agents that can manipulate by

some bounded distance. As a result, their regret term may be arbitrarily high

when the observed positions of positive and negative data points are insepara-

ble, even if the unmanipulated points are linearly separable. Our algorithms,

in contrast, can handle this inseparability during the learning procedure and

make a bounded number of mistakes.

The goal of the papers mentioned so far is accuracy or minimizing loss.

There are also papers that consider other objectives. Hu et al. [80] focus on a

fairness objective and raise the issue that different populations of agents may

have different manipulation costs. Braverman and Garg [81], by introducing

noise in their classification, design algorithms where agents with different costs

are better off not manipulating which tackles the fairness issue. Milli et al. [82]

state that the accuracy that strategic classification seeks leads to a raised

bar for agents who naturally are qualified and puts a burden on them to

131

prove themselves. Kleinberg and Raghavan [83], Haghtalab et al. [84], Alon

et al. [85], Bechavod et al. [86], Shavit et al. [87], and Miller et al. [88] focus

on models in which the policy maker is interested in choosing a rule which

incentivizes agent(s) to invest their effort into features that truly improve

their qualification.

Organization of the Paper. Section 5.2 introduces the model and provides ex-

amples where the original Perceptron algorithm makes an unbounded number

of mistakes. Sections 5.3 and 5.4 study the case where the cost of manipula-

tion is known: Section 5.3 focuses on `2 costs and Section 5.4 on weighted `1

costs. Section 5.5 studies the unknown costs model. Section 5.6 studies the

generalization of known manipulation costs to heterogeneous agents that have

slightly different costs. Section 5.7 extends the results of Sections 5.3 and 5.4

where the separator of the unmanipulated data points crosses the origin to the

general case. Finally, conclusions and some open problems are presented in

Section 5.8.

5.2 Model and Preliminaries

In Section 5.2, we formally define our model. In Section 5.2, we overview

the non-strategic setting. In Section 5.2, we provide examples where the orig-

132

inal Perceptron algorithm makes an unbounded number of mistakes.

Model

We study an online classification problem in which a series of examples in

Rd arrive one at a time. We think of examples as corresponding to d observable

features of individuals who wish to be classified as positive. They have the

ability to manipulate their observable features at some cost. Let zt denote the

tth example before manipulation, and xt denote the observed tth example. We

assume there exists a vector w∗, such that for each unmanipulated positive

example zt we have zTt w∗ ≥ 1, and for each unmanipulated negative example

zt we have zTt w∗ ≤ −1; i.e., a linear separator of margin γ = 1/|w∗|. We use

|w| to indicate the `2 norm of w.

We assume individuals are utility maximizers, where utility is defined as

value minus cost. Individuals have value 1 for being classified as positive, and 0

for being classified as negative. More formally, an agent with true coordinates

zt will move to xt = arg maxx[value(x) − cost(zt,x)] where value(x) = 1

if x is classified positive by the current classifier and value(x) = 0 if x is

classified negative, and cost(zt,x) refers to the cost of manipulation from zt

to x. This implies if the agent can manipulate their features at cost at most

133

1 to change their classification from negative to positive, then they will do so

in the cheapest way possible, otherwise they will not.

We consider two settings for cost of manipulation. In the first setting,

cost(zt,x) is proportional to the `2 distance of the two points zt and x; i.e.,

cost(zt,x) = c
√∑d

i=1(xi − zt,i)2, where c is the cost per unit of movement.

We define α = 1/c as the maximum amount data points would be willing

to move to achieve a positive classification.1 We assume 0 ≤ α ≤ R where

R = maxt |zt|. In the second setting, cost(zt,x) is a weighted `1 metric, such

that cost(zt,x) =
∑d

i=1 ci|xi − zt,i|. Similarly we define αi = 1/ci as the

maximum amount data points would move along the ith coordinate vector ei,

where 0 ≤ αi ≤ R. We consider both scenarios of known and unknown costs.

In the unknown `2 costs we don’t assume knowledge of c, and in unknown

weighted `1 costs we do not assume knowledge of c1, . . . , cd.

Generalizations

For the majority of the paper we study the above model. In Sections 5.6

and 5.7, we then present and analyze several generalizations. Section 5.6 stud-

ies heterogeneous agents with `2 costs where the costs per unit of movement

1For convenience we assume that if an agent is indifferent, i.e., its distance to the decision
boundary is exactly α, then it will manipulate. Note that Chen et al. [79] also consider a
model where individuals can move in a ball of fixed radius from their real position. However,
they do not focus on a specific utility model.

134

(defined previously as c) for agents are slightly different. More particularly,

we study the case where the maximum amount the agent arriving at time t

can move, αt (i.e. 1/ct, where ct is the cost per unit of movement for agent

t), is in the interval [αmin, αmax] where 0 ≤ αmax − αmin ≤ γ/2. The algorithm

does not have access to αt but knows the interval. Section 5.7 studies the case

where the separating hyperplane of the unmanipulated data does not cross

the origin. More particularly, there exists a separator zTw∗ + b = 0, such

that for a positive example zt, zTt w∗ + b ≥ 1 and for a negative example zt,

w∗Tzt + b ≤ −1.

Non-Strategic Setting and the Percep-

tron Algorithm

As a reminder for the reader we provide the classical Perceptron algo-

rithm here. This algorithm classifies all points with xTt w ≥ 0 as positive, and

the rest as negative; updating w when it makes a mistake. The total number

of mistakes made by the algorithm is upper bounded by R2|w∗|2.

Extension 1 (Perceptron with separator not crossing the origin). A classic

extension of Algorithm 8 to the case where examples are linearly separable,

but not by a separator passing through the origin, is to create an extra “fake”

135

Algorithm 8: Perceptron Algorithm

w← 0;
for t = 1, 2, · · · do

Given example xt, predict sgn(xTt w);
if the prediction was a mistake then

if xt was + then w← w + xt;
if xt was − then w← w − xt;

coordinate. Specifically, assume there exists a separator xTw∗ + b = 0, such

that for a positive example xt, xTt w∗ + b ≥ 1 and for a negative example xt,

w∗Txt + b ≤ −1. Then Algorithm 8 is extended by adding an extra coordinate

of value 1 to each example xt, replacing xt with (xt, 1). The bias term b is

absorbed into w∗ by adding an additional coordinate to w∗, i.e. replacing w∗

with (w∗, b). Now, for the positive examples, xTt w∗ ≥ 1, and for the negative

examples xTt w∗ ≤ −1, and Algorithm 8 can be used as before.

Failure of the Perceptron Algorithm in

Strategic Settings

The Perceptron algorithm may make unbounded number of mistakes in

the models considered in this paper even when a perfect classifier exists. The

following example illustrates this in a setting with `2 cost.

Example 1. Consider three examples A = (−1, 0), B = (0,−1), and C =

136

(−0.5,−1) where A is negative, B is positive, and C is negative. Suppose

that α = 0.5. The following scenario of arrival of these examples makes the

standard Perceptron algorithm (Algorithm 8) cycle between two classifiers and

make an unbounded number of mistakes. Suppose A is the first example to ar-

rive, then individuals B and C arrive respectively and repeatedly. After arrival

of A, w = (1, 0). B does not need to manipulate as it is classified positive with

the current classifier. However C manipulates to point (0,−1) and the algo-

rithm mistakenly classifies it as positive. As a consequence, w will be updated

to (1, 0)− (0,−1) = (1, 1). With the new classifier, B cannot manipulate to be

classified positive because it has distance
√

2/2 from the decision boundary. So,

B is misclassified as negative, causing an update to w = (1, 1)+(0,−1) = (1, 0)

and the scenario repeats.

Note that Example 1 shows that the standard Perceptron algorithm can

fail even if there exists a classifier that is perfect in the presence of manip-

ulation.In this example, the classifier given by w = (1, 0.5) works perfectly

for the three points as B can manipulate to be classified positive but A and

C cannot. The main reason the algorithm fails despite existence of a perfect

classifier, is that the behavior of individuals depends on the classifier we are

currently using and this can cause the algorithm to cycle indefinitely.

The failure of the Perceptron algorithm is not restricted to the `2 costs

137

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
First feature

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
S

ec
on

d
fe

at
ur

e

A

BC

negative
positive

(a) Classic Perceptron correctly classifies
B after update of w to (1, 0). However,
C now manipulates to the same location
as B, which will cause a mistake and an
update.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
First feature

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

S
ec

on
d

fe
at

ur
e

A

B, C ′

negative
positive

(b) After C manipulates to C ′ = (0,−1),
it is misclassified as positive and w is up-
dated to (1, 1). B cannot manipulate with
current classifier because it is at distance√

2/2 from the boundary.

Figure 5.1: Example 1 shows the classic Perceptron algorithm can make an
unbounded number of mistakes in the strategic setting.

model. Example 1 with α = (0.6, 0) makes an unbounded number of mistakes

in the `1 costs model as well.

The Perceptron algorithm as described above uses a threshold of 0. One

may wonder if the usual extension to non-zero thresholds (Extension 1) might

solve the strategic learning problem. In particular, any linearly separable

dataset is still linearly separable in the presence of manipulation, by simply

shifting the target separator by α. However, the example below shows that

this extension also fails when the data points are strategic.

Example 2. Consider three examples A = (−1, 0), B = (1, 0), and C =

(0.5, 0) where A and C are negative and B is positive. Let α = 0.5. Suppose

138

A is the first example to arrive, then individuals B and C arrive respectively

and repeatedly. After arrival of A, the separator is 1x1 + 0x2 − 1 ≥ 0. B does

not need to manipulate as it is classified positive with the current classifier as

shown in Figure 5.2(a). However C = (0.5, 0) manipulates to (1, 0) and the

algorithm mistakenly classifies it as positive as shown in Figure 5.2(b). As

a consequence, the separator is updated to 0x1 + 0x2 − 2 ≥ 0. With the new

classifier, B is misclassified as negative but does not manipulate. The separator

is then updated to 1x1 + 0x2 − 1 ≥ 0, and the process repeats indefinitely.

Therefore the classifier keeps cycling and never correctly classifies the data

even when a linear separator exists.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
First feature

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

S
ec

on
d

fe
at

ur
e

A BC

negative
positive

(a) The Perceptron algorithm updates w
after misclassifying A. When B arrives it
correctly classifies it.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
First feature

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

S
ec

on
d

fe
at

ur
e

A B, C ′

negative
positive

(b) After C manipulates to C ′ = (1, 0), it
is now misclassified as positive by the cur-
rent classifier and w and bias are updated
accordingly.

Figure 5.2: Example 2 shows the non-zero threshold Perceptron algorithm can
make an unbounded number of mistakes in the strategic setting.

139

𝛼

𝑤
𝑤∗

Figure 5.3: Strategic Perceptron with known manipulation cost. The dashed
line represents the manipulation hyperplane discussed in Observation 1. The
margin of width α is the forbidden region, discussed in Observation 2.

5.3 Known `2 Costs

In this section, we provide an algorithm for the `2 costs setting. At a

high level, there are two main ideas to modify and generalize the Perceptron

algorithm for this setting. The first modification is raising the bar for a point

to be classified as positive. Previously, a nonnegative dot product with the

current classifier (a threshold of 0), sufficed for positive classification. However,

in the new algorithm, the threshold is a strictly positive value depending on

the cost of manipulation. The second modification is using a surrogate for the

data points when the classifier updates. Interestingly, we only need to use a

surrogate for negative points, and in this case the surrogate is a projection of

the point in the opposite direction of manipulation, detected by the algorithm.

140

Overview of Algorithm 9. This algorithm is a generalization of the Percep-

tron algorithm which we call strategic Perceptron. The algorithm starts by

predicting all points as positive until it makes a mistake. Note that during

this period, individuals do not have incentive to manipulate. From that point

on, the algorithm classifies all points with xTt w/|w| − α ≥ 0 as positive, and

the rest as negative. Whenever the algorithm makes a mistake, the predictor

w is updated with a surrogate value, x̃t, defined below.

Definition 5 (x̃t, surrogate data point in `2 setting). We define surrogate

data point, x̃t, as follows.

x̃t =

xt − α w
|w| , if xt is − and

xT
t w

|w| = α;

xt, if xt is + and
xT
t w

|w| = α;

xt, if
xT
t w

|w| > α or
xT
t w

|w| ≤ 0.

Observation 1 (manipulation hyperplane). In Algorithm 9, xt is a manip-

ulated example only if xTw/|w| = α. The reason is as follows. In order to

maximize utility, individuals move data points in direction of w and move the

point the minimum amount to be classified as positive. Therefore, if with true

features they are classified as negative, they only need to move to the line with

dot product equal to α and moving to any other location contradicts with utility

141

Algorithm 9: Strategic Perceptron for `2 costs

w← 0;
for t = 1, 2, · · · do

Given example xt:
if |w| is 0 then

predict +;
if the prediction was a mistake then w← w − xt;

else

predict sgn(
xT
t w

|w| − α);

if the prediction was a mistake and xt was + then w← w + x̃t;
if the prediction was a mistake and xt was − then w← w − x̃t;

maximizing. In other words:

xt =

zt +

(
α− zTt w

|w|

)
w
|w| , if 0 ≤ zTt w

|w| ≤ α;

zt, otherwise.

Observation 2 (forbidden region). No observed data point xt will satisfy 0 <

xTt w/|w| < α, and therefore x̃t does not need to be defined for 0 < xTt w/|w| <

α. The reason is that any such data point must either have manipulated to that

position or not. If it manipulated, the manipulation was not rational since it

did not help the data point to get classified as positive. If it did not manipulate,

this was not rational either since the data point has a distance less than α from

the classifier.

We show Algorithm 9 makes at most (R + α)2|w∗|2 mistakes. First, we

142

need to prove the following lemmas hold.

Lemma 12. For any positive data point xt, x̃Tt w∗ ≥ 1, and for any negative

data point xt, x̃Tt w∗ ≤ −1. Also, throughout the execution of Algorithm 9,

wTw∗ ≥ 0.

Proof. The proof uses induction. First, we show after the first update of the

algorithm wTw∗ > 0. Second, we show if at the end of step t− 1, wTw∗ ≥ 0,

then at step t, x̃Tt w∗ ≥ 1 for positive points, and x̃Tt w∗ ≤ −1 for negative

points. Finally, we show if wTw∗ ≥ 0 at the end of step t− 1, and x̃Tt w∗ ≥ 0

for positive points, and x̃Tt w∗ ≤ 0 for negative points, then wTw∗ ≥ 0 at the

end of step t.

The first step is straight-forward. Initially, w = 0. While w = 0, we have

xTt w = 0, and arriving examples get classified positively. The first mistake

occurs when a negative example xt arrives and gets classified as positive. In

this case, w gets updated to w − xt. Since xTt w∗ ≤ −1, we conclude (w −

xt)w
∗ > 0.

The second step is more involved. By definition of the surrogate values,

for any points such that xTt w/|w| 6= α, we have x̃t = xt. By Observation 1,

these points are not manipulated, i.e., xt = zt. This implies x̃t = zt and

therefore the claim holds. Thus, we only need to argue for the points on the

hyperplane xTt w/|w| = α. Consider such data points. For the positive data

143

points, we have, x̃t = xt = zt + β · w/|w|, where 0 ≤ β ≤ α. Therefore,

x̃Tt w∗ = zTt w∗ + β · wTw∗/|w| ≥ zTt w∗ ≥ 1. The first inequality holds since

by assumption of this step, wTw∗ ≥ 0. On the other hand, for the negative

data points we have x̃t = xt − α · w/|w|, where xt = zt + β · w/|w| and

0 ≤ β ≤ α. This implies x̃t = zt + (β − α) ·w/|w|. By multiplying with w∗,

we get x̃Tt w∗ = zTt w∗ + (β − α) ·wTw∗/|w| ≤ zTt w∗ ≤ −1.

The final step is again straight-forward. Whenever w is updated, for

positive points, w gets updated to w + x̃t, where both w and x̃t have nonneg-

ative dot product with w∗. For negative points, w gets updated to w − x̃t,

where w has a nonnegative and x̃t has a negative dot product with w∗.

Lemma 13. When Algorithm 9 makes a mistake on a positive example xt,

x̃Tt w ≤ 0; and when it makes a mistake on a negative example xt, x̃Tt w ≥ 0.

Proof. The algorithm makes a mistake on a positive example only if xTw/|w| <

α. By Observation 2, for no points, 0 < xTw/|w| < α. Therefore, for any

positive example that the algorithm makes a mistake on, xTw ≤ 0. By Def-

inition 5, x̃t = xt for all positive examples. Therefore, xTw ≤ 0 implies

x̃Tw ≤ 0. For negative examples, the algorithm makes a mistake only if

xTw/|w| ≥ α. If the inequality is strict, i.e., xTw/|w| > α, by Definition 5,

x̃t = xt, and therefore x̃Tt w ≥ 0. If xTw/|w| = α, again using Definition 5,

we have x̃Tw = 0.

144

Next, we show the following theorem holds which gives a bound on the

number of mistakes. Proof of the following theorem is along the lines of the

proof of the classic Perceptron algorithm.

Theorem 10. Algorithm 9 makes at most (R+α)2|w∗|2 mistakes in the strate-

gic setting with known `2 costs, when the unmanipulated data points zt satisfy

zTt w∗ ≥ 1 for positive examples and zTt w∗ ≤ −1 for negative examples, and

R = maxt |zt|.

Proof. We keep track of two quantities, wTw∗ and |w|2. First, we show that

each time we make a mistake, wTw∗ increases by at least 1. If we make a

mistake on a positive example then,

(w + x̃t)
Tw∗ = wTw∗ + x̃Tt w∗ ≥ wTw∗ + 1;

where the last inequality holds by Lemma 12. Similarly, if we make a mistake

on a negative example,

(w − x̃t)
Tw∗ = wTw∗ − x̃Tt w∗ ≥ wTw∗ + 1.

Next, on each mistake we claim that |w|2 increases by at most (R+α)2. If we

145

make a mistake on a positive example xt, then we have:

(w + x̃t)
T (w + x̃t) = |w|2 + 2x̃Tt w + |x̃t|2 ≤ |w|2 + |x̃t|2 ≤ |w|2 + (R + α)2.

To understand the middle inequality note that by Lemma 13, when a mistake

is made on a positive example xt, x̃Tt w ≤ 0. The last inequality comes from

R = maxt |zt| implies maxt |x̃t| ≤ R + α.

Similarly, if we make a mistake on a negative example xt, then we have:

(w − x̃t)
T (w − x̃t) = |w|2 − 2x̃Tt w + |x̃t|2 ≤ |w|2 + |x̃t|2 ≤ |w|2 + (R + α)2.

By Lemma 13, when a mistake is made on a negative example xt, x̃Tt w ≥

0, which implies the middle inequality.

Finally, if the algorithm makes M mistakes, then wTw∗ ≥ M and

|w|2 ≤ M(R + α)2, or equivalently, |w| ≤ (R + α)
√
M . Using the fact that

wTw∗/|w∗| ≤ |w|, we have

M/|w∗| ≤ (R + α)
√
M =⇒

√
M ≤ (R + α)|w∗| =⇒ M ≤ (R + α)2|w∗|2.

146

5.4 Known Weighted `1 Costs

In this section, we provide an algorithm for the weighted `1 costs setting.

Unlike the `2 case, the modifications to the classical Perceptron algorithm in

Algorithm 9 do not suffice; and our algorithm for this setting is more involved.

Here is the key difference: In the `2 costs setting, the individuals always ma-

nipulate in direction of the current classifier w. However, in the weighted

`1 setting this is no longer the case. This brings up two challenges to our

approach. First, there may be multiple utility maximizing manipulation di-

rections. Second, the manipulation direction may have a negative dot product

with w∗. We overcome these two challenges and provide an algorithm for this

setting.

As a reminder, in the weighted `1 costs setting, there are coordinate

unit vectors {e1, · · · , ed} with cost of manipulation 1/αi along ei. We need to

make one further assumption for this setting. We assume for all 1 ≤ i ≤ d,

eTi w∗ ≥ 0. In other words, we assume that each feature is defined so that

larger is better. This is natural for settings such as hiring, admissions, loan

applications, etc.

147

Overview of Algorithm 10. The algorithm starts by predicting all points as

positive until it makes a mistake. Note that during this period, individuals do

not have incentive to manipulate. From that point on, the algorithm classifies

all points xt such that xTt w/|w| −αiwTei/|w| ≥ 0 as positive, and the rest as

negative; where ei is the manipulation direction which will be defined later.

Similar to Algorithm 9, whenever the algorithm makes a mistake, the predictor

w is updated with a surrogate value, x̃t, in Definition 6.

Compared to Algorithm 9, we have two further steps. As discussed

above, the first challenge with weighted `1 costs is that with an arbitrary

w, there may be multiple utility maximizing manipulation directions, and we

may not be able to distinguish along which vector individuals manipulated.

Since in the weighted `1 costs setting, the cost of manipulation can be written

as a convex combination of costs in coordinate vectors, there always exists a

coordinate vector, ei, such that manipulating along that is utility maximizing.

Consider all the coordinate vectors like ej that are utility maximizing, i.e.,

have the highest αj ·wTej/|w|. To make the manipulation direction unique,

we add a tie-breaking step to the algorithm. This step adds a small multiple

η > 0, of an arbitrary utility maximization coordinate vector ei, to w to break

the tie. Note that any positive value of η breaks the tie. We set this value

in our analysis purposes in Theorem 11 in a way to make sure the number of

148

mistakes our algorithm makes does not increase much.

We need to add another step to address the second challenge: With an

arbitrary w the direction that the individuals manipulate along may not have

a positive dot product with w∗, i.e., the individuals may choose to move along

one of the vectors {−e1, · · · ,−ed}. In order to incentivize individuals to only

manipulate along {e1, · · · , ed}, and not {−e1, · · · ,−ed}, we do the following

correction step after each update. If eTj w < 0 for any ej ∈ {e1, · · · , ed}, we

set the jth coordinate of w to 0 by adding the smallest multiple of ej, denoted

by µj, to w to make eTj w nonnegative. Therefore, µj = 0 if eTj w ≥ 0, and

µj = −eTj w, otherwise; implying ∀j µj ≥ 0.

With the unique manipulation direction, similar to the `2 costs setting,

we are now able to choose a surrogate value along the manipulation direction.

Definition 6 (x̃t, surrogate data point in weighted `1 setting). Let ei be the

unique utility maximizing coordinate vector, i.e., i = arg maxj αjw
Tej/|w|.

We define surrogate data point, x̃t, as follows.

x̃t =

xt − ei · αi, if xt is − and

xT
t w

|w| = αi · w
T ei
|w| ;

xt, otherwise.

Lemma 14. µj ≤ R + αj.

149

Algorithm 10: Strategic Perceptron for weighted `1 costs

w← 0;
for t = 1, 2, · · · do

Given example xt:
if |w| is 0 then

predict +;
if the prediction was a mistake then

w← w − xt;
/* Correction Step */

for j = 1, 2, · · · , d do
w← w + µjej, where µj = max(0,−eTj w);

/* Tie-breaking Step */

i← arg maxj αj ·
wT ej
|w| ;

w← w + ηei;

else

predict sgn(
xT
t w

|w| − αi ·
wT ei
|w|);

if the prediction was a mistake and xt was + then w← w + x̃t;
if the prediction was a mistake and xt was − then w← w − x̃t;
/* Correction Step */

for j = 1, 2, · · · , d do
w← w + µjej where µj = max(0,−eTj w);

/* Tie-breaking Step */

i← arg maxj αj ·
wT ej
|w| ;

w← w + ηei;

Proof. We can show at the end of each round, eTj w ≥ 0. Initially, w = 0,

therefore eTj w = 0. Suppose at the end of round t − 1, eTj w ≥ 0. Assume in

round t, w gets updated by adding or subtracting x̃t or xt. By assumption,

the jth coordinate of xt is in [−R,R], and therefore the jth coordinate of x̃t is

in [−R − αj, R + αj]. Taken together, µj ≤ R + αj. Note that by adding ηei

to w, eTj w remains nonnegative.

150

The following theorem upper bounds the number of mistakes made by

Algorithm 10.

Theorem 11. Consider a sequence of examples before manipulation z1, z2, · · · ,

which are observed as x1,x2, · · · . Consider vector w∗ such that zTt w∗ ≥ 1

for positive examples, and zTt w∗ ≤ −1 for negative examples. Algorithm 10

makes at most (1 + (d+ 1)(R + α)2)|w∗|2 mistakes, where R = maxt |zt|, and

α = max{α1, · · · , αd}.

Proof. Similar to the proof of Theorem 10, we keep track of two quantities

wTw∗ and |w|2. First, we show each time a mistake is made, wTw∗ increases

by at least 1. Then we find an upper bound on the increase of |w|2.

Starting from the current w, the algorithm follows three steps to update:

addition/subtraction of x̃t, the correction step, and the tie-breaking step. As

in the algorithm ei is the manipulation direction.

If the algorithm makes a mistake on a positive example the new value of

w is w + x̃t + ηei +
∑

j µjej. Therefore,

(
w + x̃t + ηei +

∑
j

µjej

)T

w∗ = wTw∗ + x̃Tt w∗ + ηeTi w∗ +
∑
j

µje
T
j w∗ ≥ wTw∗ + 1;

where the inequality holds because first using the ideas from Lemma 12,

x̃Tt w∗ ≥ 1 for the positive examples the algorithm makes a mistake on and

151

x̃Tt w∗ ≤ −1 for the negative examples the algorithm makes a mistake on, and

second, for all j, eTj w∗ ≥ 0 by assumption, and µj ≥ 0.

Similarly, If the algorithm makes a mistake on a negative example, we

have:

(
w − x̃t + ηei +

∑
j

µjej

)T

w∗ = wTw∗ − x̃Tt w∗ + ηeTi w∗ +
∑
j

µje
T
j w∗ ≥ wTw∗ + 1.

Next, on each mistake we claim |w|2 increases by at most (d + 1)(R +

152

α)2 + 1. If the algorithm makes a mistake on a positive example, we have:

∣∣∣∣∣w + x̃t + ηei +
∑
j

µjej

∣∣∣∣∣
2

= |w + x̃t + ηei|2 +

∣∣∣∣∣∑
j

µjej

∣∣∣∣∣
2

+ 2

(∑
j

µjej

)T

(w + x̃t + ηei)

= |w + x̃t + ηei|2 +
∑
j

|µjej|2 + 2
∑
j

µje
T
j (w + x̃t + ηei)

≤ |w + x̃t + ηei|2 +
∑
j

|µjej|2 + 2
∑
j

ηµje
T
j ei

= |w + x̃t + ηei|2 +
∑
j

|µj|2 + 2ηµi

= |w|2 + |x̃t|2 + |ηei|2 + 2wT x̃t + 2ηwTei + 2ηx̃Tt ei +
∑
j

|µj|2 + 2ηµi

≤ |w|2 + (R + α)2 + η2 + 0 + 2η|w|+ 2η(R + α) + d(R + α)2 + 2η(R + α)

≤ |w|2 + (d+ 1)(R + α)2 + η2 + η(2|w|+ 4(R + α))

≤ |w|2 + (d+ 1)(R + α)2 + 1/4 + 1/2

≤ |w|2 + (d+ 1)(R + α)2 + 1;

where the first equality is the result of expansion. The second uses eTj ek = 0

for j 6= k. The inequality in the third row uses µj = 0 when eTj (w + x̃t) ≥ 0,

and µj > 0 when eTj (w + x̃t) < 0, implying µeTj (w + x̃t) ≤ 0. The fourth row

uses eTj ek = 0 for k 6= j and ej
Tej = 1. The fifth row is the result of expansion.

153

The sixth row substitutes each term with an upper bound using |x̃t| ≤ R+ α

and wT x̃t ≤ 0, similar to the arguments from Lemma 13, and µj ≤ R+ α, by

Lemma 14. The eighth row results by setting η = 1
4|w|+8(R+α)+2

. The last row

sums up and upper bounds similar terms.

Similarly, if the algorithm makes a mistake on a negative example, we

have:

∣∣∣∣∣w − x̃t + ηei +
∑
j

µjej

∣∣∣∣∣
2

≤ |w|2 + (d+ 1)(R + α)2 + 1.

Therefore, after each mistake, |w|2 increases by at most (d+1)(R+α)2+1.

The rest of the proof is similar to the proof of Theorem 10, concluding that

the total number of mistakes is at most ((d+ 1)(R + α)2 + 1)|w∗|2.

5.5 Unknown Costs

The main result of this section is generalizing our algorithms to the

unknown costs setting. The generalization holds for `2 costs . However, it

does not extend fully to weighted `1 costs and only works for a specific case.

The algorithm for unknown `2 costs is presented in Section 5.5. The case of

unknown `1 costs is studied in Section 5.5.

154

`2 Costs

In this section, we provide an algorithm that makes at most a bounded

number of mistakes when the manipulation cost, 1/α, is unknown. Algo-

rithm 9 is used as a subroutine to evaluate our estimate of α. First, we show

Algorithm 9 works efficiently if the estimated value, α′, is in proximity of the

real value (when α′ is in the interval of length γ/2 below α). Using this idea

we can run a linear search for α with step size γ/2. However, we show we

can do better than a linear search. The key ingredient that lets us outperform

the linear search is the ability to distinguish whether the estimate is below or

above the real value. Using this idea we run a binary search to find a proper

estimate and come up with an efficient algorithm.

For convenience, we will present the algorithm assuming γ is known. At

𝑤
𝑤∗

𝛼

𝛼′

Figure 5.4: Strategic Perceptron with unknown manipulation cost, when α ≥
α′. The top dashed line represents the manipulation hyperplane. The margin
between the two dashed lines represents the forbidden region.

155

the end we show how to remove this assumption. Below, we explain these

steps more formally.

Case 1: 0 ≤ α− α′ ≤ γ/2

First, we consider the case of 0 ≤ α − α′ ≤ γ/2. Suppose Algorithm 9

takes α′ instead of α as input. Also, suppose x̃t is defined with respect to α′

instead of α. In Proposition 1, we show if 0 ≤ α−α′ ≤ γ/2, Algorithm 9 with

these modifications, makes at most 4(R + α′ + γ/2)2|w∗|2 mistakes. We need

the following two lemmas for proving the proposition. Proofs of Lemma 15

Lemma 16 are along the lines of proofs of Lemmas 12 and 13 respectively.

Lemma 15. Consider data points x̃t as defined in Definition 5 w.r.t. α′ such

that 0 ≤ α − α′ ≤ γ/2. These data points are 1/2-separable; i.e., for positive

data points, x̃Tt w∗ ≥ 1/2; and for negative data points, x̃Tt w∗ ≤ −1/2. Also,

throughout the execution of Algorithm 9 with α′, wTw∗ ≥ 0.

Proof. The proof uses the same three steps as Lemma 12. The first and the

third steps are identical to Lemma 12. Here, we argue for the second step, i.e.,

if at the end of step t− 1, wTw∗ ≥ 0, then at step t, x̃Tt w∗ ≥ 1/2 for positive

points, and x̃Tt w∗ ≤ −1/2 for negative points.

When Algorithm 9 is run with α′, by Definition 5, for any points such

that xTt w/|w| 6= α′, we have x̃t = xt. By Observation 1, these points are

156

not manipulated, i.e., xt = zt. This implies x̃t = zt which implies the claim

for these points. Thus, we only need to argue for the data points such that

xTt w/|w| = α′. Consider such data points. For the positive data points, we

have, x̃t = xt = zt + β · w/|w|, where 0 ≤ β ≤ α. Therefore, x̃Tt w∗ =

zTt w∗ + β ·wTw∗/|w| ≥ zTt w∗ ≥ 1. The first inequality holds because by the

assumption of this step, wTw∗ ≥ 0. On the other hand, for the negative data

points we have x̃t = xt−α′ ·w/|w|, where xt = zt +β ·w/|w| and 0 ≤ β ≤ α.

This implies x̃t = zt + (β − α′) · w/|w|. By multiplying with w∗, we get

x̃Tt w∗ = zTt w∗ + (β − α′) · wTw∗/|w| ≤ zTt w∗ + (α − α′) · wTw∗/|w|. Using

0 ≤ α−α′ ≤ γ/2 and γ = 1/|w∗|, we have x̃Tt w∗ ≤ zTt w∗+wTw∗/(2|w∗||w|) ≤

zTt w∗ + 1/2 ≤ −1/2.

Lemma 16. Suppose Algorithm 9 is run with α′ such that 0 ≤ α− α′ ≤ γ/2.

When the algorithm makes a mistake on a positive example xt, x̃Tt w ≤ 0; and

when it makes a mistake on a negative example xt, x̃Tt w ≥ 0.

Proof. First, we consider the positive points. The algorithm makes a mistake

on a positive example only if xTw/|w| < α′. Similar to Observation 2, in

this case there is a margin without any observed data points. However, as

illustrated in Figure 5.4, this margin is located differently; such that for no

points, α′ − α < xTw/|w| < α′. Thus, for any positive example that the

algorithm makes a mistake on, xTw ≤ 0. By Definition 5, x̃t = xt for all

157

positive examples. Therefore, xTw ≤ 0 implies x̃Tw ≤ 0. Second, we consider

negative points. For negative examples, the algorithm makes a mistake only if

xTw/|w| ≥ α′. If the inequality is strict, i.e., xTw/|w| > α′, by Definition 5,

x̃t = xt, and therefore x̃Tt w ≥ 0. If xTw/|w| = α′, again using Definition 5,

we have x̃Tw = 0.

Proposition 1. When 0 ≤ α − α′ ≤ γ/2, Algorithm 9 makes at most 4(R +

α′ + γ/2)2|w∗|2 mistakes.

Proof. Using Lemmas 15 and 16, the rest of the proof is similar to Theorem 10

and is deferred to the Appendix.

Case 2: α < α′

Suppose α′ is larger than α. By Observation 2, when Algorithm 9 is run

with the real value of α, no data point is observed by algorithm in the margin

0 < xTt w/|w| < α. However, when the estimate is larger, since we overesti-

mate by how far individuals can manipulate, Observation 2 no longer holds.

Therefore, if the algorithm observes a point in the margin 0 < xTt w/|w| < α′,

we realize that the estimate is large, and we need to refine it. On the other

hand, while we have not observed any such points, the algorithm makes at most

(R + α′)2|w∗|2 mistakes. This statement is summarized and proved below.

158

Proposition 2. Suppose Algorithm 9 is run with α′, such that α′ > α, and

is halted if for a data-point xt, 0 < xTt w/|w| < α′. This modified algorithm

makes at most (R + α′)2|w∗|2 + 1 mistakes.

Proof. Similar to the proof of Theorem 10, the maximum number of mistakes

Algorithm 9 with estimated manipulation cost 1/α′ makes on observed data

points xt where xTt w/|w| ≤ 0 or xTt w/|w| ≥ α′ is at most (R+α′)2|w∗|2. If a

data point xt is observed such that 0 < xTt w/|w| < α′, it implies α′ > α and

the algorithm halts, and at most one more mistake is made on this data point.

Therefore, the total number of mistakes is at most (R + α′)2|w∗|2 + 1.

Case 3: α′ < α− γ/2

We infer from Propositions 1 and 2 that if the number of mistakes is

greater than max{4(R + α′ + γ/2)2|w∗|2, (R + α′)2|w∗|2 + 1} = 4(R + α′ +

γ/2)2|w∗|2 then α′ < α− γ/2. Note that the equality holds since the number

of mistakes is an integer.

Putting Everything Together

After discussing the three cases, we are now ready to explain Algo-

rithm 11. This algorithm uses a binary search scheme to find a predictor

in a bounded number of mistakes. The algorithm starts with α′ = 0. For each

159

Algorithm 11: Strategic Perceptron with unknown manipulation cost

α′′ ← 0, α′ ← 0;
while examples are arriving do

Run Algorithm 9 with estimate α′ on the sequence of arriving
examples, halt if #mistakes > 4(R + α′ + γ/2)2|w∗|2 or if for an

example xt, 0 <
xT
t w

|w| < α′;

if #mistakes > 4(R + α′ + γ/2)2|w∗|2 then
/* guessed value α′ is small. */

α′′ ← α′;
α′ ← min{max{2α′, γ/2}, R};
continue;

else if for an example xt, 0 <
xT
t w

|w| < α′ then

/* guessed value α′ is large. */

α′ ← (α′′ + α′)/2;
continue;

fixed α′ we consider 4(R+α′+γ/2)2|w∗|2 as the maximum number of allowed

mistakes. Whenever we exceed this bound using the discussion in Section 5.5

we learn that α′ is too small. Also whenever we see a data point xt such that

0 ≤ xTt w/|w| < α as explained above we learn that α′ is too large. Distin-

guishing between the cases where α′ is too large or too small allows us to refine

the upper bound and lower bound on α′ until 0 ≤ α−α′ ≤ γ/2. The following

theorem shows that the total number of mistakes is bounded during the whole

process.

Theorem 12. Algorithm 11 makes at most O(R2|w∗|2 log(R|w∗|)) mistakes.

Proof. In Algorithm 11, the candidates for α are γ/2 apart and the number of

them is 2R|w∗|. Since we are doing a binary search on these candidates, the to-

160

tal number of iterations of binary search is at most log(2R|w∗|). Proposition 1,

Proposition 2, and Theorem 10, show that in each iteration the total number

of mistakes is bounded by max{4(R + α′ + γ/2)2|w∗|2, (R + α′)2|w∗|2 + 1}.

Since we are assuming α′ ≤ R, the total number of mistakes is at most

O(R2|w∗|2 · log(R|w∗|)) and the proof is complete.

Unknown γ

In the previous steps we assumed knowledge of γ. However, this assump-

tion is not necessary and we can remove it in the following way. Starting from

a guess of |w∗| = 1
2R

(i.e., a guess of γ = 2R), repeat the following procedure:

for each guessed value of |w∗|, Algorithm 11 is executed and if it makes more

than the mistake bound of O(R2|w∗|2 log(R|w∗|)), the guessed value for |w∗| is

doubled (i.e., the guessed value of γ is halved) and the procedure is repeated.

We show by putting this wrapper around Algorithm 11, the total number of

mistakes remains in the same order of magnitude:

log 2R|w∗|∑
i=−1

R2

(
|w∗|
2i

)2

log

(
R|w∗|

2i

)
= O(R2|w∗|2 log(R|w∗|))

161

Weighted `1 Costs

As observed in Section 5.4, in order for the strategic Perceptron algorithm

to work in the weighted `1 costs model, it is necessary to identify in what

direction the individuals manipulate. The tie-breaking step in Algorithm 10,

ensured that the manipulation direction is unique and identifiable. In the

unknown costs model, we need to make a guess for the cost in each direction.

Since the guessed values are not accurate, we no longer can use them for a

tie-breaking step and determine the manipulation direction. This restrains us

from having an efficient algorithm for the general case of `1 costs. However,

for a special case where manipulation is possible in a single direction (finite

cost in direction e1 and infinite in the others), the manipulation direction is

known and the ideas of Algorithm 11 extend to this case.

5.6 Different Costs

In the previous sections, we assumed all individuals have the same utility

function. In this section, we show this assumption is not critical for our result

and our algorithms still make a bounded number of mistakes and perform

almost as well as long as the utility functions are close enough.

162

More particularly, suppose in the `2 costs setting, at each time t, the

amount that an individual can move, αt, is upper bounded by αmax and lower

bounded by αmin such that 0 ≤ αmax − αmin ≤ γ/2. Using the ideas presented

in Section 5.5, we can show that running Algorithm 9 with αmin as the input

and the surrogate data points x̃t defined with respect to αmin makes a bounded

number of mistakes.

Corollary 3. Suppose for all t, αmin ≤ αt ≤ αmin +γ/2. Algorithm 9 by using

parameter αmin makes at most 4(R + αmin + γ/2)|w∗|2 number of mistakes.

Proof Outline. In Section 5.5, the guessed value of α that is used as the input

to Algorithm 9, is at most γ/2 smaller than the real value. Similarly, in this

case, αmin is at most γ/2 smaller than any αt. With a small difference in the

terminology of the proofs of Lemmas 15 and 16, their statements hold and

Proposition 1 directly implies this corollary.

Weighted `1 Costs

Due to similar reasons explained in Section 5.5, the previous result does

not extend to general case of weighted `1 costs but extends to the special case

where manipulation is possible in a single direction.

163

5.7 Target Classifier Not Crossing the

Origin

In this section, we propose an algorithm for the setting where unmanipu-

lated data points are linearly separable, however not by a linear separator pass-

ing through the origin. Ordinarily (in the non-strategic setting), this would

be handled by creating an extra fake coordinate, giving each example a value

of 1 in that coordinate, and thereby reducing to the case where the separator

crosses the origin, as explained in Extension 1. However, in the strategic set-

ting, this reduction breaks down because the condition that wTw∗ ≥ 0 (given

in Lemma 12) is no longer sufficient to guarantee the quality of x̃t, since agents

cannot manipulate in this new coordinate (they are no longer manipulating

in the direction of w). Instead, we present a different reduction here that is

robust to strategic behavior.

For the case of `2 costs, we provide Algorithm 12 and show that the

number of mistakes it makes is at most O(R3|w∗|3).

Overview of Algorithm 12. Assume the unmanipulated data points are sep-

arable by a linear separator w∗Tz + b = 0. Suppose we can find an arbitrary

point p∗ such that w∗Tp∗+b = 0. If we set the point p∗ as the new origin, i.e.,

164

Algorithm 12: Strategic Perceptron with bias for `2 costs

x+,x− ← 0,0;
while examples are arriving do

predict +;
if the prediction was a mistake on a current example xt then

x− ← xt;
break;

while examples are arriving do
predict −;
if the prediction was a mistake on a current example xt then

x+ ← xt;
break;

λ← 0;
while examples are arriving do

mistakes← 0;
/* choose a point p on the line segment between x+ and

x−. */

p← (1− λ)x− + λx+;
/* set the origin to point p. */

Run Algorithm 9 on the sequence of arriving examples in the new
coordinate system, i.e. replace each example xt with xt − p, and
halt if mistakes > 4(2R + α)2|w∗|2;
/* p is not close enough to p∗, i.e. |p− p∗| > γ/2. Try

a different p. */

λ← λ+ γ/2;
continue;

replacing each example zt with zt−p∗, then in the new coordinate system the

unmanipulated data points are linearly separable by a separator that crosses

the new origin, and we can use our previous algorithms. However, we are not

able to necessarily find a point p∗ such that w∗Tp∗ + b = 0. Instead, we show

how to find a point p that is close enough to p∗.

Initially, we find an unmanipulated positive example x+, and an unma-

165

nipulated negative example x− by starting our algorithm in the following way:

First, predict positive until the first mistake on a negative example x− is made.

Next, predict negative until the next mistake is made on some positive exam-

ple x+. Consider the line segment between x− and x+. There exists a point p∗

on this line segment where w∗Tp∗ + b = 0. Consider a series of points on this

line segment at distance γ/2 apart. For one of these points, which we call p,

|p− p∗| ≤ γ/2. Lemma 17 shows if the origin is set to p, i.e. each data point

zt is replaced with zt − p, there exists a line passing through the new origin

p that separates original data points with a margin of γ/2, meaning that for

each unmanipulated negative example zt, (zt − p)Tw∗ ≥ 1/2, and for each

unmanipulated negative example zt, (zt − p)Tw∗ ≤ −1/2. When the origin

is set to p, Lemma 18 shows that if Algorithm 9 is executed on the arrived

examples in the new coordinate system, i.e. replacing each observed example

xt with xt − p, the number of mistakes is at most 4(2R + α)2|w∗|2. Putting

all together, we propose Algorithm 12 that is a generalization of Algorithm 9

for the case that original examples are separable by a linear classifier with

non-zero bias. Theorem 13 shows Algorithm 12 makes at most O(R3|w∗|3)

mistakes.

Lemma 17. Assume the points zt are separable by a linear separator w∗Tz +

b = 0 of margin γ = 1/|w∗|, and let p∗ be a point such that w∗Tp∗ + b = 0.

166

Then, if |p∗ − p| ≤ γ/2, the decision boundary (z − p)Tw∗ has a margin of

separation γ/2.

Proof. First, |w∗Tp−w∗Tp∗| ≤ 1/2 because |w∗Tp−w∗Tp∗| ≤ |w∗||p−p∗| ≤

|w∗|/2|w∗| = 1/2. So, for a positive data point zt, if (zt − p∗)Tw∗ ≥ 1, then

(zt−p)Tw∗ ≥ 1/2. Similarly, for a negative data point zt, if (zt−p∗)Tw∗ ≤ −1

then (zt − p)Tw∗ ≤ −1/2.

Lemma 18. For a fixed guess p where |p∗ − p| ≤ γ/2, when the origin is set

to p (i.e., each example x is replaced by x − p), then Algorithm 12 makes at

most 4(2R + α)2|w∗|2 mistakes.

Proof. Proof of this lemma is in the same lines as the proof of Theorem 10

with some modifications. First, Lemma 17 shows there exists a separator

with margin of separation γ/2 passing through p. By following the steps

in Lemma 12, and using a margin of separation γ/2 instead of γ, we can

show for any positive data point xt, x̃Tt w∗ ≥ 1/2, and for any negative data

point xt, x̃Tt w∗ ≤ −1/2. Next, since each data point xt is moved to xt − p,

maxt |x̃t| ≤ 2R+α. Finally, by applying these bounds and following the steps

in the proof of Theorem 10, the claim is proved.

Theorem 13. Algorithm 12 makes at most 16R(2R + α)2|w∗|3 mistakes in

total.

167

Proof. Since the length of the line segment between x+ and x− is at most 2R,

and guesses tried on this line segment are γ/2 apart, Algorithm 12 tries at

most 4R/γ guesses for p in total. For each guess, if the number of mistakes

is greater than 4(2R + α)2|w∗|2, the next guess is tried. By Lemma 18, if for

a guess p, |p− p∗| ≤ γ/2, on all the examples that will arrive the number of

mistakes does not exceed 4(2R+ α)2|w∗|2. Therefore the claim is proved.

Weighted `1 Costs

We show a reduction from this setting to the case where unmanipulated

examples are separable by a hyperplane passing through the origin. First,

similar to the `2 case, an extra fake coordinate with a value of 1 is added

to each example. The bias term b is absorbed into w∗, i.e. replacing w∗

with (w∗, b). Now for the positive examples xTt w∗ ≥ 1, and for the negative

examples xTt w∗ ≤ −1. Since agents cannot manipulate in the direction of

the fake coordinate, the cost of manipulation along this direction is set to be

infinity. Next, we bound the number of mistakes that Algorithm 10 makes in

this setting. Since a fake coordinate is added to each example, R increases

by a value of at most 1. Since the bias term is absorbed into the w∗, the

value of |w| increases by at most b. As a result, Algorithm 10 makes at most

(1 + (d+ 1)(R+α+ 1)2)(|w∗|+ b)2 number of mistakes. At the high level, the

168

reason the direct reduction goes through for the weighted `1 case but not the

`2 case is that in the `1 case, agents only manipulate in coordinate directions,

and we have assumed that w∗ is non-negative in each coordinate direction.

So, the algorithm is not hurt if in computing x̃t it overestimates the amount

by which the agent has manipulated. This is the property that breaks down

in the `2 case.

5.8 Conclusions and Open Problems

In this work, we showed that if agents have the ability to manipulate

their features within an `2 ball or a weighted `1 ball in order to be classified as

positive, then the classic Perceptron algorithm may fail to achieve a bounded

number of mistakes even when a perfect linear classifier exists. We then devel-

oped new Perceptron-style algorithms that achieve a finite mistake-bound, not

much greater than the classic Perceptron bound in the non-strategic case, in

both the `2 and weighted `1 manipulation setting. In the case that the manip-

ulation costs are unknown to the learner—i.e., the radius of the ball in which

agents can modify their features (or the per-coordinate radius in the weighted

`1 case)—we provide an algorithm for the `2 costs setting and a specific case

of the weighted `1 costs setting.

169

Our work suggests several open problems. First, designing an algorithm

for the general case of weighted `1 costs when the costs of manipulation along

each coordinate is unknown. This is challenging because given an observed

data point, the learner doesn’t know which direction it may have manipulated

from, and this direction will change as the hypothesis classifier changes.

Second, for the case of inseparable data points, getting a bound in terms

of the hinge-loss of the best separator with respect to the original data points

z1, z2, · · · . Our ideas in Section 5.3 can be extended to get a bound in terms

of the hinge-loss of the best separator of surrogate data points x̃1, x̃2, · · · .

However, the more interesting question of getting a bound in terms of un-

manipulated data points remains open. In the following, we show an example

where Algorithm 9 makes an unbounded number of mistakes when data points

are not perfectly separable, even though there exists a separator with bounded

hinge-loss.

Example 3. Consider data points z0 = (4, 3), z1 = (−1,−7), z2 = (3, 2), z3 =

(−1, 7), and z4 = (3,−2) arriving in order; and then the examples z1, z2, z3, z4

repeat forever. Examples z2 and z4 have positive labels, and z0, z1 and z3

have negative labels. Suppose that α = 5. Note that there exists a vertical

linear separator that only makes a mistake on z0. However, as shown below,

Algorithm 9 will make an unbounded number of mistakes.

170

Specifically, after arrival of z0, we have w = (−4,−3). Next, z1 arrives,

and since wTz1/|w| = α, the algorithm makes a mistake on z1 and classifies

it as positive. z1 doesn’t even have to manipulate, i.e. z1 = x1. Surrogate

data point x̃1 = (3,−4) is created, and is subtracted from w to get w =

(−7, 1). Example z2 arrives and since wTz2 < 0, manipulation does not help,

therefore, x2 = z2. Example z2 gets classified as negative mistakenly as shown

in Figure 5.5(a). Also, x̃2 = x2. Since a mistake is made, w gets updated to

w + x̃2 = (−4, 3). Next, negative example z3 arrives and since wTz3/|w| =

α, it gets misclassified as positive as shown in Figure 5.5(b), and x3 = z3.

Surrogate data point x̃3 = (3, 4) is created and w is updated to w − x̃3 =

(−7,−1). Next, positive example z4 arrives, and since wTz4 < 0, it does not

manipulate and z4 = x4. It gets classified as negative mistakenly as shown in

Figure 5.5(c). Also, x̃4 = x4. w is updated to w + x̃4 = (−4,−3). If the same

four examples arrive over and over again, Algorithm 9 makes an unbounded

number of mistakes. However, there exists a linear classifier w∗ = (1, 0) which

makes only one mistake in this scenario as shown in Figure 5.5(d).

Third, when the separator of the original data points z1, z2, · · · does

not cross the origin, as studied in Section 5.7, Algorithm 12 makes at most

O(R3|w∗|3) mistakes in the `2 costs setting. Our last open problem is whether

it is possible to improve the number of mistakes to O(R2|w∗|2).

171

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
First Feature

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

S
ec

on
d

Fe
at

ur
e z0

z1

z2

negative
positive

(a) The algorithm makes a mistake on
z2 = (3, 2) when w = (−7, 1).

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
First Feature

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

S
ec

on
d

Fe
at

ur
e z0

z1

z2

z3

negative
positive

(b) z3 = (−1, 7) is mistakenly classified
when w = (−4, 3).

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
First Feature

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

S
ec

on
d

Fe
at

ur
e z0

z1

z2

z3

z4

negative
positive

(c) Positive example z4 = (3,−2) is mis-
classified when w = (−7,−1).

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
First Feature

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

S
ec

on
d

Fe
at

ur
e z0

z1

z2

z3

z4

negative
positive

(d) Data is not linearly separable, how-
ever, with w∗ = (1, 0), only one mistake
is made.

Figure 5.5: Example 3 shows Algorithm 9 makes an unbounded number of
mistakes, where there is a separator with bounded hinge-loss. The dotted
line in each figure shows the current w, and the solid line shows the current
classifier. The arrows show the positive direction of each classifier.

172

5.9 Authors

This Chapter was written by Saba Ahmadi, Hedyeh Beyhaghi, Avrim

Blum, and Keziah Naggita. It is under submission to the Economics and

Computation Conference (EC) 2021 [89].

173

6 Conclusion

In this thesis, we studied some social impacts of algorithms including

diversity, fairness, and resilience to strategic behavior.

In Chapter 2, we generalized the notion of diverse b-matchings intro-

duced by Ahmed et al [28]. In their model, they considered the problem of

forming a bipartite b-matching from a set of workers to a set of teams, where

the goal is to find a low-cost matching while forming diverse teams. In their

model, they assume each worker has one feature. We generalized their model,

by allowing each worker to have a set of features and designed a pseudo-

polynomial time algorithm for this problem. Our algorithm is based on a

negative cycle detection approach. Additionally, we proved that the problem

of finding a diverse b-matching is NP-hard when the number of features is

part of the input. In particular, this problem can be solved in polynomial

time when each worker has exactly one feature. In terms of future direction, it

would be interesting to design fast approximation algorithms for the problem

174

of diverse b-matching when the workers have multiple features. Extending our

notion of diversity to the case of online matchings is another open question.

In Chapters 3, 4, we studied two different notions of fairness for the

correlation clustering problem. In Chapter 3, we considered a notion of group

fairness in correlation clustering where the goal is to generate clusters with

minimum disagreements, where the distribution of a feature (e.g. gender) in

each cluster is the same as the global distribution. Our guarantees are for the

case of complete graphs, we leave open the question of finding approximation

algorithms for fair correlation clustering in general graphs. In Chapter 4, we

considered a different notion of fairness for correlation clustering. We defined a

cluster-wise objective function that asks to minimize the maximum number of

disagreements of each cluster. This notion respects the quality of the formed

clusters. Kalhan et al. [20] later improved our results presented in Chapter 4,

and derived a (2 + ε)-approximation algorithm for the case of general graphs.

For the vertex-wise objective introduced by Puleo and Milenkovic [15], the

best-known approximation ratio on complete graphs is 5 by Kalhan et al. [20].

The best known lower bound for this problem is 4/3 by Chatziafratis et al. [90].

Closing the gap between the lower and upper bounds remains open.

In Chapter 5, we discussed how to learn a linear classifier in presence

of strategic agents that desire to be classified as positive and that are able to

175

modify their position by a limited amount, making the classifier not be able

to observe the true position of agents but rather a position where the agent

pretends to be. We illustrate an example where the traditional Perceptron al-

gorithm fails to find a classifier in the strategic scenario, making an unbounded

number of mistakes even though a perfect large-margin linear classifier exists.

We provided a Perceptron style algorithm which makes a bounded number of

mistakes in presence of strategic agents in both `2 and weighted-`1 manipu-

lation costs. Our algorithms work for the scenario where the un-manipulated

data points are separable. The question of finding a classifier in presence of

strategic agents where the un-manipulated data points are inseparable remains

open. The other open question is designing an algorithm for the general case

of weighted `1 costs when the costs of manipulation along each coordinate is

unknown.

In conclusion, in addition to group fairness in clustering, it would be

interesting to study individual fairness in clustering. In a recent work, Klein-

dessner et al. [91] propose a new notion of individual fairness in clustering. In

their notion, every data point is on average closer to the points in its cluster,

compared to the points in other clusters. They show the problem of deciding

whether a data set has an individually fair clustering in general is NP-hard.

For the special case of a data set lying on a real line, they propose a dynamic

176

programming approach to find an individually fair clustering. It remains open

to extend their notion of individual fair clustering to a general metric space.

In particular, it would be interesting to find bicriteria approximation algo-

rithms that satisfy both group fairness and individual fairness approximately.

Furthermore, exploring connections between fairness and diversity in team

formation is another direction that could be investigated. One open ques-

tion is how to generalize our framework for the diverse matching problem to

create teams that satisfy group fairness with respect to some features, while

maximizing diversity with respect to some other features.

177

Bibliography

[1] Danielle Keats Citron and Frank Pasquale. The scored society: Due
process for automated predictions. Wash. L. Rev., 89:1, 2014.

[2] Marianne Bertrand and Sendhil Mullainathan. Are emily and greg more
employable than lakisha and jamal? a field experiment on labor market
discrimination. American economic review, 94(4):991–1013, 2004.

[3] Anthony W Flores, Kristin Bechtel, and Christopher T Lowenkamp. False
positives, false negatives, and false analyses: A rejoinder to machine bias:
Theres software used across the country to predict future criminals. and
its biased against blacks. 2016.

[4] Amit Datta, Michael Carl Tschantz, and Anupam Datta. Automated ex-
periments on ad privacy settings: A tale of opacity, choice, and discrim-
ination. Proceedings on privacy enhancing technologies, 2015(1):92–112,
2015.

[5] Faez Ahmed, John P. Dickerson, and Mark Fuge. Diverse weighted bipar-
tite b-matching. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pages 35–41, 2017.

[6] Maryam Karimzadehgan and ChengXiang Zhai. Constrained multi-aspect
expertise matching for committee review assignment. In ACM Conference
on Information and Knowledge Management (CIKM), pages 1697–1700,
2009.

[7] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii.
Fair clustering through fairlets. In I. Guyon, U. V. Luxburg, S. Bengio,

178

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 30, pages 5029–5037.
Curran Associates, Inc., 2017.

[8] Ioana O. Bercea, Samir Khuller, Clemens Rösner, Melanie Schmidt, Mar-
tin Groß, Aounon Kumar, and Daniel R. Schmidt. On the cost of essen-
tially fair clusterings. In Dimitris Achlioptas and Laszlo A. Vegh, editors,
Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques, APPROX/RANDOM 2019, Leibniz International
Proceedings in Informatics, LIPIcs. Schloss Dagstuhl- Leibniz-Zentrum
fur Informatik GmbH, Dagstuhl Publishing, September 2019. 22nd In-
ternational Conference on Approximation Algorithms for Combinatorial
Optimization Problems and 23rd International Conference on Random-
ization and Computation, APPROX/RANDOM 2019 ; Conference date:
20-09-2019 Through 22-09-2019.

[9] Suman Bera, Deeparnab Chakrabarty, Nicolas Flores, and Maryam Ne-
gahbani. Fair algorithms for clustering. In Advances in Neural Informa-
tion Processing Systems, pages 4955–4966, 2019.

[10] Saba Ahmadi, Sainyam Galhotra, Barna Saha, and Roy Schwartz. Fair
correlation clustering. arXiv preprint arXiv:2002.03508, 2020.

[11] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering.
Machine Learning, 56(1-3):89–113, 2004.

[12] Nate Veldt, David F Gleich, and Anthony Wirth. A correlation clustering
framework for community detection. In Proceedings of the 2018 World
Wide Web Conference, pages 439–448, 2018.

[13] Francesco Bonchi, David Garcia-Soriano, and Edo Liberty. Correlation
clustering: from theory to practice. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data min-
ing, pages 1972–1972, 2014.

[14] Jack P Hou, Amin Emad, Gregory J Puleo, Jian Ma, and Olgica
Milenkovic. A new correlation clustering method for cancer mutation
analysis. Bioinformatics, 32(24):3717–3728, 2016.

[15] Gregory Puleo and Olgica Milenkovic. Correlation clustering and biclus-
tering with locally bounded errors. In International Conference on Ma-
chine Learning, pages 869–877, 2016.

179

[16] Yizong Cheng and George M Church. Biclustering of expression data. In
Ismb, volume 8, pages 93–103, 2000.

[17] Panagiotis Symeonidis, Alexandros Nanopoulos, Apostolos Papadopou-
los, and Yannis Manolopoulos. Nearest-biclusters collaborative filtering
with constant values. In International Workshop on Knowledge Discovery
on the Web, pages 36–55. Springer, 2006.

[18] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. Clustering high-
dimensional data: A survey on subspace clustering, pattern-based clus-
tering, and correlation clustering. ACM Transactions on Knowledge Dis-
covery from Data (TKDD), 3(1):1, 2009.

[19] Moses Charikar, Neha Gupta, and Roy Schwartz. Local guarantees in
graph cuts and clustering. In Friedrich Eisenbrand and Jochen Koen-
emann, editors, Integer Programming and Combinatorial Optimization,
pages 136–147, Cham, 2017. Springer International Publishing.

[20] Sanchit Kalhan, Konstantin Makarychev, and Timothy Zhou. Improved
algorithms for correlation clustering with local objectives. arXiv preprint
arXiv:1902.10829, 2019.

[21] Alvin E Roth. The evolution of the labor market for medical interns and
residents: a case study in game theory. Journal of political Economy,
92(6):991–1016, 1984.

[22] Joanna Drummond, Andrew Perrault, and Fahiem Bacchus. Sat is an
effective and complete method for solving stable matching problems with
couples. In IJCAI, pages 518–525, 2015.

[23] Ryoji Kurata, Naoto Hamada, Atsushi Iwasaki, and Makoto Yokoo. Con-
trolled school choice with soft bounds and overlapping types. Journal of
Artificial Intelligence Research, 58:153–184, 2017.

[24] Laurent Charlin and Richard Zemel. The toronto paper matching system:
an automated paper-reviewer assignment system. 2013.

[25] Xiang Liu, Torsten Suel, and Nasir Memon. A robust model for paper
reviewer assignment. In Proceedings of the 8th ACM Conference on Rec-
ommender Systems, RecSys ’14, pages 25–32, New York, NY, USA, 2014.
ACM.

180

[26] John P. Dickerson and Tuomas Sandholm. Futurematch: Combining hu-
man value judgments and machine learning to match in dynamic environ-
ments. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, AAAI’15, pages 622–628. AAAI Press, 2015.

[27] Dimitris Bertsimas, Theodore Papalexopoulos, Nikolaos Trichakis,
Yuchen Wang, Ryutaro Hirose, and Parsia A Vagefi. Balancing efficiency
and fairness in liver transplant access: tradeoff curves for the assessment
of organ distribution policies. Transplantation, 2019.

[28] Faez Ahmed, John P. Dickerson, and Mark Fuge. Diverse weighted bipar-
tite b-matching. In Proceedings of the 26th International Joint Conference
on Artificial Intelligence, IJCAI’17, pages 35–41. AAAI Press, 2017.

[29] M. Minoux. Solving integer minimum cost flows with separable convex
cost objective polynomially, pages 237–239. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1986.

[30] Senjuti Basu Roy, Ioanna Lykourentzou, Saravanan Thirumuruganathan,
Sihem Amer-Yahia, and Gautam Das. Task assignment optimization in
knowledge-intensive crowdsourcing. The VLDB JournalThe International
Journal on Very Large Data Bases, 24(4):467–491, 2015.

[31] Joel Ross, Lilly Irani, M Silberman, Andrew Zaldivar, and Bill Tomlinson.
Who are the crowdworkers?: shifting demographics in mechanical turk.
In CHI’10 extended abstracts on Human factors in computing systems,
pages 2863–2872. ACM, 2010.

[32] Christian R Østergaard, Bram Timmermans, and Kari Kristinsson. Does
a different view create something new? the effect of employee diversity
on innovation. Research Policy, 40(3):500–509, 2011.

[33] Vivian Hunt, Dennis Layton, and Sara Prince. Diversity matters. McK-
insey & Company, 1:15–29, 2015.

[34] Hui Lin and Jeff A Bilmes. Learning mixtures of submodular shells with
application to document summarization. arXiv preprint arXiv:1210.4871,
2012.

[35] Jaime Carbonell and Jade Goldstein. The use of MMR, diversity-based
reranking for reordering documents and producing summaries. In Pro-
ceedings of the 21st Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pages 335–336. ACM,
1998.

181

[36] Alex Kulesza, Ben Taskar, et al. Determinantal point processes for ma-
chine learning. Foundations and Trends R© in Machine Learning, 5(2–
3):123–286, 2012.

[37] Faez Ahmed and Mark Fuge. Ranking ideas for diversity and quality.
Journal of Mechanical Design, 140(1):011101, 2018.

[38] Paul Gölz and Ariel D Procaccia. Migration as submodular optimization.
In AAAI Conference on Artificial Intelligence (AAAI), 2019.

[39] Nawal Benabbou, Mithun Chakraborty, Xuan-Vinh Ho, Jakub Sliwin-
ski, and Yair Zick. Diversity constraints in public housing allocation. In
Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems, pages 973–981. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2018.

[40] Jing Wu Lian, Nicholas Mattei, Renee Noble, and Toby Walsh. The
conference paper assignment problem: Using order weighted averages to
assign indivisible goods. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[41] Shipra Agrawal, Morteza Zadimoghaddam, and Vahab Mirrokni. Pro-
portional allocation: Simple, distributed, and diverse matching with high
entropy. In International Conference on Machine Learning (ICML), pages
99–108, 2018.

[42] Ari Kobren, Barna Saha, and Andrew McCallum. Paper matching with
local fairness constraints. In Proceedings of the 25th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining, KDD
’19, pages 1247–1257, New York, NY, USA, 2019. ACM.

[43] Albert O Hirschman. The paternity of an index. The American economic
review, 54(5):761–762, 1964.

[44] Andrew V. Goldberg and Tomasz Radzik. A heuristic improvement of
the bellman-ford algorithm, 1993.

[45] Boris Cherkassky, Andrew V. Goldberg, and Tomasz Radzik. Shortest
paths algorithms: Theory and experimental evaluation. Mathematical
Programming, 73:129–174, 1993.

[46] Saba Ahmadi, Faez Ahmed, John P. Dickerson, Mark Fuge, and Samir
Khuller. An algorithm for multi-attribute diverse matching. In Chris-
tian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint

182

Conference on Artificial Intelligence, IJCAI-20, pages 3–9. International
Joint Conferences on Artificial Intelligence Organization, 7 2020. Main
track.

[47] Ioana O Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens
Rösner, Daniel R Schmidt, and Melanie Schmidt. On the cost of essen-
tially fair clusterings. arXiv preprint arXiv:1811.10319, 2018.

[48] Melanie Schmidt, Chris Schwiegelshohn, and Christian Sohler. Fair core-
sets and streaming algorithms for fair k-means clustering. arXiv preprint
arXiv:1812.10854, 2018.

[49] Matthäus Kleindessner, Samira Samadi, Pranjal Awasthi, and Jamie Mor-
genstern. Guarantees for spectral clustering with fairness constraints.
arXiv preprint arXiv:1901.08668, 2019.

[50] Sara Ahmadian, Alessandro Epasto, Ravi Kumar, and Mohammad Mah-
dian. Clustering without over-representation. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 267–275, 2019.

[51] Sara Ahmadian, Alessandro Epasto, Ravi Kumar, and Mohammad Mah-
dian. Fair correlation clustering. In Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics, volume
108, pages 4195–4205, 26–28 Aug 2020.

[52] Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating inconsis-
tent information: ranking and clustering. Journal of the ACM (JACM),
55(5):1–27, 2008.

[53] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering
with qualitative information. Journal of Computer and System Sciences,
71(3):360–383, 2005.

[54] Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory
Yaroslavtsev. Near optimal lp rounding algorithm for correlationcluster-
ing on complete and complete k-partite graphs. In Proceedings of the
forty-seventh annual ACM symposium on Theory of computing, pages
219–228. ACM, 2015.

[55] Amir Ben-Dor, Ron Shamir, and Zohar Yakhini. Clustering gene expres-
sion patterns. Journal of computational biology, 6(3-4):281–297, 1999.

183

[56] Jiong Guo, Falk Hüffner, Christian Komusiewicz, and Yong Zhang. Im-
proved algorithms for bicluster editing. In Manindra Agrawal, Dingzhu
Du, Zhenhua Duan, and Angsheng Li, editors, Theory and Applications of
Models of Computation, pages 445–456, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

[57] Vladimir Filkov and Steven Skiena. Integrating microarray data by con-
sensus clustering. International Journal on Artificial Intelligence Tools,
13(04):863–880, 2004.

[58] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma.
Fairness-aware classifier with prejudice remover regularizer. In Joint Eu-
ropean Conference on Machine Learning and Knowledge Discovery in
Databases, pages 35–50. Springer, 2012.

[59] Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger,
and Suresh Venkatasubramanian. Certifying and removing disparate im-
pact. In proceedings of the 21th ACM SIGKDD international conference
on knowledge discovery and data mining, pages 259–268, 2015.

[60] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and
Richard Zemel. Fairness through awareness. In Proceedings of the 3rd
innovations in theoretical computer science conference, pages 214–226,
2012.

[61] L Elisa Celis, Damian Straszak, and Nisheeth K Vishnoi. Ranking with
fairness constraints. arXiv preprint arXiv:1704.06840, 2017.

[62] Clemens Rösner and Melanie Schmidt. Privacy preserving clustering with
constraints. arXiv preprint arXiv:1802.02497, 2018.

[63] L Elisa Celis, Lingxiao Huang, and Nisheeth K Vishnoi. Multiwinner
voting with fairness constraints. arXiv preprint arXiv:1710.10057, 2017.

[64] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvtiskii.
Matroids, matchings, and fairness. In The 22nd International Conference
on Artificial Intelligence and Statistics, pages 2212–2220, 2019.

[65] Gregory J Puleo and Olgica Milenkovic. Correlation clustering and biclus-
tering with locally bounded errors. IEEE Transactions on Information
Theory, 64(6):4105–4119, 2018.

184

[66] Saba Ahmadi, Samir Khuller, and Barna Saha. Min-max correlation clus-
tering via multicut. In International Conference on Integer Programming
and Combinatorial Optimization, pages 13–26. Springer, 2019.

[67] Nir Ailon, Noa Avigdor-Elgrabli, Edo Liberty, and Anke Van Zuylen.
Improved approximation algorithms for bipartite correlation clustering.
SIAM Journal on Computing, 41(5):1110–1121, 2012.

[68] Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering
with qualitative information. In Foundations of Computer Science, 2003.
Proceedings. 44th Annual IEEE Symposium on, pages 524–533. IEEE,
2003.

[69] Erik D Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Cor-
relation clustering in general weighted graphs. Theoretical Computer Sci-
ence, 361(2-3):172–187, 2006.

[70] Alexander Kirillov, Evgeny Levinkov, Bjoern Andres, Bogdan Savchyn-
skyy, and Carsten Rother. Instancecut: From edges to instances with
multicut. In Computer Vision and Pattern Recognition (CVPR), 2017
IEEE Conference on, pages 7322–7331. IEEE, 2017.

[71] Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and Chang D. Yoo.
Higher-order correlation clustering for image segmentation. In J. Shawe-
Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 24, pages
1530–1538. Curran Associates, Inc., 2011.

[72] Zoya Svitkina and Éva Tardos. Min-max multiway cut. In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 207–218. Springer, 2004.

[73] Nikhil Bansal, Uriel Feige, Robert Krauthgamer, Konstantin Makarychev,
Viswanath Nagarajan, Seffi Naor, and Roy Schwartz. Min-max graph
partitioning and small set expansion. SIAM Journal on Computing,
43(2):872–904, 2014.

[74] Eden Chlamtac, Konstantin Makarychev, and Yury Makarychev. How
to play unique games using embeddings. In Foundations of Computer
Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pages 687–
696. IEEE, 2006.

185

[75] Michael Brückner and Tobias Scheffer. Stackelberg games for adversarial
prediction problems. In Proceedings of the 17th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD 11,
page 547555, New York, NY, USA, 2011. Association for Computing Ma-
chinery.

[76] Moritz Hardt, Nimrod Megiddo, Christos Papadimitriou, and Mary
Wootters. Strategic classification. In Proceedings of the 2016 ACM Con-
ference on Innovations in Theoretical Computer Science, ITCS 16, page
111122, New York, NY, USA, 2016. Association for Computing Machin-
ery.

[77] Frank Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386,
1958.

[78] Jinshuo Dong, Aaron Roth, Zachary Schutzman, Bo Waggoner, and Zhi-
wei Steven Wu. Strategic classification from revealed preferences. In Pro-
ceedings of the 2018 ACM Conference on Economics and Computation,
EC 18, page 5570, New York, NY, USA, 2018. Association for Computing
Machinery.

[79] Yiling Chen, Yang Liu, and Chara Podimata. Learning strategy-aware
linear classifiers. arXiv preprint arXiv:1911.04004, 2020.

[80] Lily Hu, Nicole Immorlica, and Jennifer Wortman Vaughan. The dis-
parate effects of strategic manipulation. In Proceedings of the Conference
on Fairness, Accountability, and Transparency, FAT* ’19, pages 259–268,
New York, NY, USA, 2019. ACM.

[81] Mark Braverman and Sumegha Garg. The role of randomness and noise in
strategic classification. In 1st Symposium on Foundations of Responsible
Computing (FORC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Infor-
matik, 2020.

[82] Smitha Milli, John L. Miller, Anca D. Dragan, and Moritz Hardt. The
social cost of strategic classification. In FAT, 2018.

[83] Jon M. Kleinberg and Manish Raghavan. How do classifiers induce agents
to invest effort strategically? In EC ’19, 2018.

186

[84] Nika Haghtalab, Nicole Immorlica, Brendan Lucier, and Jack Wang. Max-
imizing welfare with incentive-aware evaluation mechanisms. In 29th In-
ternational Joint Conference on Artificial Intelligence, 2020.

[85] Tal Alon, Magdalen Dobson, Ariel D Procaccia, Inbal Talgam-Cohen, and
Jamie Tucker-Foltz. Multiagent evaluation mechanisms. In AAAI, pages
1774–1781, 2020.

[86] Yahav Bechavod, Katrina Ligett, Zhiwei Steven Wu, and Juba Ziani.
Causal feature discovery through strategic modification. arXiv preprint
arXiv:2002.07024, 2020.

[87] Yonadav Shavit, Benjamin Edelman, and Brian Axelrod. Causal strategic
linear regression. In Proceedings of the 37th International Conference on
Machine Learning, 2020.

[88] John Miller, Smitha Milli, and Moritz Hardt. Strategic classification is
causal modeling in disguise. In Proceedings of the 37th International Con-
ference on Machine Learning, 2020.

[89] Saba Ahmadi, Hedyeh Beyhaghi, Avrim Blum, and Keziah Naggita. The
strategic perceptron. arXiv preprint arXiv:2008.01710, 2020.

[90] Vaggos Chatziafratis, Neha Gupta, and Euiwoong Lee. Inapproximability
for local correlation clustering and dissimilarity hierarchical clustering.
arXiv preprint arXiv:2010.01459, 2020.

[91] Matthäus Kleindessner, Pranjal Awasthi, and Jamie Morgenstern. A no-
tion of individual fairness for clustering. arXiv preprint arXiv:2006.04960,
2020.

187

	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Diverse Matching
	Fair Correlation Clustering
	Min-max Correlation Clustering via MultiCut
	The Strategic Perceptron

	Diverse Matchings
	Introduction
	Related Work
	Preliminaries
	Negative-Cycle-Detection-based Algorithms
	Proof of Optimality
	Diverse Weighted Bipartite b-Matching
	Experimental Validation & Discussion
	Authors

	Fair Correlation Clustering
	Introduction
	Contributions & Roadmap

	Related Work
	Preliminaries
	Warmup: 2 Colors with Ratio 1:1
	Generalization
	Two Colors with Ratio 1:p
	Multiple Colors
	Avoiding Over-representation
	Hardness

	Experiments
	Solution Quality

	Authors

	Min-Max Correlation Clustering via MultiCut
	Introduction
	Results & High-Level Ideas
	High-Level Ideas

	Min-Max Multicut
	SDP Relaxation
	Approximation Algorithm
	Analysis
	Covering & Aggregation

	Analysis of Algorithm for Min-Max Correlation Clustering
	Min-Max Correlation Clustering and Min-Max Multicut in Minor-Closed Graph Families
	Min-Max Correlation Clustering on Complete Graphs
	Approximation Algorithm
	Rounding Algorithm for a particular guess
	Covering and Partitioning

	Authors

	The Strategic Perceptron
	Introduction
	Model and Preliminaries
	Model
	Non-Strategic Setting and the Perceptron Algorithm
	Failure of the Perceptron Algorithm in Strategic Settings

	Known 2 Costs
	Known Weighted 1 Costs
	Unknown Costs
	2 Costs
	Weighted 1 Costs

	Different Costs
	Target Classifier Not Crossing the Origin
	Conclusions and Open Problems
	Authors

	Conclusion
	Bibliography

