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ABSTRACT

We consider the so called “wire-tap channel”, where a transmitter sends secret

information to its receiver in the presence of an eavesdropping receiver with similar

signal processing capability as the desired receiver. It is assumed that all the

communication links have time varying signal strengths1 which are only known at

the corresponding receivers and not at the transmitter. In this thesis, we address

the problem of characterizing the maximum possible rate of secret and reliable

information transmission on such a wire-tap channel. We first characterize the secrecy

capacity of a corresponding layered abstraction of the channel, and then, we derive

an upper bound to the secrecy capacity of the fading wire-tap channel. Finally, we

show that the wireless channels in the urban and most of the rural environments

belong to a class of channels called Stochastically degraded channels, for which we

have characterized the exact capacity in this thesis work.

1Such communication links are called fading channels.

iii



ACKNOWLEDGMENTS

Firstly I would like to express my humble gratitude to my Almighty Allah for

His endless blessings on me.

This research work would not have been possible without the guidance, support,

motivation that I got from my adviser Dr. Sanjay Karmakar. He provided me

immense time explaining information theory in order to understand the research

problem in an inside out way. Whenever I got stuck at some point with my research

problem, Dr. Karmakar always showed the thread that I should pursue to make

progress. I want to thank him from the core of my heart.

I am grateful to Dr. Rajesh Kavasseri, Dr. Ivan T. Lima, Jr., and Dr. Indranil

Sengupta to give me inspiration and guidance to achieve my goal.

Finally, I would like to express a special thanks to my family and friends for

their support and inspiration.

iv



DEDICATION

To my wife Taslima, and my daughter Laiba.

v



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

DEDICATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Joint Entropy and Conditional Entropy . . . . . . . . . . . . . . . . . . . . . . 4

1.3. Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4. Relationship between Entropy and Mutual Information . . . . . . . . 6

1.5. Channel Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.1. Noiseless Binary Channel . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.2. Binary Erasure Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

CHAPTER 2. INFORMATION-THEORETIC SECRECY . . . . . . . . . . . . . . 13

2.1. Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

CHAPTER 3. LAYERED ERASURE WIRE-TAP CHANNEL . . . . . . . . . . 21

3.1. Layered Erasure Deterministic Model . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2. Incorporating Fading in Layered Erasure Deterministic Model . . 25

3.3. Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4. Layered Erasure Wire-tap Channel: Converse . . . . . . . . . . . . . . . . 28

3.5. Layered Erasure Wire-tap Channel: Achievability . . . . . . . . . . . . . 31

vi



CHAPTER 4. FADING GAUSSIAN WIRE-TAP CHANNEL . . . . . . . . . . . 36

4.1. Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2. Fading Gaussian Wire-tap Channel: Upper-Bound . . . . . . . . . . . . 40

4.2.1. Special Case: Upper-bound for a Degraded Channel . . 44

4.3. Fading Gaussian Wire-tap Channel: Achievability . . . . . . . . . . . . 44

4.3.1. Achievable Rate with V = X ∼ N (0, 1) . . . . . . . . . . . . . 45

CHAPTER 5. PRACTICAL APPLICATIONS OF OUR RESULTS . . . . . 47

5.1. Secrecy Capacity of Fading Wire-tap Channel in Urban Area . . . 47

5.2. Secrecy Capacity of Fading Wire-tap Channel in Rural Area . . . . 49

CHAPTER 6. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vii



LIST OF FIGURES

Figure Page

1. Relationship among entropy, conditional entropy, and mutual
information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. Binary noiseless channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3. Binary erasure channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4. Illustration of a wire-tap channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5. A point-to-point Gaussian channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6. Pictorial view of deterministic layered channel. . . . . . . . . . . . . . . . . . . . . . 24

7. Layered erasure wire-tap channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8. Gaussian fading wire-tap channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9. CCDFs vs channel state for different values of λ for Rayleigh fading. . . 48

10. Secrecy Capacity vs λ2/λ1 for different values of 1/λ2 for fading
Gaussian wire-tap channel with Rayleigh fading. . . . . . . . . . . . . . . . . . . . . 49

11. Secrecy Capacity vs 1/λ2 for different value of λ2/λ1 for fading Gaussian
wire-tap channel with Rayleigh fading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

12. CCDFs vs channel state for different values of v for Rician fading. . . . . . 50

13. Secrecy Capacity vs v1/v2 for different values of v2 for fading Gaussian
wire-tap channel with Rician fading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

14. Secrecy Capacity vs v2 for different value of v1/v2 for fading Gaussian
wire-tap channel with Rician fading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

viii



CHAPTER 1. INTRODUCTION

In any form of communication, ranging from the primitive hand-waving signaling

to the state of the art wireless communications, the main purpose is to exchange

information among interested parties. Better communication system ensures faster

information transfer rate with better reliability. Before going into detail discussion of

how the rate of information transfer can be maximized, it is necessary to answer the

fundamental question first: what is information and how can we measure it?

Intuitively, any outcome that is deterministic does not contain any information.

For example, the result of an election where only one candidate is competing has

no uncertainty, because anybody can surely predict who is going to win beforehand.

Therefore, reveling the fact that the only candidate won the election does not provide

any information. On the other hand, consider the toss of a fair coin, the outcome

could not be known with certainty before the coin is tossed. As a result, knowing the

outcome of the coin reveal some information about the random experiment of tossing

the coin. From information transmission point of view, revealing some fact to a

person who already knows it, is pointless. Hence, information is always accompanied

by some amount of uncertainty to the event of interest.

The best way to model uncertainty and thus information is through Random

Variables (RV). Information content of a random variable is related to the amount of

the uncertainty associated with that RV. We know that a discrete RV is defined by

its Probability Mass Function (PMF), whereas a continuous RV is characterized by

its Probability Distribution Function (PDF). So, its not unreasonable to predict that

the information content of a RV should be a function of the PMF or PDF of the RV.

Let us call the random variable representing the outcome of tossing a coin Q.

The outcome has two possibilities: 1) Head and 2) Tail, with probabilities p and

(1− p), respectively. The outcome of the random experiment is most uncertain when
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p = 1
2
, and most certain when p = 0 or p = 1. Hence, from our intuition, it follows that

if the random variable Q is equiprobable, the information content of the RV should

be maximum, and the information content reduces to zero when the RV assumes one

of the possibilities with certainty. A set of such intuitive guidelines are first converted

into mathematical constraints which finally yields the mathematical expression for

information of a random variable.

In information theory, the information content of a RV is represented by the

quantity called entropy. Although information theoretic entropy has a quite different

definition than that of the thermodynamic entropy, both have similarity in terms of

disorderness/randomness of the system. The thermodynamic entropy is a measure of

the disorderliness; consequently the thermodynamic entropy of a system increases as

the chaos increases. Similarly, the information theoretic-entropy is the measure of the

uncertainty the system, and the entropy increases as the system gets more random. In

what follows, we shall define the information-theoretic entropy and verify that many

properties of entropy corroborates our intuitive idea of a measure of information. The

definitions and/or notations of the information-theoretic terms those we state in this

chapter are taken from [1].

1.1. Entropy

We first introduce the concept of entropy, which is a measure of the uncertainty

of a random variable. Let X be a discrete random variable with alphabet X and

its PMF be denoted by p(x) = Pr{X = x}, xεX . Without loss of generality, we

shall assume that X contains only those realizations of X where the PMF is strictly

positive.

Definition 1. The entropy H(X) of a discrete random variable X is defined by

H(X) = −
∑
xεX

p(x) log p(x). (1.1)

2



Since the entropy function is not dependent on the exact realizations of the

random variable and is a function of the PMF, the entropy is often denoted by H(p),

as well. Hereafter, we shall assume that the logarithm is to the base 2 and the

resulting entropy value has a unit of bits.If the base of the logarithm is b, we denote

the entropy as Hb(X). If the base of the logarithm is e, the entropy is measured in

nats.

Let us get back to the example of RV the X, where it represents the outcome

of tossing a coin. The PMF of X is denoted by PX(x), where PX(heads) = p and

PX(tails) = (1− p).

The entropy of RV X is given by,

H(X) = −p log p− (1− p) log(1− p). (1.2)

Let us say p = 1. Then the entropy is

H(X) = −1 log 1− (1− 1) log(1− 1) = 0− 0 = 0 bits. (1.3)

In (1.3), we have used the fact 0 log 0 = 0, which is justified by the slower rate

of decay of log(x) than x as x approaches zero. This result agrees with our intuition

of information content. p = 1 implies that heads appear with certainty, which in

turn converts the outcome deterministic with zero information content. Anyone can

predict the outcome. It is not surprising that the corresponding entropy is zero as

well.

Next, let us set p = 1
2

to examine the information content of RVX. p = 1
2

implies

the event of getting head or tail are equally probable, hence associated uncertainty

is of getting head is maximum. Equivalently,we can say that associated uncertainty

is of getting tail is maximum which in turns says that the there is no preference over

3



choosing the outcome as head or tail. Intuitively, the corresponding entropy which is

the measure of the information content of the RV should be the highest.

H(X) = −1

2
log

1

2
− (1− 1

2
) log(1− 1

2
) (1.4)

=
1

2
log 2 +

1

2
log 2 (1.5)

=
1

2
+

1

2
= 1 bits. (1.6)

Again, from our intuition, to convey the outcome of binary RV X, we should

not need more than 1 bit. We can describe the outcome of head as 1 and tail as 0,

hence, single bit is enough to describe the information content of RV X. The entropy

of the RV X with p = 1
2

agrees with the notion of the measure of the information.

Definition 2. The differential entropy h(X) of a continuous random variable X with

PDF fX(x) is defined as

h(X) = −
∫
S

fX(x) log fX(x)dx. (1.7)

where S is the support set of the random variable X.

We shall now define two other entropy terms named joint entropy and condi-

tional entropy which will appear in this paper quite often.

1.2. Joint Entropy and Conditional Entropy

We defined entropy of a single random variable in the last section. We now

extend the definition to a pair of random variables. There is nothing really new in

this definition because (X, Y ) can be considered to be a single vector-valued random

variable. Later, we shall see that joint entropy can expanded using chain rule.In

the derivation of the capacity for our fading wire-tap channel, joint entropy and

conditional entropy, and their relationship will play important role.
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Definition 3. The joint entorpy H(X, Y ) of a pair of discrete random variables

(X, Y ) with a joint distribution p(x, y) is defined as

H(X, Y ) = −
∑
xεX

∑
yεY

p(x, y) log p(x, y). (1.8)

We also define the conditional entropy of a random variable given another as

the expected value of the entropies of the conditional distributions, averaged over the

conditioning random variable.

Definition 4. If (X, Y ) ∼ p(x, y), the conditional entropy H(Y |X) is defined as

H(Y |X) =
∑
xεX

p(x)H(Y |X = x) (1.9)

= −
∑
xεX

p(x)
∑
yεY

p(y|x) log p(y|x). (1.10)

We have also the chain rule of entropy.

Definition 5. Let X1, . . . , Xn be drawn according to p(x1, . . . , xn). Then

H(X1, . . . , Xn) =
n∑
i=1

H(Xi|Xi−1, . . . , Xn). (1.11)

Using the chain rule, we relate entropy, conditional entropy, and joint entropy

by

H(X, Y ) = H(X) +H(Y |X) = H(Y ) +H(Y |X). (1.12)

The naturalness of the definition of joint entropy and conditional entropy is

exhibited by the fact that the entropy of a pair of random variables is the entropy of

one plus the conditional entropy of the other.

The concept of entropy plays the central role in information theory. Most of the

other information-theoretic terms are built on the definition of the entropy. Next, we

5



consider another key concepts called mutual information. We will see shortly that

the mutual information between two RVs is actually the possible rate of information

transfer through a communication channel.

1.3. Mutual Information

Mutual information is a measure of the amount of information that one random

variable contains about another random variable. It is the reduction in the uncertainty

of one random variable due to the knowledge of the other.

Definition 6. Consider two random variables X and Y with a joint PMF p(x, y) and

the marginal PMFs p(x) and p(y). The mutual information I(X;Y ) is given by

I(X;Y ) =
∑
xεX

∑
yεY

p(x, y) log
p(x, y)

p(x)p(y)
. (1.13)

1.4. Relationship between Entropy and Mutual Information

We can rewrite the mutual information I(X;Y ) as

I(X;Y ) = H(X)−H(X|Y ). (1.14)

Thus, the mutual information I(X;Y ) is the reduction in the uncertainty of X due

to the knowledge of Y .

By symmetry, it also follows that

I(X;Y ) = H(Y )−H(Y |X). (1.15)

Thus, X says as much about Y as Y says about X.

It follows easily from the definitions of the above quantities that

I(X;Y ) ≤ H(X), I(X;Y ) ≤ H(Y ), and I(X;Y ) ≥ 0. (1.16)

6



Figure 1 below depicts the relationship among the aforementioned quantities

via a Venn diagram.

Figure 1. Relationship among entropy, conditional entropy, and mutual information.

Finally, we note that

I(X;X) = H(X)−H(X|X) = H(X). (1.17)

Thus, the mutual information of a random variable with itself is the entropy of the

random variable. This is the reason that entropy is sometimes referred to as self-

information.

We shall see shortly that the mutual information is actually the rate of

information transfer on a channel. To illustrate this connection, let us consider a

simple channel model where input to the channel is X and output of the channel is

Y . We assume, the channel is noiseless ideal channel, i.e., output uniquely determines

the input or input is a function of the output. Another way to say this in a simpler

way is that the input is exactly reproduced at the output.
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The mutual information becomes

I(X;Y ) = H(Y )−H(Y |X) = H(X)−H(X|X) = H(X)− 0 = H(X), (1.18)

which is the maximum value that can be attained by mutual information. The term

H(X|X) represents the uncertainty remained in X after knowing X, which is zero.

On the other hand, let us assume the channel to be worst one (for example a broken

wire) such that output Y become independent of X. The mutual information is

I(X;Y ) = H(Y )−H(Y |X) = H(Y )−H(Y ) = 0, (1.19)

which is the minimum value that can be attained by mutual information. The term

H(Y |X) represents the uncertainty remained in Y after knowing X, which is equal

to H(Y ) because knowing X does not reduce any uncertainty of Y since they are

independent of each other.

I(X;Y ) can also be called as the mutual information of the channel. From

the above example, we can predict that the amount of information transferable is

dependent on the mutual information of the channel. It turns out that if we send

information at a higher rate than the mutual information of the channel, the receiver

cannot receive the information reliably.

Now, with help of above definitions, we can quantify the aforementioned notions

of rate of information transmission and reliability and subsequently, formally define

the maximum rate of information transmission with very high reliability, which is

popularly known as the capacity of a communication channel.

1.5. Channel Capacity

Any well thought transmission scheme shall have a well defined rate of transmis-

sion of information on a channel. If in addition, it is possible to make the probability

8



of decoding error at the receiver arbitrarily small, the corresponding rate is called

an achievable rate for the channel. Clearly, different transmission schemes will have

different achievable rates. The maximum achievable rate on a channel over all possible

transmission schemes is called the capacity of the channel. In particular, every choice

of the input distribution results in a new transmission scheme. As a result the number

of different transmission schemes are infinite.

The typical approach to characterize the capacity is thus to derive upper bounds

to the rate of information transmission and then compare with the achievable rates.

It is possible to derive different upper-bounds on reliable information transfer rate

for a particular channel. Each of these upper bounds serve as an upper bound to

all possible achievable rates for the channel. If any particular upper-bound coincides

with an achievable rate we call it the capacity of the channel.

On one hand, the capacity of the channel is an upper-bound to all achievable

rates for the channel but it is the infimum of the all upper-bounds. On the other

hand, the capacity is also an achievable rate, but it is the supremum of all achievable

rates. This particular explanation of channel capacity will be helpful to understand

the derivation of the secrecy capacity for our problem in chapter 3 and chapter 4.

Definition 7. We define the information channel capacity of a discrete memoryless

channel as

C = max
p(x)

[
I(X;Y )], (1.20)

where the maximum is taken over all possible input distributions p(x).

This definition follows for continuous channel with only difference is that now

the maximization is carried out over the all possible input PDFs instead of PMFs.

Next, we consider few examples of channel capacity for some simplest channels.

Those examples will provide the idea how the channel capacity can be computed.

9



In addition, we shall use some of the results in deriving the channel capacity of our

problem.

1.5.1. Noiseless Binary Channel

Suppose that we have a channel where the binary input is reproduced exactly

at the output. In this case, any transmitted bit is received without error. Intuitively,

one error-free bit can be transmitted per use of the channel, and the capacity should

be 1 bit.

Figure 2. Binary noiseless channel.

First,we will compute the rate upper-bound. In information-theoretic terminol-

ogy, this is know as the converse.

R ≤ max I(X;Y ) (1.21)

= max
[
H(X)−H(X|Y )

]
(1.22)

= max
[
H(X)

]
(1.23)

≤ 1 bit/channel use, (1.24)

because for a binary RV X, H(X) ≤ 1.

10



Now, let us consider the achievable rate for a particular input X∗ with pX∗(x) =

(1
2
, 1
2
). The achieved rate R∗ for that iput is

R∗ = I(X∗;Y ) (1.25)

= H(Y )−H(Y |X∗) (1.26)

= H(X∗) (1.27)

SinceH(X∗) = 1 bit, the achievable rate

R∗ = H(X∗) = 1 bit/channel use. (1.28)

The upper-bound in (1.24) matches with the achievable rate (1.28). Hence, we

can say the capacity of the noiseless binary channel is 1 bit/per channel use.

Finally, we consider one more channel called binary erasure channel because in

our work, the capacity of a erasure channel is used to prove the achievability part of

the theorem 1 in chapter 3.

1.5.2. Binary Erasure Channel

Figure 3. Binary erasure channel.

11



In this channel, each input bit is erased with probability ε. The binary erasure

channel has two inputs and three outputs as shown in Figure 3 above, where the

erasure event is denoted by the symbol e. It turns out that the capacity of the binary

erasure channel is

C = 1− ε bits/channel use. (1.29)

The expression for the capacity has some intuitive meaning: Since a proportion

ε of the bits are lost in the channel, we can recover (at most) a proportion 1 − ε of

the bits. Hence the capacity is at most 1− ε.

With the help of definitions and concepts of this chapter, we explain the notion

of information-theoretic secret communication, previous works, and finally the outline

of our work in next chapter.

12



CHAPTER 2. INFORMATION-THEORETIC SECRECY

Traditional cryptographic way of secret communication is based on the secret-

key generation and exchange between transmitter and receiver. Due to broadcast

nature of wireless communication, this approach is vulnerable primarily in two ways:

efficient secret-key exchange is not guaranteed due to the fading characteristics of

the wireless channel; there is always a chance of breach of the secret-key by the

possible wire-taper with very high computing power. In contrast, the information-

theoretic secrecy concept is simple: based on the statistics of the legitimate and

eavesdropper channels, we can come up with a coding scheme that allows information

to be decodable only by legitimate receiver. The secrecy capacity is the highest rate at

which one transmitter can communicate a message securely to a receiver with perfect

secrecy in the presence of a passive eavesdropper.

Figure 4. Illustration of a wire-tap channel.

Wire-tap channel model of figure 4 is given by

Y =
√
S1X + U1, Z =

√
S2X + U2, (2.1)

13



where X is the transmitted signal by Alice is X, Y and Z are the received signal

by Bob and Eve, respectively. U1, U2 are additive white noise present at Bob and

Eve, respectively. The channel states are given by S1 for Legitimate channel and

S2 for eavesdropper channel. In information-theoretic terminology, S1 and S2 are

known as the channel state information (CSI) of the legitimate and eavesdropper

channel respectively, and can be constant or time varying depending on the channel

characteristics. Bob and Eve can always measure the respective CSI from their

received signals. If Bob and Eve feedback the CSI information to Alice, then only

Alice can know the instantaneous channel states.

Suppose, Alice wants to communicate with Bob maintaining confidentiality of

message from Eve. In this setting, Bob is the legitimate receiver and Eve is the

eavesdropper. We call the channel between Alice and Bob as the legitimate channel

and the channel between Alice and Eve as the eavesdropper channel. The objective

of Alice is to transfer information at the highest possible rate with perfect secrecy.

Perfect secrecy is achieved when Eve fails to decode any confidential information no

matter what computing power she has. The notion of perfect secrecy precludes use

of any cryptographic method because such method fails when the eavesdropper has

infinite computing power. Is there any way to achieve perfectly secret communication

in presence of an eavesdropper with infinite computing power? The answer is yes and

it comes from the information-theoretic approach of achieving secret communication.

The ’catch’ is that Alice have to send at a lower rate satisfying the secrecy constraint.

Let us consider a very simplistic wire-tap channel. For example, suppose both the

channels are fixed; the point to point capacity of the legitimate channel is 5 bits per

channel use and eavesdropping channel is 2 bits per channel use. Basic information-

theoretic results say that a coding scheme can be constructed for perfectly secret

communication if rate of the code, i.e., the rate of communication takes place less

14



than the difference of the capacities of the channels which is 3 bits per channel use

for above case. The strategy of constructing of such coding scheme is to insert noise

in the encoding process to confuse the eavesdropper totally.

In information-theoretic terminology, suppose Alice wants to send a secret

message W ∈ {1, . . . , 2nR} to Bob. Alice maps the message index W (i) to a

signal codeword Xn(i) = X1(i), . . . , Xn(i) where i ∈ {1, . . . , 2nR} and transmits that

codeword in n channel uses. Due to the different channel gains and additive noise

at receivers, Bob and Eve will receive different signals. Let us say the legitimate

channel output is Y n(i) = Y1(i), . . . , Yn(i) and eavesdropper channel output is

Zn(i) = Z1(i), . . . , Zn(i). Based on the receive signals, Bob and and Eve try to

decode the codeword. After decoding, let us say, they declare the sent message is

Ŵ (i). To have secure communication, two certain things need to be achieved: The

decoding error probability at Bob must be arbitrarily small; the uncertainty of the

message given eavesdropper output must be arbitrarily close to the uncertainty of the

message itself. We say a secrecy rate R is achievable if for any ε > 0 there exists a

encoder-decoder with rate R for sufficiently large code block length of n, such that,

the decoding error probably at legitimate receiver is

P
(
W (i) 6= Ŵ (i)

)
≤ ε, (2.2)

and the message uncertainty given the channel output at the eavesdropper is

1

n
H(W |Zn) ≥ H(W )− ε. (2.3)

That is, the reduction of uncertainty of the message W due to the knowledge of Zn

at Eve is not more than ε that can be made arbitrarily close to zero, which in turn

imply complete secrecy.
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2.1. Previous Works

Information-theoretic approach for secret communication first appeared in the

Shannon’s work [2] . In the pioneering paper on wiretap channel [3], Wyner laid out

the mathematical formulation of the information-theoretic secrecy. Wyner considered

a discrete memoryless wiretap channel where Eve receives a degraded version of Bob’s

received signal i.e. the channels form a Markov chain W −→ X −→ Y −→ Z. By

analyzing each channel as a binary symmetric channel (BSC), Wyner showed perfect

secrecy can be achieved if the information is encoded at a rate less than the difference

of the point to point capacities of the legitimate and eavesdropper channels.

Csiszár and Körner [4] generalized the Wyner’s result for discrete memoryless

broadcast channel. Their analysis characterized the secrecy capacity, the highest

achievable secrecy rate, which is given by

Cs = max
W→V→X→Y,Z

[
I(V ;Y )− I(V ;Z)

]
, (2.4)

where V is the auxiliary random variable for prefixing satisfying the Markov chain

W → V −→ X −→ Y, Z. The maximization is done over all valid joint distributions

PV,X(v, x) for the given discrete memeoryless channel PY,Z|X . Although (2.4) charac-

terizes the capacity, it is very difficult to find out the optimal PV,X(v, x). Authors [4]

showed that if the channels are fixed and legitimate channel is more capable than the

eavesdropper channel, i.e., I(X;Y )−I(X;Z) ≥ 0 for all X, then the secrecy capacity

archiving strategy is to setting V = X which means no need of prefixing auxiliary

RV. Hence, the capacity expression reduced to the Wyner’s result.Hence, the secrecy

capacity of a degraded channel can be written as

Cs = max
p(x)

[
I(X;Y )− I(X;Z)

]
. (2.5)
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Equations (2.4) and (2.5) are also valid for continuous channels because any

discrete channel can be seen as the quantized version of the continuous channel where

the quantizing interval is arbitrarily small. The detail proof can be found in standard

information-theoretic textbooks such as [5].

In [6], Leung-Yan-Cheong and Hellman considered a special case of Wyners

results known as the Gaussian wire-tap channel and solved it explicitly. In their

wire-tap channel, both the channels have fixed gain and received signals are further

corrupted by all white Gaussian noise (AWGN). Suppose, the legitimate and eaves-

dropper channel have fixed channel gain of a and b respectively,and U1 and U2 be the

additive Gaussian white noise with unit variance, respectively. For received signals

Y =
√
aX + U1 and Z =

√
bX + U2, the author proved that Gaussian input without

prefixing is optimal that achieve capacity, and with average input power constraint

P , i.e., E[X2] ≤ P , where E[.] denotes the expectation, the capacity is

Cs =
(
log(1 + aP )− log(1 + bP )

)+
, (2.6)

where (x)+ = max(x, 0). Hence for fixed AWGN channel, the secret communication

with positive rate is only possible when the legitimate channel has a better signal to

noise ration(SNR).

After those early works, the information-theoretic security issue was in long

hibernation due to several reasons, partly because of the unavailability of the

practical wire-tap code. In addition, to achieve a positive secrecy rate, the legitimate

channel needs to be superior to the eavesdropper channel. Furthermore, public-key

cryptography, proposed by Diffie and Hellman, [7] become popular security schemes

for its practical feasibility.

In late nineties, there had been a surge of interest in information-theoretic

secrecy approach. In combination of cryptographic method and information-theoretic
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approach can result in more robust and practical security scheme. More interesting

results are coming for wireless channel where time-varying wireless channel provides

an opportunity for secret communication. Since, channel state information (CSI)

at transmitter is important to exploit the randomness of the channel to obtain

physical layer security, previous works mostly focused with the assumptions that

CSI is available at the transmitter. But in a fast-fading wireless channel, timely

feedback of the channel measurement information by the receiver to the transmitter

is a challenging task. Although there are some results for without channel state

information at transmitter (CSIT), most of those works were carried out for specific

channel state distribution. The capacity of a fast-fading Gaussian wire-tap channel

with general fading distribution without CSIT is still to be found.

The secrecy capacity of slow fading channel with single-input multiple-output

with CSIT was characterized in [8]. In [9], secure transmission of information over

fast fading channel was studies. In that paper, the author considered full CSI where

the transmitter has the CSI of the legitimate and eavesdropper receiver both. Secrecy

communication for fast Rayleigh fading channel was considered in [10]. In that paper,

the legitimate channel is fixed-SNR Gaussian channel and the eavesdropper channel

is a Rayleigh fading channel with no CSIT. The author showed that for that channel

model, there can be a positive secrecy rate even if the legitimate channel is worse than

the eavesdropper channel on the average. The strategy to achieve positive rate is to

inject optimal white noise which can be computed from the statistics of the channel

states.

2.2. Problem Statement

We consider a fast-fading Gaussian wire-tap channel without CSIT. In our chan-

nel model, Alice wants to communicate with Bob with perfect secrecy in presence of

a passive eavesdropper Eve. We consider fast fading channel where the instantaneous
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channel state is available at the receivers but not at the transmitter. This is the case

in many practical wireless communication systems where channel states can only be

measured by the receivers which cannot inform the transmitter of the state accurately

in a timely manner through a feedback link due to the fast fading. Specifically, we

assumes independent fast fading i.e. the channel is changing in each symbol time,

where the fading statistics are known to the transmitters, but not the realizations.

This paper investigates the ergodic case where the code is designed to perform over a

typical realization of the time-varying fading process. We call the Alice-Bob channel

as legitimate channel, whereas Alice-Eve channel as the eavesdropper channel. Both

Bob and Eve know the instantaneous realizations of their own channels, but the Alice

know only the distributions of the legitimate and eavesdropper channels, not the

actual realizations. Channel fading state distributions for both channels are arbitrary;

we are not restricting for a specific channel distribution. Those assumptions make

the problem quite challenging. We address this problem first considering a layered

erasure wire-tap channel. Layered erasure model was introduced by [11], in which

each component channel is expressed in terms of a binary expansion.While in [11], the

model was used in a different communication scenario called the relay channel without

secrecy, we use the deterministic layered erasure model approach to obtain insights

about Gaussian wire-tap channel. We represent the fading wireless channel by time-

varying version of a deterministic model, called the layered erasure model, where the

state of a link corresponds to the number of most significant bits not erased. We have

complete characterization of secrecy capacity for such class of channel. Using insight

from the layered erasure wire-tap channel, we derive an upper bound for Gaussian

fast-fading channel and we show for some very interesting practical scenarios, the

fading wire-tap channels fall into a class of channels for which the upper-bound can

be achieved.
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The main contributions of this work are as follows.

1. We derive the complete characterization of the secrecy capacity of the layered

erasure wire-tap channel.

2. We derive an upper-bound of secrecy rate for fading Gaussian wire-tap channel

with arbitrary fading statistics.

3. For two very important class of practical wireless environment, we derive

achievable schemes can meet the aforementioned upper-bound, characterizing

the secrecy capacity.

In next chapter, first, we shall show how we can model a Gaussian channel as

a layered erasure channel. With that, we shall derive the layered erasure wire-tap

channel model for our fading Gaussian wire-tap channel. The secrecy rate upper-

bound will be derived for such layered eraser wiretap channel, and then we shall show

that the upper-bound is achievable.
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CHAPTER 3. LAYERED ERASURE WIRE-TAP

CHANNEL

In this chapter, we derive an upper-bound of secrecy rate, and subsequently

we show that the upper-bound is achievable for a layered erasure wire-tap channel.

Therefore we, in fact, characterize the secrecy capacity of such wiretap channel. The

primary motivation behind considering a layered erasure wire-tap channel is because

the analysis of such channel can be extended to the actual Gaussian wire-tap channel.

We shall briefly outline the concept of layered erasure model as explained in [11]. With

that, we shall formulate the layered erasure model for our fast-fading Gaussian wire-

tap channel. Using that model, we derive the converse, i.e., the upper-bound for

secrecy rate and finally, we prove that the upper-bound is achievable.

3.1. Layered Erasure Deterministic Model

On a communication channel, the Gaussian model is commonly used where

along with channel gain, all white Gaussian noise (AWGN) is added at the receiver.

The nature of the AWGN makes the Gaussian model difficult to analyze. Due to

this reason, the complete characterization of the capacity of most of the Gaussian

networks is still unknown except for some simplest networks such as the one-to-many

Gaussian broadcast channel (BC) and the many-to-one Gaussian multiple access

channel (MAC).Analysis for fading Gaussian channel without CSIT is way more

complicated. That is the one reason why it is still an open problem. However, A.

Salman Avestimehr et.al. showed a novel layered approach in [11] which can closely

mimic the properties of the Gaussian channel with simpler analysis to attack the

problem. This layered approach gives the insights about proving the upper bound

and potentially successful coding scheme for Gaussian case. To solve our problem,

i.e., to find the secrecy capacity of the fading Gaussian wire-tap channel, the layered

approach will be instrumental. Hence, we briefly outline how we can have layered
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channel for a Gaussian channel as explained [11]. With that deterministic layered

model, we shall derive the layered wire-tap channel model for our fading Gaussian

wire-tap channel.

Figure 5. A point-to-point Gaussian channel.

Let us consider a real scalar single-input-single-output (SISO) Gaussian point-

to-point channel as shown in the figure 5 , whose input output relation is given by

y = hx+ u, (3.1)

where x, y, h be the input, output, and gain of the channel respectively. u is the

AWGN at the receiver with zero mean and unit variance. There is also the average

input power constraint E[|x|2] ≤ 1 where E[.] denotes the expectation operation taken

over the input distribution. The relation between the channel gain and signal-to-noise

ratio (SNR) with transmitted power and noise power both normalized to be 1 is given

by

|h| =
√
SNR. (3.2)
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Capacity of the this point-to-point channel is

CAWGN =
1

2
log(1 + SNR), (3.3)

where the base of the logarithm is 2.

For this scalar Gaussian channel, since x, u are all positive real numbers, we can

express them in terms of their binary expansions.

Any real positive number a can have a binary expansion

a =
∞∑
i=1

ai2
−i, (3.4)

where ai ∈ {0, 1}.

We express the input and the additive white noise in terms of their binary

expansion. Hence the input-output relation of the channel (3.1) can be written as

y = h
∞∑
i=1

xi2
−i +

∞∑
i=1

ui2
−i. (3.5)

Furthermore (3.2) can be expressed as

|h| =
√
SNR = 2log(

√
SNR = 2

1
2
logSNR. (3.6)

Hence (3.5) becomes

y = 2
1
2
logSNR

∞∑
i=1

xi2
−i +

∞∑
i=1

ui2
−i. (3.7)

Note that the channel gain in (3.7) actually determines the number of the input bit

levels that are above the noise floor. If the channel gain is high, we have higher

number of most significant bits of input above the noise level.
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Substituing n = 1
2

logSNR in (3.7), we get

y = 2n
∞∑
i=1

xi2
−i +

∞∑
i=1

ui2
−i (3.8)

≈ 2n
n∑
i=1

xi2
−i +

∞∑
i=1

(xi+n + ui)2
−i. (3.9)

Figure 6. Pictorial view of deterministic layered channel.

If the 1 bit carry-over from the second summation is ignored, It can be said that

the receiver gets the n no of bits correctly. Hence the point-to-point Gaussian channel

can be approximated as a pipe that truncates the transmitted signal and only passes

the bits that are above the noise level. Information can be encoded as a sequence

of bits at different signal level up to layer n where the highest layer represent the

most significant bit (MSB) and the lowest level as the lowest significant bit (LSB).

The receiver can see the up to n most significant bits of x and rest of the bits are

completely obliterated by noise.

The parameter n which is function of SNR determines the number of layers

which are above the noise floor that can be used for reliable communication. Using
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multilevel lattice code in the AWGN channel [12], a coding scheme can be constructed

where at each layer up to layer n , can be thought of a noiseless binary channel, hence,

the maximum rate at each layer can be achieved is 1 . With coding on n layers, the

capacity of the layered channel is approximately equal to n bits per channel use.

3.2. Incorporating Fading in Layered Erasure Deterministic Model

From the above channel model, if the channel state h is constant, the number of

layers that can be used for reliable communications is equal to n, and maximum rate

of that channel is upper bound by n bits/sec per channel use. However, we consider

a fading Gaussian wire-tap, where the channel state is changing in every symbol

time. Hence, for each time instance, the value of the number of the layers can be

different. Furthermore, we are considering a case where the CSI is not available at the

transmitter; therefore, the transmitter cannot adapt the rate of transmission based

on the instantaneous channel state. Hence, the deterministic model without little

modification cannot be directly used to get the layered model for fading Gaussian

channel.

For our fading channel, we represent the number of layers as the channel state

at a particular time. And the value of n is changing every symbol time. We consider

the channel state as random variable N which takes the different values at different

time based on the instantaneous channel state. Since, transmitter does not know the

instantaneous channel state, the dynamic coding cannot be used. Rather, we shall

consider sufficient long codewords to capture the ergodic realization of the channel to

determine the capacity for such channel on the average.

3.3. Channel Model

We consider a layered erasure wire-tap channel model where Alice sends a q-

bit length binary sequence to Bob, where q ∈ N . Channel fading characteristic is

incorporated in the layered eraser model as the erasure of the least significant bits. For
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example, if the channel is good enough, then the received signal is same q-bit length

binary sequence like the original. On the other hand, if the fading state is the worst

i.e. the channel state is zero, then the bits thought to be erased and consequently

receiver does not receive any single bit.

Figure 7. Layered erasure wire-tap channel.

A q-bit layered erasure wire-tap channel, the channel states of the legitimate and

eavesdropper are denoted by N1(t) and N2(t) random sequences respectively, where

t = 1, 2, 3..... is the time index and Ni(t) ∈ {1, 2, 3....q} for i ∈ {1, 2}. We assume

instantaneous realization of the channel state is known to the respective receiver

i.e. N1(t) is known to Bob and N2(t) to Eve at time t , whereas the transmitter

i.e. Alice knows only the statistical properties of N1(t) and N2(t). We assume that

the channels are memoryless and channels states are independent and identically

distributed (i.i.d.). Hence, without loss of generality, we can ignore the time index

for notational convenience.

Before having the formal definition of q-bit layered erasure wire-tap channel,

we need few more explanations. The PMF of a random variable N is expressed as

PN(n) := P [N = n].
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We define the complementary cumulative distribution function (CCDF) of

random variable N as

F̄N(n) := P [N ≥ n]. (3.10)

Definition 8. A q-bit layered erasure wire-tap channel has one input X = Xq ∈ Fq2,

and two outputs, one at legitimate receiver Y = XN1 and the other at eavesdropper

Z = XN2 where Ni ∈ {1, 2, 3....q} are the channel states and independent of Xq

satisfying F̄N1(0) = 1, F̄N2(0) = 1 and F̄N1(q + 1) = 0, F̄N2(q + 1) = 0.

For our channel model, the transmitted signal by Alice is

X = Xq = [X1, . . . , Xq], (3.11)

Bob receives

Y = XN1 = [X1, . . . , XN1 ], (3.12)

and Eve receives

Z = XN2 = [X1, . . . , XN2 ]. (3.13)

Now we shall state the main results of analysis to find out the secrecy capacity

for the layered erasure wire-tap channel as explained above.

Theorem 1. The secrecy capacity of q-bit layered erasure wire-tap channel (N1, N2)

is given by,

Cs =
∑

n:αn>0

(
F̄N1(n)− F̄N2(n)

)
, (3.14)

where αn := F̄N1(n)− F̄N2(n) and n ∈ {1, . . . , q}.

The proof, like any other information-theoretic proof, is consisted of two parts.

Firstly, we shall prove the converse, i.e., the upper-bound for the secrecy rate; later,

the achievability which means the secrecy rate upper-bound can be achieved.
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3.4. Layered Erasure Wire-tap Channel: Converse

The secrecy capacity for a degraded wire-tap channel can be derived from [4],

which is

Cs = max
[
I(X;Y )− I(X;Z)

]
, (3.15)

the maximization being carried out over all possible input distribution.

Since our wire-tap channel is the general one, we cannot use this results directly.

To make progress, we enhance the legitimate channel to make it a degraded wire-tap

channel. As we are enhancing the legitimate channel, the resultant secrecy capacity

will be always higher than or at least equal to that of the original channel.

We enhance the legitimate channel by enhancing channel state N1 to Ñ1 such

that

F̄Ñ1
(n) = max

[
F̄N1(n), F̄N2(n)

]
. (3.16)

With lthe lemma from [16], the q-bit layered erasure wiretap channel (Ñ1, N2)

is a degraded wiretap channel. We are restating the lemma here, the proof of the

lemma can be found in [16].

Lemma 1. The q-bit layered erasure wire-tap channel (N1, N2) satisfying N1 ≥st N2

is a degraded wire-tap channel.

As a result of lemma 1, our fading Gaussian wire-tap channel (Ñ1, N2) is a

degraded wire-tap channel. Hence we can apply (3.15) to get an upper-bound on

the secrecy rate of the enhanced channel, which is a better channel than the original

channel. Therefore any upper bound to the enhanced channel also serves as an upper

bound to the original channel as well. However, we shall show that the secrecy-

rate upper-bound for the enhance one is tight which means the upper-bound for the

enhanced channel can be achieved for the original channel. Hence, although we are

deriving the secrecy rate upper-bound for the enhanced degraded layered erasure
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wire-tap channel, such upper-bound equally works as a tight upper-bound for general

layered erasure wire-tap channel.

Rs ≤ max I(X; Ỹ , Ñ1)− I(X;Z,N2) (3.17)

= max
[
I(Xq;XÑ1 , Ñ1)− I(Xq;XN2 , N2)

]
(3.18)

= max
[
I(Xq; Ñ1) + I(Xq;XÑ1 |Ñ1)− I(Xq;N2)− I(Xq;XN2|N2)

]
(3.19)

= max
[
I(Xq;XÑ1|Ñ1)− I(Xq;XN2|N2)

]
(3.20)

= max
[
H(XÑ1 |Ñ1)−H(XÑ1|Xq, Ñ1)−H(XN2|N2) +H(XN2|Xq, N2)

]
(3.21)

= max
[
H(XÑ1 |Ñ1)−H(XN2|N2)

]
(3.22)

= max
[ q∑
n=1

PÑ1
(n)H(Xn|Ñ1 = n)−

q∑
n=1

PN2(n)H(Xn|N2 = n)
]

(3.23)

= max
[ q∑
n=1

n∑
j=1

PÑ1
(n)H(Xj|Xj−1)−

q∑
n=1

n∑
j=1

PN2(n)H(Xj|Xj−1)
]

(3.24)

= max
[ q∑
j=1

q∑
n=j

PÑ1
(n)H(Xj|Xj−1)−

q∑
j=1

q∑
n=j

PN2(n)H(Xj|Xj−1)
]

(3.25)

= max
[ q∑
j=1

F̄Ñ1
(j)H(Xj|Xj−1)−

q∑
j=1

F̄N2(j)H(Xj|Xj−1)
]

(3.26)

= max
[ q∑
j=1

(
F̄Ñ1

(j)− F̄N2(j)
)
H(Xj|Xj−1)

]
. (3.27)

(3.19) follows from the chain rule of entropy. Since, channel state is independent

of the input, both the mutual information terms, I(Xq; Ñ1) and I(Xq;N2), are zero

resulting (3.20). By expanding mutual information in terms of entropy, we get (3.21).

Given channel state and input, the out put is known. Hence, both the entropy terms,

H(XÑ1|Xq, Ñ1) and H(XN2|Xq, N2), in (3.21) are zero resulting (3.22). (3.23) is

because we are calculating the average entropy. In (3.24), inner summations of both

the entropy terms appear due the chain rule of entropy. By changing order of the

summations, we get (3.25). (3.26) follows directly from the definition of the CCDF.
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Let us define

α̃n := F̄Ñ1
(n)− F̄N2(n). (3.28)

It follows from the our choice of F̄Ñ1
, the difference between the two CCDFs

in above is always nonnegative. Hence we can maximize the rate upper bound by

maximizing the entropy term. We get

Rs ≤ max
[ q∑
j=1

α̃jH(Xj|Xj−1)
]

(3.29)

≤
q∑
j=1

α̃j (3.30)

=

q∑
j=1

(
F̄Ñ1

(j)− F̄N2(j)
)
, (3.31)

where the first step follows from the fact that conditional entropy can not be larger

than unconditional entropy, which in turn is upper bounded by 1, since Xj, ∀j are

binary random variables.

Let us define

αn := F̄N1(n)− F̄N2(n). (3.32)

Note that, by definition α̃n ≥ 0. Comparing equations (3.28) and (3.32) it is evident

that for any given 1 ≤ j ≤ q,

α̃j =

 αj, if αj > 0,

0, if αj ≤ 0.
(3.33)

Using these facts it is easy to see that

q∑
j=1

α̃j =
∑
j:αj>0

αj. (3.34)
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Hence, the final upper-bound for layered erasure wire-tap channel in terms of

CCDFs is

Rs ≤
∑
j:αj>0

(
F̄N1(j)− F̄N2(j)

)
. (3.35)

3.5. Layered Erasure Wire-tap Channel: Achievability

To prove the achievability, first we consider a simple scenario using single layer

erasure wire-tap channel i.e. q = 1 to have the insight, and then we shall derive our

achievable rate for general layered erasure wire-tap channel. Finally, we conclude the

proof of theorem 1 by showing that the upper-bound is achievable.

For single layer case, the channel states Ni can take value 0 and 1 where i ∈ 1, 2.

When channel state takes value of 1, it implies the transmitted bit is received by the

receiver correctly. On the other hand, when the channel state takes value of 0, it

implies the bit is completely erased by the channel.

Let us define, the probability of receiving the bit correctly at the legitimate

receiver as

P [N1 = 1] = F̄N1(1) = ε̄1, (3.36)

and the probability that the bit is erased at the legitimate receiver as

P [N1 = 0] = 1− P [N1 = 1] = 1− F̄N1(1) = ε1. (3.37)

Similar way we define, the probability of receiving the bit correctly at the

eavesdropper as

P [N2 = 1] = F̄N2(1) = ε̄2, (3.38)

and the probability that the bit is erased at the eavesdropper as

Pr[N2 = 0] = 1− Pr[N2 = 1] = 1− F̄N2(1) = ε2. (3.39)
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Hence, our single layer erasure wire-tap channel can be viewed as the aggregation

of two binary erasure channels: One is the legitimate binary erasure channel with

erasure probability ε1 and the other is the eavesdropper binary erasure channel with

erasure probability ε2 . We can compute the capacity of the individual binary erasure

channel using the basic information-theoretic identity. And if the legitimate channel

has higher capacity than the eavesdropper one, we can achieve a secrecy rate which is

the difference between the capacities of the two channels. This is due to the fact that

when the legitimate channel has higher capacity than that of the eavesdropper one,

the single layered erasure wire-tap channel becomes a degraded wire-tap channel.

Note that, in our upper bound expression in (3.35) ,only those layers are present

where F̄N1(n) − F̄N2(n) > 0. For single layer case, this condition implies that the

upper-bound is non zero only when F̄N1(1) > F̄N2(1), i.e., ε̄1 > ε̄2. Otherwise, the

upper-bound is zero.

From our achievability standpoint, let us assume ε̄1 > ε̄2. Otherwise the proof

is trivial because the upper-bound is zero.

We know from the basic information-theoretic result (1.29) stated in chapter 1

that the capacity of a binary erasure channel with erasure probability ε1 is 1− ε1 and

that is achieved when the input has i.i.d. Bernoulli (p = 1/2) distribution.

Hence the maximum achievable rate of the legitimate binary erasure channel is

r1 = 1− ε1 = ε̄1 = F̄N1(1). (3.40)

Similarly, the maximum achievable rate of eavesdropper binary erasure channel

is

r2 = 1− ε2 = ε̄2 = F̄N2(1). (3.41)

Since, from our assumption, F̄N1(1) ≥ F̄N2(1), using Wyner’s results [3] for
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degraded wire-tap channel, we can say the achievable secrecy rate for single layer

erasure wire-tap channel is

rs = r1 − r2 (3.42)

= (1− ε1)− (1− ε2) (3.43)

= ε̄1 − ε̄2 (3.44)

= F̄N1(1)− F̄N2(1). (3.45)

This concludes the proof of theorem 1 for single layer case.

Now, our achievability for the general layer erasure wire-tap channel follows

exactly same line of argument as presented in the single layer case. First, we partition

the bit levels based on the distribution of the channel states of the receivers. We

use only those layers for which we have αn > 0 is satisfied. Furthermore we use

independent signaling on each layers i.e. X1, ........, Xq are i.i.d. Bernoulli (p = 1/2)

random variables.

Suppose layer n is used for secret communication. We can consider the layer n

channel as two independent binary erasure channels. The erasure probability of the

legitimate channel on layer n is 1− F̄N1(n), and that of the eavesdropper channel at

layer n is 1 − F̄N2(n). We Apply the channel capacity of binary erasure channel to

get the following results.

Hence, the legitimate channel can have a rate of communication at layer n

r1(n) = F̄N1(n), (3.46)

and the eavesdropper can have rate of communication at layer n

r2(n) = F̄N2(n). (3.47)
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Therefore,the achievable secret communication rate at layer n is

rs(n) = r1(n)− r2(n) (3.48)

= F̄N1(n)− F̄N2(n). (3.49)

Using independent signaling on each layer n : αn > 0, the achievable secrecy

rate for general layered erasure wire-tap channel is

R∗s =
∑

n:αn>0

r1(n)− r2(n) (3.50)

=
∑

n:αn>0

(
F̄N1(n)− F̄N2(n)

)
. (3.51)

It is clear that this rate coincide with the upper-bound (3.35). This concludes the

proof the theorem 1.

Next, we provide an example to illustrate further.

Example 1. Consider the following layered erasure wire-tap channel with PMFs of

the channel states N1, N2 are defined by

PN1(n) =



1
3
, n = 0

0, n = 1

1
3
, n = 2

1
3
, n = 3

(3.52)

PN2(n) =



1
4
, n = 0

1
4
, n = 1

1
4
, n = 2

1
4
, n = 3

(3.53)
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in which the legitimate channel seems stronger at bit level 2 and 3 whereas the

eavesdropper channel looks stronger at bit level 1. Hence the resulting layered erasure

wire-tap channel is neither degraded nor more capable. The corresponding CCDFs

are given by

F̄N1(n) =



1, n = 0

2
3
, n = 1

2
3
, n = 2

1
3
, n = 3

(3.54)

F̄N2(n) =



1, n = 0

3
4
, n = 1

1
2
, n = 2

1
4
, n = 3

(3.55)

Hence, the usable layers for secret communication are bit levels 2 3. The

resulting secrecy capacity is

Cs =
∑

n∈{2,3}

(
F̄N1(n)− F̄N2(n)

)
(3.56)

=
(
F̄N1(2)− F̄N2(2)

)
+
(
F̄N1(3)− F̄N2(3)

)
(3.57)

= 0.25 bit per channel use. (3.58)

In next chapter, we shall consider the fading Gaussian wire-tap channel.
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CHAPTER 4. FADING GAUSSIAN WIRE-TAP

CHANNEL

With the insights from the layered erasure wire-tap channel, we shall derive

an upper bound for Gaussian fading wire-tap channel. In this scenario, the channel

states can take any value, and the CSI is not known at the transmitter. We use

the similar technique of channel enhancement to create a degraded fading Gaussian

wire-tap channel and then applying (2.5) we l get an upper-bound. Although we do

not have a general achievable scheme to attain that upper-bound, we show that for

some distributions, the upper-bound can be achieved.

4.1. Channel Model

Let X(t), Y (t), Z(t) the transmitted signal by Alice, received signal at Bob, and

received signal at Eve respectively at time t.

The channel model is

Y (t) =
√
S1(t)e

jθ1(t)X(t) + U1(t) (4.1)

Z(t) =
√
S2(t)e

jθ2(t)X(t) + U2(t), (4.2)

where
(
S1(t), θ1(t)

)
and

(
S2(t), θ2(t)

)
denotes the channel gains and phases of the

legitimate and eavesdropper channel respectively, and U1(t), U2(t) are independent

circular symmetric complex Gaussian(CSCG) random variable with unit variance at

time t. Since, our wire-tap channel is memoryless and changing independently at

each symbol time, we can omit the time index for simpler notation.

Hence our channel model becomes

Y =
√
S1e

jθ1X + U1 (4.3)

Z =
√
S2e

jθ2X + U2. (4.4)
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Figure 8. Gaussian fading wire-tap channel.

We consider a complex Gaussian wire-tap channel i.e. Alice transmits a complex

baseband signal X = (XI + jXQ)/
√

2 with unit power constraint. The phases θi is

known to the respective receiver, both the legitimate receiver and eavesdropper can

post rotate the signal phases by −θi to get rid of the phase component.

Hence, the received signal at Bob can be represented in terms of real and

quadrature components YI and YQ

YI + jY Q =
√

2e−jθY (4.5)

=
√

2e−jθ
√
S1e

jθ1(XI + jXQ)/
√

2 +
√

2U1e
−jθ (4.6)

=
√
S1(XI + jXQ) + U1,I + jU1,Q (4.7)

= (
√
S1XI + U1,I) + j(

√
S1XQ + U1,Q). (4.8)

Simillar way, the received signal by Eve can be represented as in-phase and

quadrature components

ZI + jZQ = (
√
S2XI + U2,I) + j(

√
S2XQ + U2,Q). (4.9)
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Thus, the complex channel can be treated as a pair of identical real channels

independent of each other. If we compute the achievable rate for one channel, same

can be achieved for the other channel.

Now onward we shall consider only the real-valued Gaussian wiretap channel.

The capacity of the original complex Gaussian wire-tap channel is just double of the

capacity we get for the real-valued channel.

Hence our final channel model becomes,

Y =
√
S1X + U1, Z =

√
S2X + U2, (4.10)

where X is the transmitted signal by Alice with unit power constraint, Y and Z

are the received signal by Bob and Eve respectively, U1 and U2 are additive noise at

respective receiver and normally distributed with zero mean and unit variance. We

call the (4.10) as the fading Gaussian wire-tap channel (S1, S2).

When either of the legitimate or eavesdropper channel is in state s, the receiver

observes a output identically distributed as

Y (s) :=
√
sX + U, (4.11)

where the U ∼ N (0, 1) is identically distributed as each Ui . For a fading channel

where the fading state is a random process S, the ergodic capacity of the point-to-

point fading channel (4.11) with unit transmit power is

Ce(S) :=
1

2
ES
[

log(1 + s)
]

=
1

2

∫ ∞
0

fS(s) log(1 + s)ds, (4.12)

and the capacity is achieved with Gaussian input [14][15]. (4.12) represent the ergodic

capacity of a point-to-point real fading channel.
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Now, we state the main results of the secrecy rate of the fading Gaussian wire-

tap channel defined by (4.3) and (4.4). We define the complementary CDF of a

random variable S as F̄S(s) := P [S ≥ s].

Theorem 2. Any achievable secrecy rate, Rs, on an fast fading Gaussian wire-tap

channel defined by ( 4.3) and ( 4.4) with arbitrary fading statistics and instantaneous

channel realizations known only at the corresponding receivers, is upper bounded as

Rs ≤ log e

∫
I1

(
F̄S1(s)− F̄S2(s)

) 1

1 + s
ds, (4.13)

where I1 :=
{
s ≥ 0|F̄S1(s) > F̄S2(s)

}
.

On a typical communication channel, finding good upper-bounds turns out to be

more challenging than finding good achievable coding schemes. However, on a wire-

tap channel, since any achievable scheme need to make sure that the eavesdropper can

not extract any information, finding effective achievable schemes are as challenging

as the converse. In contrast to the layered case, it seems unlikely that one achievable

scheme will be capacity achieving for all channel statistics. Therefore, while we do

not have an achievable scheme which meets the upper bound of the above Theorem

for general channel statistics, for two very important class of practical wireless

channels,namely fading wire-tap channels in urban and rural wireless environments,

we prescribe achievable schemes which can. As a result for these class of channels we

have exact secrecy capacity characterization. To the best of our knowledge, this is

the first capacity result on ergodic fading wiretap channel.

In the sequel, we shall show that these aforementioned practical channels belong

to a rather interesting class of channels which we hereafter refer to as the class of

Stochastically degraded channels. Next we define the stochastically degraded wire-tap

channel for which our theorem can be used to compute the exact secrecy capacity.
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Definition 9 (Stochastically degraded channel). We call a fast fading wire-tap

channel described by equations ( 4.3) and ( 4.4) a stochastically degraded channel if

F̄S1(s) ≥ F̄S2(s), ∀s ≥ 0. In what follows, we shall use the notation S1 ≥st S2 to

denote a stochastically degraded wiretap channel.

Theorem 3 below is a special case of the general upper-bound described in

Theorem 2 and will later be useful to characterize the capacity of stochastically

degraded class of wire-tap channels.

Theorem 3. The secrecy capacity of a stochastically degraded fading Gaussian wire-

tap channel described by ( 4.3) and ( 4.4), is given by

Cs = log e

∫ ∞
0

(
F̄S1(s)− F̄S2(s)

) 1

1 + s
ds. (4.14)

Next, we prove theorem 2 and 3. First, we derive the upper-bound.

4.2. Fading Gaussian Wire-tap Channel: Upper-Bound

We follow the similar approach as in the layered case to enhance the legitimate

channel to make it a degraded wiretap channel. The secrecy rate upper-bound for the

enhanced channel is naturally an upper-bound for the original (S1, S2) , The secrecy

capacity of original channel cannot be larger than that of the enhanced one.

We define,

F̄S̃1
(s) = max

[
F̄S1(s), F̄S2(s)

]
. (4.15)

We need following lemma taken from [16] to prove that resulting fading Gaussian

wire-tap channel (S̃1, S2) is a degraded wire-tap channel.

Lemma 2. The fading Gaussian wiretap channel (S1, S2) satisfying S1 ≥st S2 is a

degraded wiretap channel.
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As a result of lemma, now we can apply (2.5) to get the upper bound

Rs ≤ max
[
I(X; Ỹ , S̃1)− I(X;Z, S2)

]
(4.16)

= max
[
I(X; S̃1) + I(X; Ỹ |S̃1)− I(X;S2)− I(X;Z|S2)

]
(4.17)

= max
[
I(X; Ỹ |S̃1)− I(X;Z|S2)

]
(4.18)

= max
[
h(Ỹ |S̃1)− h(Ỹ |X, S̃1)− h(Z|S2) + h(Z|X,S2)

]
(4.19)

= max
[
h(Ỹ |S̃1)− h(U1)− h(Z|S2) + h(U2)

]
(4.20)

= max
[
h(Ỹ |S̃1)− h(Z|S1)

]
(4.21)

= max
[ ∫ ∞

0

fS̃1
(s)h(

√
sX + U |S̃1 = s)ds−

∫ ∞
0

fS2(s)h(
√
sX + U |S2 = s)ds

]
(4.22)

= max
[ ∫ ∞

0

fS̃1
(s)h(

√
sX + U)ds−

∫ ∞
0

fS2(s)h(
√
sX + U)ds

]
(4.23)

= max
[ ∫ ∞

0

(
fS̃1

(s)− fS2(s)
)
h(Y (s))ds

]
. (4.24)

(4.17) follows from the chain rule of mutual information. Since, we assume no

CSI at transmitter, hence the input and channel states are independent to each other.

Therefore, the mutual information between input and channel state is zero and we

have (4.18). We express the mutual information in terms of entropy in (4.19). Since,

U1, U2 ∼ N (0, 1) , the differential entropies of them are same and cancel each other

resulting (4.21). Using (4.11), we derive the average differential entropy in (4.22).

Note that in (4.24),finally we get the difference of the two PDFs which is always

non-negative.

Let us define

F̄d(s) := F̄S̃1
(s)− F̄S2(s). (4.25)

Note that F̄d(s) is defined as the difference of two CCDFs. However, F̄d(s) itself

is not a CCDF.
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Differentiating (4.25), we get

d

ds
Fd(s) =

d

ds

(
F̄S̃1

(s)− F̄S2(s)
)

(4.26)

= −fS̃1
(s) + fS2(s). (4.27)

By denoting, fd(s) := − d
ds
Fd(s), we can write (4.27) as

fd(s) = fS̃1
(s)− fS2(s). (4.28)

Substituting (4.28) in (4.24) , we get

Rs ≤ max
[ ∫ ∞

0

fd(s)h(Y (s))ds
]
. (4.29)

Using integration by parts, we get

∫ ∞
0

fd(s)h(Y (s))ds =
[
h(Y (s))

∫
fd(s)ds

]∞
0
−
∫ ∞
0

[ d
ds
h(Y (s))

∫
fd(s)ds

]
ds (4.30)

= F̄d(0)h(U)− F̄d(∞)h(∞X + U) +

∫ ∞
0

F̄d(s)
d

ds
h(Y (s))ds

(4.31)

=

∫ ∞
0

F̄d(s)
d

ds
h(Y (s))ds. (4.32)

From the defintion of F̄d(s) in (4.25), we have F̄d(0) = F̄S̃1
(0)−F̄S2(0) = 1−1 = 0

and F̄d(∞) = F̄S̃1
(∞)− F̄S2(∞) = 0− 0 = 0 which results (4.32). Consider the term

F̄d(∞)h(∞X+U) in (4.32), where the CCDF is a decreasing function of its argument

and the differential entropy increases logarithmically with variance of the RV. The

rate of decrease of the CCDF is faster than the rate of increase of the differential

entropy. Hence the combined term results zero.
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Substituting (4.32) in (4.29) , we get

Rs ≤ max
[ ∫ ∞

0

F̄d(s)
d

ds
h(Y (s))ds

]
. (4.33)

Since I(X;Y (s)) = h(Y (s)) − h(U), we have d
ds
I(X;Y (s)) = d

ds
h(Y (s)). Substituting

this in (4.33) we get

Rs ≤ max
[ ∫ ∞

0

F̄d(s)
d

ds
I(X;Y (s))ds

]
. (4.34)

It was shown in [17] that

d

ds
I(X;Y (s)) =

log e

2
mmse(s), (4.35)

where minimum mean square error (mmse) is given by

mmse(s) := E
[(
X − E[X|Y (s)]

)2]
. (4.36)

Furthermore, we have an upper bound for mmse [16], which is given by

mmse(s) ≤ 1

1 + s
. (4.37)

This upper-bound of mmse can be achieved with Gaussian input.

We define

Ĩ1 :=
{
s ≥ 0|F̄d(s) > 0

}
. (4.38)

Hence, our upper bound becomes

Rs ≤
log e

2

∫
Ĩ1

F̄d(s)
1

1 + s
ds. (4.39)
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Since s ∈ I1 implies F̄S̃1
(s) = F̄S1(s), we can set the partition of the SNR Ĩ1 = I1

where I1 :=
{
s ≥ 0|F̄S1(s) > F̄S2(s)

}
.

Hence, the upper-bound can be written as

Rs ≤
log e

2

∫
I1

(
F̄S1(s)− F̄S2(s)

) 1

1 + s
ds. (4.40)

If we consider signaling for both in-phase and quadrature component channels,

the final upper-bound can be written as

Rs ≤ log e

∫
I1

(
F̄S1(s)− F̄S2(s)

) 1

1 + s
ds. (4.41)

4.2.1. Special Case: Upper-bound for a Degraded Channel

Clearly, for a stochastically degraded wire-tap channel, the partition of channel

states would not be required. We have proved that in Lemma 2 that for a stochasti-

cally degraded wire-tap channel, F̄S1(s) ≥ F̄S2(s),∀s. Hence the partition of SNR is

valid for all values of channel state, i.e., I1 = {s ≥ 0}

Hence for a for a stochastically degraded fading Gaussian wire-tap channel, the

secrecy rate upper-bound is given by

Rsd ≤ log e

∫ ∞
0

(
F̄S1(s)− F̄S2(s)

) 1

1 + s
ds. (4.42)

4.3. Fading Gaussian Wire-tap Channel: Achievability

Our achievability scheme for fading Gaussian wire-tap channel follows a different

approach than that of the layered case. We cannot use the layered decoding

argument for Gaussian case, because we cannot just dictate the eavesdropper to

obey the decoding rule as we instruct. The eavesdropper can have arbitrary decoding

technique, hence the layered achievability argument for Gaussian case fails.
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Instead, we shall derive the achievable scheme directly from the capacity

expression for some familiar input distributions which have the potential to be the

optimal. Then, we compare those achievable rates to the upper-bound (4.41) to see

how close they are.

We have capacity expression for a discrete memoryless channel wire-tap channel

which is given by (2.4). We are restating the expression here.

Cs = max
V→X→Y,Z

[
I(V ;Y )− I(V ;Z)

]
(4.43)

Cs is maximum secrecy rate where the maximization is taken over all possible joint

distributions of PV,X(v, x) . Instead of looking for the optimal V,X that gives the

maximum secrecy rate ( in fact, nobody has found the optimal V,X. That is why the

secrecy capacity of Gaussian channel is open for so many years) , rather we would

avoid the complicated maximization problem by choosing some specific distributions

of V,X . The rate we get for a specific distribution is an achievable rate and (4.43)

serves as an upper-bound for all achievable rates. We carefully choose V,X that have

potential to be optimal. Since for most of the channel, Gaussian input is optimal, we

shall choose V,X both to be Gaussian in our achievable scheme.

4.3.1. Achievable Rate with V = X ∼ N (0, 1)

We shall evaluate the achievable rate for input with Gaussian distribution and

set the auxiliary random variable V equal to the input. In this setting, we have

V = X = XG where XG ∼ N (0, 1). We denote this achievable secrecy rate as RG
s .

From (4.43), we have

RG
s = I(XG;Y |S1)− I(XG;Z|S2) (4.44)

= ES1

[
log(1 + s1)

]
− ES2

[
log(1 + s2)

]
. (4.45)
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In (4.45), we have used the ergodic rate of point-to-point fading channel with

Gaussian input as given by (4.12) for a complex channel. We can simplify

ES1

[
log(1 + s1)

]
=

∫ ∞
0

fS1(s) log(1 + s)ds (4.46)

=
[

log(1 + s)

∫
fS1(s)ds

]∞
0
−
∫ ∞
0

[ d
ds

log(1 + s)

∫
fS1(s)ds

]
ds

(4.47)

= − log(1)F̄S1(0) + log(∞)F̄S1(∞)− log e

∫ ∞
0

[
− 1

1 + s
F̄S1(s)

]
ds

(4.48)

= log e

∫ ∞
0

1

1 + s
F̄S(s)ds. (4.49)

Similar way we have

ES2 [log(1 + s2)] = log e

∫ ∞
0

1

1 + s
F̄S2(s)ds. (4.50)

Substituting the results of (4.49) and (4.50) in (4.45), we get

RG
s = log e

∫ ∞
0

1

1 + s
F̄S1(s)ds− log e

∫ ∞
0

1

1 + s
F̄S2(s)ds (4.51)

= log e

∫ ∞
0

(
F̄S1(s)− F̄S2(s)

) 1

1 + s
ds. (4.52)

For a general wire-tap channel, the difference between the CCDF is not

necessarily non-negative for ∀s ≥ 0. Hence, the achievable secrecy rate for Gaussian

input cannot achieve the upper-bound. But if the wire-tap channel is a stochastically

degraded wire-tap channel, we can say that Gaussian input without prefixing is

optimal, i.e., the secrecy rate RG
s for Gaussian input matches the upper bound (4.42).

In the next chapter, we apply secrecy capacity result to derive the secrecy

capacity of two popular class of wireless channels.
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CHAPTER 5. PRACTICAL APPLICATIONS OF OUR

RESULTS

In this research work, we found that Gaussian input is secrecy capacity achieving

for stochastically degraded wire-tap channels.There are many practical wireless

communication systems where, the channels are either stochastically degraded or

reversely degraded. In those cases, the general converse (4.41) naturally yields the

converse for the special case (4.42). For those class of wire-tap channels, our theorem

3 in chapter 4 can be readily used to compute the secrecy capacities. We shall consider

two of such class of channels: channels with Rayleigh fading distribution and Richian

fading distribution.

5.1. Secrecy Capacity of Fading Wire-tap Channel in Urban Area

To model the wireless environment in an urban area, cellular wireless networks

generally use the Rayleigh fading model to represent the random channel coeffi-

cients [18]. This is because Rayleigh fading model works better for the heavily built-up

urban area where there is no dominant line of sight propagation and the obstacles to

wireless signals are more or less uniformly distributed between the transmitters and

the receivers.

For Rayleigh fading, the channel gain
√
s is Rayleigh distributed and the s has

an exponential distribution which has a PDF fS(s) = λe−sλ, and corresponding CDF

is FS(s) = e−sλ where the SNR of the channel is given by E[s] = 1
λ
.

Hence the CCDF of the channel is

F̄S(s) = e−sλ. (5.1)

We plot the CCDF against channel strength for different values of λ. Note that

in the figure 9, the graph the CCDF with high variance is always remains high for
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Figure 9. CCDFs vs channel state for different values of λ for Rayleigh fading.

all value of channel strength. Since, the Rayleigh fading model is the most accurate

model for urban setting, therefore the wire-tap channel in a cellular wireless network

environment is either stochastically degraded or reversely degraded.Therefore, the

general converse and the degraded case converse have the same expression because

of the fact that there is no partition of SNR. For those class of channels, our general

converse is tight and achievable. Hence, we can apply theorem 2 to compute the

secrecy capacity.

Consider a Rayleigh fading Gaussian wire-tap channel. The CCDF of the

legitimate channel is

F̄S1(s) = e−sλ1 , (5.2)

and the CCDF of the evaesdropper is

F̄S1(s) = e−sλ2 . (5.3)

We assume λ1 ≤ λ2. Otherwise, computing secrecy capacity is trivial because,

in that case, the capacity is zero.
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The secrecy capacity is given by Theorem 2

Curban
s = log e

∫ ∞
0

(
e−sλ1 − e−sλ2

) 1

1 + s
ds. (5.4)
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Figure 10. Secrecy Capacity vs λ2/λ1 for different values of 1/λ2 for fading Gaussian
wire-tap channel with Rayleigh fading.
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Figure 11. Secrecy Capacity vs 1/λ2 for different value of λ2/λ1 for fading Gaussian
wire-tap channel with Rayleigh fading.

Figure 10 and figure 11 show the relationship between secrecy capacity Curban
s

and different values of λ1, λ2.

5.2. Secrecy Capacity of Fading Wire-tap Channel in Rural Area

Unlike Rayleigh model, Rician model is used for wireless environment where

there is dominant path of propagation along with other multipath propagation for
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signal. Usually, cellular network in the countryside or along the highway exhibits

Rician model like behavior.

Let us assume the channel state s has Rician distribution. Hence the PDF is

fS(s) = x
σ2 e

(
−(x2+v2)

2σ2

)
I0(

sv
σ2 ), where I0(.) is the modified Bessel function of the first

kind with zero order. The corresponding CDF is FS(s) = 1−−Q1(
v
σ
, s
σ
), where Q1 is

the Marcum Q-function. Variance is a increasing function of v for a particular value

of σ.

Hence the CCDF of the channel is

F̄S(s) = Q1(
v

σ
,
s

σ
). (5.5)

We plot the CCDF against channel state for different values of v with σ = 1.

Note that, in the figure 12, we can have either stochastically degraded or reversely
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Figure 12. CCDFs vs channel state for different values of v for Rician fading.

degraded wire-tap channel for Rician distribution as well. Consider the CCDF of the

legitimate channel is

F̄S1(s) = Q1(
v1
σ
,
s

σ
), (5.6)

and the CCDF of the eavesdropper is

F̄S1(s) = Q1(
v2
σ
,
s

σ
). (5.7)

50



Again,we assume v1 > v2. Otherwise, computing secrecy capacity is trivial

because in that case, the capacity is zero.

The secrecy capacity is given by Theorem 2

Crural
s = log e

∫ ∞
0

(
Q1(

v1
σ
,
s

σ
)−Q1(

v2
σ
,
s

σ
)
) 1

1 + s
ds. (5.8)

Figure 13 and figure 14 show the relationship between secrecy capacity Curban
s

and different value of v1, v2.
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Figure 13. Secrecy Capacity vs v1/v2 for different values of v2 for fading Gaussian
wire-tap channel with Rician fading.
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Figure 14. Secrecy Capacity vs v2 for different value of v1/v2 for fading Gaussian
wire-tap channel with Rician fading.

Remark 1. Note that for two of the most predominant wireless environments, namely

the urban setting and the rural setting, the capacity characterization of this thesis
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provides complete answer to the secrecy capacity question. For more general fading

environments, Theorem 2 provides an upper-bound to the secrecy capacity and finding

achievable schemes which can achieve this upper-bound constitutes a very interesting

topic for future research.
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CHAPTER 6. CONCLUSION

We have considered the problem of communicating secret information to a

desired receiver through a wireless medium in the presence of a eavesdropping receiver.

Time varying channel strength is a very critical issue in wireless channels. Earlier

research towards characterization of the secrecy capacity assume the knowledge of this

time varying channel strength at the transmitter. For any communication link, the

corresponding channel strength is generally measured at the receivers and feed back

to the transmitters. Thus for the wireless wiretap channel the availability of channel

state information (CSI) at transmitters is not a reasonable assumption, because that

would mean the eavesdropper informs the transmitter about its channel strength

continuously.

In this work, we assume that the channel states are not available at the

transmitter and are known only at the corresponding receivers. To gain insight we first

consider a layered abstraction of channels with real channel coefficients and exactly

characterize the secrecy capacity of this layered model. The insight revealed from this

layered model enable us to derive an outer bound to the capacity of the real channel

where the time varying channel coefficients of both the main and eavesdropper channel

can assume arbitrary statistics. We then identify a rather broad class of channels -

called stochastically degraded channels here - for which we characterize the secrecy

capacity of the channel. To establish this later result, in addition to the previously

mentioned upper bound, we also needed an achievable scheme which can attain a rate

same as the upper bound. We show that a Gaussian distributed input can achieve a

rate same as the upper bound. This rate thus also represents the secrecy capacity of

the channel. Moreover, to illustrate the application of the result of this thesis work in

practical scenarios in chapter 5 we have shown that it can be used to characterize the

secrecy capacity of two very important and often encountered wireless environments,
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namely the urban and the rural environments. In other wireless settings, the general

upper bound to capacity provides the first step and paves the way to future research

towards exact secrecy capacity characterization.
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