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One of the most fundamental and counterintuitive features of quantum me-

chanics is entanglement, which is central to many demonstrations of the quantum

advantage. Studying quantum correlations generated by local measurements on

an entangled physical system is one of the direct ways to gain insights into en-

tanglement. The focus of this dissertation is to get better understanding of the

hardness of determining if a given correlation is quantum, which is also known

as the membership problem of quantum correlations.

Previous work has shown that the general membership problem is compu-

tationally undecidable. Where does the hardness come from? Is it just because

the size of a quantum correlation (i.e., the number of real values in the description

of the correlation) can be arbitrarily large? We would like to understand the role

played by the varying sizes of correlations in the hardness of the membership

problem.

It has been shown that certain quantum correlations require the measured



quantum system to be maximally entangled with a certain dimension. This is a

unique phenomenon of quantum correlations and it is known as self-testing. The

first step towards answering the hardness of the membership problem of quan-

tum correlations is to get deeper understandings about self-testing, and more

specifically, about the size of a correlation that can self-test a maximally entan-

gled state of arbitrarily large dimension. If correlations of a fixed size can self-

test entangled states of unbounded dimension, this phenomenon is a strong ev-

idence suggesting that deciding membership of fixed-sized correlations can be

very hard.

We first show that there exists an infinite subset of the set of all the prime

numbers such that, for each prime p in this set, a maximally entangled state of

local dimension (p− 1) can be self-tested by a correlation of a fixed size. Since

this set is infinite, this result implies that constant-sized correlations are sufficient

to self-test maximally entangled states of unbounded dimension.

Building on the self-testing result, we show that the varying sizes of corre-

lations are not the only root of the hardness. Specifically, we show that the mem-

bership problem of fixed finite-sized correlations is still computationally unde-

cidable when the fixed size is sufficiently large. That is, the hardness of the mem-

bership problem of quantum correlations is independent of the varying sizes of

correlations. In fact, the hardness arises from the fact that the structure of some

set of correlations of a particular size is so complicated that no finite description

of this set can allow a Turing machine to decide if a correlation is quantum or not.
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Chapter 1: Introduction

1.1 Bipartite quantum correlation

One of the most counterintuitive and fundamental features of quantum me-

chanics is entanglement. To study entanglement, one can make local measure-

ments on entangled systems and examine the statistics generated by the measure-

ments. The central motivating question of this dissertation is the following: how

hard is it to characterize such statistics generated by entangled particles without

prior knowledge of the entanglement?

We consider the simple case with two entangled systems. In this case, statis-

tics generated by local measurements on a quantum system are called bipartite

quantum correlations. They arise in the following scenario. Suppose two spatially

separated parties, say Alice and Bob, are going to perform some task under the

supervision of a referee. Alice and Bob get a question from a fixed set with nA

and nB questions respectively and for each question they need to give an answer

from a fixed set with mA and mB answers respectively. The referee makes sure

that Alice and Bob do not communicate after they get their questions and before

they give their answers, which is a critical condition. Since the sets of questions

and answers are known to Alice and Bob beforehand, the questions and answers
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can be simply represented by their indices in the corresponding sets. Let [n] de-

note the set {0, 1, . . . , n − 1}, then the question and answer sets are [nA], [nB],

[mA] and [mB]. Since Alice and Bob cannot communicate, we can assume Alice

and Bob are spatially isolated and this scenario is illustrated in the figure below.

a ∈ [mA]

x ∈ [nA] y ∈ [nB]

b ∈ [mB]

Alice Bob
(Separation)

Figure 1.1: A scenario with spatially isolated Alice and Bob, where nA, nB, mA,
mB ∈N.

Note that if there are a probability distribution of the questions and a scor-

ing function on question-answer pairs, this scenario becomes a nonlocal game,

which is an abstraction of a multi-prover interactive proof system (MIP) [1]. Such

scenarios arise in the studies of entanglement-based quantum key distribution

[2], quantum random number generation [3], and entanglement-assisted multi-

prover interactive proof system (MIP∗) [4]. For this dissertation, we focus on the

behaviour of Alice and Bob without a nonlocal game setting.

From the point of view of the referee, Alice and Bob’s behaviour is captured

by the collection

P = {P(a, b|x, y) : 0 ≤ a < mA, 0 ≤ b < mB, 0 ≤ x < nA, 0 ≤ y < nB}

where P(a, b|x, y) is the probability that Alice answers a and Bob answers b, when
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Alice’s question is x and Bob’s question is y. The collection P is called a correlation,

which can be viewed as a matrix. The columns and rows are labelled by Alice

and Bob’s question-answer pair (x, a) and (y, b) respectively, so that the entry in

column (x, a) and row (y, b) is P(a, b|x, y). Therefore, the size of correlation P is

nAnBmAmB (the size of the correlation matrix).

Such correlations are induced by strategies for Alice and Bob determined

before the task. Since Alice and Bob cannot communicate during the task, their

strategies must be of the following form. Each of them holds a local system of a

larger system, which may be classical or quantum. Alice has nA different mea-

surements, one for each question, and each measurement has mA outcomes, one

for each answer. Bob has nB different measurements, one for each question, and

each measurement has mB outcomes, one for each answer. Each of them performs

their measurement corresponding to the given question on their local system and

obtains their answer. We can see that their strategy can be described by their mea-

surements and their local systems.

The first question to ask is whether it is possible to tell if they use entan-

glement to generate the observed correlation. This question is first answered by

John Bell in 1964 [5]. Bell observed that there are correlations generated by local

measurements on entangled systems that cannot be explained by local variables.

Hence, such correlations are called nonlocal correlations. In other words, Alice and

Bob cannot use shared randomness and deterministic measurements, which are

measurements with a deterministic outcome, to reproduce the same correlation.

Nonlocal correlation is one of the important and strong separations between clas-
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sical and quantum mechanics.

Following Bell’s results, when observing a certain correlation, physicists

may ask whether the shared quantum system is finite-dimensional or infinite-

dimensional, and mathematicians may ask whether the measurements are mod-

elled as local operators or global but commuting operators. In fact, these ques-

tions correspond to different mathematical models or sets of quantum correla-

tions.

In chapter 4, we formally introduce the four standard sets of quantum cor-

relations:

• the finite-dimensional quantum correlations Cq(nA, nB, mA, mB), where the

measured quantum state is finite-dimensional and the measurements are

local,

• the quantum spatial correlations Cqs(nA, nB, mA, mB), where the measured

quantum state can be infinite-dimensional but the measurements are local,

• the quantum approximable correlations Cqa(nA, nB, mA, mB), which is the

closure of Cqs(nA, nB, mA, mB), and

• the quantum commuting-operator correlations Cqc(nA, nB, mA, mB), where

the measurements are global but commuting.

The convention that we follow in this dissertation is that Ct refers to Ct(nA, nB,

mA, mB) for t ∈ {q, qs, qa, qc} when the tuple (nA, nB, mA, mB) is clear from

context.
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After two decades’ efforts to study the four sets of quantum correlations,

we know that for some nA, nB, mA, mB all four sets are different, and hence, the

four sets form a strictly increasing sequence

Cq ( Cqs ( Cqa ( Cqc. (1.1)

The separation between Cq and Cqs is due to Andrea Coladangelo and Jalex Stark

[6]. The separation between Cqs and Cqa is due to William Slofstra [7]. The last

separation between Cqa and Cqc is due to Zhengfeng Ji, Anand Natarajan, Thomas

Vidick, John Wright, and Henry Yuen [8]. It is interesting that these three separa-

tions rely on very different approaches.

About the geometries of these four sets, we know that the sets Ct, t ∈

{q, qs, qa, qc}, are convex subsets of RN and that Cqa and Cqc are closed [9]. How-

ever, for some integers nA, nB, mA and mB, Cq and Cqs are not closed [7], which

suggests describing these two sets is difficult.

Chapter 4 is partly based on the following paper:

[10] Honghao Fu, Carl A. Miller and William Slofstra The membership problem for

constant-sized quantum correlations is undecidable, 2021, arXiv:2101.11087.

1.2 The membership problems of quantum correlations

Knowing the basic geometry properties of the four sets of quantum corre-

lations is the first step towards the comprehensive understanding of quantum

correlations. The next step, which is also the goal of this dissertation, is to under-
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stand the hardness of characterizing each set of quantum correlations. We study

these questions from the computational complexity perspective.

Namely, we are interested in the computational hardness of the following

decision problems for t ∈ {q, qs, qa, qc} and subfields K ⊆ R, where K is count-

able.

Problem (Membershipt,K). Given a tuple (nA, nB, mA, mB), and a correlation P ∈

KnAnBmAmB , is P ∈ Ct(nA, nB, mA, mB)?

Such a problem requires a computer to know the exact entries of P. Note

that if some entry of P is a real number that cannot be described using finite space,

the hardness of this problem is trivialized. This is why we restrict to correlations

in KnAnBmAmB rather than RnAnBmAmB . Our choice of K makes sure that the corre-

lation P can be processed by a computer in a finite amount of time. When K is

clear from the context, we drop the subscript K.

We choose to study the membership problems because the decidability of

the membership problems is directly related to the existence of some finite-length

descriptions of the sets of quantum correlations. If (Membershipt,K) is decidable

for some t ∈ {q, qs, qa, qc}, then some nice universal algorithm for Ct exists and

can be used to determine the membership of correlations of any size.

As it turns out, all of the four membership problems are undecidable. The

undecidability of (Membershipt,Q) for t ∈ {q, qs, qa} are proved in [7] and [8],

where [8] in fact proves the undecidability of a stronger version of (Membershipt,Q)

– namely, the approximate version of (Membershipt,Q). The undecidability of

6



(Membershipqc,Q) is proved by Matthew Coudron and William Slofstra [11]. These

undecidability results imply that there does not exist an algorithm that can gen-

erate a finite description of Ct(nA, nB, mA, mB) that allows a Turing machine to

decide (Membershipt) for any t ∈ {q, qs, qa, qc} and any nA, nB, mA and mB.

Now, we need to understand the cause of the hardness of the member-

ship problems of quantum correlations. It should be noted that the families

of undecidable correlations from the papers [7, 8, 11] all involve correlations

with unbounded sizes. Therefore, one possible explanation for the hardness of

(Membershipt) is that the parameters nA, nB, mA and mB are allowed to vary and

there are infinitely many different choices of these parameters. Even if a finite

description of Ct(nA, nB, mA, mB) exists for all nA, nB, mA and mB, no Turing

machine can store all of them, which can make (Membershipt) undecidable.

This dissertation is devoted to proving that the hardness of the membership

problem is independent of the varying sizes of correlations. We would like to

show that (Membershipt) is still undecidable when the parameters nA, nB, mA

and mB are fixed. The problem that we study is called the membership problem

for constant-sized quantum correlations.

Problem (Membership(nA, nB, mA, mB)t,K). Given a correlation P ∈ KnAnBmAmB , is

P ∈ Ct(nA, nB, mA, mB)?

The main result of this dissertation addresses the complexity of this prob-

lem, and it is summarized in the following theorem.

Theorem 1.1 (Informal version). There is an integer N such that the decision problem
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(Membership(nA, nB, mA, mB)t,K) is undecidable for t ∈ {qa, qc} and nA, nB, mA, mB >

N.

This result asserts that, provided that nA, nB, mA, mB are chosen to be suf-

ficiently large, there is no description of the set Ct(nA, nB, mA, mB) that would

allow a Turing machine to decide membership in that set for t ∈ {qa, qc}.

The main result is a key step towards understanding the true sources of

complexity of the membership problems of quantum correlations. It is the first

result that shows the hardness of such problems does not rely on the varying

sizes of the correlations. In fact, the main result indicates that the hardness of

(Membershipqa) and (Membershipqc) is rooted in the complicated structure of

a single set Ct(nA, nB, mA, mB) for some nA, nB, mA, mB and t ∈ {qa, qc}. The

structures of these sets are so complicated that no Turing machine can output a

complete description in a finite amount of time.

The first step towards proving Theorem 1.1 is to deepen our knowledge of

a unique phenomenon of quantum correlations called self-testing.

1.3 Self-testing

The idea of self-testing is first introduced by Dominic Mayers and Andrew

Yao [12], and later formalized by Matthew McKague, Tzyh Haur Yang and Vale-

rio Scarani [13]. Self-testing refers to a phenomenon of quantum correlations that

certain correlations are sufficient for us to deduce that some local transformation

can turn the measured state into the tensor product of a particular entangled state
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and some junk state. We also call such correlations self-tests.

Since the only assumption about self-testing is that Alice and Bob are spa-

tially separated, and only classical interactions are required between the referee

and the two participants, self-testing becomes a powerful tool for applications in

quantum cryptography and computational complexity theory. It allows a classi-

cal party to delegate quantum computations to some untrusted service provider

and verify that the computations are performed honestly and correctly [14, 15].

Self-testing also becomes a critical component of the security proofs of device-

independent quantum cryptographic protocols [12, 16]. Self-tests also help to

bound the computational power of MIP∗ protocols [8, 17, 18].

The case of self-testing of the EPR pair,

|EPR〉 = 1√
2
(|00〉+ |11〉),

is fully understood. The techniques for this case are first introduced in [13], then

improved in [19]. Self-testings of tensor products of maximally entangled qubits

are proved in [20, 21], with the last one being the one with the smallest question

and answer sets. The idea of self-testing of general bipartite entangled states

with local dimension d is first proposed in [22] and realized in [23], which uses

4 questions but each question has d answers. The number of questions is later

reduced to 2 in [24], but the number of answers is still d.

In chapter 5, we show that maximally entangled states of unbounded di-

mension can be self-tested by correlations of a fixed size. For comparison, all the

9



correlations used in the results listed above have sizes dependent on the local

dimension of the entangled state.

Theorem 1.2 (Informal version). There exists an infinite-sized set D of odd prime

numbers such that, for any p ∈ D, the maximally entangled state of local dimension

(p− 1) can be self-tested with a constant-sized quantum correlation.

To prove Theorem 1.2, we construct a correlation of size Θ(r2) for each odd

prime number p whose smallest primitive root is r. We say that r is a primitive

root of p if r is the multiplicative generator of the group Z∗p. This correlation is

denoted by Qp,r and the size of Qp,r is independent of p, although it does depend

on r.

The correlation Qp,r is obtained by combining two correlations: PAr and

Q̂−π/p, which will be introduced below. The question set of Qp,r is the union of

the question sets of PAr and Q̂−π/p, and this how we combine the two correla-

tions.

The correlation PAr is a perfect correlation associated with a binary linear

system, where the variables of the system are binary and the addition is taken

modulo 2. To better introduce this correlation, we introduce a nonlocal game

called the binary linear system game, illustrated in the figure below. In this game,

Alice and Bob each gets a question, which is either a variable or an equation of

the binary linear system. The distribution over the questions is uniform. They

win this game under the following conditions:

• if they receive the same question, they must give the same answer;

10



• if their questions are equations, they must give a satisfying assignment, and

their assignments to the common variables, if there are any, must be the

same; and

• if one receives an equation and the other one receives a variable from that

equation, then the assignment to the equation must be satisfying and the

assignment to the variable must match the assignment to the equation.

x1 = x2 = x3 = 0

x1 + x2 + x3 = 0 x2

x2 = 0

Alice Bob
(Separation)

Figure 1.2: One success iteration of a binary linear system game.

A widely-used and thoroughly-studied example is the Magic square game

[25] with the following linear system

x1 + x2 + x3 = 0 x4 + x5 + x6 = 0

x7 + x8 + x9 = 0 x1 + x4 + x7 = 0

x2 + x5 + x8 = 1 x3 + x6 + x9 = 0.

Using two copies of |EPR〉, the winning correlation of this game can be induced.

It has been shown that if a strategy can induce the winning correlation, the shared

state must be |EPR〉⊗2 up to some local isometry [26]. Thus, the winning correla-

tion of the Magic square game is a self-test for |EPR〉⊗2. The key observation that

11



leads to the self-testing proof is that, in a winning strategy of this game, if we de-

note Alice’s binary observable for x1 by X, and denote Alice’s binary observable

for x4 by Z, then X and Z must satisfy the anti-commutation relation

ZXZ = −X.

The correlation PAr is a winning correlation of the binary linear system game

associated with a linear system, which is denoted by Arxxx = 0. PAr can enforce

the relation

U†OU = Or, (1.2)

for unitaries U and O, which correspond to products of the binary observables

used by Alice and Bob, and some integer r. The inspiration comes from Slofstra’s

work [7], where he proposes and validates a new way to design a correlation that

can enforce conjugacy relations of the form X†YX = Z for unitaries X, Y and Z.

Following Slofstra’s design, the numbers of equations and variables of Arxxx = 0

are of order Θ(r).

The reason that we choose eq. (1.2) to be the relation enforced by PAr is

the following. Inducing PAr guarantees that the strategy contains unitaries U

and O on Alice’s and Bob’s side satisfying eq. (1.2). Moreover, if we can certify

that the unitary O has the eigenvalue ωp := ei2π/p where r is a primitive root

of p, eq. (1.2) automatically guarantees that the spectrum of O contains {ω j
p|1 ≤
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j ≤ p− 1}, and that Alice and Bob’s local system must be of dimension at least

(p− 1). Therefore, the correlation Q̂−π/p is introduced to certify an eigenvalue

of O. We prove that in an inducing strategy of Q̂−π/p there must exist a unitary

that has eigenvalues ei2π/p and e−i2π/p.

The first step to prove Theorem 1.2 is to prove the full correlation Qp,r is a

self-test. Following the intuition introduced in the previous paragraph, we can

prove that the correlation Qp,r can self-test the state |ψ̃〉 defined by

|ψ̃〉 = 1√
p− 1

p−1

∑
j=1
|j〉|d− j〉.

The last step of proving Theorem 1.2 involves a number theory result. It has

been shown that there exists an integer r ∈ {2, 3, 5} such that there are infinitely

many primes whose primitive root is r [27]. The set D in the statement of Theo-

rem 1.2 is the set of all such primes. By applying the self-testing result of Qp,r to

all p ∈ D, we prove that for any p ∈ D, a maximally entangled state of dimension

(p− 1) can be self-tested by a constant-sized correlation.

Chapter 5 is based on the following paper:

[28] Honghao Fu, Constant-sized correlations are sufficient to robustly self-test

maximally entangled states with unbounded dimension, 2019, arXiv:1911.01494.

1.4 Overview of the undecidability proof

In chapters 6 and 7, we prove that Membership(nA, nB, mA, mB)t,K for t ∈

{qa, qc} are undecidable for sufficiently large nA, nB, mA and mB. The central
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idea of the undecidability proof is to reduce Membership(nA, nB, mA, mB)t,K for

t ∈ {qa, qc} to the word problem of a group. The word problem of a group asks

if an element of the group is trivial in the group and this problem is known to

be undecidable [29, Chapter 12]. In this section, we sketch the proof of our main

result.

In chapter 6, we first introduce the Minsky machine developed by Marvin

Minsky [30], and the Kharlampovich-Myasnikov-Sapir group (KMS group), first

introduced by Olga Kharlampovich, Alexei Myasnikov and Mark Sapir [31]. A

Minsky machine is a kind of universal computation machine just like a Turing

machine, which consists of a few counters and each command is either incre-

menting or decrementing a subset of the counters. Since a Minsky machine can

simulate any Turing machine, deciding if a Minsky machine accepts an input is

equivalent to the halting problem, which is undecidable. Because the forms of

commands of a Minsky machine are simple, it is easier to write down a group

that can simulate a Minsky machine rather than a Turing machine. A KMS group

can simulate a Minsky machine, in the sense that the proof that some element

of this group is trivial corresponds to a sequence of the commands of the Min-

sky machine that takes the input configuration of a particular input to the accept

configuration. Therefore, the word problem of a KMS group is undecidable.

In Section 6.4, we extend a KMS group G and construct a family of groups

{Gn | n ≥ 1} such that deciding if a fixed element w is trivial in Gn is equivalent

to deciding if a Minsky machine accepts the input n. This approach is differ-

ent from the approach taken in [7] and [11]. The previous approach uses a fixed
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KMS group G, and different inputs of the Minsky machine are written in differ-

ent group elements. This is why the authors of [7] and [11] need correlations of

growing sizes to check if different group elements are trivial or not in G. In our

approach, the input n is written in some relation of Gn so that we can write down

correlations of a fixed size to check if w is trivial in Gn. This is the key step to

ensure that the correlations that we construct are of the same fixed size.

In chapter 7, we prove that there exists a family of correlations {Cn | n ≥ 1}

such that Cn is in Cqa(NA, NB, MA, MB) if w is nontrivial in Gn, and on the other

hand, Cn is not in Cqc(NA, NB, MA, MB) if w is trivial in Gn, for some fixed NA,

NB, MA, MB. Note that the numbers NA, NB, MA and MB are fixed across all the

different n.

Intuitively, to induce Cn, Alice and Bob’s binary observables correspond to

generators of Gn, which are the same for all n. As mentioned in the previous

paragraph, the input n is written in some relation of Gn. To enforce this relation,

we use a correlation similar to Q̂−π/p, which is used in the self-testing proof, to

write n into the entries of Cn and keep the size of Cn independent of n. For the

other relations of Gn, we design a linear system such that a perfect correlation

associated with this linear system can force Alice and Bob’s binary observables

to satisfy these relations. Then, the correlation Cn is a combination of the two

correlations. The last step to prove Theorem 1.1 is to observe that, since Cqa(NA,

NB, MA, MB) ⊆ Cqc(NA, NB, MA, MB), if a correlation is in Cqa(NA, NB, MA,

MB), then it is also in Cqc(NA, NB, MA, MB), and if a correlation is not in Cqc(NA,
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NB, MA, MB), then it is also not in Cqa(NA, NB, MA, MB). Therefore,

Cn ∈ Cqa(NA, NB, MA, MB) if and only if n is not a halting input

Cn ∈ Cqc(NA, NB, MA, MB) if and only if n is not a halting input.

In other words, {Cn | n ≥ 1} is an undecidable family of correlations for both

Cqa(NA, NB, MA, MB) and Cqc(NA, NB, MA, MB).

All the group theory results used in chapter 6 are introduced in chapter 3.

Chapters 3, 6 and 7 are based on the following paper:

[10] Honghao Fu, Carl A. Miller and William Slofstra The membership problem for

constant-sized quantum correlations is undecidable, 2021, arXiv:2101.11087.

We conclude this dissertation in chapter 8 by summarizing our contribu-

tions and discussing avenues for future research.
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Chapter 2: Preliminaries

In this chapter, we introduce our notation and basics of quantum comput-

ing.

For a positive integer n, we use [n] to denote the set {0, 1, . . . , n− 1}. R and

C denote the set of real numbers and the set of complex numbers. R≥0 denotes

the set of non-negative real numbers. We denote the n-th root of unity by ωn :=

ei2π/n for any n ≥ 1.

We denote vectors in bold font, for example, aaa and bbb. The j-th entry of the

vector aaa is denoted by aaa(j). The transpose of the vector aaa is denoted by aaaᵀ and the

complex conjugate of it is denoted by aaa. The conjugate transpose of aaa is denoted

by aaa† = aaaᵀ.

Definition 2.1. A Hilbert space is a vector spaceH over C with an inner product 〈·, ·〉

such that it is a complete metric space with respect to the norm defined by ‖aaa‖ =
√
〈aaa, aaa〉

for all aaa ∈ H, meaning that for every sequence (aaa1, aaa2, . . .), if

lim
m→∞

lim
n→∞
‖aaam − aaan‖ = 0,

then the sequence converges in this space.
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To distinguish different Hilbert spaces, we use subscripts, for example, HA

and HB. We denote a Hilbert space over C of dimension d by Cd where the stan-

dard inner product is given by

〈aaa, bbb〉 = ∑
j∈[d]

aaa(j)bbb(j).

The standard basis of Cd is denoted by {eeej | j ∈ [d]}.

The tensor product of Cd1 and Cd2 for some d1, d2 ≥ 1 is denoted by Cd1 ⊗

Cd2 and it is a d1d2-dimensional Hilbert space spanned by {eeei ⊗ eeej | i ∈ [d1], j ∈

[d2]} [32, Lemma B.2]. Setting eeei ⊗ eeej = eeei·d2+j ∈ Cd1d2 gives us an isomorphism

between Cd1 ⊗Cd2 and Cd1d2 . Let aaa ∈ Cd1 and bbb ∈ Cd2 for some d1, d2 ≥ 1. Then,

aaa⊗ bbb = (aaa(1)bbb(1), . . . , aaa(1)bbb(d2), . . . , aaa(d1)bbb(1), . . . , aaa(d1)bbb(d2)) ∈ Cd1d2 .

Definition 2.2. A pure quantum state is a unit vector of some Hilbert spaceH.

If H = Cd, then the quantum state is of dimension d. We use the bra-ket

notation for pure quantum states. For example, if ψ is a pure quantum state, we

denote it by |ψ〉 and denote its conjugate transpose by 〈ψ| = |ψ〉†. The inner

product of |ψ〉 and |φ〉 is denoted by 〈ψ|φ〉. For a set of of quantum states {|ψj〉 ∈

Hj | j ∈ [n]}, where Hj may be not equal to Hk if j 6= k, the tensor product of

the quantum states in this set is denoted by |ψ0〉H0 ⊗ |ψ1〉H1 ⊗ . . .⊗ |ψn−1〉Hn−1 ,

which is also written as |ψ0〉H0 |ψ1〉H1 . . . |ψn−1〉Hn−1 , or simply, |ψ0〉 . . . |ψn−1〉.

For a Hilbert space H, any linear map T : H → H is referred to as a linear
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operator. A linear operator T : H → H is bounded if there exists a constant M

such that

‖Taaa‖ ≤ M‖aaa‖ for all aaa ∈ H.

The set of such bounded linear operators on H is denoted by L(H). In L(H),

we denote by 1H the identity operator on H, which satisfies the condition that

1H|ψ〉 = |ψ〉 for any |ψ〉 ∈ H. When H is clear from the context, we may drop

the subscript of 1H. When H is finite-dimensional, if an orthonormal basis {aaaj |

j ∈ [n]} is chosen for H, a linear operator T : H → H can be written as an

n× n matrix M such that the (i, j)-th entry, denoted by M(i, j), equals aaa†
i T(aaaj) for

any i, j ∈ [n]. If M has an inverse, i.e. an n × n matrix N such that MN = 1,

the inverse of M is denoted by M−1. For a matrix M, Mᵀ is its transpose; M is

its complex conjugate; and M† is its conjugate transpose, which equals Mᵀ. Let

M1 ∈ L(Cd1) and M2 ∈ L(Cd2) be two matrices for some d1, d2 ≥ 2. Define

M1 ⊕M2 =

M1 0

0 M2

 ∈ L(Cd1+d2),

M1 ⊗M2 =


M1(1, 1)M2 . . . M1(1, d1)

... . . . ...

M1(d1, 1)M2 . . . M1(d1, d1)M2

 ∈ L(C
d1d2),

which are referred to as the direct sum of M1 and M2 and the tensor product of

M1 and M2 respectively.
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We can generalize the inverse of a matrix and the conjugate transpose of a

matrix to operators on a general Hilbert spaceH.

Definition 2.3. The inverse of a linear operator M ∈ L(H), if exists, is an operator

N ∈ L(H) such that M(N(aaa)) = N(M(aaa)) = aaa for all aaa ∈ H, and it is denoted by

M−1.

Definition 2.4. The adjoint of a linear operator M ∈ L(H) is the operator N ∈

L(H) such that 〈Maaa, bbb〉 = 〈aaa, Nbbb〉 for any aaa, bbb ∈ H, and it is denoted by M†.

The existence of M† and the fact that M† is also bounded follow the Riesz

representation theorem [32, Theorem A.3].

Definition 2.5. A linear operator U ∈ L(H) is a unitary operator if U† = U−1.

The set of unitary operators onH is denoted by U (H).

Definition 2.6. A linear operator H ∈ L(H) is a Hermitian operator if H† = H.

A complex number z is an eigenvalue of M ∈ L(H) if (M− z)aaa = 0 for some

aaa 6= 0.

Definition 2.7. A Hermitian operator P ∈ L(H) is positive semi-definite if all its

eigenvalues are non-negative.

Definition 2.8. A unitary operator O ∈ L(H) is an observable of order-m if Om =

1H.

The definition implies that the eigenvalues of an order-m observable, O, are

of the form ω
j
m for some j ∈ [m], and the eigenspaces of different eigenvalues are
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orthogonal. For example, the eigenvalues of a binary observable, i.e. an order-2

observable, are +1 and −1.

Definition 2.9. A Hermitian operator P ∈ L(H) is a projector if P2aaa = Paaa for all

aaa ∈ H.

The definition of a projector implies that all the eigenvalues of it are +1 and

0. Given an orthonormal set of vectors, S = {|vj〉 | j ∈ [m]}, the projector onto

the vector space spanned by S, i.e., V = span(S), is ΠV = ∑m
j=1 |vj〉〈vj|.

For a matrix X ∈ L(Cd), we denote its trace by Tr(X) and define the nor-

malized trace as

T̃r(X) :=
Tr(X)

d
.

We work with the normalized Hilbert-Schmidt norm and the operator norm.

Definition 2.10. For a matrix M ∈ L(Cd) for some integer d ≥ 1, its normalized

Hilbert-Schmidt norm is

‖M‖ =
√

Tr(M†M)

d
.

Definition 2.11. For a matrix M ∈ L(Cd) for some integer d ≥ 1, its operator norm

is

‖M‖op = sup
|ψ〉∈Cd,‖|ψ〉‖=1

‖M|ψ〉‖.
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The fundamental relations between the normalized Hilbert-Schmidt norm

and the operator norm that we use in this dissertation are summarized in the

following lemma.

Lemma 2.12. For A, B ∈ L(Cd),

|T̃r(A)| ≤ ‖A‖

‖A⊗ B‖ = ‖A‖‖B‖

‖A + B‖ ≤ ‖A‖+ ‖B‖

‖AB‖ ≤ ‖A‖op‖B‖

‖BA‖ ≤ ‖B‖‖A‖op

‖A‖ ≤ ‖A‖op ≤
√

d‖A‖.

The proof of this lemma can be found in [33], so we omit it here.

Here, we list some widely-used quantum states and operators. A pure

quantum bit (qubit) is a unit vector of C2. The basis states |0〉 and |1〉 corresponds

to eee0 and eee1 respectively. The Pauli operators of L(C2) are

σx =

0 1

1 0

 σy =

0 −i

i 0

 σz =

1 0

0 −1

 .

The maximally entangled state of two qubits is denoted by

|EPR〉 = 1√
2
(|0〉|0〉+ |1〉|1〉).
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|EPR〉 is a unit vector of C2 ⊗ C2 and it is named after Einstein, Podolsky and

Rosen [34] as the EPR pair. For any d ≥ 2, we denote the generalized EPR pair in

Cd ⊗Cd by

|EPRd〉 =
1√
d

∑
j∈[d]
|j〉|j〉.

We say a pure quantum state |ψ〉 ∈ Cd ⊗Cd is maximally entangled, if there exists

U, V ∈ U (Cd) such that (U ⊗V)|ψ〉 = |EPRd〉. We refer to such U and V as local

unitaries as they only act on one d-dimensional Hilbert space.

Between two Hilbert spacesH andH′, an isometry is a linear map V : H →

H′, such that V†V = 1H.

Definition 2.13. For Hilbert spaces HA,HB,HA′ and HB′ , a linear map Φ : HA ⊗

HB → HA′ ⊗HB′ is a local isometry if there exist isometries VA : HA → HA′ and

VB : HB → HB′ such that for any state |ψ〉 ∈ HA ⊗HB,

Φ(|ψ〉) = (VA ⊗VB)|ψ〉.
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Chapter 3: Group theory background

In this chapter, we introduce all the necessary group theory results for this

dissertation. In Section 3.1, we introduce group presentations and four ways

to extend a given group. In Section 3.2, we introduce group representations

and approximate representations. In Section 3.3, we introduce solvable groups,

sofic groups and hyperlinear groups. In Section 3.4, we introduce Slofstra’s f a∗-

embedding procedure, which we apply to a sofic group of certain structure.

Definition 3.1 (Group). A group is a set G with an operation ·, such that

1. for any a, b ∈ G, a · b ∈ G;

2. for any a, b, c ∈ G, (a · b) · c = a · (b · c);

3. there exists an element e such that e · a = a · e = a for any a ∈ G; and

4. for any a ∈ G, there exists an element b ∈ G such that a · b = b · a = e, which is

called the inverse of a.

Note that the identity element is unique in a group G and it is always de-

noted by e. For simplicity, we write a · b as ab. For g ∈ G, we denote the inverse

of g by g−1. We denote the commutator of g, h ∈ G by [g, h] = g−1h−1gh and the

conjugation of g by h by h−1gh. For simplicity, we also write h−1gh as gh.
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Definition 3.2. We say a group G is of exponent n for some n ≥ 1 if gn = e for all

g ∈ G.

Definition 3.3. For a group G, a subset H of G is a subgroup of G if H satisfies the four

group requirements in Definition 3.1.

When H is a subgroup of G, we write H ≤ G.

Definition 3.4. For a group G, a subgroup N is a normal subgroup of G if for all

n ∈ N and g ∈ G, g−1ng ∈ N.

When N is a normal subgroup of G, we write N E G. If we define g−1Ng :=

{g−1ng | n ∈ N}, then N E G if and only if g−1Ng = N for all g ∈ G. If we

define gN := {gn | n ∈ N} and Ng := {ng | n ∈ N}, then N E G if and only if

gN = Ng for all g ∈ G.

Definition 3.5. Let N be a normal subgroup of G, the quotient group of N in G is

G/N = {gN | g ∈ G}

with an operation · such that aN · bN = (ab)N where ab follows the group multiplica-

tion rule of G.

Definition 3.6. Let S ⊂ G, then the normal subgroup generated by S, denoted by

〈S〉G, is the closure of {g−1sg | s ∈ S, g ∈ G} under the group multiplication.

When G is clear from context, we drop the superscript G.

Definition 3.7. Let G and H be two groups. A map φ : G → H is a group homomor-

phism if φ(g1g2) = φ(g1)φ(g2) for any g1, g2 ∈ G.
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The natural homomorphism from G to G/N is the map: g 7→ gN. For a

more detailed treatment, we refer to [29, Chapters 1 - 2].

3.1 Group presentations and extensions of groups

Definition 3.8 (Free group). Let S be a set. The free group generated by S, denote by

F (S), consists of the empty word e and non-empty words of the form w = sε1
1 sε2

2 . . . sεn
n

where si ∈ S, εi = +1 or−1, and s and s−1 are never adjacent. The group multiplication

rule is given by juxtaposition, so if the two words are w = w′v and u = v−1u′, where

w′, v, v−1, u′ are also words, then w · u = w′u′.

This definition is obtained from the proof of [29, Theorem 11.1]. For a more

formal treatment, we refer to [29, Pages 343 - 345].

Definition 3.9 (Group presentation). Given a set S, let F (S) be the free group gener-

ated by S and let R be a subset of F (S). Then 〈S : R〉 = F (S)/〈R〉F (S). If the group G

is isomorphic to 〈S : R〉, then 〈S : R〉 is a presentation of G.

The elements of S are the generators and the elements of R are the relations. If

both sets S and R are finite, then we say the group G = 〈S : R〉 is finitely presented.

In this dissertation, we focus on finitely-presentable groups. A relation r ∈ R is

written as r = e to convey its significance in the quotient group G because all the

conjugates of r equal e in G.

We give three examples of group presentations below. A presentation of Z2
2
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is

〈x1, x2 : x2
1 = x2

2 = x1x2x1x2 = e〉.

The elements of Z2
2 are e, x1, x2 and x1x2. The relation x1x2x1x2 implies that

x1x2 = x2x1 in Z2
2, so we can write the relation as x1x2 = x2x1.

The second example is the dihedral group.

Definition 3.10. Let n be a positive integer. The dihedral group Dn is a group with the

following presentation

〈t1, t2 : t2
1 = t2

2 = (t1t2)
n = e〉.

The elements of Dn are (t1t2)
j and t2(t1t2)

j for j ∈ [n]. In this dissertation,

we will work with Dp where p is some odd prime number.

The third example is the solution group, which has two presentations.

Definition 3.11 (Definition 17 of [7]). Let Axxx = 0 be an m× n linear system over Z2,

where A is an m-by-n matrix with entries in Z2 and 0 is an all-0 length-n vector. For

j ∈ [m], define Ij = {k ∈ [n] | A(j, k) = 1}. Then, the homogeneous solution group
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of Axxx = 0 is

Γ(A) := 〈x0, x1, . . . xn−1 :x2
j = e for all j ∈ [n],

∏
k∈Ii

xk = e for all i ∈ [m],

[xj, xk] = e if j, k ∈ Ii for some i〉.

Proposition 3.12. Let Axxx = 0 be an m× n linear system over Z2. For j ∈ [m], define

Gj = 〈{gj,k | k ∈ Ij} : g2
i,k = [gj,k, gj,l] = ∏

k∈Ij

gj,k = e ∀k, l ∈ Ij〉.

and a set

P = {gi,k = gj,k | k ∈ Ii ∩ Ij, i, j ∈ [m]}.

Define

Γ′(A) :=
G0 ∗ G1 . . . ∗ Gm−1

〈P〉 .

Then, Γ(A) ∼= Γ′(A).

Proof. Define φ : Γ(A)→ Γ′(A) by

φ(xi) = gji,i with i ∈ Iji

for all i ∈ [n]. We are going to show that φ is an isomorphism.
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First of all, φ(xi)
2 = g2

ji,i
= e for all i ∈ [n]. For each k, l ∈ Ij for some j,

φ(xk)φ(xl)φ(xk)φ(xl) = gik,kgil ,lgik,kgil ,l = gj,kgj,lgj,kgj,l = e.

For each j ∈ [m],

φ(∏
k∈Ij

xk) = ∏
k∈Ij

φ(xk) = ∏
k∈Ij

gik,k = ∏
k∈Ij

gj,k = e.

Let w ∈ F ({xi|i ∈ [n]}) such that w = e in Γ(A). Then w must be a product of

the conjugates of the relations of Γ(A) and we have established that φ(w) = e.

Hence, φ is a well-defined homomorphism.

Moreover, for each gj,k, since gj,k = gik,k, we know the preimage of gj,k in

Γ(A) is xk, which implies that φ is surjective.

To see φ is injective, consider w ∈ F ({gj,k|j ∈ [m], k ∈ Ij}) such that w = e

in Γ′(A). Then w must be a product of the conjugates of relations of Γ′(A). The

preimage of relations of the form g2
j,k is x2

k , which is trivial in Γ(A). The preimage

of relations of the form [gj,k, gj,l] for k, l ∈ Ij is [xk, xl], which is trivial in Γ(A). The

preimage of relations of the form ∏k∈Ij
gj,k is ∏k∈Ij

xk, which is trivial in Γ(A).

The preimage of relations of the form gj,kgj′,k for some k ∈ Ij ∩ Ij′ is xkxk, which is

also trivial in Γ(A). Hence, φ is also injective and an isomorphism.

Next we introduce four ways to construct new groups by extending given

groups: taking a semidirect product of the given groups, taking the free product

of the given groups, taking the free product of the given groups with amalgama-
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tion, and taking the HNN-extension of a given group.

3.1.1 Semidirect product

Definition 3.13. Let K be a (not necessarily normal) subgroup of a group G. Then a

subgroup Q ≤ G is a complement of K in G if K ∩Q = {e} and KQ = G.

Definition 3.14. A group G is a semidirect product of K by Q, denoted by G = KoQ,

if K is a normal subgroup of G and K has a complement Q1
∼= Q.

A few properties of semidirect product are summarized in the following

lemma.

Lemma 3.15 (Lemma 7.20 of [29]). If K is a normal subgroup of a group G, then the

following statements are equivalent:

1. G is a semidirect product of K by G/K;

2. there is a subgroup Q ≤ G so that every element g ∈ G has a unique expression

g = ax, where a ∈ K and x ∈ Q; and

3. there exists a homomorphism s : G/K → G with v ◦ s = 1G/K (meaning that v ◦ s

is the identity map on G/K), where v : G → G/K is the natural map.

Definition 3.16. Let Q and K be groups, let Aut(K) be the group of automorphisms of

K, and let θ : Q→ Aut(K) : x 7→ θx be a homomorphism. A semidirect product G of K

by Q realizes θ, if for all x ∈ Q and a ∈ K

θx(a) = x−1ax.
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3.1.2 Free product

Definition 3.17. Let {Gi | i ∈ I} be a family of groups. A free product of the Gi is

a group H and a family of homomorphisms ji : Gi → H such that, for every group K

and every family of homomorphisms fi : Gi → K, there exists a unique homomorphism

φ : H → K such that φji = fi for all i ∈ I as shown in the figure below.

Gi H

K

fi

ji

φ

Figure 3.1: Free product: group embedding diagram

The free product of {Gi | i ∈ I} is denoted by ∗i∈IGi. In fact, the homomorphisms

ji are injective [29, Lemma 11.49].

Next we give more insights of the free product, which follows the proof of

[29, Theorem 11.51].

For a family of groups {Gi | i ∈ I}, define G#
i = Gi \ {e}. Then the group ele-

ments of ∗i∈IGi are the empty word e and non-empty words of the form g1g2 . . . gn

where each gi ∈ G#
j for some j and adjacent gi’s lie in different G#

j . The multiplica-

tion is given by juxtaposition. More specifically, e ·w = w · e = w for all w ∈ ∗i∈IGi,
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and

(g1g2 . . . gn) · (h1h2 . . . hm) =



g1g2 . . . gnh1 . . . hm if gn and h1 lie in different G#
i

g1 . . . gn−1(gnh1)h2 . . . hm if gn, h1 ∈ G#
i but gnh1 6= e in Gi

(g1 . . . gn−1) · (h2 . . . hm) if gn, h1 ∈ G#
i and gnh1 = e in Gi.

Note that in the last case the juxtaposition rule is applied again to (g1 . . . gn−1) ·

(h2 . . . hm).

Theorem 3.18 (Theorem 11.53 of [29]). Let {Gi | i ∈ I} be a family of groups, and let

a presentation of Gi be 〈Si : Ri〉, where Si ∩ Sj = ∅ for all i 6= j ∈ I. Then a presentation

of ∗i∈I Ai is 〈⋃i∈I Si :
⋃

i∈I Ri〉.

When there are finitely many groups, we write ∗i∈[n]Gi as G0 ∗ G1 ∗ . . . ∗

Gn−1. In this dissertation, we only take the free product of two groups G and H.

For simplicity, when the presentation of G is clear from the context, we slightly

abuse the notation and write a presentation of G ∗ H as 〈G, SH : RH〉. For a more

detailed treatment of free products, we refer to [29, Pages 388 - 391].

3.1.3 Free product with amalgamation

Definition 3.19. Let G1 and G2 be two groups with subgroups H1 and H2 respectively

such that H1 is isomorphic to H2 under the isomorphism θ : H1 → H2. Then the free
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product of G1 and G2 with amalgamation is defined by

G1 ∗θ G2 :=
G1 ∗ G2

〈{h1 = φ(h1) | h1 ∈ H1}〉G1∗G2
,

where 〈{h1 = θ(h1) | h1 ∈ H1}〉G1∗G2 is the normal subgroup of G1 ∗ G2 generated by

all the relations of the form h1 = θ(h1).

Definition 3.20. For i ∈ {1, 2} and a ∈ Gi, let l(a) be a fixed representative of aHi such

that l(e) = e and if a1Hi = a2Hi, then l(a1) = l(a2). A normal form is an element of

G1 ∗θ G2 of the form

l(a1)l(a2) . . . l(an)b,

where b ∈ H1, n ≥ 0, the elements l(aj) are representatives of left cosets of Hij in Gij ,

and adjacent l(aj) lie in distinct Gi.

Theorem 3.21 (Theorem 11.66 of [29]). Let G1 and G2 be groups, let Hi be a subgroup

of Gi for i = 1, 2, and let θ : H1 → H2 be an isomorphism. Then, for each element

wN ∈ G1 ∗θ G2, where N = 〈{h = θ(h) | h ∈ H1}〉G1∗G2 , there is a unique normal

form F(w) with wN = F(w)N.

Theorem 3.22 (Theorem 11.67 of [29]). Let G1 and G2 be groups, let H1 and H2 be

isomorphic subgroups of G1 and G2 respectively, and let θ : H1 → H2 be an isomorphism.

Then, G1 and G2 are subgroups of G1 ∗θ G2.

For a more detailed treatment of the free product of groups with amalga-

mation, we refer to [29, Pages 401 - 404].
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3.1.4 HNN-extension

Free product of groups with amalgamation is used in the proof of the fol-

lowing theorem due to Graham Higmann, Bernhard Neumann and Hanna Neu-

mann [35].

Theorem 3.23 (Theorem 11.70 [29]). Let G be a group and let φ : A → B be an

isomorphism between subgroups A and B of G. Then, there exists a group K containing

G and an element t ∈ K with

φ(a) = t−1at for all a ∈ A.

This theorem is generalized to give a new way to construct new groups from

a given group, known as the Higman-Neumann-Neumann extension (HNN-extension).

Definition 3.24. Let H be a subgroup of G and let φ : H → H be an injective homo-

morphism, then the HNN-extension of G is

G ∗ F ({t})
〈{t−1ht = φ(h) | h ∈ H}〉G∗F ({s})

,

where t /∈ G.

We slightly abuse the notation and write a presentation of the HNN-extension

of G as

G = 〈G, t : {t−1ht = φ(h) | h ∈ H}〉.
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G is a subgroup generated by G and t of the group K in the statement of Theo-

rem 3.23.

Next, we introduce the normal form of elements of an HNN extension.

Definition 3.25. A normal form is a sequence g0, tε1 , . . . , tεn , gn (n ≥ 0) where

1. g0 is an arbitrary element of G and εi ∈ {−1, 1} for all i,

2. if εi = −1, then gi is a representative of a coset of H in G,

3. if εi = 1, then gi is a representative of a coset of φ(H) in G, and

4. there is no consecutive subsequence of the form tε, e, t−ε.

Theorem 3.26 (Theorem 2.1 of Chapter IV of [36]). Let G = 〈G, t : {t−1ht = φ(h) |

h ∈ H}〉 be an HNN extension. Then

1. The group G is embedded in G by the map g 7→ g. If g0tε1 . . . tεn gn = e in G, then

g0, tε1 , . . . , tεn , gn contains a subsequence of the form t−1, h, t or t, φ(h), t−1 for

some h ∈ H.

2. Every element w of G has a unique representative as w = g0tε1 . . . tεn gn where the

sequence g0, tε1 , . . . , tεn , gn is a normal form.

This theorem is also referred to as the Normal Form Theorem for HNN Exten-

sion.

Definition 3.27. Let G be a group, let H be a subgroup of G, and let φ be an automor-
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phism of H such that there exists p > 0 with φp(h) = h for all h ∈ H. Then,

Ĝ :=
G ∗ 〈t : tp = e〉

〈{t−1ht = φ(h) | h ∈ H}〉G∗〈t:t
p=e〉

is called the Zp-HNN extension of G.

In the rest of this dissertation, we focus on the case that p is an odd prime

number.

Definition 3.28. A normal form of a Zp-HNN extension is a sequence g0, tε1 , . . . , tεn ,

gn (n ≥ 0) where

1. g0 is an arbitrary element of G and εi ∈ {−1, 1} for all i,

2. gi is a representative of a right coset of H in G for 1 ≤ i ≤ n,

3. there is no consecutive subsequence of the form tε, e, t−ε, and

4. there is no subsequence of the form

k of tε︷ ︸︸ ︷
tε, e, tε, . . . , tε, e, tε for k > p/2.

Theorem 3.29. Let Ĝ be a Zp-HNN extension of G with respect to an automorphism of

H ≤ G such that φp(h) = h for all h ∈ H. Then, every element w of Ĝ has a unique

representative as w = g0tε1 . . . tεn gn where the sequence g0, tε1 , . . . , tεn , gn is a normal

form.

The proof is similar to Theorem 3.26 and we present it in Appendix A.

Corollary 3.30. Let Ĝ be a Zp-HNN extension of G with respect to an automorphism of

H ≤ G such that φp(h) = h for all h ∈ H. Then, G ≤ Ĝ.
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This corollary follows from the fact that each g ∈ G is a unique normal form.

Theorem 3.31. Let Ĝ be a Zp-HNN extension of G with respect to an automorphism of

H ≤ G such that φp(h) = h for all h ∈ H. Then,

Ĝ = K o 〈t : tp = e〉,

where K is the subgroup generated by t−iGti for i = 0, 1, . . . , p− 2, p− 1 and the action

of t on k ∈ K is conjugation by t.

Proof. By Theorem 3.29 and each element of Ĝ has a representative as the product

of a unique normal form as

g0tε1 g1 . . . tεn gn = g0gt−ε1
1 gt−ε1−ε2

2 . . . gt−∑n
i=1 εi

n t∑n
i=1 εi

where the addition in the exponent of t is modulo p. Then the theorem follows.

3.2 Group representation and approximate representation

Definition 3.32. A unitary representation of a group G on the Hilbert space H is a

homomorphism from G to U (H), which is the unitary group of H with matrix multipli-

cation.

Note that if a presentation of G is 〈S : R〉, then a representation of G can

also be expressed as a homomorphism φ : F (S) → U (H) such that φ(r) = 1H

for all r ∈ R.
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For example, taking H = C and mapping: g 7→ 1 gives us the trivial repre-

sentation of G. Among all the representations of G, we will work with the regular

representation of G.

Definition 3.33. Denote the Hilbert space over C with basis {|g〉 : g ∈ G} by `2G.

Define Lg ∈ U (`2G) by

Lg = ∑
h∈G
|gh〉〈h|

and Rg ∈ U (`2G) by

Rg = ∑
h∈G
|hg−1〉〈h|

for each g ∈ G. Then, the left regular representation of G is the homomorphism

φL : G → U (`2G) such that φL(g) = Lg; and the right regular representation of G is

the homomorphism φR : G → U (`2G) such that φR(g) = Rg for each g ∈ G.

It is immediate to see that

LgLg′ = Lgg′

RgRg′ = Rgg′

LgRg′ = Rg′Lg

for all g, g′ ∈ G. That is, Lg commutes with Rg′ for all g, g′ ∈ G.

If H is finite-dimensional, we say a representation of G on U (H) is a finite-
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dimensional representation. The set of elements that are trivial in all finite-dimensional

representations form a normal subgroup of G, denoted by N f in. For any group

G, we define

G f in := G/N f in.

Definition 3.34 (Definition 10 of [7]). A homomorphism φ : G → H is a f inf inf in-

embedding if the induced map: G f in → H f in is injective.

Definition 3.35 (Definition 10 of [7]). A homomorphism φ : G → H is a f in∗f in∗f in∗-

embedding if it is injective and also a f in-embedding.

Next, we define approximate representations of a group G.

Definition 3.36 (Definition 5 of [7]). Let G = 〈S : R〉 be a finitely-presented group,

and let H be a finite-dimensional Hilbert space. A finite-dimensional εεε-approximate

representation of G is a homomorphism φ : F (S)→ U (H) such that ‖φ(r)− 1‖ ≤ ε

for all r ∈ R.

Note that in the definition above, the group G is defined by its presenta-

tion 〈S : R〉 and each g ∈ G has a defining representative in F (S). An ele-

ment g ∈ G = 〈S : R〉, whose defining representative is w ∈ F (S), is nontriv-

ial in approximate representations of G if there exist some δ > 0 such that for all

ε > 0, there is an ε-approximate representation φ : F (S) → U (H) such that

‖φ(w)− 1‖ ≥ δ. On the other hand, an element g ∈ G = 〈S : R〉, whose repre-

sentative is w ∈ F (S), is trivial in approximate representations of G if for all ε > 0
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and all ε-approximate representation φ : F (S)→ U (H), φ(w) = 1.

Lemma 3.37. Let ψj be an εj-approximate representation of G = 〈S : R〉 on Cdj for

j ∈ [k]. Then,

⊕
j∈[k]

ψj : G → U (C∑ dj), written as g 7→
⊕
j∈[k]

ψj(g)

is a maxj∈[k] εj-approximate representation; and

⊗
j∈[k]

ψj : G → U (C∏ dj), written as g 7→
⊗
j∈[k]

ψj(g)

is a ∑j∈[k] εj-approximate representation.

Proof. Let r ∈ R. The direct product case can be proved by

‖
⊕
j∈[k]

ψj(r)− 1‖ = ∑
j∈[k]

dj‖ψj(r)− 1‖
∑j∈[k] dj

≤ max
j∈[k]

εj.

The tensor-product case can be proved using Triangle inequality as

‖
⊗
j∈[k]

ψj(r)− 1‖ ≤‖
⊗
j∈[k]

ψj(r)− 1
Cd0 ⊗

k−1⊗
j=1

ψj(r)‖+ . . . + ‖1
C

∏j∈[k−1] dj ⊗ ψk−1(r)− 1‖

= ∑
j∈[k]
‖ψj(r)− 1‖ = ∑

j∈[k]
εj,

where we use the fact that ‖ψj(r)‖ = 1.

Proposition 3.38. The set of elements of G = 〈S : R〉 that are trivial in finite-dimensional

approximate representations form a normal subgroup of G, denoted by N f a.
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Proof. Every element in N f a can be written as

∏
i∈[n]

w−1
i giwi

for some n ≥ 1, where wi ∈ F (S) and gi is trivial in approximate representations

of G. Let ψ : G → U (Cd) be an ε-approximate representation of G. Then,

ψ( ∏
i∈[n]

w−1
i giwi) = ∏

i∈[n]
ψ(w)−1ψ(gi)ψ(w) = 1,

where we use the definition of elements that are trivial in finite-dimensional ap-

proximate representations. Since the equation above holds for all ε-approximate

representations, the proposition follows.

For a group G, we define

G f a := G/N f a.

Definition 3.39 (Definition 14 of [7]). For finitely-presented groups G and H, a ho-

momorphism φ : G → H is an f af af a-embedding if the induced map: G f a → H f a is

injective.

Definition 3.40 (Definition 14 of [7]). For finitely-presented groups G and H, a homo-

morphism φ : G → H is an f a∗f a∗f a∗-embedding, if it is injective, a f in-embedding and an

f a-embedding.

To determine if a homomorphism φ : G → H is a f a∗-embedding, we use
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the following lemma.

Lemma 3.41 (Lemma 15 of [7]). Let G = 〈S : R〉 and H = 〈S′ : R′〉 be two finitely

presented groups, and let Ψ : F (S)→ F (S′) be a lift of a homomorphism ψ : G → H.

1. Suppose that for every representation (resp. finite-dimensional representation) φ of

G, there is a representation (resp. finite-dimensional representation) γ of H such

that φ is a direct summand of γ ◦ ψ. Then ψ is injective (resp. a fin-embedding).

2. Suppose that there is an integer N > 0 and a real number C > 0 such that for every

d-dimensional ε-representation φ of G, where ε > 0, there is an Nd-dimensional

Cε-representation γ of H such that φ is a direct summand of γ ◦ ψ. Then ψ is an

f a-embedding.

For more details, we refer to [7, Section 2].

3.3 Solvable groups, sofic groups and hyperlinear groups

Our main results require properties of solvable groups, sofic groups and hy-

perlinear groups. We formally introduce them below. We also state the relations

between them and the properties of them in this section.

Definition 3.42. A group G is solvable if it has subgroups G0 = {e}, G1, . . . , Gk−1

and Gk = G such that Gj−1 is normal in Gj and Gj/Gj−1 is an abelian group, for

1 ≤ j ≤ k.

Before we introduce sofic groups, we first introduce the permutation group

Sn.
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Definition 3.43. The permutation group Sn is the group of all the permutations of [n]

where the operation is the composition of permutations.

The Hamming invariant length function ` on Sn is defined by

`Sn(σ) =
1
n
|{i ∈ [n] | σ(i) 6= i}|

for each σ ∈ Sn.

Definition 3.44. A finitely-presented group G is sofic if for every ε > 0 and every finite

subset F of G \ {e}, there is a natural number n and a function Ψ : G → Sn such that

Ψ(eG) = eSn and for every g, h ∈ F:

• `Sn(Ψ(gh)(Ψ(g)Ψ(h))−1) < ε; and

• `Sn(Ψ(g)) > r(g) where r(g) is a positive constant only depending on g.

We denote the set of all n× n unitaries by Un and define the Hilbert-Schmidt

invariant length function on Un by

`Un(U) =
1
2
‖U − 1‖.

Definition 3.45. A finitely-presented group G is hyperlinear if for every ε > 0 and

every finite subset F of G \ {e}, there is a natural number n and a function Ψ : G → Un

such that Ψ(eG) = 1 and for every g, h ∈ F:

• `Un(Ψ(gh)(Ψ(g)Ψ(h))−1) < ε; and

• `Un(Ψ(g)) > r(g) where r(g) is a positive constant only depending on g.
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For more details about sofic groups and hyperlinear groups, we refer to [37,

Chapter 2.1 and 2.2].

For our proof, we use the following properties of solvable groups and sofic

group introduced in [37, Chapter 2.3 and 2.4].

Proposition 3.46 (Proposition 2.3.1 of [37]). Solvable groups are sofic.

Proposition 3.47 (Proposition 2.2.5 of [37]). Every sofic group is hyperlinear.

Slofstra proves a lemma relating hyperlinear groups and approximate rep-

resentations.

Lemma 3.48 (Lemma 13 of [7]). A finitely-presented group G is hyperlinear if and

only if every non-trivial element of G is nontrivial in approximate representations.

About the closure properties of sofic groups, we record the following propo-

sitions from [37].

Proposition 3.49 (Property 5 of Proposition 2.4.1 of [37]). If a group G is sofic and

K is an abelian group, then the semidirect product of G by K is also sofic.

Proposition 3.50 (Property 7 of Proposition 2.4.1 of [37]). If H1 and H2 are finite

subgroups of sofic groups G1 and G2, and α : H1 → H2 is an isomorphism, then the free

product of G1 and G2 with amalgamation, G1 ∗α G2, is sofic.

Proposition 3.51 (Property 8 of Proposition 2.4.1 of [37]). If H is a solvable subgroup

of a sofic group G, and α : H → H is an injective homomorphism, then the HNN-

extension of G by α is sofic.
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Proposition 3.52. Let G be a sofic group, let H be a subgroup of G and let ψ be a

isomorphism of H of order p. Then,

Ĝ =
G ∗ 〈t : tp = e〉

〈{t−1ht = ψ(h) | h ∈ H}〉

is also sofic.

This proof is very similar to that of Proposition 3.51 and it is based on The-

orem 3.31 and Proposition 3.49. We present it in Appendix A.

3.4 Slofstra’s embedding procedure

In this section, we give an overview of Slofstra’s f a∗-embedding proce-

dure, first introduced in [7]. This procedure preserves elements that are nontriv-

ial in finite-dimensional approximate representations, in the sense that if some

elements are nontrivial in finite-dimensional approximate representations, then

their images in the embedded group are also nontrivial in finite-dimensional ap-

proximate representations. The embedding procedure is a key step in the re-

ductions from (Membership(nA, nB, mA, mB)qc,K) and (Membership(nA, nB, mA,

mB)qa,K) to a word problem.

We start by giving the definitions of homogeneous linear-plus-conjugacy

groups and extended homogeneous linear-plus-conjugacy groups, which are gen-

eralized from the definition of solution groups.

Definition 3.53 (Definition 31 of [7]). Let A be an m× n matrix over Z2, and C ⊆
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[n]× [n]× [n]. Let

Γ0(A, C) := 〈Γ(A) :xixjxi = xk for all (i, j, k) ∈ C〉.

We say that a group G is a homogeneous-linear-plus-conjugacy group if it has a

presentation of this form.

Definition 3.54 (Definition 32 of [7]). Let A be an m× n matrix over Z2, let C0 ⊆

[n]× [n]× [n], let C1 ⊆ [l]× [n]× [n], and let L be an l × l lower-triangular matrix

with non-negative integer entries. Let

EΓ0(A, C0, C1, L) := 〈Γ0(A, C0),y0, . . . , yl−1 : y−1
i xjyi = xk for all (i, j, k) ∈ C1,

y−1
i yjyi = yL(i,j)

j for all i > j with L(i, j) > 0〉.

We say a group G is an extended homogeneous-linear-plus-conjugacy group if it has

a presentation of this form.

Slofstra’s f a∗ embedding procedure has two steps, which are summarized

in the two propositions below.

Proposition 3.55 (Proposition 33 of [7]). Let G be an extended homogeneous linear-

plus-conjugacy group. Then there is an f a∗-embedding φ : G → H where H is a

linear-plus-conjugacy group.

Proposition 3.56 (Proposition 27 and Lemma 29 of [7]). Let G = 〈S : R〉 be a linear-

plus-conjugacy group. Then there is an f a∗-embedding G → Γ, where Γ = 〈SΓ : RΓ〉 is

a solution group.
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Note that Slofstra gives the explicit formulation of the two f a∗-embeddings

above and the groups H and Γ. The steps of this embedding procedure can be

found in Appendix B. For more details, we refer to [7, Section 4].

The combination of Propositions 3.55 and 3.56 gives us an f a∗-embedding,

φtot, of an extended homogeneous linear-plus-conjugacy group G into a solution

group Γ = 〈SΓ : RΓ〉. Moreover, if some generators in S are known to be non-

trivial, the proofs of Propositions 3.55 and 3.56 in [7] allow us to identify a finite

subset S ⊆ SΓ such that each s ∈ S is also nontrivial in Γ. It implies that if G is

hyperlinear, by Definition 3.40 and Lemma 3.48, each s ∈ S is also nontrivial in

approximate representations of Γ. For more details of this assertion, we refer to

[7, Section 4].

To prove our main result, in one of the steps, we need to bound the trace of

the image of each w ∈ W in approximate representations, where W is a finite set

and each w ∈ W is known to be nontrivial in approximate representations. For

this purpose, we introduce the following proposition.

Proposition 3.57. Let G = 〈S : R〉 and W be a finite subset of F (S) such that the

image of each w ∈ W is nontrivial in approximate representations of G. Then, for every

ε, ζ > 0, there is an ε-approximate representation φ with 0 ≤ T̃r(φ(w)) ≤ ζ for each

w ∈W.

This proposition is generalized from [7, Lemma 12].

Proof. Let φw be an εw-approximate representation of G such that ‖φw(w)− 1‖ ≥

δw. By definition of approximate representations, such φw, εw and δw exist. Define
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φ = ⊕w∈Wφw, then φ is an ε := maxw∈W εw-approximate representation of G such

that for each w ∈W, ‖φ(w)− 1‖ ≥ δw/|W|. Define δ := minw∈W δw/|W|, then,

‖φ(w)− 1‖ ≥ δ for all w ∈W.

Suppose the dimension of φ is d. Let φ be the approximate representation

obtained from φ by entry-wise complex conjugate of φ with respect to the stan-

dard basis of Cd. Then, φ is also an ε-approximate representation of G. Define

γ : G → U (C4d) by

γ(g) = φ(g)⊕ φ(g)⊕ 1C2d .

Then γ is also an ε-approximate representation, and

Tr(γ(w)) = Tr(φ(w)) + Tr(φ(w)) + 2d ≥ 0

‖γ(w)− 1‖2 = ‖φ(w)− 1‖2/2 ≥ δ2/2

for all w ∈W. These two relations imply that

0 ≤ T̃r(γ(w)) = Re T̃r(γ(w)) ≤ 2− ‖γ(w)− 1‖2

2
≤ 1− δ2

4
,

where we use the fact that for any unitary U, ‖U − 1‖2 = 2− 2 Re T̃r(U).

Finally, we pick k such that (1 − δ2/4)k ≤ ζ for the given ζ. Then, by

Lemma 3.37, φ⊗k is an kε-representation of G such that 0 ≤ T̃r(φ⊗k(w)) ≤ ζ
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for all w ∈W. Therefore, if we start with a ε/k-approximate representation φ, we

get the required ε-approximate representation.
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Chapter 4: Introduction to quantum correlations

We introduce quantum correlations formally in this chapter. In Section 4.1,

we formally introduce the four sets of quantum correlations. In Section 4.2, we

show that quantum correlations can tell us certain relations satisfied by the mea-

surements with respect to the shared state. Such observations are going to be

used in later chapters. Lastly, in Section 4.3, we introduce a correlation associated

with a binary linear system, which can give us stronger relations satisfied by the

measurements with respect to the shared state.

4.1 Four sets of quantum correlations

Consider a scenario involving a referee and two non-communicating partic-

ipants, Alice and Bob, where each of them needs to give an answer for a question

chosen from a fixed set of questions. This scenario is nonlocal and illustrated in

the figure below.
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a

x y

b

Alice’s device Bob’s device
(Entanglement)

Figure 4.1: A nonlocal scenario between Alice and Bob with entanglement

Definition 4.1. A nonlocal scenario is a tuple ([nA], [nB], [mA], [mB]), where nA, nB, mA

and mB are positive integers. [nA] is referred to as Alice’s question set; [nB] is referred to

as Bob’s question set; [mA] is referred to as Alice’s answer set; and [mB] is referred to as

Bob’s answer set.

We are interested in the behaviour of Alice and Bob in this scenario. The

behaviour of the two participants can be described by the joint conditional prob-

ability distribution of their answers for each pair of possible questions.

Definition 4.2. A bipartite correlation of a nonlocal scenario ([nA], [nB], [mA], [mB])

is a function P : [nA]× [nB]× [mA]× [mB]→ R≥0, written as (i, j, k, l) 7→ P(k, l|i, j)

where P(k, l|i, j) is the probability for Alice to answer k and Bob to answer l when the

question to Alice is i and to Bob is j

Note that when we define quantum correlations in later chapters, we may

label some questions with their corresponding group elements. In this case, the

sets of questions may not be sets of integers, but the sets of questions in this

dissertation are always finite and isomorphic to [n] for some n > 0.

One way to view a correlation is to arrange the entries in a correlation ma-

trix, where the columns are labelled by Alice’s question-answer pairs and the
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rows are labelled by Bob’s question-answer pairs. Then, the value at the intersec-

tion of row (j, l) and column (i, k) is P(k, l|i, j). We give a simple example below.

PPPPPPPPP(y, b)
(x, a)

(0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) P(0, 0|0, 0) P(1, 0|0, 0) P(0, 0|1, 0) P(1, 0|1, 0)
(0, 1) P(0, 1|0, 0) P(1, 1|0, 0) P(0, 1|1, 0) P(1, 1|1, 0)
(1, 0) P(0, 0|0, 1) P(1, 0|0, 1) P(0, 0|1, 1) P(1, 0|1, 1)
(1, 1) P(0, 1|0, 1) P(1, 1|0, 1) P(0, 1|1, 1) P(1, 1|1, 1)

Table 4.1: Example correlation matrix for a nonlocal scenario ([2], [2], [2], [2]) with
(x, a) labelling Alice’s question-answer pair and (y, b) labelling Bob’s question-
answer pair.

Definition 4.3. The size of a correlation P : [nA]× [nB]× [mA]× [mB] → R≥0 is

the size of its correlation matrix, which equals nAnBmAmB.

The size of the correlation given in Table 4.1 is 16.

We first introduce correlations induced by quantum spatial strategies with

projective measurements.

Definition 4.4 (Projective measurement). For a Hilbert space H, a set of projectors

in L(H), {Mj | j ∈ [n]}, is a projective measurement if Mi Mj = 0 for all i 6= j and

∑j∈[n] Mj = 1H.

Definition 4.5. A quantum spatial strategy with projective measurements for a

nonlocal scenario ([nA], [nB], [mA], [mB]) is a tuple

(|ψ〉 ∈ HA ⊗HB, {{M(k)
i | k ∈ [mA]} | i ∈ [nA]}, {{N(l)

j | l ∈ [mB]} | j ∈ [nB]}),

where HA and HB are Hilbert spaces, {{M(k)
i | k ∈ [mA]} | i ∈ [nA]} is a set of
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projective measurements onHA, and {{N(l)
j | l ∈ [mB]} | j ∈ [nB]} is a set of projective

measurements onHB.

Note that the tensor product structure emphasizes that the two parties can-

not communicate with each other and that the projectors act on different Hilbert

spaces (Fig. 4.1), which is the reason why we say the strategy is spatial.

When bothHA andHB are finite-dimensional, we say the strategy is a quan-

tum finite-dimensional spatial strategy. Otherwise, it is called a quantum infinite-

dimensional spatial strategy. The correlation induced by a quantum spatial strategy

is given by

P(k, l|i, j) = 〈ψ|M(k)
i ⊗ N(l)

j |ψ〉

for all i ∈ [nA], j ∈ [nB], k ∈ [mA] and l ∈ [mB].

Definition 4.6. The set Cq(nA, nB, mA, mB) consists of all quantum correlations in-

duced by quantum finite-dimensional spatial strategies with projective measurements of

a nonlocal scenario ([nA], [nB], [mA], [mB]).

We can also define a relaxation of Cq(nA, nB, mA, mB) by allowing infinite-

dimensional strategies.

Definition 4.7. The set Cqs(nA, nB, mA, mB) consists of all quantum correlations in-

duced by quantum finite-dimensional and infinite-dimensional spatial strategies with

projective measurements of a nonlocal scenario ([nA], [nB], [mA], [mB]).

It is clear from the definitions that for each ([nA], [nB], [mA], [mB]), Cq(nA,
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nB, mA, mB) ⊆ Cqs(nA, nB, mA, mB).

Definition 4.8. The set Cqa(nA, nB, mA, mB) is the set of correlations P : [nA] ×

[nB]× [mA]× [mB] → R≥0 such that for every ε > 0 there exists a correlation Pε ∈

Cqs(nA, nB, mA, mB) such that

max
i∈[nA],j∈[nB],k∈[mA],l∈[mB]

|P(k, l|i, j)− Pε(k, l|i, j)| ≤ ε.

In other words, Cqa(nA, nB, mA, mB) is the closure of Cq(nA, nB, mA, mB). By

the definition, we can also deduce that Cqs(nA, nB, mA, mB) ⊆ Cqa(nA, nB, mA,

mB).

A way to generalize the notion of quantum spatial strategy is to drop the

requirement that the projective measurements act on different Hilbert spaces. In-

stead, we just require the projectors to commute.

Definition 4.9. A quantum commuting-operator strategy of a nonlocal scenario

([nA], [nB], [mA], [mB]) presented in terms of projective measurements is a tuple

(|ψ〉 ∈ H, {{M(k)
i | k ∈ [mA]} | i ∈ [nA]}, {{N(l)

j | l ∈ [mB]} | j ∈ [nB]}),

where H is a Hilbert space, and {{M(k)
i | k ∈ [mA]} | i ∈ [nA]} and {{N(l)

j | l ∈

[mB]} | j ∈ [nB]} are two sets of projective measurements on H such that M(k)
i N(l)

j =

N(l)
j M(k)

i for all i ∈ [nA], j ∈ [nB], k ∈ [mA] and l ∈ [mB].

Here the Hilbert spaceH does not have to be finite-dimensional.
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Proposition 4.10. For a quantum spatial strategy

(|ψ〉 ∈ HA ⊗HB, {{M(k)
i | k ∈ [mA]} | i ∈ [nA]}, {{N(l)

j | l ∈ [mB]} | j ∈ [nB]}),

there exists a quantum commuting-operator strategy

(|ψ̃〉 ∈ H, {{M̃(k)
i | k ∈ [mA]} | i ∈ [nA]}, {{Ñ(l)

j | l ∈ [mB]} | j ∈ [nB]})

such that 〈ψ|M(k)
i ⊗ N(l)

j |ψ〉 = 〈ψ̃|M̃
(k)
i Ñ(l)

j |ψ̃〉.

It suffices to choose H = HA ⊗ HB, |ψ̃〉 = |ψ〉, M̃(k)
i = M(k)

i ⊗ 1HB and

Ñ(l)
j = 1HA ⊗ N(l)

j and this proposition follows.

With quantum commuting-operator strategies we can define a larger set of

quantum correlations.

Definition 4.11. The set Cqc(nA, nB, mA, mB) consists of all quantum correlations in-

duced by quantum commuting-operator strategies of a scenario ([nA], [nB], [mA], [mB]).

By Proposition 4.10, we know that Cqs(nA, nB, mA, mB) ⊆ Cqc(nA, nB, mA, mB).

Since Cqc is its own closure [9, Theorem 4.3], we get that Cqa(nA, nB, mA, mB) ⊆

Cqc(nA, nB, mA, mB). Combining the inclusion relations established so far, we

reach a chain of inclusion

Cq(nA, nB, mA, mB) ⊆ Cqs(nA, nB, mA, mB)

⊆Cqa(nA, nB, mA, mB) ⊆ Cqc(nA, nB, mA, mB).
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Notationwise, when nA, nB, mA and mB are clear from context, we write Ct for

Ct(nA, nB, mA, mB) for t ∈ {q, qs, qa, qc}.

Definition 4.12. A correlation P : [nA]× [nB]× [mA]× [mB]→ R≥0 is synchronous

if nA = nB = n, mA = mB = m, and

∑
j∈[m]

P(j, j|i, i) = 1

for all i ∈ [n].

For t ∈ {q, qs, qa, qc}, we can identify a subset of Ct, denoted by Cs
t which

contains all the synchronous correlations in it.

4.2 Deriving operator-state relations from a correlation

Quantum correlation can tell us some weaker properties about the mea-

surements and the quantum state by itself. In this section, we list some of such

observations, which in turn will be used in self-testing proofs in chapter 5. When

deriving such relations, we work in the commuting-operator model. We also

omit the identity when only one projector from either Alice or Bob is applied. For

example, 〈ψ|M(k)
i · 1|ψ〉 is written as 〈ψ|M(k)

i |ψ〉.

Proposition 4.13 (Equivalence Test). Let |ψ〉 ∈ H be a quantum state, and {Mj |

j ∈ [n]} and {Nj | j ∈ [n]} be two commuting projective measurements on H for some
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n ≥ 2. If 〈ψ|MjNk|ψ〉 = 0 for all j 6= k ∈ [n], then

Mj|ψ〉 = Nj|ψ〉

for each j ∈ [n].

Proof. Fix j ∈ [n] and suppose that 〈ψ|MjNj|ψ〉 = xj for some xj ≥ 0. We first

calculate the norm of Mj|ψ〉, then the norm of Nj|ψ〉 follows easily.

‖Mj|ψ〉‖2 =〈ψ|Mj|ψ〉

=〈ψ|Mj( ∑
j∈[n]

Nj)|ψ〉

=xj + (j− 1) · 0 = xj.

From such calculations, we know

‖Mj|ψ〉‖ = ‖Nj|ψ〉‖ =
√

xj.

Then we will prove that Mj|ψ〉 = Nj|ψ〉.

‖Mj|ψ〉 − Nj|ψ〉‖2 = 〈ψ|(Mj − Nj)
2|ψ〉

= 〈ψ|M2
j |ψ〉+ 〈ψ|N2

j |ψ〉 − 2〈ψ|MjNj|ψ〉

= xj + xj − 2xj = 0.

By the positivity of the vector norm, we know Mj|ψ〉 − Nj|ψ〉 = 0 for each j ∈
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[n].

If we view the subscript j as Alice and Bob’s answers, the condition of this

proposition implies that the correlation generated by (|ψ〉, {Mj | j ∈ [n]}, {Nj |

j ∈ [n]}) is synchronous.

Proposition 4.14. Let |ψ〉 ∈ H be a quantum state, {M(k)
0 | k ∈ [mA]} and {M(k)

1 |

k ∈ [mA]} be two projective measurements on H, both of which commute with the

projective measurement {N(l,l′) | l, l′ ∈ [mA]} onH. If

〈ψ|M(k)
0 N(l,l′)|ψ〉 = 〈ψ|M(k′)

1 N(l,l′)|ψ〉 = 0

for any k 6= l and k′ 6= l′, then

M(k)
0 M(k′)

1 |ψ〉 = M(k′)
1 M(k)

0 |ψ〉

for any k, k′ ∈ [mA].

Proof. The condition implies that the strategies

(|ψ〉, {M(k)
0 | k ∈ [mA]}, { ∑

l′∈[mA]

N(k,l′) | k ∈ [mA]}),

(|ψ〉, {M(k′)
1 | k′ ∈ [mA]}, { ∑

l∈[mA]

N(l,k′) | k′ ∈ [mA]})
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both satisfy the condition of Proposition 4.14, so we can derive that

M(k)
0 |ψ〉 = ∑

l′∈[mA]

N(k,l′)|ψ〉,

M(k′)
1 |ψ〉 = ∑

l∈[mA]

N(l,k′)|ψ〉,

for each k, k′ ∈ [mA]. Then we can calculate that

M(k)
0 M(k′)

1 |ψ〉 = M(k)
0 ∑

l∈[mA]

N(l,k′)(|ψ〉 = ∑
l∈[mA]

N(l,k′)M(k)
0 |ψ〉

= ∑
l∈[mA]

N(l,k′) ∑
l′∈[mA]

N(k,l′)|ψ〉 = N(k,k′)|ψ〉 = ∑
l′∈[mA]

N(l′,k) ∑
l∈[mA]

N(l,k′)|ψ〉

= M(k′)
1 ∑

l′∈[mA]

N(l′,k)|ψ〉 = M(k′)
1 M(k)

0 |ψ〉,

for each k, k′ ∈ [mA], where we repeatedly use the two equations above and the

fact that the Alice and Bob’s projectors commute.

Lemma 4.15 (Substitution Lemma). Let |ψ〉 ∈ H be a quantum state. Suppose there

exist unitaries {V} ∪ {Vi | i ∈ [k]} ∪ {Mi | i ∈ [n]} on H commuting with {Ni | i ∈

[n]} onH such that

Mi|ψ〉 = Ni|ψ〉

for each i ∈ [n], and

V|ψ〉 = ∏
i∈[k]

Vi|ψ〉.
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Then,

V ∏
i∈[n]

Mi|ψ〉 =

∏
i∈[k]

Vi

∏
i∈[n]

Mi

 |ψ〉.
Proof. We prove this lemma by induction on n. The n = 0 case follows the condi-

tion that V|ψ〉 = ∏i∈[k] Vi|ψ〉.

Assume the conclusion holds for n = m. Consider the case n = m + 1, then

V ∏
i∈[m+1]

Mi|ψ〉 = V

 ∏
i∈[m]

Mi

Mm|ψ〉 = V

 ∏
i∈[m]

Mi

Nm|ψ〉

= NmV

 ∏
i∈[m]

Mi

 |ψ〉 = Nm

∏
i∈[k]

Vi

 ∏
i∈[m]

Mi

 |ψ〉
=

∏
i∈[k]

Vi

 ∏
i∈[m]

Mi

Nm|ψ〉 =

∏
i∈[k]

Vi

 ∏
i∈[m+1]

Mi

 |ψ〉.
By the principle of inductive proof, the proof is complete.

4.3 A correlation associated with a binary linear system

In this section, we study a correlation induced by a representation of a so-

lution group, which will be shown to be a perfect correlation associated with the

corresponding linear system as defined below.

Definition 4.16. Let Axxx = 0 be a binary linear system where each row has κ nonzero
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entries. For each i ∈ [m], we define 1

Ii = {j ∈ [n] | A(i, j) = 1}

Si = {xxx ∈ Z
Ii
2
∼= Zκ

2 | ∑
j∈Ii

xxx(j) ≡ 0 (mod 2)}.

A correlation P : [m+ n]× [m+ n]×Zκ
2×Zκ

2 is a perfect correlation associated with

Axxx = 0 if

P.1 when i > m, P(x, y|i, j) = 0 if x > 1 2;

P.2 when j > m, P(x, y|i, j) = 0 if y > 1;

P.3 when i, j ∈ [m], P(xxx, yyy|i, j) = 0 when xxx /∈ Si, or yyy /∈ Sj, or there exists k ∈ Ii ∩ Ij

such that xxx(k) 6= yyy(k);

P.4 when i > m, j ∈ [m] and i−m ∈ Ij,

∑
yyy∈Sj

P(yyy(i−m), yyy|i, j) = 1;

P.5 when j > m, i ∈ [m] and j−m ∈ Ii,

∑
xxx∈Si

P(xxx, xxx(j−m)|i, j) = 1; and

P.6 when i > m, P(0, 0|i, i) + P(1, 1|i, i) = 1.
1The isomorphism between Z

Ii
2 and Zκ

2 is extended from the map φi : Ii → [κ] that map the
smallest j ∈ Ii to 0, the second smallest to 1, and etc..

2Here, we fix a natural isomorphism between Zκ
2 and [2κ ].
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Intuitively, the correlation requires that whenever Alice or Bob gets a ques-

tion i ∈ [m], they need to give a satisfying assignment of equation i. That is, their

answer should be from Si. The correlation also requires that whenever Alice or

Bob gets a question j > m, they need to give an assignment to the variable xj−m.

That is, their answer should be from {0, 1}, as required by P.1 and P.2. More

specifically, P.3 requires that when Alice and Bob get questions i, j ∈ [m], they not

only need to give satisfying assignments, their assignment to the common vari-

able in both equations should be consistent; P.4 and P.5 require that when one

party gives an assignment to some equation and the other party gives an assign-

ment to a variable in the equation, the equation assignment should be satisfying

and the variable assignment should be consistent between the two parties; and

P.6 requires that when both parties assign values to a common variable, their

assignments should always be consistent.

Next, we define the correlation induced by the regular representation of a

solution group. For a binary linear system Axxx = 0, let L and R be the left and
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right representation of Γ(A) respectively. Define projectors

M(xxx)
i =



∏j∈Ii

(
1+(−1)xxx(j)L(xj)

2

)
if i ∈ [m], xxx ∈ Si

1+(−1)xxx L(xi−m)
2 if xxx ∈ [2],

0 otherwise;

N(xxx)
i =



∏j∈Ii

(
1+(−1)xxx(j)R(xj)

2

)
, if i ∈ [m], xxx ∈ Si

1+(−1)xxxR(xi−m)
2 if xxx ∈ [2],

0 otherwise.

Since ∏j∈Ii
ρ(xj) = 1, we know {M(xxx)

i | xxx ∈ Si} and {N(xxx)
i | xxx ∈ Si} are projective

measurements for each i ∈ [m]. Then the projective measurement strategy is

Sρ = (|e〉 ∈ `2Γ(A), {{M(xxx)
i | xxx ∈ Zκ

2} | i ∈ [m + n]}, {{N(xxx)
i | xxx ∈ Zκ

2} | i ∈ [m + n]}),

and the induced quantum correlation PA : [m + n]× [m + n]×Zκ
2 ×Zκ

2 → R is

defined by

PA(xxx, yyy|i, j) = 〈e|M(xxx)
i N(yyy)

j |e〉

for i, j ∈ [m + n] and xxx ∈ Zκ
2, yyy ∈ Zκ

2.

Proposition 4.17. The correlation PA defined above is a perfect correlation associated

with Axxx = 0.
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Proof. By the definition of PA, when i, j ∈ [m], it is easy to see that PA(xxx, yyy|i, j) = 0

if xxx /∈ Si or yyy /∈ Sj. Next, consider xxx ∈ Si and yyy ∈ Sj such that there exists k0 ∈

Ii ∩ Ij and xxx(k0) 6= yyy(k0). Without loss of generality, we can assume xxx(k0) = 0

and yyy(k0) = 1. Then, the expression of PA(xxx, yyy|i, j) contains the term

1 + L(xk0)

2
1− R(xk0)

2
|e〉 = 1

4
(|e〉+ |xk0〉 − |xk0〉 − |e〉) = 0.

Hence, for any i, j ∈ [m], if there exists k0 ∈ Ii ∩ Ij such that xxx(k0) 6= yyy(k0), then

PA(xxx, yyy|i, j) = 0.

Again, by the definition of PA, it is easy to see that when i > m, PA(0, 0|i, i)+

PA(1, 1|i, i) = 1. When i ∈ [m], j > m and j−m ∈ Ii, then

∑
xxx∈Si

PA(xxx, xxx(j−m)|i, j) = ∑
xxx∈Si

〈e|∏
k∈Ii

1 + (−1)xxx(k)L(xk)

2
|e〉 = 1,

where we use the fact that

[
1 + (−1)yL(xj−m)

2

] [
1 + (−1)yR(xj−m)

2

]
|ψ〉 =

1 + (−1)yL(xj−m)

2
|e〉.

This is also true if we switch i and j, which can be proved analogously, so the

proof is complete.

In the next lemma, we study the implication of a correlation being a perfect

correlation associated with a binary linear system Axxx = 0. First, we establish

some facts about commuting projectors.
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Proposition 4.18. Let {Mi | i ∈ [n]} be a commuting set of projectors on H and

|ψ〉 ∈ H. Then, ∏i∈[n] Mi|ψ〉 = |ψ〉 if and only if Mi|ψ〉 = |ψ〉 for each i ∈ [n].

Proof. First of all, if Mi|ψ〉 = |ψ〉 for each i ∈ [n], then it is easy to see that

∏i∈[n] Mi|ψ〉 = |ψ〉. In the other direction, we can see that

‖M0|ψ〉 − ∏
0<l<n

Ml|ψ〉‖2 =〈ψ|M0|ψ〉+ 〈ψ| ∏
0<l<n

Ml|ψ〉 − 2〈ψ| ∏
i∈[n]

Mi|ψ〉

=〈ψ|M0|ψ〉+ 〈ψ| ∏
0<l<n

Ml|ψ〉 − 2.

Since ‖M0|ψ〉 −∏0<l<n Ml|ψ〉‖2 ≥ 0, 〈ψ|M0|ψ〉 ≤ 1, and 〈ψ|∏0<l<n Ml|ψ〉 ≤ 1,

we know

M0|ψ〉 = |ψ〉 〈ψ| ∏
0<l<n

Ml|ψ〉 = 1.

Then we can repeat this process to conclude that Mi|ψ〉 = |ψ〉 for each i ∈ [n].

Lemma 4.19. For an m× n binary linear system Axxx = 0, suppose that a commuting-

operator strategy

S = (|ψ〉 ∈ H, {{M(xxx)
i | xxx ∈ Zκ

2} | i ∈ [m + n]}, {{N(xxx)
i | xxx ∈ Zκ

2} | i ∈ [m + n]})

can induce a perfect correlation PA associated with Axxx = 0. Let Mj := M(0)
j+m −M(1)

j+m

and Nj := N(0)
j+m − N(1)

j+m for j ∈ [n]. Then, for each j ∈ [n],

Mj|ψ〉 = Nj|ψ〉,
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for each i ∈ [m] and k, l ∈ Ii

Mk Ml|ψ〉 = Ml Mk|ψ〉,

NkNl|ψ〉 = Nl Nk|ψ〉,

and

∏
k∈Ii

Mk|ψ〉 = ∏
k∈Ii

Nk|ψ〉 = |ψ〉.

Proof. Since when i, j ∈ [m], PA(xxx, yyy|i, j) = 0 for all yyy, when xxx /∈ Si, we know that

M(xxx)
i |ψ〉 = 0 for all xxx /∈ Si. Similarly, N(yyy)

j |ψ〉 = 0 for all yyy /∈ Sj. We define

Mi,k = ∑
xxx∈Si :xxx(k)=0

M(xxx)
i − ∑

xxx∈Si :xxx(k)=1
M(xxx)

i ,

Nj,l = ∑
yyy∈Sj :yyy(l)=0

N(xxx)
j − ∑

yyy∈Sj :yyy(l)=1
N(xxx)

j ,

for all i, j ∈ [m] and k ∈ Ii, l ∈ Ij, and we can check that M2
i,k|ψ〉 = N2

j,l|ψ〉 = |ψ〉,

and that [Mi,k, Mi,l] = [Ni,k, Ni,l] = 1 for all i ∈ [m] and k, l ∈ Ii.

In the proof, we first establish the properties satisfied by Mi,k and Ni,k with

respect to |ψ〉. Then, we prove that Mk|ψ〉 = Mi,k|ψ〉 and Nk|ψ〉 = Ni,k|ψ〉 for all

i such that k ∈ Ii.

Let’s fix a question pair (i, j) and assume Ii ∩ Ij = {kl | l ∈ [α]}. Define
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Πkl
= ∑xxx,yyy:xxx(kl)=yyy(kl)

M(xxx)
i N(yyy)

j for each l ∈ [α]. The fact that

∑
xxx,yyy:xxx(kl)=yyy(kl) for all l

PA(xxx, yyy|i, j) = 1

implies that 〈ψ|∏l∈[α] Πkl
|ψ〉 = 1. By the previous proposition, we know

Πkl
|ψ〉 = |ψ〉 for all l ∈ [α].

On the other hand, since Mi,kl
Nj,kl
|ψ〉 = 2Πkl

|ψ〉 − |ψ〉 = |ψ〉. we know that

‖Mi,kl
|ψ〉 − Nj,kl

|ψ〉‖2

=〈ψ|M2
i,kl
|ψ〉+ 〈ψ|N2

j,kl
|ψ〉 − 2〈ψ|Mi,kl

Nj,kl
|ψ〉

=1 + 1− 2 = 0,

which implies that Mi,kl
|ψ〉 = Nj,kl

|ψ〉 for all l ∈ [α].

Also, notice that

∏
k∈Ii

Mi,k = ∑
xxx∈Si

(−1)∑k∈Ii
xxx(k)M(xxx)

i = ∑
xxx∈Si

M(xxx)
i .

Because ∑xxx/∈Si
M(xxx)

i |ψ〉 = 0, we know

∏
k∈Ii

Mi,k|ψ〉 = ∑
xxx∈Si

M(xxx)
i |ψ〉+ ∑

xxx/∈Si

M(xxx)
i |ψ〉 = ∑

xxx∈Zκ
2

M(xxx)
i |ψ〉 = |ψ〉.

With similar reasoning, we can conclude that ∏l∈Ij
Nj,l|ψ〉 = |ψ〉 too.
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By Property P.1 and P.2, we know M(x)
k+m|ψ〉 = N(x)

k+m|ψ〉 = 0 for all x > 1

and k ∈ [n]. Therefore,

M2
k |ψ〉 = (M(0)

k+m + M(1)
k+m)|ψ〉 = ∑

x∈[2κ ]

M(x)
k+m|ψ〉 = |ψ〉,

and similarly, N2
k |ψ〉 = |ψ〉. By Property P.6 and Proposition 4.13, we know that

Mj|ψ〉 = Nj|ψ〉. Observe that

〈ψ|Mi,kNk|ψ〉 = 2 ∑
xxx∈Si

PA(xxx, xxx(k)|i, k + m)− 1 = 1.

Then, we can use the same argument, which shows Mi,k|ψ〉 = Ni,k|ψ〉, to show

that Mi,k|ψ〉 = Nk|ψ〉 for all i ∈ [m]. Analogously, we can get that Mk|ψ〉 =

Ni,k|ψ〉 for all i ∈ [m]. Combining the equations together, we get that

Mi,k|ψ〉 = Nk|ψ〉 = Mk|ψ〉 = Ni,k|ψ〉.

Then, the commutation relation Mi,k Mi,l|ψ〉 = Mi,l Mi,k|ψ〉 implies that

Mk Ml|ψ〉 = MkNl|ψ〉 = Nl Mi,k|ψ〉 = Mi,k Mi,l|ψ〉

=Mi,l Mi,k|ψ〉 = Ml Mk|ψ〉.

On Bob’s side, we can also get that NkNl|ψ〉 = Nl Nk|ψ〉 if there exists i such that
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k, l ∈ Ii. With similar reasoning, we can also get that

∏
k∈Ii

Mk|ψ〉 = ∏
k∈Ii

Nk|ψ〉 = |ψ〉,

for all i ∈ [m].
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Chapter 5: Constant-sized self-tests of maximally entangled states

of unbounded dimension

This chapter focuses on a unique phenomenon of quantum correlations –

self-tests.

Definition 5.1. We say a correlation P : [nA]× [nB]× [mA]× [mB] → R≥0 is a self-

test of a quantum state |ψ̃〉, if for any quantum inducing strategy of P with shared state

|ψ〉, there exist local isometries ΦA, ΦB and a quantum state |junk〉 such that

ΦA ⊗ΦB(|ψ〉) = |ψ̃〉 ⊗ |junk〉.

Note that in the literature, some correlations are shown to be strong enough

to self-test both the local measurements and the quantum state. For this disserta-

tion, it suffices to focus on self-testing of the quantum state.

The main results of this chapter and the following chapters are based on a

number theory result first proved in [27].

Lemma 5.2. There exists r ∈ {2, 3, 5} such that r is a primitive root of infinitely many

primes.

In Section 5.1, we introduce a correlation Qµ : [2] × [2] × [2] × [2] → R≥0
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which is not only a self-test of |EPR〉 and can also certify certain operator-state

relations. A key component of the proof of the self-testing property of Qµ is

the qubit swap-isometry. In Section 5.2, we present a generalized swap-isometry

and give the sufficient conditions for using it to prove self-tests of general d-

dimensional maximally entangled states. In Section 5.3, we introduce Q̂−π/p,

which is designed based on Q−π/p. Then, in Section 5.4, we construct Qp,r based

on Q̂−π/p, which can self-test a (p− 1)-dimensional maximally entangled state.

The set {Qp,r}, where r ∈ {2, 3, 5} is a primitive root of infinitely many primes,

allows us to assert that constant-sized correlations can self-test maximally entan-

gled states of unbounded dimension.

5.1 The correlation Qµ

We first give the inducing strategy of the correlation. Let µ ∈ [−π, π).

Define

M̃(0)
0 = |0〉〈0|, M̃(1)

0 = |1〉〈1|,

M̃(0)
1 =

1
2
(|0〉+ |1〉)(〈0|+ 〈1|), M̃(1)

1 = 1− P(0)
1 ,
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and

Ñ(0)
0 =(cos(

µ

2
)|0〉+ sin(

µ

2
)|1〉)(cos(

µ

2
)〈0|+ sin(

µ

2
)〈1|),

Ñ(1)
0 =1−Q(0)

0 ,

Ñ(0)
1 =(cos(

µ

2
)|0〉 − sin(

µ

2
)|1〉)(cos(

µ

2
)〈0| − sin(

µ

2
)〈1|),

Ñ(1)
1 =1−Q(0)

1 .

Definition 5.3. The correlation Qµ : [2] × [2] × [2] × [2] → R is induced by the

strategy

(|EPR〉, {{M̃(a)
x | a ∈ [2]} | x ∈ [2]}, {{Ñ(b)

y | b ∈ [2]} | y ∈ [2]}),

such that Qµ(a, b|x, y) = 〈EPR|M̃(a)
x ⊗ Ñ(b)

y |EPR〉.

The self-testing property of Qµ is summarized in the following Lemma,

which is first proved in [38, Proposition A.3].

Lemma 5.4. For µ ∈ [−π, π), If a quantum strategy

(|ψ〉, {{M(a)
x | a ∈ [2]} | x ∈ [2]}, {{N(b)

y | y ∈ [2]} | b ∈ [2]})

can induce Qµ, then there exist a local isometry Φ = ΦA ⊗ ΦB and an auxiliary state

|junk〉 such that

Φ(|ψ〉) = |junk〉 ⊗ |EPR〉.
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Our proof is based on techniques borrowed from [19, Appendix A ]. Before

we give the proof, we highlight some of the important operator-state relations

derived in the proof, which will be reused later. The notation of the relations

and the proof follows the convention of [19]. which defines Mx := M(0)
x −M(1)

x ,

Ny := N(0)
y − N(1)

y for x, y ∈ [2] and

ZA := M0 XA := M1 (5.1)

ZB :=
N0 + N1

2 cos µ
XB :=

N0 − N1

2 sin µ
. (5.2)

The key relations are

ZA|ψ〉 = ZB|ψ〉, (5.3)

XA|ψ〉 = XB|ψ〉, (5.4)

XA(1 + ZB)|ψ〉 = XB(1− ZA)|ψ〉, (5.5)

ZA(1 + XB)|ψ〉 = ZB(1− XA)|ψ〉, (5.6)

ZAXA|ψ〉 = −XAZA|ψ〉, (5.7)

XAZA|ψ〉 = −XBZB|ψ〉. (5.8)

Proof. The first step is to find a sum-of-square decomposition of the following

expression

S =
2

sin(µ)
1− cos(µ)

sin(µ)
(M1N1 + M1N2)−M2N1 + M2N2.
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Substituting in the values of Qµ, we can see that 〈ψ|S|ψ〉 = 0.

With the notation c := cos(µ), s := sin(µ), ZA, XA and ZB, XB as in eqs. (5.1)

and (5.2). The two sum-of-squares decompositions of S are

S =
sS2 + 4sc2(ZAXB + XAZB)

2

4
, (5.9)

S =
c2

s
(ZA − ZB)

2 + s(XA − XB)
2. (5.10)

From the sum-of-square decompositions, we first prove eqs. (5.3) to (5.8).

Define

T1 =

√
s

2
S, T2 =

√
sc(ZAXB + XAZB),

T3 =
c√
s
(ZA − ZB), T4 =

√
s(XA − XB)

then

S = T2
1 + T2

2 = T2
3 + T2

4 . (5.11)

The fact that the quantum strategy induces Qµ implies that

〈ψ|T2
i |ψ〉 = ‖Ti|ψ〉‖2 = 0 ⇐⇒ Ti|ψ〉 = 0

for i = 1, 2, 3, 4. From the definitions of Ti’s and the positivity of vector norms,
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we can get that

(XAZB + XBZA)|ψ〉 = 0 (5.12)

(ZA − ZB)|ψ〉 = 0 (5.13)

(XA − XB)|ψ〉 = 0, (5.14)

which proves eqs. (5.3) and (5.4). Equations (5.12) and (5.13) give us that

[ZA(1 + XB)− (1− XA)ZB]|ψ〉 = (XAZB + XBZA)|ψ〉+ (ZA − ZB)|ψ〉 = 0,

which proves eq. (5.5). Similarly, eqs. (5.12) and (5.14) give us that

[XA(1 + ZB)− XB(1− ZA)]|ψ〉 = 0,

which proves eq. (5.6). Since ZAXA + XAZA = T2
c
√

s +
√

sXAT3
c + ZAT4√

s , we can

deduce that

(ZAXA + XAZA)|ψ〉 = 0,

as in eq. (5.7). Lastly, to prove eq. (5.8), we notice that

XAZA|ψ〉 = −ZAXA|ψ〉 = −ZAXB|ψ〉 = −XBZB|ψ〉.

Now we introduce the isometries ΦA and ΦB mentioned in the theorem,
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which are almost the same as the ones used in [19]. We first prove that we don’t

need to regularize ZB and XB because they are binary observables with respect to

|ψ〉. We can use ZA|ψ〉 = ZB|ψ〉 to prove that

Z2
B|ψ〉 = Z2

A|ψ〉 = |ψ〉.

With similar reasoning, we can see that XB is also a binary observable with respect

to |ψ〉.

The local isometry is illustrated in the figure below and it is known as the

swap-isometry.

|ψ̃〉

|0〉

|0〉

H

H

ZA

ZB

H

H

XA

XB

|junk〉 |00〉+|11〉√
2

Figure 5.1: The qubit swap-isometry.

Then the proof follows from the observation that

ΦA ⊗ΦB(|ψ〉) =
1
4
[(1 + ZA)(1 + ZB)|ψ〉|00〉+ XA(1 + ZA)(1− ZB)|ψ〉|01〉

+ XB(1− ZA)(1 + ZB)|ψ〉|10〉+ XAXB(1− ZA)(1− ZB)|ψ〉|11〉]

=
1
2
(1 + ZA)|ψ〉|00〉+ 1

2
XAXB(1− ZA)|ψ〉|11〉

=

√
2

2
(1 + ZA)|ψ〉 ⊗

1√
2
(|00〉+ |11〉),
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where we used the facts that XAXB(1 − ZA)|ψ〉 = (1 + ZA)|ψ〉 proved below,

and the fact (1 + ZA)(1− ZB)|ψ〉 = (1− ZA)(1 + ZB)|ψ〉 = 0.

XAXB(1− ZA)|ψ〉 = XB(XA − XAZA)|ψ〉 = XB(XA + ZAXA)|ψ〉

= XB(1 + ZA)XA|ψ〉 = X2
B(1 + ZA)|ψ〉

= (1 + ZB)|ψ〉,

which completes the proof.

Our key observation about Qµ is that it allows us to determine some eigen-

values of N0N1, which is formally stated in the following proposition.

Proposition 5.5. For µ ∈ [−π, π), if a quantum strategy (|ψ〉 ∈ H, {{M(a)
x | a ∈

[2]} | x ∈ [2]}, {{N(b)
y | b ∈ [2]} | y ∈ [2]}) can induce Qµ, then there exist quantum

states |ψ1〉, |ψ2〉 ∈ H such that ‖|ψ1〉‖ = ‖|ψ2〉‖ = 1 and

N0N1|ψ1〉 = e−i2µ|ψ1〉,

N0N1|ψ2〉 = ei2µ|ψ2〉.

Proof. The states are

|ψ1〉 = (M(0)
0 + iM1M(1)

0 )|ψ〉, (5.15)

|ψ2〉 = (M(0)
0 − iM1M(1)

0 )|ψ〉. (5.16)
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We first show that ‖|ψ1〉‖ = 1.

‖|ψ1〉‖2 =〈ψ|(M(0)
0 + M(1)

0 − iM(1)
0 M1M(0)

0 + iM(0)
0 M1M(1)

0 )|ψ〉

=1− i〈ψ|M(1)
0 M1M(0)

0 −M(0)
0 M1M(1)

0 |ψ〉.

Recall that ZA = M0, XA = M1, ZB = (N0 + N1)/2 cos(µ) and XB = (N0 −

N1)/2 sin(µ). Using eqs. (5.4) and (5.8), we know

M1M(0)
0 |ψ〉 =

XA(1 + ZA)

2
|ψ〉

=
XB(1− ZB)

2
|ψ〉

=
(1 + ZB)XB

2
|ψ〉

M(1)
0 |ψ〉 =

1− ZA

2
|ψ〉

=
1− ZB

2
|ψ〉,

so 〈ψ|M(1)
0 M1M(0)

0 |ψ〉 = 0. With similar reasoning, we get 〈ψ|M(0)
0 M1M(1)

0 |ψ〉 =

0. Therefore, ‖|ψ1〉‖ = 1. The derivation of ‖|ψ2〉‖ = 1 is very similar, so we omit

it here.

Next, we show N0N1|ψ1〉 = e−i2µ|ψ1〉 and N0N1|ψ2〉 = ei2µ|ψ2〉. From
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eq. (5.3), we get that

ZBM(0)
0 |ψ〉 =

ZB(1 + ZA)

2
|ψ〉

=
ZB + 1

2
|ψ〉

=
1 + ZA

2
|ψ〉

=M(0)
0 |ψ〉.

With similar reasoning, we get

ZBM(1)
0 |ψ〉 = −M(1)

0 |ψ〉.

Substituting the expression of ZB, we see that

(N0 + N1)M(0)
0 |ψ〉 = 2 cos(µ)M(0)

0 |ψ〉,

(N0 + N1)M(1)
0 |ψ〉 = −2 cos(µ)M(1)

0 |ψ〉.

From eqs. (5.3) to (5.5) and (5.7), we get that

XBM(0)
0 |ψ〉 = XAM(1)

0 |ψ〉,

XBM(1)
0 |ψ〉 = XAM(0)

0 |ψ〉.
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Substituting in the expression of XB, we get that

(N0 − N1)M(0)
0 |ψ〉 = 2 sin(µ)M1M(1)

0 |ψ〉,

(N0 − N1)M(1)
0 |ψ〉 = 2 sin(µ)M1M(0)

0 |ψ〉.

Simple cancelation gives us that

N0M(0)
0 |ψ〉 = [cos(µ)M(0)

0 + sin(µ)M1M(1)
0 ]|ψ〉,

N1M(0)
0 |ψ〉 = [cos(µ)M(0)

0 − sin(µ)M1M(1)
0 ]|ψ〉,

N0M(1)
0 |ψ〉 = [− cos(µ)M(1)

0 + sin(µ)M1M(0)
0 ]|ψ〉,

N1M(1)
0 |ψ〉 = [− cos(µ)M(1)

0 − sin(µ)M1M(0)
0 ]|ψ〉.

Then,

N0N1M(0)
0 |ψ〉 = [cos(2µ)M(0)

0 + sin(2µ)M1M(1)
0 ]|ψ〉,

N0N1M1M(1)
0 |ψ〉 = [cos(2µ)M1M(1)

0 − sin(2µ)M(0)
0 ]|ψ〉.

Therefore,

N0N1(M(0)
0 + iM1M(1)

0 )|ψ〉 = e−2iµ(M(0)
0 + iM1M(1)

0 )|ψ〉,

N0N1(M(0)
0 − iM1M(1)

0 )|ψ〉 = e2iµ(M(0)
0 − iM1M(1)

0 )|ψ〉,

which complete the proof.
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5.2 The generalized swap-isometry

In the previous section, we see that the swap-isometry is a key component

of the proof of Lemma 5.4. In this section, we generalize the swap-isometry so

that it can be used in the proofs of self-tests of general d-dimensional maximally

entangled states. The importance of the generalized swap-isometry allows us to

identify sufficient conditions for the self-test of general d-dimensional maximally

entangled states, as formally stated in the following theorem.

Theorem 5.6. Let k and d be two integers such that d ≥ 2 and k ≤ d, and {rj | j ∈

[k]}, {sj | j ∈ [k]} ⊆ [d] be two sets of integers. If there exist a set of quantum states

{|ψj〉 | j ∈ [k]} ⊆ H

and two commuting sets of unitaries

{OA, VA,j | j ∈ [k]} ⊂ U (H), {OB, VB,j | j ∈ [k]} ⊂ U (H),

such that

‖|ψj〉‖ =
1√
k

(5.17)

OA|ψj〉 = ω
rj
d |ψj〉 (5.18)

OB|ψj〉 = ω
sj
d |ψj〉 (5.19)

|ψj〉 = VA,jVB,j|ψ1〉 (5.20)
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for j ∈ [k], then, |ψ〉 = ∑j∈[k] |ψj〉 is a normalized quantum state, and there exist a local

isometry ΦA ⊗ΦB such that

ΦA ⊗ΦB(|ψ〉) =
√

k|ψ1〉 ⊗
1√
k

∑
j∈[k]
|rj〉|sj〉. (5.21)

The isometry ΦA⊗ΦB is the generalized swap-isometry shown in the figure

below.

|ψ〉

|0〉A′

|0〉B′

QFTd

QFTd

OA

OB

QFT−1
d

QFT−1
d

VA,j

VB,j

|junk〉 1√
k ∑j∈[k] |rj〉|sj〉

Figure 5.2: The generalized swap-isometry

The input state to the isometry is |ψ〉 ∈ H. Let HA′ = HB′ = Cd, which

are the systems added by the isometry. The isometry uses the d-dimensional

quantum Fourier transform

QFTd = ∑
j∈[d]

∑
k∈[d]

ω
jk
d |k〉〈j|.

It also uses controlled-unitaries: the controlled-OA/B, denoted by C-OA/B ∈ U (Cd⊗

H),

C-OA/B = ∑
j∈[d]
|j〉〈j| ⊗Oj

A/B;
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and the controlled-VA/B, denoted by C-VA/B ∈ U (Cd ⊗H), and defined by

C-VA/B = ∑
j∈[d]
|j〉〈j| ⊗V†

A/B,j.

The isometry has the following steps:

Step1 Alice and Bob attach |0〉A′ and |0〉B′ to their sides;

Step2 Alice and Bob apply QFTd to |0〉A′ and |0〉B′ respectively;

Step3 Alice and Bob apply C-OA and C-OB;

Step4 Alice and Bob apply QFT−1
d (the inverse of QFTd) to the states in HA′ and

HB′ respectively;

Step5 Alice and Bob apply C-VA and C-VB.

Intuitively, the isometry contains three phases:

1. The Preparation phase ( Step1 );

2. The Distinguishing phase ( Step2 to Step4 ), where we entangled the state

inH with the state inHA′ ⊗HB′ ;

3. The Correction phase ( Step5 ), where we disentangle the state in H with

the state in HA′ ⊗HB′ and effectively transferring all the entanglement to

the systemHA′ ⊗HB′ .

Proof. We first prove that ‖ψ‖ = 1. Since |ψi〉 and |ψj〉 are different eigenvectors
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of OA for i 6= j, then we know 〈ψi|ψj〉 = 0. Therefore,

〈ψ|ψ〉 = ∑
j∈[k]
〈ψj|ψj〉 = k/k = 1.

Next, we show that it suffices to choose ΦA ⊗ΦB to be the generalized swap-

isometry by listing all the steps of it and showing how the state evolves.

1. After Step1 the shared state becomes

|ψ〉|0〉A′ |0〉B′ = ∑
j∈[k]
|ψj〉|0〉A′ |0〉B′ .

2. After Step2 the state evolves to

→ 1
d ∑

j∈[k]
|ψj〉 ∑

α1,α2∈[d]
|α1〉A′ |α2〉B′ .

3. After Step3 the state evolves to

→1
d ∑

j∈[k]
∑

α1,α2∈[d]
Oα1

A Oα2
B |ψj〉|α1〉A′ |α2〉B′

=
1
d ∑

j∈[k]
∑

α1,α2∈[d]
ω

rjα1
d ω

sjα2
d |ψj〉|α1〉A′ |α2〉B′ ,

where we use eqs. (5.18) and (5.19).
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4. After Step4 the state evolves to

→ 1
d2 ∑

j∈[k]
∑

β1,β2∈[d]

 ∑
α1∈[d]

ω
(rj−β1)α1
d

 ∑
α2∈[d]

ω
(sj−β2)α2
d

 |ψj〉|β1〉A′ |β2〉B′

=
k

∑
j=1
|ψj〉|rj〉A′ |sj〉B′ .

5. After Step5 the state becomes

→ ∑
j∈[k]

V†
A,jV

†
B,j|ψj〉|rj〉A′ |sj〉B′

= ∑
j∈[k]

V†
A,jV

†
B,jVA,jVB,j|ψ1〉|rj〉A′ |sj〉B′

=|ψ1〉 ⊗ ∑
j∈[k]
|rj〉A′ |sj〉B′

=
√

k|ψ1〉 ⊗
1√
k

∑
j∈[k]
|rj〉A′ |sj〉B′ ,

where we use eq. (5.20) and complete the proof.

5.3 Extending the correlation Qµ

In this section, we introduce a correlation based on Qµ. Recall that Qµ can

certify two eigenvalues of a unitary. The extended correlation can certify (p− 1)

eigenvalues of some unitary under some condition for some odd prime p.

In the rest of the dissertation, we fix µ = −π/p for some odd prime p.

We will introduce a correlation that is extended from Q−π/p, denoted by Q̂−π/p.
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We define Q̂−π/p : [5] × [5] × [3] × [3] → R by defining its inducing quantum

strategy.

In Cp−1, we define a subspace V = span({|1〉, |p− 1〉}) and we denote the

projector onto V by ΠV . For question x = 0, define projectors

M(a)
0 = N(a)

0 =



ΠV if a = 0

1−ΠV if a = 1

0 otherwise.

For question x = 1, 2, we first introduce

|j+〉 = cos(− jπ
2p

)|j〉+ sin(− jπ
2p

)|p− j〉,

|(p− j)+〉 = sin(− jπ
2p

)|j〉 − cos(− jπ
2p

)|p− j〉,

|j−〉 = cos(− jπ
2p

)|j〉 − sin(− jπ
2p

)|p− j〉,

|(p− j)−〉 = sin(− jπ
2p

)|j〉+ cos(− jπ
2p

)|p− j〉.
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Then the projectors are

M(a)
1 = N(a)

1 =



∑
(p−1)/2
j=1 |j+〉〈j+| if a = 0

∑
(p−1)/2
j=1 |(p− j)+〉〈(p− j)+| if a = 1

0 otherwise,

M(a)
2 = N(a)

2 =



∑
(p−1)/2
j=1 |j−〉〈j−| if a = 0

∑
(p−1)/2
j=1 |(p− j)−〉〈(p− j)−| if a = 1

0 otherwise.

For question x = 3,

M(a)
3 = N(a)

3 =



|1〉〈1| if a = 0

|p− 1〉〈p− 1| if a = 1

1−ΠV otherwise.

For question x = 4,

M(a)
4 = N(a)

4 =



(|1〉+|p−1〉)(〈1|+〈p−1|
2 ) if a = 0

(|1〉−|p−1〉)(〈1|−〈p−1|
2 ) if a = 1

1−ΠV otherwise.
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Define a state

|φ〉 = 1√
p− 1

(p−1)/2

∑
j=1

(|j〉|j〉+ |p− j〉|p− j〉).

Then, the inducing strategy is

S−π/p = (|φ〉, {{M(a)
x | a ∈ [3]} | x ∈ [5]}, {{N(b)

y | b ∈ [3]} | y ∈ [5]}). (5.22)

Definition 5.7. The correlation Q̂−π/p : [5] × [5] × [3] × [3] → R≥0 is induced by

S−π/p:

Q̂−π/p(a, b|x, y) = 〈φ|M(a)
x ⊗ N(b)

y |φ〉.

As an analogue of Proposition 5.5, the implication of Q̂−π/p is summarized

in the next proposition.

Proposition 5.8. If a quantum strategy (|ψ〉 ∈ H, {{M(a)
x | a ∈ [3]} | x ∈ [5]}, {{N(b)

y |

b ∈ [3]} | y ∈ [5]}) can induce Q̂−π/p, then there exists a quantum state |ψ1〉 ∈ H

such that ‖|ψ1〉‖2 = 1
p−1 and

M1M2|ψ1〉 = ω−1
p |ψ1〉, (5.23)

N1N2|ψ1〉 = ωp|ψ1〉, (5.24)

where Mx := M(0)
x −M(1)

x and Ny := N(0)
y − N(1)

y for x, y ∈ {1, 2}.
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To help the proof of this proposition, we first give some values of Q̂−π/p.

Q̂−π/p(a, b|0, 0) =



2/(p− 1) if a = b = 0

(p− 3)/(p− 1) if a = b = 1

0 otherwise.

Q̂−π/p(a, b|3, 3) =



1/(p− 1) if a = b = 0

1/(p− 1) if a = b = 1

(p− 3)/(p− 1) if a = b = 2

0 otherwise.

Q̂−π/p(a, b|0, 3) =



1/(p− 1) if a = 0, b ∈ [2]

(p− 3)/(p− 1) if a = 1, b = 2

0 otherwise.

x = 3 x = 4
a = 0 a = 1 a = 0 a = 1

y = 1 b = 0 cos2(π/2p)
p−1

sin2(π/2p)
p−1

1−sin(π/p)
2(p−1)

1+sin(π/p)
2(p−1)

b = 1 sin2(π/2p)
p−1

cos2(π/2p)
p−1

1+sin(π/p)
2(p−1)

1−sin(π/p)
2(p−1)

y = 2 b = 0 cos2(π/2p)
p−1

sin2(π/2p)
p−1

1+sin(π/p)
2(p−1)

1−sin(π/p)
2(p−1)

b = 1 sin2(π/2p)
p−1

cos2(π/2p)
p−1

1−sin(π/p)
2(p−1)

1+sin(π/p)
2(p−1)

Table 5.1: Q̂−π/p: the correlation values for x ∈ {3, 4}, y ∈ {1, 2} and a, b ∈ [2].
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Proof. From the definition of Q̂−π/p, it is easy to see that

M(2)
x |ψ〉 = N(2)

x |ψ〉 = 0

for x, y ∈ [3]. Then

M2
x|ψ〉 = [M(0)

x + M(1)
x ]|ψ〉+ M(2)

x |ψ〉 = |ψ〉

for x ∈ {1, 2}. Similarly, we see that N2
y |ψ〉 = |ψ〉 for y ∈ {1, 2}. Using Proposi-

tion 4.13, we can get that

M(0)
0 |ψ〉 = (M(0)

3 + M(1)
3 )|ψ〉 = (M(0)

4 + M(1)
4 )|ψ〉

= N(0)
0 |ψ〉 = (N(0)

3 + N(1)
3 )|ψ〉 = (N(0)

4 + N(1)
4 )|ψ〉,

M(1)
0 |ψ〉 = M(2)

3 |ψ〉 = M(2)
4 |ψ〉

= N(1)
0 |ψ〉 = N(2)

3 |ψ〉 = N(2)
4 |ψ〉,

and

M(0)
3 |ψ〉 = N(0)

3 |ψ〉, M(1)
3 |ψ〉 = N(1)

3 |ψ〉,

M(0)
4 |ψ〉 = N(0)

4 |ψ〉, M(1)
4 |ψ〉 = N(1)

4 |ψ〉.
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Then, we can show that Q̂−π/p can be ”reduced” to Q−π/p by proving that

S =
( M(0)

0 |ψ〉
‖M(0)

0 |ψ〉‖
, {{M(0)

x , M(1)
x } | x ∈ {3, 4}}, {{N(0)

y , N(1)
y } | y ∈ {1, 2}}

)

can induce Q−π/p, and that

S′ =
( M(0)

0 |ψ〉
‖M(0)

0 |ψ〉‖
, {{M(0)

x , M(1)
x } | x ∈ {1, 2}}, {{N(0)

y , N(1)
y } | y ∈ {3, 4}}

)

can induce Q−π/p with Alice and Bob’s roles flipped. To prove S can induce

Q−π/p, we need to examine the terms of the form 〈ψ|M(0)
0 M(a)

x N(b)
y M(0)

0 |ψ〉 for

x = 3, 4, y = 1, 2 and a, b = 0, 1. We find that these terms relate to 〈ψ|M(a)
x N(b)

y |ψ〉

by

〈ψ|M(a)
x N(b)

y |ψ〉

=〈ψ|(M(0)
0 + M(1)

0 )M(a)
x N(b)

y (M(0)
0 + M(1)

0 )|ψ〉

=〈ψ|M(0)
0 M(a)

x N(b)
y M(0)

0 |ψ〉,

where we use the facts that M(a)
x M(1)

0 |ψ〉 = M(a)
x M(2)

x |ψ〉 = 0 for the relevant

values of (x, y, a, b). Therefore,

〈ψ|M(0)
0 M(a)

x N(b)
y M(0)

0 |ψ〉

‖M(0)
0 |ψ〉‖

2
=
〈ψ|M(a)

x N(b)
y |ψ〉

‖M(0)
0 |ψ〉‖

2
,

for the relevant values of (x, y, a, b), and it is easy to verify that S induces Q−π/p.

For example, 〈ψ|M
(0)
0 M(0)

1 N(0)
3 M(0)

0 |ψ〉
‖M(0)

0 |ψ〉‖
2 = cos(π/2p)2

2 . The proof of S′ induces Q−π/p
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with Alice and Bob’s roles flipped is similar, so we omit it here.

Now we define

|ψ1〉 =
1
2
(M(0)

3 + iM4M(1)
3 − iM4M(0)

3 + M(1)
3 )|ψ〉

=
1
2
(1− iM4)(M(0)

3 + iM4M(1)
3 )|ψ〉,

(5.25)

where M4 := M(0)
4 − M(1)

4 . The derivation of ‖|ψ1〉‖ is very similar to the cor-

responding part in the proof of Proposition 5.5, so we omit it here. Since S can

induce Q−π/p, by Proposition 5.5, we know that

N1N2(M(0)
3 + iM4M(1)

3 )M(0)
0 |ψ〉 = ωp(M(0)

3 + iM4M(1)
3 )M(0)

0 |ψ〉.

On the other hand,

(M(0)
3 + iM4M(1)

3 )M(0)
0 |ψ〉

=(M(0)
3 + iM4M(1)

3 )(M(0)
3 + M(1)

3 )|ψ〉

=(M(0)
3 + iM4M(1)

3 )|ψ〉.

Hence, using the fact that N1N2 commutes with (1− iM4), we know

N1N2|ψ1〉 = ωp|ψ1〉.

What remains to be proved is M1M2|ψ1〉 = ω−1
p |ψ1〉. In order to prove it,
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we need another form of |ψ1〉, which is

|ψ1〉 =
1
2
(N(0)

3 − iN4N(1)
3 + iN4N(0)

3 + N(1)
3 )|ψ〉.

=(1 + iN4)(N(0)
3 − iN4N(1)

3 )|ψ〉,

where N4 := N(0)
4 − N(1)

4 . Comparing the two forms of |ψ1〉, it suffices to show

M4(M(1)
3 −M(0)

3 )|ψ〉 = N4(N(0)
3 − N(1)

3 )|ψ〉.

This equation can be derived in the following way

M4(M(1)
3 −M(0)

3 )|ψ〉

=M4(M(1)
3 −M(0)

3 )M(0)
0 |ψ〉

=(N(1)
3 − N(0)

3 )N4N(0)
0 |ψ〉

=N4(N(0)
3 − N(1)

3 )N(0)
0 |ψ〉

=N4(N(0)
3 − N(1)

3 )|ψ〉,

where we use the fact that eq. (5.7) is satisfied in the inducing strategies S and S′.

In the end, we apply Proposition 5.5 to S′ to see that

M1M2|ψ1〉

=(1 + iN4)M1M2(N(0)
3 − iN4N(1)

3 )|ψ〉

=ω−1
p |ψ1〉,
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which completes the proof.

Proposition 5.9. Suppose a quantum strategy (|ψ〉 ∈ H, {{M(a)
x | a ∈ [3]} | x ∈ [5]},

{{N(b)
y | b ∈ [3]} | y ∈ [5]}) can induce Q̂−π/p, and there exist commuting unitaries

UA, UB ∈ U (H) such that UA commutes with Bob’s projectors, UB commutes with

Alice’s projectors and

UA|ψ〉 = UB|ψ〉,

U†
AM1M2UA|ψ〉 = (M1M2)

r|ψ〉,

U†
BN1N2UB|ψ〉 = (N1N2)

r|ψ〉,

where r is a primitive root of p. Then there exist quantum states {|ψj〉 | 1 ≤ j ≤

p− 1} ⊆ H such that ‖|ψj〉‖2 = 1
p−1 and

M1M2|ψj〉 = ω
−j
p |ψj〉,

N1N2|ψj〉 = ω
j
p|ψj〉.

Proof. Define |ψj〉 = (UAUB)
logr j|ψ1〉 for 1 ≤ j ≤ p− 1 where logr j is the discrete

log. To simplify the notation, we write OA = M1M2 and OB = N1N2.

We first prove that OA|ψ〉 = O−1
B |ψ〉. It is easy to check that

Q̂−π/p(0, 0|x, x) = Q−π/p(1, 1|x, x) = 1/2,

Q̂−π/p(0, 1|x, x) = Q−π/p(1, 0|x, x) = 0,
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for x = 1, 2. By Proposition 4.13, we can see that M(a)
x |ψ〉 = N(a)

x |ψ〉 for x = 1, 2

and a = 0, 1, and that Mx|ψ〉 = Nx|ψ〉. Then,

OA|ψ〉 = M1M2|ψ〉 = N2M1|ψ〉 = N2N1|ψ〉 = O−1
B |ψ〉.

Next, we prove that

OA(UA)
j|ψ〉 = (UA)

jOrj

A|ψ〉,

OB(UB)
j|ψ〉 = (UB)

jOrj

B |ψ〉

for j ≥ 1 by induction. The base case is trivial as it is stated in the proposition.

Assume OA(UA)
n|ψ〉 = (UA)

nOrn

A |ψ〉. By substitution and Lemma 4.15, we know

OA(UA)
n+1|ψ〉 =UBOA(UA)

n|ψ〉

=UBUn
AOrn

A |ψ〉

=Un
AOrn

A UA|ψ〉

=Un+1
A Orn+1

A |ψ〉,

where in the last line, we repeatedly use the relations: OAUA|ψ〉 = UA(OA)
r|ψ〉

and OA|ψ〉 = O−1
B |ψ〉, rn times. By the principle of induction, the equality OA(UA)

j|ψ〉 =

(UA)
jOrj

A|ψ〉 is true for all j ≥ 1. The proof of OB(UB)
j|ψ〉 = (UB)

jOrj

B |ψ〉 is simi-

lar, so we omit it here.
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Then,

OA(UA)
j|ψ1〉 = (UA)

jOrj

A|ψ1〉 = ω−rj

p (U†
A)

j|ψ1〉,

OB(UB)
j|ψ1〉 = (UB)

jOrj

B |ψ1〉 = ωrj

p (U
†
B)

j|ψ1〉,

where we use the fact that |ψ1〉 can be expressed using Alice’s projectors and

Bob’s projectors and the proof is complete.

5.4 The correlation Qp,r

In this section, we first show that there exists a binary linear system such

that a perfect correlation associated with it can enforce the relation U−1OU = Or

for two unitaries U and O, as summarized in the next proposition.

Proposition 5.10. There exists a binary linear system Arxxx = 0 such that the following

holds. If a quantum strategy S = (|ψ〉 ∈ H, {{M(a)
x }}, {{N(b)

y }}) can induce a

perfect correlation of Arxxx = 0, then there exist two commuting sets of binary observables

{Mu1 , Mu2 , Mo1 , Mo2} and {Nu1 , Nu2 , No1 , No2} onH such that

Mu2 Mu1(Mo1 Mo2)Mu1 Mu2 |ψ〉 = (Mo1 Mo2)
r|ψ〉,

Nu2 Nu1(No1 No2)Nu1 Nu2 |ψ〉 = (No1 No2)
r|ψ〉.

Proof. The linear system Arxxx = 0 is constructed from a solution group, wherein
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the following group is embedded. For r ≥ 2, define

G := 〈u1, u2, o1, o2 :u2
1 = u2

2 = o2
1 = o2

2 = e,

u2u1o1o2u1u2 = (o1o2)
r, u1o2u1 = o2〉.

(5.26)

By Proposition 3.55, G can be embedded into a linear-plus-conjugacy group Gc =

〈Sc : Rc〉 where Sc contains {u1, u2, o1, o2}. We also know that the embedding

φ : G → Gc maps ui to ui and oi to oi for i = 1, 2. By Proposition 3.56, Gc can be

embedded into a solution group Γ(Ar) := 〈SΓ, RΓ〉. Moreover, {u1, u2, o1, o2} ⊆

SΓ and the embedding φ′ : Gc → Γ(Ar) maps s to s for each s ∈ {u1, u2, o1, o2}.

Therefore, G is embedded in Γ(Ar) and we get the binary linear system Arxxx = 0.

Since G is embedded in Γ(Ar), we know that the relation u2u1o1o2u1u2 =

(o1o2)
r can be reconstructed by substituting in r ∈ RΓ. Then, the statement of the

proposition follows from Lemmas 4.15 and 4.19.

Note that Arxxx = 0 has n(r) := 16r+ 75 variables and m(r) := 14r+ 62 equa-

tions, where each equation has 3 variables. Let τ : [n(r)] → SΓ be the bijection

between [n(r)] and SΓ. We assume that in this system τ(0) = o1 and τ(1) = o2.

Next we show that there exists a quantum strategy that can induce a perfect

correlation of Arxxx = 0. The correlation is denoted by PAr and the strategy is

denoted by SAr , which is based on a representation of Γ(Ar).

We first give a representation of G. Let p be an odd prime number whose
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primitive root is r. Another basis of Cp−1 is {|xj〉 | 1 ≤ j ≤ p− 1}, where

|xj〉 = −
1√
2
(|j〉+ i|p− j〉), (5.27)

|xp−j〉 =
−ω

j
2p√
2

(|j〉 − i|p− j〉) (5.28)

for 1 ≤ j ≤ p−1
2 . Note that another form of this basis is {|xrj〉 | j ∈ [p − 1]},

where the subscript rj is taken modulo p implicitly. Based on the second basis,

we define the third basis of Cp−1, {|uk〉 | k ∈ [p− 1]} defined by

|uk〉 =
1√

p− 1

p−2

∑
j=0

ω
jk
p−1|xrj〉.

On Cp−1, we define

O1 =
(p−1)/2

∑
j=1

ω
j
p|xj〉〈xp−j|+ ω

−j
p |xp−j〉〈xj|, (5.29)

O2 =
(p−1)/2

∑
j=1

|xj〉〈xp−j|+ |xp−j〉〈xj|, (5.30)

U1 =|u0〉〈u0|+ |u(p−1)/2〉〈u(p−1)/2|

+
(p−3)/2

∑
k=1

(
|up−1−k〉〈uk|+ |uk〉〈up−1−k|

)
, (5.31)

U2 =|u0〉〈u0| − |u(p−1)/2〉〈u(p−1)/2|

+
(p−3)/2

∑
k=1

(
ωk

p−1|uk〉〈up−1−k|+ ω−k
p−1|up−1−k〉〈uk|

)
. (5.32)
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It can be checked that

O1O2 = ∑
j∈[p−1]

ωrj

p |xrj〉〈xrj |,

U1U2 = ∑
j∈[p−1]

|xrj+1〉〈xrj |,

U2U1(O1O2)U1U2 = (O1O2)
r,

U1O2U1 = O2.

Hence, we can follow the proof of [7, Proposition 33] to extend ρ : Gc → U (Cp−1)

defined by u1 7→ U1, u2 7→ U2, o1 7→ O1, o2 7→ O2 to a representation of Gc, still

denoted by ρ. Then, following the proofs of [7, Proposition 27 and Lemma 29], ρ

can be extended to a representation of Γ(Ar), ρ′ : Γ(Ar) → U (Cp−1 ⊗ C2 ⊗ C2).

In particular, for any s ∈ {u1, u2, o1, o2},

ρ′(s) = ρ(s)⊗ 1C2 ⊗ 1C2 .

Define

|ψ̃〉 :=
1√

p− 1

p−1

∑
j=1
|xj〉|xp−j〉. (5.33)

Let π
(0)
s , π

(1)
s be the projectors onto the +1 and −1-eigenspaces of ρ′(s) for each
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s ∈ SΓ. Then we define projectors

M(x)
i = N(x)

i =



∏k∈Ii
π
(x(k))
τ(k) if i ∈ [m(r)]

π
(x)
τ(i−m(r)) if i ≥ m(r) and x < 2

0 otherwise.

Definition 5.11. The correlation PAr : [m(r) + n(r)]× [m(r) + n(r)]×Z3
2 ×Z3

2 →

R≥0 is defined by the inducing strategy

SAr = (|ψ̃〉 ⊗ |EPR〉⊗2,{{M(x)
i | x ∈ Z3

2} | i ∈ [m(r) + n(r)]},

{{N(x)
i | x ∈ Z3

2} | i ∈ [m(r) + n(r)]}).
(5.34)

such that

PAr(x, y|i, j) =
(
〈ψ̃| ⊗ 〈EPR|⊗2

)
M(x)

i ⊗ N(y)
j

(
|ψ̃〉 ⊗ |EPR〉⊗2

)
.

It can be checked that PAr is a perfect strategy of Arxxx = 0.

In this section, we introduce Qp,r, which can be thought of as the combi-

nation of PAr and Q̂−π/p. The correlation Qp,r : [m(r) + n(r)]× [m(r) + n(r)]×

Z3
2 ×Z3

2 → R≥0 is defined by its inducing strategy.
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Define

M̃(x)
i =



M(x)
i if i ∈ [m(r) + n(r)]

M(x)
0 ⊗ 1C2 ⊗ 1C2 if i = m(r) + n(r) and x ≤ 2

M(x)
i−m(r)−n(r)+2 ⊗ 1C2 ⊗ 1C2 if i > m(r) + n(r) and x ≤ 2

0 otherwise.

Ñ(x)
i =



N(x)
i if i ∈ [m(r) + n(r)]

N(x)
0 ⊗ 1C2 ⊗ 1C2 if i = m(r) + n(r) and x ≤ 2

N(x)
i−m(r)−n(r)+2 ⊗ 1C2 ⊗ 1C2 if i > m(r) + n(r) and x ≤ 2

0 otherwise,

where M(x)
i and N(x)

i are obtained from strategy SAr (eq. (5.34)), and M(x)
i and

N(x)
i are obtained from strategy S−π/p (eq. (5.22)).

Definition 5.12. The correlation Qp,r : [n(r) +m(r) + 3]× [n(r) +m(r) + 3]×Z3
2×

Z3
2 → R≥0 is induced by the strategy

S̃ = (|ψ̃〉 ⊗ |EPR〉⊗2,{{M̃(a)
x | a ∈ [8]} | x ∈ [n(r) + m(r) + 3]}

{{Ñ(b)
y | b ∈ [8]} | y ∈ [n(r) + m(r) + 3]}).

such that

Qp,r(a, b|x, y) =
(
〈ψ̃| ⊗ 〈EPR|⊗2

)
M̃(a)

x ⊗ Ñ(b)
y

(
|ψ̃〉 ⊗ |EPR〉⊗2

)
.
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Theorem 5.13. Let S be an inducing strategy of Qp,r with a shared state |ψ〉. Then there

exist an isometry ΦA ⊗ΦB and a state |junk〉 such that ‖|junk〉‖ = 1 and

ΦA ⊗ΦB(|ψ〉) = |junk〉 ⊗ |ψ̃〉

where |ψ̃〉 is defined in eq. (5.33).

To prove this theorem, we first prove the following proposition.

Proposition 5.14. If a strategy with shared state |ψ〉 ∈ H can induce Qp,r, then there

exist sub-normalized states {|ψj〉 | 1 ≤ j ≤ p− 1} such that

‖|ψj〉‖2 =
1

p− 1
for 1 ≤ j ≤ p− 1,

|ψ〉 =
p−1

∑
j=1
|ψj〉.

Proof. First observe that when x, y ∈ [m(r) + n(r)],

Qp,r(a, b|x, y) = PAr(a, b|x, y).

Let UA = Mτ−1(u1)
Mτ−1(u2)

and UB = Nτ−1(u1)
Nτ−1(u2)

. By Lemma 4.19, we know

UAUB|ψ〉 = |ψ〉. Let OA = Mm(r)Mm(r)+1 and OB = Nm(r)Nm(r)+1. By Proposi-

tion 5.10, we know that

OAUA|ψ〉 = UAOr
A|ψ〉,

OBUB|ψ〉 = UBOr
B|ψ〉.
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Next, we observe that

|ψ̃〉 = 1√
p− 1

(p−1)/2

∑
j=1

ω
j
2p(|j〉|j〉+ |p− j〉|p− j〉).

Define f : {m(r), m(r) + 1, n(r) + m(r), n(r) + m(r) + 1, n(r) + m(r) + 2} → [5]

by

f (x) =



x + 1−m(r) if x = m(r), m(r) + 1,

x− n(r)−m(r) if x = n(r) + m(r),

x + 2− n(r)−m(r) otherwise.

Then, we can check that When x, y ∈ {m(r), m(r) + 1, n(r) + m(r), n(r) + m(r) +

1, n(r) + m(r) + 2}, and a, b ∈ [3]

Qp,r(a, b|x, y) = Q̂−π/p(a, b| f (x), f (y)).

It implies that the conditions of Proposition 5.9 are satisfied and we can define

|ψj〉 = (UAUB)
logr j|ψ1〉. The conditions satisfied by |ψj〉 are ‖|ψj〉‖2 = 1/(p− 1)

and 〈ψj|ψj′〉 = 0 if j 6= j′. Therefore, ‖∑p−1
j=1 |ψj〉‖ = 1. What remains is to

show that ∑
p−1
j=1 〈ψ|ψj〉 = 1. Since U†

AU†
B|ψ〉 = |ψ〉, we know that ∑

p−1
j=1 〈ψ|ψj〉 =
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(p− 1)〈ψ|ψ1〉 and

〈ψ|ψ1〉 =
1
2
〈ψ|(M(0)

n(r)+m(r)+1 + M(1)
n(r)+m(r)+1 − iMn(r)+m(r)+2Mn(r)+m(r)+1)|ψ〉

=
1

p− 1
− i

2
〈ψ|Nn(r)+m(r)+2Mn(r)+m(r)+1|ψ〉

=
1

p− 1
,

where 〈ψ|Nn(r)+m(r)+2Mn(r)+m(r)+1|ψ〉 = 0 comes from the correlation. Then the

proposition follows.

Proof of Theorem 5.13. Propositions 5.9 and 5.14 tell us that |ψ〉 = ∑
p−1
j=1 |ψj〉where

|ψj〉 = (UAUB)
logr j|ψ1〉

OA|ψj〉 = ω
p−j
p |ψj〉

OB|ψj〉 = ω
j
p|ψj〉.

Then this theorem follows from Theorem 5.6.

The significance the implication of Theorem 5.13 is summarized in the next

theorem.

Theorem 5.15. There exists an infinit set D of prime numbers such that for each p ∈ D,

there exists a constant-sized correlation that can self-test the maximally entangled state

of local dimension (p− 1).

Proof. There exists r ∈ {2, 3, 5} such that r is a primitive root of infinitely many

primes [27]. It suffices to choose D to be the set of primes whose primitive root
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is r. Then, by Theorem 5.13, for each p ∈ D, Qp,r of size Θ(r2) can self-test a

maximally entangled state of local dimension p− 1.

This is the first result that shows that fixed-sized correlations can self-test

maximally entangled states of unbounded dimension.
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Chapter 6: Minsky machine and Kharlampovich-Myasnikov-Sapir

group

In this chapter, we construct a group that is used in the main result of this

dissertation. To construct this group, we first introduce the Minsky machine in

Section 6.1, a semi-group that can simulate a Minsky machine in Section 6.2,

and a group that can simulate a Minsky machine in Section 6.3, which is also

known as the Kharlampovich-Myasnikov-Sapir group. In Section 6.4, we extend

a Kharlampovich-Myasnikov-Sapir group in a particular way and prove various

properties of this extended group.

6.1 Minsky machine

A k-glass Minsky Machine [30], denoted by MMk, consists of k glasses, where

each glass can hold arbitrarily many coins. Just like a Turing machine, a configu-

ration of MMk describes which state the machine is in and how many coins are in

each of the glasses. A computation running on MMk is a sequence of commands,

where each command maps one configuration to another. Each command in-

volves at most one of the two operations on each glass, which are adding a coin

to a glass and removing a coin from a non-empty glass.
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Figure 6.1: The visualization of a command that maps the configuration (i; 1, 2, 0)
to (j; 1, 3, 1).

More formally, the states of MMk are numbered from 0 to N where 0 is

the final accept state and 1 is the starting state, so a configuration of MMk is in

[N + 1] × (Z≥0)
×k and of the form (i; n1, n2, . . . nk) where i is the current state

number and each nj ≥ 0 represents the number of coins in the j-th glass. The

accept configuration is (0; 0, 0, . . . 0) and the starting configuration with input m is

(1; m, 0, . . . 0).

Next, we formally introduce the commands of MMk. A command may be of

one of the following four forms.

1. When the state is i, add a coin to each of the glasses numbered j1, j2 . . . jl

where l ≤ k, and go to state j. This command is encoded as

i;→ j; Add(j1, j2, . . . jl).

2. When the state is i, if the glasses numbered j1, j2, . . . jl where l ≤ k are all

nonempty, then remove a coin from each of the glasses numbered j1, j2, . . . jl,
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and go to state j. This command is encoded as

i; nj1 > 0, . . . njl > 0→ j; Sub(j1, j2, . . . jl).

3. When the state is i, if the glasses numbered j1, j2, . . . jl where l ≤ k are empty,

go to state j. This command is encoded as

i; nj1 = 0, nj2 = 0, . . . njl = 0→ j.

4. When the state is i, accept. This command is encoded as

i;→ 0.

If at any given state i, there is at most one command that can be applied, the Min-

sky machine is deterministic. Otherwise, the Minsky machine is non-deterministic.

The importance of Minsky machines is summarized in the next theorem.

We first define what a recursively enumerable (RE) set is.

Definition 6.1. A subset S of the set of natural numbers (N) is recursively enumer-

able if there is an algorithm such that the algorithm accepts an input s if and only if

s ∈ S.

Theorem 6.2. Let X be a recursively enumerable set of natural numbers. Then there ex-

ists a 3-glass deterministic Minsky machine MM3 such that MM3 takes the configuration

(1; n, 0, 0) to the accept configuration (0; 0, 0, 0) if and only if n ∈ X.

108



The proof can be found in the proof of [31, Theorem 2.7], so we omit it here.

In the rest of the dissertation, we focus on 3-glass Minsky machines.

6.2 A semigroup to simulate MM3

We first introduce concepts for semigroups that are necessary for this sec-

tion, especially, the presentation of a semigroup.

Definition 6.3. A semigroup is a set S with an operation ·, such that

1. for any a, b ∈ S, a · b ∈ S;

2. for any a, b, c ∈ S, (a · b) · c = a · (b · c).

Definition 6.4. A semigroup with a zero element is a semigroup S such that there

exists an element 0, for which 0 · a = a · 0 = 0 for any a ∈ S.

The element 0 is also called an absorbing element.

Definition 6.5. A semigroup with an identity element is a semigroup S such that

there exists an element e, for which e · a = a · e = a for any a ∈ S.

To define the notion of a presentation of a semigroup, we first define notions

related to congruence and then we define what a free semigroup is.

Definition 6.6. For any semigroup S and R ⊆ S× S, we define

Rc = {(a, b), (xa, xb), (ay, by), (xay, xby) | for all (a, b) ∈ R and x, y ∈ S}.
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Definition 6.7. For any semigroup S and R ⊆ S× S, let R# be a subset of S× S such

that (a, b) ∈ R# if and only if (a, b) ∈ Rc, or there exist {zi | i ∈ [n]} such that

(a, z0), (zn−1, b) ∈ Rc and for each 0 ≤ i ≤ n− 2, (zi, zi+1) ∈ Rc or (zi+1, zi) ∈ Rc.

Them, R# is called the smallest congruence containing R.

Definition 6.8. Let A be a non-empty set. The free semigroup on A, denoted by A+,

consists of all finite words a1a2 . . . an where ai ∈ A and the binary operation is defined

on A+ by juxtaposition:

(a1a2 . . . an)(b1b2 . . . bm) = a1a2 . . . anb1b2 . . . bm.

Definition 6.9. Let A be a non-empty set, A+ be the free semigroup on A and R ⊆

A+× A+. If there is a homomorphism φ from A+ onto a semigroup S, such that {(x, y) |

φ(x) = φ(y)} = R#, then we say a presentation of S is 〈A : R〉.

If both A and R are finite, then we say S is finitely-presented. The relation

(a, b) ∈ R is written as a = b. Intuitively, S is the quotient of the free semigroup

generated by A by the equivalence relations in R, which is an analogue of a group

presentation (Definition 3.9). For more details about semigroup presentations, we

refer to [39, Chapter 1.4 to 1.6].

Next, we define a finitely-presented semigroup with a zero element that can

simulate a 3-glass Minsky machine.

Definition 6.10. Let MM3 be a 3-glass Minsky machine with states: 0, 1, . . . N. We

define a semigroup H(MM3) by giving the set of generators and the set of relations below.
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The set of generators of H(MM3) consists of {qi | 0 ≤ i ≤ N} and {ai, Ai | 1 ≤ i ≤ 3}.

The set of relations of H(MM3) consists of

• {aiaj = ajai, ai Aj = Ajai, Ai Aj = Aj Ai | 1 ≤ i 6= j ≤ 3};

• aiqj = Aiqj = 0 for all 1 ≤ i ≤ 3 and 0 ≤ j ≤ N;

• Aiai = 0 if 1 ≤ i ≤ 3;

• for each command of the form i→ Add(k1, . . . km); j, the relation qi = qjak1 . . . akm

with m ≤ 3;

• for each command of the form i, nk1 > 0, . . . nkm > 0 → j; Sub(nk1 , . . . nkm), the

relation qiak1 . . . akm = qj with m ≤ 3; and

• for each command of the form i, nk1 = 0, . . . nkm = 0→ j, the relation qi Ak1 . . . Akm =

qj Ak1 . . . Akm with m ≤ 3 .

For the configuration c = (i; n1, n2, n3) of MM3, the corresponding semi-

group element is wH(c) = qia
n1
1 an2

2 an3
3 A1A2A3. Intuitively, qj corresponds to the

state j of MM3; for i = 1, 2, 3, ai represents a coin for the glass numbered i. Since

ai does not commute with Ai and Aiai = 0 for 1 ≤ i ≤ 3, the Ai’s are introduced

to allow us to check if the glass-i is empty.

Theorem 6.11. Let MM3 be a 3-glass Minsky machine and H(MM3) be defined as in

Definition 6.10. Then, a configuration c′ can be obtained from a configuration c of MM3

by applying commands of MM3 if and only if wH(c′) = wH(c) meaning that wH(c′) can

be obtained from wH(c) by applying the defining relations of H(MM3).

The proof can be found in [31, Property 3.1 and 3.2].
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6.3 Kharlampovich-Myasnikov-Sapir group

For a 3-glass Minsky machine MM3, the Kharlampovich-Myasnikov-Sapir group

(KMS group) G(MM3) is a finitely presented group with generator set S(MM3)

and relation set R(MM3), where S(MM3) and R(MM3) are defined below. Note

that the definitions are obtained from [31, Section 4.1].

Intuitively, G(MM3) can simulate MM3 because the semigroup H(MM3) is

embedded in G(MM3). The image of qia
n1
1 an2

2 an3
3 A1A2A3 in G(MM3) is x(qi A0)~

a~n1
1 ~ a~n2

2 ~ a~n3
3 ~ A1 ~ A2 ~ A3, where the symbol x(qi A0) and the operation

~ are defined below.

6.3.1 Baumslag-Remeslennikov-conjoint

We introduce a lemma, which tells us that certain solvable groups are finitely

presented. This lemma gives us important intuitions behind the structure of

G(MM3). Since the lemma is first introduced by Baumslag [40] and Remeslen-

nikov [41], the sets satisfying the conditions of the following lemma are called

Baumslag-Remeslennikov-conjoints ( BR-conjoints ).

Lemma 6.12. Suppose that a group H is generated by three sets X, F = {ai | i ∈ [m]}

and F′ = {a′i | i ∈ [m]} such that

1. x2 = e for each x ∈ X;

2. The subgroup generated by F ∪ F′ is abelian;

3. For every ai ∈ F and x ∈ X, xai x−1 = xa′i ;
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4. [x
aβ0

0 ...a
βm−1
m−1

1 , x2] = e for every x1, x2 ∈ X and β0, β1, . . . βm−1 ∈ {0, 1,−1}.

Then, the normal subgroup generated by X in H is abelian, and H is solvable.

This lemma is based on Lemma 4.1 of [31], Before we prove Lemma 6.12,

we first prove some facts about commutators, which will be used in the proof.

Proposition 6.13. Let G be a group and a, b, c ∈ G. Then,

1. [a, b] = e ⇐⇒ [ac, bc] = e;

2. [a, b] = [a, c] = e implies that [a, bc] = e; and

3. [a, bc] = [a, b] = e implies that [a, c] = e.

Proof. We prove the three results one by one. The first result follows [ac, bc] =

[a, b]c.

The second result follows

a−1(bc)−1abc = a−1c−1b−1abc = a−1c−1ac = e,

where we use the fact that ab = ba. The third result follows the same derivation.

Proof of Lemma 6.12. We first prove that the normal subgroups generated by X in

H, denoted by 〈X〉H, is abelian, then the second conclusion follows from H/〈X〉H =

〈F ∪ F′〉.
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Since x2 = e for all x ∈ X, then xa′i = xai x for i ∈ [m]. To show the normal

subgroup generated by X in H is abelian, it suffices to show that

[
x

∏i∈[m] a
ni
i ∏j∈[m] a

′αj
j

1 , x
∏i∈[m] a

ki
i ∏j∈[m] a

′βj
j

2

]
= e

for all x1, x2 ∈ X and ni, αj, ki, β j ∈ Z. This is because every element of 〈X〉H can

be expressed as a product of elements of the form x∏i∈[m] a
ni
i ∏j∈[m] a

′αj
j . Then, for any

x ∈ X, since xa′i = xai x for all i ∈ [m] and 〈F ∪ F′〉 is abelian, x∏i∈[m] a
ni
i ∏j∈[m] a

′αj
j

can be expressed as a product of elements of the form x∏i∈[m] a
n′i
i for some n′i ∈ Z.

Hence, it suffices to show

[
x

∏i∈[m] a
ni
i

1 , x
∏i∈[m] a

ki
i

2

]
= e

for all x1, x2 ∈ X and ni, ki ∈ Z. Then, notice that

[
x

∏i∈[m] a
ni
i

1 , x
∏i∈[m] a

ki
i

2

]
=

[
x

∏i∈[m] a
ni−ki
i

1 , x2

]∏i∈[m] a
ki
i

.

It suffices to show

[
x

∏i∈[m] a
ni
i

1 , x2

]
= e for all x1, x2 ∈ X and ni ∈ Z. (6.1)

We prove it by induction.

The base case that |ni| ≤ 1 for all i ∈ [m] follows from the condition of the

lemma. Suppose eq. (6.1) is true for all |ni| < N for all i ∈ [m]. Noticing that for
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any S ⊆ [m]

[x
∏i∈S a

−ni−1
i ∏j∈[m]\S a

nj
j

1 , x2] = [x1, x
∏i∈S a

ni+1
i ∏j∈[m]\S a

−nj
j

2 ]∏i∈S a
−ni−1
i ∏j∈[m]\S a

nj
j

where ni ≥ 0. Since the choices of x1 and x2 are arbitrary, it suffices to prove that

for any index set S ⊆ [m]

[x
∏i∈S aN

i ∏j∈[m]\S a
nj
j

1 , x2] = e. (6.2)

In this step, we use induction on the size of |S|. In the base case that |S| = 1, we

can assume S = {0} without loss of generality. By the assumption of the outer

induction, we know

e =[x
aN−1

0 ∏j∈[m]\S a
nj
j

1 , x2]
a′0

=[x
aN

0 ∏j∈[m]\S a
nj
j

1 x
aN−1

0 ∏j∈[m]\S a
nj
j

1 , xa0
2 x2].

Again by the assumption of the outer induction, we know

[x
aN

0 ∏j∈[m]\S a
nj
j

1 , xa0
2 ] = [x

aN−1
0 ∏j∈[m]\S a

nj
j

1 , xa0
2 ] = e,

so, by Point (2) of Proposition 6.13,

[x
aN

0 ∏j∈[m]\S a
nj
j

1 x
aN−1

0 ∏j∈[m]\S a
nj
j

1 , xa0
2 ] = e.
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Then, by Point (3) of Proposition 6.13,

[x
aN

0 ∏j∈[m]\S a
nj
j

1 x
aN−1

0 ∏j∈[m]\S a
nj
j

1 , x2] = e.

Using the fact that [x
aN−1

0 ∏j∈[m]\S a
nj
j

1 , x2] = e, we can use Point (3) of Proposi-

tion 6.13 to prove that

[x
aN

0 ∏j∈[m]\S a
nj
j

1 , x2] = e,

which completes the base case of the inner induction.

Now, suppose eq. (6.2) is true for all S ⊆ [m] with |S| < k ≤ m. Consider

the case that |S| = k. By the assumption, we know that

e =[x
∏i∈S aN−1

i ∏j∈[m]\S a
nj
j

1 , x2]
∏i∈S a′i

=[x
∏i∈S a′i ∏i∈S aN−1

i ∏j∈[m]\S a
nj
j

1 , x∏i∈S a′i
2 ]

=[ ∏
S′⊆S

x
(∏i∈S′ ai)∏i∈S aN−1

i ∏j∈[m]\S a
nj
j

1 , ∏
S′⊆S

x∏i∈S′ ai
2 ].

Again, by the assumption of the inner induction, we know that for any S′′ ⊆ S

with |S′′| ≥ 1,

[ ∏
S′⊆S

x
(∏i∈S′ ai)∏i∈S aN−1

i ∏j∈[m]\S a
nj
j

1 , x∏i∈S′′ ai
2 ] = e.
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Then, using Point (3) of Proposition 6.13 we can deduce that

[ ∏
S′⊆S

x
(∏i∈S′ ai)∏i∈S aN−1

i ∏j∈[m]\S a
nj
j

1 , x2] = e.

Since the assumption of the inner induction tells us that for any S′ 6= S,

[x
(∏i∈S′ ai)∏i∈S aN−1

i ∏j∈[m]\S a
nj
j

1 , x2] = e.

Using Point (3) of Proposition 6.13 we can deduce that

[x
∏i∈S aN

i ∏j∈[m]\S a
nj
j

1 , x2] = e.

By the principle of inductive proof, the inner and outer inductions are complete.

Definition 6.14. Let sets F, F′ and X be as defined in Lemma 6.12. If they satisfy the

conditions of Lemma 6.12, then we say a′i are BR-conjoints to ai for i ∈ [m] with respect

to X.

6.3.2 Definition of G(MM3)

Let U be the commutative semigroup with identity generated by {A0, A1,

A2, A3}, and let

U′ = {u ∈ U | there exist v ∈ U such that vu = A0A1A2A3 in U},
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be a subset of U.

We define the generator set S(MM3) of G(MM3) as the union of L0, L1 and L2.

Let L0 be a finite set indexed by ({qi | 0 ≤ i ≤ N} ·U′) ⊆ H(MM3) denoted by

L0 = {x(qju) | u ∈ U′, 0 ≤ j ≤ N}.

Let

L1 = {A0, A1, A2, A3}, and

L2 = {ai, a′i, ãi, ã′i | i = 1, 2, 3},

Note that the three sets L0, L1 and L2 should be understood as disjoint sets with

no predefined algebraic structure. Then, the generator set S(MM3) = L0t L1t L2.

Let

M0 = {ãi, ã′i, A0 | i = 1, 2, 3}

Mi = {ai, a′i, Ai}

for i = 1, 2, 3. The relation set R(MM3) contains

R.1 {x2 = e | x ∈ L0} ∪ {[x1, x2] = e | x1, x2 ∈ L0} (these relations imply that L0

generates an abelian 2-group);

R.2 {A2
i = e | i ∈ [4]} ∪ {[Ai, Aj] = e | i, j ∈ [4]} (these relations imply that L1

generates an abelian 2-group);
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R.3 {[ai, a′j] = [ai, ãk] = [ai, ã′l] = [a′j, ãk] = [a′j, ã′l] = [ãk, ã′l] = [ai, aj] = [a′i, a′j] =

[ãi, ãj] = [ã′i, ã′j] = e | 1 ≤ i, j, k, l ≤ 3} (these relations imply that L2 gener-

ates an abelian group);

R.4 {[y, z] = e | y ∈ Mi, z ∈ Mj with i 6= j ∈ [4]};

R.5 {A
a−1

i
i A−1

i = A(a′i)
−1

i | i = 1, 2, 3} (these relations imply that {a−1
i } and

{a′−1
i } are BR-conjoints with respect to {Ai});

R.6 {A
ã′−1

i
0 = A

ã−1
i

0 A−1
0 | i = 1, 2, 3} ∪ {[Aã

α1
1 ãα2

2 ãα3
3

0 , A0] = e | α1, α2, α3 ∈

{0, 1,−1}};

R.7 {[x(qju), Ai] = x(qjuAi) | j ∈ [N + 1], i ∈ [4], u ∈ U′ and u is generated by

{e, A0, A1, A2, A3} \ {Ai}};

R.8 {x(qju)ai x(qju) = x(qju)a′i | j ∈ [N + 1], 1 ≤ i ≤ 3, u ∈ U′ and u is gener-

ated by {e, A0, A1, A2, A3} \ {Ai}};

R.9 {[x(qju), z] = e | j ∈ [N + 1], z ∈ Mi, i ∈ [4], u ∈ U′ and the generating set

of u contains Ai};

R.10 {x(qj)
ai = x(qj)

ãi , x(qj)
a′i = x(qj)

ã′i | j ∈ [N], i = 1, 2, 3};

R.11 {[x(qiu)a
β1
1 aβ2

2 aβ3
3 , x(qjv)] = e | u, v ∈ U, β1, β2, β3 ∈ {0, 1,−1}, i, j ∈ [N]};

and

R.12 The relations corresponding to the commands of MM3 defined below. For
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every f ∈ G(MM3), denote

f ~ aj = f−1 f aj( f−1)
a−1

j f a′−1
j ,

and

f ~ Aj = [ f , Aj]

for j = 1, 2, 3. We denote (. . . (t1 ~ t2) ~ . . .) ~ tm by t1 ~ t2 . . . ~ tm and

t1 ~ t2 ~ . . . ~ t2︸ ︷︷ ︸
n times

by t1 ~ t~n
2 . The relations for the commands of MM3 can be

translated from the commands using the following rules:

• if the command is i;→ j; Add(k1, . . . kl), the relation is

x(qi A0) = x(qj A0)~ ak1 . . . ~ akl
;

• if the command is i; nk1 > 0 . . . nkl
> 0 → j; Sub(k1, . . . kl), the relation

is

x(qi A0)~ ak1 . . . ~ akl
= x(qj A0);

• if the command is i; nk1 = 0 . . . nkl
= 0→ j, the relation is

x(qi A0)~ Ak1 ~ Ak2 ~ . . . Akl
= x(qj A0)~ Ak1 ~ Ak2 ~ . . . Akl

;
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• if the command is i;→ 0;, the relation is x(qi A0) = x(q0A0).

Note that in the original definition [31], there is a parameter p. In the definition

above, we choose p = 2. Relations R.4 and R.6 imply that {(ã′i)
−1 | i = 1, 2, 3}

are BR-conjoints of the set {ã−1
i | i = 1, 2, 3} with respect to {A0}.

We record the following lemmas from [31] about the structure of G(MM3)

Lemma 6.15 (Lemma 4.5 of [31]). The normal subgroup T of G(MM3) generated as a

normal subgroup by all the elements x(qiu) for u ∈ U′ and 0 ≤ i ≤ N is abelian and of

exponent 2.

Lemma 6.16 (Lemma 4.4 of [31]). The subgroup 〈L1 ∪ L2〉 is solvable. If we define

H1 = 〈L1〉 and H2 = 〈L2〉, then

〈H1 ∪ H2〉 = HH2
1 o H2,

where HH2
1 is an abelian normal subgroup of exponent 2 and H2 is abelian.

Theorem 6.17. The group G(MM3) is solvable.

Proof. From the presentation of G(MM3) we know

G(MM3) = T o 〈H1 ∪ H2〉,

where T defined in Lemma 6.15 is an abelian normal subgroup and 〈H1 ∪ H2〉 is

solvable following the proposition above, which completes the proof.
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Note that this theorem is independent of whether MM3 is deterministic or

not.

Next we explain why we say G(MM3) can simulate MM3. For each configu-

ration c = (i; n1, n2, n3), the corresponding word is

w(c) = x(qi A0)~ a~n1
1 ~ a~n2

2 ~ a~n3
3 ~ A1 ~ A2 ~ A3.

Theorem 6.18 (Theorem 4.3 point (b) of [31]). For a 3-glass Minsky machine MM3,

let G(MM3) be the group defined above and H(MM3) be the semigroup defined in the

previous section. Then, the equality

x(qi A0)~ a~n1
1 ~ a~n2

2 ~ a~n3
3 ~ A~α1

1 ~ A~α2
2 ~ A~α3

3

=x(qj A0)~ a~m1
1 ~ a~m2

2 ~ a~m3
3 ~ A~β1

1 ~ A~β2
2 ~ A~β3

3

for αk, βk ∈ {0, 1}, nk, mk ∈ N and k ∈ {1, 2, 3} is true in G(MM3) if and only if the

equality

qia
n1
1 an2

2 an3
3 Aα1

1 Aα2
2 Aα3

3 = qja
m1
1 am2

2 am3
3 Aβ1

1 Aβ2
2 Aβ3

3

is true in H(MM3).

We omit the proof as it can be found in Section 4.1 of [31].

Among all such words, we are particularly interested in the word corre-
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sponding to the starting configuration of input n, which is defined by

w(n) := x(q1A0)~ a~n
1 ~ A1 ~ A2 ~ A3,

and In the word corresponding to the final accept configuration, which is defined

by

w(a) := x(q0A0)~ A1 ~ A2 ~ A3.

When the input is 0, w(0) = x(q1A0) ~ A1 ~ A2 ~ A3. Relations R.1, R.8 and

R.12 imply that w(a) = x(q0A0A1A2A3), w(0) = x(q1A0A1A2A3), and w(a)2 =

w(0)2 = e.

Corollary 6.19. Let X be a recursively enumerable set. Then, there exist a Minsky

machine MM3 and a KMS group G(MM3) such that in G(MM3), w(n) = w(a) if and

only if n ∈ X.

This corollary follows easily from Theorems 6.2, 6.11 and 6.18 by choosing

MM3 to be a deterministic Minsky machine that enumerates X.

Recall the definition of extended homogeneous linear-plus-conjugacy group

(Definition 3.54).

Proposition 6.20. Let MM3 be a 3-glass Minsky machine. Then, there is a presen-

tation of G(MM3) as an extended homogeneous-linear-plus-conjugacy group in which

w(0)w(a) is equal in G(MM3) to one of the involutary generators xj.
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This proposition allows us to reduce the problem of determining if a corre-

lation is quantum to the problem of determining if w(0)w(a) = e in G(MM3).

To prove Proposition 6.20, we use following lemma, which is first proved in

[7].

Lemma 6.21 (Lemma 42 of [7]). Suppose K = 〈S : R〉 is a finitely presented group

satisfying the following properties:

1. The set S is divided into three subsets L0, L1, and L2.

2. The relations in R come in three types:

(a) R contains the relation x2 = e for all x ∈ L0 ∪ L1.

(b) R contains commuting relations of the form xy = yx, for certain pairs x, y ∈

S.

(c) For every other relation r ∈ R, there are some subsets S1 ⊆ S and S0 ⊆

(L0 ∪ L1) ∩ S1 such that r ∈ 〈S0〉F (S1), and the image of 〈S0〉F (S1) in K

is abelian, where 〈S0〉F (S1) denotes the normal subgroup generated by S0 in

F (S1).

Then K is an extended homogeneous-linear-plus-conjugacy group. Futhermore, if S0 ⊆

S1 ⊆ S are two subsets such that S0 ⊆ L0 ∪ L1, and the image of 〈S0〉F (S1) in K

is abelian, then for every w ∈ 〈S0〉F (S1), there is a presentation of K as an extended

homogeneous-linear-plus-conjugacy group in which w is equal in K to one of the involu-

tary generators xj.
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Proof of Proposition 6.20. By the definition of G(MM3), Lemma 6.15 and Lemma 6.16,

G(MM3) satisfies the conditions of Lemma 6.21. Moreover,

w(0)w(a) = x(q1A0A1A2A3)x(q1A0A1A2A3) ∈ 〈L0〉,

and 〈L0〉 is abelian in G(MM3), then this corollary follows from Lemma 6.21.

6.4 Extending a Kharlampovich-Myasnikov-Sapir group

This section is devoted to proving the following lemma.

Lemma 6.22. Let r ∈ {2, 3, 5} be an integer that is the primitive root of infinitely many

primes, let p(n) be the n-th prime whose primitive root is r, and let X be a recursively

enumerable set of positive integers.

Then, there exists a finitely presented group H, which has group elements t and x,

such that x2 = e in H, H/〈tp(n) = e〉 is sofic, and

x = e in H/〈tp(n) = e〉 ⇐⇒ n ∈ X. (6.3)

Moreover, there is a finite presentation 〈S : R〉 of H as an extended homogeneous linear-

plus-conjugacy group such that t, x ∈ S.

To prove Lemma 6.22, we first consider a 3-glass Minsky machine that can

enumerate a specific recursively enumerable set.

Definition 6.23. Let X be a recursively enumerable set and r ∈ {2, 3, 5} be an inte-

ger that is the primitive root of infinitely many primes. Denote the n-th prime whose
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primitive root is r by p(n). Then, let PX,r denote the set

PX,r := {p(n) | n ∈ X}.

Proposition 6.24. The set PX,r is recursively enumerable.

Proof. First notice that the set P of all the primes whose primitive root is r is

infinite and computable. We show PX,r is recursively enumerable by constructing

an algorithm A that accepts q ∈N if and only if q ∈ PX,r.

Let AX be the algorithm that accepts x ∈ N if and only if x ∈ X. By the

definition of recursively enumerable sets, when n /∈ X, AX may reject it or work

indefinitely long. Given input q, A first checks if q ∈ P. If q is not in P, it rejects q.

If q is in P, A also computes a positive integer n such that q = p(n). Then A runs

AX with input n and accepts if and only if AX accepts. Hence, A can accept each

q ∈ PX,r in a finite amount of time.

Let MMMMMM3 be a 3-glass Minsky machine that accepts n ∈ N if and only if

n ∈ PX,r, whose existence follows from Theorem 6.2. Let G(MMMMMM3) = 〈SG : RG〉 be

the KMS group of MMMMMM3. This section is devoted to studying the properties of

G :=
G(MMMMMM3) ∗ F ({t})

〈[t, a1] = [t, a′1] = e, t−1x(q1A0)t = x(q1A0)~ a1〉
. (6.4)

Note that

G ∼= 〈SG ∪ {t} : RG ∪ {[t, a1] = [t, a′1] = e, t−1x(q1A0)t = x(q1A0)~ a1}〉.
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The proof of Lemma 6.22 is divided into five propositions. The propositions in-

volve two new related groups: Gp(n)(MMMMMM3) and Gp(n)(MMMMMM3), defined by

Gp(n)(MMMMMM3) =
G(MMMMMM3)

〈x(q1A0)~ a~p(n)
1 = x(q1A0)〉

,

Gp(n)(MMMMMM3) =
G

〈x(q1A0)~ a~p(n)
1 = x(q1A0), tp(n) = e〉

.

Proposition 6.25. Gp(n)(MMMMMM3) ≤ Gp(n)(MMMMMM3).

Proof. Let H be the subgroup of Gp(n)(MMMMMM3) generated by x(q1A0), a1 and a′1. The

following relations hold in H:

x(q1A0)
2 = [a1, a′1] = e,

x(q1A0)
a′1 = x(q1A0)

a1 x(q1A0),

[x(q1A0)
a

α1
1 , x(q1A0)] = e for α1 ∈ {−1, 0, 1},

x(q1A0) = x(q1A0)~ a~p(n)
1 .

Let K be the subgroup generated by a1 and a′1 in H.

We first show that K = 〈a1, a′1 : [a1, a′1] = e〉. Consider a homomorphism

ψ : F (S(MMMMMM3))→ 〈b1, b2 : [b1, b2] = e〉
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defined by

ψ(a1) = b1

ψ(a′1) = b2

ψ(s) = e for all s ∈ S(MM3) \ {a1, a′1}.

It can be checked that for each r in the relation set of Gp(n)(MMMMMM3), ψ(r) = e, for

example,

ψ([a1, a′1]) = ψ(a−1
1 )ψ(a′−1

1 )ψ(a1)ψ(a′1) = [b1, b2] = e,

so ψ descends to a well-defined homomorphism Gp(n)(MMMMMM3)→ 〈b1, b2 : [b1, b2] =

e〉. With a similar argument, we can get that ψ descends to a well-defined homo-

morphism on H. Note that, in H, ker(ψ) = 〈x(q1A0)〉H. Also, notice that for ev-

ery n, m ∈ Z, ψ(an
1 a′m1 ) = bn

1 b′m1 , so ψ is surjective and Im(ψ) = 〈b1, b2 : [b1, b2] =

e〉. Since a1 and a′1 commute, ψ gives us an isomorphism between K and 〈b1, b2 :

[b1, b2] = e〉. We can conclude that K is abelian and write K = 〈a1, a′1 : [a1, a′1] = e〉.

All the conditions of Lemma 6.12 are satisfied, so we know H is solvable,

〈x(q1A0)〉H ∩ K = {e}, and

H/〈x(q1A0)〉H = K.

Hence, every h ∈ H can be written as tan
1 a′m1 for some t ∈ 〈x(q1A0)〉H and n, m ∈
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Z. We can deduce that if t1an1
1 a′m1

1 = t2an2
1 a′m2

1 ,

t1 = t2an2−n1
1 a′m2−m1

1 ⇐⇒ n2 = n1, m1 = m2, and t1 = t2 in 〈x(q1A0)〉H.

In other words, every element in H and be uniquely written as tan
1 a′m1 for some

t ∈ 〈x(q1A0)〉H and n, m ∈ Z.

We consider a homomorphism φ : F ({x(q1A0), a1, a′1})→ H defined by

φ(a1) = a1,

φ(a′1) = a′1,

φ(x(q1A0)) = x(q1A0)~ a1.

It can be checked that

φ(tan
1 a′m1 ) = φ(t)φ(a1)

nφ(a′1)
m,

φ(t1t2) = φ(t1)φ(t2),

for t, t1, t2 ∈ 〈x(q1A0)〉H. We first prove φ descends to a homomorphism H → H.

The fact φ is well-defined follows from the fact that each element of H can be

uniquely written as tan
1 a′m1 for some t ∈ 〈x(q1A0)〉H and n, m ∈ Z. To prove it is

a homomorphism, first observe that

φ(x(q1A0)
an

1 a′m1 ) = φ(x(q1A0))
an

1 a′m1 for all n, m ∈ Z,
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then for all t ∈ 〈x(q1A0)〉H, φ(tan
1 a′m1 ) = φ(t)an

1 a′m1 . Consider two elements t1ar1
1 a′s1

1

and t2ar2
1 a′s2

1 where t1, t2 ∈ 〈x(q1A0)〉H, then

φ(t1ar1
1 a′s1

1 t2ar2
1 a′s2

1 ) = φ(t1ta
−r1
1 a

′−s1
1

2 ar1+r2
1 a′s1+s2

1 )

= φ(t1)φ(t2)
a
−r1
1 a

′−s1
1 φ(ar1+r2

1 a′s1+s2
1 )

= φ(t1)ar1
1 a′s1

1 φ(t2)ar2
1 a′s2

1

= φ(t1ar1
1 a′s1

1 )φ(t2ar2
1 a′s2

1 ).

Secondly, we will prove that φp(n) = 1 so that it is invertible, and hence an iso-

morphism. Based on what we prove above, it suffices to make sure that φp(n) = 1

on the generators. The fact that φp(n)(a1) = a1 and φp(n)(a′1) = a′1 follows from

the definition. What is left to prove is

φp(n)(x(q1A0)) = x(q1A0)~ a~p(n)
1 = x(q1A0),

where the second equality follows the relations.

We will prove that φ(x(q1A0)~ a~m
1 ) = x(q1A0)~ a~(m+1)

1 for m ≥ 0 by

induction. The base case that m = 0 follows from the definition of φ. Assume it
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is true for m ≤ N, then

φ(x(q1A0)~ a~N
1 )

=φ(
(

x(q1A0)~ a~(N−1)
1

) (
x(q1A0)~ a~(N−1)

1

)a1

(
x(q1A0)~ a~(N−1)

1

)a−1
1
(

x(q1A0)~ a~(N−1)
1

)a′−1
1

)

=φ
(

x(q1A0)~ a~(N−1)
1

)
φ
(

x(q1A0)~ a~(N−1)
1

)a1

φ
(

x(q1A0)~ a~(N−1)
1

)a−1
1

φ
(

x(q1A0)~ a~(N−1)
1

)a′−1
1

=
(

x(q1A0)~ a~N
1

) (
x(q1A0)~ a~N

1

)a1
(

x(q1A0)~ a~N
1

)a−1
1
(

x(q1A0)~ a~N
1

)a′−1
1

=x(q1A0)~ a~N+1
1 ,

where we use the fact that x(q1A0)~ a~n
1 ∈ T for all n ≥ 0 and Lemma 6.15. The

induction is complete by the principle of inductive proof.

Then, we prove φn(x(q1A0)) = x(q1A0)~ a~n
1 for n ≥ 1 by induction. The

base case follows from the definition of φ. Assume it is true for n ≤ N, then,

φN+1(x(q1A0)) = φ(φN(x(q1A0))) = φ(x(q1A0)~ a~N
1 ) = x(q1A0)~ a~(N+1)

1 ,

and the induction is complete. Then we know that φp(n)(x(q1A0)) = x(q1A0)~

a~p(n)
1 = x(q1A0) in Gp(n)(MMMMMM3), and hence, φp(n) = 1 on H. Note that

Gp(n)(MMMMMM3) =
Gp(n)(MMMMMM3) ∗ 〈t : tp(n) = e〉

〈[t, a1] = [t, a′1] = e, t−1x(q1A0)t = x(q1A0)~ a1〉
,

and the proposition follows from Corollary 3.30.
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We note that the previous proof showed that Gp(n)(MMMMMM3) is a Zp(n)-HNN-

extension of Gp(n)(MMMMMM3).

Proposition 6.26. G/〈tp(n) = e〉 ∼= Gp(n)(MMMMMM3).

Proof. Notice that the sets of generators of G/〈tp(n) = e〉 and Gp(n)(MMMMMM3) are the

same. The only difference about the relations is that Gp(n)(MMMMMM3) has the relation

x(q1A0)~ a~p(n)
1 = x(q1A0) and G/〈tp(n) = e〉 does not. We are going to show

that x(q1A0)~ a~p(n)
1 = x(q1A0) holds in G/〈tp(n) = e〉 as well. Then it implies

that the two groups are isomorphic.

To simplify the notation, we write v(0) = x(q1A0) and v(j) = x(q1A0)~ a~j
1

for all j ≥ 1. Since v(j) ∈ T for all j ≥ 0, by Lemma 6.15, we know that v(j)2 = e.

Next we are going to prove that t−1v(n)t = v(n + 1) and t−nv(0)tn = v(n) by

induction. Assume t−1v(j)t = v(j + 1) and t−jv(0)tj = v(j) for all 1 ≤ j ≤ k.

Then

t−1v(k)t =t−1v(k− 1)v(k− 1)a1v(k− 1)a−1
1 v(k− 1)a′−1

1 t

=t−1v(k− 1)tt−1v(k− 1)a1tt−1v(k− 1)a−1
1 tt−1v(k− 1)a′−1

1 t

=v(k)v(k)a1v(k)a−1
1 v(k)a′−1

1

=v(k + 1)

and

t−k−1x(q1A0)tk+1 = t−1t−kv(0)tkt = t−1v(k)t = v(k + 1),
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where we use the fact that [t, a1] = [t, a′1] = e. Hence, we know tp(n) = e implies

that

x(q1A0) = t−p(n)x(q1A0)tp(n) = x(q1A0)~ a~p(n)
1

in G/〈tp(n) = e〉 and the proposition follows.

Moreover, we can also see that the identity homomorphism on the free

group generated by the set of generators of G descends to an isomorphism be-

tween G/〈tp(n) = e〉 and Gp(n)(MMMMMM3).

For the next two propositions, we construct a non-deterministic version of

MMMMMM3, denoted by MMMMMM
(p(n))
3 . Comparing to MMMMMM3, the machine MMMMMM

(p(n))
3 has addi-

tional states 1′, 2′, 3′, . . . p(n)′. Every command of MMMMMM3 that starts with state 1 or

goes to state 1 is replaced by a command starting from state 1′ or going to state 1′

respectively with the same action. The other commands of MMMMMM3 are unchanged.

In addition to the commands obtained from MMMMMM3, the new commands are

1;→ 1′

1; Add(1)→ 2′

i′; Add(1)→ (i + 1)′ for 2 ≤ i < p(n)

p(n)′; Add(1)→ 1.
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Proposition 6.27. Every computation θ of MMMMMM
(p(n))
3 satisfies the condition that

θ = (θl)
k(1;→ 1′)θ0

where (θl)
k represents k loops on the states 1 → 2′ → . . . → p(n)′ → 1 for k ≥ 0 and

θ0 is some computation of MMMMMM3 starting at the state 1.

Proof. First observe that MMMMMM
(p(n))
3 simulates MMMMMM3 in the sense that any computa-

tion ofMMMMMM
(p(n))
3 that starts with state 1′ has a corresponding computation ofMMMMMM3

starting at state 1. Since θl does not modify the second and third counters and

neither does the command (1;→ 1′), effectively, the configuration (1′ : m, 0, 0) of

MMMMMM
(p(n))
3 can be viewed as the input configuration ofMMMMMM3 simulated byMMMMMM

(p(n))
3 .

Then, this proposition follows from the observation that MMMMMM
(p(n))
3 does not have

commands going from 1′ back to 1.

Proposition 6.28. In Gp(n)(MMMMMM3), w(0) = w(a) if and only if n ∈ X.

Proof. Let the set of generators of Gp(n)(MMMMMM3) be S(MMMMMM3), and let the set of rela-

tions of Gp(n)(MMMMMM3) be Rp(n)(MMMMMM3). If n ∈ X, notice that in Gp(n)(MMMMMM3),

w(0) = x(q1A0)~ A1 ~ A2 ~ A3

= x(q1A0)~ a~p(n)
1 ~ A1 ~ A2 ~ A3.

Also, notice that x(q1A0) ~ a~p(n)
1 ~ A1 ~ A2 ~ A3 = w(a) in G(MMMMMM3), which

follows from the fact that p(n) is accepted by MMMMMM3. Therefore, w(0)w(a) is in

Rp(n)(MMMMMM3) and is trivial in Gp(n)(MMMMMM3).
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If n /∈ X, we consider G(MMMMMM
(p(n))
3 ), which is the KMS group of MMMMMM

(p(n))
3 .

Let the set of generators and the set of relations of G(MMMMMM
p(n)
3 ) be S(MMMMMM

p(n)
3 ) and

R(MMMMMM
p(n)
3 ). Let L′0 = L0 ∪ {x(qi′u) | 1 ≤ i ≤ p(n) and u ∈ U′}, where L0 and U′

are defined in Section 6.3.2. It can be seen that

S(MMMMMM3) = L0 t L1 t L2

S(MMMMMM
p(n)
3 ) = L′0 t L1 t L2,

where L1 and L2 are defined in Section 6.3.2. Based on the relations for the com-

mands in R.12, we know that in G(MMMMMM
(p(n))
3 ) the relations involving x(q1A0) are

x(q1A0) = x(q2′A0)~ a1,

x(qp(n)′A0)~ a1 = x(q1A0),

x(q1A0) = x(q1′A0).

From the relations involving states 2′, 3′ . . . (p(n) − 1)′, we can further deduce

that in G(MMMMMM
(p(n))
3 )

x(q1A0)~ a~p(n)
1 = x(q1A0). (6.5)

Therefore, every r ∈ Rp(n)(MMMMMM3) is trivial in G(MMMMMM
(p(n))
3 ) and the identity ho-

momorphism ψ : F (S(MMMMMM3)) → F (S(MMMMMM
p(n)
3 )) descends to a homomorphism

ψ : Gp(n)(MMMMMM3)→ G(MMMMMM
p(n)
3 ). Then if w(0)w(a) 6= e in G(MMMMMM

p(n)
3 ), its preimage
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w(0)w(a) is also nontrivial in Gp(n)(MMMMMM3).

Since w(0) = x(q1A0)~ a~p(n)
1 ~ A1 ~ A2 ~ A3 in G(MMMMMM

p(n)
3 ), it suffices to

prove x(q1A0)~ a~p(n)
1 ~ A1 ~ A2 ~ A3 6= w(a) in G(MMMMMM

p(n)
3 ). We can prove it by

contradiction. Suppose, on the contrary, that x(q1A0)~ a~p(n)
1 ~ A1 ~ A2 ~ A3 =

w(a), which implies that there exists a computation of MMMMMM
(p(n))
3 that will bring

the configuration (1; p(n), 0, 0) to the accept configuration. Following Proposi-

tion 6.27, θ0 starts with an input configuration (1′; (k + 1)p(n), 0, 0). Our assump-

tion is equivalent to that there exists a k ≥ 0 such that (1; (k + 1)p(n), 0, 0) is

accepted by MMMMMM3, which is a contradiction. This is because if k = 0, (1; (k +

1)p(n), 0, 0) is not accepted because n /∈ X, and if k > 0, (1; (k + 1)p(n), 0, 0) is

not accepted because (k + 1)p(n) is not a prime. So, in G(MMMMMM
p(n)
3 ), If n /∈ X,

x(q1A0)~ a~p(n)
1 ~ A1 ~ A2 ~ A3 6= w(a). We can conclude that w(0)w(a) 6= e

in G(MMMMMM
p(n)
3 ) and the preimage of w(0)w(a) under the homomorphism ψ in

Gp(n)(MMMMMM3), which equals w(0)w(a), is also nontrivial.

In summary, we can see that in Gp(n)(MMMMMM3)

w(0)w(a) = e ⇐⇒ n ∈ X,

which completes the proof.

Proposition 6.29. The group Gp(n)(MMMMMM3) is sofic.

Proof. We first prove that Gp(n)(MMMMMM3) is solvable. Let X = 〈L0〉Gp(n)(MMMMMM3) and

let H be the subgroup generated by L1 and L2 in Gp(n)(MMMMMM3). Comparing to T,
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which is the normal subgroup generated by L0 in G(MMMMMM3),

X = T/〈x(q1A0)~ a~p(n)
1 = x(q1A0)〉.

Since T is abelian (Lemma 6.15), X is also abelian. We also know that H is solv-

able following Lemma 6.16. Then Gp(n)(MMMMMM3) = X o H is also solvable. Since

Gp(n)(MMMMMM3) is a Zp(n)-HNN-extension of Gp(n)(MMMMMM3) (Proposition 6.25) and a

Zp(n)-HNN-extension of a solvable group is sofic (Proposition 3.52), Gp(n)(MMMMMM3)

is sofic.

In summary, the relations between G/〈tp(n) = e〉, Gp(n)(MMMMMM3), Gp(n)(MMMMMM3)

and G(MMMMMM
(p(n))
3 ) are given in the figure below.

G/〈tp(n) = e〉 Gp(n)(MMMMMM3) G(MMMMMM
(p(n))
3 )

Gp(n)(MMMMMM3)

Figure 6.2: Figure for the relations between G/〈tp(n) = e〉, Gp(n)(MMMMMM3),

G(MMMMMM
(p(n))
3 ) and Gp(n)(MMMMMM3).

Proof of Lemma 6.22. It suffices to choose H = G, which is defined in eq. (6.4), t =

t and x = w(0)w(a). By Lemma 6.15, x2 = e. Since Gp(n)(MMMMMM3) is embedded in

Gp(n)(MMMMMM3) (Proposition 6.25), following Proposition 6.28, we know w(0)w(a) =

e in Gp(n)(MMMMMM3) if and only if n ∈ X. By Proposition 6.26, we can further deduce

that w(0)w(a) = e in G/〈tp(n) = e〉 if and only if n ∈ X. Also, by Proposition 6.26

and Proposition 6.29, we know G/〈tp(n) = e〉 is sofic. For the presentation of H it
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suffices to apply Proposition 6.20 to G(MMMMMM3) and w(0)w(a).
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Chapter 7: Main results

In this chapter, we state and prove our main result of this dissertation.

Specifically, in Section 7.1, we state a our main theorem (Theorem 7.1) and explain

its implication on the decidability of the membership problems of constant-sized

Cqa and Cqc correlations. In Section 7.2, we introduce a correlation that can certify

the relation (t1t2)
p = e, which is used in the proof of Theorem 7.1. In Section 7.3,

we construct the family of sets of correlation {Fn}, which is the central object of

Theorem 7.1. In the proof of Theorem 7.1, we need some approximation results

to construct approximating strategies of a quantum correlation based on approx-

imating representations. We present such results in Section 7.4. Finally, we prove

{Fn} satisfy the conclusion of Theorem 7.1 in Section 7.5.

7.1 Membership problems of constant-sized quantum correlations

In this chapter, we let K be the subfield of C generated by Q and the roots

of unity ωn for n ∈ Z, and we work with correlations with entries in K.

The main result of this chapter is given in the theorem below.

Theorem 7.1. Let r ∈ {2, 3, 5} be an integer such that there are infinitely many primes

whose primitive root is r, let p(n) be the n-th prime whose primitive root is r, and let X
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be a recursively enumerable set of positive integers.

Suppose G = 〈S : R〉 is an extended homogeneous linear-plus-conjugacy group,

which has generators t and x such that x2 = e in G, G/〈tp(n) = e〉 is sofic, and

x = e in G/〈tp(n) = e〉 ⇐⇒ n ∈ X, (7.1)

for all n ≥ 0. Then, there exist constants N and K, which only depend on the presentation

of G and r, and a family of sets of correlations {Fn | n > 0} where

Fn = {Cn,i | i ∈ [K]} ⊂ KN2×82
,

such that

Fn ∩ Cqc(N, N, 8, 8) = ∅ if n ∈ X,

Fn ∩ Cqa(N, N, 8, 8) 6= ∅ if n /∈ X.

Note that the set of correlations Fn can be computed by an algorithm for all

n ≥ 0, and we will show it in the proof of Theorem 7.1. Before we prove it, we

first prove its consequences on the hardness of membership problem of constant-

sized quantum correlations.

For t ∈ {q, qs, qa, qc}, we define the membership problem of Ct(nA, nB, mA, mB)

as follows.

Problem (Membership(nA, nB, mA, mB)t). Given a correlation P ∈ KnAnBmAmB for
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some constants nA, nB, mA and mB, decide if P ∈ Ct(nA, nB, mA, mB).

We study the hardness of the membership problems of Ct(nA, nB, mA, mB)

by studying the hardness of a related problem.

Problem (Intersection(nA, nB, mA, mB)t). Given a set of correlations F ⊂ KnAnBmAmB

such that |F| ≤ K for some constants K, nA, nB, mA and mB, decide if F ∩ Ct(nA, nB,

mA, mB) 6= ∅.

Proposition 7.2. For fixed constants nA, nB, mA, mB and K, and t ∈ {q, qs, qa, qc},

(Intersection(nA, nB, mA, mB)t) is as hard as (Membership(nA, nB, mA, mB)t).

Proof. If we have a decider Dm for (Membership(nA, nB, mA, mB)t), we can use

it to construct a decider Di for (Intersection(nA, nB, mA, mB)t) in the following

way. Given a set of correlations F, Di runs Dm in parallel for each member of F

and accepts only if one of the members of F is in Ct(nA, nB, mA, mB). Since there

are only a constant-number of members of F, the overhead is constant.

If we have a decider D′i for (Intersection(nA, nB, mA, mB)t), we can use it to

construct a decider D′m for (Membership(nA, nB, mA, mB)t) in the following way.

Given a correlation P, D′m passes {P} as the input to D′i and accepts P only if D′i

accepts. Again, the overhead is constant. Hence, under Karp reduction, the two

problems have equivalent hardness.

The first consequence of Theorem 7.1 is on the hardness of the membership

problem of constant-sized Cqa correlations.

Corollary 7.3. There exist constants N and M such that, for any integer nA, nB ≥ N

and mA, mB ≥ M, (Membership(nA ,nB, mA, mB)qa) is coRE-hard.
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Proof. By Lemma 6.22, the group G defined in eq. (6.4) satisfies the conditions

of Theorem 7.1. Since Cqa(n, n, m, m) ⊆ Cqc(n, n, m, m) for any n, m ≥ 2,

Theorem 7.1 implies that there exist constants N and K, and a family of sets of

correlations {Fn} where Fn ⊆ KN2×82
and |Fn| = K, such that

Fn ∩ Cqa(N, N, 8, 8) = ∅ if and only if n ∈ X.

Hence, the problem of deciding if Fn ∩ Cqa(N, N, 8, 8) 6= ∅ is coRE-complete, and

(Intersection(nA, nB, mA, mB)qa) is coRE-hard for nA, nB ≥ N and mA, mB ≥ 8. By

Proposition 7.2, (Membership(nA, nB, mA, mB)qa) for nA, nB ≥ N and mA, mB ≥ 8

is also coRE-hard.

Corollary 7.4. There exist constants N and M such that, for any nA, nB ≥ N and mA,

mB ≥ M, (Membership(nA, nB, mA, mB)qc)is coRE-complete.

Proof. By Lemma 6.22, the group G defined in eq. (6.4) satisfies the conditions

of Theorem 7.1. Since Cqa(n, n, m, m) ⊆ Cqc(n, n, m, m) for any n, m ≥ 2,

Theorem 7.1 implies that there exist constants N and K, and a family of sets of

correlations {Fn} where Fn ⊆ KN2×82
and |Fn| = K, such that

Fn ∩ Cqc(N, N, 8, 8) = ∅ if and only if n ∈ X.

Hence, the problem of deciding if Fn ∩ Cqc(N, N, 8, 8) 6= ∅ is coRE-complete, and

(Intersection(nA, nB, mA, mB)qc) is coRE-hard for nA, nB ≥ N and mA, mB ≥ 8.

On the other hand, it has been shown that (Membership(nA, nB, mA, mB)qc)
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is in coRE [42]. Hence, (Membership(nA, nB, mA, mB)qc) is coRE-complete for

nA, nB ≥ N and mA, mB ≥ 8.

In the proof of Theorem 7.1, we follow the f a∗-embedding procedure and

embed the group G/〈tp = e〉 from the statement of Theorem 7.1 into a group of

the form Γ/〈(t1t2)
p = e〉, where Γ is a solution group associated with a linear

system. To construct a correlation that certifies the relations of Γ/〈(t1t2)
p = e〉,

we first show that there exists a constant-sized correlation that can certify the

relation (t1t2)
p = e for any prime p. More precisely, we mean that the size of this

correlation is independent of p.

7.2 The correlation Q−π/p

Recall that, for a prime p, Dp = 〈t1, t2 : t2
1 = t2

2 = (t1t2)
p = e〉. In this

section, we introduce a correlation Q−π/p that can certify the relation (t1t2)
p = e

under some condition. Note that Q−π/p is very similar to Q̂−π/p as Q̂−π/p can

also certify the relation (t1t2)
p = e. The difference is that Q−π/p is induced by a

strategy based on the regular representation of Dp, but Q̂−π/p is not.

To stress the fact that Q−π/p can certify the relation (t1t2)
p = e, we include

symbols t1 and t2 in the question set of Q−π/p, where the question set is

I := {0, 1, 2, t1, t2, (0, t1), (0, t2)}.

Note that the input set can be chosen to be [7]. Instead, we make the bijection
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between I and [7] implicit to help understand Theorem 7.10 introduced later.

The questions (0, t1) and (0, t2) are introduced to make sure the measurement for

question 0 commutes with the measurements for questions t1 and t2 respectively

following Proposition 4.14. When Alice and Bob receive the question (0, t1) and

(0, t2), they return two symbols (a0, a1) where a0 ∈ [3] and a1 ∈ [2]. The answer

(a0, a1) ∈ [3]× [2] is mapped to 2a0 + a1 ∈ [6]. Instead of using such a bijection

between [3]× [2] and [6], we keep the answer pair (a0, a1) to match the question

pair (0, t1) or (0, t2).

The correlation Q−π/p : I × I × [6]× [6]→ K is defined in the next subsec-

tion.

7.2.1 An inducing strategy of Q−π/p

In this subsection, we present a commuting-operator strategy inducing Q−π/p,

denoted by

S̃ = (|ψ̃〉, {{M̃(a)
x | x ∈ I} | a ∈ [6]}, {{Ñ(b)

y | y ∈ I} | b ∈ [6]}),

based on the left and right regular representations of Dp. The definitions of |ψ̃〉,

M̃a
x and Ñb

y are given below.

First, we introduce the notion of group algebra over C and the notion of an

idempotent element of C[G].

Definition 7.5. Let G be a group. The group algebra C[G] is the set of all linear

combinations of finitely many elements of G with coefficients in C with two operations
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+ and · defined in the following way. Let ∑g∈G αgg and ∑g∈G βgg, where αg and βg are

nonzero on finitely many g, be two elements of C[G]. Then,

( ∑
g∈G

αgg) + ( ∑
g∈G

βgg) = ∑
g∈G

(αg + βg)g,

( ∑
g∈G

αgg) · ( ∑
g′∈G

βg′g′) = ∑
h∈G

( ∑
g,g′∈G:gg′=h

αgβg′)h.

Definition 7.6. Let G be a group and let C[G] be the group algebra over C. An element

x ∈ C[G] is idempotent if x · x = x.

Definition 7.7. Let G be a group, let C[G] be the group algebra over C, and let x =

∑g∈G αgg be an element of C[G]. The support of x, denoted by supp(x), is

{g ∈ G | αg 6= 0}.

Recall the vector space

L2Dp = span({|(t1t2)
j〉, |t2(t1t2)

j〉 | j ∈ [p]}).

We first define |ψ̃〉 := |e〉.
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Next we define some idempotent elements of C[Dp].

π
(0)
0 =

1
p ∑

j∈[p]
(t1t2)

j, (7.2)

π
(1)
0 =

2
p ∑

j∈[p]
cos(

2jπ
p

)(t1t2)
j, (7.3)

π
(2)
0 = e− π

(0)
0 − π

(1)
0 , (7.4)

π
(0)
1 =

1
2

π
(1)
0 +

1
p ∑

j∈[p]
cos(

(2j + 1)π
p

)t2(t1t2)
j, (7.5)

π
(1)
1 = π

(1)
0 − π

(0)
1 , (7.6)

π
(2)
1 = e− π

(1)
0 , (7.7)

π
(0)
2 =

1
2

π
(1)
0 +

1
p ∑

j∈[p]
sin(

(2j + 1)π
p

)t2(t1t2)
j, (7.8)

π
(1)
2 = π

(1)
0 − π

(0)
2 , (7.9)

π
(2)
2 = e− π

(1)
0 . (7.10)

From the definition of group algebra, we can see that representations of

G can be extended to representations of C[G] linearly. We denote the left and

right regular representations of C[Dp] on L2Dp by L and R. Then we define the

projectors used by Alice and Bob.
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• For the input x, y ∈ {0, 1, 2}

M̃(a)
x =


L(π(a)

x ) if a ∈ [3],

0 otherwise;

Ñ(b)
y =


R(π(b)

y ) if b ∈ [3],

0 otherwise.

• For the inputs x, y ∈ {t1, t2}

M̃(a)
x =


L(e)+(−1)aL(x)

2 if a ∈ [2],

0 otherwise;

Ñ(b)
y =


R(e)+(−1)bR(y)

2 if b ∈ [2],

0 otherwise.

• For the inputs (0, x) and (0, y) with x, y ∈ {t1, t2}

M̃(a0,a1)
(0,x) = M̃(a0)

0 M̃(a1)
x with a0 ∈ [3], a1 ∈ [2],

Ñ(b0,b1)
(0,y) = Ñ(b0)

0 Ñ(b1)
y with b0 ∈ [3], b1 ∈ [2].

Note that the fact that M̃(a)
0 commutes with M̃(a)

x for x ∈ {t1, t2} follows from the

147



observation that

L(t1)L((t1t2)
j)L(t1) = L((t1t2)

−j) L(t2)L((t1t2)
j)L(t2) = L((t1t2)

−j)

for each j ∈ [p]. With similar reasoning, we get that Ñ(b)
0 commutes with Ñ(b)

y for

y ∈ {t1, t2}.

Definition 7.8. The correlation Q−π/p : I × I × [6]× [6]→ K, is defined by

Q−π/p(a, b|x, y) = 〈ψ̃|M̃(a)
x Ñ(b)

y |ψ̃〉.

Since Q−π/p is induced by S̃, the next claim is immediate.

Claim 7.9. The correlation Q−π/p is in Cs
qc(7, 6).

7.2.2 Implication of Q−π/p

This subsection is devoted to the following theorem.

Theorem 7.10. If a commuting-operator strategy S = (|ψ〉, {M(a)
x }, {N(b)

y }) can in-

duce Q−π/p and there exist unitaries UA and UB such that UA commutes with UB and

all of Bob’s projectors, UB commutes with all of Alice’s projectors, and

UAUB|ψ〉 = |ψ〉,

(Nt1 Nt2)UB|ψ〉 = UB(Nt1 Nt2)
r|ψ〉,

(Mt1 Mt2)UA|ψ〉 = UA(Mt1 Mt2)
r|ψ〉,
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where Mx = M(0)
x −M(1)

x and Ny = N(0)
y −N(1)

y for x, y ∈ {t1, t2} and r is a primitive

root of p, then

(Mt1 Mt2)
p|ψ〉 = |ψ〉.

This proof is very similar to the proof of Proposition 5.8. As, in that proof,

the basic idea is to find a decomposition of |ψ〉 : |ψ〉 = ∑
p
j=0 |ψj〉, where |ψj〉 is

an eigenvector of Mt1 Mt2 with eigenvalue ω
j
p. Intuitively, |ψ0〉 and |ψp〉 are in

the 1-dimensional irreducible representation of Dp, and |ψj〉 and |ψp−j〉 are in the

2-dimensional irreducible representation of Dp, in which

t1t2 7→

ω
j
p 0

0 ω
−j
p


for 1 ≤ j ≤ (p− 1)/2.

Comparing to Q̂−π/p, the two new questions are (0, t1) and (0, t2). As men-

tioned in the start of this section, we introduce questions (0, t1) and (0, t2) to make

sure the measurement for question 0 commutes with the measurements of t1 and

t2. Such tests of commutation relations between measurements are not necessary

for the proof of Proposition 5.8.

The full proof along with entries of Q−π/p can be found in Appendix C.1.
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7.3 The set of correlations Fn

The idea behind how we construct the set of correlations Fn in the statement

of Theorem 7.1 is the following. We first extend the given group G and embed

it into a solution group Γ. Then, the correlations in Fn are designed to certify

the relations of Γ/〈(t1t2)
p(n) = e〉. More specifically, we identify the projector of

each question-answer pair as an idempotent element of C[Γ], and the correlations

values are function values of products of such idempotent elements for a family

of functions on C[Γ] to be defined later.

We first extend the group G and embed the extended group in Γ. Let

D := 〈u, tD : u−1tDu = tr
D〉

K := (G ∗ D)/〈t = tD〉.

Proposition 7.11. K/〈tp(n) = e〉 is sofic and G/〈tp(n) = e〉 is embedded in K/〈tp(n) =

e〉 such that

x = e in K/〈tp(n) = e〉 ⇐⇒ n ∈ X.

Proof. We first prove that D is sofic. First note that 〈tD〉 ∼= Z and it is abelian.

Next, we show that D is an HNN-extension of Z. Define φ : Z → Z : tD → tr
D.

Then φ is an injective endomorphism on 〈tD〉 and D is an HNN-extension of

Z. By Proposition 3.51, we know D is sofic. Because G/〈tp(n) = e〉 is sofic, by
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Proposition 3.50, we know K/〈tp(n) = e〉 ∼= (G/〈tp(n) = e〉 ∗ D)/〈t = tD〉 is also

sofic.

Again, because K/〈tp(n) = e〉 is the free product G/〈tp(n) = e〉 and D

with amalgamation, by Theorem 3.22, we know G/〈tp(n) = e〉 is embedded in

K/〈tp(n) = e〉. Hence, x = e in K/〈tp(n) = e〉 if and only if n ∈ X.

We know that G is an extended homogeneous linear-plus-conjugacy group.

If the presentation of G is 〈S : R〉, then the presentation of K is 〈S ∪ {u} :

R ∪ {u−1tu = tr}〉. We can see that K is also an extended homogeneous linear-

plus-conjugacy group following Definition 3.54. Therefore, the f a∗-embedding

procedure (Propositions 3.55 and 3.56) can be applied to K.

By applying the f a∗-embedding procedure to the group K , we can construct

an m × n binary linear system Axxx = 0 and a solution group Γ associated with

Axxx = 0 wherein K is embedded.

Γ = Γ′(A) =
G0 ∗ G1 ∗ . . . ∗ Gm−1

〈PΓ〉
,

where

Gi = 〈{gi,k | k ∈ Ii} : {g2
i,k = [gi,k, gi,l] = ∏

k∈Ii

gi,k = e | k, l ∈ Ii}〉, (7.11)

PΓ = {gi,kgj,k | i, j ∈ [m], k ∈ Ii ∩ Ij}. (7.12)

Denote the f a∗-embedding of K into Γ by φ. Then there exist i0, i1, i2 ∈ [m] and
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k0 ∈ Ii0 , k1 ∈ Ii1 , k2 ∈ Ii2
1 such that

φ(x) = gi0,k0 φ(t) = gi1,k1 gi2,k2 .

For simplicity, from now on, we write φ(x) = x and φ(t) = t1t2.

Proposition 7.12. Let φ′ : K/〈tp(n) = e〉 → Γ/〈φ(t)p(n) = e〉 be the homomorphism

induced by φ. Then φ′ is also an f a∗-embedding. In particular,

φ′(x) = e in Γ/〈φ(t)p(n) = e〉 ⇐⇒ n ∈ X.

Proof. If ρ is also an ε-representation of K/〈tp(n) = e〉 meaning that ‖ρ(t)p(n) −

1‖ ≤ ε, then following the steps of the f a∗-embedding procedure in Appendix B,

we can construct an approximate representation σ of Γ/〈φ(t)p(n) = e〉 such that

σ(φ′(t)) = (ρ(t)⊕ ρ(t))⊗ 1
Ck0 ⊕ (ρ(t)⊕ ρ(t))⊕ 1

Ck1

where ρ(t) is the complex conjugate of ρ(t) and for some constants k0 and k1

depending on the presentation of G. Hence, ‖σ(φ′(t))p(n) − 1‖ ≤ ε and σ is an

ε-approximate representation of Γ/〈φ(t)p(n) = e〉. By Lemma 3.41, we know φ′ is

an f a∗-embedding and the proposition follows.

Next, we are going to define Fn based on Γ/〈(t1t2)
p(n) = e〉. Let OΓ = {gi,k |

1This is because the f a∗-embedding procedure reuses generators of G that squares to identity
and introduce two more generators for each generator of G that does not square to identity, as
demonstrated in Appendix B.
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i ∈ [m], k ∈ Ii}, which are the generators of Γ, and let

O = OΓ ∪ {gm, gm+1, gm+2, (gm, t1), (gm, t2)}.

The symbols gm, gm+1 and gm+2 correspond to questions 0, 1 and 2 from the ques-

tion set of Q−π/p(n) respectively. The symbols (gm, t1) and (gm, t2) correspond to

questions (0, t1) and (0, t2) from the question set of Q−π/p(n) respectively. Then

the set of questions for each correlation in Fn is O ∪ [m]. The constant M in the

statement of Theorem 7.1 equals |O|+ m. 2

It takes two steps to define correlations in Fn. We first define a mapping

σ : (O ∪ [m]) × [8] → C[Γ], which gives us the idempotent element for each

question-answer pair.

• When g ∈ OΓ

σ(g, a) =


e+(−1)ag

2 if a < 2,

0 otherwise.

• When i ∈ [m], 3

σ(i, aaa) = ∏
k∈Ii

e + (−1)aaa(k)gi,k

2
.

2As in the case of Q−π/p(n), we use O ∪ [m] instead of [M] as the question set to better distin-
guish between different types of questions.

3The bijection between [2]× [2]× [2] and [8] is implicit here.
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• When g ∈ {gm, gm+1, gm+2},

σ(g, a) =



0 if a > 2

π
(a)
0 if g = gm,

π
(a)
1 if g = gm+1,

π
(a)
2 otherwise,

where π
(a)
i are defined in eq. (7.2) to eq. (7.10).

• Lastly, 4

σ((gm, t1), (a1, a2)) =


π
(a1)
0

e+(−1)a2 t1
2 if a1 < 3, a2 < 2

0 otherwise.

σ((gm, t2), (a1, a2)) =


π
(a1)
0

e+(−1)a2 t2
2 if a1 < 3, a2 < 2

0 otherwise.

If σ(x, a) = ∑g αgg for some coefficients αg, we define a notation

σ(x, a)− = ∑
g

αgg−1.

Note that σ(x, a)− is different from the inverse of σ(x, a) in C[Γ].

In the second step, we will define a set of functions { fn,zzz : C[Γ] → K}. We

4The bijection between [3]× [2] and [6] is implicit here.
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first introduce the index set of zzz. Let

W+ =
⋃

x,y∈O∪[m],a,b∈[8]
supp(σ(x, a)σ(y, b)−), (7.13)

which is the set of all the elements of Γ that appears in the expression of σ(x, a)σ(y, b)−

for any x, y ∈ O ∪ [m] and a, b ∈ [8]. Note that W+ is a finite union of finite sets,

so W+ is also a finite set.

Recall that x ∈ OΓ and eq. (7.12). Let

S = {t1, t2, gm, gm+1, gm+2, (gm, t1), (gm, t2)},

W = W+ \

{x}⋃
 ⋃

x,y∈S,a,b∈[8]
supp(σ(x, a)σ(y, b)−)

 .

The triviality of w ∈ W in Γ/〈(t1t2)
p(n) = e〉 depends on G and n and cannot be

determined from the f a∗-embedding procedure. Then, W is a finite set and |W|

is independent of n. In addition, we can fix a bijection between W and [|W|], so

for each w ∈ W we can talk about the w-th bit of zzz ∈ Z
|W|
2 . Hence, we can define

a function hn,zzz : Γ→ K for each zzz ∈ Z
|W|
2 .

hn,zzz(g) =



1 if g = e or g = (t1t2)
p(n),

0 if g = x,

zzz(g) if g ∈W,

0 otherwise.
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Then, fn,zzz : C[Γ]→ K is defined by

fn,zzz(∑
g∈Γ

αgg) = ∑
g∈Γ

αghn,zzz(g).

Given the functions { fn,zzz | zzz ∈ ZW
2 } and σ, a correlation Cn,zzz : (O ∪ [m])×

(O ∪ [m])× [8]× [8]→ K is defined by

Cn,zzz(a, b|x, y) = fn,zzz(σ(x, a)σ(y, b)−).

We say a correlation Cn,zzz induces a perfect correlation of Axxx = 0 if Cn,zzz

restricted to the domain ([m]∪OΓ)× ([m]∪OΓ)× [8]× [8] is a perfect correlation

of Axxx = 0. Define

Fn = {Cn,zzz | Cn,zzz induces a perfect correlation of Axxx = 0},

and the constant K := |Fn| ≤ 2|W|, which is mentioned in the statement of Theo-

rem 7.1.

7.4 Approximation tools

A key step in the proof of Theorem 7.1 is to construct an approximate strat-

egy of a quantum correlation based on some approximation representation of a

group. In this section, we present these techniques used in this step.

In the next proposition, we first show that any unitary can be approximated
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by another unitary of an integer order.

Proposition 7.13. For any integer n ≥ 2 and any diagonal unitary matrix U, there is a

diagonal matrix D such that Dn = 1 and

‖U − D‖2 ≤ (
1
n
+

1
n2 )‖U

n − 1‖2.

Proof. Suppose the i-th entry on the diagonal of U is eiθ with θ ∈ [0, 2π). Choose

an integer k such that |θ − 2kπ/n| = µ ≤ π/n. We will first show that

‖eiθ −ωk
n‖

2 ≤ (
1
n
+

1
n2 )‖e

inθ − 1‖2.

By the definition of the normalized Hilbert-Schmidt norm, the proposition fol-

lows.

It can be calculated that

‖eiθ − ei2kπ/n‖2 = (cos(θ)− cos(2kπ/n))2 + (sin(θ)− sin(2kπ/n)))2

= 2− 2 cos(θ − 2kπ/n) = 2− 2 cos(µ),

‖einθ − 1‖2 = (cos(nθ)− 1)2 + sin(nθ)2

= 2− 2 cos(nµ).

Define a function

f (x) = (
1
n
+

1
n2 )(1− cos(nx))− (1− cos(x)).
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We will show that f (x) ≥ 0 when x ∈ [0, π/n]. Taking its first and second

derivatives, we get

f ′(x) = (1 +
1
n
) sin(nx)− sin(x),

f ′′(x) = (n + 1) cos(nx)− cos(x).

First notice that

f ′(x) =
1
n

sin(nx) + 2 cos(
(n + 1)x

2
) sin(

(n− 1)x
2

),

so f ′(x) ≥ 0 when x ∈ [0, π/(n+ 1)] and we need to study the behaviour of f ′′(x)

on [π/(n + 1), π/n]. When x ∈ [π/(n + 1), π/n], cos(nx) < 0 but cos(x) > 0 so

f ′′(x) < 0. and f ′(x) is monotonically decreasing on [π/(n + 1), π/n]. Since,

f ′(
π

n
) = − sin(π/n) < 0.

we know f (x) is increasing on [0, x0) and decreasing on [x0, π/n] for some x0 ∈

(π/(n + 1), π/n). Hence, to show f (x) ≥ 0, it suffices to check f (0) and f (π/n):

f (0) = 0,

f (π/n) = 2(
1
n
+

1
n2 )− (1− cos(π/n)) ≥ 2n + 2

n2 − π2

2n2 ≥ 0,

which is because 2n + 2 ≥ 6 and π2/2 < 5, and we complete the proof.
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Proposition 7.14. Let {Pi | i ∈ [n]} ⊂ L(Cd) be a set of matrices such that

‖Pi‖op ≤ c, ‖P2
i − Pi‖ ≤ ε, ‖PiPj‖ ≤ ε, ∑

i∈[n]
Pi = 1,

for i 6= j ∈ [n] and a constant c > 1. Then, there is a projective measurement {Πi | i ∈

[n]} ⊂ L(Cd) such that ‖Πi − Pi‖ ≤ (cn)2n−1ε for all i ∈ [n].

Proof. From the conditions, we know that

‖Pn
i − Pi‖ ≤

n−1

∑
j=1
‖Pj+1

i − Pj
i ‖ ≤

n−1

∑
j=1
‖P2

i − Pi‖‖P
j−1
i ‖op ≤ cn−1ε,

for any i ∈ [n], and for any sequence (j0, j1, . . . , jn−1) where there exists l ∈ [n− 1]

such that jl 6= jl+1,

‖∏
k∈[n]

Pjk‖ ≤ ∏
k∈[l]
‖Pjk‖op‖Pjl Pjl+1‖ ∏

l+1<k<n
‖Pjk‖op ≤ cn−2ε.

Let O = ∑i∈[n] ωi
nPi, then

‖O‖op ≤ ∑
i∈[n]
|ωi

n|‖Pi‖op ≤ cn,

‖Oj − ∑
i∈[n]

ω
ji
n Pi‖

=‖ ∑
i0,...ij−1∈[n]

ω
∑k∈[j] ik
n ∏

k∈[j]
Pik

− ∑
i∈[n]

ω
ji
n Pi‖

≤[(nj − n)cn−2 + ncn−1]ε ≤ njcn−1ε,
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and in particular

‖On − 1‖ ≤ nncn−1ε.

By the previous proposition, we can construct a unitary Ô such that Ôn = 1 and

‖Ô−O‖ ≤
√

n + 1
n
‖On − 1‖ ≤

√
n + 1(cn)n−1ε.

Then it can be checked that

‖Ôj −Oj‖ ≤ ∑
k∈[j−1]

‖Ô‖k
op‖Ô−O‖‖O‖j−k−1

op ≤ (cn)j‖Ô−O‖.

Define

Πi =
1
n ∑

j∈[n]
ω
−ij
n Ôj

for each i ∈ [n]. Then, by the definition of Ô, we know {Πi | i ∈ [n]} is a

projective measurement. We can further calculate that

‖Πi − Pi‖ ≤
1
n
‖ ∑

j∈[n]
ω
−ij
n (Ôj −Oj)‖+ 1

n
‖ ∑

j∈[n]
ω
−ij
n (Oj − ∑

k∈[n]
ω

jk
n Pk)‖

≤ 1
n ∑

j∈[n]
(cn)j‖Ô−O‖+ 1

n ∑
j∈[n]

njcn−1ε

≤(cn)2n−1ε,
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for each i ∈ [n].

We also use the following lemma first proved by Slofstra to handle approx-

imate representations of the group Zk
2 for some k ≥ 1.

Lemma 7.15 (Lemma 24 of [7]). Consider Zk
2 as a finitely presented group with pre-

sentation

〈x1, . . . , xk : x2
i = e, [xi, xj] = e for all i 6= j〉.

Then, there is a constant C > 0, depending only on k, such that if ρ is an ε-approximate

representation of Zk
2 on a Hilbert space H, then there is a representation σ of Zk

2 on H

with

‖σ(xi)− ρ(xi)‖ ≤ Cε

for all 1 ≤ i ≤ k.

From Slofstra’s proof of this lemma, we can see that when k = 3,

C = (4(1 +
1√
2
) + 1)(1 +

1
2
√

2
) + (1 +

1√
2
) ≈ 12.3 < 13.

7.5 Proof of Theorem 7.1

The proof of Theorem 7.1 covers two cases: n ∈ X and n /∈ X. When n ∈ X,

we prove Fn ∩ Cqc(N, N, 8, 8) = ∅ by contradiction. When n /∈ X, we show
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that we can construct an approximating strategy of a particular correlation in Fn

based on any approximate representations of Γ/〈(t1t2)
p(n) = e〉. It implies that

this correlation is in Cqa(N, N, 8, 8) and Fn ∩ Cqa(N, N, 8, 8) 6= ∅.

Proof of Theorem 7.1. When n ∈ X, we prove by contradiction. Assume Cn,zzz ∈

Cqc(N, N, 8, 8) for some zzz. Then there exists an inducing commuting-operator

strategy

S = (|ψ〉, {{M(x)
g | x ∈ [8]} | g ∈ O ∪ [m]}, {{N(x)

g | x ∈ [8]} | g ∈ O ∪ [m]}).

From the correlation, we know that for each g ∈ OΓ and x, y > 1,

M(x)
g |ψ〉 = N(y)

g |ψ〉 = 0.

We can construct a binary observable for each g ∈ OΓ. Define M(g) := M(0)
g −

M(1)
g and N(g) := N(0)

g − N(1)
g for each g ∈ OΓ, then

M(g)2|ψ〉 = (M(0)
g + M(1)

g )|ψ〉 = ∑
j∈[8]

M(j)
g |ψ〉 = |ψ〉,

N(g)2|ψ〉 = (N(0)
g + N(1)

g )|ψ〉 = ∑
j∈[8]

N(j)
g |ψ〉 = |ψ〉.

From the correlation, we also know that

〈ψ|M(x)|ψ〉 = 0. (7.14)
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Since D is embedded in K and K is embedded in Γ, assuming the image of u in Γ

is u1u2, we know

(M(t1)M(t2))(M(u1)M(u2))|ψ〉 = (M(u1)M(u2))(M(t1)M(t2))
r|ψ〉,

(N(t1)N(t2))(N(u1)N(u2))|ψ〉 = (N(u1)N(u2))(N(t1)N(t2))
r|ψ〉.

Let UA = M(u1)M(u2) and UB = N(u1)N(u2), then these two unitaries satisfy

the conditions of Theorem 7.10. Since S can induce Q−π/p(n), we can use Theo-

rem 7.10 to conclude that

〈ψ|(M(t1)M(t2))
p(n)|ψ〉 = 1.

By [43, Lemma 8], we know that there exists a Hilbert space H0, such that

for g, g′ ∈ OΓ,

(M(g)|H0)
2 = 1H0 ,

M(g)|H0 M(g′)|H0 = 1H0 if gg′ = e in Γ,

where M(g)|H0 denotes the linear operator for the actions of M(g) restricted to

H0, and that

(M(t1)|H0 M(t2)|H0)
p(n) = 1H0 .

Hence, φ : Γ/〈(t1t2)
2p(n) = e〉 → U (H0) induced by φ(g) = M(g)|H0 for each
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g ∈ OΓ is a representation of Γ/〈(t1t2)
p(n) = e〉.

By Proposition 7.12, when n ∈ X, x = e in Γ/〈(t1t2)
p(n) = e〉. On the other

hand, eq. (7.14) implies that M(x)|ψ〉 6= |ψ〉, so φ(x) = M(x)|H0 6= 1H0 , which

contradicts the fact that φ is a homomorphism. Hence, Cn,zzz is not in Cqc(N, N, 8, 8)

and Fn ∩ Cqc(N, N, 8, 8) = ∅.

When n /∈ X, we define ẑzz ∈ Z
|W|
2 by

ẑzz(w) = 1 ⇐⇒ w = e ∈ Γ/〈φ(t)p(n) = e〉

for all w ∈W.

Proposition 7.16. Cn,ẑzz ∈ Fn.

It suffices to show that Cn,ẑzz induces a perfect correlation of Axxx = 0. We

prove it in Appendix C.2.

Next, we give a series of finite-dimensional quantum strategies inducing

quantum correlations approaching Cn,ẑzz.

Recall that W+ defined in eq. (7.13) is the set of elements of Γ that appears

in the expression of σ(x, a)σ(y, b)− for some x, y ∈ O ∪ [m] and a, b ∈ [8]. Let

W ′ = W+ ∩ {g 6= e | g ∈ Γ/〈(t1t2)
p(n) = e〉}.

Since K/〈tp(n) = e〉 is sofic and can be f a∗-embedded in Γ/〈(t1t2)
p(n) = e〉, by

Propositions 3.55 to 3.57 and [7, Lemma 25], we know that for any ε, ζ > 0, there

is an ε-approximate representation ρ : Γ/〈(t1t2)
p(n) = e〉 → U (Cd), where d
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depends on ε and ζ, such that, for each w ∈W ′,

0 ≤ T̃r(ρ(w)) ≤ ζ,

and for any g ∈ OΓ, ρ(g)2 = 1. Moreover, for any r ∈ PΓ,

|T̃r(ρ(r))− 1| ≤ ‖ρ(r)− ρ(e)‖ ≤ ε.

By Lemma 7.15, for each i ∈ [m], there is a representation ρi : Gi → U (Cd) such

that

‖ρi(gi,k)− ρ(gi,k)‖ ≤ 13ε for k ∈ Ii.

To apply Proposition 7.14 in the construction of an approximation strategy

of Cn,ẑzz, we need the following proposition, which is proved in Appendix C.3.

Proposition 7.17. Let ρ be an ε-approximate representation of Γ/〈tp(n) = e〉. Then,

‖ρ(π(a)
i )‖op ≤ 4 for i ∈ [3] and a ∈ [3].

Then we can define Alice and Bob’s projectors based on the approximate

representation ρ of Γ/〈(t1t2)
p(n) = e〉, the representation ρi of Gi for all i ∈ [m],

where Gi is defined in eq. (7.11), and the function σ introduced in Section 7.3.
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• For question gi,k ∈ OΓ, Alice and Bob’s projectors are

P̃(a)
gi,k = ρ(σ(gi,k, a)),

Q̃(b)
gi,k = ρ(σ(gi,k, b)−)ᵀ.

• For question i ∈ [m], Alice and Bob’s projectors are

P̃(aaa)
i = ρi(σ(i, aaa)),

Q̃(aaa)
i = ρi(σ(i, aaa)−)ᵀ,

where aaa ∈ Z3
2 represents the assignments to the three variables of an equa-

tion and the bijection between Z3
2 and [8] is implicit.

• For question g ∈ {gm, gm+1, gm+2}, we define {P̃(a)
g | a ∈ [3]} to be the pro-

jective measurements obtained by applying Proposition 7.14 to {ρ(σ(g, a)) |

a ∈ [3]}; and we define {Q̃(a)
g | a ∈ [3]} to be the conjugate of the projective

measurements obtained by applying Proposition 7.14 to {ρ(σ(g, a)−) | a ∈

[3]}. For answers a, b > 2, P̃(a)
g = Q̃(b)

g = 0.

• For questions (gm, t1) and (gm, t2), we define {P̃(a0,a1)
(gm,t1)

| a0 ∈ [4], a1 ∈ [2]}
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and {P̃(a0,a1)
(gm,t2)

| a0 ∈ [4], a1 ∈ [2]} 5 by

P̃(a0,a1)
(gm,t) =


P̃(a0)

gm P̃(a1)
t1

if a0 ∈ [3],

0 otherwise,

for t ∈ {t1, t2}. Note that by Proposition 7.14 P̃(a0)
gm commutes with ρ(π

(a0)
0 ),

which commutes with ρ(t1) and ρ(t2). So P̃(a0,a1)
(gm,t1)

and P̃(a0,a1)
(gm,t2)

are well de-

fined projectors. In this case, Bob’s projectors are defined by

Q̃(b0,b1)
(gm,t) =


(

P̃(a0)
gm P̃(a1)

t1

)ᵀ
if b0 ∈ [3]

0 otherwise

for t ∈ {t1, t2}.

In summary, the strategy we construct is

Sε,ζ = (|EPRd〉, {{P̃
(a)
x | a ∈ [8]} | x ∈ O ∪ [m]}, {{Q̃(b)

y | b ∈ [8]} | y ∈ O ∪ [m]}).

We are going to show that there exist constants ∆1 and ∆2 independent of d such

that

|〈EPRd|P̃
(a)
x ⊗ Q̃(b)

y |EPRd〉 − Cn,ẑzz(a, b|x, y)| ≤ ∆1ε + ∆2ζ (7.15)

for all x, y ∈ O ∪ [m] and a, b ∈ [8].

5The bijection between [4]× [2] and [8] is implicit.
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To prove eq. (7.15), we use the following relations:

|T̃r(ρ(g))− fn,ẑzz(g)| ≤


ε if g = e in Γ/〈(t1t2)

p(n) = e〉

ζ if g 6= e in Γ/〈(t1t2)
p(n) = e〉

≤ ε + ζ (7.16)

for any g ∈W+;

‖ρi(gi,k)− ρ(gi,k)‖ ≤ 13ε (7.17)

for all gi,k ∈ OΓ; and

‖P̃(a)
g − ρ(σ(g, a))‖ ≤ 125ε, (7.18)

‖Q̃(a)ᵀ
g − ρ(σ(g, a)−)‖ ≤ 125ε, (7.19)

for all g ∈ {gm, gm+1, gm+2}, which follows Proposition 7.14 with n = 3 and c = 4.

In particular, we know

|〈EPRd|ρ(x)|EPRd〉 − fn,ẑzz(x)| ≤ ζ.

Based on these relations, we can also prove the following proposition.
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Proposition 7.18. For x ∈ {gm, gm+1, gm+2}, g ∈ OΓ ∪ {e} and a, b ∈ [8]

|T̃r(ρ(σ(x, a)σ(g, b)−))− fn,ẑzz(σ(x, a)σ(g, b)−)| ≤ 4(ε + ζ), (7.20)

|T̃r(ρ(σ(g, b)σ(x, a)−))− fn,ẑzz(σ(g, b)σ(x, a)−)| ≤ 4(ε + ζ). (7.21)

For x, y ∈ {gm, gm+1, gm+2}, g ∈ OΓ ∪ {e} and a, b ∈ [8],

|T̃r(ρ(g)ρ(σ(x, a)σ(y, b)−))− fn,ẑzz(gσ(x, a)σ(y, b)−)| ≤ 15(ε + ζ), (7.22)

|T̃r(ρ(σ(x, a)σ(y, b)−)ρ(g))− fn,ẑzz(σ(x, a)σ(y, b)−g)| ≤ 15(ε + ζ). (7.23)

The proof of this proposition can be found in Appendix C.

Then, we can prove eq. (7.15) by examining all the different combinations

of questions. When the questions are gi,k, gj,l ∈ OΓ,

|Cn,ẑzz(a, b|gi,k, gj,l)− 〈EPRd|P̃
(a)
gi,k ⊗ Q̃(b)

gj,l |EPRd〉|

≤1
4

[
| fn,ẑzz(e)− T̃r(ρ(e))|+ | fn,ẑzz(gi,k)− T̃r(ρ(gi,k))|

+ | fn,ẑzz(gj,l)− T̃r(ρ(gj,l))|+ | fn,ẑzz(gi,kgj,l)− T̃r(ρ(gi,kgj,l))|
]

≤ε + ζ,

where we use eq. (7.16).

When the questions are i, j ∈ [m], first notice that

〈EPRd|P̃
(aaa)
i ⊗ Q̃(bbb)

j |ψ〉 = T̃r

∏
k∈Ii

1 + (−1)aaa(k)ρi(gi,k)

2 ∏
l∈Ij

1 + (−1)bbb(l)ρj(gj,l)

2

 .
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If we write

Π(aaa,bbb)
i,j = (∏

k∈Ii

1 + (−1)aaa(k)ρ(gi,k)

2
)(∏

l∈Ij

1 + (−1)bbb(l)ρ(gj,l)

2
),

then

|Cn,ẑzz(aaa, bbb|i, j)− 〈EPRd|P̃
(aaa)
i ⊗ Q̃(bbb)

j |EPRd〉|

≤|Cn,ẑzz(aaa, bbb|i, j)− T̃r(Π(aaa,bbb)
i,j )|+ |T̃r

[
P̃(aaa)

i Q̃(bbb)ᵀ
j −Π(aaa,bbb)

i,j

]
|,

and we can bound the two absolute values on the last line separately. For the first

absolute value,

|Cn,ẑzz(aaa, bbb|i, j)− T̃r(Π(aaa,bbb)
i,j )|

≤ 1
16

[
| fn,ẑzz(e)− 1|+ ∑

k∈Ii

| fn,ẑzz(gi,k)− T̃r(ρ(gi,k))|

+ ∑
l∈Ij

| fn,ẑzz(gj,l)− T̃r(ρ(gj,l))|+ ∑
k∈Ii

∑
l∈Ij

| fn,ẑzz(gi,kgj,l)− T̃r(ρ(gi,kgj,l))|
]

≤ ε + ζ,
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which follows eq. (7.16). For the second absolute value,

|T̃r
[

P̃(aaa)
i Q̃(bbb)ᵀ

j −Π(aaa,bbb)
i,j

]
|

≤ 1
16

[
|T̃r(ρi(e)ρj(e)− ρ(e))|+ ∑

k∈Ii

|T̃r(ρ(gi,k)− ρi(gi,k))|

+ ∑
l∈Ij

|T̃r(ρ(gj,l)− ρj(gj,l))|+ ∑
k∈Ii

∑
l∈Ij

|T̃r(ρ(gi,kgj,l)− ρi(gi,k)ρj(gj,l))|
]

≤ 1
16

[
0 + ∑

k∈Ii

‖ρ(gi,k)− ρi(gi,k)‖+ ∑
l∈Ij

‖ρ(gj,l)− ρj(gj,l)‖

+ ∑
k∈Ii

∑
l∈Ij

|T̃r(ρ(gi,kgj,l)− ρi(gi,k)ρ(gj,l))|+ |T̃r(ρi(gi,k)ρ(gj,l)− ρi(gi,k)ρj(gj,l))|
]

≤ 1
16

[
0 + 6 · 13ε

+ ∑
k∈Ii

∑
l∈Ij

‖ρ(gj,l)‖op‖ρ(gi,k)− ρi(gi,k)‖+ ‖ρi(gi,k)‖op‖ρ(gj,l)− ρj(gj,l)‖
]

≤ 1
16

(0 + 78ε + 9 · 26ε)

≤20ε,

which follows eq. (7.17). Overall,

|Cn,ẑzz(aaa, bbb|i, j)− 〈EPRd|P̃
(aaa)
i ⊗ Q̃(bbb)

j |EPRd〉| ≤ ζ + 21ε.

When one question is gi,k and the other question is i ∈ [m], without loss of

generality, we can assume Alice’s question is gi,k and Bob’s question is i. First
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notice that

|Cn,ẑzz(a, bbb|gi,k, i)− 〈EPRd|P̃
(a)
gi,k ⊗ Q̃(bbb)

i |EPRd〉|

≤|Cn,ẑzz(a, bbb|gi,k, i)− T̃r(ρ(
e + (−1)agi,k

2 ∏
l∈Ii

e + (−1)bbb(l)gi,l

2
))|

+ |T̃r(ρ(
e + (−1)agi,k

2
)
[
ρ(∏

l∈Ii

e + (−1)bbb(l)gi,l

2
)− ρi(∏

l∈Ii

e + (−1)bbb(l)gi,l

2
)
]
)|.

We first bound

|Cn,ẑzz(a, bbb|gi,k, i)− T̃r(ρ(
e + (−1)agi,k

2 ∏
l∈Ii

e + (−1)bbb(l)gi,l

2
))|

≤1
4

[
| fn,ẑzz(e)− T̃r(ρ(e))|+ ∑

l∈Ii

| fn,ẑzz(gi,l)− T̃r(ρ(gi,l))|
]

≤ε + ζ,

where we use eq. (7.16). Next, we bound

|T̃r(ρ(
e + (−1)agi,k

2
)
[
ρ(∏

l∈Ii

e + (−1)bbb(l)gi,l

2
)− ρi(∏

l∈Ii

e + (−1)bbb(l)gi,l

2
)
]
)|

≤‖ρ( e + (−1)agi,k

2
)
[
ρ(∏

l∈Ii

e + (−1)bbb(l)gi,l

2
)− ρi(∏

l∈Ii

e + (−1)bbb(l)gi,l

2
)
]
‖

≤1
4
‖ρ( e + (−1)agi,k

2
)‖op‖∑

l∈Ii

ρ(gi,l)− ρi(gi,l)‖

≤13ε,
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where we use eq. (7.17). Therefore,

|Cn,ẑzz(a, bbb|gi,k, i)− 〈EPRd|P̃
(a)
gi,k ⊗ Q̃(bbb)

i |EPRd〉| ≤ 14ε + ζ.

When the questions are g ∈ {gm, gm+1, gm+2} and g′ ∈ OΓ, First notice that

|〈EPRd|P̃
(a)
g ⊗ Q̃(b)

g′ |EPRd〉 − Cn,zzz(a, b|g, g′)|

≤|T̃r(P̃(a)
g ρ(σ(g′, b))− ρ(σ(g, a))ρ(σ(g′, b)))|

+ |T̃r(ρ(σ(g, a))ρ(σ(g′, b)))− fn,zzz(σ(g, a)σ(g′, b))|

≤‖(P̃(a)
g − ρ(σ(g, a)))ρ(σ(g′, b))‖+ 4(ε + ζ)

≤‖ρ(σ(g′, b))‖op‖P̃
(a)
g − ρ(σ(g, a))‖+ 4(ε + ζ)

≤(125 + 4)ε + 4ζ,

where we use ‖ρ(σ(g′, b))‖op = 1 and Proposition 7.18.

When one questions is g ∈ {gm, gm+1, gm+2} and the other question is i ∈

[m], without loss of generality, we can assume Alice’s question is g and Bob’s
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question is i. Then,

|〈EPRd|P̃
(a)
g ⊗ Q̃(bbb)

i |EPRd〉 − Cn,ẑzz(a, bbb|g, i)|

=|T̃r(P̃(a)
g

1
4
(ρi(e) + ∑

k∈Ii

ρi(gi,k)))− fn,ẑzz(σ(g, a)
1
4
(e + ∑

k∈Ii

gi,k))|

≤1
4

[
|T̃r(P̃(a)

g )− fn,ẑzz(σ(g, a))|+ ∑
k∈Ii

|T̃r(P̃(a)
g ρi(gi,k))− fn,ẑzz(σ(g, a)gi,k)|

]
≤1

4

[
|T̃r(P̃(a)

g − ρ(σ(g, a)))|+ |T̃r(ρ(σ(g, a)))− fn,ẑzz(σ(g, a))|

+ ∑
k∈Ii

(
|T̃r(P̃(a)

g ρi(gi,k))− P̃(a)
g ρ(gi,k)|+ |T̃r(P̃(a)

g ρ(gi,k))− ρ(σ(g, a)ρ(gi,k))|

+ |T̃r(ρ(σ(g, a)ρ(gi,k)))− fn,ẑzz(σ(g, a)gi,k)|
)

≤1
4

[
125ε + 4(ε + ζ) + 3(13ε + 125ε + 4(ε + ζ))

]
≤(125 + 14)ε + 4ζ,

where we apply Proposition 7.18. Similar derivations can be applied to the case

that one question is x ∈ {(gm, t1), (gm, t2)} and the other question is y ∈ OΓ to

show that

|〈EPRd|P̃
(a)
x ⊗ Q̃(b)

y |EPRd〉 − Cn,ẑzz(a, b|x, y)| ≤ (125 + 4)ε + 4ζ

|〈EPRd|P̃
(b)
y ⊗ Q̃(a)

x |EPRd〉 − Cn,ẑzz(b, a|y, x)| ≤ (125 + 4)ε + 4ζ.

Similar derivations can also be applied to the case that one question is x ∈ {(gm, t1),
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(gm, t2)} and the other question is y ∈ [m] to show that

|〈EPRd|P̃
(a)
x ⊗ Q̃(bbb)

y |EPRd〉 − Cn,ẑzz(a, bbb|x, y)| ≤ (125 + 14)ε + 4ζ

|〈EPRd|P̃
(bbb)
y ⊗ Q̃(a)

x |EPRd〉 − Cn,ẑzz(bbb, a|y, x)| ≤ (125 + 14)ε + 4ζ.

The next case is when x, y ∈ {gm, gm+1, gm+2}. We can use Proposition 7.18

to see that

|〈EPRd|P̃
(a)
x ⊗ Q̃(b)

y |EPRd〉 − Cn,ẑzz(a, b|x, y)|

=|T̃r(P̃(a)
x Q̃(b)ᵀ

y )− fn,ẑzz(σ(x, a)σ(y, b)−)|

≤|T̃r((P̃(a)
x − ρ(σ(x, a)))Q̃(b)ᵀ

y )|+ |T̃r(ρ(σ(x, a))(Q̃(b)
y − ρ(σ(y, b)−)))|

+ |T̃r(ρ(σ(x, a)σ(y, b)−))− fn,ẑzz(σ(x, a)σ(y, b)−)|

≤‖Q̃(b)ᵀ
y ‖op‖P̃

(a)
x − ρ(σ(x, a))‖+ ‖ρ(σ(x, a))‖op‖ρ(σ(y, b)−)− Q̃(b)

y ‖

+ |T̃r(ρ(σ(x, a)σ(y, b)−))− fn,ẑzz(σ(x, a)σ(y, b)−)|

≤125ε + 4 · 125ε + 15(ε + ζ)

=5 · 125ε + 15ε + 15ζ

where we use eqs. (7.18) and (7.19) and Proposition 7.17 to bound ‖ρ(σ(x, a))‖op

by 4.
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The last case is when x ∈ {gm, gm+1, gm+2} and (gm, t) ∈ {(gm, t1), (gm, t2)}.

|〈EPRd|P̃
(a)
x ⊗ Q̃(bbb)

(gm,t)|EPRd〉 − Cn,ẑzz(a, bbb|x, (gm, t))|

=|T̃r(P̃(a)
x Q̃(bbb(0))ᵀ

gm ρ(σ(t, bbb(1))−))− Cn,ẑzz(a, bbb|x, (gm, t))|

≤‖ρ(σ(t, bbb(1))−)‖op‖Q̃
(bbb(0))ᵀ
gm ‖op‖P̃

(a)
x − ρ(σ(x, a))‖

+ ‖ρ(σ(t, bbb(1))−)‖op‖ρ(σ(x, a))‖op‖Q̃
(bbb(0))
gm − ρ(σ(gm, bbb(0))−)‖

+ |T̃r(ρ(σ(x, a)σ(gm, bbb(0))−σ(t, bbb(1))−))− fn,ẑzz(σ(x, a)σ(gm, bbb(0))−σ(t, bbb(1))−)|

≤125ε + 4 · 125ε + 15(ε + ζ).

In summary, we can take ∆1 = 5 · 125 + 15 and ∆2 = 15 in eq. (7.15), and it

implies that

lim
max(ζ,ε)→0+

〈EPRd|P̃
(a)
x ⊗ Q̃(b)

y |EPRd〉 = Cn,ẑzz(a, b|x, y).

Therefore, by Definition 4.8, Cn,ẑzz ∈ Cqa(N, N, 8, 8) and Fn ∩ Cqa(N, N, 8, 8) 6= ∅.
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Chapter 8: Conclusion and future work

In this dissertation, we proved that there exists an integer N such that when

nA, nB ≥ N and mA, mB ≥ 8, the decision problem (Membership(nA, nB, mA,

mB)qa) is coRE-hard, and the decision problem (Membership(nA, nB, mA, mB)qc)

is coRE-complete.

Leading to this result, we first proved a self-testing result in chapter 5. We

showed that for any prime p with a primitive root r, there exists a correlation

of size Θ(r2) that can self-test a maximally entangled state of dimension (p −

1). Since there exists r ∈ {2, 3, 5} that is a primitive root of infinitely many

primes, we got a family of constant-sized correlations that can self-test maximally

entangled states of unbounded dimension.

In chapters 6 and 7, we showed that for any recursively enumerable set X,

there exists a family of sets of correlations {Fn|n ≥ 0} and a constant N such that

the sizes of Fn’s are the same, each correlation in Fn are in KN2·82
, and

Fn ∩ Cqc(N, N, 8, 8) = ∅ if n ∈ X,

Fn ∩ Cqa(N, N, 8, 8) 6= ∅ if n /∈ X.
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Since Cqa(N, N, 8, 8) ⊆ Cqc(N, N, 8, 8), we can determine that

Fn ∩ Cqc(N, N, 8, 8) = ∅ if and only if n ∈ X,

Fn ∩ Cqa(N, N, 8, 8) = ∅ if and only if n ∈ X.

The decision problem of determining if a fixed-sized set of correlations has non-

trivial intersection with Ct(nA, nB, mA, mB) is as hard as (Membership(nA, nB,

mA, mB)t), for t ∈ {q, qs, qa, qc}. Then, we concluded that (Membership(nA,

nB, mA, mB)qa) is coRE-hard, and the decision problem (Membership(nA, nB, mA,

mB)qc) is coRE-complete for nA, nB ≥ N and mA, mB ≥ 8.

Next, we discuss open problems related to self-testing and membership

problems of quantum correlations.

The nonlocal assumption of self-tests is a simple theoretical assumption,

but it is hard to enforce in practice. It is natural ask if it is possible to replace

the nonlocal assumption with a more practical assumption, for example, some

computational assumption. Building on Urmila Mahadev’s seminal work [44],

Tony Metger and Thomas Vidick first proposed a protocol to self-test the EPR

pair with a single computational assumption [45]. It will be interesting to see

what other states can be self-tested with this computational assumption and if

it is possible to convert existing self-tests under the nonlocal assumption to self-

tests under this computational assumption systematically.

In this dissertation, we only proved the existence of the constant N but we

did not estimate how big N is. It is natural to ask how small N can be. A recent
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result by Laura Mančinska, Jitendra Prakash and Christopher Schafhauser shows

that correlations in Cqs(4, 4, 2, 2) can robustly self-test maximally entangled states

of unbounded dimension [46]. It is interesting to see if the new constant-sized

self-tests can yield new proof of the same undecidability result with smaller cor-

relations.

In this dissertation, we did not answer the hardness of (Membership(nA,

nB, mA, mB)t) for t = q, qs. We conjecture these problems are RE-complete for

sufficiently large nA, nB, mA and mB. Our lower bound of (Membership(nA,

nB, mA, mB)qa) is not tight either. Hamoon Mousavi, Seyed Sajjed Nezhadi and

Henry Yuen has proved that (Membership(nA, nB, mA, mB)qa) is in Π0
2 [47],

which is one level above coRE in the arithmatical hierarchy. We also conjecture

that (Membership(nA, nB, mA, mB)qa) is Π0
2-complete for sufficiently large nA,

nB, mA and mB. To prove these conjectures, we need deeper understandings of

techniques used in [8]. For example, one can try to investigate the implication

of the compression scheme used in [8] on group presentation and approximate

representations of groups. If we can prove (Membership(nA, nB, mA, mB)t) for

t = q, qs are RE-complete, we expect the techniques can also allow us to prove

(Membership(nA, nB, mA, mB)qa) is Π0
2-complete.
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Appendix A: A few results about Zp-HNN extension

We first prove Theorem 3.29. This proof is based on the proof of Theorem

2.1 of Chapter IV in [36].

Proof of Theorem 3.29. Let W be the set of all normal forms from Ĝ, and let S(W)

denote the group of all permutations of W. In order to define a homomorphism

Ψ : Ĝ → S(W), it suffices to define Ψ on G and t, and then show that all defining

relations go to 1.

If g ∈ G, define Ψ(g) by

Ψ(g)(g0, tε1 , . . . , tεn , gn) = gg0, tε1 , . . . , tεn , gn.

Clearly, Ψ(g′g) = Ψ(g)Ψ(g′). In particular, Ψ(g)Ψ(g−1) = 1W = Ψ(g−1)Ψ(g),

meaning that for all w ∈W,

Ψ(g)Ψ(g−1)(w) = Ψ(g−1)Ψ(g)(w) = w.

Moreover, if r = e in G, Ψ(r) = 1W .

Next, we define the action of Ψ(t). Let g0, tε1 , g1, . . ., tεn , gn be a normal
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form.

Ψ(t)(g0, tε1 , . . . , tεn , gn)

=



φ−1(g0)g1, tε2 , . . . , tεn , gn if ε1 = −1 and g0 ∈ H,

φ−1(g0), t, e, t, g1, . . . , tεn , gn if ε1 = 1, g0 ∈ H,

and t, g1, . . . tε(p−1)/2 6= t, e, t, . . . , t

φ−1(g0),

(p−1)/2 of t−1︷ ︸︸ ︷
t−1, e, . . . , e, t−1, g p+1

2
, . . . , tεn , gn if ε1 = −1, g0 ∈ H, gi = e, εi = 1

for i = 1 . . . (p− 1)/2

φ−1(h), t, ĝ0, tε1 , . . . , tεn , gn otherwise,

where ĝ0 is the representative of Hg0 and hĝ0 = g0 with h ∈ H.

Then we can check Ψ(t)p = 1W . Let g0, tε1 , g1, . . ., tεn , gn be a normal form.

There are three cases. The first case is that g0 /∈ H. We can assume hĝ0 = g0
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where ĝ0 is the representative of Hg0.

Ψ(t)p(g0, tε1 , . . . , tεn , gn)

=Ψ(t)p−1(φ−1(h), t, ĝ0, tε1 , . . . , tεn , gn)

. . .

=Ψ(t)(p−1)/2+1(φ−(p−1)/2(h),

(p−1)/2 of t︷ ︸︸ ︷
t, e, t, . . . , t, ĝ0, tε1 , . . . , tεn , gn)

=Ψ(t)(p−1)/2(φ−(p+1)/2(h),

(p−1)/2 of t−1︷ ︸︸ ︷
t−1, e, t−1, . . . , t−1, ĝ0, tε1 , . . . , tεn , gn)

. . .

=φ−p(h)ĝ0, tε1 , . . . , tεn , gn

=hĝ0, tε1 , . . . , tεn , gn

=g0, tε1 , . . . , tεn , gn,

where, in the first part of the skipped steps, we apply case 2 of Ψ(t) p−3
2 times,

and, in the second part of the skipped steps, we apply case 1 of Ψ(t) p−1
2 times.
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The second case is that g0 ∈ H and ε1 = 1.

Ψ(t)p(g0, t, . . . , tεn , gn)

=Ψ(t)(p+3)/2(φ−(p−3)/2(g0),

(p−1)/2 of t︷ ︸︸ ︷
t, e, . . . , t , g1, . . . , tεn , gn)

=Ψ(t)(p+1)/2(φ−(p−1)/2(g0),

(p−1)/2 of t−1︷ ︸︸ ︷
t−1, e, . . . , t−1, g1, . . . , tεn , gn)

=Ψ(t)(φ−p+1(g0)g1, tε2 , . . . , tεn , gn)

=φ−p(g0), t, g1, tε2 , . . . , tεn , gn

=g0, t, g1, . . . , tεn , gn,

where we use the fact that g1 /∈ H. The last case is that g0 ∈ H and ε1 = −1.

Ψ(t)p(g0, t−1, . . . , tεn , gn)

=Ψ(t)p−1(φ−1(g0)g1, tε2 , . . . , tεn , gn)

=Ψ(t)p−2(φ−2(g0), t, g1, tε2 , . . . , tεn , gn)

=Ψ(t)(p−1)/2(φ−(p+1)/2(g0),

(p−1)/2 of t︷ ︸︸ ︷
t, e, . . . , t , g1, . . . , gn)

=Ψ(t)(p−3)/2(φ−(p+3)/2(g0),

(p−1)/2 of t−1︷ ︸︸ ︷
t−1, e, . . . , t−1, g1, . . . , gn)

=φ−p(g0), t−1, g1, tε2 , . . . , tεn , gn

=g0, t−1, g1, . . . , tεn , gn.

Therefore, Ψ(t)p = 1W . Then, Ψ(φ(h)) = Ψ(t−1)Ψ(h)Ψ(t). We can see that Ψ is a

well-defined homomorphism from Ĝ into S(W).
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We can also see that if g0 /∈ H and g0 = hĝ0

Ψ(t−1)(g0, tε1 , . . . , tεn , gn) = φ(h), t−1, ĝ0, tε1 , . . . , tεn , gn.

and if g0 ∈ H, ε1 = −1 and the subsequence

tε1 , g1, tε2 , . . . , tε(p−1)/2 6=

(p−1)/2 of t−1︷ ︸︸ ︷
t−1, e, . . . , t−1,

then

Ψ(t−1)(g0, t−1, . . . , tεn , gn) = φ(g0), t−1, e, t−1, . . . , tεn , gn.

We can see that if g0, tε1 , g1, . . ., tεn , gn is a normal form,

Ψ(g0tε1 g1 . . . tεn gn)(e) = g0, tε1 , g1, . . . , tεn , gn.

Thus the products of the elements in distinct normal forms represent distinct ele-

ments of Ĝ, otherwise, Ψ would not be well-defined.

Next, we prove Proposition 3.52, which follows a similar line of argument

as the proof of [37, Property 8 of Proposition 2.4.1].

Proof of Proposition 3.52. By Theorem 3.31 and Proposition 3.49, to prove Ĝ is sofic,

it suffices to prove K is sofic, where K is the subgroup of Ĝ generated by t−iGti

for i = 0, 1, . . . , p− 1.
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Let Kj be the subgroup of Ĝ generated by t−iGti for 0 ≤ i ≤ j. Then,

Kp−1 = K and we will prove Kp−1 is sofic by induction on j. The base case is

j = 0, and K0 = G is sofic follows from the condition of the proposition.

Assume Kn is sofic for some 0 ≤ n < p− 1. Then, we will show that

Kn+1
∼= K∗ :=

Kn ∗ G
〈φn+1(h) = h|h ∈ H〉 ,

where φn+1(h) ∈ Kn+1 and h ∈ G. Consider Ψ : Kn+1 → K∗ induced by

Ψ(k) =


k if k ∈ Kn;

tn+1kt−n−1 otherwise.

It is immediate that Ψ is surjective. On the other hand, k = e in Kn+1 if and

only if k is in the normal subgroup generated by t−ihtiφ−i(h) for all h ∈ H and

1 ≤ i ≤ n+ 1. For relations of the form t−ihti = φi(h) for all h ∈ H and 1 ≤ i ≤ n,

Ψ(t−ihtiφ−i(h)) = t−ihtiφ−i(h) = e as this relation is also in Kn. For relations of

the form t−n−1htn+1 = φn+1(h),

Ψ(t−n−1htn+1φn+1(h)) = Ψ(t−n−1htn+1)Ψ(φ−n−1(h)) = hφ−n−1(h) = e,

which follows the added relations. Therefore, Ψ descends to an isomorphism

between the normal subgroup generated by t−ihtiφ−i(h) for all h ∈ H and 1 ≤ i ≤

n+ 1 in Kn+1 and the normal subgroup generated by t−ihtiφ−i(h) and h−1φn+1(h)

for all h ∈ H and 1 ≤ i ≤ n in K∗. It implies that Ψ(k) = e in K∗ if and only if
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k = e in Kn+1 and Ψ is injective. Hence, Ψ is an isomorphism.

Then, by Proposition 3.50 and the induction assumption, Kn+1 is also sofic.

By the principle of induction, Kp−1 is sofic and the proof is complete.
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Appendix B: Steps of the f a∗-embedding procedure

In this section, we describe the steps of the f a∗-embedding procedure sum-

marized in Propositions 3.55 and 3.56.

Let l, m and n be some positive integer, and let G = EΓ(A, C0, C1, L) be

an extended homogeneous linear-plus-conjugacy group, where A is an m-by-n

matrix over Z2, C0 ⊆ [n]× [n]× [n], C1 ⊆ [l]× [n]× [n] and L is an l × l lower-

triangular matrix with non-negative integer entries, as in Definition 3.54. The

generators of G are {xi | i ∈ [n]} and {yi | i ∈ [l]}. The relations are

x2
i = e for all i ∈ [n];

∏
k∈Ij

xk = e for all j ∈ [m];

xixjxi = xk for all (i, j, k) ∈ C0;

y−1
i xjyi = xk for all (i, j, k) ∈ C1;

y−1
i yjyi = yL(i,j)

j for all i > j with L(i, j) > 0.

In the first step of the embedding procedure, we embed G into a linear-plus-

conjugacy group. Let G′ = 〈G, z, w : z2 = w2 = e, y0 = zw, wyiw = yi for all i >

0〉. Then G′ is also an extended homogeneous linear plus conjugacy group. This
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is because for any relation of the form y−1
0 xjy0 = xk, we know

zxjz = wxkw and (zxjz)2 = (wxkw)2 = e.

If we let Zjk = zxjz, then

Zjk = wxkw.

In addition, for any relation of the form y−1
j y0yj = yk, we know

y−1
j zyj = (zw)L(0,j)−1z and

(
(zw)L(0,j)−1z

)2
= e.

Then, we can replace the relation y−1
j zyj = (zw)L(0,j)−1z with a sequence of con-

jugacy relations of generators of order 2. Moreover, G is f a∗-embedded in G′, as

proved in [7, Proposition 33].

By embedding G into G′, we remove y0 from the set of generators of G

and introduce more generators of order 2 and more conjugacy relations. We can

repeat this process for each yi with i > 0 to embed G into a linear-plus-conjugacy

group H where {xi | i ∈ [n]} is a subset of the set of generators of H. We can

assume H = Γ(A′, C) where A′ is an m′-by-n′ matrix over Z2 and C ⊆ [n′] ×

[n′]× [n′] for some positive integer m′ > m and n′ > n.

In the second step, we embed H into a linear-plus-conjugacy group H′ =

Γ(B, D) where B is an M-by-N matrix over Z2 and D ⊆ [N]× [N]× [N] for some

M > m′ and N > n′. Moreover, in H′, xixjxi = xk if and only if xjxkxj = xk for all
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(i, j, k) ∈ D. Here,

H′ = 〈H, u, wi, yi, zi for i ∈ [n′] :u2 = w2
i = y2

i = z2
i = e for i ∈ [n′],

xi = yizi = uwi and uyiu = zi for i ∈ [n′],

zkyjzk = yj, wiyjwi = zk for all (i, j, k) ∈ C〉

An injective homomorphism φ : H → H′ is defined by xi 7→ xi for all i ∈ [n′].

Moreover, φ is a f a∗-embedding as proved in [7, Lemma 29].

In the last step, we embed the group H′ into a solution group K. We extend

the linear system Bxxx = 0 by adding variables vI,l for all I ∈ D and 1 ≤ l ≤ 7, and

adding equations

xi + vI,1 + vI,2 = 0, xj + vI,2 + vI,3 = 0, vI,3 + vI,4 + vI,5 = 0,

xi + vI,5 + vI,6 = 0, xk + vI,6 + vI,7 = 0, vI,1 + vI,4 + vI,7 = 0.

if I = (i, j, k) ∈ D. If we denote the new linear system by Bextxxx = 0, then K :=

Γ(Bext). The embedding of H′ into K maps xi to xi for each i ∈ [N], which is also

an f a∗-embedding as proved in [7, Proposition 27].

Overall, we can see that G is embedded in K and, under this embedding, the

image of xi is xi for each i ∈ [n] and the image of yj is a product of two order-2

generators for each j ∈ [l].
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Appendix C: Proof of some results in chapter 7

C.1 Proof of Theorem 7.10

To help the proof, we first present certain nonzero values of Q−π/p. When

x = y = 0,

Q−π/p(a, b|0, 0) =



1
p if a = b = 0,

2
p if a = b = 1,

p−3
p if a = b = 2,

0 otherwise.

When x ∈ {t1, t2} and y ∈ {1, 2}, some of the values of Q−π/p(a, b|x, y) are

summarized in the following table.

y = 1 y = 2
b = 0 b = 1 b = 0 b = 1

x = t1
a = 0 cos2(π/2p)

p
sin2(π/2p)

p
1−sin(π/p)

2p
1+sin(π/p)

2p

a = 1 sin2(π/2p)
p

cos2(π/2p)
p

1+sin(π/p)
2p

1−sin(π/p)
2p

x = t2
a = 0 cos2(π/2p)

p
sin2(π/2p)

p
1+sin(π/p)

2p
1−sin(π/p)

2p

a = 1 sin2(π/2p)
p

cos2(π/2p)
p

1−sin(π/p)
2p

1+sin(π/p)
2p

Table C.1: Q−π/p: the correlation values for x ∈ {t1, t2} and y ∈ {1, 2}.
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When x, y ∈ {0, 1, 2}, some of the values of Q−π/p(a, b|x, y) is summarized

in the following table.

x = 1 x = 2 x = 0
a = 0 a = 1 a = 2 a = 0 a = 1 a = 2 a = 1 a 6= 1

y = 1
b = 0 1

p 0 0 1
2p

1
2p 0 1

p 0
b = 1 0 1

p 0 1
2p

1
2p 0 1

p 0

b = 2 0 0 p−2
p 0 0 p−2

p 0 p−2
p

y = 2
b = 0 1

2p
1

2p 0 1
p 0 0 1

p 0
b = 1 1

2p
1

2p 0 0 1
p 0 1

p 0
b = 2 0 0 p−2

p 0 0 p−2
p 0 p−2

p

y = 0 b = 1 1
p

1
p 0 1

p
1
p 0 2

p 0

b 6= 1 0 0 p−2
p 0 0 p−2

p 0 p−2
p

Table C.2: Q−π/p: the correlation values for x, y ∈ {0, 1, 2}.

When x ∈ {0, t1} and y = (0, t1) the commutation test is conducted and the

correlation is given in the table below.

y = (0, t1)
b = (0, 0) b = (0, 1) b = (1, 0) b = (1, 1) b = (2, 0) b = (2, 1)

x = 0
a = 0 1

2p
1

2p 0 0 0 0
a = 1 0 0 1

p
1
p 0 0

a = 2 0 0 0 0 p−3
2p

p−3
2p

x = t1
a = 0 1

2p 0 1
p 0 p−3

2p 0

a = 1 0 1
2p 0 1

p 0 p−3
2p

Table C.3: Q−π/p: the correlation values for the commutation test for Alice’s ques-
tions 0 and t1.
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When x = (0, t1) and y = (0, t2), for a, b ∈ [2],

Q−π/p((0, a), (0, b)|(0, t1), (0, t2)) =



1/p if a = b = 0,

1/p if a = b = 1,

0 otherwise.

(C.1)

Proof of Theorem 7.10. To prove this theorem, we need to find a decomposition of

|ψ〉 as |ψ〉 = ∑j∈[p+1] |ψj〉 such that {|ψi〉} is an orthogonal set and each |ψi〉 is an

eigenvector of Mt1 Mt2 with an eigenvalue that equals some power of ωp.

Applying Proposition 4.14 to the values given in Table C.3, we can get that

M(ax)
x M(a0)

0 |ψ〉 = N(a0,ax)
(0,x) |ψ〉 = M(a0)

0 M(ax)
x |ψ〉

for a0 ∈ [3], x ∈ {t1, t2} and ax ∈ [2].

Applying Proposition 4.13 to given in eq. (C.1), we can get that

M(0,a1)
(0,t1)
|ψ〉 = N(0,a1)

(0,t2)
|ψ〉

for each a1 ∈ [2]. Then, we can further deduce that

M(a1)
t1

M(0)
0 |ψ〉 = N(0,a1)

(0,t2)
|ψ〉 = Ma1

t2
M(0)

0 |ψ〉. (C.2)
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Let Mx := M(0)
x −M(1)

x and Ny := N(0)
y − N(1)

y for x, y = t1, t2, and let

|ψ0〉 = M(0)
t1

M(0)
0 |ψ〉,

|ψp〉 = M(1)
t1

M(0)
0 |ψ〉.

Then we know from the correlation in Table C.2 and the definitions of |ψ0〉 and

|ψp〉 that

‖|ψ0〉‖2 = ‖|ψp〉‖2 =
1

2p
,

Mt1 |ψ0〉 = |ψ0〉,

Mt1 |ψp〉 = −|ψp〉,

and hence 〈ψ0|ψp〉 = 0. By eq. (C.2), we know

|ψ0〉 = M0
2 M0

0|ψ〉,

|ψp〉 = M1
2 M0

0|ψ〉.

The definition of M2 implies that

M2|ψ0〉 = |ψ0〉,

M2|ψp〉 = −|ψp〉.

Following the proof of Proposition 5.8, we can conclude from Tables C.1
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and C.2 that

S = (
M(1)

0 |ψ〉
‖M(1)

0 |ψ〉‖
, {{M(0)

x , M(1)
x } | x = 1, 2}, {{N(0)

y , N(1)
y } | y = t1, t2})

induces the correlation Q−π/p; and that

S f = (
M(1)

0 |ψ〉
‖M(1)

0 |ψ〉‖
, {{M(0)

x , M(1)
x } | x = t1, t2}, {{N(0)

y , N(1)
y } | y = 1, 2})

induces the correlation of Q−π/p with Alice and Bob’s roles flipped. Then we can

define M2 := M(0)
2 −M(1)

2 and

|ψ1〉 =
1
2
(M(0)

1 − iM2M(1)
1 + iM2M(0)

1 + M(1)
1 )|ψ〉.

Following the proof of Proposition 5.8, we can conclude that

‖|ψ1〉‖2 =
1
p

,

Mt1 Mt2 |ψ1〉 = ωp|ψ1〉,

Nt1 Nt2 |ψ1〉 = ω−1
p |ψ1〉.

Recall the conditions satisfied by UA and UB in the statement of the theorem.

Define

|ψj〉 = (UAUB)
logr j|ψ1〉
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for j = 1, . . . , p− 1. Note that logr j = a implies that ra ≡ j (mod p). It is easy to

see that ‖|ψj〉‖2 = 1/p. Following the proof of Proposition 5.8, we can get that

(Mt1 Mt2)|ψj〉 = ω
j
p|ψj〉,

(Nt1 Nt2)|ψj〉 = ω
−j
p |ψj〉.

By the orthogonality between eigenvectors of different eigenvalues, we know

that

〈ψj|ψk〉 = 0

for each 1 ≤ j 6= k ≤ p− 1.

Define

|ψ′〉 = |ψ0〉+ |ψp〉+
p−1

∑
j=1
|ψj〉. (C.3)

By the orthogonality relations and the norms of each subnormalized state, we can

calculate that ‖|ψ′〉‖ = 1. Moreover,

〈ψ|ψ′〉 =〈ψ|ψ0〉+ 〈ψ|ψp〉+
p−1

∑
j=1
〈ψ|ψj〉

=‖|ψ0〉‖2 + ‖|ψp〉‖2 + (p− 1)〈ψ|ψ1〉

=
1
p
+ (p− 1)

1
p
= 1,
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where we use (UAUB)|ψ〉 = |ψ〉. The derivation of 〈ψ|ψ1〉 = 1/p follows the

similar derivation in the proof of Proposition 5.8.

With the decomposition of |ψ〉, we can conclude that

(Mt1 Mt2)
p|ψ〉

=(Mt1 Mt2)
p(|ψ0〉+ |ψp〉+

p−1

∑
j=1
|ψj〉

=1p(|ψ0〉+ |ψp〉) +
p−1

∑
j=1

ω
jp
p |ψj〉

=|ψ〉,

which completes the proof.

C.2 Proof of Proposition 7.16

Proof. The first case to check is that when the questions are gi,k and gj,k where

k ∈ Ii ∩ Ij.

Cn,ẑzz(0, 0|gi,k, gj,k) + Cn,ẑzz(1, 1|gi,k, gj,k)

= fn,ẑzz

(
(e + gi,k)(e + gj,k)

4
+

(e− gi,k)(e− gj,k)

4

)

= fn,ẑzz

( e + gi,kgj,k

2

)
=1,

which satisfies P.6 of Definition 4.16.
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The second case is that one question is i ∈ [m] and the other question is gi,k

with k ∈ Ii. Assuming Ii = {k, l, m},

∑
aaa∈Si

Cn,ẑzz(aaa, aaa(k)|i, gj,k)

=
1

16
fn,ẑzz

(
(e− gi,k)

2 [(e + gi,l)(e− gi,m) + (e− gi,l)(e + gi,m)]

+ (1 + gi,k)
2 [(e− gi,l)(e− gi,m) + (e + gi,l)(e + gi,m)]

)
=

1
8

fn,ẑzz

(
(e− gi,k)

3 + (e + gi,k)
3
)

=
1
2

fn,ẑzz

(
e− gi,k + e + gi,k

)
=1,

which satisfies P.5 of Definition 4.16. Property P.4 can be checked similarly.

The last case is that the questions are i, j ∈ [m]. First notice that if aaa /∈ Si,

∏
k∈Ii

e + (−1)aaa(k)gi,k

2
= 0.

Secondly, notice that if aaa ∈ Si and bbb ∈ Sj but aaa(k) 6= bbb(k), the expansion of

∏
l∈Ii

∏
m∈Ij

e + (−1)aaa(l)gi,l

2
e + (−1)bbb(m)gj,m

2

contains a term (1 − gi,k)(1 + gj,k) = 0. Therefore, Cn,ẑzz(aaa, bbb|i, j) satisfies P.3 of

Definition 4.16. The other three properties of Definition 4.16 are enforced in the

function σ introduced in Section 7.3.
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C.3 Proof of Proposition 7.17

Proof. Recall the expressions in eq. (7.2) to eq. (7.10). To bound the operator norms

of ρ(π
(a)
i ), because ρ(t1t2) is a unitary, it suffices to consider the action of the

operators on an eigenvector of ρ(t1t2). Let |ψ〉 be an eigenvector of ρ(t1t2) such

that ρ(t1t2)|ψ〉 = eiθ|ψ〉.

‖ρ(π(0)
0 )|ψ〉‖ = 1

p(n)
‖ ∑

j∈[p(n)]
ρ(t1t2)

j|ψ〉‖ ≤ 1
p(n) ∑

j∈[p(n)]
‖eijθ|ψ〉‖ ≤ 1,

‖ρ(π(1)
0 )|ψ〉‖ ≤ 2

p(n) ∑
j∈[p(n)]

|cos(
2jπ
p(n)

)|‖eijθ|ψ〉‖ ≤ 2,

‖ρ(π(2)
0 )|ψ〉‖ ≤ ‖|ψ〉‖+ ‖ρ(π(0)

0 )|ψ〉‖+ ‖ρ(π(1)
0 )|ψ〉‖ ≤ 4,

where we use |cos( 2jπ
p(n))| ≤ 1. Recall that

π
(0)
1 = π

(1)
0 /2 +

1
p(n) ∑

j∈[p(n)]
cos(

(2j + 1)π
p(n)

)t2(t1t2)
j,

π
(0)
2 = π

(1)
0 /2 +

1
p(n) ∑

j∈[p(n)]
sin(

(2j + 1)π
p(n)

)t2(t1t2)
j.

Then,

‖ρ(π(0)
1 )|ψ〉‖ ≤ 1

2
‖ρ(π(1)

0 )|ψ〉‖+ 1
p(n) ∑

j∈[p(n)]
|cos(

(2j + 1)π
p(n)

)|‖ρ(t2)eijθ|ψ〉‖

≤ 1 + 1 = 2,
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where we use the fact that ρ(t2) is a unitary. With similar reasoning, we can get

that

‖ρ(π(1)
1 )|ψ〉‖ ≤2,

‖ρ(π(2)
1 )|ψ〉‖ ≤‖|ψ〉‖+ ‖ρ(π(1)

0 )|ψ〉‖ ≤ 3,

‖ρ(π(0)
2 )|ψ〉‖ ≤2,

‖ρ(π(1)
2 )|ψ〉‖ ≤2,

‖ρ(π(2)
2 )|ψ〉‖ ≤‖|ψ〉‖+ ‖ρ(π(1)

0 )|ψ〉‖ ≤ 3,

which completes the proof.

C.4 Proof of Proposition 7.18

Proof. We first prove eq. (7.20), then eq. (7.21) follows analogously. By the defi-

nitions of σ(x, a) and σ(g, b)−, we can focus on the case that a ∈ [3] and b ∈ [2].
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Recall eq. (7.2), and we know

|T̃r(ρ(σ(gm, 0)σ(g, b)−))− fn,ẑzz(σ(gm, 0)σ(g, b)−)|

=
1

2p(n)
|T̃r( ∑

j∈[p(n)]
ρ((t1t2)

j)ρ(e + (−1)bg))− fn,ẑzz( ∑
j∈[p(n)]

(t1t2)
j(e + (−1)bg))|

≤ 1
2p(n) ∑

j∈[p(n)]

[
|T̃r(ρ((t1t2)

j))− fn,ẑzz((t1t2)
j)|+ |T̃r(ρ((t1t2)

jg))− fn,ẑzz((t1t2)
jg)|
]

≤ 1
2p(n)

2(ε + ζ) · p(n)

≤ε + ζ.

Recall eq. (7.3), and we know

|T̃r(ρ(σ(gm, 1)σ(g, b)−))− fn,ẑzz(σ(gm, 1)σ(g, b)−)|

=
1

p(n)
|T̃r( ∑

j∈[p(n)]
cos(

2jπ
p(n)

)ρ((t1t2)
j)ρ(e + (−1)bg))

− fn,ẑzz( ∑
j∈[p(n)]

cos(
2jπ
p(n)

)(t1t2)
j(e + (−1)bg))|

≤ 1
p(n) ∑

j∈[p(n)]

[
|T̃r(ρ((t1t2)

j))− fn,ẑzz((t1t2)
j)|+ |T̃r(ρ((t1t2)

jg))− fn,ẑzz((t1t2)
jg)|
]

≤ 1
p(n)

2(ε + ζ) · p(n)

≤2(ε + ζ),
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where we use |cos( 2jπ
p(n) |) ≤ 1. Recall eq. (7.4), and we know

|T̃r(ρ(σ(gm, 2)σ(g, b)−))− fn,ẑzz(σ(gm, 2)σ(g, b)−)|

=|T̃r((ρ(e)− ρ(σ(gm, 0))− ρ(σ(gm, 1)))ρ(σ(g, b)−))

− fn,ẑzz((e− σ(gm, 0)− σ(gm, 1))σ(g, b)−)|

≤|T̃r(ρ(σ(g, b)−))− fn,ẑzz(σ(g, b)−)|

+ |T̃r(ρ(ρ(σ(gm, 0))ρ(σ(g, b)−)− fn,ẑzz(σ(gm, 0)σ(g, b)−)|

+ |T̃r(ρ(ρ(σ(gm, 1))ρ(σ(g, b)−)− fn,ẑzz(σ(gm, 1)σ(g, b)−)|

≤1
2
(ε + ζ) + (ε + ζ) + 2(ε + ζ)

≤4(ε + ζ).

Recall eq. (7.5), and we know

|T̃r(ρ(σ(gm+1, 0)σ(g, b)−))− fn,ẑzz(σ(gm+1, 0)σ(g, b)−)|

≤ 1
2p(n) ∑

j∈[p(n)]

[
|cos(

2jπ
p(n)

)||T̃r(ρ((t1t2)
j))− fn,ẑzz((t1t2)

j)|

+ |cos(
2jπ
p(n)

)||T̃r(ρ((t1t2)
jg))− fn,ẑzz((t1t2)

jg)|

+ |cos(
(2j + 1)π

p(n)
)||ρ(t2(t1t2)

j)− fn,ẑzz(t2(t1t2)
j)|

+ |cos(
(2j + 1)π

p(n)
)||ρ(t2(t1t2)

jg)− fn,ẑzz(t2(t1t2)
jg)|
]

≤ 1
2p(n)

p(n) · 4(ε + ζ)

≤2(ε + ζ).
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With similar reasoning we can get that

|T̃r(ρ(σ(gm+1, 1)σ(g, b)−))− fn,ẑzz(σ(gm+1, 1)σ(g, b)−)| ≤ 2(ε + ζ),

|T̃r(ρ(σ(gm+2, 0)σ(g, b)−))− fn,ẑzz(σ(gm+2, 0)σ(g, b)−)| ≤ 2(ε + ζ),

|T̃r(ρ(σ(gm+2, 1)σ(g, b)−))− fn,ẑzz(σ(gm+2, 1)σ(g, b)−)| ≤ 2(ε + ζ),

Lastly, recall eqs. (7.7) and (7.10), and we know

|T̃r(ρ(σ(gm+1, 2)σ(g, b)−))− fn,ẑzz(σ(gm+1, 2)σ(g, b)−)|

=|T̃r(ρ(σ(gm+2, 2)σ(g, b)−))− fn,ẑzz(σ(gm+2, 2)σ(g, b)−)|

≤|T̃r(ρ(σ(g, b)−))− fn,ẑzz(σ(g, b)−)|

+ |T̃r(ρ(ρ(σ(gm, 1))ρ(σ(g, b)−))− fn,ẑzz(σ(gm, 1)σ(g, b)−)|

≤1
2
(ε + ζ) + 2(ε + ζ)

≤3(ε + ζ).

Next, we prove eq. (7.22), and eq. (7.23) follows analogously. First of all,

when x, y = gm, g ∈ OΓ ∪ {e} and a = b = 0,

|T̃r(ρ(gσ(gm, 0)σ(gm, 0)−))− fn,ẑzz(ρ(gσ(gm, 0)σ(gm, 0)−))|

≤ 1
p(n)2 ∑

j,k∈[p(n)]
|T̃r(ρ(g(t1t2)

j−k))− fn,ẑzz(g(t1t2)
j−k)|

≤ 1
p(n)2 p(n)2 · (ε + ζ)

=ε + ζ.
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Next, when x, y = gm, g ∈ OΓ ∪ {e} and a = 0, b = 1,

|T̃r(ρ(gσ(gm, 0)σ(gm, 1)−))− fn,ẑzz(gσ(gm, 0)σ(gm, 1)−)|

≤ 2
p(n)2 ∑

j,k∈[p(n)]
|cos(

2kπ

p(n)
)||T̃r(ρ(g(t1t2)

j−k))− fn,ẑzz(g(t1t2)
j−k)|

≤ 2
p(n)2 p(n)2 · (ε + ζ)

=2(ε + ζ).

With similar reasoning, we can get that

|T̃r(ρ(gσ(gm, 1)σ(gm, 1)−))− fn,ẑzz(gσ(gm, 1)σ(gm, 1)−)| ≤ 4(ε + ζ).

Next, when x, y = gm, g ∈ OΓ ∪ {e} and a = 2, b = 0,

|T̃r(ρ(gσ(gm, 2)σ(gm, 0)−))− fn,ẑzz(gσ(gm, 2)σ(gm, 0)−)|

≤|T̃r(ρ(gσ(gm, 0)−))− fn,ẑzz(gσ(gm, 0)−)|

+ |T̃r(ρ(gσ(gm, 0)σ(gm, 0)−))− fn,ẑzz(gσ(gm, 0)σ(gm, 0)−)|

+ |T̃r(ρ(gσ(gm, 1)σ(gm, 0)−))− fn,ẑzz(gσ(gm, 1)σ(gm, 0)−)|

≤4(ε + ζ).
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With similar reasoning, we can get that

|T̃r(ρ(gσ(gm, 2)σ(gm, 1)−))− fn,ẑzz(gσ(gm, 2)σ(gm, 1)−)| ≤ 8(ε + ζ),

|T̃r(ρ(gσ(gm, 2)σ(gm, 2)−))− fn,ẑzz(gσ(gm, 2)σ(gm, 2)−)| ≤ 15(ε + ζ).

When x = gm, y = gm+1, g ∈ OΓ ∪ {e} and a = 0, b = 0, we can get that

|T̃r(ρ(gσ(gm, 0)σ(gm+1, 0)−))− fn,ẑzz(gσ(gm, 0)σ(gm+1, 0)−)|

≤ 1
p(n)2 ∑

j,k∈[p(n)]

[
|cos(

2kπ

p(n)
)||T̃r(ρ(g(t1t2)

j−k))− fn,ẑzz((t1t2)
j−k)|

+ |cos(
(2k + 1)π

p(n)
)||T̃r(ρ(g(t1t2)

j−kt2))− fn,ẑzz(g(t1t2)
j−kt2)|

≤2(ε + ζ).
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With similar reasoning we can get that for h = gm+1, gm+2

|T̃r(ρ(gσ(gm, 0)σ(h, 1)−))− fn,ẑzz(gσ(gm, 0)σ(h, 1)−)| ≤ 2(ε + ζ),

|T̃r(ρ(gσ(gm, 0)σ(h, 2)−))− fn,ẑzz(gσ(gm, 0)σ(h, 2)−)| ≤ 3(ε + ζ),

|T̃r(ρ(gσ(gm, 1)σ(h, 0)−))− fn,ẑzz(gσ(gm, 1)σ(h, 0)−)| ≤ 4(ε + ζ),

|T̃r(ρ(gσ(gm, 1)σ(h, 1)−))− fn,ẑzz(gσ(gm, 1)σ(h, 1)−)| ≤ 4(ε + ζ),

|T̃r(ρ(gσ(gm, 1)σ(h, 2)−))− fn,ẑzz(gσ(gm, 1)σ(h, 2)−)| ≤ 6(ε + ζ),

|T̃r(ρ(gσ(gm, 2)σ(h, 0)−))− fn,ẑzz(gσ(gm, 2)σ(h, 0)−)| ≤ 8(ε + ζ),

|T̃r(ρ(gσ(gm, 2)σ(h, 1)−))− fn,ẑzz(gσ(gm, 2)σ(h, 1)−)| ≤ 8(ε + ζ),

|T̃r(ρ(gσ(gm, 2)σ(h, 2)−))− fn,ẑzz(gσ(gm, 2)σ(h, 2)−)| ≤ 9(ε + ζ).

The last case is when x, y = gm+1, gm+2. We use a = b = 0 as an example.

|T̃r(ρ(gσ(gm+1, 0)σ(gm+1, 0)−))− fn,ẑzz(gσ(gm+1, 0)σ(gm+1, 0)−)|

≤ 1
p(n)2 ∑

j,k∈[p(n)]
|cos(

2jπ
p(n)

) cos(
2kπ

p(n)
)||T̃r(ρ(g(t1t2)

j−k))− fn,ẑzz(g(t1t2)
j−k)|

+ |cos(
2jπ
p(n)

) cos(
(2k + 1)π

p(n)
)||T̃r(ρ(g(t1t2)

j−kt2))− fn,ẑzz(g(t1t2)
j−kt2)|

+ |cos(
(2j + 1)π

p(n)
) cos(

2kπ

p(n)
)||T̃r(ρ(gt2(t1t2)

j−k))− fn,ẑzz(gt2(t1t2)
j−k)|

+ |cos(
(2j + 1)π

p(n)
) cos(

(2k + 1)π
p(n)

)||T̃r(ρ(gt2(t1t2)
j−kt2))− fn,ẑzz(gt2(t1t2)

j−kt2)|

≤4(ε + ζ).
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With similar reasoning, we can get that when x, y = gm+1, gm+2 and a, b = 0, 1

|T̃r(ρ(gσ(x, a)σ(y, b)−))− fn,ẑzz(gσ(x, a)σ(y, b)−)| ≤ 4(ε + ζ);

when one answer is 2 and the other answer is from 0, 1,

|T̃r(ρ(gσ(x, 2)σ(y, b)−))− fn,ẑzz(gσ(x, 2)σ(y, b)−)| ≤ 6(ε + ζ),

|T̃r(ρ(gσ(x, a)σ(y, 2)−))− fn,ẑzz(gσ(x, a)σ(y, 2)−)| ≤ 6(ε + ζ);

and when both answers are 2

|T̃r(ρ(gσ(x, 2)σ(y, 2)−))− fn,ẑzz(gσ(x, 2)σ(y, 2)−)| ≤ 8(ε + ζ).
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