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ABSTRACT

We furnish a procedure based on universal hash families that can convert an error correcting

code of rate R to a semantically secure wiretap code of rate R−ξ where ξ is some parameter derived

from the eavesdropper’s channel. This conversion is shown to be polynomial time efficient with

block length and is applicable to any discrete time channel.

To prove the induced wiretap code is semantically secure, we have upgraded recent leak-

age bounds by maximizing over all message distributions. The semantic leakage is shown to be

exponentially decreasing with block length.

As an explicit application, we construct a concrete, polynomial time efficient, semantically

secure wiretap code that can achieve the secrecy capacity of the AWGN wiretap channel. More-

over, this wiretap coding scheme has both probability of error and semantic leakage exponentially

diminishing with block length.
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1. INTRODUCTION

The first rigorous treatment of secure communication was put forth in 1949 by Claude

Shannon in his paper “Communication theory of secrecy systems” [14] (declassified version). Shan-

non considered a scenario where a transmitter attempted to impart a message to a receiver while

keeping the message completely hidden from an adversary. Shannon allowed the transmitter to

encrypt the message first into some ciphertext (also called a codeword in the sequel) and that the

adversary received an error-free copy of this ciphertext. In reality, environments engender errors

so that this is a worst case scenario of sorts.

To measure if a message was completely hidden from the adversary, Shannon put forth the

idea of perfect secrecy. He said perfect secrecy was obtained if the mutual information (to be defined

in Chapter 2) between the message and the ciphertext was exactly 0. In other words, he said perfect

secrecy was only obtained if the message and ciphertext were statistically independent. Shannon

established that a “secret key” must be used that only the transmitter and intended receiver know

otherwise secure communication in this sense would not be possible. Moreover, Shannon proved

that this secret key must be at least as long as the message itself and that each key may only be

used for one message.

This disappointing result implied that perfect secrecy was impossible for all intents and

purposes. This split the field of cryptography into two major directions. In one direction (dubbed

computational based security) the adversary is assumed to have bounded computational resources.

In the other direction (dubbed physical layer security) the adversary is assumed to receive a copy

of the ciphertext with errors induced by the environment.

Computational security took a strong foothold with the introduction of public key cryp-

tography in the 1970’s. It has remained the primary provider of security since then due to its

ease of implementation, plethora of schemes, and well suited (so far) assumptions about resource

boundedness. Indeed most computational security schemes are based on the assumption that some

decision problems are easy to verify but hard to solve. For example, security of the widely used

RSA scheme is based on the assumption that the factorization of the product of two large primes

is a hard problem.
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That being said, computational security is unproven security. P is a computational com-

plexity class that basically contains all decision problems that can be solved efficiently fast. NP is

a computational complexity class that basically contains all decision problems that can be verified

efficiently fast. The P vs. NP problem asks if P = NP. It is one of the most renowned open prob-

lems in computer science and mathematics. Intuitively, if P = NP then every decision problem

that can be verified efficiently can also be solved efficiently. This has the potential to break most

computational security systems in use today for they rely on the often tacit assumption that some

problems are in NP but not in P.

Nonetheless many cryptographers believe that P 6= NP. In that case, computational secu-

rity would be (nearly) immune to an adversary with a classical computer bounded sufficiently in

time. However, P and NP are complexity classes applicable only to classical decision problems; they

are not suited for quantum decision problems. For example, RSA is based on the assumption that

factoring large numbers is an NP hard problem, however, in the 1990’s Peter Shor [15] constructed

a factoring algorithm that can factor large numbers efficiently fast on quantum computers. A

(somewhat) comparable complexity class to P for quantum computers is BQP, the class containing

all quantum decision problems that can be solved efficiently fast (with small bounded probability of

error). It turns out that P ⊂ BQP but it is also conjectured that BQP contains decision problems

strictly in NP (assuming P 6= NP); that is, BQP contains some problems that cannot be solved

efficiently with a classical computer but can be solved efficiently with a quantum computer. The

previous has sparked a program called “post quantum cryptography” directed toward advancing

computational based security so that it is secure against an adversary with access to a quantum

computer. However, even with post quantum cryptography, an adversary with sufficiently large

computational resources could break computational based security in theory.

At this point, we have exclusively focused on computational based security, let us retreat

back to the other direction stemming from Shannon’s disappointing result: physical layer security.

Physical layer security is based on the assumption that communication is not error free. Aaron

Wyner in the 1970’s created the wiretap channel [20], a way of modeling physical layer security. In

this paper he proved that it was possible to simultaneously send a message with low probability of

error to an intended receiver while keeping the message hidden from an adversary as long as the

length of the codeword (ciphertext) was sufficiently large. He also proved that there was an optimal

2



operating point in this case which he dubbed the secrecy capacity of the wiretap channel; this was

the highest rate of information that could be sent reliably yet securely in his model. Wyner’s

measure of security is now called the weak metric and is similar to the perfect security metric of

Shannon except it is asymptotic, assumes the message is uniformly distributed, and divides by

the length of the codeword effectively making the metric a rate. Wyner’s method of proof was by

existence (rather than by construction) to show that such a coding scheme achieving said optimal

operating point is possible.

Since Wyner, physical layer security (also called information theoretic security in the se-

quel) has flourished theoretically. Many new models of wiretap channels have come forth and

subsequently been characterized with respect to their secrecy capacity. The main assumption in

every one of the wiretap channel models is that the intended receiver be at some physical layer

advantage over the adversary with respect to the transmitter. An intuitive way of thinking about

this is that the adversary’s received ciphertext is “more noisy” (or equivalently, contains more er-

rors on average) than the intended receiver’s received ciphertext/codeword. When this is not the

case, information theoretic security does not allow us to transmit any information securely.

The assumption about an adversary’s physical layer is a strong assumption. In reality,

nothing prevents an adversary from obtaining a physical layer advantage effectively negating any

security. This has been the main reason why computational based security is considerably more

popular. Despite this, when the adversary is at a disadvantage to the intended receiver, this form

of security is provable. This is in sharp contrast to the state of current affairs in computational

security where we have the P vs. NP problem. Moreover, with the advent of quantum computers

on the horizon, many researchers are looking for security solutions that transcend computational

based methods. Indeed, information theoretic security (with a physical layer advantage) satisfies

this quest.

Even with the proper motivation to use physical layer security in some instances, the field

is not entirely ready for realistic applications. There are two considerable hurdles that need to

be properly addressed before physical layer security can be considered realistic. As in the case

of Wyner, many coding schemes to date for wiretap models are not concrete; that is, they are

proved by existence rather than by construction. In reality, we need algorithmic coding schemes

that can be implemented on computers. Proofs by existence are very powerful tools theoretically,
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but almost useless in practice. More in this line, coding schemes for wiretap channels that are

concrete are rarely efficient. Efficiency is especially important in the wiretap domain since security

is based on asymptotic codeword length. The second considerable hurdle for wiretap channels is in

a completely different line and can be somewhat subtle: security metrics for wiretap channels must

coincide with reality. Wyner used the “weak metric” as a way to measure how hidden a message

was from the adversary. This was shown to be an insufficient measure of secrecy in reality and

it was replaced by another security metric called the “strong metric.” This has been the de facto

metric for wiretap channels for some time but was criticized by cryptographers [2] only within the

last decade. They put forth even another metric of security dubbed “semantic security” that is the

exact asymptotic equivalent to Shannon’s perfect secrecy. They advocated its use as we do so here:

coding schemes can only be considered properly realistic when they are secure on wiretap channels

under the semantic security metric (or its equivalent form as we shall later see). Thus in summary,

the two main hurdles of information theoretic security can be overcome by finding concrete and

efficient coding schemes for wiretap channels that are provably secure under the semantic security

metric.

To this end, we have the motivation for this thesis. We present a new coding scheme for

arbitrary wiretap channels based on the work of [1], [17], and [18]. Here the coding scheme is a

concatenation of a preprocessing scheme with an error correction code (ECC) for the point to point

channel between the transmitter and intended receiver. We prove that our preprocessing scheme

can be implemented using an algorithm that has quadratic time complexity; thus, our preprocessor

is concrete and efficient. We show our coding scheme provides semantic security so long as the

secure rate of information is less than R − ξ where R is the information rate of the ECC and ξ is

some parameter of the adversary’s channel. With this, we can equivalently say that given an ECC

of rate R for a point to point channel between the transmitter and intended receiver, our coding

scheme efficiently converts this ECC into a semantically secure wiretap coding scheme of rate R−ξ.

When the ECC is also given concretely and efficiently, then our entire coding scheme from

front to end is also concrete and efficient and thus we overcome both hurdles of information theoretic

security we previously mentioned. Furthermore, in some sense our coding scheme also converts the

problem of finding a concrete and efficient wiretap scheme into a problem of finding a concrete and
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efficient error correction coding scheme. The quest to find the latter is already an extremely active

field of study.

Lastly, as a point of emphasis, we show that our coding scheme can even be used to achieve

the optimal operating point as put forth by Wyner called the secrecy capacity. In more detail, on

the AWGN wiretap channel commonly used to model satellite and deep space transmissions, we

use our preprocessing scheme with a concrete and efficient ECC for the point to point main AWGN

channel and show that our entire coding scheme is concrete, quadratic time efficient, semantically

secure and that both the semantic “leakage” and probability of error of this scheme go exponentially

fast to 0 with respect to the codewords length.

This thesis will be organized as follows. In Chapter 2, we present background information

necessary to understand the mathematically rich language of our setting. In Chapter 3, we demon-

strate the necessity of using the semantic security metric and expound explicitly on what we have

contributed to this thesis along with previous works toward this end. In Chapter 4, we explicitly

define our coding scheme and prove that our preprocessor is both concrete and efficient. In Chapter

5, we prove that our coding scheme is semantically secure as described above. In Chapter 6, we give

a characterization of which information rates are achievable using our coding scheme. In Chapter

7, we provide an application to the AWGN wiretap channel as mentioned. In the final chapter, we

provide a concluding “program” for wiretap schemes looking forward.

5



2. PRELIMINARIES

In this introductory chapter, we will provide the reader with some background information

necessary to understand the language in our setting. We will mainly be concerned with definitions

and primary results from the fields of probability theory, information theory, and communication

theory but will also cover some concepts from computer science.

First let us emphasize some notation and conventions. We shall denote n-dimensional

vectors by an where ai denotes the ith component; i.e., an = (a1, . . . , an). We shall denote the

indicator function (sometimes called characteristic function) by 1A(x) or 1 (x ∈ A). We will take

all logarithms in this paper to be base 2 unless we write ln, for which we mean the natural logarithm

of base e.

2.1. Probability Theory

We will assume knowledge of basic measure theoretic probability in this thesis, but will

review some concepts to elucidate our notation.

Let (Ω,B,P) be some probability space. If X is some random variable taking values in the

measurable space (X ,BX ) then basic results from measure theoretic probability theory prove that

(X ,BX , νX) is also a probability space such that

νX(B) = (P ◦X−1)(B) = P(X = B) ∀B ∈ BX .

The measure νX is called the distribution of X and the surjective image X is called the alphabet

of X. We will only consider random variables in real coordinate space (Rn) in this thesis so that it

follows that X ⊂ Rn. When the size of the alphabet |X | is countable X is called a discrete random

variable; otherwise when the size of the alphabet |X | is uncountable, X is called a continuous

random variable.

If µ is some other measure on X such that νX is absolutely continuous with respect to µ

then the Radon-Nikodym Theorem implies that there exists some function f : X → [0,∞) (unique
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up to some µ-null set) such that

νX(B) =

∫
B

fdµ ∀B ∈ BX ,

where this is the Lebesgue–Stieltjes integral. This function f is often called the Radon-Nikodym

derivative and denoted by dνX
dµ . In this work however we shall adopt a different convention standard

in this literature. We shall denote such a function instead by ωX and refer to this as the probability

density of X (with respect to µ). Furthermore, we will always assume that X and µ are chosen

so that the distribution νX is absolutely continuous with respect to µ (and thus the probability

density ωX always exists).

Remark. For an element x ∈ X , the probability density maps x 7→ ωX(x) in our current notation;

this will later become cumbersome. Thus we will drop the subscript X (as needed) in our notation

and identify a probability density by its argument. For example, ω(y) will correspond to a probability

density ωY for a random variable Y whereas ω(z) will correspond to a probability density ωZ for a

random variable Z.

Let X be a random variable on measurable space (X ,BX ). We will be mainly concerned

with two measures µ on X in this thesis. When X is a continuous random variable we shall take

µ to be the Lebesgue measure. In this case the distribution of X is given by:

νX(B) = P[X ∈ B] =

∫
B
ω(x)dx ∀B ∈ BX .

This is of course the familiar Lebesgue integral. On the other hand, when X is a discrete random

variable, we shall take µ to be the counting measure. In this case the distribution of X is given by:

νX(B) = P[X ∈ B] =
∑
x∈B

ω(x) ∀B ∈ BX .

We know from probability theory that probability densities can be represented by probability mass

functions in the discrete case. To emphasize this, we will occasionally write ω(x) as PX(x) (the
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standard notation) so that the distribution of X can be given by:

νX(B) = P[X ∈ B] =
∑
x∈B

PX(x) ∀B ∈ BX .

With this framework and notation in mind we will consider joint and conditional probability

densities is the usual manner. Sticking with our notation, ω(x, y) corresponds to a joint probability

density ωXY (x, y) for the product random variable X × Y . Furthermore, ω(x|y) will correspond

to the conditional density ωX|Y (x|y) = ω(X = x|Y = y). Conditional probability densities can

also be represented by the joint density over the conditioned density as ω(x,y)
ω(y) = ω(x|y). Another

property we shall use is called the marginal density property and is given by:

ω(x) =

∫
Y
ω(x, y)µ(dy).

As usual we will say that random variables X and Y are independent if ω(x, y) = ω(x)ω(y)

for every x ∈ X , y ∈ Y; we will write in this case X⊥Y . Consider the random variables M on M,

X on X , and Y on Y. If the product density factors as

ω(y, x,m) = ω(y|x)ω(x|m)ω(m) ∀m ∈M, x ∈ X , y ∈ Y,

then we say M,X, Y form a Markov chain (in that order); we will denote this by M → X → Y .

For a random variable X on X with µ a measure for X , we define the expected value of

X by:

E[X] =

∫
X
xω(x)µ(dx),

where again the integral here is the Lebesgue–Stieltjes integral.

Lastly with respect to probability theory, we will need two extremely important tools that

are crucial to the proofs.

Lemma 1 (Jensen’s Inequality). Let X be a random variable and Ψ some function.

• If Ψ is convex then:

Ψ(E[X]) ≤ E [Ψ(X)] .
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• If Ψ is concave then:

Ψ(E[X]) ≥ E [Ψ(X)] .

A corollary to Jensen’s inequality is the following lemma. It is extremely useful in informa-

tion theory.

Lemma 2 (Log-Sum Inequality). Let {ai} and {bi} be finite sequences of non-negative real num-

bers. Then ∑
i

ai log
ai
bi
≥

(∑
i

ai

)
log

(∑
j aj

)
(∑

j bj

) .
2.2. Information Theory

Information theory was nearly single handedly created by Claude Shannon in his pioneering

paper “A mathematical theory of communication” [13]. In his paper, Shannon made rigorous the

idea of information. In particular, Shannon viewed information in some sense as the reduction of

uncertainty in a random variable. In this section we shall briefly review information theory and

provide several important tools that will be used constantly. In particular, we shall consider a

measure theoretic introduction to information theory; for reference, consider [8].

Consider the product space X × Y and let µ be a measure on this product space. Let the

product density be given by ω(x, y) with respect to µ and the independent density be given by

ω(x)ω(y) with respect to µ.

Definition. We define the mutual information between X and Y by

I(X ∧ Y ) =

∫
X×Y

ω(x, y) log
ω(x, y)

ω(x)ω(y)
µ(d(x, y)).

Remark. Sometimes the mutual information between random variables X and Y is written I(X;Y ),

but we shall follow the convention of [6] and [18] and write I(X ∧ Y ).

Intuitively, mutual information describes how much “information” X contains about Y (or

vice versa as we shall see in the next lemma). In another sense, it also describes how independent

X and Y are from each other. Indeed, if X⊥Y , then we easily see that I(X ∧ Y ) = 0.
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Suppose we want to know how much “information” some random variable X1 contains about

X2: we can simply use mutual information in this case. However, if we are given another random

variable X3, then we need another tool, because X3 could possibly contain some information about

either X1 or X2; the following definition describes such a tool.

Definition. Let (X1, X2, X3) be a joint random variable on the space X = X1 × X2 × X3 where

µ is some measure on this space. We define the conditional mutual information between X1

and X2 given X3 by

I(X1 ∧X2|X3) =

∫
X
ω(x1, x2, x3) log

(
ω(x1, x2|x3)

ω(x1|x3)ω(x2|x3)

)
µ(dx1dx2dx3).

With these two tools in hand, let us see some of the most useful properties they admit.

Lemma 3. [8, Theorem 1.6.3] Let X,Y, Z,Xi, Yi be random variables (for i = 1, . . . , n). The

following are properties of mutual information.

1. I(X ∧ Y ) = I(Y ∧X) (symmetry).

2. I(X ∧ Y ) ≥ 0 with equality iff X⊥Y (non-negativity).

3. If (X,Y )⊥Z then I(X ∧ Y |Z) = I(X ∧ Y ).

4. I(X ∧ (Y,Z)) = I(X ∧ Z) + I(X ∧ Y |Z).

5. More generally than (4), we have

I(X ∧ Y1, . . . , Yn) =
n∑
i=1

I(X ∧ Yi|Yi−1, Yi−2 . . . , Y1).

6. If (X1, Y1), . . . , (Xn, Yn) are mutually independent then

I((X1, . . . , Xn) ∧ (Y1, . . . , Yn)) =

n∑
i=1

I(Xi ∧ Yi).

Remark. Property 4 and 5 above are often called the “chain rule of mutual information.”

10



2.3. Modeling Communication

Communication of “content” from point A to point B is inherently random: electric signals

are influenced by radiation and heat, digital packets can collide, and wireless signals self interfere

not to mention interfere with other wireless signals. These are just a few of the many types of

noise that can corrupt our content in reality. To model these scenarios mathematically, we use

the concept of a channel which relies on probability theory.

2.3.1. Channels

Definition. Let T : X → Y be some stochastic map, X a random variable on X , and µ some

measure on Y. When Y = T ◦X is a random variable on Y we define the following.

• The transition density of T is the conditional density ω(y|x).

• A channel is given by the tuple (X , ω(y|x),Y). We will often abuse notation and write

T = (X , ω(y|x),Y) while referring to the map T as the channel itself.

Remark. Note that the concatenation of channels form Markov chains.

The transition density probabilistically tells us how the channel is mapping X to Y. In

essence, this transition density is modeling the noise present to reality we mentioned earlier. Indeed

we see that given that some data point x ∈ X was sent across the channel, the probability that Y

is in some subset U ⊂ Y is given by ∫
U

ω(y|x)µ(dy).

2.3.2. Restricted Channels

For the rest of this paper, we will be considering subnormalized channels; i.e., channels with

transition densities such that ∫
Y

ω(y|x)µ(dy) ≤ 1.

This is a technical condition that allows us to define the following.

Definition. Given a channel T = (X , ω(y|x),Y) and subset T ⊂ X × Y we define the following.
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• A restricted transition density for T by

ωT (y|x) =


ω(y|x), (x, y) ∈ T

0, Otherwise

.

• A restricted channel given by TT = (X , ωT (y|x),Y).

With this new definition, given that x ∈ X was sent across the restricted channel TT , the

probability that Y is in some subset U ⊂ Y is given by

∫
U

ωT (y|x)µ(dy) =

∫
U

ω(y|x)1T (x, y)µ(dy).

Definition. Given a channel T = (X , ω(y|x),Y).

• If |X | and |Y| are both uncountable, we call the channel T continuous.

• If |X | and |Y| are both countable, we call the channel T discrete.

2.4. Communication Theory

Let T be a channel given by (X , ω(y|x),Y). In communication theory, we are concerned

with sending a message from some finite index set M′ across T : the Transmission channel. It was

shown by Shannon in his pioneering work [13] that using a channel sequentially many times by

means of some code will evoke redundancy, allowing successful communication. In this thesis, we

will always refer to the number of channel uses as the block length (of the code) and denote it by

n. We will consider all n channel uses simultaneously by way of a new induced channel Tn given

by (X n, ω(yn|xn),Yn) where ω(yn|xn) is the obvious induced conditional probability density. We

sometimes call Tn the n-letter extension of T .

We will now spend the rest of this section rigorously defining these concepts and first

results. As a note, we are only considering discrete-time channels in this work; an extension to

continuous-time channels is an interesting future line of work.
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2.4.1. Codes

Definition. Given some finite message set M′ and channel T consider the induced n-letter exten-

sion channel Tn = (X n, ω(yn|xn),Yn) and define the following.

• An (n-length) encoder is an injective function, en :M′ → X n.

• The codebook Cn for encoder en is the (bijective) image of en, Cn = en(M′). We refer to

elements of the codebook as codewords.

• A (n-length) decoder is a function, dn : Yn →M′.

• A code Cn for T of length n is a pair of encoding and decoding functions: Cn = (en, dn). The

rate of the n-length code Cn is given by RCn = log |M′|
n .

• A coding scheme C for T is a family of codes C = {Cn}n∈N. The rate of the coding scheme

C is given by RC = limn→∞RCn (when this exists).

The previous definition is merely here to make our language precise. We point out that (as

usual) we allow the size of M′ to change with n so that the rate of the coding scheme RC makes

sense.

2.4.2. Error Correction Codes

A code for channel T in the previous section is a very general object. It consists of an encoder

and decoder but no restrictions are placed on said functions. For successful communication over

T , we need the decoder to have a low probability of making an error. Now we make these concepts

precise.

Definition. We define the maximum probability of error for code Cn = (en, dn) used for T by

pe,n = max
M ′∈M′

P[(dn ◦ Tn ◦ en)(M ′) 6= M ′].

• If pe,n is sufficiently small (in the eyes of the system designer) we call Cn an error correcting

code (ECC) of length n for T .

• If C = {Cn}n∈N is a family of ECC’s then we call C an error correcting coding scheme

(ECC scheme) for T .
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• If C satisfies limn→∞ pe,n = 0, then we call the ECC scheme C reliable. If C satisfies

log(pe,n) ≤ −anb for some a, b > 0 then we call the ECC scheme C exceptionally reli-

able.

• If an ECC scheme C of rate RC is reliable, then we say RC is an achievable rate on T .

Subsequently, we define the operational capacity of a channel T as the supremum of all

achievable rates.

Remark. It was noted in [2] that “good” error correcting codes in practice should satisfy reliability

exponentially fast; they called such ECC’s “strongly reliable”. Due to the plethora of definitions

containing the wording “strong” we have instead called such ECC’s here “exceptionally reliable.”

As a note, all exceptionally reliable ECCs are also reliable.

2.4.3. Power Constraints

For continuous channels, we almost always require the codebook Cn to be contained in some

ball (with respect to some measure µ on X n) whose radius depends only on n. The reason behind

this is because probability of error is inversely correlated to the distance between codewords: the

farther apart codewords are in X n, the lower the probability of error. Indeed, if the codebook

is not required to be contained in some ball, then we can always place codewords sufficiently far

apart in X n to obtain a negligibly small probability of error. However, in reality, placing codewords

significantly far apart in space is a heavy cost in terms of power at the transmitter. Motivated by

this, we have the following definition.

Definition. We say a code C for channel T = (X , ω(y|x),Y) satisfies the average power con-

straint P if for every n ∈ N it follows that

1

n
||xn||2 =

1

n

n∑
i=1

x2
i ≤ P ∀xn ∈ Cn.

Remark.

1. More generally, we could consider a cost function that is not 1
n ||·||

2, but since we have assumed

the input is a subset of real coordinate space this definition will be sufficient for our needs.
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2. When the input to the channel is a random variable X (such as in Shannon’s channel coding

theorem next), we will change the above property to E[X2] ≤ P . Indeed by the law of large

numbers the above will converge to this latter property.

2.4.4. Shannon’s Channel Coding Theorem

In [13], Shannon proved two major results: one on the fundamental limits of data compres-

sion and one on the fundamental limits of communication. We will only be concerned with the

second major result and will refer to it, as per the standard, as Shannon’s channel coding theorem.

In particular, we will consider a generalization of Shannon’s result.

Definition. Let T = (X , ω(y|x),Y) be a channel and Tn = (X n, ω(yn|xn),Yn) be the induced

n-letter extension channel. If the density for Tn factors as ω(yn|xn) =
∏n
i=1 ω(yi|xi), then we say

T is a memoryless channel.

This property is dubbed memoryless because when the densities split as such the output at

time i depends only on the input at time i and no other time. In other words, this characterization

implies the channel has no memory, it only knows what is happening in the moment. We many

times consider memoryless channels to greatly simplify the mathematical analysis, but also because

they are not completely impractical models.

Definition. Suppose we are given a memoryless channel T = (X , ω(y|x),Y). We define the infor-

mation channel capacity of T by

CT = max
X

I(X ∧ Y ),

where the maximization is over all random variables X ∈ X . If T is continuous, we maximize over

all X ∈ X such that E[X2] ≤ P .

The following is Shannon’s channel coding theorem generalized to all memoryless channels.

We note that this theorem can be stated analogously for non-memoryless channels, but in this thesis

we do not need such a powerful theorem and have chosen to stick with this result for simplicity.
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Fact 1 (Channel Coding Theorem). (cf. [8]) Suppose T is a memoryless channel. Then the

operational channel capacity is exactly equivalent to the information channel capacity. Precisely, if

R < CT then there exists a reliable ECC scheme C with rate R. Conversely, if C is a reliable ECC

scheme of rate RC , then RC ≤ CT .

Due to this major result, we will drop the words operational and information from channel

capacity and simply refer to these terms universally as channel capacity. Furthermore, we will

be considering wiretap channels in a moment where there is also a notion of “capacity”; to this end,

we will oftentimes refer to the capacity in this section as the point-to-point channel capacity

when clarity is required.

2.5. Wiretap Channels and Secrecy Capacity

A wiretap channel is the natural extension of the previous section on reliable communica-

tion theory to reliable and secure communication theory. In this setup, we will have a transmitter,

an intended receiver, and a passive eavesdropper1. It will be the goal of the transmitter to suc-

cessfully transmit a message to the intended receiver while keeping the message hidden from the

eavesdropper. Let us make this more precise.

Definition. Let T = (X , ω(y|x),Y) be a channel modeling the communication between a trans-

mitter and intended receiver. Let A = (X , ω(z|x),Z) be a channel modeling the unintended

communication between a transmitter and a passive eavesdropper. We call the pair W = (T,A) =

(X , ω(y|x), ω(z|x),Y,Z) the wiretap channel.

Remark. Wyner [20] coined the term wiretap channel when he was considering the situation when

an eavesdropper received a noisy version of a message strictly after the intended receiver (this

property of a channel is called physically degraded). Later, [6] generalized Wyner’s result to include

all discrete memoryless channels: they dubbed their model a broadcast channel with confidential

messages. Csiszar and Körner’s naming is much more appealing but unfortunately has not stuck.

The term wiretap channel is nearly ubiquitous in literature even in wireless channel scenarios where

1We will refer to the adversary of Chapter 1 in the sequel as an eavesdropper to emphasize she can only listen but
not interfere.
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this naming makes little sense. For this reason, we shall stick with convention and call even these

general scenarios wiretap channels.

Note that we have chosen the letters T , A, and W so as to denote the Transmission channel,

Adversary’s channel, and Wiretap channel. We also note that the n letter induced wiretap channel

is given by

Wn = (Tn, An) = (X n, ω(yn|xn), ω(zn|xn),Yn,Zn).

Sometimes we will refer to the n-letter extension itself as the wiretap channel.

Definition. Let W = {Wn}n∈N be a coding scheme for channels T = (X , ω(y|x),Y) and A =

(X , ω(z|x),Z) using message set M. We define the following.

• A xs security metric is an association that maps the pair (Wn, A
n) to a non-negative real

number Lxs
n for every n ∈ N. We refer to Lxs

n as the xs-leakage.

• If limn→∞ L
xs
n = 0 then we say the schemeW is xs-secure relative to channel A. If log(Lxs

n ) ≤

−anb for some a, b > 0 then we say W is exceptionally xs-secure relative to channel A.

• We call W a (xs) wiretap coding scheme for wiretap channel W = (T,A) if it satisfies the

following two conditions:

– (Reliability): W is a reliable ECC scheme for T .

– (Security): W is secure relative to A.

If these two conditions are satisfied exceptionally, then we say that W is an exceptional

(xs) wiretap coding scheme for wiretap channel W .

• If R is the rate of an xs wiretap coding scheme, then we say R is an xs achievable secrecy

rate. We call the supremum of all xs achievable secrecy rates the xs secrecy capacity.

Remark. Again [2] noted that security should be ascertained exponentially fast with block length.

They called such a condition “strongly xs secure.” Noting again the plethora of definitions in this

context whose name includes the wording “strong” we have instead opted here again for “exception-

ally xs secure.”
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When Wyner originally considered the wiretap channel he used a security metric defined via

the leakage Ln = 1
nI(M ∧ Zn) (for M uniformly random). Just as in the channel coding theorem,

Wyner showed that the operational secrecy capacity was exactly equal to the information secrecy

capacity for all memoryless, physically degraded channels; meaning the eavesdropper was located

physically after the intended receiver. Csiszar and Körner [6] generalized Wyner’s result exactly

for the case of all discrete memoryless channels getting the exact same expression. Again this was

upgraded (cf. [3]) to all memoryless channels and the expression changed simply from a maximum

to a supremum (since it includes continuous channels). We give this general result next and avoid

the terminology operational/information secrecy capacity since they are equivalent.

Fact 2. [3] The secrecy capacity for arbitrary memoryless channels with power constraint P using

security metric induced by Ln = 1
nI(M ∧ Zn) (for M uniform) is given by

Cs = sup
V X∈D

(I(V ∧ Y )− I(V ∧ Z))

where D = {V X |V → X → Y Z and E[X2] ≤ P}.

Remark. For a discrete channel with no power constraint we can choose P = +∞.

Here V is an auxiliary random variable that is often called the channel prefix. It was the

insight of Csiszar and Körner [6] who saw that this was needed before the channel input to properly

characterize secrecy capacity.

Remark. It is interesting that our pseudo-message M ′ of Chapter 4 turns out to be an optimal

channel prefix for the AWGN wiretap channel. Generalizing this result to other wiretap channels

is a current line of future research.

2.5.1. Secrecy capacity under different metrics

We will also be interested how the secrecy capacity changes under different security metrics.

First let us see a way to order security metrics.

Definition. Fix a scheme W over an eavesdropper’s channel A. Suppose xs1 and xs2 are two

security metrics with respective leakage L
xs1
n and L

xs2
n . We say security metric xs1 is stronger
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than security metric xs2 if

lim
n→∞

L
xs1
n = 0 =⇒ lim

n→∞
L

xs2
n = 0.

Moreover we say security metric xs1 is equivalent to security metric xs2 if

lim
n→∞

L
xs1
n = 0 ⇐⇒ lim

n→∞
L

xs2
n = 0.

Now consider the following lemma.

Fact 3. Fix a wiretap channel and denote the secrecy capacity under security metric xs by Cs

∣∣
xs

.

Suppose xs1 is a stronger security metric than xs2. It follows that:

1.

Cs

∣∣
xs1
≤ Cs

∣∣
xs2
.

2. If Cs

∣∣
xs2

is an xs1-achievable secrecy rate then

Cs

∣∣
xs1

= Cs

∣∣
xs2
.

The first part of this lemma says that the secrecy capacity under a stronger metric can never

go up (although it can stay the same). This coincides exactly with intuition since by strengthening

our measure of security, we are being more restrictive.

The second part of this lemma also says that if we can achieve the weaker secrecy capacity

using a stronger metric, then in fact, the secrecy capacity under the stronger metric is equivalent

to the weaker secrecy capacity; that is, we don’t need to prove a converse for a secrecy capacity

result: we get the result for free with an achievability proof.

Remark. A characterization of the secrecy capacity like Fact 2 under different metrics has been done

(cf. [3]). However, in the next section we will define semantic security and no characterization for

this metric has been done.
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2.6. Concepts from Computer Science

The last set of background we need in this thesis may seem at times disparate to the previous

background, but its utility will be clear in time.

2.6.1. Guessing Probability

Definition. Let M be a discrete random variable with alphabet M. We define the guessing

probability of M by

GP(M) = max
m∈M

P [M = m] .

Moreover, given another random variable R on R, we define the average guessing probability

of M given R by

GP(M |R) =

∫
R
ω(r) max

m∈M
ω(m|r)µ(dr),

where µ is some metric on R.

Remark. Here we interpret maxm∈M ω(m|r) as a function of r: say f : R → [0,∞). Therefore the

average guessing probability of M given R becomes
∫
R ω(r)f(r)µ(dr) = E[f(R)].

Intuitively, the guessing probability of M is the probability of guessing the outcome of the

random variable M correctly when using the best strategy, which is to guess the outcome of M

with the highest a priori probability.

If we were given the outcome of another random variable, say R = r, our best strategy

would change to picking the outcome of M with the highest conditional a priori2 probability:

maxm ω(m|r). However, perhaps R = r is a rare event (or conversely an extremely likely event),

then this doesn’t quite capture the randomness of R. What is better is to take the expected

value of the previous conditional guessing probability over all possible outcomes of R; this way,

we average out all outcomes of R and get the average chance of guessing the outcome of M

correctly when the random variable R is also given. As a simple consequence, if M⊥R we see

that GP(M |R) = GP(M) as one would expect.

2With respect to the random variable M .
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2.6.2. Universal Hash Families

Over the years, universal hash families (introduced in [5]) have found utility in many fields

of computer science. In particular, we will study their effectiveness in providing security.

Definition. Let M = {0, 1}k be a set of binary strings of length k and M′ and S finite sets such

that S is a random variable on S. Consider now a finite family of functions indexed by S:

F = {fs :M′ →M| s ∈ S}.

(i) F is called a universal hash family (UHF) if for every m′1 6= m′2 ∈M′ we have:

P
s∈S

[
fs(m

′
1) = fs(m

′
2)
]
≤ 1

2k
.

(ii) F is called uniform if for every m′ ∈M′ and for every m ∈M we have:

P
s∈S

[
fs(m

′) = m
]

=
1

2k
.

(iii) We call a UHF F hash value independent (HV independent) if for every m′1 6= m′2 ∈ M′

and m ∈M we have:

P
s∈S

[
fs(m

′
1) = fs(m

′
2)

∣∣∣∣ fs(m′1) = m

]
≤ 1

2k
.

(iv) F is called b-regular if for every s ∈ S and for every m ∈M we have:

|{m′ ∈M′ | fs(m′) = m}| = 2b.

(v) F is called invertible if for each s ∈ S there exists some stochastic mapping φs :M→M′

such that for all m ∈ M, fs(φs(m)) = m. If the stochastic map φs maps m ∈ M according

to a uniform distribution to its image φs(m) ⊂ M′ for every s ∈ S and m ∈ M then we call

F evenly invertible.
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(vi) Lastly, we call F a semantic security inducing universal hash family (SSI-UHF) if it

is: (1) universal, (2) uniform, (3) HV independent, (4) b-regular, and (5) evenly invertible.

Remark. When S ∼ unif(S) (as will be done exclusively in this paper), the aforementioned proba-

bilities can simply be rewrote as counting probabilities from combinatorics. For example consider

the uniform property above. Fix m ∈ M and m′ ∈ M′ and let U = {s ∈ S | fs(m′) = m}. Then

Ps∈S [fs(m
′) = m] = |U|/|S|.

Many of the definitions here coincide with those found in computer science literature. In-

deed, the conditions of being a universal hash family and uniform are found in most textbooks on

hash families. The condition of being b-regular and invertible can be found in [1] and [18]. That

being said, we have invented some terminology. We have dubbed hash families that are universal,

uniform, hash value independent, b-regular, and evenly invertible as semantic security inducing

universal hash families to emphasize hash families with these five properties as the proper ones for

inducing semantic security (see Chapter 3) on a wiretap channel as we shall later see. We have

also invented the terminology hash value independent. Intuitively, HV independence means the

probability of a collision does not increase by too much even if we know where two values collide

to. Note in particular that if a HV independent UHF is also uniform then for every m′1 6= m′2 ∈M′

and m ∈M we have

P
s∈S

[
fs(m

′
1) = fs(m

′
2) = m

]
≤ 1

2k2k
.

.

2.6.3. Efficiency

In the sequel, codes, wiretap codes, UHFs, SSI-UHFs, and pre/post processors (as described

in the next chapter) will all be described by algorithms (when referring to their implementation).

In particular these algorithms will all inherently be functions of the block length n. We will be

concerned with the complexity of their implementation with respect to n as follows.

Definition. Let f, g be algorithms. If there exists positive constants c and n0 such that

f(n) ≤ cg(n) ∀n > n0,
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then we write f = O(g) and say f is “big-O” of g.

Remark. We will always suppress the constants c and n0 in this thesis.

What this definition means is that asymptotically, the growth rate of f is approximately at

most that of g.

Definition. Let f be an algorithm. Ordered from slowest growing to fastest growing, we say the

time complexity of f (with respect to n) is:

• linear if f = O(n),

• polynomial3 if there exists a constant c > 1 such that f = O(nc), and

• exponential if there exists a constant c > 1 such that f = O(cn).

Remark. All linear algorithms are also polynomial.

Polynomial time complexity is often described as “fast” in the computer science world.

With this we have the gold standard definition for efficiency.

Definition. Let f be an algorithm. We say that f (or the process described using f) is efficient

if f has polynomial time complexity.

3If c = 2 here, we sometimes will be explicit and say the time complexity of f is quadratic.
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3. PRELUDE

Now that we have the proper language, in this chapter we provide specific mathematical

motivation for our main result and discuss previous works leading to this point.

3.1. Comparison of Security Metrics

Guaranteeing wiretap security is only as good as the metric being used. If the metric does

not coincide sufficiently with reality, then all results, however mathematically sound, will not be

readily applicable in practice. With this intutition in mind, it is therefore of interest to examine

the metrics used in the wiretap community and see how they fare when put under the microscope.

This is exactly what was done in [2]. In that work, the authors have argued traditional means

of measuring security in the information theory community fall short in practice. In particular,

the original metric of Wyner and the so called strong security metric introduced by [12] do not

properly gauge an eavesdropper’s advantage in a practical setting. The authors thus introduce

several new metrics to close this gap including one that looks identical to the strong metric but

is maximized over all message distributions and one that is analogous to the gold-standard metric

from cryptography: semantic security. Let us review these wiretap security metrics.

Definition. Fix a wiretap coding scheme W for an eavesdropper’s channel A = (X , ω(y|x),Z)

using message set M.

1. The weak security metric (weak) is the original metric of Wyner [20] and the leakage is

given by

L
weak
n =

1

n
I(M ∧ Zn), M ∼ unif(M).

2. The mutual-information security metric for random messages (mis-r) has leakage

given by

L
mis-r
n = I(M ∧ Zn), M ∼ unif(M).
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3. The mutual-information security metric (mis) has leakage given by

L
mis
n = max

PM
I(M ∧ Zn).

4. The semantic security metric (ss) has leakage given by

L
ss
n = sup

f,M

(
GP(f(M)|Zn)−GP(f(M))

)
,

where f is any function M→ {0, 1}∗ (finite).

Remark. The mutual information security metric for random messages (mis-r) was originally called

the strong security metric. However, as we shall see shortly, this is an inappropriate name since

the metric is not quite as “strong” as researchers once thought. We have thus chosen to stick with

the name introduced in [2] and ignore the naming strong.

3.1.1. Weak Metric

When Wyner originally considered the weak metric in his pioneering work, he was thinking

about the leakage Lweak
n as a rate; that is, Wyner said a wiretap scheme was secure if the rate of

mutual information the eavesdropper obtained about the message went to 0 asymptotically with

block length n. This seems reasonable, but can be shown to have severe problems. As a simple

pathological example, suppose the mutual information between the message and the eavesdroppers

output I(M ∧ Zn) (for M uniform) grows as log(n) with block length n. Then as n → ∞, this

mutual information term grows unbounded while the weak-leakage Lweak
n goes to 0. Thus, if we

used the weak security metric to measure security in this situation, we would say our scheme is

secure yet the eavesdropper is receiving an infinite amount of information as measured by mutual

information. This is clearly unsettling, but admittedly this example is a bit ad hoc, however, even

non-pathological examples can be constructed that show the weak metric is quite unappealing in a

practical sense (cf. [4]).

3.1.2. MIS-R Metric

The pitfalls of the weak metric led the information theoretic community to define a new

metric: the mutual information security metric with random messages [12]. The motivation be-
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hind this metric is that instead of the rate asymptotically going to 0, the total amount of mutual

information between the uniformly distributed message and eavesdropper’s output should asymp-

totically go to 0. Indeed our pathological example mentioned for weak security no longer works.

This metric seems to be exactly what we want as information theorists. This metric even mimics

perfect security as originally suggested by [14] except there the total amount of mutual information

is exactly 0 for a finite blocklength. However, there is one serious problem.

3.1.3. MIS Metric

The mis-r metric has recently been questioned by the likes of cryptographers [2]. In par-

ticular, the message of the mis-r metric is assumed to be uniformly distributed, however, messages

in real life are rarely this structured. It was originally argued by information theorists that since

a message is always assumed to be compressed before being transmitted that the assumption of

a uniform distribution was correct. However, as pointed out in [2], compression in real life is a

deterministic function that cannot possibly change entropy. Indeed by this motivation, [2] defined

the mutual-information security metric exactly as the mis-r security metric except maximized over

all message distributions. This metric has the information theorists intuition that for block length

sufficiently large, the total amount of information the eavesdropper receives about the message is

negligible for any kind of message.

3.1.4. Semantic Security Metric

At this point, an information theorist could be satisfied since there does not seem like much

more one could ask for in an asymptotic security metric, however, as cryptographers, [2] put forth

another metric that is the information theorists analog of the gold standard in cryptography: the

semantic security metric. Let us break apart the intuition behind how L
ss
n is defined.

Temporarily fix f as the identity function and M as a random variable with some arbitrary

message distribution. In this case the semantic leakage becomes GP(M |Zn) − GP(M) and we

are basically asking: “how much will the eavesdropper’s odds of correctly guessing the realization

of M increase when given Zn”? Ideally, we do not want the eavesdropper’s odds to increase at

all, but we would be satisfied if this difference went to 0 asymptotically with block length n. Now

relax the distribution on M and optimize over all message distributions. At this point, we are

asking for how much the eavesdropper’s odds increase no matter how unstructured our message
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is. Finally, we need to relax f and consider all possible functions: why? Well, as argued in [2],

we should not be only content that the eavesdropper’s odds of guessing the entire message barely

increase, rather, we should also guarantee that the eavesdropper’s odds of guessing any portion of

the message barely increase. Indeed, the first bit of a real life message could possibly contain very

important information yet, if we don’t optimize over f , we would be allowing the case where the

eavesdropper could guess the first bit just not the entire message. Hence, optimizing over f allows

us to guarantee that the eavesdropper’s odds of guessing any partial part or any manipulation of

the message do not increase when given Zn.

The intuition behind semantic security in this regime is admittedly much more sound than

any of the other metrics mentioned. Asymptotically, semantic security guarantees that given Zn,

an eavesdropper has no better chance of guessing any conceivable manipulation of M then by

the obvious strategy of picking the most probable realization. This is extremely satisfying and

pragmatic not to mention there does not seem like any other metric we could define that could

give us more asymptotically. An immediate question that arises is then: “how much stronger is

semantic security than mutual-information security?”. The surprising and celebrated result of [2]

is that asymptotically, semantic security is equivalent to mutual information security.

3.1.5. Metric Ordering

We collect this result along with the other orderings below.

Fact 4. Fix a wiretap coding scheme W for a wiretap channel W = (T,A).

• Semantic Security is equivalent to mutual-information security:

lim
n→∞

L
ss
n = 0 ⇐⇒ lim

n→∞
L

mis
n = 0.

• Mutual information security is strictly stronger than mutual information security for random

messages:

lim
n→∞

L
mis
n = 0

6⇐=
=⇒ lim

n→∞
L

mis-r
n = 0.
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• Mutual information security for random messages is strictly stronger than weak security:

lim
n→∞

L
mis-r
n = 0

6⇐=
=⇒ lim

n→∞
L

weak
n = 0.

Remark. This result was originally proved for discrete random variables in [2] but was identically

replicated for continuous random variables by [10], thus we make no distinction between the two

cases.

The semantic security metric correctly captures the notion of asymptotic perfect secrecy,

however, it is somewhat arduous to work with. Since it is equivalent to mutual information security,

which is considerably easier to work with we can consider mis while getting semantic security for

free. With this we have a conceivable way to achieve what we set out to do in the introduction.

3.2. Main Contributions

With the preceding intuition regarding security metrics in mind, the main contributions of

this thesis are to partially rectify the two main problems of physical layer security as mentioned in

Chapter 1. In particular, in this thesis we do the following.

• We construct a wiretap coding scheme that consists of a preprocessing scheme with a reli-

able ECC scheme. We show that the preprocessing scheme can be described algorithmically

guaranteeing that it is concrete and realizable in practice. Furthermore, we prove that our

preprocessing scheme is efficient in block length (quadratic time).

• We construct a bound on the mis leakage when using our wiretap scheme by upgrading a

direct approach found in [18]. In more detail, [18] provided a leakage bound when the message

M was uniformly distributed (that is, they provided a bound on mis-r leakage); we remove

this restriction and provide an analogous bound for any distribution on the message M .

• We show that our wiretap coding scheme can achieve a positive achievable rate under the mis

security metric for arbitrary channels so that asymptotically our wiretap scheme is semanti-

cally secure. Our wiretap coding scheme is modular and acts like a converter that takes as

input an error correcting code and outputs a semantically secure wiretap code under certain

ECC rate and eavesdropper channel conditions.
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• We show that our coding scheme can achieve the secrecy capacity of the AWGN wiretap

channel with semantic security in a concrete and efficient way, thus completely solving the

two main problems of physical layer security at least for the AWGN case.

3.3. Prior Work

With regard to concrete and efficient schemes under the mis-r metric, [17] was able to

achieve the mis-r secrecy capacity on AWGN channels and [18] later extended this result to both

AWGN and certain discrete memoryless channels. Indeed [18] provided a method of proof to bound

their mis-r leakage of which our bounds in Chapter 5 are inspired by.

Semantic security for the wiretap channel was first introduced in [2]. In that work the

authors provided a wiretap scheme based on UHFs that achieved positive rates for certain discrete

memoryless channels but their wiretap coding scheme could not achieve the secrecy capacity. An

extension of that work by the same authors was presented in [1]. There the authors constructed a

polynomial time efficient wiretap scheme that could achieve the secrecy capacity of certain discrete

memoryless channels. This class of channels was fairly restrictive, but this result was generalized

to even more discrete memoryless channels in [16]. All of the preceding schemes were concrete and

established in polynomial time but the proofs restrict them to discrete alphabets (and certain error

correcting codes).

With respect to the AWGN wiretap channel, [11] only recently provided a concrete and

efficient wiretap coding scheme that could achieve the secrecy capacity. We were only recently

made aware of this result and it is noted that even though we obtain the same result in Chapter

7, our wiretap scheme is based on completely different principles than the former. It is also noted

that an attempt at a wiretap scheme that could achieve the semantic secrecy capacity for AWGN

channels in an analogous way to the one we present in Chapter 4 was redacted due to an error

(according to the authors). We are unaware of the exact error therein but our approach is relatively

different.
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4. A WIRETAP CODING SCHEME

In this chapter we will furnish a wiretap coding scheme W for an arbitrary wiretap channel

W = (T,A) which is based on a wiretap scheme put forth in [1], [17], and [18]. We will first define

each step of this scheme and show that it is reliable. Then we will give a particular implementation

and show that this implementation is efficient with respect to the block length n.

4.1. Transmission Procedure

Over an arbitrary wiretap channel W = (T,A), our transmission procedure involves com-

bining a SSI-UHF with a reliable ECC already in use over the main point to point channel. This

modular wiretap scheme is precisely the scheme put forth in [1, 17, 18] except there, the UHF was

only required to be b-regular and evenly invertible. Since here we require a SSI-UHF, we are also

demanding that our UHF be hash value independent and uniform. The necessity of these two extra

properties will be fleshed out in the next chapter (particularly in the Leftover Hash Lemma).

Consider Figure 4.1; this describes our transmission procedure.

(M,S) M ′ Xn

Y n
M̂ ′ M̂

Zn

Γ en

Tn

dn Γ−1

An

Figure 4.1. Transmission Scheme.

4.1.1. Preprocessing Layer

Consider the finite sets M = {0, 1}k and M′ = {0, 1}l with l > k. We shall refer to

M ∈M as the actual message and M ′ ∈M′ as the pseudo-message because M represents the

information the transmitter actually wishes to impart to the intended receiver securely, whereas M ′
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is some random variation of the actual message necessary for security. We will not assume which

distribution the message M takes so that our transmission procedure can lead to semantic security.

Over a fixed arbitrary finite set S, the transmitter will first draw a seed S ∼ unif(S) to be

used for the remainder of transmission. We assume the seed is independent of the message M and

that the realized seed is publicly available to all parties. All communication must take place over

the wiretap channel; however, we will show later in this thesis that the transmitter can send the

seed before the transmission of an actual message with no asymptotic rate or security loss.

The transmitter now chooses a SSI-UHF {fs :M′ →M| s ∈ S}. Suppose each function fs

in the SSI-UHF has its inverse given by φs. The transmitter uses this inverse to “inversely hash” an

actual message to a pseudo message using a channel Γ :M×S →M′ given by Γ(m, s) = φs(m),

which we call the pre-processing layer. In particular, since this UHF is evenly invertible, if some

message m ∈ M and seed s ∈ S are realized, the pseudo-message M ′ is chosen according to

unif(φs(m)). Since the SSI-UHF is b-regular, each image φs(m) has 2b elements. Thus, Γ has

transition density ω(m′|m, s) = 2−b for any choice of m ∈M, s ∈ S, and m′ ∈ φs(m).

4.1.2. Coding Layer

The transmitter chooses some reliable ECC scheme C = {Cn}n∈N that satisfies the power

constraint for the channel if there is one. We will assume (as per standard) that each party has

full knowledge of C. Thus, for a given blocklength n, each party knows Cn is the codebook and

we have inherently induced new channels: Tn : Cn → Yn and An : Cn → Zn. We will henceforth

be considering these as the main and eavesdropper’s channels for the remainder of the thesis.

At this point the transmitter channel encodes the pseudo-message M ′ using en, this will be a

random variable Xn = en(M ′) over Cn. Next the transmitter sends Xn over the wiretap channel

W = (T,A); that is, the channel input Xn is sent across Tn but also across An inherently.

4.1.3. Decoding

Let us first focus on the intended receivers channel. The intended receiver will receive a

(potentially) noisy version of the channel input: Y n = Tn(en(M ′)). The goal of the intended

receiver is to correctly guess M ′ from Y n. This is accomplished using the estimate M̂ ′ = dn(Y n).

Since we have assumed C to be reliable, each Cn is an ECC. Thus, the probability of error pe,n
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is considerably low. In particular, this means there is a high probability that M̂ ′ = M ′ where

asymptotically with block length n, this equality happens almost surely.

Next, the intended receiver shall post-process M̂ ′ to an estimate of the actual message M̂

using the hash function corresponding to the public seed S. That is, the post processing channel

Γ−1 :M′ × S →M is given by fs(m
′). Since our UHF is invertible, if M̂ ′ = M ′ then the UHF is

guaranteed to map M̂ ′ to M (the original message). In this sense, the pre-post processing layers

do not subtract anything from our reliability. In more detail, if C is reliable to begin with then our

entire wiretap scheme will also satisfy reliability. Furthermore, if C is exceptionally reliable, then

our wiretap scheme is exceptionally reliable as well.

4.1.4. Eavesdropper’s Channel layer

Once the eavesdropper receives her channel output Zn = An(en(M ′)) she will attempt to

decode it in a similar fashion to that of the intended receiver; however, we will not assume how she

decodes her output since that could affect our measure of security. As a side note, in contrast to

computational based security methods, we also do not assume the boundedness of resources at the

eavesdropper.

4.1.5. Discussion

As in [18], we call the preceding scheme modular since the preprocessing layer is not intrusive

to the main channel in any way. That is, our preprocessing layer could be added to any already

existing communication system without changing any core components of the original system.

4.2. Implementation

Our wiretap scheme consists of two components. First we have a pre/post processing scheme

based on a SSI-UHF. Second we have a reliable ECC scheme C for the main point to point channel

T . The first question we might ask is: “does such a wiretap scheme even exist?” Well Shannon’s

channel coding theorem can be extended to almost any point to point channel T . This means that

a reliable ECC scheme C will always exist for any channel so long as the rate of the ECC scheme

satisfies RC ≤ CT , the point to point main channel capacity. Thus, we only need to be concerned

if such a pre/post processing scheme exists; in particular, if a SSI-UHF exists.
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In this section we construct a SSI-UHF to be used in the pre/post processing layers for our

wiretap coding scheme. We start with the UHF construction used in the implementation of the

scheme in [1, 17, 18] upon which our wiretap scheme is based. We show that this construction is

very close to what we need but it is not quite a SSI-UHF. However, this construction gives way to

a similar construction that is a SSI-UHF, which we prove. Lastly, we prove that this construction

is implementable in polynomial time with respect to block length n.

4.2.1. A Close Construction

Denote the all-0 bit string of length l by 0l. Let M = {0, 1}k, M′ = {0, 1}l, and S =

{0, 1}l \ 0l. Interpret the l-bit strings ofM′ and S as elements in the finite field GF (2l) and the k-

bit strings ofM as elements in the finite field GF (2k). We will denote the multiplicative operation

of the field GF (2l) by �. With this, we can define a family of functions (cf. [1, 18, 17]) by

F∗ = {fs :M′ →M| s ∈ S},

where fs(m
′) = selk(s�m′) and selk(·) is a function that simply selects the k most significant bits.

This family is easily seen to be universal, (l − k)-regular, and properly invertible. The inverse is

given by φs,R(m) = s−1 � (m||R) where R is some uniform random variable over {0, 1}l−k, s−1

is the inverse element of s in GF (2l), and (·||·) is the concatenation function. Note, that since R

is uniformly random, so is φs,R(m) over the preimage f−1
s (m), thus this UHF is evenly invertible.

Moreover it is mentioned in [1, 18, 17] that this family is polynomial time efficient.

Due to the plethora of satisfying properties this family has, an obvious first attempt to

instantiate the pre/post processor of our coding scheme is certainly this family. Indeed, this family

already satisfies three of the five properties of SSI-UHFs and the pre and post processors induced

by this scheme are polynomially time computable with block length n. We simply need to show

this family is both uniform and HV independent.

Unfortunately, F∗ does not satisfy the uniformity property. Suppose m′ = 0l, then fs(0
l) =

selk(s � 0l) = selk(0
l) = 0k for every s ∈ S and so P[fs(m

′) = m] = 1 6≤ 2−k. If we try to remove

the problem point 0l from M′, then we ought to remove 0k from M because no combination of

(s,m′) will map to 0k and we would not satisfy regularity.
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4.2.2. Fixing the previous construction

In order to “fix” the previous construction, consider the following family of functions

F = {fs,t :M′ →M | s ∈ {0, 1}l \ 0l, t ∈ {0, 1}l}

where fs,t(m
′) = selk ((s�m′)⊕ t). Here, ⊕ and � denote addition and multiplication respectively

in GF (2l) and selk(·) selects the k most significant bits just as in the previous family. As a remark,

we note that ⊕ here is equivalent simply to modulo-2/bitwise/xor addition. Moreover, we note

that the entire seed in this case is given by S = {0, 1}l \ 0l × {0, 1}l where |S| = (2l − 1)2l.

Theorem 1. The family of functions

F = {fs,t :M′ = {0, 1}l →M = {0, 1}k | s ∈ {0, 1}l \ 0l, t ∈ {0, 1}l}

given by fs,t(m
′) = selk ((s�m′)⊕ t) with inverses given by φs,t,R(m) = s−1 � ((m||R)⊕ t) (with

R ∼ unif({0, 1}l−k)) is a SSI-UHF.

Proof. We will show F is universal, uniform, HV independent, (l−k)-regular, and evenly invertible.

• Universality: Fix m′1 6= m′2 ∈M′. We wish to count how many (s, t) satisfy:

selk
((
s�m′1

)
⊕ t
)

= selk
((
s�m′2

)
⊕ t
)
.

Since ⊕ is given by bitwise addition, we can distribute selk(·) and reduce the equation to:

selk(s � m′1) ⊕k selk(t) = selk(s � m′2) ⊕k selk(t) where ⊕k is addition over GF (2k). This

reduces even further to selk(s �m′1) = selk(s �m′2), however, this is an equation that does

not involve t so that indeed, any choice of t satisfies the original equation.

This equation can be rewritten as

0k = selk(s�m′1)⊕k selk(s�m′2) = selk((s�m′1)⊕ (s�m′2)) = selk(s�m′′),

34



where we have defined m′′ = m′1 ⊕ m′2. Now since m′1 6= m′2 then m′′ = m′1 ⊕ m′2 6= 0l.

Moreover by assumption s 6= 0l so that for each choice of s, the multiplication s �m′′ is a

unique element in {0, 1}l \ 0l. Since there are 2l−k − 1 elements in {0, 1}l \ 0l that have the

first k bits set to 0, then there are 2l−k − 1 choices of s that satisfy 0k = selk(s�m′′).

In summary, we have 2l choices for t and 2−k(2l−2k) choices for s, thus we have 2−k2l(2l−2k)

choices for (s, t) that satisfy selk ((s�m′1)⊕ t) = selk ((s�m′2)⊕ t). However, 2−k2l(2l −

2k) ≤ 2−k2l(2l − 1) since k ≥ 1 so that (noting |S| = 2l(2l − 1)) we have proved that F is a

universal hash family.

• Uniformity: Fix m′ ∈M′ and m ∈M. We wish to count how many (s, t) satisfy:

selk
((
s�m′

)
⊕ t
)

= m.

We can distribute selk(·) and view this as the equation selk(t) = m⊕k selk(s�m′). For each

choice of s the first k bits of t are fixed and the last l − k bits are free; thus there are 2l−k

choices for t. Since there are no restrictions at all on s, we can choose any of the 2l−1 l-length

bits strings (excluding 0l) for s.

In aggregate there are 2l−k(2l−1) choices of (s, t) that satisfy selk ((s�m′)⊕ t) = m. Noting

again that |S| = 2l(2l − 1) we have proven that our family F is uniform.

• HV Independence: Fix some m′1 6= m′2 ∈M′ and m ∈M. We wish to count how many (s, t)

satisfy

m = selk((s�m′1)⊕ t) = selk((s�m′2)⊕ t).

Focus first on m = selk((s�m′1)⊕t). It follows that selk((s�m′1)⊕t) = selk(s�m′1)⊕k selk(t)

so that selk(t) = m⊕k selk(s�m′1). This means that for each choice of s, the first k bits of t

must be chosen as m⊕k selk(s�m′1) in order to satisfy the above equation however the last

l − k bits of t are free so that for every choice of s we have 2l−k choices of t.

Now focus on m = selk((s�m′2)⊕ t) = selk(s�m′2)⊕k selk(t). From the above paragraph it

immediately follows that m = selk(s�m′2)⊕km⊕k selk(s�m′1). This implies selk(s�m′1) =
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selk(s �m′2). However, we have already seen from the universality of F that the number of

s that satisfy this is upper bounded by 2−k(2l − 1).

In aggregate, there are never more than 2−k2−k2l(2l − 1) choices of (s, t) that satisfy the

equation: m = selk((s�m′1)⊕ t) = selk((s�m′2)⊕ t). Since the number of seeds is given by

|S| = 2l(2l − 1), we have shown our family F is indeed hash independent.

• Regularity: Fix some m ∈ M, s ∈ {0, 1}l \ 0l, and t ∈ {0, 1}l. We wish to count how many

m′ satisfy:

selk
((
s�m′

)
⊕ t
)

= m.

As usual break up this equation to selk(s � m′) = m ⊕k selk(t). Since we are working in

GF (2l) and s 6= 0l, for each choice of m′ ∈ {0, 1} the product s�m′ will be a unique element

in {0, 1}l. But the first k bits of this product are fixed at m ⊕k selk(t) due to the previous

equation while the last l− k bits are free. Hence there will be 2l−k choices of m′ that satisfy

the original equation.

Therefore, F is (l − k)-regular.

• Invertibility: Let m ∈M, s ∈ {0, 1}l \ 0l, and t ∈ {0, 1}l. Then,

fs,t(φs,t,R(m)) = selk
(
s�

(
s−1 � ((m||R)⊕ t)

)
⊕ t
)

= selk ((m||R)⊕ t⊕ t)

= selk (m||R)

= m,

where the penultimate equality follows from the fact GF (2l) has characteristic 2.

• Even Invertibility: Suppose we are given a m ∈ M, s ∈ {0, 1}l \ 0l, and t ∈ {0, 1}l. Since

R ∼ unif({0, 1}l−k) the pseudo-message M ′ will also be chosen uniformly over φs,t,R(m).

�

With this theorem we have found a concrete (algorithmic) implementation of a SSI-UHF.

This means our wiretap coding scheme of the previous section is well defined.
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With this, let us see how the time complexity of our pre/post processing scheme fares for

this implementation.

Proposition 1. Noting that l and k are functions of the coding block length n, we have:

1. Given m ∈ M, s ∈ {0, 1}l \ 0l, t ∈ {0, 1}l, and r ∈ {0, 1}l−k, the inverse φs,t,r(m) =

s−1 � ((m||r)⊕ t) can be computed in quadratic-time with respect to n.

2. Given s ∈ S and m′ ∈ M′, the function fs,t(m
′) = selk((m

′ � s) ⊕ t) can be computed in

quadratic time with respect to n.

Proof.

1. Concatenation here has time complexityO(k+(l−k)) and thus is linear with n: O(k+(l−k)) =

O(l) = O(nRCn) = O(n). Addition in GF (2l) operates as bitwise addition (or XOR) and thus

the time complexity is also linear with n: O(l) = O(nRCn) = O(n). Therefore, the operation

(m||r)⊕ t has time complexity O(n+ n) = O(n); i.e. it is linear.

Now inversion and multiplication in GF (2l) is known to be computed in quadratic time

in l (cf. [7, Chapter 2]). Thus computing s−1 is O(n2) and computing the multiplication

s−1� ((m||r)⊕ t) is O(n2). Computing the entire inverse φs,r(m) is therefore on the order of

O(n+ 2n2) = O(n2).

In aggregate, this entire first step by the transmitter can be computed in polynomial time in

n; in particular, the entire preprocessing scheme is quadratic.

2. Using the same arguments as above, the operation m � s can be implemented in quadratic

time and addition can be implemented in linear time. Clearly, selk(·) can be implemented

in O(k) = O(n): linear time with n. Thus, the entire post-processing scheme also can be

implemented in quadratic time in n.

�

Thus, in conclusion of this section, we have constructed a concrete and efficient SSI-UHF so

that the pre and post processors induced by this SSI-UHF are polynomially time computable with

block length n. Indeed there is not much more one could ask for in a family of hash functions but
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we do stress that the construction given here is by no means unique. When designing a system,

any such SSI-UHF will do for the pre/post processing schemes of our wiretap scheme although it

does behoove one to find a SSI-UHF that is concrete and optimally efficient1.

1Indeed the main reason our SSI-UHF is efficient is based on the efficiency of multiplication and inversion in
GF (2l). Constructing a SSI-UHF using another more efficient method is of considerable interest.
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5. SECURITY OF OUR WIRETAP SCHEME

We have already seen that the scheme we constructed in Chapter 4 satisfies the reliability

property of a wiretap scheme (and does so exceptionally when C is chosen exceptionally). Now

we need to show that the scheme satisfies the security property as well. In this section we will do

just that by constructing leakage bounds for the mis metric. It will turn out that under certain

conditions our leakage bounds asymptotically go to 0 implying that our scheme is a mis wiretap

scheme and hence a semantic wiretap scheme. In particular, under further restrictions, our wiretap

scheme is shown to be exceptional.

It is noted that leakage bounds for arbitrary wiretap channels using evenly invertible, b-

regular UHFs are already given in [18]; however, the leakage there assumes M follows a uniform

distribution and hence will only lead to mis-r security at best. We therefore need to generalize the

leftover hash lemma (channel version) in [18] to overcome this obstacle. What becomes obvious

upon proof is that considering UHF’s that are only evenly invertible and b-regular is not quite

restrictive enough to lead to semantic security; this explains why in our wiretap coding scheme of

Chapter 4 we chose our UHF to also be uniform and hash value independent. Now before we begin,

we introduce some definitions and notation to facilitate our claim.

5.1. Max Information and Typical Sets

The leakage bounds we present in the next subsection and those found in [18] depend on

a curious metric called max-information. Intuitively, max-information measures the most amount

of “information” that could be sent across a given channel An using a specific code; however,

“information” in this context may not be equivalent to mutual information.

Definition. Let µ be some measure on Zn. Then with respect to some n length ECC with codebook

Cn used over wiretap channel W = (T,A), we define max-information (over An) by

In = log

 ∫
Zn

max
xn∈Cn

ω(zn|xn)µ(dzn)

 .
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In general, ω(zn|xn) finds the relative likelihood that an output zn occurs given that xn ∈ Cn

occurred. Therefore max
xn∈Cn

ω(zn|xn) measures the highest likelihood a particular eavesdropper output

zn could have over all codewords. Integrating with respect to zn converts this likelihood into

something that resembles a conditional “probability”; however, it is not a true probability. Taking

the logarithm normalizes this between 0 and log |Cn|.

Max-information is concerned with the space of events Cn × Zn; the space that contains

the 2-tuple realizations of codewords and eavesdropper outputs respectively. Working with this

entire space is both difficult and unnecessary since we are really only concerned with those events

that happen with sufficiently high probability; that is, the entire space clearly contains realizations

that are extremely unlikely to happen. Therefore, we will end up restricting the entire space onto

subspaces that contain the most likely realizations.

Definition. For ε ≥ 0, we call a subset T ⊂ Cn ×Zn a (1− ε)-typical set if

P [(Xn, Zn) ∈ T |Xn = xn] ≥ 1− ε, ∀xn ∈ Cn.

Furthermore, we will denote the set of all (1− ε)-typical sets by Tε.

Typical sets intuitively contain almost all that there is to know about our space up to some

ε. Using (1 − ε)-typical sets, we can define another max-information over this reduced space that

will be crucial to our proofs later on.

Definition. Given ε ≥ 0 define ε-smooth max-information by

Iεn = inf
T ∈Tε

In
∣∣∣∣
T
,

where max-information evaluated on T is given by

In
∣∣∣∣
T

= log

 ∫
Zn

max
xn∈Cn

ωT (zn|xn)µ(dzn)

 .

That is, given some threshold ε, we find the smallest value that max-information could

possibly be when defined on the subnormalized channels corresponding to those sets that contain
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enough probability with respect to our threshold. Later, we will bound the leakage between the

transmitter and eavesdropper as an increasing function of this metric; thus, defining ε-smooth

max-information using the infinum provides the tightest bound we should expect when ε is our

threshold.

In this paper we will only be concerned with ε as a function of n and will mainly be concerned

with the cases for which ε→ 0 as n→∞.

5.2. Leakage bounds

In this section, we will present one of the main original works of this thesis: we will bound

the mis leakage for the scheme we provided in Chapter 4. But first, let us see that assuming the

eavesdropper has the seed only hurts our measure of security.

Lemma 4.

max
PM

I(M ∧ Zn) ≤ max
PM

I(M ∧ Zn, S).

Proof. Let M have some distribution PM , then:

I(M ∧ Zn) =

∫
Zn

∑
m∈M

ω(zn,m) log

(
ω(zn,m)

PM (m)ω(zn)

)
µ(dzn)

=

∫
Zn

∑
m∈M

(∑
s∈S

ω(zn,m, s)

)
log


∑
s′∈S

ω(zn,m, s′)∑
s′′∈S

PM (m)ω(zn, s′′)

µ(dzn)

≤
∫
Zn

∑
m∈M

∑
s∈S

ω(zn,m, s) log

(
ω(zn,m, s)

PM (m)ω(zn, s)

)
µ(dzn)

= I(M ∧ Zn, S).

The second equality follows from the marginal property of densities whereas the inequality follows

from the log-sum inequality. Maximizing over all probability distributions PM implies the claim. �

With this lemma, we see that if we can bound max
PM

I(M ∧ Zn, S) then we can also bound

max
PM

I(M ∧ Zn). What this means is that giving the eavesdropper the seed (as we have assumed

in Chapter 4) can never decrease the leakage. Fortunately, even with this assumption that the
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eavesdropper knows the seed perfectly, we can still bound the former term. With this, we are now

ready for the following theorem; it is our main contribution.

Theorem 2 (Leftover Hash Lemma). Using the transmission procedure W outlined in Chapter 4,

for any wiretap channel W = (T,A) and ε ≥ 0 it follows that the mis-leakage of W over W is

bounded as:

L
mis
n = max

PM
I(M ∧ Zn) ≤ 1

ln 2
2−b+Iεn + εk.

Proof. First note that by Lemma 4, we have maxPM I(M ∧ Zn) ≤ maxPM I(M ∧ Zn, S) so that it

is sufficient to bound maxPM I(M ∧ Zn, S).

We will split the proof into two parts: ε > 0 and ε = 0; let us start with the ε = 0 case.

Here 1-typical sets T are equal to the entire space Cn×Zn less a set of measure 0, so that I0
n = In.

To show our claim is valid, it is therefore sufficient in the case ε = 0 to show:

max
PM

I(M ∧ Zn, S) ≤ 1

ln 2
2−b+In .

To begin, suppose M has some arbitrary distribution. Since S andM are finite by assump-

tion we will use the counting measure on their space. Thus, using the definition of conditional

mutual information we have

I(M ∧ Zn|S) =

∫
Zn

∑
m∈M

∑
s∈S

ω(m, zn, s) log

(
ω(m, zn|s)

ω(m|s)ω(zn|s)

)
µ(dzn),

where µ is some measure on Zn.

From the chain rule of mutual information, since M⊥S by assumption, we have I(M ∧

Zn, S) = I(M ∧ Zn|S). It then follows that

I(M ∧ Zn, S) = I(M ∧ Zn|S)

=

∫
Zn

∑
m∈M

∑
s∈S

ω(m, zn, s) log

(
ω(m, zn|s)

ω(m|s)ω(zn|s)

)
µ(dzn)

=

∫
Zn

∑
m∈M

∑
s∈S

ω(m, zn, s) log

(
ω(zn|m, s)
ω(zn|s)

)
µ(dzn).
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Let us now expand each conditional density of the numerator and denominator of the

logarithm in the previous term. Starting with the numerator we have:

ω(zn|m, s) =
∑

m′∈f−1
s (m)

ω(zn|m′)ω(m′|m, s)

= 2−b
∑

m′∈f−1
s (m)

ω(zn|m′)

= 2−b
∑

m′∈M′
ω(zn|m′)1

(
fs(m

′) = m
)
.

The first equality follows from the fact that we can take M ′ as an intermediate node and sum over

all possible realizations of M ′; by assumption, since we are given m and s, then M ′ can only be

found in φs(m) where φs is the even-inverse of fs. The second equality follows since, once given m

and s, the density of M ′ is uniform on a set with 2b elements.

The expansion of the conditional density in the denominator is given as:

ω(zn|s) =
ω(zn, s)

PS(s)

1
=
∑
m∈M

ω(zn,m, s)PM (m)

PS(s)PM (m)

2
=
∑
m∈M

ω(zn|m, s)PM (m)

= 2−b
∑

m′∈M′
ω(zn|m′)

∑
m∈M

PM (m)1(fs(m
′) = m)

3
= 2−b

∑
m′∈M′

ω(zn|m′)PM (fs(m
′)).

Justification.

1. Marginal density property.

2. By assumption, M⊥S.

3. When s is fixed, fs is a well defined function. Thus, inside the sum over M′, fs(m′) can map

to only a single m ∈ M. Therefore, the indicator is 1 only for a single value of m; namely,

when m = fs(m
′).
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We now continue expanding the leakage using these two conditional densities.

I(M ∧ Zn, S)

4
=

∫
Zn

∑
m∈M

∑
s∈S

ω(m, zn, s) log

2−b
∑

u′∈M′ ω(zn|u′)1(fs(u
′) = m)

2−b
∑

u′′∈M′
ω(zn|u′′)PM (fs(u′′))

µ(dzn)

5
=

∫
Zn

∑
m∈M

∑
s∈S

ω(zn|m, s)PM (m)PS(s) log

∑u′∈M′ ω(zn|u′)1(fs(u
′) = m)∑

u′′∈M′
ω(zn|u′′)PM (fs(u′′))

µ(dzn)

6
=

1

|S|

∫
Zn

∑
m∈M

∑
s∈S

ω(zn|m, s)PM (m) log

∑u′∈M′ ω(zn|u′)1(fs(u
′) = m)∑

u′′∈M′
ω(zn|u′′)PM (fs(u′′))

µ(dzn).

Justification.

4. We will break with our convention slightly. Here we have written ω(zn|u′) as shorthand

for ωZn|M ′(z
n|u′); analogously for ω(zn|u′′). We will stick with this new convention for the

remainder of the proof; i.e. ω(·|u∗) and ω(u∗) will be shorthand for densities with respect to

M ′.

5. By assumption, M⊥S.

6. By assumption, S ∼ unif(S).

At this point we can expand the conditional density ω(zn|m, s) as before and continue:

I
=

2−b

|S|

∫
Zn

∑
m∈M
s∈S

m′∈M′

ω(zn|m′)PM (m)1(fs(m
′) = m) log

∑u′∈M′ ω(zn|u′)1(fs(u
′) = m)∑

u′′∈M′
ω(zn|u′′)PM (fs(u′′))

µ(dzn)

7
=

2−b

|S|

∫
Zn

∑
m∈M
s∈S

m′∈M′

ω(zn|m′)PM (m)1(fs(m
′) = m) log

∑u′∈M′ ω(zn|u′)1(fs(u
′) = fs(m

′))∑
u′′∈M′

ω(zn|u′′)PM (fs(u′′))

µ(dzn)

8
=

2−b

|S|

∫
Zn

∑
s∈S

m′∈M′

ω(zn|m′)PM (fs(m
′)) log

∑u′∈M′ ω(zn|u′)1(fs(u
′) = fs(m

′))∑
u′′∈M′

ω(zn|u′′)PM (fs(u′′))

µ(dzn)
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9
= 2−b

∫
Zn

 1

|S|
∑
s∈S

m′∈M′

ω(zn|m′)PM (fs(m
′)) log

( ∑
u′∈M′

ω(zn|u′)1(fs(u
′) = fs(m

′))

)+ · · ·

+

− 1

|S|
∑
s′∈S

m′′∈M′

ω(zn|m′′)PM (fs′(m
′′)) log

( ∑
u′′∈M′

ω(zn|u′′)PM (fs′(u
′′))

)µ(dzn).

Justification.

7. The entire summand is 0 unless m = fs(m
′), so we can replace the m in the indicator function

of the log as such as long as we stick with the convention that 0 log 0 = 0 as the limit suggests.

8. As before, the indicator will filter all but a single m; namely, when m = fs(m
′).

9. We can break up the logarithm into a subtraction where we change indices of the summation

so as not to become confused.

We will now consider each of the square brackets separately, starting with the first. The

first square bracket can be written (after multiplying by the unit 2−k2k) as

2−k
∑

m′∈M′
ω(zn|m′)

∑
s∈S

(
2k

|S|
PM (fs(m

′))

)
log

( ∑
u′∈M′

ω(zn|u′)1(fs(u
′) = fs(m

′)

)
.

Since our preprocessor is a SSI-UHF it is a uniform hash family. Thus for any m′ ∈M′ we have:

∑
s∈S

(
2k

|S|
PM (fs(m

′))

)
=
∑
m∈M

PM (m)
2k

|S|
∑
s∈S

1
(
fs(m

′) = m
)

= 1;

thus we can aptly apply Jensen’s inequality and move the preceding term inside of the logarithm

at the expense of an inequality to get:

2−k
∑

m′∈M′
ω(zn|m′) log

(
2k

∑
u′∈M′

ω(zn|u′)
∑
s∈S

PM (fs(m
′))

|S|
1(fs(u

′) = fs(m
′))

)
.
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If u′ = m′, it is clear that the indicator will always return 1 regardless of s ∈ S so that the

argument of the logarithm becomes

∑
u′∈M′

ω(zn|u′)1(u′ = m′) = ω(zn|m′),

where we have again used the fact that our preprocessor is a SSI-UHF and is hence uniform.

On the contrary, if u′ 6= m′, the indicator will only return 1 some of the time, and a nice

simplification of the expression is not obvious at this time.

Combining these cases together, the entire first square bracket is less than or equal to:

2−k
∑

m′∈M′
ω(zn|m′) log

[
ω(zn|m′) + . . .

+2k
∑
u′∈M′

ω(zn|u′)
∑
s∈S

PM (fs(m
′))

|S|
1(fs(u

′) = fs(m
′))1(u′ 6= m′)

]
.

Let us now move onto the second square bracket. We can write this term as

− 1

|S|
∑
s′∈S

( ∑
m′′∈M′

ω(zn|m′′)PM (fs′(m
′′))

)
log

( ∑
u′′∈M′

ω(zn|u′′)PM (fs′(u
′′))

)

≤ − 1

|S|

(∑
s′∈S

∑
m′′∈M′

ω(zn|m′′)PM (fs′(m
′′))

)
log


∑
s′′∈S

∑
u′′∈M′

ω(zn|u′′)PM (fs′′(u
′′))∑

s′′′∈S
1

 ,

where the inequality follows from the log-sum inequality. Now again using the fact that our pre-

processor is a SSI-UHF and hence uniform, the entire second square bracket becomes:

−2−k
∑

m′′∈M′
ω(zn|m′′) log

(
2−k

∑
u′′∈M′

ω(zn|u′′)

)
.

We are now at a point where each square bracket is properly simplified and we would like

to recombine them with the main string of inequalities. But before we get started, denote the

following sum by ψzn,m′ :

2k2k∑
u′′∈M′

ω(zn|u′′)
∑
u′∈M′

ω(zn|u′)
∑
m∈M

PM (m)
1

|S|
∑
s∈S

1(m = fs(m
′))1(fs(m

′) = fs(u
′))1(u′ 6= m′).
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Then it follows,

I(M ∧ Zn, S) ≤ 2−b−k
∫
Zn

∑
m′∈M′

ω(zn|m′) log

 2kω(zn|m′)∑
u′′∈M′

ω(zn|u′′)
+ ψzn,m′

µ(dzn)

10
≤ 2−b−k

∫
Zn

∑
m′∈M′

ω(zn|m′) log

 2kω(zn|m′)∑
u′′∈M′

ω(zn|u′′)
+ 1

µ(dzn)

11
≤ 2−b

ln 2

∫
Zn

∑
m′∈M′ ω(zn|m′)2∑
v∈M′ ω(zn|v)

µ(dzn)

12
≤ 2−b

ln 2

∫
Zn

max
m′∈M′

ω(zn|m′)µ(dzn)

13
=

2−b

ln 2

∫
Zn

max
xn∈Cn

ω(zn|xn)µ(dzn)

=
1

ln 2
2−b+In .

Justification.

10. Note that since our preprocessor is a SSI-UHF, it is hash value independent so that ψzn,m′ ≤ 1.

11. Convert log to the natural logarithm so that we can use the inequality ln(x + 1) ≤ x for all

x > 0.

12. The weighted sum, when choosing each weight to be equal to each element of data, is always

smaller than the max of the data.

13. Although the code Cn (and hence codebook Cn) may be initially generated at random, it is

fixed and assumed to be known to all parties at the time of transmission. Thus there is a non-

random bijective mapping M′ → Cn and if m′ 7→ xn, it follows that ω(zn|m′) = ω(zn|xn).

With this, we have constructed an upper bound to I(M ∧ Zn, S) for an arbitrary message

distribution PM . However, since the bound did not depend on the specific choice of PM , the bound

also holds for maxPM I(M ∧ Zn, S). Therefore, we have concluded the ε = 0 case.

Let us move onto the ε > 0 case. Fix some ε > 0 and consider some (1 − ε) typical set

T ⊂ Cn ×Zn. To this typical set, we define an associative set T∗ ⊂M′ ×Zn. In more detail, this
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set is needed for technical reasons and is defined in an obvious way as

T∗ = {(m′, zn) | (en(m′), zn) ∈ T },

where en is the encoding function of the fixed code Cn (with codebook Cn).

Now consider step I. in the previous string of inequalities written as:

2−b

|S|

∫
Zn

∑
m∈M
s∈S

PM (m)

 ∑
m′∈M′

ω(zn|m′)1(fs(m
′) = m) log


∑

u′∈M′
ω(zn|u′)1(fs(u

′) = m)∑
u′′∈M′

ω(zn|u′′)PM (fs(u′′))


µ(dzn).

Inside of the square bracket, zn and m can be considered fixed, and thus, each of the 3 sums over

M′ can be considered as a sum over two other sets:

M′1 = {m′ ∈M′ : (m′, zn) ∈ T∗} and

M′2 = {m′ ∈M′ : (m′, zn) ∈ T {∗ },

where T {∗ denotes the complement of T∗ in M′ ×Zn.

With this, we can then apply the log-sum inequality to the above term to yield the following

at the expense of an inequality:

2−b

|S|

∫
Zn

∑
m∈M
s∈S

PM (m) · · ·

· · ·


 ∑
m′∈M′1

ω(zn|m′)1(fs(m
′) = m)

 log


∑

u′∈M′1
ω(zn|u′)1(fs(u

′) = m)∑
u′′∈M′1

ω(zn|u′′)PM (fs(u′′))

 + · · ·

· · ·+

 ∑
m′∈M′2

ω(zn|m′)1(fs(m
′) = m)

 log


∑

u′∈M′2
ω(zn|u′)1(fs(u

′) = m)∑
u′′∈M′2

ω(zn|u′′)PM (fs(u′′))


µ(dzn).

Now define QT∗ by:

2−b

|S|

∫
Zn

∑
m∈M
s∈S

PM (m)
∑

m′∈M′
ωT∗(z

n|m′)1(fs(m
′) = m) log


∑

u′∈M′
ωT∗(z

n|u′)1(fs(u
′) = m)∑

u′′∈M′
ωT∗(z

n|u′′)PM (fs(u′′))

µ(dzn),
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so that the leakage becomes

I(M ∧ Zn, S) ≤ QT∗ +QT {
∗
.

When considering just QT∗ we can continue where we left off on line I. of the previous proof

(ε = 0 case). In fact, it is not hard to see that almost nothing changes and we end up with:

QT∗ ≤
2−b

ln 2

∫
Zn

max
m′∈M′

ωT∗(z
n|m′)µ(dzn)

=
2−b

ln 2

∫
Zn

max
xn∈Cn

ωT (zn|xn)µ(dzn).

Now let’s focus on QT {
∗

. It follows that:

QT {
∗

14
≤ 2−b

|S|

∫
Zn

∑
s∈S

( ∑
m′∈M′

ωT {
∗

(zn|m′)PM (fs(m
′))

)
log

 ∑
u′∈M′ ωT {

∗
(zn|u′)∑

u′′∈M′
ωT {
∗

(zn|u′′)PM (fs(u′′))

µ(dzn)

15
≤ 2−b

|S|

∫
Zn

(∑
s∈S

∑
m′∈M′

ωT {
∗

(zn|m′)PM (fs(m
′))

)
log

 |S|
∑

u′∈M′ ωT {
∗

(zn|u′)∑
s′∈S

∑
u′′∈M′

ωT {
∗

(zn|u′′)PM (fs′(u′′))

µ(dzn)

16
= 2−(b+k)

∫
Zn

∑
m′∈M′

ωT {
∗

(zn|m′) log

2k
∑

u′∈M′ ωT {
∗

(zn|u′)∑
u′′∈M′

ωT {
∗

(zn|u′′)

µ(dzn)

= k2−(b+k)
∑

m′∈M′

∫
Zn

ω(zn|m′)1
(

(m′, zn) ∈ T {∗
)
µ(dzn)

17
= k2−(b+k)

∑
xn∈Cn

∫
Zn

ω(zn|xn)1
(

(xn, zn) ∈ T {
)
µ(dzn)

= k2−(b+k)
∑
xn∈Cn

P
[
(Xn, Zn) ∈ T { |Xn = xn

]
18
≤ kε

Justification.

14. In the numerator of the logarithm, we have used 1(fs(u
′) = m) ≤ 1 for all s, u′,m.

15. Log-sum inequality.
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16. Our preprocessor is a SSI-UHF and hence it is uniform.

17. As argued in the previous block, there is a bijective mapping M′ → Cn.

18. We chose T to be a (1 − ε) typical set and there are at most 2(b+k) pseudo messages (and

hence codewords) because our UHF is b-regular.

Again, just as in the ε = 0 case, we have provided an upper bound to I(M ∧ Zn, S) for an

arbitrary message distribution PM so that the upper bound also holds for maxPM I(M ∧ Zn, S).

This concludes the ε > 0 case.

Combining both cases, we have for any ε ≥ 0:

max
PM

I(M ∧ Zn, S) ≤ 2−b

ln 2

∫
Zn

max
xn∈Cn

ωT (zn|xn)µ(dzn) + εk.

Since this inequality was derived using an arbitrary (1 − ε)-typical set T , we may as well

optimize our choice of T while keeping ε fixed so as to obtain the tightest possible bound. With

this and Lemma 4 we have proven the claim of the theorem. �

We see that if Iεn < b and ε = 0 or ε → 0 as n → ∞ then Theorem 2 implies our wiretap

scheme of Chapter 4 is mis-secure and hence semantically secure. In particular, if ε = 0 or ε goes

to 0 exponentially fast with n, then our wiretap scheme is exceptional so long as our ECC C is

exceptional. With this, we have proven that our scheme is a wiretap scheme that is semantically

secure so long as we can prove that the max-information is bounded by b. We note that surprisingly,

our bound is exactly the bound put forth by [18] (their leakage bound only used the mis-r metric).

Remark. Here ε is a facilitator of mathematical (and numerical) ease. We could pick ε = 0 and

attempt to calculate In outright, however this turns out to be significantly more arduous than

calculating Iεn.
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6. ACHIEVABLE RATES OF OUR WIRETAP SCHEME

In this chapter we will be concerned with characterizing the achievable rates of our wiretap

scheme. We will show that the leakage bounds of the previous chapter immediately give a charac-

terization of the achievable rates. Moreover, at the end of this section, we will remove the public

seed assumption and actually transmit the seed over the wiretap channel.

6.1. Achievable Rates

Theorem 2 is very useful in its own right, however, we can manipulate it just a bit further

to really flesh out some utility in the wiretap domain where we are most concerned with rates. The

following corollary follows immediately.

Corollary 1. Using the transmission scheme of Chapter 4, let k = nRn and l = nRCn where Rn

and RCn are the overall security rate and error correction coding rate respectively. It follows for

any wiretap channel and ε ≥ 0 that the mis leakage is bound as:

L
mis
n = max

PM
I(M ∧ Zn) ≤ 1

ln 2
2
−n

(
RCn−Rn−

Iεn
n

)
+ εnRn.

This corollary basically says we can convert the language of Theorem 2 to that of rates.

With this we come to a significant proposition.

Proposition 2. Suppose we are using the transmission scheme W of Chapter 4 with a sequence

of ECC’s C = {Cn} each with rate RCn and asymptotic rate RC ≤ CT (the point-to-point capacity

of the main channel). Let Rs denote the asymptotic overall security rate. Then for any wiretap

channel W = (T,A) if ε is chosen so that εn→ 0 as n→∞ we have the following.

(1) We can achieve all secure asymptotic rates

Rs <

(
RC − lim

n→∞

Iεn
n

)+

or Rs = 0

with semantic security.
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(2) If lim
n→∞

Iεn
n ≤ ξ then we can achieve all secure rates

Rs < (RC − ξ)+ or Rs = 0

with semantic security.

(3) If ε is exponentially diminishing to 0 with n, then for any secure rates as in (1) and (2), then

the scheme W is exceptionally semantically secure. In particular if C is exceptionally reliable,

then W is an exceptionally semantically secure wiretap scheme.

Proof.

1. Consider Corollary 1. We need L
mis
n → 0 as n→∞ to get mis-security (and thus semantic).

We have as n→∞ that Rn → Rs and RCn → RC . Since Rs is bounded then limn→∞ εnRn = 0

by assumption that εn → 0 as n → ∞. Now if limn→∞(RCn − Rn −
Iεn
n ) > 0 then the first

term in the sum on the right hand side of Corollary 1 will also go to 0. But this is equivalent

to

Rs < RC − lim
n→∞

Iεn
n
.

If the right hand side is negative however, we will instead choose Rs = 0 since rates cannot

be negative.

2. Consider Corollary 1 again. Since limn→∞
Iεn
n ≤ ξ, we can bound the asymptotic leakage as

lim
n→∞

L
mis
n = lim

n→∞

(
1

ln 2
2−n(RCn−Rn)2n

Iεn
n + εnRn

)
=

1

ln 2
2

lim
n→∞

(−n(RCn−Rn))
2

lim
n→∞

(n)· lim
n→∞

Iεn
n + lim

n→∞
εnRn

≤ 1

ln 2
2

lim
n→∞

(−n(RCn−Rn))
2

lim
n→∞

(n)·ξ
+ lim
n→∞

εnRn

=
1

ln 2
2

lim
n→∞

(−n(RCn−Rn−ξ)) + lim
n→∞

εn.

At this point we can continue exactly as in (1).

3. Clearly the first of the two summands on the right hand side of the conclusion of Corollary 1 is

exponentially decreasing when Rs satisfies the rates given in either (1) or (2) above. Thus, if
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εnRn is exponentially decreasing with n, the mis leakage Lmis
n is exponentially decreasing to 0;

i.e.W is mis-exceptionally secure. Since mis is equivalent to semantic security asymptotically

we know the semantic leakage must be decreasing at least as fast as the mis-leakage. Thus, if

εnRn is exponentially decreasing with n then W is exceptionally semantically secure as well.

Now as mentioned in (1), limn→∞Rn = Rs is bounded. Thus, if ε is decreasing to 0 with n

then so is εnRn.

�

Remark. The notation (·)+ means we only consider that term if it is strictly positive.

This proposition gives us an interesting consideration of what semantically secure rates are

achievable using our wiretap scheme. Proposition 2.1 is the best consideration but admittedly

arduous. It is of future interest to calculate the rate of max-information Iεn
n for specific channels

especially for finite n. This will give us a bound on the finite leakage, a very interesting line of

future research.

Proposition 2.2 is a much easier consideration as instead of calculating the rate of max-

information exactly we only need a proper estimate. This part of the proposition says that given a

reliable ECC scheme C of rate RC for use on channel T , we can use our procedure given in Chapter 4

to convert this ECC to a semantically secure wiretap code for W = (T,A) of rate RC − ξ where ξ is

only dependent on the eavesdroppers channel A. Since we provided a polynomially time efficient

implementation of our procedure in Chapter 4, this conversion is also done in polynomial time.

Now that we have a good characterization of achievable rates. Let us consider some special

cases that will be relevant in the next chapter.

Corollary 2. As a special case of Proposition 2.2, if the upper bound ξ = CA and we pick a reliable

ECC scheme C with rate CT then we can achieve all secure rates

Rs < (CT − CA)+ or Rs = 0

with semantic security.
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This characterization is useful because for many wiretap channels, the secrecy capacity is

given by Cs = CT −CA. In other words, Corollary 2 implies that on those channels, if we can prove

that ξ = CA and we choose RC = CT , then we can achieve the secrecy capacity.

6.2. Removing the Public Seed Assumption

We have just seen in the preceding section that our scheme can provide semantic security for

certain achieveable rates (provided that we prove a bound on the max-information rate), however,

we have assumed hitherto that the seed S was publicly available to all parties. This is in strict

violation of assumptions on a wiretap channel; that is, all communication must take place over the

wiretap channel. In this section, we remove this assumption and transmit the seed over the wiretap

channel. We will show asymptotically that no rate, security, or reliablity is lost.

6.2.1. A First Attempt

As a first attempt to resolve this violation, suppose the seed is transmitted before beginning

transmission of an actual message. This is a problem, however, because it leads to information rate

loss as follows. Suppose the seed can be transmitted with a probability of error less than some

p′e,n to the intended receiver in nc channel uses for some constant c > 1. Then the transmitter

sends k message bits of information in another n channel uses. Overall, k bits of information were

transferred in n+ nc = n(1 + c) channel uses, thus our overall secure information rate in this case

is given asymptotically by

lim
n→∞

k

n(1 + c)
=

1

1 + c
Rs < Rs ,

where Rs is the previous secure achievable rate assuming the seed was public. In other words,

the possible asymptotic rates now achievable when sending the seed before message transmission

is stricly less than before. Therefore the rates achieved using Proposition 2 are not possible to

achieve anymore.

6.2.2. A resolution

As a better attempt to resolve this problem, suppose we use the same seed to send η

messages M1,M2, . . . ,Mη using η independent instances of the wiretap channel. First we will pick

a blocklength n and on the first instance of the wiretap channel, we will send the seed over in

nc channel uses, where c > 1 is chosen so that the seed’s probability of error at the intended
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receiver is less than or equal to p′e,n. Pessimistically (from the point of view at the transmitter),

we will assume that the eavesdropper always receives a perfect copy of the seed. Now on each

of the η independent channel instances, we will send a corresponding message using the same

scheme as outlined in chapter 4 except using the same seed for each instance as that was sent

across the wiretap channel initially. Let M = (M1,M2, . . . ,Mη) be the η length message. Let

Z = (Zn(1), Zn(2), . . . , Zn(η)) where Zn(i) is the n-letter eavesdropper output corresponding to

both message and channel instance i.

Now consider the rate of this scheme. In each of the η channel uses we are sending k bits

of information. Morover, we will end up using the channel ηn times for the message and nc times

for the seed. Overall, the asymptotic secure rate of this new procedure is given by

lim
n→∞

ηk

ηn+ cn
= lim

n→∞

k

n(1 + c/η)
=

Rs

limn→∞(1 + c/η)
,

where Rs is again the previous asymptotic secure acheivable rate when the seed was public. Since

c is a constant, the only way to avoid information rate loss asymptotically is if η →∞ as n→∞.

Now consider the reliability of this new procedure. If each message has probability of

error (at the intended receiver) bounded by pe,n, then M has probability of error (at the intended

receiver) bounded by η · pe,n. Thus to avoid information rate loss and transmit reliably, we need

η →∞ and η · pe,n → 0 as n→∞.

Now lets consider the leakage.

Lemma 5. For some i ∈ {1, . . . , η} the following holds:

max
PM

I(M ∧ Z) ≤ η ·max
PM

I(Mi ∧ Zn(i)|S).

Proof. Let M have an arbitrary distribution PM. We see that the proof of Lemma 4 still applies

and we have:

I(M ∧ Z) ≤ I(M ∧ Z, S).

Since S⊥Mi for each i, then S⊥M. Then by the chain rule of mutual information we also have:

I(M ∧ Z) ≤ I(M ∧ Z|S).
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Now (M1, Z
n(1)), . . . , (Mη, Z

n(η)) are mutually independent once we are given S, thus we

can use Lemma 3 to get

I(M ∧ Z) ≤
η∑
i=1

I(Mi ∧ Zn(i)|S).

Now we want to maximize I(M∧Z) over all probability distributions PM. However that is equivalent

to maximizing over each choice of PMi individually. The above becomes:

max
PM

I(M ∧ Z) ≤
η∑
i=1

max
PMi

I(Mi ∧ Zn(i)|S).

Here i represents an instance of the wiretap channel. Choose the channel instance j that

corresponds to the most leakage max
PMj

I(Mj ∧Zn(j)|S) leaked to the eavesdropper. The above then

becomes

max
PM

I(M ∧ Z) ≤ ηmax
PMj

I(Mj ∧ Zn(j)|S).

�

This lemma intuitively says that the message leakage of all η wiretap channel instances is no

more than the number of channel instances multiplied by the leakage over the “worst case” wiretap

channel (worst here is with respect to the transmitter). Combining this result with the proof of

Theorem 2 and the result of Corollary 1 gives the following corollary.

Corollary 3. Let i be the wiretap channel instance where the transmitter leaks the most informa-

tion to the eavesdroper. Let RCn be the rate of the ECC and Rn the secure rate of transmission

for that wiretap channel instance. It follows that

max
PM

I(M ∧ Z) ≤ η

ln 2
2
−n

(
RCn−Rn−

Iεn
n

)
+ εηnRn.

With this, just as in the last section, we see that if Rn < RCn −
Iεn
n for each n, then so long

as η grows with n strictly slower than exponential, the first term will go to 0. Furthermore, η must

be chosen slow enough so that εηn→ 0 as n→∞.

In summary, with regards to how η must grow with n we need η → ∞ as n → ∞ but it

must do so sufficiently slow. It suffices to pick something along the lines of η = O(log(n)) (if ε and
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pe,n are chosen sufficently fast). In other words, as long as we keep on adding new independent

messages when increasing the block length, we can still achieve the same rate, reliablility, and

security asymptotically as before when we assumed the seed to be public. This trick was extorted

in [1] and was called therein seed recycling. Our result follows very similar to that of [18].
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7. APPLICATION

In this chapter, we show that our wiretap scheme of Chapter 4 can achieve the secrecy

capacity of the AWGN wiretap channel. With this we also demonstrate the utility of ε-smooth

max information. Indeed we will use the prescription put forth by Corollary 2 and bound the

max-information.

7.1. Achieving Semantic security on AWGN wiretap channels

We consider now the additive white Gaussian noise wiretap channel (AWGN). The AWGN

channel is arguably the most popular continuous alphabet channel model due to its simplicity. In

this model, the output signal is a layering of the input signal with additive white Gaussian noise,

or rather noise with spectral power at all frequencies. We represent the input signal by the random

variable X and the additive white Gaussian noise by U . As is usual in this case, we will assume

the AWGN wiretap channel to be memoryless.

The output at the intended receiver is represented by Y over Y and the output at the

eavesdropper is represented by Z over Z. We will suppose X = Y = Z = R and that the channels

T and A can be described by their outputs given respectively as

Y = X + UT and

Z = X + UA.

The random variables UT and UA are assumed mutually independent and sampled independent

and identically (iid) according to N (0, σ2
T ) and N (0, σ2

A) respectively. As is usual in the continuous

regime, to avoid the case of infinite channel capacity we assume there is some average power

constraint P on the input. A figure of this setup is given below in Figure 7.1.

Fact 5. The capacity of an AWGN channel with average input power constraint P and additive

noise variance σ2 is given by

C =
1

2
log

(
1 +

P

σ2

)
.
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X

+ Y = X + UT

UT ∼ N (0, σ2
T )

+ Z = X + UA

UA ∼ N (0, σ2
A)

Figure 7.1. AWGN Channel model.

In particular, this means the capacity of the intended receivers point to point channel is

given by CT = 1
2 log(1 + P

σ2
T

) and the capacity of the eavesdroppers point to point channel is given

by CA = 1
2 log(1 + P

σ2
A

). Moreover, the secrecy capacity for AWGN wiretap channels is given by a

simple subtraction of these terms.

Fact 6. [9] On an AWGN wiretap channel W = (T,A), the (weak) secrecy capacity is given as:

Cs =


CT − CA, if σ2

T < σ2
A

0, Otherwise.

In other words, so long as the noise variance of the main channel is strictly less than the

noise variance of the eavesdroppers channel, secure communication is possible.

7.1.1. Max-info bounds for Gaussian

Our main goal of this section is to show that our scheme given in Chapter 4 can achieve

the secrecy capacity of the AWGN wiretap channel under semantic security. Indeed we already

have a prescription of how to do this considering the secrecy capacity in this case is written as the

difference of point to point channel capacities. Namely, we can use Corollary 2 if we can bound the

asymptotic rate of max-information by CA. To this end, we devote this subsection.
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We will be considering the measure µ for Zn as the Lebesgue measure on Rn so that in

particular, max-information is given by the standard Lebesgue integral over n-dimensional space:

Iεn = log

∫
Rn

max
xn∈Cn

ωT (zn|xn)dzn.

The next lemma can be found nearly exactly in [18] and we include this here simply for the

sake of completeness and demonstrating the utility of ε smooth max information. Note that there,

the authors used this lemma to show their UHF based scheme was mis-r secure whereas here, we

are using this lemma to show our altered UHF scheme is semantically secure.

Lemma 6. Using any ECC C, the max-information of an AWGN eavesdropper channel A is asymp-

totically bound as

lim
n→∞

Iεn
n
≤ CA.

Proof. Fix δ > 0 small. Define a set Pout = {zn ∈ Rn | ||zn||2 ≤ n(P + σ2
A)(1 + δ)}. Also for each

xn ∈ Cn define a set Pxnnoise = {zn | ||zn − xn||2 ≥ nσ2
A(1− δ)}.

Now let Tout, Tnoise ⊂ Cn×Rn be sets defined as Tout = Cn×Pout and Tnoise = {(xn, zn) | zn ∈

Pxnnoise for each xn ∈ Cn}. Lastly define a set T = Tout ∩ Tnoise.

It was shown in [18] that T is a (1 − εn)-typical set where εn = e−nδ
2/8. Hence ε → 0

exponentially fast with n. With this we have the following.

2I
ε
n

1
≤ 2

(
In
∣∣
T

)

=

∫
Rn

max
xn∈Cn

ω(zn|xn)1((xn, zn) ∈ T )dzn

2
=

∫
Rn

max
xn∈Cn

 n∏
i=1

1√
2πσ2

A

exp

(
−(zi − xi)2

2σ2
A

)1((xn, zn) ∈ T )

 dzn
=

1

(2πσ2
A)

n
2

∫
Rn

max
xn∈Cn

[
exp

(
−‖z

n − xn‖2

2σ2
A

)
1((xn, zn) ∈ T )

]
dzn

3
≤

exp
(
−n

2 (1− δ)
)

(2πσ2
A)

n
2

∫
Rn

max
xn∈Cn

1((xn, zn) ∈ T )dzn

4
≤

exp
(
−n

2 (1− δ)
)

(2πσ2
A)

n
2

∫
Pout

dzn
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5
=

exp
(
−n

2 (1− δ)
)

(2πσ2
A)

n
2

Vol(Pout)

6
=

exp
(
−n

2 (1− δ)
)

(2πσ2
A)

n
2

(πn(P + σ2
A)(1 + δ))

n
2

Γ(n/2 + 1)
.

Justification.

1. T is a (1 − ε) typical set; however, it may not be the set corresponding to the “smallest” ε

smooth max-information.

2. Each output is a normal random variable. Since we assume the channel is memoryless, we

can split this density simply into a product.

3. We are working on T in the integral and thus Pnoise. Thus, ‖zn − xn‖2 ≥ nσ2
A(1− δ).

4. The indicator function returns either 0 or 1 in the area of interest Pout and 0 elsewhere.

Thus, we can simply upper bound the indicator by 1 everywhere inside of Pout.

5. The preceding integral indeed represented the volume of Pout where we note that Pout is a ball

in real n space.

6. The volume of an n ball of radius r is given by

πn/2

Γ(n/2 + 1)
rn,

where here Γ is the gamma function (generalized factorial) from analysis.

Taking the logarithm of both sides of the preceding and dividing by n yields:

1

n
Iεn ≤

1

n
log

(
exp (−(1− δ))

2

(n(1 + P/σ2
A)(1 + δ))

Γ(n/2 + 1)2/n

)n/2
=

1

2

(
log

(
1 +

P

σ2
A

)
+ log

(
(1 + δ)eδ

)
+ log

(
1

2e
· n

Γ(n/2 + 1)2/n

))
= CA +

1

2
log
(

(1 + δ)eδ
)

+
1

2
log

(
1

2e
· n

Γ(n/2 + 1)2/n

)
.

Fortunately, n
Γ(n/2+1)2/n

→ 2e as n → ∞. Moreover, our choice of δ is not restricted and

can be made arbitrarily small. Thus, limn→∞
1
nI

ε
n ≤ CA. This completes the proof. �
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7.1.2. Implications

As stated before, using Corollary 2 we have:

Proposition 3. On an AWGN wiretap channel with power constraint P , if C is a reliable ECC

scheme such that the rate of the scheme RC = CT then we can achieve the secrecy capacity using

the scheme given in Chapter 4 under the semantic security metric.

This proposition combined with Fact 3 immediately give us something stronger.

Corollary 4. On the AWGN wiretap channel the semantic secrecy capacity is equivalent to the

weak secrecy capacity.

With this we have officially shown that our wiretap coding scheme can achieve the secrecy

capacity of AWGN wiretap channels so long as we can find a reliable ECC C that can achieve the

main point to point channel capacity CT
1. Also, since ε is exponentially going to 0 with n in the

proof of Lemma 6, if C is also chosen to be exceptionally reliable, then our entire wiretap coding

scheme is exceptional.

Indeed an ECC scheme is given in [19] that is concrete, reliable, and has quadratic time com-

plexity with respect to block length n in both encoding and decoding. Moreover, it has probability

of error exponentially decreasing to 0 so that it is exceptionally reliable.

Thus using this ECC scheme with our efficient implementation given in Chapter 4 gives

an end-to-end wiretap coding scheme for the AWGN wiretap channel that is concrete, efficient,

exceptional (in both reliability and security), semantically secure, and can achieve the secrecy

capacity.

Remark. Using the UHF F∗ as given in Chapter 4, it is possible to use the results of [18] and

this same ECC to obtain an end-to-end wiretap coding scheme that satisfies all of these properties

besides semantic security (it will be only mis-r secure). However, as motivated in Chapter 3, mis-r

security should not be used in practice.

A wiretap scheme for the AWGN wiretap channel achieving every single one of these prop-

erties already exists, however it was only introduced recently [11] and has come to the authors

1Indeed we know one exists by Shannon’s channel coding theorem.
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attention only upon the time of this writing. However, there the wiretap coding scheme is based

on polar lattices and is not modular. In other words, the scheme must be considerably reworked

so as to be applicable to other channels and perhaps it wont even be applicable to some channels.

In contrast, our scheme is modular, the exact same pre/post processor used here can be used on

any channel, one just needs to find a proper ECC scheme. As an example, [18, Lemma 5] proves

that our exact same scheme (less the ECC) can also achieve the secrecy capacity on certain discrete

memoryless channels. Moreover, Theorem 2 can be reworked to allow the concept of side infor-

mation so as to prove our scheme works on fading channels modeling wireless communications.

Indeed, in the journal version of this thesis, we prove that in that sense our scheme can achieve

the secrecy capacity in the case of full CSIT fading channels. Thus, our same scheme achieves the

semantic secrecy capacity in three disparate situations.

It is of course of considerable interest to see which other situations our scheme achieves

the semantic secrecy capacity for; perhaps even in general situations. For instance, if we can show

that lim
n→∞

Iεn
n ≤ I(V ∗ ∧ Z) (for some optimal prefix V ∗) then our coding scheme implies that the

weak secrecy capacity is equivalent to the semantic security metric on all discrete-time memoryless

channels and even better, our transmission procedure can be used to achieve such a rate. This

would indeed be a surprising result but initial investigation looks optimistic.

In closing remarks to this section, we note that our scheme/procedure is in some sense

universal and reduces problems of the wiretap variety down to problems of the error correcting

code variety. On any given wiretap channel, one needs only to find the bound ξ (dependent on

the eavesdropper’s channel only) and a “good ECC scheme” C; i.e. a ECC scheme that is concrete,

efficient, and reliable. However, finding good ECC schemes is already an active area of research

and in fact is probably the biggest area of active research with respect to communication and

information theory. Thus, our procedure basically merges the wiretap community into the ECC

community. This is of interest in both a theoretic and practical sense.
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8. DISCUSSION

8.1. Looking Forward

In Chapter 1, we argued that there were two main hurdles that information theoretic security

needed to overcome. Here we demand even more from information theoretic coding schemes so as

to bolster their realism. The following is such a program.

• Tangibility: Wiretap coding schemes should be concrete so as to be implemented in real life

systems in an algorithmic way.

• Reliability: The probability of error should become negligible as block length becomes

arbitrarily large: pe,n → 0 as n→∞.

• Security: The semantic leakage should become negligible as block length becomes arbitrarily

large: Lss
n → 0 as n→∞.

• Efficiency: The wiretap scheme should have polynomial end-to-end time complexity with

respect to the block length n.

• Finite Efficacy:

– Reliability: Wiretap coding schemes should be exceptionally reliable.

– Security: Wiretap coding schemes should be exceptionally semantically secure.

• Rate Supremacy: The wiretap coding scheme should achieve the secrecy capacity.

This program seems demanding at first sight but it ensures coding schemes satisfy the

rigorous demands of reality.

We have in this thesis constructed a wiretap coding scheme that satisfies every one of these

requirements at least for the AWGN wiretap channel. It is of future interest to see how our scheme

fares in regards to this program for other wiretap channels. Luckily, our scheme is modular so that

this consideration does not require significant overhead.
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8.2. Conclusion

Physical layer security does have its drawbacks to computational based security, but in

instances where this form of security is possible and/or appropriate, realistic wiretap coding schemes

ensure that this unbreakable form of security can actually be useful in practice. We have presented

a method for taking error correcting codes and making them secure with respect to the best

asymptotic metric: semantic security. Moreover, our conversion is a concrete process based on

finite field arithmetic that is polynomial time efficiently implementable. Even further, for the case

of the AWGN channel, our conversion takes optimal error correcting codes1 and converts them into

optimal wiretap codes2.

1ECC’s that can achieve the point to point AWGN capacity.
2Wiretap codes that can achieve the AWGN secrecy capacity.
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