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The equations of motion of a star graph of Stieltjes strings with prescribed number of
masses on each edge, with or without a mass at the central vertex, lead to a system of
second order difference equations. At the central vertex Dirichlet or Neumann
conditions are imposed while all pendant vertices are subject to Dirichlet conditions.
We establish necessary and sufficient conditions on the location and multiplicities of
two (finite) sequences of numbers fzk} and flk} to be the corresponding Dirichlet and
Neumann eigenvalues. Moreover, we derive necessary and sufficient conditions for one
(finite) sequence flk} to be the Neumann eigenvalues of such a star graph. Here the
possible multiplicities play a key role; the conditions on them are formulated by means
of the notion of vector majorization. Our results include, as a special case, some earlier
results for star-patterned matrix inverse problems where only multiplicities, not the
location of eigenvalues, are prescribed.

Keywords: Eigenvalue; multiplicity; star graph; point mass; inverse problem;
continued fraction; transversal vibration; Dirichlet boundary condition; Neumann
boundary condition

MSC (2010) Classification: Primary 39A60; Secondary 05C50; 15A18; 15A29;
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1. Introduction

Finite dimensional direct and inverse spectral problems for systems of difference

equations arise in many fields of physics, such as vibrations of strings, electrical circuits

synthesis etc. (see e.g. [18,9,10,5,7]). In the nice review [3], Cox, Embree, and Hokanson

resurrected interest in beaded strings, i.e. massless threads supporting a finite number of

point masses, by blending theory with experimental measurements (see [4] and also [11]).

Such strings are also called Stieltjes strings since one method to solve the inverse problem,

developed by Gantmakher and Krein in [8], uses Stieltjes’ work on continued fractions

(see [23] and the interesting reviews [25,24]). Within the last three decades, direct and

inverse spectral problems on graphs, in particular on trees or star graphs, have attracted a

lot of attention, stimulated by possible applications in quantum computing and

nanoelectronics (see e.g. [6,16,2]).

In this paper we consider inverse problems for star graphs of beaded strings, which

recently revealed connections to the problem of possible eigenvalue multiplicities for star-

patterned matrices (see [21]). There are different settings for finding necessary and
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sufficient conditions on one, or two respectively, (finite) sequences to be the Neumann,

and Dirichlet respectively, spectra of a problem generated by Stieltjes string equations on a

star graph. Here we consider the case where Neumann and Dirichlet conditions are

imposed at the central vertex of the star, while Dirichlet boundary conditions are imposed

at all pendant vertices. In [21] a complete description of the corresponding direct and

inverse problems, including a constructive solution of the latter, was given in the case

when the numbers of point masses on the edges were not part of the given data.

An interesting feature of the Neumann eigenvalues proved there is that out of two

neighbouring Neumann eigenvalues one must be simple.

The aim of the present paper is to study the problem where, in addition to the number

of edges and the lengths of all edges, also the number of masses on each edge is

prescribed. The latter results in restrictions on the eigenvalue multiplicities that need to be

satisfied in the inverse problem. Our main results include necessary (Theorem 2.7) and

sufficient (Theorem 3.3) conditions for two (finite) sequences f^zk} and f^lk}, counted
with multiplicities, to be the Dirichlet and Neumann spectra of a star graph of Stieltjes

strings as described above, as well as necessary (Theorem 2.9) and sufficient (Theorem

3.4) conditions for one (finite) sequence f^lk}, counted with multiplicities, to be the

Neumann spectrum. Examples illustrate the convenient applicability of these conditions

(Section 4).

The necessary and sufficient conditions may be elegantly formulated by means of the

notion of majorization, going back to the early work of Muirhead [20] (see also [12,19]).

For example, suppose that there are q edges and ni masses on the i-th edge enumerated

such that n1 $ n2 $ · · · $ nq and a mass M $ 0 at the central vertex. Denote by rD the

number of distinct positive values in the given sequence fzk}, by ðp#jðDÞÞ
rD

j¼1
the vector of

all their multiplicities in decreasing order, and by Nj the number of edges for which the

number of masses is $ j for j ¼ 1; 2; . . . ; n1. Then the vector ðNjÞn1j¼1 majorizes the vector

ðp#jðDÞÞ
rD

j¼1
,

ðN1;N2; . . . ;Nn1 Þ s ðp#1ðDÞ; p#2ðDÞ; . . . ; p#rD ðDÞÞ;

which means that n1 # rD and

Xn1
j¼1

Nj ¼
XrD
j¼1

p#jðDÞ and
Xk
j¼1

Nj $
Xk
j¼1

p#jðDÞ ðk ¼ 1; 2; . . . ; n1 2 1Þ:

The necessary and sufficient conditions for one (finite) sequence to be a Neumann

spectrum are similar, but slightly more involved. They include the condition that every

other element in the sequence must be simple, that, e.g. for M . 0, the number of simple

elements in the sequence must be greater than or equal to the maximal number n1 þ 1 of

masses on one string, and that the number of distinct elements in the sequence must be

greater than or equal to n1 þ n2 þ 1 where n1, n2 are the two largest numbers of masses on

a string.

Our results generalize results for star-patterned matrices, especially [13, Thm. 9],

where the concept of majorization due to Muirhead was used before. While there only

multiplicities of eigenvalues were prescribed and the existence of a tree-patterned matrix

with these eigenvalue multiplicities was proved, we show the existence, and provide a

method of construction, when a set of eigenvalues with prescribed multiplicities, together

with the lengths of the q strings, is given.
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Finally, we remark that the results of this paper may be of wider interest. In fact, the

second order difference operators describing Stieltjes strings are special cases of the

generalized second order derivatives d
dm

ð d
dx
Þ describing general strings with mass

distribution m (see [14] and the very recent paper [15, Sect. 8]). Hence many properties of

the spectral theory of star graphs of Stieltjes strings carry over to star graphs of general

strings (see [22]).

2. Direct problem: necessary conditions

Throughout this paper, we consider a plane star graph of q Stieltjes strings, q [ N, q $ 2,

joined at the central vertex called the root where a mass M $ 0 is placed and with all q

pendant vertices fixed; here, following Gantmakher and Krein (see [8,23]), a Stieltjes string is

a thread (i.e. an elastic string of zero density) bearing a finite number of point masses.

In the sequel, we label the edges of the star graph by j ¼ 1; 2; . . . ; q such that the j-th

edge carries nj . 0 point masses m
ð jÞ
k in its interior (k ¼ 1; 2; . . . ; nj) and

n1 $ n2 $ · · · $ nq; here we do not count the possible mass at the centre and there are

no masses at the pendant vertices. The masses m
ð jÞ
k subdivide the j-th edge into nj þ 1

intervals of length l
ð jÞ
k (k ¼ 0; 1; . . . ; nj) where we count both, masses and intervals

between them, from the exterior towards the centre; the length of the j-th edge is denoted

by lj :¼
Pnj

k¼0 l
ð jÞ
k . The total number of masses on the star graph without the massM in the

centre is denoted by n :¼Pq
j¼1 nj.

We assume that this web is stretched and study the small transverse vibrations v
ð jÞ
k ðtÞ of the

masses m
ð jÞ
k in two different cases (keeping the notation in [21]):

(N1) the mass M at the central vertex is free to move in the direction orthogonal to

the equilibrium position of the strings (Neumann problem),

(D1) the mass M at the central vertex is fixed (Dirichlet problem).

Following [8, Chapt. III.1] (see also [21, Sect. 2]), separation of variables v
ð jÞ
k ðtÞ ¼ u

ð jÞ
k eilt

leads to the following systems of difference equations for the displacement amplitudes u
ð jÞ
k

(k ¼ 0; 1; 2; . . . ; nj, j ¼ 1; 2; . . . ; q) in the above Neumann and Dirichlet problem:

Neumann problem (N1). If the central vertex carrying the mass M $ 0 can move freely,

we obtain

2
u
ð jÞ
kþ1 2 u

ð jÞ
k

l
ð jÞ
k

2
u
ð jÞ
k 2 u

ð jÞ
k21

l
ð jÞ
k21

 !
¼ m

ð jÞ
k l2u

ð jÞ
k ðk ¼ 1; 2; . . . ; nj; j ¼ 1; 2; . . . ; qÞ; ð2:1Þ

uð1Þn1þ1 ¼ uð2Þn2þ1 ¼ · · · ¼ u
ðqÞ
nqþ1; ð2:2Þ

Xq
j¼1

u
ð jÞ
njþ1 2 uð jÞnj

lð jÞnj

¼ Ml2uð1Þn1þ1; ð2:3Þ

u
ð jÞ
0 ¼ 0 ðj ¼ 1; 2; . . . ; qÞ: ð2:4Þ

Dirichlet problem (D1). If all strings are clamped at the central vertex, the problem

decouples and consists of the q separate problems on the edges with Dirichlet boundary

Journal of Difference Equations and Applications 385



conditions at both ends,

2
u
ð jÞ
kþ1 2 u

ð jÞ
k

l
ð jÞ
k

2
u
ð jÞ
k 2 u

ð jÞ
k21

l
ð jÞ
k21

 !
¼ m

ð jÞ
k l2u

ð jÞ
k ðk ¼ 1; 2; . . . ; nj; j ¼ 1; 2; . . . ; qÞ; ð2:5Þ

u
ð jÞ
njþ1 ¼ 0; ð2:6Þ

u
ð jÞ
0 ¼ 0 ð2:7Þ

for all j ¼ 1; 2; . . . ; q.
Throughout this paper, we use the following notation for the eigenvalues of the

spectral problems (N1), (D1) and their multiplicities.

Notation 2.1. We denote by

(1) LN :¼
fl^k}

nþ1
k¼1 if M . 0;

fl^k}
n
k¼1 if M ¼ 0;

8<
: l2k ¼ 2lk, 0 , lk # lk0 for 0 , k , k0, the

eigenvalues of the Neumann problem (2.1)– (2.4) on the star graph,

(2) LD :¼ fz^k}
n
k¼1 ¼ <

q

j¼1
fnð jÞ^k}

nj

k¼1, z2k ¼ 2zk, 0 , zk # zk0 for 0 , k , k0, the

eigenvalues of the Dirichlet problem (D1) on the star graph where

(3) nð jÞ^k

n onj

k¼1
, nð jÞ2k ¼ 2nð jÞk , 0 , nð jÞk , nð jÞk0 for 0 , k , k0, are the distinct

eigenvalues of the Dirichlet problem (2.5)– (2.7) on the j-th edge for

j ¼ 1; 2; . . . ; q,

(4) ~LN ¼ f ~l^k}
rN
k¼1,

~l2k ¼ 2 ~lk, 0 , ~lk , ~lk0 for 0 , k , k0 the set of distinct

Neumann eigenvalues,

(5) ~LD ¼ ~z^k

� �rD
k¼1

, ~z2k ¼ 2 ~zk, 0 , ~zk , ~zk0 for 0 , k , k0 the set of distinct

Dirichlet eigenvalues,

(6) ðpkðNÞÞrNk¼1 and ðpkðDÞÞrDk¼1 the vectors of multiplicities of the distinct positive

Neumann and Dirichlet eigenvalues ~lk and ~zk for k . 0.

Remark 2.2.

(i) By definition of pkðNÞ and pkðDÞ as multiplicities, clearly,

XrN
k¼1

pkðNÞ ¼
nþ 1 if M . 0;

n if M ¼ 0;

( XrD
k¼1

pkðDÞ ¼ n: ð2:8Þ

(ii) The number rD of distinct positive Dirichlet eigenvalues satisfies rD $ n1 since n1
is the maximal number of masses on one string, labelled as the first, and

nð1Þ1 , nð1Þ2 , · · · , nð1Þn1
.

Note that since the equations in (N1) and (D1) only depend on l2, the Neumann and

Dirichlet eigenvalues lie symmetrically to the origin and the multiplicities of ~l2k ¼ 2 ~lk
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and ~lk as well as of ~z2k ¼ 2 ~zk and ~zk coincide. Moreover, by [21, Thm. 2.5], 0 is neither a

Neumann nor a Dirichlet eigenvalue.

In order to derive necessary conditions on the multiplicities of Neumann and Dirichlet

eigenvalues, we need the notion of (vector) majorization which goes back to Muirhead

[20] for the case of vectors of integers and was generalized to vectors of non-negative

numbers by Hardy, Littlewood, and Polyá (see [12, 2.18] or [19]).

Definition 2.3. Let x ¼ ðxiÞsi¼1 and y ¼ ðyiÞti¼1 be two vectors with non-negative entries

ordered decreasingly, xs $ xs21 $ · · · $ x1 $ 0, yt $ yt21 $ · · · $ y1 $ 0. If s ¼ t, then

x is said to majorize y, written as x s y, if

:,
Xt
i¼1

xi ¼
Xt
i¼1

yi;
Xt
i¼1

xi $
Xt
i¼1

yi ðt ¼ 1; 2; . . . ; t2 1Þ: ð2:9Þ

If s – t, we fill up the shorter vector with zeros, ~x :¼ ðxiÞmax fs;t}
i¼1 , ~y :¼ ðyiÞmax fs;t}

i¼1 with

xi ¼ 0 for i ¼ sþ 1; . . . ; max fs; t}, yi ¼ 0 for i ¼ t þ 1, . . . ; max fs; t}. Then x is said to

majorize y, x s y, if ~x majorizes y~ , ~x s ~y.

Remark 2.4. If a vector x ¼ ðxiÞsi¼1 majorizes a vector ðyiÞti¼1, then the number of non-zero

entries of x is less or equal to the number of non-zero entries of y,

x s y ) #fi [ f1; . . . ; s} : xi . 0} # #fi [ f1; . . . ; t} : yi . 0}:

In fact, denote the two numbers by s0, t0 and assume s0 . t0. Then x s y if and only if

~x s ~y where ~x ¼ ðxiÞs0i¼1 and ~y ¼ ðyiÞs0i¼1 with yi :¼ 0 for i ¼ t0 þ 1; . . . ; s0. By (2.9) this

implies

Xs0
i¼1

xi ¼
Xs0
i¼1

yi ¼
Xt0
i¼1

yi #
Xt0
i¼1

xi #
Xs0
i¼1

xi;

and hence we have equality everywhere. Since all xi are non-negative, this shows that

xi ¼ 0 for i ¼ t0 þ 1; . . . ; s0, a contradiction to the assumption.

Notation 2.5. For a vector x ¼ ðxiÞsi¼1 [ Rs we denote by x # ¼ ðx#iÞsi¼1 [ Rs the vector

with the same entries but ordered decreasingly, i.e.

x#1 $ x#2 $ · · · $ x #
s; x#i ¼ xpðiÞ; i ¼ 1; 2; . . . ; s;

for some permutation p of f1; 2; . . . ; s}.
The following elementary lemma on the inversion of the non-increasing function

f1; 2; . . . ; q}!N, j 7! nj, will be used throughout this paper.

Lemma 2.6. Let q [ N, q $ 2, nj [ N ð j ¼ 1; 2; . . . ; qÞ with n1 $ n2 $ · · · $ nq, and set

n :¼Pq
j¼1nj, nqþ1 :¼ 0. For i ¼ 1; 2; . . . ; n1 define

Ni :¼ #fj [ f1; 2; . . . ; q} : nj $ i} ¼ max f j [ f1; 2; . . . ; q} : nj $ i}:

Then N1 $ N2 $ · · · $ Nn1 and
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(i)
Pn1

i¼1 Ni ¼ n;

(ii) Ni . 1 ði ¼ 1; 2; . . . ; n2Þ, Ni ¼ 1 ði ¼ n2 þ 1; n2 þ 2; . . . ; n1Þ;
(iii) #fi [ f1; 2; . . . ; n1} : Ni ¼ j} ¼ nj 2 njþ1 ðj ¼ 1; 2; . . . ; qÞ;
(iv) nj ¼ #fi [ f1; 2; . . . ; n1} : Ni $ j} ¼ max fi [ f1; 2; . . . ; n1} : Ni $ j}

ð j ¼ 1; 2; ::; qÞ.

Proof. Claims (i), (ii), (iii) follow from the definition of Ni, and claim (iv) from (iii). A

Theorem 2.7. Let LN be the set of all Neumann eigenvalues l^k of (N1), lk . 0, l2k ¼
2lk ðk . 0Þ, and LD the set of all Dirichlet eigenvalues z^k of (D1), zk . 0, z2k ¼ 2zk
ðk . 0Þ (see Notation 2.1 (1) and (2)), both counted with multiplicities. Denote by rD the

number of distinct positive Dirichlet eigenvalues, by p #ðDÞ ¼ ðp#iðDÞÞrDi¼1 the vector of their

multiplicities in decreasing order, and by Nj the number of edges for which the number of

masses is $ j ðj ¼ 1; 2; . . . ; n1Þ, i.e. Ni :¼ #fj [ f1; 2; . . . ; q} : nj $ i}. Then

(1)
0 , l21 , z21 # · · · # l2n # z2n , l2nþ1 if M . 0;

0 , l21 , z21 # . . . # l2n # z2n if M ¼ 0;

8<
:

(2) zk21 ¼ lk if and only if lk ¼ zk;

(3) ðN1;N2; . . . ;Nn1 Þ s ðp#1ðDÞ; p#2ðDÞ; . . . ; p#rD ðDÞÞ.

Proof. The first two claims (1) and (2) were proved in [21, Thm. 2.5]. In order to prove

(3), we first note that all entries in the vectors in (3) are non-zero and n1 # rD byRemark 2.2.

The maximal multiplicity of a Dirichlet eigenvalue is equal to the number q of strings,

which is in turn equal to N1 (the number of strings carrying at least 1 mass), i.e.

p#1ðDÞ # q ¼ N1. If p#1ðDÞ ¼ q is maximal, then in order to achieve the next highest

multiplicity p#2ðDÞ there are only Dirichlet eigenvalues left on edges with at least 2 masses,

i.e. p#2ðDÞ # N2 so that altogether p#1ðDÞ þ p#2ðDÞ # qþ N2 ¼ N1 þ N2; in the general

case p#1ðDÞ # q, in order to achieve the multiplicity p#2ðDÞ there are only those Dirichlet

eigenvalues left on edges with one mass that have not contributed to the highest

multiplicity p#1ðDÞ and on edges with at least 2 masses, i.e. p#2ðDÞ # ðN1 2 p#1ðDÞÞ þ N2

and hence

p#1ðDÞ þ p#2ðDÞ # N1 þ N2:

Inductively, the same reasoning yields that

Xt
i¼1

p#iðDÞ #
Xt
i¼1

Ni; t ¼ 1; 2; . . . ; n1 2 1: ð2:10Þ

The total number of Dirichlet eigenvalues counted with multiplicities is n, see (2.8).

Together with Lemma 2.6 (i), this implies

XrD
i¼1

p#iðDÞ ¼ n ¼
Xn1
i¼1

Ni: ð2:11Þ

Now (3) follows from the inequalities (2.10) and the equality (2.11). A

V. Pivovarchik and C. Tretter388



The following properties of the Dirichlet and Neumann eigenvalues and their

multiplicities, which follow from Theorem 2.7, will be used throughout the paper.

Note that the last item below is the well-known property that the maximal multiplicity

of a Dirichlet eigenvalue and a Neumann eigenvalue is q and q2 1, respectively (see [21,

Thm. 2.5 iii)].

Proposition 2.8.

(i) If we set

kNðlÞ :¼ #flk [ ~LN > ð0;1Þ : lk hasmultiplicity l} ðl ¼ 1; 2; . . . ; q2 1Þ;
kDðlÞ :¼ #fzk [ ~LD > ð0;1Þ : zk hasmultiplicity l} ðl ¼ 1; 2; . . . ; qÞ;

ð2:12Þ
and rD denotes the number of distinct positive Dirichlet eigenvalues, then

kNð1Þ ¼
kDð2Þ þ rD þ 1 if M . 0:

kDð2Þ þ rD if M ¼ 0;

(

kNðlÞ ¼ kDðlþ 1Þ ðl ¼ 2; 3; . . . ; q2 1Þ:
(ii) If rN denotes the number of distinct positive Neumann eigenvalues and ~rD the

number of positive Dirichlet eigenvalues with multiplicity greater than one, then

rN ¼
rD þ ~rD þ 1 if M . 0;

rD þ ~rD if M ¼ 0;

(
ð2:13Þ

and

ð2:14Þ
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(iii)
ðN1;N2; ...;Nn1Þs ðp#1ðNÞ;p#2ðNÞ; ...;p#rN21ðNÞÞ; M.0;

ðN1;N2; ...;Nn1Þs ðp#1ðNÞ;p#2ðNÞ; ...;p#rN ðNÞÞ; M¼0:

8<
:

(iv) pjðDÞ # q ðj ¼ 1; 2; . . . ; rDÞ, pjðNÞ # q2 1 ðj ¼ 1; 2; . . . ; rNÞ.

Proof.

(i) By Theorem 2.7 (1) and (2), the only two possibilities for a simple Neumann

eigenvalue lk with k [ f2; . . . ; n} to appear is either strictly between two

Dirichlet eigenvalues or coinciding with a double Dirichlet eigenvalue, i.e.

zk21 , lk , zk or lk21 , zk21 ¼ lk ¼ zk , lk21;

in any case there appears the simple eigenvalue l1 and, if M . 0, the simple

eigenvalue lnþ1. This shows that kNð1Þ ¼ rD þ kDð2Þ þ 1 ifM . 0 and kNð1Þ ¼
rD þ kDð2Þ if M ¼ 0.

If lk is an eigenvalue of multiplicity equal to l $ 2, then k – 1 and, ifM . 0,

also k – nþ 1 and there exists a k0 [ f2; . . . ; n2 l} such that k0 # k and

lk021 , lk0 ¼ lk0þ1 ¼ · · · ¼ lk0þl21 , lk0þl. Then Theorem 2.7 (1) and (2)

show that

lk021 , zk021 ¼ lk0 ¼ zk0 ¼ lk0þ1 ¼ · · · ¼ zk0þl22 ¼ lk0þl21 ¼ zk0þl21 , lk0þl:

Hence to each Neumann eigenvalue of multiplicity l $ 2 there corresponds a

Dirichlet eigenvalue of multiplicity lþ 1, and the same holds vice versa.

(ii) Using the above relations for kNðlÞ we find, e.g. for M . 0,

rN ¼
Xq21

l¼1

kNðlÞ ¼ kDð2Þ þ rD þ 1þ
Xq21

l¼2

kDðlþ 1Þ ¼ rD þ 1þ
Xq
l¼2

kDðlÞ

¼ rD þ ~rD þ 1;

for M ¼ 0, one only has to omit þ1 from the second equality on. In order to

prove (2.14), we note that Theorem 2.7 (2) yields that for the vectors ðp#jðDÞÞ
rD

j¼1
,

ðp#jðNÞÞ
rN

j¼1
of Dirichlet and Neumann multiplicities ordered decreasingly, we have

p#jðDÞ . 1; p#jðNÞ ¼ p#jðDÞ2 1 ðj ¼ 1; 2; . . . ; ~rDÞ; ð2:15Þ

p#jðDÞ ¼ 1; p#jðNÞ ¼ p#jðDÞ ðj ¼ ~rD þ 1; . . . ; rDÞ: ð2:16Þ

This implies the first and the last equality in (2.14) if we note (2.13). The

majorization property claimed in (2.14) is obvious from Definition 2.3 since the

number of components whereþ1 is added on the left hand side is equal to ~rD and

coincides with the number of new components 1 added on the right hand side.

(iii) The claim is immediate from Theorem 2.7 (3) and from (2.14) since the

majorization property is transitive.

(iv) It suffices to prove that p#1ðDÞ # q, p#1ðNÞ # q2 1. The first claim follows from

the first inequality N1 $ p#1ðDÞ of the majorization property (3) in Theorem 2.7
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since N1 ¼ q by definition. Together with (2.15), (2.16) and the assumption that

q $ 2 we obtain

p#1ðNÞ ¼
p#1ðDÞ2 1 # q2 1 if ~rD $ 1;

p#1ðDÞ ¼ 1 # q2 1 if ~rD ¼ 0:

8<
: A

In the following we consider the properties of the set of Neumann eigenvalues alone.

Here we distinguish the case when there is a mass at the central vertex, i.e. M . 0, and

when there is no mass there, i.e. M ¼ 0.

The effect of this central mass is that it adds the simple eigenvalues^lnþ1 and, viewed

as functions of M, the Neumann eigenvalues ^lkðMÞ tend monotonically to the

Dirichlet eigenvalues^zk21 asM grows; more precisely, with lnþ1ð0Þ :¼ 1, we have that

lkðMÞdzk21 (k ¼ 2; 3; . . . ; nþ 1) and l1ðMÞd0 for M !1 (see [21, Prop. 2.8]).

Theorem 2.9. Let LN be the set of all Neumann eigenvalues l^k of (N1), lk . 0,

l2k ¼ 2lk ðk . 0Þ, counted with multiplicities (see Notation 2.1 (1)). Denote by rN the

number of distinct positive Neumann eigenvalues ~lk, by ðpiðNÞÞrNi¼1 the vector of their

multiplicities, and by p #ðNÞ ¼ ðp#iðNÞÞrNi¼1 the corresponding vector of multiplicities in

decreasing order. If M . 0, then

(1) 0 , l21 , l22 # l23 # · · · # l2n21 # l2n , l2nþ1;

(2) if piðNÞ . 1, then pi21ðNÞ ¼ piþ1ðNÞ ¼ 1 ði ¼ 2; . . . ; rN 2 1Þ;
(3) fN1 2 1;N2 2 1; . . . ;Nn1 2 1} s fp#1ðNÞ; p#2ðNÞ; . . . ; p#rN2n121ðNÞ}.

If M ¼ 0, then

(10) 0 , l21 , l22 # l23 # · · · # l2n22 # l2n21 # l2n;
(20) if piðNÞ . 1, then pi21ðNÞ ¼ piþ1ðNÞ ¼ 1 ði ¼ 2; . . . ; rN 2 1Þ, and if prN ðNÞ . 1,

then prN21ðNÞ ¼ 1;

(30) fN1 2 1;N2 2 1; . . . ;Nn1 2 1} s fp#1ðNÞ; p#2ðNÞ; . . . ; p#rN2n1
ðNÞ}.

The following are necessary conditions for assumptions (1), (2), and (3) that are easy to

check.

Remark 2.10. For M . 0, claims (1) and (2) imply

(4) the number of simple Neumann eigenvalues is at least ½rN=2� þ 1,

(5) the number of simple Neumann eigenvalues is at least n1 þ 1,

while (3) implies

(6) rN $ n1 þ n2 þ 1.

For M ¼ 0, claims (10) and (20) imply
(40) the number of simple Neumann eigenvalues is at least ½ðrN þ 1Þ=2�,
(50) the number of simple Neumann eigenvalues is at least n1,

while (30) implies
(60) rN $ n1 þ n2.

Note that conditions (4) and (5) are not comparable and analogously for (40) and (50).
Proof. Let M . 0; the proofs for M ¼ 0 are analogous. Claim (4) follows immediately

from (2).
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In Proposition 2.8. (i) we showed that (1) and (2) imply that the number of simple

Neumann eigenvalues satisfies kNð1Þ $ rD þ 1; on the other hand, rD $ n1 by Remark 2.2

(ii). Thus kNð1Þ $ n1 þ 1 which is Claim (5).

Claim (6) is a consequence of the majorization property (3). Indeed, by Remark 2.4,

the number of non-zero entries in majorizing vector fN1 2 1;N2 2 1; . . . ;Nn1 2 1} is less

than or equal to the number of non-zero entries in the majorized vector

fp#1ðNÞ; p#2ðNÞ; . . . ; p#rN2n121ðNÞ}. Since the number of the former is equal to n2 by

Lemma 2.6 (ii) and the number of the latter is trivially less than or equal to the number

rN 2 n1 2 1 of entries of the majorized vector, we obtain n2 # rN 2 n1 2 1. A

Proof of Theorem 2.9. Claims (1) and (10) are immediate from Theorem 2.7 (1).

Claims (2) and (20) follow from Theorem 2.7 (2) (see [21, Cor. 2.6]).

For the proof of (3) we use that by Proposition 2.8 (iii) and Remark 2.10 (5), which

follows by (1) and (2), we have

ðN1;N2; . . . ;Nn1 Þ s ðp#1ðNÞ; p#2ðNÞ; . . . . . . . . . . . . . . . . . . . . . ; p#rN21ðNÞÞ
¼ ðp#1ðNÞ; p#2ðNÞ; . . . ; p#rN2n121ðNÞ; 1; . . . ; 1|fflfflfflffl{zfflfflfflffl}

n1

Þ;

and hence, if we subtract 1 in the n1 components on the left and in the last n1 components

on the right and note that N1 $ p#1ðDÞ ¼ p#1ðNÞ þ 1 by (2.10), (2.14),

ðN1 2 1;N2 2 1; . . . ;Nn1 2 1Þ s ðp#1ðNÞ; p#2ðNÞ; . . . ; p#rN2n121ðNÞ; 0; . . . ; 0|fflfflfflffl{zfflfflfflffl}
n1

Þ;

which proves (3). The proof of (30) is analogous. A

3. Inverse problem

In this section we consider the problem of recovering the sequences m
ð jÞ
k

n onj

k¼1
of masses

on each edge, the lengths l
ð jÞ
k

n onj

k¼0
of subintervals between them, and the central mass

M $ 0. Given are the Neumann and Dirichlet spectra flk} and fzk} on the whole star

graph, the total lengths lj of the strings, and also the numbers of masses nj on the j-th string.

In [17] trees with M ¼ 0 at the root were considered in the case where not just the

numbers nj were given, but also the distribution of the Dirichlet eigenvalues onto the q

edges. For trees that are stars with root at the central vertex, the following result is an

immediate corollary of [17, Thm. 3.3].

Proposition 3.1 ([17]). Let q [ N, q $ 2, flj}qj¼1 , ð0;1Þ, n [ N. Suppose a sequence

LN :¼ fl^k}
n
k¼1 and q sequences Lð jÞ

D ¼ nð jÞ^k

n onj

k¼1
with fnj}qj¼1 , N,

n1 $ n2 $ · · · $ nq, are given such that lk . 0, l2k ¼ 2lk ðk ¼ 1; 2; . . . ; nÞ,
nð jÞ2k ¼ 2nð jÞk , 0 , nð jÞk , nð jÞk0 for k , k0 ðk; k0 ¼ 1; 2; . . . ; nj, j ¼ 1; 2; . . . ; qÞ, andPq

j¼1nj ¼ n. Assume further that the sets LN and LD :¼ fz^k}
n
k¼1 :¼ <q

j¼1L
ð jÞ
D satisfy

the conditions

(1) 0 , l21 # z21 # · · · # l2n # z2n;
(2) lk ¼ zk21 if and only if lk ¼ zk.
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Then there exist a collection of masses m
ð jÞ
k

n onj

k¼1
and lengths l

ð jÞ
k

n onj

k¼0
ðj ¼ 1; 2; . . . ; qÞ

with
Pnj

k¼0l
ð jÞ
k ¼ lj such that the corresponding spectral problems (N1) and (D1) with

M ¼ 0 have the sets LN ¼ fl^k}
n
k¼1 and LD ¼ <q

j¼1L
ð jÞ
D as Neumann and Dirichlet

eigenvalues.

Proof. The claim follows from [17, Thm. 3.3] in the special case when the subtrees Tj

consist only of edge number j with corresponding length Li;j ¼ lj for j ¼ 1; 2; . . . ; q. A

Remark 3.2. It was shown in [1, Thm. 3.2] that if all lk are simple, then the solution of the
above inverse problem is unique. We remark that uniqueness is lost as soon as one lk is
not simple.

Theorem 3.3. Let q [ N, q $ 2, flj}qj¼1 , ð0;1Þ, n [ N. Suppose that sequences

LN :¼ fl^k}
nþ1
k¼1, LD :¼ fz^k}

n
k¼1 are given such that lk, zk . 0, l2k ¼ 2lk, z2k ¼ 2zk

for k . 0, and let fnj}qj¼1 , N, n1 $ n2 $ · · · $ nq, with
Pq

j¼1nj ¼ n. Define Ni :¼ #fj [
f1; 2; . . . ; q} : nj $ i} ði ¼ 1; 2; . . . ; n1Þ, denote by rD the number of distinct

positive elements in LD, by pkðDÞ their multiplicities ðk ¼ 1; 2; . . . ; rDÞ, and let

ðp#kðDÞÞ
rD

k¼1 be the corresponding vector of multiplicities in decreasing order. Then the

conditions

(1) 0 , l21 , z21 # · · · # l2n # z2n , l2nþ1;

(2) zk21 ¼ lk if and only if lk ¼ zk;
(3) ðN1;N2; . . . ;Nn1Þ s ðp#1ðDÞ; p#2ðDÞ; . . . ; p#rD ðDÞÞ;

are necessary and sufficient such that there exist a collection of (positive) masses

m
ð jÞ
k

n onj

k¼1
, a mass M . 0, and lengths l

ð jÞ
k

n onj

k¼0
ðj ¼ 1, 2; . . . ; qÞ withPnj

k¼0l
ð jÞ
k ¼ lj such

that the spectral problems (N1) and (D1) on the corresponding star graph have the setsLN

and LD as Neumann and Dirichlet eigenvalues.

If the sequence LN is of the form LN ¼ fl^k}
n
k¼1 and (1) is replaced by

(10) 0 , l21 , z21 # · · · # l2n # z2n;

then the above continues to hold with M ¼ 0.

Proof. First we show that it is possible to divide the elements of the set fzk}nk¼1 into q

groups nð jÞk

� �nj
k¼1

for j ¼ 1; 2; . . . ; q such that

LD ¼ fz^k}
n
k¼1 :¼

[q
j¼1

nð jÞ^k

n onj

k¼1
; ð3:1Þ

with nð jÞ2k ¼ 2nð jÞk and 0 , nð jÞk , nð jÞk0 for 0 , k , k0. To this end, denote by ~rD the

number of multiple positive elements in LD.

For the choice of the first group of n1 elements we note that all entries in the vectors in

(3) are non-zero and hence the majorization property (3) implies that n1 # rD. Thus

we can choose n1 elements such that the first element has multiplicity p#1ðDÞ in LD, the

second element has multiplicity p#2ðDÞ up to the ~rD-th element having multiplicity p#~rD ðDÞ
in LD, and n1 2 ~rD elements of multiplicity 1 from the tail of the vector
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ðp#1ðDÞ; p#2ðDÞ; . . . ; p#rD ðDÞÞ. We denote the n1 selected elements, arranged in increasing

order, by nð1Þk

� �n1
k¼1

. Again by assumption (3), we conclude that

ðN1 2 1;N2 2 1; . . . ;Nn1 2 1Þ
s ðp#1ðDÞ2 1; . . . ; p#~rD ðDÞ2 1; p#~rDþ1ðDÞ; . . . ; p#rD2n1þ~rD

ðDÞÞ
¼ ðp#1ðDÞ2 1; . . . ; p#~rD ðDÞ2 1; 1; . . . ; 1Þ:

ð3:2Þ

For the choice of the second group of n2 elements we note that the number of non-zero

entries of the majorizing vector in (3.2) is n2 by Lemma 2.6 (ii) and hence the majorization

property (3.2) implies that n2 # rD 2 n1 þ ~rD (see Remark 2.4). Thus we can choose n2
elements such that the first element has multiplicity p#1ðDÞ2 1 in LDn nð1Þk

� �n1
k¼1

, the

second element has multiple multiplicity p#2ðDÞ2 1 etc. as for the first group. We denote

the n2 selected elements, arranged in increasing order, by nð2Þk

� �n2
k¼1

.

Due to the majorization assumption (3), together with the property that nj ¼ #fi [
f1; 2; . . . ; n1} : Ni $ j} by Lemma 2.6 (iv) and with

Pq
j¼1 nj ¼ n, we may continue like

this to obtain q groups of elements nð jÞk

� �nj
k¼1

(j ¼ 1; 2; . . . ; q) such that (3.1) holds.

In the case whereLN ¼ fl^k}
n
k¼1, we can now apply Proposition 3.1 to finish the proof

in the caseM ¼ 0. In the case whereLN ¼ fl^k}
nþ1
k¼1, we can use the chosen decomposition

(3.1) as [21, (2.24)] in the proof of [21, Thm. 2.5] to prove the claim in the caseM . 0. A

In the next theorem we derive sufficient conditions for one sequence of numbers to be

the Neumann eigenvalues of a star graph of Stieltjes strings.

Theorem 3.4. Let q [ N, q $ 2, flj}qj¼1 , ð0;1Þ, n [ N. Suppose that a sequence

LN :¼ fl^k}
nþ1
k¼1, is given such that lk . 0, l2k ¼ 2lk for k . 0, and let fnj}qj¼1 , N,

n1 $ n2 $ · · · $ nq, with
Pq

j¼1nj ¼ n. Define Ni :¼ #fj [ f1; 2; . . . ; q} : nj $ i}

ði ¼ 1; 2; . . . ; n1Þ. Denote by rN the number of distinct positive elements in the sequence

flk}nþ1
k¼1 , by ðpiðNÞÞrNi¼1 the vector of their multiplicities, and by p #ðNÞ ¼ ðp#iðNÞÞrNi¼1 the

corresponding vector of multiplicities in decreasing order. Then the conditions

(1) 0 , l21 , l22 # l23 # · · · # l2n21 # l2n , l2nþ1;

(2) if piðNÞ . 1, then pi21ðNÞ ¼ piþ1ðNÞ ¼ 1 ði ¼ 2; . . . ; rN 2 1Þ;
(3) N1 2 1;N2 2 1; . . . ;Nn1 2 1} s fp#1ðNÞ; p#2ðNÞ; . . . ; p#rN2n121ðNÞ

n o
;

are necessary and sufficient such that there exist a collection of (positive) masses

m
ð jÞ
k

n onj

k¼1
, a mass M . 0, and lengths l

ð jÞ
k

n onj

k¼0
ðj ¼ 1, 2; . . . ; qÞ withPnj

k¼0l
ð jÞ
k ¼ lj such

that the spectral problem (N1) on the corresponding star graph has the set LN as

Neumann eigenvalues.

If the sequence LN is of the form LN ¼ fl^k}
n
k¼1 and the conditions (1)–(3) are

replaced by the conditions (1 0)–(3 0) in Theorem 2.9, then the above continues to hold with

central mass M ¼ 0.

Remark 3.5. For M . 0, necessary conditions for (1) and (2) are

(4) the number of simple positive elements in LN is at least ½rN=2� þ 1,

(5) the number of simple positive elements in LN is at least n1 þ 1;

while a necessary condition for (3) is

(6) rN $ n1 þ n2 þ 1;
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for M ¼ 0, necessary conditions for (10) and (20) are (40) and (50) in Remark 2.10, while a

necessary condition for (30) is (60) in Remark 2.10.

Note that conditions (4) and (5) are not comparable and analogously for (40) and (50).

Proof. The necessity of (4), (5), (6) and of (40), (50), (60), respectively, follows in the same

way as in the proof of Remark 2.10. A

Proof of Theorem 3.4. In the following we will show that the assumptions above ensure

the existence of a sequence LD :¼ fz^k}
n
k¼1, zk . 0, z2k :¼ 2zk for k . 0, such that the

two sequences LN and LD satisfy the assumptions of Theorem 3.3. To this end, in the case

M ¼ 0, we set lnþ1 :¼ 1 for convenience.

Following condition (2), we choose fzk}nk¼1, as follows: If k [ f1; 2; . . . ; n} and

lk , lkþ1 are two positive elements of LN of multiplicity 1, then we choose zk strictly in

between, i.e. zk [ ðlk; lkþ1Þ, with multiplicity 1; if one of lk, lkþ1 is multiple, say

lkþ1 ¼ · · · ¼ lkþpj0 ðNÞ with multiplicity pj0 ðNÞ $ 2 for some j0 [ f1; 2; . . . ; rN} (whence

k , n), then we choose zk ¼ zkþ1 ¼ · · · ¼ zkþpj0 ðNÞ ¼ lkþ1 with multiplicity

pj0ðNÞ þ 1 $ 3. Note that, for this particular choice, there are no elements in fz^k}
n
k¼1

with multiplicity 2.

If we define the numbers kNðlÞ, kDðlÞ as in (2.12), then kDð2Þ ¼ 0 for the above choice

of LD ¼ fz^k}
n
k¼1. Hence, if ~rN denotes the number of multiple positive elements in LN ,

then

rN 2 ~rN ¼ kNð1Þ ¼
rD þ 1 if M . 0;

rD if M ¼ 0;

(
ð3:3Þ

here, for the case M . 0, we have to observe that the additional element lnþ1 is always

simple due to the last strict inequality in (10).
If we use claim (5) already proved and add þ1 in the n1 components of the majorizing

vector ðN1 2 1;N2 2 1; . . . ;Nn1 2 1Þ in condition (3) and, on the right hand side, add þ1

in the first ~rN components and n1 2 ~rN new components 1, we conclude that, for M . 0,

ðN1; . . . ;Nn1 Þs ðp#1ðNÞþ 1; . . . ;p#~rN ðNÞþ 1;p#~rNþ1ðNÞ; . . . ;p#rN2n121ðNÞ;1; . . . ;1
zfflfflffl}|fflfflffl{n12~rN

Þ; ð3:4Þ

note that this is possible since rN 2 ~rN $ n1 þ 1, i.e. rN 2 n1 2 1 $ ~rN , by (5). For

M ¼ 0, according to (50), the group of unchanged elements in the middle of the vector on

the right hand side of (3.4) needs to be replaced by p#~rNþ1ðNÞ; . . . ; p#~rN2n1
ðNÞ. By (3.3), the

number of components on the right hand side is equal to rN 2 n1 2 1þ ðn1 2 ~rNÞ ¼
rN 2 12 ~rN ¼ rD for M . 0 and equal to rN 2 n1 þ ðn1 2 ~rNÞ ¼ rN 2 ~rN ¼ rD for

M ¼ 0. Moreover, by the definition of ~rN as the number of multiple positive elements of

LN , we have

p#kðNÞ . 1; p#kðDÞ ¼ p#kðNÞ þ 1 ðk ¼ 1; 2; . . . ; ~rNÞ;

p#kðNÞ ¼ 1; p#kðDÞ ¼ p#kðNÞ ¼ 1 ðk ¼ ~rN þ 1; . . . ; rN 2 n1Þ;

p#kðDÞ ¼ 1 ðk ¼ rN 2 n1 þ 1; . . . ; rDÞ:
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This shows that the majorized vector on the right hand side of (3.4) is, in fact, equal to

ðp1ðDÞ; . . . ; prD ðDÞÞ and hence

ðN1; . . . ;Nn1 Þ s ðp1ðDÞ; . . . ; prDðDÞÞ:

Thus we have shown that the sequences LN and LD satisfy all assumptions of Theorem 3.3

which yields the claim. A

Remark 3.6. Theorem 3.4 is related to [13, Thm. 9] about possible eigenvalue multiplicities

of star-patterned matrices as follows.

Our sets l2k
� �nþ1

k¼1
in case of M . 0 and l2k

� �n
k¼1

in case M ¼ 0 are the spectrum of the

generalized eigenvalue problem

Lx ¼ lMx ð3:5Þ

where the mass matrix M is the ðnþ 1Þ £ ðnþ 1Þ diagonal matrix

M :¼ diag
�
M;mð1Þ

n1
;mð1Þ

n121; . . . ;m
ð1Þ
1 ;mð2Þ

n2
;mð2Þ

n221; . . . ;m
ð2Þ
1 ; . . . ;mðqÞ

nq
;mðqÞ

nq21; . . . ;m
ðqÞ
1

�
and the stiffness matrix L is the star-patterned ðnþ 1Þ £ ðnþ 1Þ block matrix

L :¼

Xq
j¼1

1

lð jÞnj

2 1
lð1Þn1

0 · · · · · · 0 2 1
lð2Þn2

0 · · · · · · 0 · · · · · · 2 1

l
ðqÞ
nq

0 · · · · · · 0

2 1
lð1Þn1

0

..

.

0

L1 0 · · · · · · 0

2 1
lð2Þn2

0

..

.

0

0 L2

..

.

..

.

..

.

..

.

. .
.

. .
.

2 1

l
ðqÞ
nq

0

..

.

0

0 Lq

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

in which the blocks L1;L2; . . . ;Lq are the stiffness matrices of the q individual strings, i.e.

Lj is the nj £ nj matrix
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L
j
:¼

1

l
ð jÞ
nj

þ 1

l
ð jÞ
nj21

2 1

l
ð jÞ
nj21

0 · · · · · · · · · 0 0

2 1

l
ð jÞ
nj21

1

l
ð jÞ
nj22

þ 1

l
ð jÞ
nj21

2 1

l
ð jÞ
nj22

0 0

0 2 1

l
ð jÞ
nj22

1

l
ð jÞ
nj23

þ 1

l
ð jÞ
nj22

2 1

l
ð jÞ
nj23

..

.

..

. . .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
. ..

.

..

. . .
. . .

. . .
.

0

0 2 1

l
ð jÞ
2

1

l
ð jÞ
2

þ 1

l
ð jÞ
1

2 1

l
ð jÞ
1

0 0 · · · · · · · · · · · · 0 2 1

l
ð jÞ
1

1

l
ð jÞ
1

þ 1

l
ð jÞ
0

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

for j ¼ 1; 2; . . . ; q. Note that for M . 0 the eigenvalue problem (3.5) is equivalent to the

spectral problem for the star-patterned matrix M21=2LM21=2. For details we refer the

reader to [21, Sect. 4].

While Theorem 3.4 provides necessary and sufficient conditions for a sequence

l2k
� �nþ1

k¼1
, counted with multiplicities, to be the eigenvalues of a star-patterned matrix

M21=2LM21=2, [13, Thm. 9] provides necessary and sufficient conditions on a vector

ðpiðNÞÞrNi¼1 of integers to be the vector of multiplicities of eigenvalues of a star-patterned

matrix. Moreover, our method allows to construct the matricesM and L explicitly if a set

of lengths flj}qj¼1 is given (see Example 4.2 below).

The correspondence of the conditions on the multiplicities is as follows. Condition (3)

in Theorem 3.4 is condition (d) in [13, Thm. 9]. Condition (6) in Remark 3.5 is condition

(a) in [13, Thm. 9] (that (a) is not really needed was already mentioned in [13, Rem. on

p. 19]). Condition (4) in Remark 3.5 is condition (c) in [13, Thm. 9]. Condition (b) in [13,

Thm. 9] is automatically satisfied since we require the number of given l2k counted with

multiplicities to be equal to nþ 1 (note the different definition of n in [13, Thm. 9]).

Condition (5) in Remark 3.5 is mentioned in [13, Rem. on p. 19].

4. Examples

In this section we show how the necessary conditions in Theorem 3.3 may be conveniently

used to decide whether two sequences of numbers can be the Neumann and Dirichlet

spectra of a star graph of Stieltjes strings. The same applies for Theorem 3.4 with just one

sequence being the Neumann spectrum.

Example 4.1.

(a) Given q ¼ 5, n1 ¼ 4, n2 ¼ 3, n3 ¼ 2, n4 ¼ n5 ¼ 1, and hence n ¼P5
j¼1nj ¼ 11.

The sequence f^lk}
12
k¼1 given by

l21 ¼ 1; l22 ¼ 2; l23 ¼ l24 ¼ l25 ¼ 3; l26 ¼ 4;

l27 ¼ 5; l28 ¼ l29 ¼ l210 ¼ l211 ¼ 6; l212 ¼ 7;
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satisfies conditions (1), (2) of Theorem 3.4. However, it cannot be the sequence of

Neumann eigenvalues of a star graph of 5 Stieltjes strings of any lengths and any

central massM . 0 with the above numbers of masses on the strings. This follows

since the number rN of distinct elements in this sequence is

rN ¼ 7 , 8 ¼ n1 þ n2 þ 1

and hence the necessary condition (6) in Remark 3.5 for the majorization condition

(3) in Theorem 3.4 is not satisfied.

(b) Given q ¼ 7, n1 ¼ 5, n2 ¼ 4, n3 ¼ 3, n4 ¼ 2, n5 ¼ n6 ¼ n7 ¼ 1. The sequence

f^lk}
17
k¼1 given by

l21 ¼ 1; l22 ¼ l23 ¼ l24 ¼ l25 ¼ l26 ¼ l27 ¼ 2; l28 ¼ 3;

l29 ¼ l210 ¼ l211 ¼ l212 ¼ 4; l213 ¼ 5; l214 ¼ 6; l215 ¼ 7; l216 ¼ 8; l217 ¼ 9;

satisfies conditions (1), (2) of Theorem 3.4, and also the necessary condition (60) in
Remark 3.5 because

rN ¼ 9 ¼ n1 þ n2:

However, it cannot be the sequence of Neumann eigenvalues of a star graph of

Stieltjes strings of 7 strings of any lengths and central mass M ¼ 0 with the above

numbers of masses on the strings. This follows since

N1 ¼ 7; N2 ¼ 4; N3 ¼ 3; N4 ¼ 2; N5 ¼ 1;

p#1ðNÞ ¼ 6; p#2ðNÞ ¼ 4; p#jðNÞ ¼ 1; j ¼ 3; 4; . . . ; 9;

and hence

ðN1 2 1;N2 2 1;N3 2 1;N4 2 1;N5 2 1Þ ¼ ð6; 3; 2; 1; 0Þ Œ ð6; 4; 1; 1Þ
¼ ðp#1ðNÞ; p#2ðNÞ; p#3ðNÞ; p#4ðNÞÞ

because 6þ 3 � 6þ 4. Thus the necessary majorization condition (30) in

Theorem 3.4 is not satisfied.

Example 4.2. Given q ¼ 3, n1 ¼ 3, n2 ¼ n3 ¼ 2, l1 ¼ 12, l2 ¼ l3 ¼ 1, and

l21 ¼ 32
ffiffiffi
5

p
; z21 ¼ 1; l22 ¼

5

2
; z22 ¼ l23 ¼ z23 ¼ l24 ¼ z24 ¼ 4; ð4:1Þ

l25 ¼ 3þ ffiffiffi
5

p
; z25 ¼ l26 ¼ z26 ¼ l27 ¼ z27 ¼ 6: ð4:2Þ

Then n ¼ 7 and

N1 ¼ 3; N2 ¼ 3; N3 ¼ 1; rD ¼ 3; rN ¼ 5:

The sequences f^lk}
7
k¼1 and f^zk}

7
k¼1 are interlacing as required in assumption (10) of

Theorem 2.9. Since every other Neumann eigenvalue is simple, also assumption (20) of
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Theorem 2.9 is satisfied. Further,

XrN
i¼1

p#iðNÞ ¼ 2þ 2þ 1þ 1þ 1 ¼ 7 ¼ n;

which is assumption (30) of Theorem 2.9. Finally,

ðN1;N2;N3Þ ¼ ð3; 3; 1Þ s ð3; 3; 1Þ ¼ ðp#1ðDÞ; p#2ðDÞ; p#3ðDÞÞ;

ðN1 2 1;N2 2 1;N3 2 1Þ ¼ ð2; 2; 0Þ s ð2; 2Þ ¼ ðp#1ðNÞ; p#2ðNÞÞ:

The last relation shows that the majorization assumption (30) of Theorem 2.9 holds.

Hence, by Theorem 3.3, there exists a star graph of Stieltjes strings with the above

numbers of masses on each string and lengths of strings and with central massM ¼ 0 such

that the sequences f^lk}
7
k¼1, f^zk}

7
k¼1 are the corresponding Dirichlet and Neumann

eigenvalues.

In fact, the solution of this inverse problem can be calculated explicitly using the

constructive proof of [21, Thm. 2.9] in the case M ¼ 0; note that the latter is immediate

from the fact that there are n ¼ 7 elements in both given sequences. Sticking to the

notation in [21, Sect. 2], we have

fN;3ðzÞ
fD;3ðzÞ ¼

X3
j¼1

1

lj

 !Y7
k¼1

�
12 ðz=l2kÞ

	
Y7
k¼1

�
12 z=z2k


 �	

¼ 1

12
þ 1

1
þ 1

1

� 	 ð12 z=ð32 ffiffiffi
5

p ÞÞð12 z=ð5=2ÞÞð12 z=ð3þ ffiffiffi
5

p ÞÞ
ð12 zÞð12 z=4Þð12 z=6Þ

¼ 52
1

22 2 z
2

1

42 z
2

1

62 z
2

2

22 z=2
2

2

22 z=3

¼ 52
1

22 2 z
2

5

42 z
2

7

62 z

¼ fð1Þ
N ðzÞ

fð1Þ
D ðzÞ þ

fð2Þ
N ðzÞ

fð2Þ
D ðzÞ þ

fð3Þ
N ðzÞ

fð3Þ
D ðzÞ

with

fð1Þ
N ðzÞ

fð1Þ
D ðzÞ ¼ 12

1

22 2 z
2

1

42 z
2

1

62 z
;

fðiÞ
N ðzÞ

fðiÞ
D ðzÞ ¼ 22

1

22 z=2
2

1

22 z=3
; i ¼ 2; 3:

The following continued fraction expansions were computed with Maple and may be

readily verified:
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fð1Þ
D ðzÞ

fð1Þ
N ðzÞ ¼ 12

1

22 2z
2

1

42 z
2

1

62 z

� 	21

¼ 1þ 1

2
2

5
zþ 1

25

17
þ 1

2
289

840
zþ 1

1176

391
þ 1

2
529

4200
zþ 1

150

23

;

fðiÞ
D ðzÞ

fðiÞ
N ðzÞ ¼ 22

1

22 z=2
2

1

22 z=3

� 	21

¼ 1

2
þ 1

2
4

5
zþ 1

25

54
þ 1

2
243

40
zþ 1

27

; i ¼ 2; 3:

Therefore the star graph with central mass M ¼ 0 consisting of 3 strings with masses and

lengths of intervals between given by

lð1Þ0 ¼ 1; lð1Þ1 ¼ 25

17
; lð1Þ2 ¼ 1176

391
; lð1Þ3 ¼ 150

23
; mð1Þ

1 ¼ 2

5
; mð1Þ

2 ¼ 289

840
; mð1Þ

3 ¼ 529

4200
;

lðiÞ0 ¼ 1

2
; lðiÞ1 ¼ 25

54
; lðiÞ2 ¼ 1

27
; mðiÞ

1 ¼ 4

5
; mðiÞ

2 ¼ 243

40
; i ¼ 2; 3;

(see Figure 1) has the sequences f^lk}
7
k¼1 and f^zk}

7
k¼1 given by (4.1) as Neumann and

Dirichlet eigenvalues.

Remark 4.3. We remark that the constructive procedure in [21, Thm. 2.9] used above for

the case M ¼ 0 also applies in the case M . 0.
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