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1.  Introduction

Recently, tissue engineering strategies have been increased 
in order to mimic as closely as possible the environment of 
the native tissue, improving the regeneration of its struc-
ture and function. Previous experiments of cartilage tissue 
engineering used scaffolds with a homogeneous structure. 
However, the zonal organization in constructs has been 
shown to develop functional tissues with better biome-
chanical and biochemical properties. McCullen et al. (2012) 
studied the scaffold with a trilaminar structure of fibres 
showed that the heterogeneous organization have superior 
features when compared with the homogeneous scaffolds. 
Similarly, Steele et al. 2014 demonstrate that bilayered car-
tilage scaffolds have zonal differences in cellular prolifer-
ation, biochemical composition and gene expression. The 
directional organization of collagen fibres in the scaffolds 
strongly influences the anisotropic mechanical behaviour of 
the tissue, since the collagen fibres are the major responsible 
for its mechanical strength. The main goal of this study is 
to present new results related with a new anisotropic finite 
element (FE) model to mimic the growth and the remodel-
ling of collagen fibres in a zonal organized polycaprolactone 
(PCL) scaffold for cartilage tissue engineering.

2.  Methods

Using a FE computational tool, called V-Biomech (Cortez 
et al., 2016), two anisotropic approaches were combined 
and implemented in a previous mathematical formula-
tion to simulate the transport of nutrients, the cell growth 
kinetics, the extracellular synthesis and the remodelling of 
the biphasic mechanical properties inside of a hydrogel. 
Considering the scaffold as incompressible, the descrip-
tion of its energy function W̄

total
 is:

where W̄
iso

 is associated with the isotropic component and 
defined by the neo-Hookean constitutive model. A new 
remodelling algorithm (W̄COL

aniso
) based on the distribution 

of the collagen fibres around a reference direction mod-
elled by parameter b ∈ [−1,+1] (details in Figure 1) is 
introduced to simulate the reorientation and redistribu-
tion of collagen fibres, which grow and evolve throughout 
the cultivation time.

Their alignment was determined by the directions of 
the positive principal strains (Driessen et al., 2004; Wilson 
et al., 2006). In addition, the initial anisotropic structure 
with PCL fibres distributed in a depth manner was mod-
elled following the Holzapfel’s model (Holzapfel et al., 
2000) and defined by W̄PCL

aniso
. Based on literature data for 

PCL hydrogels, the Young modulus (E), the Poisson’s ratio 
(υ), the initial permeability (Kp) and the initial fluid vol-
ume fraction (nf) were defined with the values presented 
in Table 1. All anisotropic constitutive parameters were 
determined by experimental results.

A quarter of a 3D disc shape scaffold with 5 mm diam-
eter and 5 mm height was modelled as a biphasic material 
and meshed with 540 27-node hexahedral finite elements. 
Three different layers were defined with PCL fibres hori-
zontally and vertically aligned in the superficial and deep 
zones, respectively, and randomly oriented in the mid-
dle zone of the scaffold. The construct was simulated as 
being submerged in a standard culturing environment 
with continuous concentrations in the scaffold-medium 
interface to promote the chondrocyte differentiation and 
the production of collagen. To evaluate the new biphasic 
fibre-reinforced model for a layered PCL scaffold, a com-
pressive loading regime at physiological strain level (15% 
of displacement with a frequency of 1 Hz) was performed. 
The fields of the distribution of fibres, the associated refer-
ence directions and the maximum principal strains were 
investigated.W̄

total
= W̄

iso
+ W̄

COL

aniso
+ W̄

PCL

aniso
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3.  Results and discussion

Analysing the fields of the compressive strains generated, 
a maximum of 0.15 MPa was observed in the superficial 
zone (Figure 2), being useful to align the collagen fibres 
parallel to the surface.

Under deformation, fibres rotate to the direction, which 
can resist more. In the superficial zone, fibres showed an 
isotropic distribution (b = 1.0, see Figure 1) in the direc-
tion parallel to the surface and a fibre reference direc-
tion, which was initially defined in the vertical direction, 
aligned perpendicular to the loading direction (Figure 3).

4.  Conclusions

The FE model presented in this work allows to analyse, in 
a numerical way, the evolution of collagen fibres and their 
orientation in the three zones of a layered PCL scaffold, 
helping to a better understand of the experimental tests 
in cartilage tissue engineering
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Figure 1.  Three-dimensional graphical representation of the 
ellipsoidal distribution of fibres distribution around an initial 
reference direction �

f ,0
.

Table 1. Model parameters used in simulations.

Parameter Value
E (kPa) 9.5
υ 0.3
Kp (mm4/N.s) 60.0
nf 0.8 Figure 2.  Spatial gradients of the maximum principal strain on 

the tissue engineered cartilage scaffold.

Figure 3  Distribution of collagen fibres (left), defined by the b 
parameter, and the associated reference vectors (right) This result 
is related with the initial direction of the PCL fibres, which were 
defined as aligned in the x-direction.
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