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Abstract

Supply Chain Optimization (SCO) problem under uncertainty can be modeled as

two-stage optimization problem where first-stage decisions are associated with design

and development of facilities and second-stage decisions are associated with opera-

tion of the supply chain network. Recently, a robust scenario approach combing the

traditional scenario or robust approach has been developed to better address uncer-

tainties in SCO problems, and it can ensure solution feasibility and better expected

objective value. But this approach can only address uncertainties bounded with the

infinity-norm.

This thesis proposes a modified robust scenario approach, which can be used

to address uncertainty region bounded with the p-norm in SCO. In this case, after

the normalization of the uncertainty region, the smallest box uncertainty region,

that covers the normalized uncertainty region, can be partitioned into a number of

box uncertainty subregions. Following some screening criteria, two subsets of the

subregions that over-estimates and under-estimates the original uncertainty region

can be selected. When the number of scenarios increases, the optimal objective

values of the two robust scenario formulations converge to a constant, which is a

good estimate of the true optimal value. This new robust scenario approach is then

extended for any bounded uncertainty regions, in the context of robust optimization.
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In many industrial problem, the historical realizations of uncertain parameters are

known. This thesis gives a preliminary discussion on a data driven robust scenario

approach, where the available data are normalized and a reference box that covers the

data with a certain confidence is constructed. Then, the reference box is partitioned

into box-shaped uncertainty subregions.

The benefits of the proposed robust scenario approach are demonstrated through

some simple examples as well as an industrial SCO problem. The approach requires

the solution of large-scale optimization problems when the number of scenarios is

large, and these large-scale problems have a decomposable structure that can be ex-

ploited for efficient solution via decomposition-based optimization. A computational

study demonstrates that, when the large-scale optimization problem is a second-order

cone programming problem, generalized Benders decomposition is much faster than

a state-of-the-art optimization solver.
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Chapter 1

Introduction

1.1 Supply Chain Optimization and Uncertainties

A supply chain is a group of organizations (including design, procurement, manufac-

turing and distribution) that work together to profitably provide the right product or

service to the right customer at the right time [2]. Supply Chain Optimization (SCO)

is the study of strategies and methodologies that enables these organizations to meet

their objectives efficiently. SCO is a key research area in the field of Process System

Engineering (PSE). In PSE, SCO has been extensively applied to oil, gas and petro-

chemical supply chains [3, 4, 5, 6, 7], agro supply chains [8, 9], pharmaceutical supply

chains [10, 11, 12, 13], bio-refinery and bio-energy supply chains [14, 15, 16, 17, 18].

SCO has also been applied to more recent applications like carbon dioxide emission

control [19] , wind farm diversification [20], disaster management [21], project plan-

ning [22], environmental planning [23] and sustainable chemical process development

[24, 25] etc. Papageorgiou [26] gave a brief discussion on the advances and opportu-

nities of supply chain optimization for different processing industries.
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SCO problems can be categorized into three different types of problems, which

are strategic, tactical and operational problem. Each of the different types of SCO

problems are associated with different kinds of decision making regarding design,

long-term/mid-term planning and short-term operations [27]. At any decision mak-

ing stage in SCO, it is very common to have some parameters that are not known

exactly but might have significant effect on the supply chain network. These pa-

rameters can be found in the form of final product demand, final product price, raw

material price, transportation cost, fuel cost, labor cost etc. [28, 29]. Failing to ad-

dress uncertain parameters in SCO problems may lead to poor operational decisions

hence resulting in poor economic performance.

There are different ways to address uncertainties in SCO [30], but a common way

to do that in SCO is to use stochastic programming with recourse. Stochastic pro-

grams with recourse are solved over a number of stages. In each stage, there are

some decisions to be made. The decisions in the first-stage are made without the

realization of uncertainties. After that, between each stage, some uncertainties are

realized and the decision maker must choose an corrective action that optimizes the

current objective plus the expectation of the future objectives [27]. The ability to take

corrective action after uncertainty realization has taken place is known as recourse.

Although multi-stage stochastic programming with more than two stages has been

applied in PSE [31] [32], the most common stochastic programs, used in PSE, are

two-stage models in which first-stage decisions (e.g. capacity of manufacturing plant)

are made before the realization of all uncertainties and second-stage decisions (e.g.

operational decisions of manufacturing plant) are those which can be made after the
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realization of all uncertainties.

In PSE, two-stage stochastic programming has been extensively studied for oil, gas

and petrochemical industry. Ribas et al. [3] proposed the development of a two-stage

stochastic programming model with a finite number of uncertainty realizations for an

integrated oil supply chain in Brazil. Three sources of uncertainties, crude oil produc-

tion, demand for refined products and market prices, were considered in the model.

The main contribution of the proposed study was to develop a strategic planning

model using a two-stage stochastic model, including 17 refineries, three petrochemi-

cal plants and a complex logistic network, that account for uncertainties and to apply

the model in a real life case. From the study it was found that, two-stage stochastic

model had significnt impact on the decision making, resulting in increasing capacity

of separation units. Lababidi et al. [4] proposed a two-stage stochastic formulation

with a finite number of uncertainty realizations to address the uncertain operating and

economic conditions in a petrochemical industry. The optimization model was tested

on a typical petrochemical company, manufacturing different grades of polyethylene,

operating at a single site and using two reactors. The uncertain parameters were

demands, market prices, raw material costs, and production yields. The main conclu-

sion of that study was, uncertainties had a significant effect on the planning decisions

of the petrochemical supply chain. The most important uncertain parameter was

market demand, showing a strong impact on the production decisions, followed by

the production yields. Wafa et al. [5] proposed a two-stage stochastic formulation,

with finite number of uncertainty realizations. The proposed stochastic programming

approach proved to be effective in developing resilient production plans in presence
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of high degree of demands and prices uncertainty for petrochemical industries.

Agro-industry is another area where SCO has been applied intensively. Barker

et al. [9] proposed a two-stage stochastic programming with recourse model for de-

termining optimal planting plans for a vegetable crop. In many arising systems in

horticulture, uncertainty caused by natural factors, such as weather on yields, has a

significant influence. Typical linear programming models, which are usually unsat-

isfactory in dealing with the uncertainties, produce solutions that are involved with

high degree of risk. The first-stage of the model was, to find a planting plan, com-

mon to all scenarios. In the second-stage, a harvesting schedule was developed for

each scenario. Solutions were obtained for a range of risk aversion factors that not

only resulted in greater expected profit compared to the corresponding deterministic

model, but also were more robust. The major element of uncertainty on that case

study was the effect of weather on yields.

SCO is widely applied in the pharmaceutical industry also. Shah [10] discussed the

key sources of uncertainties in pharmaceutical supply chain, which are, the demands

for existing drugs and uncertainty in the pipeline of new drugs, in particular, which

ones will be successful in trials, and what sort of dosage and treatment regime will

be optimal. Papageorgiou et al. [13] developed a two-stage stochastic programming

based optimization approach to select both a product development and introduction

strategy and a capacity planning and investment strategy. The problem was formu-

lated as a mixed-integer linear programming (MILP) model, taking consideration of
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both the important features of pharmaceutical industries, active ingredient manufac-

turing and the global trading structures. The major sources of uncertainties were,

the uncertainties on the outcome of the clinical trials of all candidate products.

Bio-refinery and bio-energy is another field where SCO is implemented. A two-

stage stochastic mixed-integer linear programming model to address the optimal de-

sign of hydrocarbon bio-refinery supply chains under supply and demand uncertainties

was presented by Akgul et al [14]. The multiple conversion technologies, feedstock

seasonality and fluctuation, geographical diversity, biomass degradation, demand vari-

ation, government incentives, and risk management was accounted for the model. The

objective of the model was to minimize the expected annualized cost and the financial

risk associated with the industry management, measured by conditional value-at-risk

and downside risk, simultaneously. Chen [16] proposed a mixed integer two-stage

stochastic programming model to support strategic planning of bio-energy supply

chain systems and optimal feedstock resource allocation under different kinds of un-

certainties. The two-stage stochastic programming model, along with a Lagrangian

relaxation based decomposition solution algorithm, was implemented in a California

based real-world case study to explore the scopes of waste based bio-ethanol pro-

duction. The results showed that, for the future, bio-waste based ethanol can be an

important part of the sustainable energy solution. Dal-mas et al. [18] presented a

two-stage MILP modeling approach, to help decision-makers and potential investors,

assessing economic performances and risk associated with investment on the biomass

based ethanol supply chain network. A case study, concerned with the corn-to-ethanol

production supply chain in Northern Italy, was used to effectively demonstrate the
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ideas of determining economic performances and risk associated with investment. The

uncertain parameters in the model were, biomass production cost and product selling

price.

SCO has also been applied to more recent applications like carbon dioxide emission

control. Chen et al. [19] developed a two-stage inexact-stochastic programming model

for planning carbon dioxide emission where the uncertain parameter was green house

gas (GHG) emission. The decisions obtained from the two-stage inexact-stochastic

programming were effectively used for generating decision alternatives and to help

decision makers in identifying desired GHG abatement policies under different eco-

nomic and system-reliability conditions. Wind farm diversification proposed by Liu

et al. [20] is another example of most recent application of SCO where the production

of wind power was the uncertain parameter. SCO can be applied to disaster manage-

ment problems also. Dal-mas et al. [21] proposed a two-stage stochastic programming

approach regarding the storage and distribution problem of medical supplies. These

medical supplies can be used for disaster management under a wide varieties of pos-

sible disaster types and magnitudes. Project planning is an important application of

SCO [22] where the problem of setting target finish times for project activities with

random durations can be determined by two-stage mixed integer linear stochastic

programming. Target times were determined in the first-stage and detailed project

planning schedules were developed in the second-stage.

This thesis only considers two-stage stochastic programming which can be used to

model most SCO problems, and the results of the thesis work can also be extended for
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multi-stage stochastic programming. In the following section, an illustrative example

will be used to explain how a two-stage stochastic programming is formulated and

how it is solved via different existing approaches.

1.2 Illustrative Example: Farm Planning Problem

This section discusses a farm planning problem, modified from a classical farm

planning problem in the operations research literature [33]. In this problem, a farmer

needs to plan the allocation of his land area for raising two crops; wheat and corn.

The goal of the planning is to achieve the best overall profit while reserving a certain

amount of wheat and corn for cattle feeding. If the harvested wheat or corn is not

enough for cattle feeding, then both can be purchased from the market at a relatively

high price.

Total land area for planting wheat and corn is 500 acres. Yield of wheat and

corn is, 2.5 t/acre and 3 t/acre respectively. Planting cost for wheat and corn is,

150 $/acre and 230 $/acre respectively. Purchasing cost of wheat and corn from the

market is, 238 $/t and 210 $/t respectively. The selling price of wheat and corn from

the market is, 170 $/t and 150 $/t respectively. Amount of wheat and corp reserved

for feeding cattle is at least, 300 t and 340 t respectively.

The deterministic formulation for the farm planning problem is described below,
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and the list of variables used in the formulation can be found in Table 1.1.

min 150xwh + 230xc + 238ywh + 210yc − 170zwh − 150wc (1.1)

s.t. xwh + xc ≤ 500, (1.2)

2.5xwh + ywh − zwh ≥ 300, (1.3)

3xc + yc − zc ≥ 340, (1.4)

xwh, xc, ywh, yc, zwh, zc ≥ 0. (1.5)

Now assume that the amount of wheat needed for feeding cattle is not exactly

known when the farmer is planning the land allocation, but will be known before the

farmer needs to determine the sell and purchase of wheat and corn. Let’s represent

this uncertain amount by F , which ranges from 270 t to 330 t. In this case, the overall

profit is dependent on the realization of F ; naturally, we can choose the expected

overall profit (over the range of possible values of F ) to be the objective function,

and the optimization problem can be written as:

Table 1.1: List of variables for farm planning case

xwh Land allocation for wheat, acre
xc Land allocation for corn, acre
ywh Amount of wheat purchased from the market, t
yc Amount of corn purchased from the market, t
zwh Amount of wheat sold in the market, t
zc Amount of corn sold in the market, t
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Formulation (SP) for the Farm Planning Problem

min 150xwh + 230xc + EFω∈Ξ{Q(xwh, xc, Fω)} (1.6)

s.t. xwh + xc ≤ 500, (1.7)

xwh, xc ≥ 0 (1.8)

Here, Q(xwh, xc, Fω) represents the net purchase/sell cost associated with a par-

ticular planning decision xwh, xc, and a particular realization of F , Fω. EFω∈Ξ{·}

represents expected value over uncertainty realization Fω ∈ Ξ, and Ξ = [270, 330].

Since the farmer can determine the wheat purchase and sell optimally after knowing

F , so

Q(xwh, xc, Fω) = min 238ywh,ω + 210yc,ω − 170zwh,ω − 150zc,ω, (1.9)

s.t. 2.5xwh + ywh,ω − zwh,ω ≥ Fω, (1.10)

3xc + yc,ω − zc,ω ≥ 340, (1.11)

ywh,ω, yc,ω, zwh,ω, zc,ω ≥ 0 (1.12)

The above optimization problem is called a recourse problem, which needs to be

solved for all realizations of F in order to solve Problem (SP). Problem (SP), together

with all the recourse problems, is called a two-stage stochastic programming problem

with recourse. Here, xwh and xc represent first-stage decision variables that need to

be determined before the realization of uncertainty, F , and ywh,ω, yc,ω, zwh,ω and zc,ω

are called second-stage decision variables for uncertainty realization Fω. The two-

stage decision making procedure described by the two-stage stochastic programming
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Figure 1.1: Two-stage decision making procedure

formulation is illustrated through Figure 1.1.

In order to rigorously solve Formulation (SP), we need to solve an infinite num-

ber of recourse problems (for every possible values of F within [270, 330]), which is

apparently not realistic. A practical way to solve Formulation (SP) is to consider

only a finite subset of uncertainty realizations of F , and each considered uncertainty
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realization is called a scenario. The resulting formulation can be written as a single-

level optimization problem, and it is also called a scenario formulation [33]. When S

scenarios are considered, the scenario problem for the farm planning problem is:

Formulation (S) for the Farm Planning Problem

min 150xwh + 230xc +
s∑

ω=1

Pω(238ywh,ω + 210yc,ω − 170zwh,ω − 150zc,ω) (1.13)

s.t. xwh + xc ≤ 500, (1.14)

2.5xwh + ywh,ω − zwh,ω ≥ Fω, ω = 1, ..., s, (1.15)

3xc + yc,ω − zc,ω ≥ 340, ω = 1, ..., s, (1.16)

xwh, xc ≥ 0, (1.17)

ywh,ω, yc,ω, zwh,ω, zc,ω ≥ 0, ω = 1, ..., s, (1.18)

Here, Pω is the probability of uncertainty realization ω. When a large number of

uncertainty realizations of F is considered, the objective function of Formulation (S)

is close to that of Formulation (SP), but the optimal solution of Formulation (S) is

not guaranteed to be feasible for Formulation (SP).

In order to ensure feasibility of solution, a conservative version of Formulation (SP)

can be considered, where the ”worst” realization of F is considered in the constraints.

This formulation is called a robust formulation [34] [35]. Here worst realization means

the realization that can most violate the constraints, which is usually modeled indi-

rectly within the robust formulation and unknown before the solution is obtained.

The robust formulation for the farm planning problem is:
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Formulation (R) for the Farm Planning Problem

min 150xwh + 230xc + 238ywh + 210yc − 170zwh − 150zc (1.19)

s.t. xwh + xc ≤ 500, (1.20)

2.5xwh + ywh − wwh ≥ max
Fω∈Ξ
{Fω}, (1.21)

3xwh + ywh − wwh ≥ 340, (1.22)

xwh, xc, ywh, yc, zwh, zc ≥ 0. (1.23)

It is not difficult to find that, the solution of Formulation (R) is always feasible

for Formulation (SP), but it may be overly conservative and far less optimal than

the solution of Formulation (SP). McLean and Li [36] recently proposed to solve a

hybrid formulation for better solution of Formulation (SP). This formulation is called

a robust scenario formulation, which combines the ideas of classical scenario and

robust formulations. In the robust scenario formulation, we partition uncertainty

region Ξ into s subregions Ξω (rather than selecting s points in Ξ), and each Ξω

is called a scenario. For each uncertainty subregion Ξω, the worst-case scenario is

addressed for constraint satisfaction in a robust approach. This idea leads to the
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following problem formulation:

min 150xwh + 230xc +
s∑

ω=1

Pω(238ywh,ω + 210yc,ω − 170zwh,ω − 150zc,ω) (1.24)

s.t. xwh + xc ≤ 500, (1.25)

2.5xwh + ywh,ω − zwh,ω ≥ max
Fω∈Ξω

{Fω}, ω = 1, ..., s, (1.26)

3xc + yc,ω − zc,ω ≥ 340, ω = 1, ..., s, (1.27)

xwh, xc ≥ 0, (1.28)

ywh,ω, yc,ω, zwh,ω, zc,ω ≥ 0, ω = 1, ..., s. (1.29)

Here Pω is the total probability for all uncertainty realizations in Ξω. Note that the

above formulation can be very conservative, because it enforces the same second-stage

decisions for different uncertainty realizations with an uncertainty subregion, while in

reality the decision maker can have different second-stage decisions for different un-

certainty realizations. In order to reduce the conservativeness, we can assume that the

second-stage decision variables vary linearly (or more precisely, afffinely) with respect

to the uncertainty realizations within an uncertainty subregion. This affine approx-

imation strategy has been widely used in classical robust optimization [34]. With

this strategy, the second-stage decision variable ywh,ω is replaced by Uywh,ωFω+vywh,ω,

where Uywh and vywh,ω are new decision variables to be determined in optimization.

Similarly, yc,ω is replaced by Uyc,ωFω + vyc,ω, zwh,ω by Uzwh,ωFω + vzwh,ω, and zc,ω by

Uzc,ωFω + vzc,ω. The resulting formulation is:



Chapter 1. Introduction 14

Formulation (RS) for the Farm Planning Problem

min 150xwh + 230xc +
s∑

ω=1

Pω[238(Uywh,ω.F̄ω + vywh,ω) + 210(Uyc,ω.F̄ω + vyc,ω)

− 170(Uzwh,ω.F̄ω + vzwh,ω)− 150(Uzc,ω.F̄ω + vzc,ω)] (1.30)

s.t. xwh + xc ≤ 500, (1.31)

2.5xwh + min
Fω∈Ξω

{FωUywh,ω + vywh,ω − (FωUzwh,ω + vzwh,ω)− Fω} ≥ 0,

ω = 1, ..., s, (1.32)

3xc + yc,ω − zc,ω ≥ 340, ω = 1, ..., s, (1.33)

xwh, xc ≥ 0, (1.34)

min
Fω∈Ξω

{FωUywh,ω + vywh,ω} ≥ 0, ω = 1, ..., s, (1.35)

min
Fω∈Ξω

{FωUyc,ω + vyc,ω} ≥ 0, ω = 1, ..., s, (1.36)

min
Fω∈Ξω

{FωUzwh,ω + vzwh,ω} ≥ 0, ω = 1, ..., s, (1.37)

min
Fω∈Ξω

{FωUzc,ω + vzc,ω} ≥ 0, ω = 1, ..., s. (1.38)

Here, F̄ω is the expected value of Fω for scenario ω.

The formulations discussed in this section will be generalized in the next section

for SCO problems under uncertainty.
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1.3 Two-Stage Stochastic Programming Formulations for SCO Under

Uncertainty

The general formulation of two-stage stochastic programming with recourse [33]

can be described as below. All the symbols, used in this section, are also summarized

in Table 1.2 at the end of this Chapter.

Formulation (SP)

min
x∈X

cTx+ Eξ∈Ξ{Q(x, ξ)} (1.39)

s.t. Ax ≤ b. (1.40)

Here x ∈ X ⊂ Rnx represents first-stage decision variables that can be either

continuous or integer. ξ ∈ Ξ represents uncertain parameters, each of which is in-

dependent on other uncertain parameters. Most of the times, first-stage decision

variables in SCO problems are related to design variables of the supply chain net-

work, e.g. capacity of processing plants. In Formulation (SP), c ∈ Rnx is the cost

related to the first-stage decision variables. The second-stage decision variables are

y ∈ Rny , and costs related to the second-stage decisions variables are the optimal

objective value of the recourse problem, i.e.,

Q(x, ξ) = min q(ξ)Ty (1.41)

s.t. ti(ξ)
Tx+ wTi y ≤ 0, i = 1, ...,m, (1.42)

where q(ξ) ∈ Rny , ti(ξ) ∈ Rnx , wi ∈ Rny are parameters that are dependent on the

uncertain parameters. Note that any constraint with an uncertain parameter in the
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right-hand-side can be reformulated with a zero right-hand-side in form of (1.42), and

it is explained in [36]. In order to solve Formulation (SP), the expected cost of second-

stage decisions over different realizations of uncertain parameter, Eξ∈Ξ[Q(x, ξ)], needs

to be calculated by solving an infinite number of recourse problems, which is usually

unrealistic. In order to solve Formulation (SP) practically, the classical scenario or

robust formulation can be used. The classical scenario formulation with s scenarios

can be written as

Formulation (S)

min
x∈X,
y1,...,ys

cTx+
s∑

ω=1

Pω · q(ξω)Tyω (1.43)

s.t. Ax ≤ b, (1.44)

ti(ξω)Tx+ wTi yω ≤ 0, i = 1, ...,m, ω = 1, ..., s, (1.45)

and the classical robust formulation is:

Formulation (R)

min
x∈X,
y

cTx+ q̄Ty (1.46)

s.t. Ax ≤ b, (1.47)

max
ξ∈Ξ
{tTi (ξ)x+ wTi y} ≤ 0, i = 1, ...,m. (1.48)

Here q̄ represents the nominal cost for second-stage decisions, but it can also repre-

sent the worst-case cost if that is more appropriate for a SCO problem. Formulation

(R) is a bi-level optimization problem, which can be reformulated into single level
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linear and quadratic programming problems with the assumption of polyhedral and

ellipsoidal uncertainty [34, 37, 38, 39, 40]. The various uncertainty regions assumed

in the literature have been thoroughly discussed by Li et al. [41], from both the

geometrical point of view and the computational point of view. To reduce the conser-

vativeness of the robust formulation, an iterative strategy was proposed by Li et al.

[42]. In their method, a tight posterior probability bounds were used to improve the

robust solution within an iterative framework. Compared to the single-step classical

robust optimization method, the quality of the robust solution were improved after

applying the iterative strategy.

The Robust Scenario Formulation is another approach to reduce the conservative-

ness of a robust formulation. In this formulation, a scenario is associated with an

uncertainty subregion Ξω rather than a single uncertainty realization. When s uncer-

tainty subregions are used and
⋃s
ω=1 Ξω ⊃ Ξ, then the solution of the robust scenario

formulation is guaranteed to be feasible for Formulation (SP). For convenience of

discussion, q and ti are assumed to be affine functions of ξω, i.e., qω = αqξω + βq and

ti,ω = αt,iξω + βt,i, where αq ∈ Rny×nξ , βq ∈ Rny , αt,i ∈ Rnx×nξ , βt,i ∈ Rnx . Here, nξ

is the number of uncertain parameters. As a result, the robust scenario formulation

can be written as:
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Formulation (RS)

min
x∈X

U1,...,Us
v1,...,vs

cTx+
s∑

ω=1

Pω(αq ξ̄ω + βq)
T (Uω ξ̄ω + vω) (1.49)

s.t. Ax ≤ b, (1.50)

max
ξω∈Ξω

{(αt,iξω + βt,i)
Tx+ wTi (Uωξω + vω)} ≤ 0, i = 1, ...,m , ω = 1, ..., s. (1.51)

Here, ξ̄ω denotes the expected value of ξω for scenario ω. As explained in the

previous section, the robust scenario formulation approximates second-stage decisions,

yω, as an affine function of ξω i.e. yω = Uωξω + vω. As a result, the second-stage

decision variables are allowed to vary affinely with respect to uncertainty realizations

within a scenario, and it is less conservative than forcing the second-stage decisions to

be constant for a scenario. Formulation (RS) is a bi-level optimization problem, and

it has been shown that, if the uncertainty region Ξ is bounded with the infinity-norm,

then this bi-level optimization problem can be equivalently transformed into a single

level LP problem [36].

1.4 Generalized Benders Decomposition

Formulation (RS) is better than either Formulation (S) or Formulation (R), be-

cause its solution is guaranteed to be feasible and usually close to be optimal for the

original formulation (SP). However, Formulation (RS) can be large scale optimization

problem when the number of scenarios, s, is large, especially the formulation includes

both integer variables and nonlinear functions. On the other hand, the optimization

problem does have a special structure, commonly known as L-shaped structure, which
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Figure 1.2: Decomposable structure of Formulation (RS)

can be exploited by decomposition algorithms for efficient solution [33].

Figure 1.2 illustrates the L-shaped decomposable structure. The first row of Fig-

ure 1.2 indicates the constraints that only contain first-stage decision variables (i.e.,

Equation (1.50)). The subsequent rows denote those constraints which contain both

first-stage decision variables (x) and second-stage decision variables (yω) for different

scenarios (i.e., Equation (1.51)). For example, the third row indicates the constraint

for scenario 2 and it only involves variables x and y2. From Figure 1.2, it can be

seen that, when x is known, the problem can be decomposed into s sub-problems

which are much easier to solve. This leads to the idea of Benders decomposition

[43] (applicable to LPs and MILPs) and generalized Benders decomposition [44] that

is an extension of Benders decomposition to nonlinear and mixed-integer nonlinear

programming problems.
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1.5 Goal of the Thesis

One of the main objectives of the thesis is to develop a new robust scenario approach

to solve two-stage supply chain optimization problems under uncertainty, where the

uncertainty region is bounded with the general p-norm. After that, the new approach

will be extended for any bounded uncertainty region.

For problems where the uncertainty region is characterized by a group of data

points instead of a bounded region, a different approach will be developed to con-

struct the bounded uncertainty region and formulate the robust scenario formulation.

Furthermore, some preliminary studies are conducted to demonstrate the compu-

tational advantages of generalized Benders decomposition for solving robust scenario

formulations with nonlinear functions, in comparison to the use of the state-of-the-art

commercial solvers, such as MOSEK [1] and CPLEX [45].

1.6 Organization of Thesis

In this thesis, Chapter 2 presents a new robust scenario formulation approach to

solve two-stage supply chain optimization problems where the uncertainty region is

bounded with the general p-norm. In Chapter 3, a robust scenario formulation ap-

proach for more general bounded uncertainty regions, and the data driven robust

scenario approach, will be discussed. In Chapter 4, application of the generalized

Benders decomposition to solving a robust scenario problem that arises from an in-

dustrial chemical supply chain problem will be discussed. Finally, in Chapter 5, the

conclusions and possible future research directions will be presented.
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Table 1.2: List of variables and parameters for the general formulation of two-stage
stochastic programming

Symbol Meaning
c Cost associated with first-stage decisions
E{·} Expected value operator
Pω Probabilities of corresponding uncertainty realizations
q̄ Nominal cost for second-stage decisions
Q(x, ξ) Total cost associated with second-stage decisions
q(ξ) Second-stage cost (that depends on uncertainty realizations)
s Number of scenarios
ti(ξ) Coefficient depending on uncertainty realization
Uω Second-stage decisions for affine approximation of yω
vω Second-stage decisions for affine approximation of yω
wi(ξ) Coefficient depending on uncertainty realization
x First-stage decision variables
y Second-stage decision variables
yω Second-stage decision variables for different uncertainty realizations
αt,i Coefficient of linear dependency of ti,ω on ξω
αq Coefficient of linear dependency of qω on ξω
βt,i Coefficient of linear dependency of ti,ω on ξω
βq Coefficient of linear dependency of qω on ξω
Ξ Uncertainty region
Ξω Uncertainty sub-regions
ξ Uncertain parameters
ξω Uncertainty realization in a scenario
ω Index of uncertainty realizations for uncertain parameter



Chapter 2

A Robust Scenario Approach for Uncertainty

Regions Bounded With the p-Norm

2.1 Reformulation of the Robust Scenario Formulation When the Uncer-

tainty Subsegions are Bounded With a Norm

For convenience of discussion, the robust scenario formulation, Formulation (RS),

described in Chapter 1, is given here again:

Formulation (RS)

min
x∈X

U1,...,Us
v1,...,vs

cTx+
s∑

ω=1

Pω(αq ξ̄ω + βq)
T (Uω ξ̄ω + vω) (2.1)

s.t. Ax ≤ b, (2.2)

max
ξω∈Ξω

{(αt,iξω + βt,i)
Tx+ wTi (Uωξω + vω)} ≤ 0, i = 1, ...,m, ω = 1, ..., s. (2.3)

Formulation (RS) is a bi-level optimization problem which in general is not easy

to solve, but it can be transformed into a single-level optimization problem if each
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uncertainty subregion, Ξω, is bounded with a norm. For convenience, let

Ξω =
{
ξω : ‖M(ξω − ξ̄ω)‖ ≤ δω

}
,

where M is related to the shape of Ξω and δω is related to the size of Ξω. In this case,

the left-hand side of Equation (2.3) can be re-written as below:

max
ξ∈Ξω
{(αt,iξω + βt,i)

Tx+ wTi (Uωξω + vω)}

= βTt,ix+ wTi vω + max
ξ∈Ξω
{(xTαt,i + wTi Uω)ξω},

= βTt,ix+ wTi vω + (xTαt,i + wTi Uω)ξ̄ω + max
ξ∈Ξω
{(xTαt,i + wTi Uω)(ξω − ξ̄ω)}.

According to the result given in [46],

max
ξ∈Ξω
{(xTαt,i + wTi Uω)(ξω − ξ̄ω)} = δω‖(xTαt,i +W T

i Uω)M−1‖∗, (2.4)

Here, ‖‖∗ indicates the dual norm [47] of the norm used to bound the uncertainty

subregions. In some cases, the explicit form of the dual norm is known. For example,

if the norm used to bound the uncertainty subregion is a p-norm, then its dual norm

is a q-norm and the relationship between p and q is: q = 1 + 1
p−1

[46]. Note that the

p-norm of a vector x ∈ Rn is ||x||p = (
∑n

i=1 |xi|p)
1/p

.

According to the above discussion, Problem (RS) can be transformed into the

following form:
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Formulation (RS-norm)

min
x∈X

U1,...,Us
v1,...,vs

cTx+
s∑

ω=1

Pω(αq ξ̄ω + βq)
T (Uω ξ̄ω + vω) (2.5)

s.t. Ax ≤ b, (2.6)

βTt,ix+ wTi vω + (xTαt,i + wTi Uω)ξ̄ω + δω‖(xTαt,i + wTi Uω)M−1‖∗ ≤ 0, (2.7)

i = 1, ...,m, ω = 1, ..., s.

Note that this reformulation is done with the assumption that the uncertainty sub-

regions Ξω can be constructed such that
⋃s
ω=1 Ξω ⊃ Ξ, which is essential to ensure

fesibillity of the optimization problem as mentioned in Chpter 1, but how to partition

the uncertainty region Ξ to generate uncertainty subregions Ξω is not trivial. For ex-

ample, when Ξ, is bounded with the infinity-norm, say, Ξ =
{
ξ : ‖M(ξ − ξ̄)‖∞ ≤ 1

}
,

the uncertainty region is box shaped and it can be easily partitioned into a number of

box subregions that can also be expressed with the infinity-norm. This is illustrated

in Figure 2.1(a). However, when Ξ is bounded with the 2-norm, then the uncertainty

region is an ellipse, as shown in Figure 2.1(b), which cannot be easily partitioned

into uncertainty subregions that can also be expressed with the 2-norm. The next

subsection will discuss how to systematically partition an uncertainty region Ξ when

it is bounded with a p-norm, such that the reformulation of Formulation (RS) into

Formulation (RS-norm) is possible.
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Figure 2.1: (a) Partitioning of uncertainty region bounded with the infinity-norm
(with 9 partition) (b) Partitioning of uncertainty region bounded with
the 2-norm into box-shaped uncertianty sub-regions is not simple

2.2 Systematic Partitioning of Uncertainty Regions Bounded with the

p-Norm

2.2.1 Partitioning of Uncertainty Regions Bounded with the Infinity-

Norm

In order to develop a general approach for partitioning the p-norm bounded un-

certainty region, we start with an easy case where the uncertainty region is bounded

with the infinity-norm. In this case, the region is box shaped and generation of box-

shaped subregions is explained via a simple example.

Assume there are two uncertain parameters. The first uncertain parameter, ξ1,

has a range [0.6 1.4] and second uncertain parameter, ξ2, has a range [0.7 1.3].
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Then, the box-shaped uncertainty region can be expressed as follows:

 0.6

0.7

 ≤
 ξ1

ξ2

 ≤
 1.4

1.3

 (2.8)

Let the middle value for the uncertain parameters be ξ̄1 = 1 and ξ̄2 = 1, then

 −0.4

−0.3

 ≤
 ξ1 − ξ̄1

ξ2 − ξ̄2

 ≤
 0.4

0.3

 (2.9)

, and

 −1

−1

 ≤
 0.4−1 0

0 0.3−1


 ξ1 − ξ̄1

ξ2 − ξ̄2

 ≤
 1

1

 . (2.10)

Equation (2.10) can also be written with the infinity-norm as

∣∣∣∣M(ξ − ξ̄)
∣∣∣∣
∞ ≤ δ

, where

M =

 0.4−1 0

0 0.3−1

 , δ =

 1

1


.

In order to construct the robust scenario formulation, we can partition Ξ into 9
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0.6 1.4

0.4 0.3 

1 (0.74,0.80)  2 (1,0.80)  3 (1.27,0.80) 

4 (0.74,1) 

7 (0.74,1.20) 

5 (1,1) 

8 (1,1.20) 

6 (1.27,1) 

9 (1.27,1.20) 

Figure 2.2: An uncertainty region bounded with the infinity-norm with 9 partitions

identical subregions, each mathematically expressed as:

∣∣∣∣M(ξω − ξ̄ω)
∣∣∣∣
∞ ≤ δω,

where δω = 1
3

for all ω, and ξ̄ω denotes the mid point for scenario/subregion ω.

The partitioning of this uncertainty region is illustrated in Figure 2.2.
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Figure 2.3: Normalization of different 2-norm bounded original uncertainty regions
into an unit circular uncertainty region centered at origin

2.2.2 Normalization of Uncertainty Regions Bounded with the p-Norm

and the Reference Box

In the example of the previous section, the ranges of uncertian parameters are dif-

ferent and they may vary from problem to problem. For convenience of analysis, we

can normalize the ranges of all uncertain parameters in a problem to [-1 1], which is

a common idea in different statistical analysis [48]. For example, when a uncertainty

region is bounded with the 2-norm, then, it can have different ellipsoidal shapes at

different locations of the parameter space, as illustrated by Figure 2.3. But after

normalization, all regions will become a unit circle centered at the origin.
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In the remaining part of this thesis, two terms, ”original uncertainty region”

and ”normalized uncertainty region” will be used frequently. ”Original uncertainty

region” refers to the uncertainty region of the parameters in the original problem.

”Normalized uncertainty region” refers to the uncertainty region of the transformed

uncertain parameters after the normalization process, and the transformed uncertain

parameters is called ”normalized uncertain parameters”.

To normalize the original uncertainty region, bounded with a p-norm, there are

several steps involved. The first step is to find the ranges of the original uncertain

parameters, ξmax and ξmin, and then shift the center of the original uncertainty region

to the origin, by introducing new uncertain parameters ξ̂ = ξ− ξ̄, where ξ̄ is the mid

values of the original uncertain parameters, ξ̄ = ξmax+ξmin
2

.

The second step is to rotate the shifted uncertainty region around the origin, by

introducing new uncertain parameters ξ̂r = M θξ̂, where the rotation matrix [49]

M θ =

 cosθ −sinθ

sinθ cosθ

 ,
and θ is the rotation angle around the origin and possess positive sign for counter

clockwise rotation.

The third step is to resize the shifted and rotated uncertainty region by introduc-

ing normalized uncertain parameters ∆ξ = MRξ̂r, such that the normalized uncertain
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Figure 2.4: Normalization process of original uncertainty region

parameters all range from −1 to 1. The resizing matrix MR is a diagonal matrix ad-

justing the size of the uncertainty region along different dimensions.

Figure 2.4 illustrates the three steps for the normalization process. If, as shown in

the figure, the original uncertainty regions is an ellipse, then after the normalization

process, the normalized uncertainty region for the normalized uncertain parameters

can be expressed with the 2-norm as Ξ∆ = {∆ξ ∈ R2 : ‖∆ξ‖2 ≤ 1}. The original un-

certainty region can then be expressed as Ξ =
{
ξ ∈ R2 : ξ = ξ̄ +M−1∆ξ, ‖∆ξ‖2 ≤ 1

}
,

where M = MRM θ.
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When the original uncertainty region is bounded with a p-norm, as

Ξp =
{
ξ : ‖M(ξ − ξ̄)‖p ≤ 1

}
,

it can be readily normalized and the normalized uncertainty region can always be

expressed as

Ξ∆,p = {∆ξ : ‖∆ξ‖p ≤ 1}

. So instead of partitioning set Ξp, we can always choose to partition set Ξ∆,p which

is only dependent on the value of p, not the features of the original uncertainty re-

gion. Figure 2.5 shows shape of different normalized uncertainty regions bounded

with different p-norms. It can be seen that the smallest box that contains any nor-

malized uncertainty regions is the normalized uncertainty region bounded with the

infinity-norm. This is formally stated as the following proposition and a proof for the

proposition is given.

Proposition 1. Let Ξ∆,p = {∆ξ ∈ Rn : ‖∆ξ‖p ≤ 1}. ∀p, q ∈ Z+

⋃
{∞}, If p < q

then Ξ∆,p ⊂ Ξ∆,q. Here Z+ denotes the set of all positive integers.

Proof. ∀p ∈ Z+,∀∆ξ ∈ Ξ∆,p, we can first see that
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Figure 2.5: Normalized uncertainty regions bounded with different p-norms

1 ≥ ‖∆ξ‖p

=
( n∑
i=1

{|∆ξi|p}
)1/p

,

≥
(

max
i=1,...n

{|∆ξi|p}
)1/p

, (2.11)

= max
i=1,...,n

{|∆ξi|},

= ‖∆ξ‖∞,

which means that, ∆ξ ∈ Ξ∆,∞ as well. So, Ξ∆,p ⊂ Ξ∆,∞.
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On the other hand,

(‖∆ξ‖p+1)p+1

=
n∑
i=1

|∆ξi|p|∆ξi|,

≤
n∑
i=1

|∆ξi|p‖∆ξ‖∞, (2.12)

= (
n∑
i=1

|∆ξi|p).‖∆ξ‖∞,

= (‖∆ξ‖p)p.‖∆ξ‖∞.

Using Equation (2.11),

(‖∆ξ‖p)p.‖∆ξ‖∞ ≤ (‖∆ξ‖p)p+1. (2.13)

Equation (2.12) and Equation (2.13) lead to ‖∆ξ‖p+1 ≤ ‖∆ξ‖p. So ∀∆ξ ∈ Ξ∆,p,

∆ξ ∈ Ξ∆,p+1 as well. Therefore, Ξ∆,p ⊂ Ξ∆,p+1.

In summary of the above discussion, Ξ1 ⊂ Ξ2 ⊂ Ξ3... ⊂ Ξ∞ and the proposition

is proved.

Proposition 1 shows that set Ξ∆,∞ is the smallest box that contains all the nor-

malized uncertainty regions bounded with the p-norm. In the remaining part of the

thesis, we call this set the reference box.
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Figure 2.6: Division of the reference box into box-shaped sub-regions

2.2.3 Subregions Generated by Partitioning of the Reference Box

According to the discussion in Section 2.2.1, the reference box Ξ∆,∞ of any normal-

ized uncertainty region Ξ∆,p, can be readily partitioned into a number of box-shaped

subregions, which can be represented as Ξω =
{

∆ξω : ‖∆ξω −∆ξ̄ω‖∞ ≤ δω
}

. Here

ω = 1, ..., s and s is the total number of scenarios. Obviously,
⋃s
ω=1 Ξω = Ξ∆,∞ ⊃

Ξ∆,p. This is illustrated through Figure 2.6.

From Figure 2.6, it can be seen that, some of the box-shaped uncertainty sub-

regions lie completely inside of the normalized uncertainty region and some of the

box-shaped uncertainty sub-regions lie completely outside of the normalized uncer-

tainty region. The box-shaped uncertainty sub-regions that lie completely outside
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of the normalized uncertainty region can be screened out as those uncertainty sub-

regions are not part of the normalized uncertainty region. The box-shaped uncertainty

sub-regions that lie completely inside of the normalized uncertainty region will always

be considered.

The box-shaped uncertainty sub-regions that lie on the boundary of normalized

uncertainty region can either be screened out or considered. When they are con-

sidered, the optimization problem over-estimates the normalized uncertainty region;

otherwise, the problem under-estimates the normalized uncertainty region. Figure 2.7

and Figure 2.8 illustrate the over-estimation and the under-estimation of the normal-

ized uncertainty region, respectively. When the number of box-shaped uncertainty

sub-regions is significantly large, the area of the uncertainty subregions on the bound-

ary is sufficiently small, and the over-estimated and the under-estimated normalized

uncertainty regions are sufficiently close, as illustrated in Figure 2.9. In this case, the

two optimization problems will have almost the same optimal objective values. Once

the normalization process is completed, then ξ̄ω in Formulation (RS-norm) will be

replaced by ξ̄ +M−1∆ξω.

2.2.4 Illustrative Example: Normalization and Partitioning

To better explain the normalization of original uncertainty region, subsequent par-

titioning of reference uncertainty region and the construction of over-estimated and

under-estimated normalized uncertainty regions, an example will be discussed in this

section. In this example, the original uncertainty region, defined by a quadratic con-

straint, is, Ξ = {ξ ∈ R2 : (ξ1 − 2)2 + (ξ2 − 3)2 ≤ 4}. From the equation, it is found
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Figure 2.7: Over-estimation of the normalized uncertainty region
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Figure 2.8: Under-estimation of the normalized uncertainty region
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Figure 2.9: Approximation of the normalized uncertainty region with many secnarios

that, the original uncertainty region is a circle having center (2,3) and radius 2. Fig-

ure 2.10 illustrates the original uncertainty region.

The normalization procedure is illustrated in Figure 2.11. First, the original uncer-

tainty region can be expressed with the 2-norm, as Ξ = {ξ ∈ R2 : ‖M(ξ − ξ̄)‖2 ≤ 1},

where

M =

 1
2

0

0 1
2

 , ξ̄ =

 2

3

 ,
and ξ̄ denotes the center of the region. By defining the new uncertain parameters

ξ̂ = ξ − ξ̄, the uncertainty region is shifted to the origin. The shifted uncertainty

region can be expressed as Ξ̂ =
{
ξ̂ ∈ R2 : ||Mξ̂||2 ≤ 1

}
. Finally, resize the shifted
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Figure 2.10: Original uncertainty region bounded with (ξ1 − 2)2 + (ξ2 − 3)2 ≤ 4

uncertainty region into a unit circle, by defining ∆ξ = Mξ̂. The normalized uncer-

tainty region can be expressed as Ξ∆ = {∆ξ ∈ R2 : ||∆ξ||2 ≤ 1}.

Once the normalization process is completed, the normalized uncertainty region,

Ξ∆, can now be covered with a box-shaped reference uncertainty region, Ξ∆,∞. This

box-shaped reference uncertainty region can now be partitioned as described in the

previous section. If there are 25 partitions of reference uncertainty region, then the

over-estimation and under-estimation of normalized uncertainty region is shown in

Figure 2.12. When uncertainty subregions that have at least one extreme point in-

side the normalized uncertainty region are considered, the normalized uncertainty

regions is over-estimated, as shown in Figure 2.12(b). All 25 subregions are consid-

ered in this case. When uncertainty subregions that have all extreme points inside

the normalized uncertainty region are considered, the normalized uncertainty region
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Figure 2.11: Normalization process of original uncertainty region bounded with (ξ1−
2)2 + (ξ2 − 3)2 ≤ 4

is under-estimated, as shown in Figure 2.12(c). In this case, only 9 uncertainty sub-

regions are considered.
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Figure 2.12: (a) Reference uncertainty region with 25 partition (b) Overestimation of
normalized uncertainty region (c) Underestimation of normalized uncer-
tainty region

2.3 Linear Programming Reformulations for the 1-Norm Constraints

With the proposed uncertainty region partitioning approach, uncertainty sub-regions,

Ξω, are always box-shaped and can be bounded with the infinity-norm, so Equation

(2.7) of Formulation (RS-norm) can always be written as:

βTt,ix+ wTi vω + (xTαt,i + wTi Uω)ξ̄ω + δω‖(xTαt,i + wTi Uω)M−1‖1 ≤ 0. (2.14)

Equation (2.14) contains a term that is involved with the 1-norm. Let yω =

(xTαt,i + wTi Uω)M−1, then Equation (2.14) can be re-written as:

βTt,ix+ wTi vω + (xTαt,i + wTi Uω)ξ̄ω + δω

n∑
j=1

|yω,j| ≤ 0. (2.15)
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Here, we explain how to reformulate the constraint involving absolute value oper-

ations into linear constraints. We use the following simplified optimization problem

for convenience of discussion.

Formulation (1)

min
x∈X

cTx (2.16)

s.t. Ax ≤ b, (2.17)

ξ̄Tx+
n∑
i=1

|yi| ≤ 0, (2.18)

yi = xTi M
−1, i = 1, ..., n, (2.19)

where n is the total number of components in y, which is also the number of

uncertain parameters in the robust scenario formulation.

Equation (2.18) of this optimization problem can be re-written. One way of re-

writing Equation (2.18) was discussed by McLean and Li [36]. It results in the

following LP problem:
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Formulation (2)

min
x∈X

cTx (2.20)

s.t. Ax ≤ b, (2.21)

ξ̄Tx+ y1 + y2 + ...+ yn ≤ 0, (2.22)

ξ̄Tx− y1 + y2 + ...+ yn ≤ 0, (2.23)

ξ̄Tx+ y1 − y2 + ...+ yn ≤ 0, (2.24)

ξ̄Tx− y1 − y2 + ...+ yn ≤ 0, (2.25)

.

.

.

yi = xTi M
−1 i = 1, ..., n, (2.26)

Comparing to the Formulation (1), this optimization problem has 2n − 1 extra

constraints. So, with the increasing numbers of uncertain parameters, the number

of constraints increases exponentially. If Formulation (1) involves a large number of

uncertain parameters, then this approach can make the problem hard to solve. To

avoid that, a new LP reformulation is proposed here.
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Formulation (3)

min
x∈X

cTx (2.27)

s.t. Ax ≤ b, (2.28)

ξ̄Tx+
n∑
i=1

ti ≤ 0, (2.29)

yi = xTi M
−1, i = 1, ..., n, (2.30)

− ti ≤ yi ≤ ti, i = 1, ..., n, (2.31)

ti ≥ 0, i = 1, ..., n. (2.32)

Here, Formulation (1) and Formulation (3) are equivalent, because, (a) both of

the optimization problems have the same objective function and (b) any x and y, that

satisfy the constraints of formulation (1), also satisfy the constraints of formulation

(3) and any x, y and t, that satisfy the constraints of formulation (3), also satisfy

the constraints of formulation (1). As a result, the feasible sets of x in formulation

(1) and formulation (3) are the same. Comparing to Formulation (1), Formulation

(3) has n extra variables and 3n − 1 extra constraints. So, the number of variables

and constraints increase linearly with n in Formulation (3), which is better than

Formulation (2). If the original optimization problem involves a large number of

uncertain parameters, then Formulation (3) is expected to perform better in terms of

computational time.
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2.4 Case Study

2.4.1 An Industrial Chemical Supply Chain from DuPont

In this section, an industrial chemical supply chain case study will be discussed

to show the effective implementation of the ideas described in the previous sections.

The industrial chemical supply chain case study problem was formulated from the

operational data, provided by DuPont [50]. The deterministic model contains 2335

variables and 1020 constraints. This supply chain network has 55 grades of Primary

Raw Materials (PRM). There is only one PRM warehouse in which PRM can be

stored. PRM can also be stored in one of the 5 on-site PRM warehouses. From

the on-site warehouses, the raw materials are sent to one of the 5 production plants

for processing into final products (FP). FP then sent to the on-site final product

warehouses. The FP has 23 different grades and can either be transported to regional

warehouses for additional storage or to the 5 regional markets to be sold to the

customers. The complete network of the supply chain problem is illustrated through

Figure 2.13.

The goal of this industrial chemical supply chain optimization problem is to de-

termine the optimal capacity for each of the plants in a way such that, the total

profit of supply chain network is maximized and the minimum customer demand at 5

different regional markets are satisfied. The uncertain parameters for this case study

are minimum demand of the different final products at each of the regional markets.

Capacities of different processing plants are the first-stage decision variables. The

second-stage decision variables are the raw material flows and product flows associ-

ated with the operation of the supply chain network. Both first stage and second
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Figure 2.13: DuPont industrial chemical supply chain network

stage decision variables are represented by continuous variables in the optimization

problem. The Robust Scenario Formulation for DuPont Industrial Chemical Supply

Chain problem with it’s deterministic formulation, related nomenclature and list of

symbols are given in Appendix A. Note that, here instead of arbitrary demand, mini-

mum demand at different markets are to be met in order to satisfy the prior contract

commitments between different markets and the producers.
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2.4.2 Demand Uncertainty

We assume that the minimum demands (Dmin
v,k ) for different grades of final products

(v) in regional markets (k) are uncertain. Specifically,

Dmin
v,k = D̄min

v,k .ξ1, k = 1, 2, 3

Dmin
v,k = D̄min

v,k .ξ2, k = 4, 5

Here, D̄min
v,k denotes the nominal demand, which is a known constant, of different

grades of final products at different regional markets. Due to different geographical

locations, there are two different groups of market. First group consists of k = 1, 2, 3

and second group consists of k = 4, 5. The uncertain parameter ξ1 determines the

minimum demands at market 1, 2, and 3, and the uncertain parameter ξ2 determines

the minimum demands at market 4 and 5.ξ1 follows a normal distribution with mean

1 and standard deviation 0.1634, and ξ2 follows normal distribution with mean 1 and

standard deviation 0.1226. The two uncertain parameters are independent of each

other. Therefore, the 95% confidence region of the two uncertain parameters is [51]:

Ξ =
{
ξ ∈ R2 : (ξ − ξ̄)TΣ−1(ξ − ξ̄) ≤ χ2

0.05,2

}
.

Here, the covariance matrix and the center of the confidence region are

Σ =

 0.0267 0

0 0.0150

 , ξ̄ =

 1

1

 ,
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and χ2
0.05,2 = 5.9915 denotes the percentage point for 5% tail for chi-squared distri-

bution (degrees of freedom = 2). Ξ can also be expressed with the 2-norm, as

Ξ = {ξ ∈ R2 : ‖M(ξ − ξ̄)‖2 ≤ 1},

where

M =

 0.4−1 0

0 0.3−1

 .
In order to normalize the uncertainty region, define ∆ξ = M(ξ − ξ̄), then the

normalized uncertainty region is Ξ∆ = {∆ξ ∈ R2 : ||∆ξ||2 ≤ 1}. The robust scenario

formulation using the normalized uncertainty region for the DuPont industrial chem-

ical supply chain optimization problem is also given in Appendix A.

Next, we discuss how to calculate the probability for each scenario/uncertainty

subregion in the robust scenario formulation. Let’s assume that we are to partition the

reference box for the normalized uncertainty region into 16 identical box subregions,

as illustrated in Figure 2.14. According to its definition, either ∆ξ1 or ∆ξ2 follows a

normal distribution with a mean of 0 and a standard deviation of 0.4086. In other

words, either ∆ξ1/0.4086 or ∆ξ2/0.4086 follows the standard normal distribution.

Therefore, the probability of the 14th uncertainty subregion in Figure 2.14 can be

calculated as:

P14 =

[
Φ−1

(−1 + 2
4
.2

0.4086

)
− Φ−1

(−1 + 2
4
.1

0.4086

)]
×
[
Φ−1

(−1 + 2
4
.1

0.4086

)
− Φ−1

(−1 + 2
4
.0

0.4086

)]
.

(2.33)
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Figure 2.14: Normalized uncertainty region with 16 sub-regions

Here Φ−1 is the inverse cumulative distribution function for standard normal dis-

tribution. Note that, here standard deviation of ∆ξ1 and ∆ξ2 are found from the

covariance matrix, Σn. If, 95% joint confidence region of normalizaed uncertain pa-

rameters, Ξ∆ = {∆ξ ∈ R2 : ∆ξTΣ−1
n ∆ξ ≤ χ2

0.05,2}, and the equation of normalizaed

uncertainty region, Ξ∆ = {∆ξ ∈ R2 : ‖∆ξ‖2 ≤ 1} are compared, then the covari-

ance matrix, Σn, can be written as Σn = 1
χ2
0.05,2

I, where I is the identity matrix and

χ2
0.05,2 = 5.9915. From the above equation, covariance matrix is,

Σn =

 0.1669 0

0 0.1669


. From this covariance matrix, standard deviations of both ∆ξ1 and ∆ξ2 can be
calculated and the standard deviations of ∆ξ1 and ∆ξ2 are,

√
0.1669 = 0.4085 and√

0.1669 = 0.4085 respectively.

In general, if the range of each uncertain parameter is divided into b subranges,
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then the probability associated with hth subrange (h = 1, · · · , b) is

Ph = Φ−1

(
−1 + 2h

b

0.4086

)
− Φ−1

(−1 + 2
b
(h− 1)

0.4086

)
.

In addition, the total number of scenarios is s = b2, and the probability for each

scenario ω (ω = 1, ..., s), Pω, is the product of the probabilities associated with the

two uncertain parameters. Note that the sum of Pω over all selected uncertainty

subregions, Ptotal, is not equal to 1 in general. In order to calculate the expected cost

for the uncertainty realizations considered in the formulation, we use the following

scaled probability, Pscaled,ω, for each considered scenario:

Pscaled,ω =
Pω
Ptotal

. (2.34)

Pscaled,ω can be viewed as the conditional probability, under the condition that only

the points in the considered uncertainty subregions can be realized.

2.4.3 Case Study Results

In this case study, we first solve the DuPont industrial chemical supply chain op-

timization problem using the new robust scenario approach, and then assess the

optimality and the feasibility of the solution using Monte Carlo simulation. The case

study problem was modeled using GAMS 24.3.1 [52], and solved in a machine with

3.40GHz CPU and Linux operating system using CPLEX 12.4 solver [45]. A relative

termination criterion of 1% was used for all the problems. For linear programming

reformulation of constraints involving the 1-norm, Formulation 3 proposed in Section

2.3, was used.
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(a) Convergence to Optimal Solution

We call the robust scenario formulation using the over-estimated uncertainty re-

gion RSF-OE, and the one using the under-estimated uncertainty region RSE-UE.

Figure 2.15 shows how the optimal objective values of the two formulations converge

with the increase of the number of scenarios. It can be seen that with increasing

number of scenarios, the optimal objective value of RSF-OE converges to the optimal

objective value of RSF-UE, within a relative tolerance of 1%. Initially, when the num-

ber of scenarios is 9 or 16, there is a significant difference (relative tolerance is more

than 1%) between the optimal objective values of RSF-OE and RSF-UE. The reason

behind it is, lack of sufficient number of scenarios for RSF-UE and RSF-OE to com-

pletely represent the normalized uncertainty region. When the number of scenarios

increased to 25, both optimal objective values converge within the relative tolerance,

which indicates that 25 scenarios are good enough to represent the normalized un-

certainty region bounded with the 2-norm. The converged optimal objective value is

$22092, and this value can be viewed as the expected profit predicted by the robust

scenario formulations at the convergence. Here, the first stage decisions, which are

the capacity of five processing plants are, 7383.81t, 1626.32t, 577.04t, 1334.23t, and

1793.55t respectively. Note that, these first stage decisions might be inconvenient

to implement due to practical purposes. For example, while building the procrssing

plants, if the choice of the capacity for first processing plant is 7000t or 7500t, then the

capacity of first processing plant can be expressed as 7000δ1 +7500δ2 in the optimiza-

tion problem, where δ1 and δ2 are binary variables and follow the equation, δ1+δ2 = 1.
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Figure 2.15: Convergence of RSF-OE and RSF-UE

(b) Evaluation of Optimality and Feasibility of Solution

The robust scenario formulation is different from the rigorous two-stage stochastic

programming formulation in the sense that the second-stage decisions are approxi-

mated as affine functions of uncertainty realizations. So we need to assess whether

the first-stage decisions obtained by solving the robust scenario formulation are as

optimal as predicted and feasible with the predefined confidence.

We use Monte Carlo simulation for this purpose. We fix the first-stage decision

variables, i.e., capacities of the processing plants, to their values at the optimal solu-

tion. And then solve a full recourse problem for each sampled uncertainty realization.
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In order to know how many sampled realizations are needed to reflect the true ex-

pected profit and the true percentage of feasibility, we keep increase the number of

sampled scenarios until the simulated expected profit and percentage of feasibility do

not change.

Figure 2.16 and Figure 2.17 give the simulation results.

Figure 2.16 illustrates the optimality test for DuPont industrial Chemical Supply

Chain problem. From Figure 2.16 it can be seen that, with sufficiently large number

of samples for normalized uncertain parameters, the predicted expected profit can be

very close to the achieved expected profit.

From Figure 2.16, at the beginning, when number of samples were small (less than

100), the difference between achieved expected profit and the predicted expected profit

was very high. With the increasing number of samples, the achieved expected profit

decreased quickly till 1000 samples. After 1000 samples, the achieved expected profit

again incresed and at 2000 samples and onwards the change in two consecutive profits

are within the relative tolerance of 1%. The profit at 2000 samples is $22096 which

is better than the predicted expected profit of $22092.

While calculating the achieved expected profit, Monte-Carlo simulation was con-

ducted with a large number of normally distributed random samples. In that case,

feasibility of the problem can be an issue. Here, the minimum desired rate of fea-

sibility is 95% which means that for all the normally distributed random samples,

atleast 95% of the problems has to be feasible. This procedure is named as feasibility

test. Figure 2.17 illustrates the feasibility test of DuPont industrial Chemical Supply

Chain problem.
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Figure 2.16: Optimality test for DuPont Industrial Chemical Supply Chain Problem

In that case, 10, 100, 500, 700, 1000, 1500, 2000, 3000 and 4000 normally dis-

tributed random uncertainty realizations for normalized uncertain parameters, ∆ξ,

were used. From Figure 2.17 it is clear that initially when the number of samples are

low, the rate of feasible problems decreases very quickly. With the increasing number

of samples, the percentage of feasibility slowly becomes constant. At 2000 samples,

the percentage of feasible problems become 99.55% which almost remained constant

(99.61%) even at 4000 samples. The feasibility rate, which is 99.55% for 2000 samples

is far better than the initial expectation of 95% feasibility.
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Figure 2.17: Feasibility test for DuPont Industrial Chemical Supply Chain Problem



Chapter 3

Robust Scenario Approaches for Robust

Optimization and Data Driven Stochastic

Programming

In Chapter 2, a general approach has been developed to effectively address uncertainty

regions bounded with the p-norm, in two-stage stochastic programming. Uncertainty

regions bounded with the p-norm can be used to represent or approximate many

symmetric and convex uncertainty regions. However, in the real life, there are cases

where uncertainty regions are asymmetric and nonconvex [53]. In this chapter, the

approach proposed in Chapter 2 will be extended to all bounded uncertainty regions.

The potential benefits of rotation of the original uncertainty region will also be dis-

cussed.

In real life industrial cases, uncertain parameters are often characterized through

historic data [54]. A data driven robust scenario formulation will be discussed for

these cases, in the second part of this chapter.



Chapter 3. Robust Scenario Approaches for Robust Optimization and
Data Driven Stochastic Programming 56

Figure 3.1: An asymmetric and nonconvex bounded uncertainty region

3.1 A Robust Scenario Approach for Robust Optimization

While a robust scenario approach is developed in Chapter 2 for uncertainty regions

bounded with the p-norm, a real life problem may have an asymmetric and nonconvex

bounded uncertainty region, such as the one shown in Figure 3.1.

Asymmetric or nonconvex uncertainty regions often arise from problems where

uncertainty regions are defined explicitly by a set of constraints, such as those from

many robust optimization problems. These robust optimization problems are often

treated as semi-infinite programming problems and solved using iterative approaches

[55] [56]. Here we discuss robust optimization problems in the following form:

min
x∈X

f(x) (3.1)

s.t. g(x, ξ) ≤ 0, ∀ξ ∈ Ξ, (3.2)

where Ξ denotes the original bounded uncertainty region that can be defined by a set

of equations and can have an arbitrary shape and f(x) is a nominal objective function.
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Like uncertainty regions bounded with the p-norm, a general bounded uncertainty

region can be normalized such that the ranges of all uncertain parameters are [-1, 1].

Take the uncertainty region in Figure 3.1 as an example, the first step towards the

normalization of the region is to determine the range of the uncertain parameters, by

solving the following optimization problems:

min ξ1 (3.3)

s.t. (ξ1, ξ2) ∈ Ξ, (3.4)

max ξ1 (3.5)

s.t. (ξ1, ξ2) ∈ Ξ, (3.6)

min ξ2 (3.7)

s.t. (ξ1, ξ2) ∈ Ξ, (3.8)

max ξ2 (3.9)

s.t. (ξ1, ξ2) ∈ Ξ. (3.10)

Let the optimal values of the problems are ξ1,min, ξ1,max, ξ2,min, ξ2,max, then the

ranges of the two uncertain parameters are [ξ1,min, ξ1,max], [ξ2,min, ξ2,max], and the cen-

ter point of the uncertainty region is defined as [ξ̄1, ξ̄2] = [
ξ1,max+ξ1,min

2
,
ξ2,max+ξ2,min

2
].

Define the new uncertain parameter vector ξ̂ = ξ − ξ̄, then the new uncertainty re-

gion is centered at the origin. In addition, define the deviated uncertainty parameter
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Figure 3.2: Normalization process for a bounded uncertainty region

vector ∆ξ = Mξ̂, where

M =

 ξ1,max−ξ1,min
2

0

0
ξ2,max−ξ2,min

2


−1

,

then the ranges of ∆ξ1 and ∆ξ2 will become [−1 1]. Figure 3.2 illustrates the

normalization process of original uncertainty region.

Once the normalization process is completed, then the normalized uncertainty re-

gion can be covered with the reference box Ξ∆,∞ = {∆ξ ∈ R2 : ‖∆ξ‖∞ ≤ 1}, and the

reference box can be partitioned into s box-shaped uncertainty sub-regions defined

as Ξω =
{

∆ξ ∈ R2 : ‖∆ξω −∆ξ̄ω‖∞ ≤ δω
}

(ω = 1, ..., s) , according to the approach

discussed in Chapter 2.
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The optimization problem, RSF-OE, that over-estimates the normalized uncer-

tainty region can be written as:

min
x∈X

f(x) (3.11)

s.t. g(x, ξω) ≤ 0, ∀ξω ∈ ΞOE
ω , ω = 1, ..., s. (3.12)

The optimization problem, RSF-UE, that under-estimates the normalized uncer-

tainty region can be written as following

min
x∈X

f(x) (3.13)

s.t. g(x, ξω) ≤ 0, ∀ξω ∈ ΞUE
ω , ω = 1, ..., s. (3.14)

Here, ΞOE
ω indicates the box-shaped uncertainty sub-regions when the normalized

uncertainty region is over-estimated and ΞUE
ω indicates the box-shaped uncertainty

sub-regions when the normalized uncertainty region is under-estimated.

3.1.1 An Illustrative Example

To demonstrate the idea of solving an optimization problem with any bounded

uncertainty region, the following simple example will be considered, where there are

two uncertain parameters (ξ1 and ξ2) and two decision variables (x1 and x2)
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Figure 3.3: Uncertainty region, Ξ of Problem (1)

Problem 1

min x2
2 −

1

2
x1 (3.15)

s.t. ξ1x1 + ξ2x2 − 1 ≤ 0, ∀(ξ1, ξ2) ∈ Ξ. (3.16)

Here the uncertainty region is defined as:

Ξ =
{
ξ ∈ R2 : 3ξ2

1 + (ξ2 − 2)2 ≤ 3, ξ1 + ξ2 ≤ 3
}
.

This uncertainty region is shown in Figure 3.3.
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To determine the ranges of ξ1 and ξ2, following optimization problems are solved:

min ξ1 (3.17)

s.t. 3ξ2
1 + (ξ2 − 2)2 ≤ 3, ξ1 + ξ2 ≤ 3, (3.18)

max ξ1 (3.19)

s.t. 3ξ2
1 + (ξ2 − 2)2 ≤ 3, ξ1 + ξ2 ≤ 3, (3.20)

min ξ2 (3.21)

s.t. 3ξ2
1 + (ξ2 − 2)2 ≤ 3, ξ1 + ξ2 ≤ 3, (3.22)

max ξ2 (3.23)

s.t. 3ξ2
1 + (ξ2 − 2)2 ≤ 3, ξ1 + ξ2 ≤ 3. (3.24)

From the solutions of the optimization problems, the ranges of ξ1 and ξ2 are [−1, 1]

and [0.268, 3.50]. Define ξ̂ = ξ − ξ̄, where

ξ̄ =

 −1+1
2

0.268+3.50
2

 =

 0

1.884

 ,
which shifts the center of the uncertainty region to the origin. Then define ∆ξ = Mξ̂,

and

M =

 1 0

0 1.616


−1

.

Now the normalized uncertainty region is the following region for ∆ξ:

Ξ∆ = {∆ξ ∈ R2 : ∆ξ = M(ξ − ξ̄), 3ξ2
1 + (ξ2 − 2)2 ≤ 3, ξ1 + ξ2 ≤ 3}
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Figure 3.4: Normalization process for Ξ

The normalization process is shown in Figure 3.4.

Now, the smallest box region that covers the normalized uncertainty region is

Ξ∆,∞ = {∆ξ ∈ R2 : ‖∆ξ‖∞ ≤ 1}, which can be partitioned to generate a set of box-

shaped subregions that over-estimates Ξ∆ and a set of box-shaped subregions that

under-estimates Ξ∆. Figure 3.5 shows the case in which Ξ∆,∞ is partitioned into 25

scenarios, resulting in an over-estimation of Ξ∆ with 23 subregions and an under-

estimation of Ξ∆ with 8 subregions.
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Figure 3.5: (a) Reference uncertainty region with 25 scenarios (b) Overestimation of
normalized uncertainty region (c) Underestimation of normalized uncer-
tainty region

The LP reformulation for either RSF-OE or RSF-UE, is given below

min x2
2 −

1

2
x1 (3.25)

s.t. ξ̄Tx+ ∆ξ̄Tω ((M−1)Tx) + δω

nξ∑
i=1

ti ≤ 1, ω = 1, ..., s,

− t ≤ (M−1)Tx ≤ t, (3.26)

t ≥ 0. (3.27)

Here, t = (t1, t2), x = (x1, x2). M determines the shape of the original un-

certainty region, ξ̄ is center of the original uncertainty region, ∆ξ̄ω is the center of

each uncertainty subregions generated from partitioning the normalized uncertainty

region, and δω determines the size of each uncertainty subregion. The derivation of

robust scenario formulation of Problem (1) is given in Appendix B.
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3.1.2 A Different Way to Partition the Original Uncertainty Region

In this section, we will first rotate the original uncertainty region and then apply

the partitioning procedure. This is motivated by the fact that, one edge of the origi-

nal uncertainty region is a straight line. If the region is rotated such that this edge is

aligned with one of the coordinate axes, then the partitioning may be more efficient

and effective.

Figure 3.6 illustrates the normalization process of original uncertainty region,

when the original uncertainty region of Problem (1) is rotated around the origin by

450 counter clockwise using the following rotation matrix:

M θ =

 cos45◦ −sin45◦

sin45◦ cos45◦

 =

 1√
2
−1√

2

1√
2

1√
2

 .
The relationship between the original uncertain parameters ξ, and the normalized

uncertain parameters ∆ξr, is ξ = (M θ)−1(ξ̄r + M−1∆ξr). Partitioning of the refer-

ence box and the resulting overestimation of the normalized uncertainty region and

underestimation of the normalized uncertainty region are illustrated in Figure 3.7.

The LP reformulation for RSF-OE or RSF-UE is given below:

min x2
2 −

1

2
x1 (3.28)

s.t. ξ̃r
T
x+ (∆ξ̄rω)T (M̂Tx) + δω

nω∑
i=1

ti ≤ 1, ω = 1, ..., s,

− t ≤ M̂Tx ≤ t, (3.29)

t ≥ 0, (3.30)
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Figure 3.6: Uncertainty region rotation and normalization

Here, ξ̃rω = (M θ)−1ξ̄ω
r

and M̂ = (M θ)−1M−1 =

 0.707 −0.707

1.143 1.143

.

3.1.3 Benefit of Rotation of the Uncertainty Region

Figure 3.8 shows the optimal objective values of RSF-OE and RSF-UE for both

rotated and un-rotated original uncertainty region cases, for up to 900 scenarios. It

can be seen that, initially there are large differences between the optimal objective

values of RSF-OE and RSF-UE (for both un-rotated and rotated original uncer-

tainty regions), which indicates that, the numbers of scenarios are not sufficient to
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Figure 3.7: (a) Reference uncertainty region with 25 scenarios (b) Overestimation of
uncertainty region (c) Underestimation of uncertainty region

completely represent the normalized uncertainty region. Figure 3.9 illustrates the

optimal objective values of RSF-OE and RSF-UE for both rotated and un-rotated

original uncertainty region cases from 2500 to 22500 scenarios. It can be seen that,

with the increasing number of scenarios, the difference between the optimal objective

values of RSF-OE and RSF-UE decreases (for both un-rotated and rotated original

uncertainty regions), which indicates, when the number of scenarios are large, the

normalized uncertainty region is better represented comparing to the situation where

number of scenarios were low.

From Figure 3.9, the optimal objective values of RSF-OE and RSF-UE optimiza-

tion problems converge at 22500 scenarios (within the relative tolerance of 1%), for

un-rotated original uncertainty region case and the optimal objective value is 0.658.

The number of scenarios required for the convergence of RSF-OE and RSF-UE for

the rotated original uncertainty region case are 16900 and the optimal objective value
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Figure 3.8: Convergence of RSF-OE and RSF-UE, Scenario 9-900

is 0.654. When original uncertainty region was rotated 450 counter clockwise, it took

a less number of scenarios for the convergence of RSF-OE and RSF-UE comparing

to the case of un-rotated original uncertainty region.

3.2 A Robust Scenario Approach for Data Driven Stochastic Program-

ming

In the industry, the values of uncertain parameters over the previous time periods

are often recorded, so the uncertainty region for the parameters can be reflected by

the historic data. For example, if there are two uncertain parameters, the uncertainty
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Figure 3.9: Convergence of RSF-OE and RSF-UE, Scenario 2500-22500

region can be reflected by a scatter plot with historical data, as shown in Figure 3.10.

In this section we give some preliminary discussion regarding the solution of data

driven stochastic programming problems via a robust scenario approach.

3.2.1 Normalization and Partitioning Process for Data Driven Stochastic

Programming

We use the example in Figure 3.10 to demonstrate how the data set can be nor-

malized, a bounded box can be constructed and partitioned to formulate a robust

scenario formulation. First, find out the ranges of each uncertain parameter, and the

mid points of the uncertain parameter ranges give the center of the data set, ξ̄. Then
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Figure 3.10: Representation of uncertain parameters using a data set

shift the center to the original by defining ξ̂ = ξ − ξ̄.

Next, construct the smallest box that covers a given percentage, say 95%, of the

data points. Enforce the ratio of the two edges of the box to be σ1
σ2

, where σ1 is the

standard deviation of data set of ξ1 and σ2 is the standard deviation of data set of ξ2.

The size of the box can be determined by a trial and error procedure. For example,

one can start the procedure with a box that covers all the data points, and keep

reducing the size of the box until only 95% of data points are covered. We call the

box obtained at the end of this procedure be the reference box, and let the edges of

the box be a and b.

After the reference box is constructed, define the normalized uncertain parameters
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∆ξ = Mξ̂, where

M =

 a 0

0 b


−1

.

Finally, the reference box can be readily partitioned into a number of box-shaped

uncertainty subregions. Figure 3.11 illustrates the overall process, in which 9 box

uncertainty subregions are generated at the end.

The probability of each uncertainty sub-region can be calculated according to the

percentage of data points inside the sub-region.

Pω =
nω
n
, ω = 1, ..., s (3.31)

Where,

Pω = Probability of uncertainty subregion ω,

nω = Number of data point inside uncertainty subregion ω,

n = Total number of data point inside the reference box.

3.2.2 Case Study Results

The DuPont industrial chemical supply chain problem studied in Chapter 2 is again

used for a case study. Here we assume that we do not know the distributions of the

two uncertain parameters, but know some data points for the parameters that were

previously recorded. We need to guarantee the feasibility of the solution with a con-

fidence level of 95%. We consider three cases here, where 100, 500, and 1000 data

points are available for stochastic programming. We sample the data points randomly
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Figure 3.11: Normalization of original uncertainty region described as data set and
partitioning of reference box

using the normal distributions considered in Chapter 2. The relative tolerance for

solving all optimization problems was 1%.

Table 3.1 summarize the solution results for the three cases. The predicted ex-

pected profit refers to the optimal objective value of the robust scenario formulation,

i.e., the profit predicted by the formulation. The achieved expected profit refers to
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the expected profit that can be really achieved by the obtained solution, and the

percentage of feasibility refers to the probability of the solution for satisfying all con-

straints. The achieved expected profit and the percentage of feasibility are estimated

by first fixing the first-stage decision variables to the solution, and then calculate the

average profit and the percentage of feasibility for 8000 randomly sampled uncertainty

realizations. 8000 samples are enough for a good estimation, as the estimation results

do not change when more samples are generated.

It can be seen from Table 3.1 that, when 100 and 500 samples were considered,

the percentage of feasibility were below the desired confidence level of 95%. This is

due to the fact that, the numbers of data points available for charactering the desired

uncertainty region were not enough. When the number of available data points was

1000, the obtained solution achieved a satisfactory percentage of constraint satisfac-

tion. On the other hand, the difference between the predicted and achieved expected

profits deceases slightly with the increase of available samples, but the differences are

all within the optimization tolerance.

Here we also give more details about the uncertainty region construction and

Table 3.1: Computational Results for the data driven robust scenario formulation
with different numbers of available samples

Number of Samples
Predicted Expected

Profit ($)
Achieved Expected

Profit ($)
Percentage of
Feasibility (%)

100 22654 22870 94.05
500 22704 22913 93.15
1000 22579 22786 98.76
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Figure 3.12: 100 samples and the corresponding reference uncertainty box

normalization. When there was 100 available samples,

ξ̄ =

 0.8924

1.0119

 , σ1

σ2

= 0.967, M−1 =

 0.4 0

0 0.3

 ,
and the normalized data points and reference box are shown in Figure 3.12.

When there were 500 available samples,

ξ̄ =

 1.0018

1.0047

 , σ1

σ2

= 1.054, M−1 =

 0.4 0

0 0.3

 ,
and the normalized data points and reference box are shown in Figure 3.13.
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Figure 3.13: 500 samples and the corresponding reference uncertainty box

When there were 1000 available samples,

ξ̄ =

 0.9986

1.0038

 , σ1

σ2

= 1.030, M−1 =

 0.4 0

0 0.3

 ,
and the normalized data points and reference box are shown in Figure 3.14.
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Figure 3.14: 1000 samples and the corresponding reference uncertainty box



Chapter 4

Nonlinear Robust Constraints and Decomposition

Based Optimization

In Chapters 2 and 3, the normalized bounded uncertainty region is partitioned into

box-shaped uncertainty subregions that are bounded with the infinity-norm. The

resulting robust constraints can be reformulated into linear constraints and then the

robust scenario formulation becomes a LP problem that can be solved efficiently with

start-of-the-art LP solvers such as CPLEX. However, when the uncertainty subregions

are bounded with nonlinear constraints, the resulting robust scenario formulation is a

nonlinear programming (NLP) problem. When the size of the NLP problem is large,

the solution time may be prohibitively large, even if the problem is convex. In this

chapter, we discuss applying a decomposition-based optimization method for solving

nonlinear robust scenario formulations and demonstrate the benefit of it through a

case study.
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4.1 Non-linear Robust Constraints

In Chapter 2, a new robust scenario approach was discussed where after normaliza-

tion, the normalized uncertainty region was partitioned into box shaped uncertainty

subregions, and over-estimation and under-estimation of the normalized uncertainty

region are achieved with parts of the uncertainty subregions. When the normalized

uncertainty region is partitioned into more uncertainty subregions with smaller sizes,

the over- and under-estimated uncertainty region will converge. In principle, the

normalized uncertainty region can be partitioned into uncertainty subregions with

other shapes that are defined by nonlinear constraints (such as ellipsoids). Using

uncertainty subregions defined by nonlinear constraints may be beneficial if (a) the

normalized uncertainty region is shaped or structured in a way that, when nonlinearly

constrained subregions are used, fewer number of uncertainty subregions are needed

for the convergence; or (b) from the uncertainty distribution, nonlinearly constrained

subregions can lead to more precise estimate of expected costs. Figure 4.1 compares

the cases where the normalized uncertainty is approximated by box subregions and

ellipsoidal subregions.

With nonlinearly constrained uncertainty subregions, the robust scenario formu-

lation is nonlinear. For example, if circular uncertainty subregions are used, i.e., the

subregions can be expressed as

Ξω = {∆ξω ∈ R2 : ‖∆ξω −∆ξ̄ω‖2 ≤ δω}, ω = 1, ..., s.

Here, (∆ξω − ∆ξ̄ω) indicates the center of each circular uncertainty sub-regions. In

this case, the robust scenario formulation can be written as:
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( )a (b)

Figure 4.1: (a) Uncertainty sub-regions are bounded with the infinity-norm (b) Un-
certainty sub-regions are bounded with the 2-norm

Formulation (RS-norm-2)

min
x∈X

U1,...,Us
v1,...,vs

cTx+
s∑

ω=1

Pω(αq ξ̄ω + βq)
T (Uω ξ̄ω + vω) (4.1)

s.t. Ax ≤ b, (4.2)

βTt,ix+ wTi vω + (xTαt,i + wTi Uω)ξ̄ω + δω‖(xTαt,i + wTi Uω)M−1‖2 ≤ 0, (4.3)

i = 1, ...,m, ω = 1, ..., s.

The above problem has a L-shaped structure as shown in Figure 1.2 in Chapter 1,

and it is a second-order cone programming (SOCP) problem which is convex [57].

Therefore, this problem can be solved via generalized Benders decomposition that is

introduced in Chapter 1, which can be much more efficient than any classical convex

optimization method, especially when the problem size is large.
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4.2 Generalized Benders Decomposition Algorithm

This section describes the generalized Benders decomposition algorithm for solving

the robust scenario problem. Consider the following form of problem, which the

robust scenario problem can be written into:

Problem (P)

min
x,y1,...,ys

s∑
ω=1

(
cTx,ωx+ cTy,ωyω

)
(4.4)

s.t. Aωx+ gω(yω) ≤ 0 (4.5)

x ∈ X (4.6)

yω ∈ Yω, ω = 1, ..., s (4.7)

Here X is a nonempty compact set, gω(yω) is a convex function of yω, and Yω is

a convex set, for all the scenarios (ω = 1, ..., s) used in the optimization problem.

In generalized Benders decomposition, Problem (P) is solved by solving a number of

subproblems iteratively, namely, primal problem, feasibility problem, relaxed master

problem, and feasibility relaxed master problem.

The primal problem is constructed by fixing x = xk at the kth iteration of general-

ized Benders decomposition algorithm, and it can be decomposed into s subproblems,

each in the following form:
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Problem (PP k
ω)

objPPkω = min
x,y1,...,ys

s∑
ω=1

(
cTx,ωx+ cTy,ωyω

)
(4.8)

s.t. Aωx
k + gω(yω) ≤ 0 (4.9)

yω ∈ Yω (4.10)

From the formulation it can be seen that, Problem (PP k
ω ) is easy to solve compar-

ing to the problem (P ). The reason for that is, it only involves second stage decision

variables as xk is fixed to a constant value in this problem and also the size of the

problem (PP k
ω ) is not dependent on the number of scenarios involved in the original

problem (P ).

There is a possibility that problem (PP k
ω ) might be infeasible. In that case a fea-

sibility problem will be solved and that too can be decomposed into s sub-problems

in the following form.

Problem (FP k
ω)

objFPkω = min
yω ,Gω

‖Gω‖1 (4.11)

s.t. Aωx
k + gω(yω) ≤ 0 (4.12)

yω ∈ Yω (4.13)

zω ≥ 0 (4.14)

Here, ‖‖1 denotes the 1-norm and Gω is slack variable. In the first iteration, x is
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chosen as any arbitrary value. In the subsequent iterations, the value of x is generated

by solving another optimization problem, named, relaxed master problem.

Problem (RMP k)

min
x,η

η (4.15)

s.t. η ≥
s∑

ω=1

objPP jω +

[
s∑

ω=1

(
cTx,ω +

(
λjω
)
Aω
)] (

x− xj
)
, ∀j ∈ T k (4.16)

0 ≥
s∑

ω=1

objFP jω +

[
s∑

ω=1

(
µiω
)T
Aω

] (
x− xj

)
, ∀i ∈ Rk (4.17)

x ∈ X (4.18)

Here the index set can be defined as following.

T k = {j ∈ {1, ..., k} : Problem (P) is feasible for x = xj}

Rk = {i ∈ {1, ..., k} : Problem (P) is infeasible for x = xi}

Here λjω indicates the Lagrangian multipliers for Equations (4.9) of Problem (PP k
ω )

and µjω indicates the Lagrangian multipliers for Equations (4.12) of Problem (FP k
ω ).

Equations (4.16), which are obtained from the solution of primal sub-problems, are

known as optimality cut. Equations (4.17), which are obtained from the solution

of the feasibility sub-problems, are known as feasibility cut. As Problem (RMP k)

contains only first stage decision variable x and it’s size is independent of the num-

ber of scenarios, hence Problem (RMP k) is much easier to solve comparing to the

original Problem (P). At the initial iterations, the set T k might be empty because of
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the possible infeasibility of Problem (P) for all the chosen value of x. Because of this,

Problem (RMP k) may be unbounded at initial few iterations. For these iterations,

feasibility relaxed master problem is solved.

Problem (FRMP k)

min
x
‖x‖1 (4.19)

s.t. 0 ≥
s∑

ω=1

objFP jω +

[
s∑

ω=1

(
µiω
)T
Aω

] (
x− xj

)
, ∀i ∈ Rk (4.20)

x ∈ X (4.21)

Generalized Benders decomposition solves the primal problem (PP k
ω ) or Feasi-

bility problem (FP k
ω ) and Relaxed Master Problem (RMP k) or Feasibility Relaxed

Master Problem (FRMP k) in an iterative manner. The solutions of Problem (PP k
ω )

provides a sequence of upper bounds for the Problem (P) and the solutions of Prob-

lem (RMP k) provides a sequence of lower bounds for the Problem (P). When the

upper bound and lower bound converges then an optimal solution is obtained. The

generalized benders decomposition algorithm is given below.

1. Initiation: Set a sufficiently large upper bound, UBD = M and a large lower

bound, LBD = −M . Here, M > 0, tolaerance limit, ε > 0, iteration counter, k = 1

and T 0 = R0 = ∅. The initial value of x is selected as x1
0.

2. Primal Problem: Primal Problem (PP k
ω ) is solved for all the scenarios,

ω = 1, ..., s.
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3. Feasible Primal: If Problem (PP k
ω ) is feasible for all the scenarios, ω = 1, ..., s,

then an optimal solution ykω, the associated Lagrange multipliers λkω and the optimal

objective value objPPkω can be obtained. Set T k = T k−1
⋃
{k}, Rk = Rk−1, and add

an optimality cut to the relaxed master problem. If
∑s

ω=1 objPPkω < UBD, then set

UBD =
∑s

ω=1 and (x∗, y∗1, ..., y
∗
s) = (xk, yk1 , ..., y

k
s ).

4. Infeasible Primal: If Problem (PP k
ω ) is infeasible for some ω, then solve

(FP k
ω ) and obtain Lagrange multipliers µkω and the optimal objective value objFPkω .

Set Rk = Rk−1
⋃
{k}, T = T k−1, and add a feasibility cut to the relaxed master

problem.

5. Relaxed Master problem:

(a) If T k = ∅, solve Problem (FRMP k). If the problem is feasible and an optimal

solution x̂ is obtained, set xk+1 = x̂.

(b) If T k 6= ∅, solve RMP k. If thje problem is feasible and an optimal solution (x̂, η̂)

is obtained, set xk+1 = x̂ and LBD =, η̂.

6. Termination Check: If Problrm (FRMP k) or (RMP k) is infeasible, termi-

nate and Problem (P) is infeasible. If UBD ≤ LBD+ ε, terminate and (x∗, y∗1, ..., y
∗
s)

is an optimal solution of Problem (P); otherwise, set k = k + 1 and go to step 2.
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4.3 Computational Study

The goal of the case study is to apply the generalized Benders Decomposition al-

gorithm to solve a nonlinear robust scenario formulation for the DuPont industrial

supply chain problem. This formulation is modified from the one studied in Chap-

ter 2. In this formulation, first-stage decisions (i.e., the capacities of the processing

plants) are integer rather than continuous variables, and the impurity constraints are

removed to avoid some numerical problems. The full formulation and the subproblems

that are to be solved in generalized Benders decomposition are given in Appendix C.

The dual norm functions involved in the subproblems are assumed to be the 2-norm

(i.e., the uncertainty subregions are assumed to be ellipsoidal). This assumption is

merely to yield nonlinear robust constraints for the computational study, and it does

not mean that the ellipsoidal uncertainty subregions are better than box uncertainty

subregions in terms of approximating the original uncertainty region.

All the case study problems and subproblems solved in generalized Benders de-

composition algorithm were modeled in GAMS 24.3.1 and the main algorithm of

Benders decomposition was implemented in MATLAB 2014a. GDX facility, provided

by MTLAB, was used to exchange operational data of the case study between GAMS

and MATLAB. Primal problem (PP k
ω ) and feasibility problem (FP k

ω ) was solved us-

ing MOSEK 7.1. Relaxed master problem (RMP k) and Feasibility relaxed master

problem (FRMP k) was solved in CPLEX 12.4. A machine having 3.40 GHz CPU, 8

GB RAM and Linux operating system was used to solve all the sub-problems. A rel-

ative termination criterion of 1% was used for solving the supply chain optimization

problem.
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Table 4.1: Comparison of computational times for different numbers of scenarios

Scenarios MOSEK time (s)
GBD

total time (s)
GBD

solving time (s)
1 1.80 11.03 3.08
9 19.57 14.85 5.48
25 256.46 194.58 67.54
49 424.23 364.87 147.31
81 564.47 487.79 189.54
121 387.92 346.12 126.48
169 641.29 488.31 154.73

The computational results for the robust scenario are given in Table 4.1. MOSEK

time refers to the CPU time for MOSEK to solve the robust scenario problem directly.

GBD solver time refers to the CPU for generalized Benders decomposition to solve

all subproblems before the convergence. GBD total time refers to the wall time for

generalized Benders decomposition to solve all subproblems before the convergence,

including the GBD solving time and the computing overhead.

It can be seen from Table 4.1 that, MOSEK solution time is much faster than

Benders decomposition for the case where only one scenario was involved. With the

increasing number of scenarios, MOSEK solution time increased rapidly. As a result,

when the number of scenarios was greater than 1, generalized Benders decomposition

requires less time than MOSEK to solve the problem. it can also be seen that, solv-

ing time for generalized Benders decomposition is significantly shorter than the total

time for executing the generalized Benders decomposition. This significant difference

is due to the data exchange from GAMS to MATLAB through GDX facility. More
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Figure 4.2: Comparison of computational times

efficient implementation of Benders decomposition, e.g. using a unified programming

language/platform such as C++ and Python, can reduce the time required for data

exchange and therefore reduce the total time required. The computational results in

the table are also visualized in Figure 4.2. With the increasing number of scnarios,

the problem size also increases, as a result, it should take more time to solve GBD

algorithm when problem size is large. But, when the number of scenarios are 121,

it took less time for GBD to solve the problem. The main reason behind it is less

number of iterations to solve GBD when number of scenarios are 121.

Table 4.2 provides more details of the computational study results for different
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Table 4.2: Other computational results

Scenarios 1 9 25 49 81 121 169
GBD Iterations 8 12 23 38 48 29 35
PP solving time 1.9 2.54 29.28 59.27 97.85 42.65 54.78
FP solving time 1 1.12 30.42 59.98 76.9 83.51 68.92
RMP solving time 0.176 0.006 0.232 0.085 0.033 0.058 0.048
FRMP solving time 0 0 0.025 0.058 0.029 0.263 0.182
Constraints 13850 126411 290750 512270 955311 1342970 18996770
Continuous variables 18531 166731 389031 685431 1278231 1796931 2537931
Integer Variables 5 5 5 5 5 5 5

numbers of scenarios, including the problem size, number of iterations, times for

different subproblems.
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Summary and Conclusions

A general approach is proposed in this thesis to solve two-stage stochastic program-

ing with recourse that comes from strategic supply chain optimization problem where

uncertainty region is bounded with the p-norm. The synergy of the classical scenario

approach, which commonly provides good optimality and the robust approach, that

can guarantee feasibility of a problem, named robust scenario formulation, was used

in this thesis to solve the two-stage stochastic programing with recourse. In this

general approach, after the normalization of uncertainty region bounded with the p-

norm, the normalized uncertainty region can be covered with a reference uncertainty

region which is bounded with the infinity-norm. That reference uncertainty region

was divided into box shaped subregions. A optimization problem was solved where

the original p-norm bounded uncertainty region was overestimated with boxes. The

criterion of overestimation was, if any one extreme points of an uncertainty subregion

was inside the original p-norm bounded uncertainty region, then that uncertainty

sub-region was included in the optimization problem. Another optimization problem

was solved where the original p-norm bounded uncertainty region was underestimated
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with boxes. The criterion of underestimation was, if all extreme points of an uncer-

tainty subregion was inside the original p-norm bounded uncertainty region, then that

uncertainty sub-region was included in the optimization problem. When the optimum

objective of both of the optimization problems were converged to a constant within a

given tolerance then it was assumed that, enough partitioning was done to represent

the uncertainty region bounded with the p-norm. Since the rectangular uncertainty

sub-regions were described by the infinity-norm, the optimization problems to be

solved had constraints involving the 1-norm, and these constraints were transformed

into linear constraints. A new approach was introduced to reform the constraint in-

volving 1-norm which prevent the exponential growth of constraints comparing to the

procedure applied in the literature [36]. Here in the new approach, the growth rate of

constraints was linear. A case study provided by DuPont successfully demonstrated

all the concepts mentioned above where profit was maximized by satisfying minimum

demand of final products in the market.

To verify the optimality of the optimal profit obtained via the robust scenario ap-

proach, Monte Carlo simulation was conducted. In Monte Carlo simulation, different

number of samples of uncertain parameters were used to calculate the expected profit.

With very large number of samples, the calculated expected profit was higher than

the predicted profit form the model. To verify the feasibility of the solution obtained

via the robust scenario approach, again Monte Carlo simulation was conducted. In

Monte Carlo simulation, different number of samples of uncertain parameters were

used to calculate the percentage of feasibility. For each case, the percentage of the

samples for which the solution was feasible, calculated. With very large number of
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samples, the calculated feasible percentage was greater than the initial target of 95%.

When the uncertainty region had any bounded arbitrary shape then the approach

of normalization, underestimation of uncertainty region, overestimation of uncertainty

region was applied. In that case, a nominal objective function was used. In this the-

sis, an example was showed in that regard where uncertainty region has arbitrary

bounded shape. Rotation of uncertainty region might have influence reducing the

number of scenarios required to represent the uncertainty region. Another example

was showed where the same uncertainty region was rotated to 450 counter clockwise

and then the similar approach of normalization, underestimation of uncertainty re-

gion, overestimation of uncertainty region was be applied. From the result it was

evident that, rotation of uncertainty region reduced the number of scenarios required

to converge to the optimal solution.

In industrial practice, it is more practical to represent uncertain parameter with

scattered data point instead of a given uncertainty region. In that case a new approach

was proposed named data driven robust scenario formulation. In that approach, after

rejecting the outliers, a reference box, bounded with the infinity-norm, was chosen

which covered 95% of the data points. Then, after normalization, the reference un-

certainty box was partitioned into smaller uncertainty sub-regions of box shape. The

exclusion criterion of an uncertainty sub-region form the optimization problem was, it

must contain atleast one data point. The expected value of the uncertainty sub-region

in that case was the average of all the data point inside the uncertainty sub-region.

DuPont industrial chemical supply chain case study was also chosen to demonstrate
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the effectiveness of the approach. In that case study, different number of samples

for uncertain parameters(100, 500 and 1000) were used. When the number of sam-

ples were 100 and 500, the achieved expected profit was higher than the predicted

expected profit but the percentage of feasible cases were less than the desired target

of 95%. It indicates less number of samples were considered to represent uncertain

parameters. When the number of samples for uncertain parameters were 1000, the

achieved expected profit was also higher than the predicted expected profit. This time

the percentage of feasibility was greater than the desired target of 95%. It indicates

enough samples were considered to completely represent uncertainty region.

Previously, for the p-norm bounded uncertainty region, it was assumed that, the

uncertainty subregions were bounded with the infinity-norm resulting in the linear

robust constraint as dual norm of the infinity-norm is the 1-norm. But if it is as-

sumed that, uncertainty subregions are bounded with the 2-norm then resulting ro-

bust constraint will be non-linear as dual norm of the 2-norm is the 2-norm itself. In

this thesis, generalized Benders decomposition algorithm was studied for simplified

DuPont industrial chemical supply chain problem where the uncertainty subregions

were bounded with the 2-norm. It was found from the DuPont industrial chemical

supply chain case study that, with the increasing number of scenarios, MOSEK so-

lution time increased. As a result, when the number of scenarios were greater than

1, generalized Benders decomposition required lesser time than MOSEK to solve the

problem.
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Future work of this thesis may involve to find out a general framework to deter-

mine the best rotation angle of original uncertainty region so that minimum screening

of uncertainty sub-regions from reference uncertainty region is required. Also, instead

of using box shaped uncertainty sub-regions, p-norm bounded uncertainty subregion

or a combination of box shaped uncertainty subregion and p-norm bounded uncer-

tainty subregion can be considered. When uncertainty subregions are bounded with

the p-norm, then that uncertainty subregions can be mapped into spherical coordi-

nate system, resulting in a box-shaped uncertainty subregion. This procedure may

lead to non-linear relationship between, qω and ξω, ti,ω and ξω, yω and ξω. In that

case, tractable reformulation of robust constraint in Formulation (RS) is currently

not known and determining the tractable reformulation of robust constraint in that

particular case can be considered as future research direction. In future, there may be

a requirement to transfer the single period optimization problem to multi-period op-

timization problem for better operational performance. In that case the single period

optimization problem can be transformed into multi-period optimization problem.



Bibliography 93

Bibliography

[1] MOSEK Modeling Manual. pages 1–98, 2014.

[2] J. Geunes and P. M. Pardalos. Supply Chain optimization. Springer, New York,

2005.

[3] Gabriela P. Ribas, S. Hamacher, and A. Street. Optimization under uncertainty

of the integreted oil supply chain using stochastic and robust programming.

International Transaction in Operation Research, 17(6):777–796, 2010.

[4] H. M. S. Lababidi, M.A. Ahmed, and I. M. Alatiqi. Optimizing the supply chain

of a petrochemical company under uncertain operating and economic conditions.

Industrial and Engineering Chemistry, 43(9):63 – 73, 2004.

[5] B. E. Wafa, H. M. S. Lababidi, and I. M. Alatiqi. Supply chain optimization of

petroleum organization under uncertainty in market demands and prices. Euro-

pean Journal of Operation Research, 189(3):822 – 840, 2008.

[6] A. Heungjo, W. E. Wilhelm, and S.W. Searcy. Biofuel and petroleum-based fuel

supply chain research: A literature review. Biomass and Energy, 35(9):3763–

3774, 2011.



Bibliography 94

[7] X. Li, E. Armagan, A. Tomasgard, and P.I. Barton. Stochastic pooling prob-

lem for natural gas production network design and operation under uncertainty.

AIChE Journal, 57(8):2120–2135, 2011.

[8] M. Lalmazloumian, K. Y. Wong, K. Govindan, and D. Kannan. A robust opti-

mizationmodel for agile and build-to-order supply chain planning under uncer-

tainties. Annals of Operations Research, 5(1):1–37, 2013.

[9] S. Barker, E. Audsley, and D. Parsons. A two-stage stochastic programming

with recourse model for determining robust planting plans in horticulture. The

Journal of Operation Research Society, 51(1):83–89, 2014.

[10] N. Shah. Pharmaceutical supply chains: key issues and strategies for optimisa-

tion. Computers and Chemical Engineering, 28(6-7):929–941, 2004.

[11] L. Papageorgiou, G. Rotstein, and N. Shah. A two-stage stochastic program-

ming with recourse model for determining robust planting plans in horticulture.

Industrial and Engineering Chemistry Research, 40(1):275–286, 2001.

[12] G. Gatica, L. Papageorgiou, and N. Shah. Capacity planning under uncertainty

for the pharmaceutical industry. Trans IChemE, 81(July):665–678, 2003.

[13] R. Sausa, S. Liu, and L. Papageorgiou. Global supply chain planning for pharma-

ceuticals. Chemical Engineering Research and Design, 89(11):2396–2409, 2011.

[14] O. Akgul, N. Shah, and L. Papageorgiou. Design under uncertainty of hydrocar-

bon biorefinery supply chains: Multiobjective stochastic programming models,

decomposition algorithm, and a comparison between cvar and downside risk.

AIChE Journal, 58(7):101–114, 2012.



Bibliography 95

[15] H. An, W. Wilhelm, and S. Searcy. Biofuel and petroleum-based fuel supply

chain research: A literature review. Biomass and Bioenergy, 35(9):3763–3774,

2011.

[16] C. Chen and Y. Fan. Bioethanol supply chain system planning under supply

and demand uncertainties. Transportation Research Part E: Logistics and Trans-

portation Review, 48(1):150–164, 2012.

[17] B. Gebreslassie, Y. Yao, and F. You. Design under uncertainty of hydrocar-

bon biorefinery supply chains : Multiobjective stochastic programming models

, decomposition algorithm , and a comparison between cvar and downside risk.

AIChE Journal, 58(7):2155–2179, 2012.

[18] M. Dal-mas, S. Giarola, S. Zamboni, A. Bezzo, and Fabrizio. Strategic design and

investment capacity planning of the ethanol supply chain under price uncertainty.

Biomass and Bioenergy, 35(5):2059–2071, 2011.

[19] W. Chen, Y. Li, and G. Huang. A two-stage inexact-stochastic programming

model for planning carbon dioxide emission trading under uncertainty. Applied

Energy, 87(3):1033–1047, 2010.

[20] S. Liu, J. Jian, and Y. Wang. A robust optimization approach to wind farm

diversification. International Journal of Electrical Power and Energy Systems,

53(1):409–415, 2013.

[21] M. Dal-mas, S. Giarola, S. Zamboni, A. Bezzo, and Fabrizio. Stochastic opti-

mization of medical supply location and distribution in disaster management.

International Journal of Production Economics, 126(1):76–84, 2010.



Bibliography 96

[22] G. Zhu, J. Bird, and G. yu. A two-stage stochastic programming approach

for project planning with uncertain activity durations. Journal of Scheduling,

10(3):167–180, 2007.

[23] F. Bobonneau, J. Vial, and R. Apparigliato. Uncertainty and environmental

decision making. Biomass and Bioenergy, 35(5):2059–2071, 2011.

[24] G. Guille and I. Grossmann. Optimal design and planning of sustainable chemical

supply chains under uncertainty. AIChE Journal, 55(1):99–121, 2009.

[25] A. Nikolopoulo and M.G. Ireapetritou. Optimal design of sustainable chemical

process and supply chains: A review. Computers and Chemical Engineering,

44(1):94–109, 2012.

[26] L. G. Papageorgiou. Supply chain optimisation for the process industries: Ad-

vances and opportunities. Computers and Chemical Engineering, 33(1):1931–

1938, 2009.

[27] L. E. Grossmann and G. Guillen-Gosalbez. Scope for the application of math-

ematical programming techniques in the synthesis and planning of sustainable

processes. Computers and Chemical Engineering, 34(1):1365–1376, 2010.

[28] A. Gupta and C. Manaras. Managing demand uncertainty in supply chain plan-

ning. Computers and Chemical Engineering, 27(8-9):1219–1227, 2003.

[29] M. Dal-mas, S. Giarola, S. Zamboni, A. Bezzo, and Fabrizio. Strategic design and

investment capacity planning of the ethanol supply chain under price uncertainty.

Biomass and Bioenergy, 35(5):2059–2071, 2011.



Bibliography 97

[30] N. B. Sahinidis. Optimization under uncertainty: State-of-the-art opportunites.

Computers and Chemical Engineering, 28(1):971–983, 2004.

[31] L. E. Grossmann and G. Guillen-Gosalbez. Multi-stage stochastic optimization

applied to energy planning. Mathematical Programming, 52(1):359–375, 1991.

[32] K. Huang. Multi-stage stochastic programming models for production planning.

PhD thesis, Georgia Institute of Technology, 2005.

[33] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer,

New York, 1997.

[34] A. Bental, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust

solutions of uncertain linear programs. Mathematical Programming, 99:351–376,

2004.

[35] A. Bental and A. Nemirovski. Robust convex optimization. Mathematics of

Operations Research, 23(4):769–805, 1998.

[36] K. Mclean and X. Li. Robust scenario formulations for strategic supply chain

optimization under uncertainty. Industrial and Engineering Chemistry Research,

52(16):5721–5734, 2013.

[37] A. Bental and A. Nemirovski. Robust solutions of linear programming prob-

lems contaminated with uncertain data. Mathematical Programming, 88:411–424,

2000.

[38] A. Bental and A. Nemirovski. A. robust solutions of uncertain linear programs.

Operation Research letter, 25(1):1–13, 1999.



Bibliography 98

[39] L. El-Ghauri and H. Lebert. Robust solutions to least-squares problems with

uncertain data. SIAM Journal of Matrix Analysis Application, 18(4):1035–1064,

1997.

[40] L. El-Ghauri, F. Oustry, and H. Lebert. Robust solutions to uncertain semi-

definite programs. Journal of Optimization Theory and Applications, 9:32–52,

1998.

[41] Z. Li, R. Ding, and C. A. Floudas. A comparative theoretical and computational

study on robust counterpart optimization: i. robust linear optimization and ro-

bust mixed integer linear optimization. Industrial and Engineering Chemistry

Research, 50(1):10567–10603, 2011.

[42] Z. Li and C. A. Floudas. A comparative theoretical and computational study on

robust counterpart optimization: iii. improving the quality of robust solutions.

Industrial and Engineering Chemistry Research, 53(1):13112–13124, 2014.

[43] J. F. Benders. Partitioning procedures for solving mixed-variables programming

problems. Numerische Mathematik, 4(1):238–252, 1962.

[44] A. M. Geoffrion. Generalized benders decomposition. Journal of Optimization

Theory and Applications, 10(4):237–260, 1972.

[45] User’s manual for cplex. IBM ILOG CPLEX V12.1, pages 1–314, 2015.

[46] D. Bertsimas, D. Pachamanova, and M. Sim. Robust linear optimization under

general norms. Operation Research Letters, 32(1):510–516, 2004.

[47] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University

Press, Edinburgh, 2004.



Bibliography 99

[48] L. A. Waller and C. A. Gotway. Applied Spatial Statistics for Public Health Data.

John Willey and Sons Inc, New Jersey, 2004.

[49] H. Anton and C. Rorrers. Elementary Linear Algebra. John Willey and Sons

Inc, New York, 2010.

[50] K. McLean. Novel formulation and decomposition-based optimization for strate-

gic supply chain management under uncertainty. Master’s thesis, Queen’s Uni-

versity, Kingston, February 2014.

[51] N. C. Giri. Multivariate Statistical Inference. Academic Press, New York, 1977.

[52] R. E. Rosenthal. GAMS - A User’s Guide. pages 1–251, 2006.

[53] X. Chen, M. Sim, and P. Sun. A robust optimization perspective on stochastic

programming. Operation Research, 55(6):1058–1071, 2007.

[54] C. Mukherjee, H. White, and M. Wyuts. Econometrics and Data Analysis for

Developing Countyries. Routledge, New York, 1998.

[55] J. W. Blankenship and J. E. Falk. Infinitely constrained optimiaztion problems.

Journal of Optimization Theory and Application, 19(1):261–281, 1976.

[56] R. Hettich and K. O. Kortanek. Semi-infinite programming: Theory, methods,

and applications. SIAM Review, 35(3):380–429, 1993.

[57] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Application of second

order cone programming. Linear Algebra and its Application, 284(6):193–228,

1998.



Appendix A

DuPont Industrial Chemical Supply Chain

From the original model developed in the literature [50], turn down limit and waste

limit constraints are excluded as those constraints are redundant and has no effect in

optimal solution of the optimization problem.

A.1 Nomenclature and Symbols for DuPont Supply Chain network

Related Nomenclature and Symbol for DuPont Industrial Chemical Supply Chain

problem is given below.

Different sets used in the DuPont Industrial Chemical Supply Chain problem is

given below.

i ∈ I = {1,...,5} - Plants

j ∈ J = {1,...,5} - Regional warehouses

k ∈ K = {1,,5} - Regional markets

s ∈ ω Scenarios
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u ∈ U = {1,...,55} - PRM grades

v ∈ V = {1,...,23} - FP grades

w ∈ W = {1,...,41} Impurities

(i, j) ∈ ω - FP shipment routes for plants to regional warehouses

(i, k) ∈ Θ - FP shipment routes for plants to regional markets

(i, v) ∈ Ψ - FP grades available for production at plant i

(j, k) ∈ Π - FP shipment routes for regional warehouses to regional markets

Different parameters for the DuPont Supply Chain network is given below

aavg,FPi −Average additive factor for plant i

btdi - Intercept related to minimum turn down for plant i

bwli - Intercept related to waste limit for plant i

Cpen - Penalty cost for not meeting demand requirements, $/t

Ccap - Capacity cost, $/t

Cfix
i - Fixed cost for plant i, $MM

Cvar
I - Other variable costs for plant i, $/t

Cfr,FP,PD
i,k - Freight cost of FP from plant i to market k, $/t

Cfr,FP,PW
i,j - Freight cost of FP from plant i to regional warehouse j, $/t

Cfr,FP,WD
j,k - Freight cost of FP from regional warehouse j to market k, $/t

CPI
i - Plant i on-site inventory cost, $/t

CWI
j - Regional warehouse j inventory cost, $/t

CPRM
i,u - Cost of PRM grade u for plant i, $/t

CRM2
i - Cost of RM2 for plant i, $/t

CRM3
i - Cost of RM3 for plant i, $/t
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Cwaste
i - Cost of waste for plant i, $/t

DFP
i,v - Demand of FP grade v at plant i, t

DFP
j,v - Demand of FP grade v at regional warehouse j, t

Dmin
v,k - Minimum demand of FP grade v from at

P FP
k,v - Price of FP grade v for market k, $/t

P FP
j,v - Estimated price of FP grade v for regional warehouse j, $/t

qRM2
i,u - RM2 to PRM grade u ratio for plant i, QPU

qRM2
i,u - RM3 to PRM grade u ratio for plant i, QPU

qwasteu - Impurity w content in PRM grade u, %

qfr,PWi,j - Proportion of FP shipped from plant i to the regional warehouse j, %

Qimp
i,w - Maximum impurity w limit for PRM at plant i, % or PPM

Qimp
i - Maximum limit for total blend at plant i, %

rinci - Income tax rate for plant i, %

rdui,k - Duty rate for shipments from plant i to market k, %

rdui,j - Estimated duty rate for shipments from plant i to regional warehouse j, %

rtp - Transfer price rate, %

RFP
i,v - Target inventory day supply of FP grade v for plant i, day

RFP
j,v - Target inventory day supply of FP grade v for regional warehouse j, day

RPRM,P
i,u - Target inventory of PRM grade u for plant i, t

RPRM,W
u - Target inventory of PRM grade u for the market k, t

EPRM,W
u - Effective percentage in PRM grade u, for generating FP, %

mtd
i - Slope related to minimum turndown for plant i

mwl
i - Slope related to waste limit for plant i

MPRM
u - PRM grade u availability, t
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Oi - Scheduled outage at plant i, d/y

Ui - Uptime for plant i, %

XFP
i,v - Beginning inventory of FP grade v at plant i, t

XFP
j,v - Beginning inventory of FP grade v at regional warehouse j, t

XPRM,P
i,u - Beginning inventory of PRM grade u at plant i, t

XPRM,W
u - Beginning inventory of PRM grade u at the PRM warehouse, t

Y FP
i - Yield of FP at plant i, %

Zmax
i - Maximum allowable capacity at plant i, t

Different variables for the DuPont Supply Chain network is given below

cfri - Freight cost for plant i, $

cdui - Duty cost for plant i, $

cIi - Inventory cost for plant i, $

cPRMi - PRM cost for plant i, $

cRM2
i - RM2 cost for plant i, $

cRM3
i - RM3 cost for plant i, $

cwastei - Waste cost for plant i, $

cOPV Ci - Other plant i variable costs, $

ccapi - Capacity cost for plant i, $

fFP,PDi,k,v - Shipment of FP grade v from plant i to market k, t

fFP,PWi,j,v - Shipment of FP grade v from plant i to regional warehouse j, t

fFP,WD
j,k,v - Shipment of FP grade v from regional warehouse j to market k, t

fPRM,c
i,u - PRM grade u consumed at plant i, t

fPRM,W
u - PRM grade u purchased and sent to plant i, t
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fPRM,WP
i,u - PRM grade u purchased and sent to the PRM warehouse, t

fFP,PDi,k,v - Shipments of PRM grade u from the PRM warehouse to plant i, t

fFP,pi,v - Amount of FP grade v produced from plant i, t

zi - Capacity of plant i, t

Here first stage decision variable is capacity of each plant, zi and second stage deci-

sion variables are all the flows, fFP,PDi,k,v , fFP,PWi,j,v , fFP,WD
j,k,v , fPRM,c

i,u , fPRM,W
u , fPRM,WP

i,u ,

fFP,PDi,k,v and fFP,pi,v .

A.2 Deterministic Model for DuPont Supply Chain Network

The objective function that needs to be maximized is

Objective =
∑
i∈I

(Revenuei − TCi)(1− rinci ) (A.1)

Here revenue indicates the revenue of each of the plant which is calculated from

the following equation

Revenuei =
∑

(i,k)∈Θ

∑
v∈V

(fFP,PDi,k,v .P FP
k,v +

∑
(i,j)∈ω

∑
v∈V

(fFP,PWi,j,v .P FP
j,v ), i ∈ I (A.2)

TC denotes the total cos of each of the plant and calculated as below
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TCi =cfixi + ccapi + cfri + cdui + cIi + cPRMi + cRM2
i + cRM3

i + cwastei + cOPV Ci , i ∈ I

(A.3)

Capacity costs are considered at each of the plants

ccapi = zi.C
cap
i , i ∈ I (A.4)

Freight costs are calculated based off of the FP flow rates

cfri =
∑

(i,k)∈Θ

∑
v∈V

(fFP,PD(i,k,v) .C
fr,FP,PD
i,k ) +

∑
(i,j)∈ω

∑
v∈V

(fFP,PW(i,j,v) .Cfr,FP,PW
(i,j) )+

∑
(i,j)∈ω

∑
(j,k)∈Pi

∑
v∈V

(fFP,WD
(j,k,v) .Cfr,FP,WD

(j,k) .qfr,PW(i,j) ), i ∈ I (A.5)

Duty costs are calculated from the amount of products produced

cdui =rtp.[
∑

(i,k)∈Θ

∑
v∈V

(fFP,PDi,k,v .P FP
k,v .r

du
i,k) +

∑
(i,j)∈ω

∑
v∈V

(fFP,PWj,k,v .P FP
j,v .r

du
i,j )], i ∈ I (A.6)

Inventory costs are equated at the raw material warehouse and the regional ware-

houses
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cIi =
∑

(i,v)∈Psi

(fFP,pi,v .CP
i I) +

∑
(i,j)∈ω

∑
v∈V

(fFP,PWi,j,v .CW
j I), i ∈ I (A.7)

The costs of PRM, the other two major raw material denoted by RM2 and RM3,

waster and other plant variable costs are caluted according to the following equations

respectively

cPRMi =
∑
u∈U

(fPRM,c
i,u .CPRM

i,u ), i ∈ I (A.8)

cRM2
i =

∑
u∈U

(fPRM,c
i,u .qRM2

i,u ).CRM2
i , i ∈ I (A.9)

cRM3
i =

∑
u∈U

(fPRM,c
i,u .qRM3

i,u ).CRM2
i , i ∈ I (A.10)

cwastei =
∑
u∈U

(fPRM,c
i,u .qRM3

u ).Cwaste
i , i ∈ I (A.11)

cOPV Ci =Cvar
i .(

∑
(i,v)∈Ψ

fFP,pi,v ), i ∈ I (A.12)

The material consumed and the products produced in the manufacturing plants

is limited by the following equation
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∑
(i,v)∈Ψ

fFP,pi,v ≤zi, i ∈ I (A.13)

The capacity of each plant can not exceed the following constraint

zi ≤Zmax
i , i ∈ I (A.14)

zi ≥ 0, i ∈ I (A.15)

The following equation relates the amount of PRM consumed and the amount of

FP produced at the plant

∑
u∈U

(fPRM,c
i,u .EPRM

u ).aavg,FPi .Y FP
i =

∑
(i,v)∈Ψ

fFP,pi,v , i ∈ I (A.16)

The material and product flows in the supply chain system also need to satisfy

a set of constraints from mass balances, inventory limits, material availability and

customer demand. Specially PRM consumed can not fall below the target inventory

at the PRM warehouse
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∑
i∈I

fPRM,c
i,u + fPRM,W

u ≤MPRM
u , u ∈ U (A.17)

The PRM ending inventory can not fall below the target inventory at PRM ware-

house

XPRM,W
u + fPRM,W

u −
∑
i∈I

fPRM,WP
i,u ≥RPRM,W

u , u ∈ U (A.18)

and at each of the plant

XPRM,P
i,u + fPRM,P

i,u + fPRM,WP
i,u − fPRM,c

i,u ≥RPRM,P
i,u , i ∈ I, u ∈ U (A.19)

The ending FP inventory can not be less than the the target inventory at the plants

XFP,P
i,v + fFP,pi,v −

∑
(i,j)∈ω

fFP,WD
i,j,v ≥ DFP

j,v .R
FP
j,v /365, (i, v) ∈ Ψ (A.20)

At the regional warehouses

XFP,W
j,v +

∑
i∈I

fFP,PWi,j,v −
∑

(j,k)∈Π

fFP,WD
j,k,v ≥ DFP

j,v .R
FP
j,v /365, j ∈ J, v ∈ V (A.21)
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The FP shipped to the regional market must meet the minimum demand require-

ment

∑
(i,k)∈Θ

fFP,PDi,k,v +
∑

(j,k)∈Pi

fFP,WD
i,j,v ≥ Dmin

v,k , k ∈ Kv ∈ V (A.22)

Finally, the PRM flows purchased from different sources have different impurity

contents and these flows are blended before converted into different grades of FP. In

order to ensure the quality of FP, the PRM blends have to satisfy certain impurity

specifications, as follows

∑
u∈U

(fPRM,c
i,u .qimpu,w ) ≤

∑
u∈U

(fPRM,c
i,u .Qimp

i,w ), i ∈ I, w ∈ W (A.23)

In addition, the ratio of total effective parts of the PRM blends has to be below

a threshold,

∑
u∈U

(fPRM,c
i,u .EPRM

u ) ≤
∑
u∈U

(fPRM,c
i,u .Qmax

i ), i ∈ I (A.24)

A.3 Robust Scenario Formulation Model for DuPont Supply Chain Net-

work

In Robust Scenario Formulation of DuPont Industrial Chemical Supply Chain Net-

work, the second stage variables are replaced by affine functions of uncertain parame-

ters. Here, fFP,PDi,k,v,ω is replaced by ΦFP,PD
i,k,v,ω .(ξ̄+M−1∆ξ̄ω) +φFP,PDi,k,v,ω , fFP,PWi,j,v,ω is replaced
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by ΦFP,PW
i,j,v,ω .(ξ̄+M−1∆ξ̄ω) + φFP,PWi,j,v,ω , fFP,WD

j,k,v,ω is replaced by ΦFP,WD
j,k,v,ω .(ξ̄+M−1∆ξ̄ω) +

φFP,WD
j,k,v,ω , fPRM,C

i,u,ω is replaced by ΦPRM,C
i,u,ω .(ξ̄ +M−1∆ξ̄ω) + φPRM,C

i,u,ω , fPRM,P
i,u,ω is replaced

by ΦPRM,P
i,u,ω .(ξ̄+M−1∆ξ̄ω) +φPRM,P

i,u,ω , fPRM,W
u,ω is replaced by ΦPRM,W

u,ω .(ξ̄+M−1∆ξ̄ω) +

φPRM,W
u,ω , fPRM,WP

i,u,ω is replaced by ΦPRM,WP
i,u,ω .(ξ̄ + M−1∆ξ̄ω) + φPRM,WP

i,u,ω and fFP,pi,v,ω is

replaced by ΦFP,p
i,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,pi,v,ω .

Robust Scenario Formulation for the DuPont Supply Chain network is given be-

low. For overestimation of normalized uncertainty region,
⋃s
ω=1 ΞOE

ω ⊃ ΞOE where

ΞOE indicates the uncertainty region after overestimation of normalized uncertainty

region. For underestimation of normalized uncertainty region,
⋃s
ω=1 ΞUE

ω ⊃ ΞUE

where ΞUE indicates the uncertainty region after underestimation of normalized un-

certainty region.

Objective function,

Objective = max
S∑
ω=1

pω[
∑
i=1

(Revenuei,ω − TCi,ω)(1− rinci )] (A.25)

Subject to,

Revenuei,ω =
∑

(i,k)∈Θ

∑
v∈V

((ΦFP,PD
i,k,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PDi,k,v,ω ).P FP

k,v )+

∑
(i,j)∈Ω

∑
v∈V

((ΦFP,PW
i,j,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PWi,j,v,ω ).P FP

j,v ), i ∈ I, ω = 1, ..., s

(A.26)
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TCi =cfixi + ccapi + cfri + cdui + cIi + cPRMi + cRM2
i + cRM3

i + cwastei + cOPV Ci , i ∈ I

(A.27)

ccapi =zi.C
cap
i , i ∈ I (A.28)

c̄fri,ω =
∑

(i,k)∈ω

∑
v∈V

((ΦFP,PD
i,k,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PDi,k,v,ω ).Cfr,FP,PD

i,k )+

∑
(i,j)∈ω

∑
v∈V

((ΦFP,PW
i,j,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PWi,j,v,ω ).Cfr,FP,PW

i,j )+

∑
(i,j)∈ω

∑
(j,k)∈Π

∑
v ∈ V ((ΦFP,WD

j,k,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,WD
j,k,v,ω ).Cfr,FP,WD

j,k .qfr,PWi,j ),

i ∈ I, ω = 1, ..., s (A.29)

c̄dui,ω =
∑

(i,v)∈Ψ

((ΦFP,PD
i,k,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PDi,k,v,ω ).P FP

k,v .r
du
i,k).r

tp+

∑
(i,j)∈Ω

((ΦFP,PW
i,j,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PWi,j,v,ω ).P FP

j,v .r
du
i,j ).r

tp, i ∈ I, ω = 1, ..., s

(A.30)
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c̄Ii,ω =
∑

(i,v)∈Ψ

((ΦFP,p
i,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,pi,v,ω ).CPI

i ) +
∑

(i,j)∈ω

∑
v∈V

((ΦFP,PW
i,j,v,ω .(ξ̄ +M−1∆ξ̄ω)

+ φFP,PWi,j,v,ω ).CWI
i ), i ∈ I, ω = 1, ..., s (A.31)

c̄PRMi,ω =
∑
u∈U

((ΦPRM,c
i,u,ω .(ξ̄ +M−1∆ξ̄ω) + φPRM,c

i,u,ω ).CPRM
i,u ), i ∈ I, ω = 1, ..., s (A.32)

c̄RM2
i,ω =

∑
u∈U

((ΦPRM,c
i,u,ω .(ξ̄ +M−1∆ξ̄ω) + φPRM,c

i,u,ω ).qRM2
i,u ).CRM2

i , i ∈ I, ω = 1, ..., s

(A.33)

c̄RM3
i,ω =

∑
u∈U

((ΦPRM,c
i,u,ω .(ξ̄ +M−1∆ξ̄ω) + φPRM,c

i,u,ω ).qRM3
i,u ).CRM3

i i ∈ I, ω = 1, ..., s

(A.34)

c̄wastei,ω =
∑
u∈U

((ΦPRM,c
i,u,ω .(ξ̄ +M−1∆ξ̄ω) + φPRM,c

i,u,ω ).qwasteu ).Cwaste
i , i ∈ I, ω = 1, ..., s

(A.35)
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cOPV Ci,ω =
∑

(i,v)∈Ψ

(ΦFP,p
i,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,pi,v,ω ).Cvar

i , i ∈ I, ω = 1, ..., s (A.36)

(
∑

(i,v)∈Ψ

Φi,v,ω).(ξ̄ +M−1∆ξ̄ω) + δω.‖(
∑

(i,v)∈Ψ

ΦFP,p
i,v,ω )M−1‖∗ + (

∑
(i,v)∈Ψ

ψFP,pi,v,ω )

≤ zi, i ∈ I, ω = 1, ..., s (A.37)

zi ≤Zmax
i , i ∈ I (A.38)

∑
u∈U

(Φi,u,ω.E
PRM
u ).aavg,FPi .Y FP

i =
∑

(i,v)∈Ψ

ΦFP,p
i,v,ω , i ∈ I, ω = 1, ..., s (A.39)

∑
u∈U

(Φi,u,ω.E
PRM
u ).aavg,FPi .Y FP

i =
∑

(i,v)∈Ψ

ΦFP,p
i,v,ω , i ∈ I, ω = 1, ..., s (A.40)

(
∑
i∈I

(ΦPRM,P
i,u,ω ) + ΦPRM,W

u,ω ).(ξ̄ +M−1∆ξ̄ω) + δω.‖(
∑
i∈I

(ΦPRM,P
i,u,ω ) + ΦPRM,W

u,ω )M−1‖∗

+
∑
i∈I

(φPRM,P
i,u,ω ) + φPRM,W

u,ω ≤MPRM
u , u ∈ U, ω = 1, ..., s (A.41)
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(ΦPRM,W
u,ω −

∑
i∈I

(ΦPRM,WP
i,u,ω )).(ξ̄ +M−1∆ξ̄ω)− δω‖(ΦPRM,W

u,ω −
∑
i∈I

(Φi,u,ω))M−1‖∗

+ φPRM,W
u,ω −

∑
i∈I

(φPRM,WP
i,u,ω )

≥ RPRM,W
u −XPRM,W

u , u ∈ U, ω = 1, ..., s (A.42)

(ΦPRM,P
i,u,ω + ΦPRM,WP

i,u,ω − ΦPRM,c
i,u,ω ).(ξ̄ +M−1∆ξ̄ω)− δω‖(ΦPRM,P

i,u,ω + ΦPRM,WP
i,u,ω − ΦPRM,c

i,u,ω )M−1‖∗

+ (φPRM,P
i,u,ω + φPRM,WP

i,u,ω − φPRM,c
i,u,ω )

≥ RPRM,P
i,u −XPRM,P

i,u , i ∈ I, u ∈ U, ω = 1, ..., s (A.43)

((ΦFP,p
i,v,ω −

∑
(i,j)∈ω

(ΦFP,PW
i,j,v,ω )−

∑
(i,k)∈Θ

(ΦFP,PD
i,k,v,ω ))).(ξ̄ +M−1∆ξ̄ω) + φFP,pi,v,ω −

∑
(i,j)∈ω

(φFP,PWi,j,v,ω )−

∑
(i,k)∈Θ

(φFP,PDi,k,v,ω )− δω‖(
∑

(i,j)∈Ω

(ΦFP,PW
i,j,v,ω ) +

∑
(i,k)∈Θ

(ΦFP,PD
i,k,v,ω )− ΦFP,p

i,v,ω )M−1‖∗

≥ DF
i,vP.R

FP
i,v /365−XFP

i,v , (i, v) ∈ Ψ, ω = 1, ..., s (A.44)
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(
∑

(i,u)∈ω

(ΦFP,PW
i,j,v,ω )−

∑
(j,k)∈Π

(ΦFP,WD
j,k,v,ω )).(ξ̄ +M−1∆ξ̄ω) +

∑
(i,j)∈ω

(φFP,PWi,j,v,ω )−
∑

(j,k)∈Π

(φFP,WD
j,k,v,ω )−

δω‖(
∑

(i,j)∈ω

(ΦFP,PW
i,j,v,ω )−

∑
(j,k)∈Π

(ΦFP,WD
j,k,v,ω ))M−1‖∗

≥ DF
j,vP.R

FP
j,v /365−XFP

j,v , j ∈ J, v ∈ V, ω = 1, ..., s (A.45)

∑
(i,k)∈Θ

φFP,PDi,k,v,ω +
∑

(j,k)∈Π

φFP,WD
j,k,v,ω + (

∑
(i,k)∈Θ

ΦFP,PD
i,k,v,ω +

∑
(i,k)∈Θ

ΦFP,PD
i,k,v,ω +Dmin

k,v .γk)

.(ξ̄ +M−1∆ξ̄ω) + δω.‖(
∑

(i,k)∈Θ

ΦFP,PD
i,k,v,ω +

∑
(j,k)∈Π

ΦFP,WD
j,k,v,ω −D

min
k,v .γk)M

−1‖∗

≥ 0, k ∈ K, v ∈ V, ω = 1, ..., s (A.46)

(
∑

u ∈ U(ΦPRM,c
i,u,ω .qimpu,w )−

∑
u∈U

(ΦPRM,c
i,u,ω .Qimp

i,w )).(ξ̄ +M−1∆ξ̄ω) +
∑
u∈U

(φi,u,ω.q
imp
u,w )

−
∑
u∈U

(φi,u,ω.Q
imp
i,w ) + δω.‖(

∑
u∈U

(ΦPRM,c
i,u,ω .qimpu,w )−

∑
u∈U

(ΦPRM,c
i,u,ω .Qimp

i,w ))M−1‖∗

≤ 0, i ∈ I, w ∈ W,ω = 1, ..., s (A.47)
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(
∑

u ∈ U(ΦPRM,c
i,u,ω .EPRM

u )−
∑
u∈U

(ΦPRM,c
i,u,ω .Qimp

i )).(ξ̄ +M−1∆ξ̄ω) +
∑
u∈U

(φi,u,ω.E
PRM
u )

−
∑
u∈U

(φi,u,ω.Q
imp
i ) + δω.‖(

∑
u∈U

(ΦPRM,c
i,u,ω .EPRM

u )−
∑
u∈U

(ΦPRM,c
i,u,ω .Qimp

i ))M−1‖∗

≤ 0, i ∈ I, ω = 1, ..., s (A.48)

ΦFP,PD
i,k,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PDi,k,v,ω −δω‖(Φ

FP,PD
i,k,v,ω )M−1‖∗ ≥ 0

i ∈ I, k ∈ K, v ∈ V, ω = 1, ..., s (A.49)

ΦFP,PW
i,j,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PWi,j,v,ω −δω‖(Φ

FP,PW
i,j,v,ω )M−1‖∗ ≥ 0

i ∈ I, j ∈ J, v ∈ V, ω = 1, ..., s (A.50)

ΦFP,WD
j,k,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,WD

j,k,v,ω −δω‖(Φ
FP,WD
j,k,v,ω )M−1‖∗ ≥ 0

j ∈ J, k ∈ K, v ∈ V, ω = 1, ..., s (A.51)
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ΦFP,p
i,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,pi,v,ω−δω‖(Φ

FP,p
i,v,ω )M−1‖∗ ≥ 0

i ∈ I, v ∈ V, ω = 1, ..., s (A.52)

ΦPRM,c
i,u,ω .(ξ̄ +M−1∆ξ̄ω) + φPRM,c

i,u,ω −δω‖(Φ
PRM,c
i,u,ω )M−1‖∗ ≥ 0

i ∈ I, u ∈ U, ω = 1, ..., s (A.53)

ΦPRM,P
i,u,ω .(ξ̄ +M−1∆ξ̄ω) + φPRM,P

i,u,ω −δω‖(ΦPRM,P
i,u,ω )M−1‖∗ ≥ 0

i ∈ I, u ∈ U, ω = 1, ..., s (A.54)

ΦPRM,W
u,ω .(ξ̄ +M−1∆ξ̄ω) + φPRM,W

u,ω −δω‖(ΦPRM,W
u,ω )M−1‖∗ ≥ 0

u ∈ U, ω = 1, ..., s (A.55)

ΦPRM,WP
i,u,ω .(ξ̄ +M−1∆ξ̄ω) + φPRM,WP

i,u,ω −δω‖(ΦPRM,WP
i,u,ω )M−1‖∗ ≥ 0

i ∈ I, k ∈ K, v ∈ V, ω = 1, ..., s (A.56)
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The Robust Scenario Formulation for Problem (1)

in Chapter 3

To demonstrate the idea of solving an optimization problem with any bounded

uncertainty region, the following simple example was considered in Chapter 3. There

are two uncertain parameters (ξ1 and ξ2) and two decision variables (x1 and x2) in

the problem. The optimization problem is given below.

Problem 1

min x2
2 −

1

2
x1 (B.1)

s.t. ξ1x1 + ξ2x2 − 1 ≤ 0, ∀(ξ1, ξ2) ∈ Ξ. (B.2)

Here the uncertainty region is defined as:

Ξ =
{
ξ ∈ R2 : 3ξ2

1 + (ξ2 − 2)2 ≤ 3, ξ1 + ξ2 ≤ 3
}
.
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After normalization, ξ = ξ̄ + M−1∆ξ, so left-hand-side of the constraint can be

reformulated as:

ξTx− 1

= ξ̄Tx+ ∆ξT (M−1)Tx− 1.

In a robust scenario formulation, the constraint is replaced by a set of constraints,

each for an uncertainty subregion Ξω = {∆ξ : ‖∆ξω −∆ξ̄ω‖∞ ≤ δω}. The constraints

are:

ξ̄Tx+ ∆ξTω (M−1)Tx− 1 ≤ 0, ∀∆ξω ∈ Ξω, ω = 1, · · · , s,

or equivalently,

ξ̄Tx+ max
∆ξω∈Ξω

{∆ξTω (M−1)Tx} ≤ 1, ω = 1, · · · , s.

The latter one can be further rewritten as:

ξ̄Tx+ ∆ξ̄Tω (M−1)Tx+ max
∆ξω∈Ξω

{(∆ξω −∆ξ̄)T (M−1)Tx} ≤ 1, ω = 1, · · · , s,

According to [46],

max
∆ξω∈Ξω

{(∆ξω −∆ξ̄)T (M−1)Tx} = δω‖(M−1)Tx‖1,
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so the constraints become

ξ̄Tx+ ∆ξ̄Tω ((M−1)Tx) + δω‖(M−1)Tx‖1 ≤ 1, ω = 1, · · · , s.

Using the LP reformulation discussed in Section 2.3 of Chapter 2, the robust scenario

formulation of Problem (1) of Chapter 3 can be written as below:

min x2
2 −

1

2
x1 (B.3)

s.t. ξ̄Tx+ ∆ξ̄Tω ((M−1)Tx) + δω

nξ∑
i=1

ti, ω = 1, · · · , s, (B.4)

− t ≤ (M−1)Tx ≤ t, (B.5)

t ≥ 0. (B.6)

Here, ∆ξ̄ω denotes the center of uncertainty subregion Ξω. Note that the subregions

considered in the formulation are different for the uncertainty over-estimation and

under-estimation cases.



Appendix C

Generalized Benders Decomposition Sub-Problems

for simplified DuPont Industrial Chemical Supply

Chain Optimization Problem

C.1 Original Problem (P)

The Original problem (P) for DuPont Supply Chain case is given below. Here Equa-

tion (C.2) is the linking constraint.

Objective function,
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Objective = min[−
s∑
ω1

Pω
∑
i=1

([
∑

(i,k)∈Θ

∑
v∈V

((ΦFP,PD
i,k,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PDi,k,v,ω ).P FP

k,v )+

∑
(i,j)∈Ω

∑
v∈V

((ΦFP,PW
i,j,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PWi,j,v,ω ).P FP

j,v )]− [cfixi + zi.C
cap+

(
∑

(i,k)∈Ω

∑
v∈V

((ΦFP,PD
i,k,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PDi,k,v,ω ).Cfr,FP,PD

i,k )+

∑
(i,j)∈Ω

∑
v∈V

((ΦFP,PW
i,j,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PWi,j,v,ω ).Cfr,FP,PW

i,j ) +
∑

(i,j)∈Ω

∑
(j,k)∈Π

∑
v∈V

((ΦFP,WD
j,k,v,ω .(ξ̄ω+

M−1∆ξ̄ω) + φFP,WD
j,k,v,ω ).Cfr,FP,WD

j,k .qfr,PWi,j )) + (
∑

(i,v)∈Ψ

((ΦFP,PD
i,k,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PDi,k,v,ω ).P FP

k,v .r
du
i,k).r

tp

+
∑

(i,j)∈Ω

((ΦFP,PW
i,j,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PWi,j,v,ω ).P FP

j,v .r
du
i,j ).r

tp)+

(
∑

(i,v)∈Ψ

((ΦFP,p
i,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,pi,v,ω ).CPI

i ) +
∑

(i,j)∈Ω

∑
v∈V

((ΦFP,PW
i,j,v,ω .(ξ̄ω+

M−1∆ξ̄ω) + φFP,PWi,j,v,ω ).CWI
i )) + (

∑
u∈U

((ΦPRM,c
i,u,ω .(ξ̄ +M−1∆ξ̄ω) + φPRM,c

i,u,ω ).CPRM
i,u ))+

(
∑
u∈U

((ΦPRM,c
i,u,ω .(ξ̄ +M−1∆ξ̄ω) + φPRM,c

i,u,ω ).qRM2
i,u ).CRM2

i ) + (
∑
u∈U

((ΦPRM,c
i,u,ω .(ξ̄ω+

M−1∆ξ̄ω) + φPRM,c
i,u,ω ).qRM3

i,u ).CRM3
i ) + (

∑
u∈U

((ΦPRM,c
i,u,ω .(ξ̄ +M−1∆ξ̄ω)+

φPRM,c
i,u,ω ).qwasteu ).Cwaste

i ) + (
∑

(i,v)∈Ψ

(ΦFP,p
i,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,pi,v,ω ).Cvar

i )])(1− rinci )]

(C.1)

Subject to,
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− zi + (
∑

(i,v)∈Ψ

Φi,v,ω).(ξ̄ +M−1∆ξ̄ω) + δω.‖(
∑

(i,v)∈Ψ

ΦFP,p
i,v,ω )M−1‖2 + (

∑
(i,v)∈Ψ

ψFP,pi,v,ω ) ≤ 0

ω = 1, ..., s, i ∈ I (C.2)

zi ≤Zmax
i , i ∈ I (C.3)

∑
u∈U

(Φi,u,ω.E
PRM
u ).aavg,FPi .Y FP

i =
∑

(i,v)∈Ψ

ΦFP,p
i,v,ω , ω = 1, ..., s, i ∈ I (C.4)

∑
u∈U

(Φi,u,ω.E
PRM
u ).aavg,FPi .Y FP

i =
∑

(i,v)∈Ψ

ΦFP,p
i,v,ω , ω = 1, ..., s, i ∈ I (C.5)

(
∑
i∈I

(ΦPRM,P
i,u,ω ) + ΦPRM,W

u,ω ).(ξ̄ +M−1∆ξ̄ω) + δω.‖(
∑
i∈I

(ΦPRM,P
i,u,ω ) + ΦPRM,W

u,ω )M−1‖2

+
∑
i∈I

(φPRM,P
i,u,ω ) + φPRM,W

u,ω ≤MPRM
u

ω = 1, ..., s, u ∈ U (C.6)
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(ΦPRM,W
u,ω −

∑
i∈I

(ΦPRM,WP
i,u,ω )).(ξ̄ +M−1∆ξ̄ω)− δω‖(ΦPRM,W

u,ω −
∑
i∈I

(Φi,u,ω))M−1‖2

+ φPRM,W
u,ω −

∑
i∈I

(φPRM,WP
i,u,ω ) ≥ RPRM,W

u −XPRM,W
u

ω = 1, ..., s, u ∈ U (C.7)

(ΦPRM,P
i,u,ω + ΦPRM,WP

i,u,ω − ΦPRM,c
i,u,ω ).(ξ̄ +M−1∆ξ̄ω)− δω‖(ΦPRM,P

i,u,ω + ΦPRM,WP
i,u,ω − ΦPRM,c

i,u,ω )M−1‖2

+ (φPRM,P
i,u,ω + φPRM,WP

i,u,ω − φPRM,c
i,u,ω ) ≥ RPRM,P

i,u −XPRM,P
i,u

ω = 1, ..., s, i ∈ I, u ∈ U (C.8)

((ΦFP,p
i,v,ω −

∑
(i,j)∈ω

(ΦFP,PW
i,j,v,ω )−

∑
(i,k)∈Θ

(ΦFP,PD
i,k,v,ω ))).(ξ̄ +M−1∆ξ̄ω) + φFP,pi,v,ω −

∑
(i,j)∈Ω

(φFP,PWi,j,v,ω )−

∑
(i,k)∈Θ

(φFP,PDi,k,v,ω )− δω‖(
∑

(i,j)∈Ω

(ΦFP,PW
i,j,v,ω ) +

∑
(i,k)∈Θ

(ΦFP,PD
i,k,v,ω )− ΦFP,p

i,v,ω )M−1‖2 ≥ DF
i,vP.R

FP
i,v /365−XFP

i,v

ω = 1, ..., s, (i, v) ∈ Ψ (C.9)
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(
∑

(i,u)∈Ω

(ΦFP,PW
i,j,v,ω )−

∑
(j,k)∈Π

(ΦFP,WD
j,k,v,ω )).(ξ̄ +M−1∆ξ̄ω) +

∑
(i,j)∈Ω

(φFP,PWi,j,v,ω )−
∑

(j,k)∈Π

(φFP,WD
j,k,v,ω )−

δω‖(
∑

(i,j)∈Ω

(ΦFP,PW
i,j,v,ω )−

∑
(j,k)∈Π

(ΦFP,WD
j,k,v,ω ))M−1‖2 ≥ DF

j,vP.R
FP
j,v /365−XFP

j,v

ω = 1, ..., s, j ∈ J, v ∈ V (C.10)

∑
(i,k)∈Θ

φFP,PDi,k,v,ω +
∑

(j,k)∈Π

φFP,WD
j,k,v,ω + (

∑
(i,k)∈Θ

ΦFP,PD
i,k,v,ω +

∑
(i,k)∈Θ

ΦFP,PD
i,k,v,ω +Dmin

k,v .γk)

.(ξ̄ +M−1∆ξ̄ω) + δω.‖(
∑

(i,k)∈Θ

ΦFP,PD
i,k,v,ω +

∑
(j,k)∈Π

ΦFP,WD
j,k,v,ω −D

min
k,v .γk)M

−1‖2 ≥ 0

ω = 1, ..., s, k ∈ K, v ∈ V (C.11)

ΦFP,PD
i,k,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PDi,k,v,ω − δω‖(Φ

FP,PD
i,k,v,ω )M−1‖2 ≥ 0

ω = 1, ..., s, i ∈ I, k ∈ K, v ∈ V (C.12)

ΦFP,PW
i,j,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PWi,j,v,ω − δω‖(Φ

FP,PW
i,j,v,ω )M−1‖2 ≥ 0

ω = 1, ..., s, i ∈ I, j ∈ J, v ∈ V (C.13)
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ΦFP,WD
j,k,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,WD

j,k,v,ω − δω‖(Φ
FP,WD
j,k,v,ω )M−1‖2 ≥ 0

ω = 1, ..., s, j ∈ J, k ∈ K, v ∈ V (C.14)

ΦFP,p
i,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,pi,v,ω − δω‖(Φ

FP,p
i,v,ω )M−1‖2 ≥ 0

ω = 1, ..., s, i ∈ I, v ∈ V (C.15)

ΦPRM,c
i,u,ω .(ξ̄ +M−1∆ξ̄ω) + φPRM,c

i,u,ω − δω‖(ΦPRM,c
i,u,ω )M−1‖2 ≥ 0

ω = 1, ..., s, i ∈ I, u ∈ U (C.16)

ΦPRM,P
i,u,ω .(ξ̄ +M−1∆ξ̄ω) + φPRM,P

i,u,ω − δω‖(ΦPRM,P
i,u,ω )M−1‖2 ≥ 0

ω = 1, ..., s, i ∈ I, u ∈ U (C.17)

ΦPRM,W
u,ω .(ξ̄ +M−1∆ξ̄ω) + φPRM,W

u,ω − δω‖(ΦPRM,W
u,ω )M−1‖2 ≥ 0

ω = 1, ..., s, u ∈ U (C.18)



Appendix C. Generalized Benders Decomposition Sub-Problems for
simplified DuPont Industrial Chemical Supply Chain Optimization
Problem 127

ΦPRM,WP
i,u,ω .(ξ̄ +M−1∆ξ̄ω) + φPRM,WP

i,u,ω − δω‖(ΦPRM,WP
i,u,ω )M−1‖2 ≥ 0

ω = 1, ..., s, i ∈ I, k ∈ K, v ∈ V (C.19)

zi ∈ {z ∈ Z : z ≥ 0}, i ∈ I (C.20)

Here, Z is the set of all integer numbers.

C.2 Primal Problem (PP k
ω)

In (PP k
ω ), first stage decision variables are fixed as a resut the problem can be

decomposed to s sub-problems. Hence the objective of (PP k
ω ) does not require sum-

mation over scenarios. The modified objective is (PP.1). In (C.2), the first stage

decision variables are fixed to a constant. Hence (C.2) is changed to (PP.2) and (C.3)

is excluded from (PP k
ω ) problem. The first stage decision variable is replaced with

the initial guess, zki . The original problem, along with the changes described in this

section will be solved for each individual scenarios and the summation of all the ob-

jective will be the upper bound of the original problem. Also all the sub problems

will be solved for individual scenarios.

Objective function,
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Objective = min[−Pω
∑
i=1

([
∑

(i,k)∈Θ

∑
v∈V

((ΦFP,PD
i,k,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PDi,k,v,ω ).P FP

k,v )+

(PP.1)∑
(i,j)∈Ω

∑
v∈V

((ΦFP,PW
i,j,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PWi,j,v,ω ).P FP

j,v )]− [cfixi + zi.C
cap+

(
∑

(i,k)∈Ω

∑
v∈V

((ΦFP,PD
i,k,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PDi,k,v,ω ).Cfr,FP,PD

i,k )+

∑
(i,j)∈Ω

∑
v∈V

((ΦFP,PW
i,j,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PWi,j,v,ω ).Cfr,FP,PW

i,j ) +
∑

(i,j)∈Ω

∑
(j,k)∈Π

∑
v∈V

((ΦFP,WD
j,k,v,ω .(ξ̄ω+

M−1∆ξ̄ω) + φFP,WD
j,k,v,ω ).Cfr,FP,WD

j,k .qfr,PWi,j )) + (
∑

(i,v)∈Ψ

((ΦFP,PD
i,k,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PDi,k,v,ω ).P FP

k,v .r
du
i,k).r

tp+

∑
(i,j)∈Ω

((ΦFP,PW
i,j,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,PWi,j,v,ω ).P FP

j,v .r
du
i,j ).r

tp)+

(
∑

(i,v)∈Ψ

((ΦFP,p
i,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,pi,v,ω ).CPI

i ) +
∑

(i,j)∈Ω

∑
v∈V

((ΦFP,PW
i,j,v,ω .(ξ̄ω+

M−1∆ξ̄ω) + φFP,PWi,j,v,ω ).CWI
i )) + (

∑
u∈U

((ΦPRM,c
i,u,ω .(ξ̄ +M−1∆ξ̄ω) + φPRM,c

i,u,ω ).CPRM
i,u ))+

(
∑
u∈U

((ΦPRM,c
i,u,ω .(ξ̄ +M−1∆ξ̄ω) + φPRM,c

i,u,ω ).qRM2
i,u ).CRM2

i ) + (
∑
u∈U

((ΦPRM,c
i,u,ω .(ξ̄ω+

M−1∆ξ̄ω) + φPRM,c
i,u,ω ).qRM3

i,u ).CRM3
i ) + (

∑
u∈U

((ΦPRM,c
i,u,ω .(ξ̄ +M−1∆ξ̄ω)+

φPRM,c
i,u,ω ).qwasteu ).Cwaste

i ) + (
∑

(i,v)∈Ψ

(ΦFP,p
i,v,ω .(ξ̄ +M−1∆ξ̄ω) + φFP,pi,v,ω ).Cvar

i )])(1− rinci )]

− zki + (
∑

(i,v)∈Ψ

Φi,v,ω).(ξ̄ +M−1∆ξ̄ω) + δω.‖(
∑

(i,v)∈Ψ

ΦFP,p
i,v,ω )M−1‖2 + (

∑
(i,v)∈Ψ

ψFP,pi,v,ω ) ≤ 0, i ∈ I

(PP.2)
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C.3 Feasibility Problem (FP k
ω)

If Primal Problem (PP) is not feasible then a feasibility problem is solved. To

ensure feasibilty of the problem, slack variables, Gi is minimized in this problem.

Objective of (FP) problem is given in equation (FP.1). Excluding (C.3), all the con-

straints are as same as original problem except (C.2). (C.2) is modified as (FP.2).

Equations are given below.

Objective function,

min ‖Gi‖1 (FP.1)

− zki + (
∑

(i,v)∈Ψ

Φi,v,ω).(ξ̄ +M−1∆ξ̄ω) + δω.‖(
∑

(i,v)∈Ψ

ΦFP,p
i,v,ω )M−1‖2 + (

∑
(i,v)∈Ψ

ψFP,pi,v,ω ) ≤ Gi

(FP.2)

ω = 1, ..., s, i ∈ I

Gi ≥ 0, i ∈ I (FP.3)

C.4 Relaxed Master Problem (RMP k)

Relaxed Master problem (RMP) consists of two blocks of constraints, optimality cut

and feasibility cut. RMP is given below.
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Objective function,

min η (RMP.1)

Subject to,

η ≥
s∑

ω=1

objPP jω + [
s∑

ω=1

(cTx,ω + (λTω)Aω)](zi − zki ), i ∈ I,∀j ∈ T k (RMP.2)

0 ≥
s∑

ω=1

objFP pω + [
s∑

ω=1

(µjω)Aω](zi − zki ), i ∈ I,∀p ∈ Rk (RMP.3)

zi ≤ Zmax
i , i ∈ I (RMP.4)

zi ∈ {z ∈ Z : z ≥ 0}, i ∈ I (RMP.4)

Here, Z is the set of all integer numbers. The index are defined below as,

T k = {j ∈ {1, ..., k} : Problem (P) is feasible for x = xj}

Rk = {i ∈ {1, ..., k} : Problem (P) is infeasible for x = xi}

From the objective (C.1) of the Problem (P), cTx,ω = (r − 1)cCAPi . There is only
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one blocks of linking constraints, Equation (C.2) and that block of linking constraint

contains 5 equations. Hence Aω will be a (5× 5) matrix having the coefficient of zi,

−1 as diagonal element. Aω is given below,



−1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1


C.5 Feasibility Relaxed Master Problem (FRMP k)

At the beginning, there is a possibility that the RMP is infeasible, in that case,

Feasibility Relaxed Master Problem (FRMP) is solved which is given below.

min ‖zi‖1 (FRMP.1)

Subject to,

0 ≥
s∑

ω=1

objFP pω + [
s∑

ω=1

(µjω)Aω](zi − zki ), i ∈ I,∀p ∈ Rk (FRMP.3)

zi ≤ Zmax
i , i ∈ I (FRMP.4)
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zi ∈ {z ∈ Z : z ≥ 0}, i ∈ I (FRMP.5)

Here, Here, Z is the set of all integer numbers and Aω is as same as in (RMP).


