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Abstract

This thesis proposes a distributed observer design for a class of nonlinear systems
that arise in the application of model reduction techniques. Distributed observer de-
sign techniques have been proposed in the literature to address estimation problems
over sensor networks. In large complex sensor networks, an efficient technique that
minimizes the extent of the required communication is highly desirable. This is es-
pecially true when sensors have problems caused by physical limitations that result
in incorrect information at the local level affecting the estimation of states globally.
To address this problem, scalable algorithms for a suitable distributed observer have
been developed. Most algorithms are focussed on large linear dynamical systems and
they are not directly generalizable to nonlinear systems. In this thesis, scalable al-
gorithms for distributed observers are proposed for a class of large scale observable
nonlinear system.

Distributed systems models multi-agent systems in which each agents attempts
to accomplish local tasks. In order to achieve global objectives, there should be
agreement regarding some commonly known variables that depend on the state of all
agents. These variables are called consensus states. Once identified, such consensus
states can be exploited in the development of distributed consensus algorithms. Con-
sensus algorithms are used to develop information exchange protocols between agents
such that global objectives are met through local action. In this thesis, a higher order
observer is applied in the distributed sensor network system to design a distributed
observer for a class nonlinear systems. Fusion of measurement and covariance infor-
mation is applied to the higher order filter as the first method. The consensus filter
is embedded in the local nonlinear observer for fusion of data. The second method is
based on the communication of state estimates between neighbouring sensors rather
than fusion of data measurement and covariance. The second method is found to
reduce disagreement of the states estimation between each sensor. The performance
of these new algorithms is demonstrated by simulation, and the second method is
effectively applied over the first method.
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Chapter 1

Introduction

1.1 Motivation

There are considerable challenges associated with the estimation of fluid flow governed

by the Navier Stokes (NS) equations. If one considers the problem of estimating ve-

locity fields from point measurement, it is difficult (or even impossible) to guarantee

the observabilty of NS flow. One way to handle this problem is to use model reduction

techniques. By using this approach, the more challenging problem of guaranteeing

observabilty of NS flow can be circumvented if the finite dimensional model can be

shown to be observable. In [Guay et al., 2010], the design of an observer was intro-

duced for the estimation of reduction fields in Navier-Stokes flow in building system.

This method was based on a Proper Orthogonal Decomposition (POD). The POD

technique identifies particular modes of the flow dynamics that can approximate the

overall behaviour. Projection of the NS equation of those modes yields a finite di-

mensional approximation that is amenable to observer design. The use of sensors is

a primary concern in the design of an observer. Utilizing sensors, however, presents

1



CHAPTER 1. INTRODUCTION 2

challenges that include limited energy sources to operate, determining optimal loca-

tion of sensors, the number of sensors, and various communication problems that can

arise between sensors.

In recent years, sensor networks have garnered increased attention from researchers.

This technology has been used in multiple industries that include military, law en-

forcement, agricultural and forestry-based projects, surveillance, and even information

collection. Typically sensor networks are based on a distributed system over a spatial

area with multiple sensors at various locations. Each sensor communicates with its

neighbours to exchange data and collect information. In the ideal scenario, all sensors

are required to communicate to all other sensors to guarantee accurate measurements.

This has advantages that include low dimension and fast implementation. In spite

of the advantages, when there are a significant number of sensors, it is not efficient

to communicate all-to-all links. This thesis attempts to develop new consensus dis-

tributed algorithms for a class of nonlinear system. This method, first suggested in

[Olfati-Saber and R.M.Murray, 2003], is applied to develop the distributed consensus

observer.

The main purpose of this thesis is to design a nonlinear observer for a distributed

system. A second order observer with an embedded consensus filter for a class of

nonlinear distributed systems is developed. An alternative distributed second order

filtering algorithm is presented that directly uses consensus on state estimation.

1.2 Organization of the Dissertation

Chapter 2: In this chapter, we introduce technical preliminaries and set up the

basic notations. The topics include proper orthogonal decomposition (POD) modes,
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Lyapunov stability, observability, state observers, and graph theory. A review of the

previous and present research in the field of state estimation for a class of distributed

nonlinear systems is also presented.

Chapter 3: In this chapter, a finite dimensional approximation of velocity field,

contaminant field and energy field in NS flow is developed. The Galerkin projection

approach based on POD modes is used to develop a finite dimensional approxima-

tion of NS flow dynamics, component balance and energy balance. A higher order

observer is designed to estimate the states of the nonlinear system subject to discrete

noisy measurement. The simulation result demonstrates the effectiveness of proposed

technique.

Chapter 4: In this chapter, a decentralized estimation in distributed systems

is considered to develop distributed estimation algorithms with multiple sensors. We

consider the distributed Kalman filter (DKF) systems with embedded consensus fil-

ters. We consider low-pass and band-pass consensus filters for fusion data. We also

consider a DKF that builds consensus on state estimation in linear systems. Using

these techniques, we develop a new class of consensus observers for nonlinear systems.

Simulation results are presented to show the performance of the distributed observer.

Chapter 5: We summarize the design procedure developed in Chapter 3 and

4. The conclusion of the procedure is addressed, and suggestions for future research,

such as the designing a controller based on this state estimation are discussed.



Chapter 2

Preliminaries

In this chapter, we present some preliminaries and background information. We also

present a brief literature review of distributed observers, and nonlinear observers. In

section 2.1, we introduce the necessary technical preliminaries which include concepts

from linear systems theory, nonlinear observer design, decentralized and distributed

systems. In section 2.2, we review the literature on the design of the nonlinear ob-

servers and distributed observers with consensus filters used to estimate unmeasured

states in a distributed system.

2.1 Technical Preliminaries

2.1.1 Proper Orthogonal Decomposition (POD) Modes

POD is a method used to compute a low-dimensional approximation of large data sets

such as those arising from image processing, fluid flow or large-scale system dynamical

systems.

4



CHAPTER 2. PRELIMINARIES 5

Let H be a Hilbert space (i.e complete inner product space) with inner product

〈·, ·〉. We set a representative of the system dynamics as a data ensemble, {uk} (k =

1, . . . ,m) in which each element to a Hilbert space. The data ensemble is expressed

by {uk ∈ H | k = 1, . . . ,m} where the ensemble {uk} consists of experiments that

highlight different features of the dynamical system’s behaviour. These experiments

are developed by a set of snapshots of the states uk at time tk.

POD generates an orthonormal basis of dimension n (n < m) that generates a low-

dimensional subspace of H, denoted by S. The projection of the data ensemble uk is

written as PSuk where PS is the orthogonal projection operator onto S. To find the

subspace S, one minimizes the error ‖ uk − PSuk ‖, where ‖ · ‖ is the induced norm.

Given a data ensemble {uk}, the POD basis can be simply computed by the solving

the following eigenvalue-eigenvector decomposition, [Lumley, 1970].

Uφ = λφ (2.1)

where U : H → H is the linear operator defined by:

U = uk ⊗ u∗k (2.2)

The variable u∗k ∈ H∗ is the adjoint of u ∈ H and H∗ is the space of functionals

u∗(·) = 〈·, u〉. Since ⊗ is the standard tensor product, the following property, (u ⊗

v∗)(w) = u〈w, v〉 for any u, v and w in H, is satisfied. In general, the snapshots uk

are taken at time tk at a finite number of sensors N over the spatial domain Ω where

N can be a significantly large number.

POD modes φ(x) are taken as linear combinations of the elements of the ensemble
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{uk} (with k = 1, . . . ,m where m << N) .

φ(x) =
m∑
k=1

ckuk (2.3)

This combination is not arbitrary since the linear operator U is constructed by ele-

ments in the span of the ensemble {uk}. Eq. (2.1) can be expressed as follows:

Rc = λc (2.4)

where R is a m by m matrix with elements Rij = 1
m
〈ui, uj〉. The problem is then

reduced to the solution of an m dimensional eigenvalue-eigenvector decomposition.

Normally snapshots can be obtained using CFD simulation of the process, or through

experiments placing observed by sensors at predefined locations. In most studies, the

snapshots are generated by CFD models.

2.1.2 Lyapunov Stability

Stability theory plays a critical role in dynamical systems theory and engineering. In

general, the method of Lyapunov can be widely used to large classes of nonlinear and

linear dynamical systems, including time-invariant or time-varying systems for both

continuous-time and discrete-time systems.

An equilibrium point is said to be Lyapunov stable if all solutions of the dynamical

system that starts at nearby points stay nearby permanently; otherwise, it is unstable.

It is asymptotically stable if all solutions of the dynamical system that starts at nearby

points converge to the equilibrium point [Khalil, 2002].
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Consider a dynamical system which satisfies

ẋ = f(t, x) x(t0) = x0 x ∈ Rn (2.5)

Assuming that f(t, x) satisfies the standard conditions for the existence and unique-

ness of solutions. At equilibrium point xe, the condition f(t, xe) = 0 is satisfied.

Definition 2.1.1. [Khalil, 2002] Let the equilibrium point be xe,

• stable if there is δ = δ(ε) > 0 for each ε > 0 such that

‖x(xe)‖ < δ ⇒ ‖x(t) < ε‖,∀t ≥ 0

• unstable, otherwise

• asymptotically stable if it is stable and δ can be satisfied as,

‖x(xe)‖ < δ ⇒ lim
t→∞

x(t) = xe

Denote that V (·) : D → R is a non-negative differentiable function defined in a

domain D ⊂ Rn. The derivative of V along the trajectories of (2.5) is written,

V̇ (t, x) = ∂V

∂t
+ ∂V

∂x
f(t, x) (2.6)

By this definition, the following theorem allows us to determine stability for a system.

Briefly described, the theorem indicates that when V (t, x) is a locally positive definite

function and V̇ (t, x) ≤ 0, we can then come to the conclusion that the equilibrium

point is stable.
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Theorem 2.1.1. Basic theorem of Lyapunov

Let xe be an equilibrium point and D ⊂ Rn be a domain with xe. Let V : D → R be

a continuously differentiable function

V (xe) = 0 and V (x) > 0 in D − {0} (2.7)

V̇ ≤ 0 in D (2.8)

then, x = xe is stable, if

V̇ (x) < 0 in D − {0} (2.9)

then x = xe is asymptotically stable

2.1.3 Observability

The study of observer design is of great importance in the study of dynamical sys-

tems. The key property of a dynamical system that is required for the design of

observers is the observability of the system. In what follows, we provide a definition

of observability and provide some conditions that are necessary and sufficient for the

observability of a widely applied class of discrete-time linear systems systems with

imperfect measurements. This class of systems can be written in general form as

follows:

xk+1 = Axk +Buk (2.10a)

yk = Cxk (2.10b)
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where x ∈ Rn is a state vector, u ∈ Rn is the control input, y ∈ Rm are the outputs.

The matrices, A,B and C are of appropriate dimensions and define the system’s

dynamics. Observability is a property of a dynamical system, first introduced by

[Kalman, 1960], that expresses the ability to reconstruct or make inferences regarding

the values of unmeasured state variables using available measurements.

Definition 2.1.2. [Simon, 2006] A linear discrete-time system (2.10) is observable

if for any initial state x0 and some final time t the initial state x0 can be uniquely

determined by knowledge of the input uk and output yk for all k ∈ [0, t].

Observability is a property of the system which states that the values of the in-

ternal states can be inferred by the output y over some time interval. If a system

is observable then the initial state x0 can be determined. If the initial state can be

known then all states for the time interval k ∈ [0, t] can be calculated. Therefore,

observability implies that all states between the initial and final times, k ∈ [0, t] can

be reconstructed as long as the inputs and outputs are known exactly.

Observability can be checked by a matrix rank test performed on the system’s ob-

servability matrix or observability Gramian as below:

Theorem 2.1.2. The m-state discrete linear time-invariant system (2.10) has the

observability F defined by

FC,A = [CT , (CA)T , . . . , (CAn−1)T ]T

The system (2.10) is observable if and only if rank(F ) = n.
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Theorem 2.1.3. The n-state discrete linear time-invariant system (2.10) is observ-

able if and only if the observability Gramian defined by

t∑
k=0

(AT )kCTCAk

is positive definite for some t ∈ (0,∞).

2.1.4 State Observers

In control theory, the estimation of unmeasured states from past values of the output

y is an important consideration for controller design [Dullerud and Paganini, 2000].

A state observer is a dynamical system derived from a system model that is used to

estimate its internal states. In theory, all the states variable of the system can be

estimated using an observer if and only if the system is observable. Let x̂k represent

an estimate of the state xk. An observer is designed to ensure that the estimation

error ek = (xk − x̂k) tends to zero as k goes to infinity. Assuming that the dynamics

of the plant is a linear time-variant system, an observer can be expressed as,

x̂k+1 = Ax̂k + L(yk − ŷk) +Buk (2.11)

ŷ = Cx̂k +Duk (2.12)

This observer given by (2.11) and (2.12) is known as a Luenberger observer [Dullerud

and Paganini, 2000]. The matrix L is designed such that the matrix (A−LC) has all

eigenvalues inside the unit circle. The stability of (A− LC) guarantees the stability

of the observer’s error dynamics. The rate of the convergence of the estimation error

ek to the origin can be arbitrarily chosen by modifying the observer gain matrix
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System

Observer

Estimation

     Error

+

+

-

Figure 2.1: [Tin and Poon, 2005]General Structure of the Luenberger Observer

L. This is valid for any initial condition x(0) and any matrix A such that (C,A)

is an observable pair. Figure 2.1 shows how a Luenberger observer is implemented

to estimate unknown states. The difference between the measured outputs and the

predicted outputs are used to modify the state estimates.

2.1.5 Graph Theory

A graph consists of a collection of vertices and edges. Each vertex is linked to other

vertices by edges. The pictorial representation of a graph, as depicted in Figure 2.2, is

not particularly meaningful in sensor networks, but the relationship between vertices

and edges provides some valuable information in the design of consensus algorithms.

An edge provides the relationship between vertices, and it is necessary to have vertices

at the end of each edge. However, the vertices are not necessarily connected to all of

the edges.[Godsil and Royle, 2001] The vertex set is denoted by V (G), and the edge
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set is denoted by E(G). The degree of a graph G is the number of incoming edges to

the vertices. When G has a well defined degree, we assume that all edges are directed

and the graph is said to be directed. If the graph is not directed, its order does not

exist.

At a discrete time, tk, a directed graph can be described as Gn(k) , (Vn, En(k))

where Vn = {1, . . . , n}and En ⊆ Vn × Vn are vertex set and the edge set respectively

and |Vn| and |En| are called scale and size for complex networks. [Olfati-Saber and

Shamma, 2005]. A spanning tree of a connected and directed graph Gn is a tree

consisting of all the vertices and some (or perhaps all) of the edges of Gn. When all

the vertices are connected, a graph is said to be strongly connected and it is balanced

when each vertex has the same number of incoming edges. For example, if there are

five vertices denoted a,b,c,d,e in Fig 2.2, the graph has a directed spanning tree, but

it is not strongly connected.

An adjacency matrix is a matrix which denotes the relationship between vertices

that are adjacent to each other. It is denoted by An(k) ∈ Rn×n where entry aij is 1

or 0 depending on whether vertices are connected or not. We write aij(k) = 1 if there

is an incoming edge from j to i, otherwise ai,j(k) = 0.

Definition 2.1.3. For a graph Gn with vertices v1, v2, . . . , vn, the adjacency matrix

of Gn is the n× n matrix A whose (i,j) entry is:

Ai,j(k) =


1 if vi and vj are adjacent

0 otherwise
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The graph in Figure 2.2 has 5 vertices, such that the adjacency matrix, A is

A =



0 1 1 1 0

0 0 0 0 0

1 1 0 0 0

0 0 1 0 0

0 1 0 1 0



Through the adjacency matrix, we can obtain the Laplacian matrix Ln(k) ∈ Rn×n

whose the element i,jth are defined as follows.

Definition 2.1.4. [Godsil and Royle, 2001; Casbeer, 2009] For a graph Gn with

vertices v1, v2, . . . , vn, the Laplacian matrix of Gn is the n × n matrix L whose (i,j)

entry is given by:

Li,j(k) =


deg(Vi) if i=j

−1 if i 6=j and vi is adjacent to vj

0 otherwise
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the Laplacian matrix of Gn in Figure 2.2, L is

L =



3 −1 −1 −1 0

0 0 0 0 0

−1 −1 2 0 0

0 0 −1 1 0

0 −1 0 −1 2



a

b

e

cd

Figure 2.2: A five vertices graph : There is a path from vertices to every other vertices
in the graph, however there is no path from vertices [e] to any other node. Hence,
the graph has a directed spanning tree, but it is not strongly connected.

2.2 State Estimation in Distributed System

The estimation of states requires measurements by sensors. Occasionally, sensors

may have problems caused by physical restrictions that include an ineffective power
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source, or a lack of accessibility. These problems can seriously affect the estimation

of states. This is especially true in a distributed system, where all sensors need to

communicate to achieve common goals. To improve efficiency of the estimation of

the states, new algorithms have been developed for sensor networks in a distributed

system. Distributed sensor networks are systems that allow for the sharing of in-

formation between sensors. Such networks are amenable to the reconstruction of

network wide information without the need for all-to-all sensor information. The re-

construction of network wide information can be achieved through the design of local

filters that exploit the structure of the network. In a number of applications, sensor

networks are based on a distributed system over a spatial area with multiple sensors.

In such cases, the sensors communicate with each other to exchange data, process the

system, and collect information. One takes advantage of the exchange of information

to improve local information while generating a more accurate global representation

of the dynamics. This property can be preserved even in the presence of loss of in-

formation, uncertainties, and disturbances. This class of distributed observers could

have multiple applications for military and forestry-based projects, as well as devel-

oping greater surveillance and information collection methods. For example, we can

use RFID chips as sensors to monitor all the condition of crops based on distributed

sensor network. Also, there are many foreseeable potential applications in chemical

engineering, such as fluid flow estimation.

While extensive research has been conducted with respect to flow control and op-

timization, flow estimation by an observer has not received the same attention, and

is not broadly used in applications. The knowledge of estimation of the velocity field

however, is useful to control air quality or monitor contaminant. Since flow systems,
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typically described by Navier-Stoke(NS) equations, are nonlinear, a linearized version

of the equation is usually considered. The principle of using a linearized version of NS

for the purpose of estimation was introduced in [Hoepffner et al., 2005, 2006], which

allowed one to design an infinite dimensional Kalman filter, that can be discretized

to produce a finite dimensional filter. The discretization of an infinite dimensional

Kalman filter can lead to large and complex finite-dimensional dynamics. Addition-

ally, since the NS equations are nonlinear, information related to nonlinearity may

be lost. Although the use of the linearized NS can yield an effective way to estimate

the states, one must also consider the problem of nonlinear design for NS flow in an

attempt to capture its nonlinear behaviour.

Proper Orthogonal Decomposition(POD) techniques was first introduced in [Lum-

ley, 1970]. This approach avoids the need for linearization, and preserves the non-

linearity of the system. The infinite dimensional nonlinear system is simplified by

providing a low dimensional representation that approximates the local behaviour

of the system. The finite dimensional dynamical system is obtained by using the

Galerkin Projection technique based on the projection of NS equations onto the finite

dimensional space identified by POD, as demonstrated in [Berkooz and Titi, 1993;

Rowley et al., 2004]. The Galerkin Projection technique on POD modes has been

extensively studied. The resulting simplified nonlinear model can be used to express

the distributed state variables of the reduced order equations as a linear combina-

tion of the POD modes. The Galerkin Projection is an effective way to address the

nonlinearity of the complex system in the form of a low dimensional set of nonlinear

ordinary differential equations.

POD is one of the most well-known methods for reducing the order of a model.
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It has been applied in many fields such as control, optimization, and flow estimation

[Rowley et al., 2004]. [Guay and Hariharan, 2008] applied the POD based estimation

technique to flow estimation in a building system. Some modification of the POD

methods have been introduced in [Bleris and Kothare, 2005; Noak et al., 2004, 2005].

In [Guay and Hariharan, 2008; Guay et al., 2009, 2010], POD based approaches

for the estimation of velocity field and contaminant flow in a building system was

proposed. This estimation provides a possible method for the design of distributed

observers in complex large-scale flow. In [Yu et al., 2009], a centralized scheme and

a decentralized observer/controller design technique were discussed. This research

suggested that these decentralized methods can have several advantages in a large-

scale system that include low dimension, fast implementation, and low cost compared

to centralized approaches. This however, is not an efficient method for distributed

systems. Earlier research conducted by [Mutambara, 1998; Speyer, 1978] focused on

the combination of the state estimates of a system with multiple sensors in decentral-

ized estimation into a single central estimate. The technique required that all sensors

needed to communicate to come up with a single estimate. This intensive communi-

cation between sensors is not the most appropriate approach for distributed systems

with multiple sensors. In [Acikmese and Mandic, 2011; Olfati-Saber and Shamma,

2005], distributed estimation method in a linear system was introduced with a large

number of sensors. This research considered a fusion of data of measurements or state

estimates from neighbouring sensors by using a Kalman filter. The distributed filter

consists of a network of micro-Kalman filters, each embedded with a low-pass and a

band-pass consensus filter that can be used to collect and compare local information

in order to generate network-wide consensus.



Chapter 3

Nonlinear filter

This chapter presents the development of a second order observer that estimates the

states of a nonlinear plant based on discrete noisy measurements. This second order

observer is suitable for application in the estimation of NS flow using POD based tech-

niques. As discussed in chapter 2, this technique provides low dimensional subspace

including the original nonlinearity. This reduction technique results in a nonlinear

ordinary differential equations that can be effectively treated using a particular class

of higher order filters as proposed in [Athans et al., 1968].

In section 3.1, we consider the application of POD based techniques for the ap-

proximation of NS flow, with component and energy balance. The nonlinear system

of ODEs resulting from this technique can be effectively dealt with using the higher

order filter presented in section 3.2. A simulation study is presented in section 3.3 to

demonstrate the effectiveness of this technique.

18
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3.1 States Estimation

3.1.1 Velocity Field Estimation

In this chapter, we present the estimation of the velocity fields in flow system in this

section based on POD modes.It is assumed that the flow velocity is governed by the

compressible Navier-Stokes equation below [Bird et al., 1960]:

div(v) = 0
∂v

∂t
= −(v · ∇)v + ν∇2v −∇p (3.1)

where v : Ω× R→ R3 indicates velocity field on spatial domain Ω, p is the pressure

term, ν = 1/Re, Re is the Reynolds number. It is assumed that velocity and pressure

field are defined on closed-subset of R3. The equation (3.1) has a scaled formulation of

the Navier-Stokes equation where the velocities are scaled by a factor V , time by V/L,

pressure by ρV 2 where ρ is the density and the viscosity by ρV L, V and L are nominal

velocities and length. Although the assumption of incompressible flow is considered

for the modeling of the airflow in a commercial building, a similar approach can be

applied to model reduction in compressible flow (as mentioned in [Rowley et al., 2000,

2004; Rowley, 2005]).
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POD based Model Reduction

In [Guay et al., 2010], the velocity field, v represented as an expansion form, v(t, x)

in POD modes α(x) defined on the spatial domain Ω is written as:

v(t, x) =
n∑
i=1

ai(t)αi(x) (3.2)

The projection onto the modes requires the definition of an inner product over a

Hilbert space H defined by:

< vi, vj >=
∫

Ω
vi(x) · vj(x)dV (3.3)

where vi(x) · vj(x) is the standard inner product between two vectors vi(x) and vj(x)

in Euclidean space, dV is a volume element on R3

The basic concept of the POD based model reduction is to recast the Navier-Stokes

equation using the expression (3.2). This gives by substitution of (3.2) in (3.1):

∂v

∂t
=

n∑
i=1

ȧi(t)αi(x) = −
 n∑
j=1

aj(t)αj(x) · ∇
 n∑
i=1

ai(t)αi(x)

+ ν
n∑
i=1

ai(t)∇2αi(x)−∇p (3.4)
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Projection of (3.4) onto the POD modes αi(x) by applying inner product yields:

<
∂v

∂t
, αi(x) > =<

n∑
k=1

ȧk(t)αk(x), αi(x) >

= − <

 n∑
j=1

aj(t)αj(x) · ∇
 n∑
k=1

ak(t)αk(x), αi(x) >

+ ν <
n∑
k=1

ak(t)∇2αk(x), αi(x) > − < ∇p, αi(x) > (3.5)

The modes are such that,

< αi(x), αj(x) >=


1 i = j

0 i 6= j

(3.6)

and div(αi) ≡ 0 for i=1, . . . ,n.

Therefore, (3.5) reduces to:

ȧi(t) < αi(x), αk(x) > = −
n∑
i=1

n∑
j=1

ai(t)aj(t) < (αj(x) · ∇)αi(x), αk(x) >

+ ν
n∑
i=1

ai(t) < ∇2αi(x), αk(x) > − < ∇p, αk(x) > (3.7)

The following dynamical system is obtained:

ȧk(t) = −
n∑
i=1

n∑
j=1

ai(t)aj(t) < (αj(x) · ∇)αi(x), αk(x) >

+ ν
n∑
i=1

ai(t) < ∇2αi(x), αk(x) > − < ∇p, αk(x) > (3.8)

Equation (3.8) is the decomposition model of the velocity field on the POD modes.

This finite dimensional approximation provides the basis for the design of an observer
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for fluid flow dynamic system.

Reduced order dynamical Velocity State

The dynamical system (3.8) is a quadratic differential equation of the general form:

ȧk(t) = Nka(t) + a(t)TPka(t), k = 1, . . . , n (3.9)

where Nk is an n-dimensional row vector and Pk is an n× n matrix for k = 1, . . . , n,

Nki
= ν < ∇2αi(x), αk(x) > (3.10)

Pkij
=< (αj(x) · ∇)αi(x), αk(x) > (3.11)

The pressure term vanishes on the closed boundary since αk(x) = 0 on the boundary

of Ω, ∂Ω,

∫
Ω
∇p · αk(x)dV =

∫
∂Ω
pαk(x) · nΩdS (3.12)

where nΩ is the unit vector normal to the spatial domain Ω.

Measurement

Assume that velocity field measurements,v0, are available at predefined locations,x0.

These measurements can be expressed using the expansion (3.2). For example, con-

sider the measurement of the average velocity, vavg(t, x0) = v(t, x0)+u(t, x0)+w(t, x0)
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at the location x0, then the expansion form yields:

vavg(t, x0) =
n∑
i=1

ai(t)(α1
i (x0) + α2

i (x0) + α3
i (x0)) (3.13)

where αji (x) is the jth element of the ith POD modes. Since the POD modes are

assumed to be time-independent, equation (3.13) is expressed in the form

vavg(t, x0) = Ca(t) (3.14)

where C is 1 × n measurement matrix and a(t) is the n-dimensional vector of time

varying coefficients of the Galerkin approximation of v(t, x). The measurement output

is re-expressed in the general form as

yvelo(t) = Ca(t). (3.15)

The complete dynamical system of velocity with the available measurements is given

by:

ȧk(t) = Nka(t) + a(t)TPka(t), k = 1, · · · , n,

yvelo(t) = Ca(t) (3.16)

If we assume that the POD modes give an accurate explanation of the character of

the flow fluid then the Galerkin coefficient a(t) provide an estimate of the velocity

field via the expansion (3.2). If the initial value of the coefficients ai(0) are known,

then the actual values ai(t) can be calculated. The expansion (3.2) can then be

used to approximate the velocity field. Since the initial values of the coefficients
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are generally unknown, an observer is required to estimate them. In [Rowley and

Juttijudata, 2005], an observer for the estimation of the Galerkin coefficients was

introduced. Rowley and Juttijudata [2005] considered the linear approximation of

(3.16) to design an observer. In [Guay et al., 2010], a nonlinear observer is designed

that can improve the performance of the resulting estimation scheme.

3.1.2 Estimation of Contaminant Flow

The principle of contaminant flow estimation is similar to the estimation of velocity

fields. We estimate concentration fields using the velocity field estimation. Assuming

that diffusivity of the contaminant is constant, the concentration field is governed by

the advection-diffusion equation given by:

div(v) = 0
∂c

∂t
= −(v · ∇)c+ κ∇2c+ Js (3.17)

where c : Ω × R → R indicates the concentration field on spatial domain Ω, Js :

Ω × R → R describes ”sources” or ”sinks” of the quantity c. κ = D/UL with D,

diffusivity coefficient.

The equation (3.17) is a scaled formulation of the advection-diffusion equation.

The velocities are scaled by a factor V and time is scaled by V/L, where V and L

are nominal velocities and length. The concentration and sources/sinks fields are

dimensionless since they are treated as the mass fraction of the contaminant.
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POD based Model Reduction

The concentration field is expanded c(t, x), in the POD modes φ(x) defined on the

spatial domain Ω as follows:

c(t, x) =
p∑
i=1

bi(t)φi(x) (3.18)

As in the treatment of the velocity field, we consider the projection over a Hilbert H

with inner product:

< ci, cj >=
∫

Ω
ci(x) · cj(x)dV (3.19)

where ci(x) · cj(x) is the standard dot product between two vectors ci(x) and cj(x) in

Euclidean space and dV is a volume element.

Substituting both equations (3.2) and (3.18) into (3.17), one obtains

∂c

∂t
=

p∑
i=1

ḃi(t)φi(x) = −
 n∑
j=1

ai(t)αi(x)
 · ∇( p∑

i=1
bi(t)φi(x)

)

+ κ∇2
( p∑
i=1

bi(t)φi(x)
)

+ Js (3.20)

Projecting (3.20) onto POD modes φi(x) yields:

<
∂c

∂t
, φl(x) > =<

p∑
i=1

ḃi(t)φi(x), φl(x) >

=<
n∑
i=1

p∑
j=1

ai(t)bj(t)∇φj(x) · αi(x), φl(x) >

+ κ < ∇2
( p∑
i=1

bi(t)φi(x)
)
, φl(x) > + < Js, φl(x) > (3.21)
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By the linearity of the inner product and the orthogonality of the POD modes, we

can compute the following reduced form:

ḃl(t) = −
n∑
i=1

p∑
j=1

ai(t)bj(t) < ∇φj(x) · αi(x), φl(x) >

+ κ
p∑
i=1

bi(t) < ∇2φi(x), φl(x) > + < Js, φl(x) > (3.22)

Equation (3.22) is the decomposition model of concentration field in POD modes.

Equations (3.8) and (3.22) are the basis of designing an observer for both the fluid

flow velocity field, v(t, x) and the concentration field, c(t, x).

Reduced order Component Balance

The dynamical system (3.22) is simplified to a quadratic differential equation of the

form:

ḃl(t) = Mlb(t) + a(t)TQlb(t) l = 1, . . . , p (3.23)

where Ml is a p-dimensional row vector and Ql is an p× p matrix for l = 1, . . . , p,

Mli = κ < ∇2φi(x), φl(x) > (3.24)

Qlij
=< ∇φj(x) · αi(x), φl(x) > (3.25)



CHAPTER 3. NONLINEAR FILTER 27

In general, the source/sink term is ignored since the POD modes are such that

div(φ)=0 below,

∫
Ω
Js · φl(x)dV =

∫
∂Ω
Jsφl(x) · nΩdS (3.26)

where nΩ is the unit vector normal to the spatial domain Ω. The source/sink term

vanishes on the closed boundary such that φl(x) = 0 on the boundary of Ω, ∂Ω.

Measurement

Assuming that concentration field measurements, c0(t, x0), are available at predefined

location, x0, one can express these measurements by using the expansion form as

follows:

c(t, x0) =
p∑
i=1

bi(t)φi(x0). (3.27)

Since POD modes are time independent, equation (3.27) is expressed in the form

yconc(t) = C̄b(t) (3.28)

where C̄ is 1 × p measurement matrix and b(t) is the p-dimensional vector of time

varying coefficients of the Galerkin approximation of c(t, x). Therefore, the complete
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dynamical system of the concentration of the contaminants with available measure-

ments is as follows:

ḃl(t) = Mlb(t) + a(t)TQlb(t), l = 1, · · · , p,

yconc(t) = C̄b(t). (3.29)

3.1.3 Energy Field Estimation

In this section, we extend the model reduction technique used in the treatment of the

velocity and concentration fields to the development of a reduced order model of the

energy balance. Assuming that there is no heat of mixing and the change in potential

and kinetic energy between inlet and outlet streams is negligible. The temperature

field dynamics are governed by the energy balance equation:[Bird et al., 1960]

div(v) = 0
∂T

∂t
= −(v · ∇)T + ς∇2T +Dc (3.30)

where T : Ω × R → R indicates the fluid temperature field on spatial domain Ω,

Dc : Ω × R → R describes “chemical source” of the temperature T . ς = k/ρCp with

k, thermal conductivity coefficient, fluid density, ρ and heat capacity Ĉp at constant

pressure per unit mass. As in the previous sections, the velocity and time are scaled

by factors, V and V/L . We assume that the temperature and the source term are

dimensionless.
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POD based Model Reduction

The temperature field, T (t, x) is expressed as an expansion form in the POD modes

θ(x) defined on the spatial domain Ω as follows:

T (t, x) =
q∑
i=1

hi(t)θi(x) (3.31)

The following standard inner product is considered:

< Ti, Tj >=
∫

Ω
Ti(x) · Tj(x)dV (3.32)

where Ti(x) · Tj(x) is the standard dot product between two vectors Ti(x) and Tj(x)

in Euclidean space, dV is a volume element.

Substituting both equations (3.2) and (3.31) into (3.30) yields:

∂T

∂t
=

q∑
i=1

ḣi(t)θi(x) = −
 n∑
j=1

ai(t)αi(x)
 · ∇( q∑

i=1
hi(t)θi(x)

)

+ ς∇2T

( q∑
i=1

hi(t)θi(x)
)

+Dc. (3.33)

Projecting (3.33) onto POD modes θi(x) by applying inner product yields:

<
∂T

∂t
, θm(x) > =<

q∑
i=1

ḣi(t)θi(x), θm(x) >

=<
n∑
i=1

q∑
j=1

ai(t)hj(t)∇θj(x) · αi(x), θm(x) >

+ ς < ∇2
( q∑
i=1

hi(t)θi(x)
)
, θm(x) > + < Dc, θm(x) > (3.34)
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According to the linearity of the inner product and orthogonality of the POD modes,

the reduced order dynamic equation is as follows:

ḣm(t) = −
n∑
i=1

q∑
j=1

ai(t)hj(t) < ∇θj(x) · αi(x), θm(x) >

+ ς
q∑
i=1

hi(t) < ∇2θi(x), θm(x) > + < Dc, θm(x) > (3.35)

Equation (3.35) is the reduced order model for the approximation of temperature field

using POD modes. Equation, (3.8), (3.22), and (3.35) are the basis for the design

of an observer for three states of fluid flow, velocity filed v(t, x), concentration field

c(t, x), and energy field T (t, x).

Reduced order Energy Balance

The energy field system is simplified to a quadratic differential equation of the form:

ḣm(t) = Lmh(t) + a(t)TEmh(t) m = 1, . . . , q (3.36)

where Lm is a row vector and Em is an q × q matrix for m = 1, . . . , q,

Lmi
= ς < ∇2θi(x), θm(x) > (3.37)

Emij
=< (∇θj(x)·)αi(x), θm(x) > (3.38)
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In general, the source term is ignored since the POD modes are such that div(θ)=0

below,

< Dc, θm(x) >=
∫

Ω
Dc · θm(x)dV =

∫
∂Ω
Dcθm(x) · nΩdS m = 1, . . . , q (3.39)

where nΩ is the unit vector normal to the spatial domain Ω. The source term vanishes

on the closed boundary which means that θm(x) = 0 on the boundary of Ω, ∂Ω as

well.

Measurement

As for the measurements of the velocity and concentration derived in the previous

sections, temperature field measurements, T0, available at predefined locations, x0,

can be expressed in the expansion form:

h(t, x0) =
q∑
i=1

hi(t)θi(x0). (3.40)

Since the POD modes are time independent, equation (3.40) is expressed in the form,

ytemp(t) = C̃h(t) (3.41)

where C̃ is 1 × u measurement matrix and h(t) is the u-dimensional vector of time

varying coefficients of the Galerkin approximation of T(t,x). The complete dynamical
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system of the energy with available measurements is given by

ḣm(t) = Lmh(t) + a(t)TEmh(t),m = 1, · · · , q

ytemp(t) = C̃h(t) (3.42)

The overall dynamical system, combining (3.16), (3.29) and (3.42), is summarized

below:

ȧk(t) = Nka(t) + a(t)TPka(t), k = 1, . . . , n

ḃl(t) = Mlb(t) + a(t)TQlb(t), l = 1, · · · , p

ḣm(t) = Lmh(t) + a(t)TEmh(t), m = 1, · · · , q

m(t) =


yvelo(t)

yconc(t)

ytemp(t)

 =


C 0 0

0 C̄ 0

0 0 C̃




a(t)

b(t)

h(t)

 . (3.43)

3.2 Observer Design

The purpose of this section is to design an observer for a nonlinear system of the

general form (3.43). In [Guay and Hariharan, 2008], the application of an extended

Kalman filter(EKF) was considered for linear approximation of velocity field esti-

mation to reduce the complexity of the observer design. In order to improve the

performance of the observer for the nonlinear system, we consider the higher order

Kalman filter proposed in [Athans et al., 1968]. The Galerkin projection of three



CHAPTER 3. NONLINEAR FILTER 33

states (3.43) is rewritten in the following form:

ẋ(t) = Ax(t) +
n+p+q∑
k=1

ekx(t)TFkx(t)

m(t) = Cx(t) + %1(t) (3.44)

where the vectors ek, (k = 1, . . . , N), are the basis vectors on Rn+p+q,

e1 =



1

0

. . .

0


, e2 =



0

1

. . .

0


, . . . , en+p+q =



0

0

. . .

1


. (3.45)

Considering x(t) = [a(t), b(t), h(t)]T ∈ Rn+p+q, the matrices A and Fk(k = 1, . . . , N)

are of the following form

A =


Nk 0 0

0 Ml 0

0 0 Lm

 (3.46)
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and

Fk =




Pk 0 0

0 0 0

0 0 0

 k = 1, . . . , n


0 1

2Qk−n 0
1
2Qk−n 0 0

0 0 0

 k = n+ 1, . . . , n+ p


0 0 1

2Ek−n−l

0 0 0
1
2Ek−n−l 0 0

 k = n+ p+ 1, . . . , n+ p+ q

(3.47)

Let N = n+ p+ q, then the following assumptions are required for the application of

the Kalman filter.

Assumption 3.2.1. The initial condition x(0) is a Gaussian random variable with

mean E{x(0)} = x0 and covariance E{(x(0) − x0)(x(0) − x0)T} = S0 where S0 is a

positive definite matrix.

It is assumed that the measurements are available at discrete times, t1, . . . , tk, tk+1, . . .,

measurements. The state variables and measurement noise variables at time tk are

expressed by

m(tk) = mk, x(tk) = xk, %(tk) = %k



CHAPTER 3. NONLINEAR FILTER 35

It is assumed that the measurements are subject to Gaussian noise, independent of x0

with mean E{%k} = 0 and covariance Cov{%k} = Rk. At time tk, the measurement

sequence is

mk = Cxk + %k, (k = 1, 2, . . .)

Let the state estimate be given by:

ω(tk) = x̂k.

In [Guay et al., 2010], the dynamical nonlinear filter is introduced using the following

differential equations:

ω̇(t) = Aω(t) +
N∑
i=1

eiω(t)TFiω(t) +
N∑
j=1

ejtr(FjS(t)) (3.48)

where tr is the trace of a square matrix. Define the N ×N symmetric matrix S(t) by

S(t) , E{e(t)eT (t)}. (3.49)

S(t) is the positive definite covariance matrix of the state estimates given as the

solution of matrix differential equation given by:

Ṡ(t) = (A+ 2
N∑
i=1

eiω(t)TFi)S(t) + S(t)(A+ 2
N∑
i=1

eiω(t)TFi)T (3.50)

with initial condition S(0) = S0. The covariance matrix at time tk, S(tk) = Σk. At

the next time step tk+1, let yk+1 = Cxk+1, ωk+1 = ω(tk+1) and Sk+1 = S(tk+1). The
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estimate of the state is updated at tk+1 by the recursion:

x̂k+1 = ωk+1 +Gk+1 [yk+1 − Cωk+1] (3.51)

where the gain matrix Gk+1 is given by,

Gk+1 = Sk+1C
T
[
CSk+1C

T +Rk+1
]−1

. (3.52)

The covariance matrix of the state estimates is updated as follow,

Σk+1 = Sk+1 = Sk+1C
T
[
CSk+1C

T +Rk+1
]−1

CSk+1. (3.53)

The second order filter (3.48) is used for the estimation of the nonlinear system (3.43)

with discrete-time measurements. We require that the nonlinear system (3.43) is N -

mode observable.

Definition 3.2.1. [Guay et al., 2010] The dynamical system (3.1), (3.17) and (3.30)

with measurements yvelo, yconc and ytemp is N-mode observable if the finite-dimensional

Galerkin projection (3.43) is observable with output y(t) = Cx(t)

Remark 3.2.2. [Guay et al., 2010] N-mode observability is not guaranteed for any

given combination of snapshots and measurements. The property must be checked in

each case.

The second order observer (3.48) estimates the states of the nonlinear system if the

reduced order nonlinear system is stable and N -mode observable. A simulation ex-

ample is presented in the next section.
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3.3 Simulation Example

To illustrate the effectiveness of the proposed second order observer performance, we

consider the following system:

ẋ1 = −2x1 − x2x1

ẋ2 = −x2 + x2
1

ẋ3 = −x3

y = x1


Main System (3.54)

which is stable. It assumed the general form:

ẋ(t) = Ax(t) +
n+p+q∑
k=1

ekx(t)TFkx(t) + %1(t)

m(t) = Cx(t) + %2(t)

where state x(t) is a vector which has three elements (n=3), C is a measurement

matrix, [1 0 0]T , and the measurement m(t) is observed at a discrete moment

of time. %1(t) and %2(t) are discrete white Gaussian noise signals with zero mean

E{%(t)} = 0 and constant covariance Cov{%(t)} = R. However, we only consider

measurement noise. A is 3 × 3 constant matrix, F1, F2, and F3 are also 3 × 3

matrices given by:

A =


−2 0 0

0 −1 0

0 0 −1

 , F1 =


0 −1

2 0

−1
2 0 0

0 0 0

 , F2 =


1 0 0

0 0 0

0 0 0

 , F3 =


0 0 0

0 0 0

0 0 0

 ,
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Let the continuous-time state estimate dynamics, ω(t) = x̂(t). be described by the

following system of ordinary differential equations:

ω̇ = Aω(t) +
n∑
k=1

ekω(t)TFkω(t) +
n∑
k=1

ektr(FkS(t)) (3.55)

where the 3 × 3 covariance matrix S(t) is the positive definite solution of the following

matrix ordinary differential equation:

Ṡ(t) = (A+ 2
n∑
k=1

ekω(t)TFk)S(t) + S(t)(A+ 2
n∑
k=1

ekω(t)TFk)T (3.56)

At time tk, let S(tk) = Sk, R(tk) = Rk, m(tk) = mk, and ω(tk) = ωk. The state

estimate at time tk is given by:

x̂k = ωk +Gk[mk − Cωk] (3.57)

where the gain matrix Gk is given by

Gk = SkC
T [CSkCT +Rk]−1 (3.58)

The covariance matrix of the state variables is given by,

Σk = Sk − SkCT [CSkCT +Rk]−1CSk (3.59)

3.3.1 Simulation Results

The dynamical equations of the plant (3.54) and the filter (3.55) were numerically

integrated using the ODE15s Matlab function. The system states x(t), filter variable
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ω(t) and covariance S(t) are solved in continuous-time, and the estimates, x̂k, are

generated in discrete-time. The observations were taken every second, and the run-

ning time used was from t = 0 to t = 10000. The Gaussian measurement noise is

generated using a normal random number generator from a normal distribution with

mean parameter, 0 and standard deviation parameter 0.1. At time t = 0, the initial

states were set to be Gaussian random variables and independent. The measurement

matrix C, initial state variables and covariance matrix are taken as:

C =


1

0

0

 , x(0) =


1

2

1

 , S(0) =


1 0 0

0 1 0

0 0 1

 , ω(0) =


2

1

4

 ,

Figure 3.1 shows the nominal trajectory of the three states (solid line) and the es-

timation of states (dotted line). The results show that the estimation of states x1,

x2 and x3 follow the unknown state variable as required. In Figure 3.2, the errors

are shown to vanish, although x2 and x3 have relatively large gaps initially. This

simulation demonstrates the performance of the nonlinear observer for estimating the

three states. This observer will be applied in the design of a distributed system in

the next chapter.



CHAPTER 3. NONLINEAR FILTER 40

0 1 2 3 4 5 6 7 8 9 10 (x10^3)
−1

0

1

2

x
1

0 1 2 3 4 5 6 7 8 9 10 (x10^3)
−1

0

1

2

x
2

0 1 2 3 4 5 6 7 8 9 10 (x10^3)
−1

0

1

2

3

4

time(sec)

x
3

Figure 3.1: The performance of second order filter of nonlinear system. (states “—”,
estimation of states “- - -” )
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Figure 3.2: Time course plot of the state estimation error e = x− x̂



Chapter 4

Consensus

One of the major research problems associated with the study of sensor networks is to

develop scalable detection and estimation algorithms. In order to address this complex

problem, one should develop distributed algorithms that yield computable real-time

algorithms. Distributed systems are usually represented by a collection of agents.

Each agent attempts to accomplish set number of tasks that can require agreement

on some commonly known variables that depend on the state of all agents. These

variables are called consensus states. They must be communicated between agents to

ensure that global tasks are achieved. Consensus algorithms are interaction methods

that are based on information exchange between a sensor and all its neighbouring

sensors.

Decentralized Kalman filtering proposed in [Rao et al., 1993], uses a set of local

Kalman filters that communicate with all other sensors. Since this decentralized fil-

tering requires all-to-all connected topology, it is not scalable. Hence, we focus on

scalable or distributed Kalman filtering algorithms in which each sensor only com-

municates with neighbouring sensors within a certain radius. [Olfati-Saber, 2007]

42
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This chapter will provide information regarding consensus algorithms, as well

as two methods of developing a distributed estimation algorithm system. The first

method is a data fusion based on a local higher order Kalman filter coupled to consen-

sus filters. The second method provides an alternative way to develop the distributed

algorithm based on local state estimates.

4.1 Introduction

Sensor networks are used in a number of different fields because they are an effective

means of data fusion and information collection. According to [Arampatzis et al.,

2005], a sensor network is a type of computer network with numerous sensor nodes.

These nodes are utilized in a number of industries such as meteorology, forestry,

and agriculture. This technology can also be adapted to military uses. Regardless

of their utility in various fields, all sensor networks must perform their tasks in a

efficient manner and the development of distributed algorithm will help to address

these efficiencies.

A decentralized algorithm was developed by [Speyer, 1978] where an all-to-all

sensor network architecture is required. Since the information flow all-to-all link has

n2 communication complexity, where n is the number of sensors, it is not scalable

for sensor networks. A distributed Kalman filtering algorithm is required to limit

communication information such that only from nearest neighbours is needed. If the

Graph G associated with the sensor is connected, then one can develop such scalable

algorithms by exploiting the graph properties. The distributed filter is more flexible

and provides accurate information to develop average consensus states at each node,
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as proposed in [Olfati-Saber, 2005b].

According to [N.A.Lynch, 1997; Anderson and J.B.Moore, 1979], the development

of a distributed algorithm primarily depends on the properties of the observer consid-

ered in the design. In [Olfati-Saber and R.M.Murray, 2004, 2003; Olfati-Saber, 2005a],

a Distributed Kalman Filter(DKF) is proposed that generates average-consensus

states in linear systems. This chapter develops distributed algorithms using two ver-

sion of the consensus filter of [Olfati-Saber and R.M.Murray, 2004, 2003; Olfati-Saber,

2005a]. The first version involves data collection of measurement and covariance. The

second version involves finding appropriate consensus filters for each of them. Once

these two problems are addressed, we apply a higher order filter in the consensus filter

to develop distributed algorithms for nonlinear systems.

In order to address these problems, we will firstly talk about the concept of the

consensus filter in networks in Section 4.2. Section 4.3 discusses the distributed

Kalman filter design problem. Two dynamical consensus problems are considered to

provide an effective fusion of the measurement, and covariance information in the

distributed Kalman filter. Appropriate filters are proposed to achieve consensus on

the measurements and the covariance data. A direct consensus filter is also considered

to provide consensus on state estimates. The resulting methods are applied to a

nonlinear system in Section 4.4 and a simulation example is given in Section 4.5.

[Olfati-Saber, 2005b]

4.2 Consensus in Networks

In section 2.1.5, we defined a graph Gn(k) , (Vn, En(k)), the corresponding adjacency

matrix An(k) and Laplacian matrix Ln(k) as models of the relation between sensors in



CHAPTER 4. CONSENSUS 45

a network of dynamical agent systems. Let us first describe a linear consensus protocol

in networks using basic background from graph theory. Let Ni = {i ∈ Vn : aij 6= 0}

be the set of neighbours of sensor i and Ji = Ni ∪ {i} the set of inclusive neighbours

of sensor i.

Theorem 4.2.1. Each sensor of a connected graph Gn has the following consensus

linear protocol. [Olfati-Saber and R.M.Murray, 2003]

ẋi(t) =
∑
j∈Ni

(xj(t)− xi(t)), x(0) ∈ Rn (4.1)

Let z1, . . . , zn ∈ R be n constants that define the initial condition of each agent,

xi(0) = zi. When graph Gn is connected, all sensors globally come to an average

value asymptotically z̄ = 1
n

∑
i zi and identical elements yield an average consensus,z.

For example, let x∗ = limt→+∞ x(t) then, x∗i = x∗j = avg (x(0)) = z. The vector of

the value of the sensors can be expressed as

x∗ = (z, . . . , z)T , z ∈ R (4.2)

The linear consensus algorithm is associated with the Laplacian matrix. The system

can be expressed in a compact form as

ẋ = −Lx

where L = L(Gn) is the Laplacian matrix of graph Gn. It is defined as L = D−A

where D is diagonal degree matrix of G with diagonal elements di = |Ni| =
∑
j aij of
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sensor i. Let λ is eigenvalue of Laplacian L, according to the definition of Laplacian,

all row-sums of L are zero since ∑j Lij = 0. Hence, the Laplacian matrix always has

a zero eigenvalue λ1 = 0, and the remaining eigenvalues are such that

λ1 ≤ λ2 ≤ · · ·λn

The zero eigenvalue corresponds to the aligned state of the graphGn,1 = (1, 1, . . . , 1)T

since 1 belongs to the null-space of L (i.e.L1=0). If the graph Gn is connected, then

eigenvalue λ2 is greater than zero, λ2 > 0. The eigenvalue λ2 is called the algebraic

connectivity of the graph [Godsil and Royle, 2001] and it is a measure of the speed

of convergence (or performance) of the consensus algorithm. Algebraic connectivity

fulfils the following inequality:

λ2(Gn) ≤ ν(Gn) ≤ η(Gn)

where ν(Gn) is the node connectivity and η(Gn) is the edge connectivity of Gn. Using

this inequality, it can be shown that the system is robust in terms of both node-failures

and edge-failures when the network has relatively high algebraic connectivity [Olfati-

Saber, 2005a]

4.3 Distributed Kalman Filter

4.3.1 Kalman Filter

A Kalman filter is an optimal estimator that minimizes the mean square error of the

state esimates for a class of linear dynamical systems subject to Gaussian noise signals.
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Using a Kalman filter, one can infer the estimate of states from the measurement data

using a recursive process. Assuming there are n sensors in an interconnected network

Gn, we can consider the general problem of trying to estimate the state x ∈ Rn in a

discrete-time model of form.

xk = Ak−1xk−1 + fk−1 (4.3)

with measurement y ∈ Rm obtained from m sensors at time tk,

yk = Bkxk + vk (4.4)

Assumption 4.3.1. The process noise covariance Q and measurement noise covari-

ance R are constant.

Assumption 4.3.2. The n × n matrix A in the system (4.3) and the m × n matrix

B in the measurement (4.4) are constant.

The random variables {fk}, {vk} are white Gaussian noise(WGN) for the process and

measurement respectively. They are independent, zero-mean and each noise covari-

ance matrix equals to Qk and Rk respectively in normal probability distributions. It

is assumed that:
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fk ∼ (0, Qk)

vk ∼ (0, Rk)

E[fkfTj ] = Qkξk−j

E[vkvTj ] = Rkξk−j

E[vkfTj ] = 0

x0 = N (x̄0, P0) (4.5)

where ξk−j is the Kronecker delta function; when k = j, ξk−j = 1, and when k 6= j,

ξk−j = 0. The estimation of xk is based on the information of the dynamical system

(4.3) and noisy measurement (4.4). If we have all the information of the measurement

up to step tk is available, we can then form an a posteriori estimate, denoted as x̂+
k .

The”+” indicates that the estimate is a posteriori and the a posteriori estimate can

be expressed as the expected value of xk with all measurements including step tk:

x̂+
k = E[xk | m1,m2, · · · ,mk]. (4.6)

If we consider all the information of the measurement before (not including) step tk

available to estimate xk, then we can obtain an a priori estimate, denoted by x̂−k .

The superscript “−” indicates that the estimate is a priori and the a priori estimate

can be expressed as the expected value of xk with all of measurements up to (not
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including) step tk:

x̂−k = E[xk | m1,m2, · · · ,mk−1]. (4.7)

Both x̂−k and x̂+
k are estimates of xk, depending on before we process the measurement

at step tk, (x̂−k ). Once the measurement at step tk is processed, one can compute the

estimate x̂+
k . It is assumed (without loss of generality) that x̂+

0 provides an initial

value of the estimate of x0 despite the fact that no information is available until time

t1. Therefore, we can indicate the initial estimate x0 as the expected value of the

initial state x0 :

x̂+
0 = E(x0) (4.8)

Let Pk be the covariance of the estimation error. P−k represents the covariance of the

estimation error of x̂−k , and P+
k indicates the covariance of the estimation error of x̂+

k .

They are defined as follows:

P−k = E[(xk − x̂−k )(xk − x̂−k )T ]

P+
k = E[(xk − x̂+

k )(xk − x̂+
k )T ] (4.9)

Figure 4.1 shows the relationship between the estimates of the state and the covari-

ance between before and after measurement at time tk−1 and tk. After we process

the measurement and covariance at time tk−1, we have estimates of the state xk−1and

covariance Pk−1 represented by x̂+
k−1 and P+

k−1 respectively. When the system moves

to the next step tk then we compute an estimate of the state (x̂−k ) and the covariance
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Time

Figure 4.1: Timeline showing a posteriori and a priori state estimates and estimation
error covariances [Simon, 2006]

(P−k ). Then at step tk, using the measurement (mk), we compute a new estimate of

the state (x̂+
k ) and its covariance (P+

k ). The discrete-time Kalman filter iterations are

summarized as follows:

P−k = Ak−1P
+
k−1A

T
k−1 +Qk−1 (4.10)

Kk = P−k B
T
k (BkP

−
k B

T
k +Rk)−1

= P+
k B

T
k R
−1
k (4.11)

x̂−k = Ak−1x̂
+
k−1 (4.12)

x̂+
k = x̂−k +Kk(mk −Bkx̂

−
k ) (4.13)

P+
k = (I −KkBk)P−k

= (I −KkBk)P−k (I −KkBk)T +KkRkK
T
k

= [(P−k )−1 +BT
k R
−1
k Bk]−1 (4.14)

The first form of P+
k (4.14) ensures that P+

k will always be symmetric positive definite,
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as long as P−k is symmetric positive definite. The first one is more stable and robust

than the third form. However, the third form of P+
k (4.14) does not guarantee that

P+
k will always be a symmetric positive definite matrix. The second form is used in

the information filter below. Also, we can see that (4.10),(4.11),(4.14) are not related

to the measurement mk, and only depend on the system parameters Ak, Bk, Qk, and

Rk. As a result, one can calculate the Kalman filter gain Kk a priori. The estimate

of system x̂k can be implemented during real-time operation. This is advantageous as

we can evaluate the performance of the filter prior to its implementation. In contrast,

the filter gain and covariance for a nonlinear system depend on the measurement and

cannot be computed a priori.

Kalman Filter : Information Form

An information filter form of the Kalman filter is presented in [Simon, 2006]. It is an

implementation of the Kalman filter that propagates the inverse of S, S−, instead of

S. The information matrix of the system is defined as:

P = E[(x− x̂)(x− x̂)T ] (4.15)

S = P−1 (4.16)

The covariance, P is a measure of the uncertainty in the estimation of the state. A

large value of P indicates significant uncertainty in the state estimates. When P → 0,

there is sufficient information to estimate x accurately. Conversely, the information

matrix S indicates the certainty in the estimation of the state. The second form of
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the equation (4.14) can be expressed as:

(P+
k )−1 = (P−k )−1 +BT

k R
−1
k Bk (4.17)

and in terms of S, as follows:

S+
k = S−k +BT

k R
−1
k Bk (4.18)

One can also write the measurement-update equation (4.10) for the information ma-

trix as

S−k = [Ak−1(S+
k−1)−1ATk−1 +Qk−1]−1 (4.19)

Using the matrix inversion lemma from [Simon, 2006], it follows the

(A+BD−1C)−1 = A−1 − A−1B(D + CA−1B)−1CA−1 (4.20)

As a result, one can restate (4.19) as:

S−k = Q−1
k−1 −Q−1

k−1Ak−1(S+
k−1 + ATk−1Q

−1
k−1Ak−1)−1ATk−1Q

−1
k−1 (4.21)

which becomes a time-update equation for information matrix, S. Now, let P+
k = Mk,

P−k = Nk, x̂+ = x̂ and x̂− = ω simply.

When the dynamical systems and the measurements in each agent are the same, the
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information filter is given as:[Olfati-Saber, 2005b]

M−1
k = N−1

k +BT
k R
−1
k Bk (4.22)

Kk = MkB
T
k R
−1
k (4.23)

x̂k = ωk +Kk(mk −Bkωk) (4.24)

Nk = Q−1
k−1 −Q−1

k−1Ak−1(M−1
k−1 + ATk−1Q

−1
k−1Ak−1)−1ATk−1Q

−1
k−1

= Ak−1Mk−1A
T
k−1 +Qk−1 (4.25)

ωk = Ak−1x̂k−1 (4.26)

One of the main advantages of the information filter is that when r is the number of

measurements, r measurements can be filtered by summing their information matrices

at each step. While the regular Kalman filter equations require the inversion of an

r × r matrix, the information filter requires n × n matrix when n is the number of

the states. As a result, the information filter is computationally simpler.

Micro Kalman Filters

[Olfati-Saber, 2005b] shows how the information of a central Kalman filter in a

sensor network can be expressed in consensus form using micro-Kalman filters(µKF)

with measurement vectors embedded in each sensors. The micro-Kalman filter at

each sensor collects the information on the measurements and the covariance and

calculates the state estimate x̂ in a distributed way.

Assuming that there is a sensing model at sensor i,

mi(k) = Bi(k)x(k) + vi(k) (4.27)
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where n sensors with p×m measurement matrices Bi. Let the central measurement

definition with observation noise and matrix be denoted by:

mc = [m1;m2; · · · ;mn], (4.28)

vc = [v1; v2; · · · ; vn], (4.29)

Bc = [B1;B2; · · · ;Bn], (4.30)

where the subscript “c” means “central” and Bc is a column block matrix. Using this

notation, one can write the network measurements with Bi along its diagonal as

mc(k) = Bc(k)x(k) + vc(k) (4.31)

The information form of the Kalman filter is then used as a micro-Kalman filter (4.22)

(4.23) (4.24) form for each sensor. It can be expressed as:

M = (N−1 +BT
c R
−1
c Bc)−1 (4.32)

Kc = MBT
c R
−1
c (4.33)

x̂ = ω +Kc(mc −Bcω)

= ω +M(BT
c R
−1
c mc −BT

c R
−1
c Bcω). (4.34)

Define the m × m average inverse-covariance matrix and the m-vector of average
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measurements as:

S(k) = 1
n
BT
c (k)Rc(k)−1Bc(k) = 1

n

1∑
i=1

BT
i (k)Ri(k)−1Bi(k) (4.35)

yi(k) = BT
i (k)Ri(k)−1mi(k), y = 1

n

n∑
i=1

yi, (4.36)

respectively.

We can get the state propagation equation (4.34) as:

x̂(k) = ω(k) +Mµ(k)(y(k)− S(k)ω(k)) (4.37)

where Mµ(k) is the micro-Kalman gain, given by

Mµ(k) = nM(k)

= ((nN(k))−1 + S(k))−1. (4.38)

We can express the micro-Kalman filter at each node as Nµ(k) = nN(k) and Qµ(k) =

nQ(k). The update equation (4.25) for a µKF are given by:

N+
µ (k + 1) = AMµ(k)AT +Qµ(k) (4.39)

The average inverse covariance matrix S and the average measurement y are cal-

culated at each step. They are used to estimate the state x̂ using the local micro

Kalman filter (4.37) ∼ (4.39) at each sensor. The estimate of the states by the micro

Kalman filter approximate the state estimates from a centralized Kalman filter when

there exists n sensors with connected graph, topology Gn with dimension m sensor
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measurement. Having reduced the Distributed Kalman filter problem to the solution

of two dynamic consensus problems by the fusion of data for the measurement and

covariance, we apply appropriate consensus filters for each of them. A distributed

low-pass consensus filter [Olfati-Saber and Shamma, 2005] is a useful tool for sensor

fusion of noisy measurement yi. A band-pass consensus filter is recommended for the

calculation for the inverse-covariance matrices, S. The result of the implementation

of the DKF is that it yields a sensor network where the local information in each agent

enters certain neighbourhoods of the consensus value called a ε-consensus. That is,

it can be shown that all sensors reach the small neighbourhoods of radius, ε � 1 of

the consensus values Ŝi and ŷi which are column-wise for node i [Olfati-Saber and

Shamma, 2005]. The corresponding state and covariance update equations for sensor

ith µKF are given by:

Mi(k) = (Ni(k)−1 + Ŝi(k))−1, (4.40)

x̂i(k) = ωi(k) +Mi(k)(ŷi − Ŝiωi(k)), (4.41)

Ni(k + 1)+ = AkMi(k)ATk +Qµ(k), (4.42)

ωi(k + 1) = Akx̂i(k) (4.43)

4.3.2 Distributed Kalman Filter Type [I] : Consensus-Based

Fusion of Sensory Data

In [Olfati-Saber, 2005b], distributed algorithms using Kalman filtering in sensor net-

works are proposed, in which each sensor is quarantined to reach consensus states for

measurement, m and covariance, S. This algorithm associates a micro-Kalman filter

(µ KF) with each embedded low-pass and band-pass consensus filter. Two dynamic
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consensus problems are solved by appropriate consensus filters where the filters work

by fusing data at each sensor. There are three kinds of consensus filters: a low-pass

filter, a band-pass filter, and a high-pass filter applied to each filter depending on the

bandwidth of the system dynamics . In Olfati-Saber [2007], high-pass filters are gen-

erally recognized to have some critical weakness and are not recommended. Low-pass

filters are recommended for the fusion of measurement data and a band-pass for the

fusion of covariance data.

• Low-Pass Consensus Filter

Consider that ci is the state of consensus filter and that uj is the input of sensor j

with m-dimension respectively. The dynamic consensus algorithm is given by:

ċi = β
∑
j∈Ni

(cj − ci) + β
∑

j∈Ni∪{i}
(uj − ci) (4.44)

It can be expressed in compact form as:

ċ = −L̂c− L̂u+ (In + Â)(u− c) (4.45)

where c is the fusion of sensor data, denoting c = [c1, . . . , cn] and Â = A ⊗ Im

and L̂ = L ⊗ Im. Since ŷi is calculated using this filter (4.44) through fusion of

measurements, we consider BT
i R
−1
i mi as the input of sensor i. The gain β > 0 is

relatively large for random ad hoc topologies. [Olfati-Saber, 2007]

• Band-Pass Consensus Filter



CHAPTER 4. CONSENSUS 58

Consider that (vi, bi) ∈ R2m is the state, Ui is the input, and bi is the output. The

dynamic consensus algorithm is given by:

v̇i = −L̂vi − L̂Ui, (4.46)

gi = vi + Ui, (4.47)

ḃi = α
∑
j∈Ni

(bj − bi) + α
∑

j∈Ni∪{i}
(gj − bi) (4.48)

Since Ŝi is calculated by [(4.46)∼ (4.48)], we considerBT
i R
−1
i Bi as the input of sensor i

in vectorized form. The gain α > 0 is required to be large enough for the topologies for

communication directly. In [Olfati-Saber, 2007], the following Algorithm A describes

the DKF with consensus filtering. It indicates that sensor i sends the information

such as states of measurement and covariance, ci and bi respectively, and receives

input from the neighbouring consensus filters ui and Ui. Note that Algorithm A is

based on Assumption 4.3.3

Assumption 4.3.3. [Olfati-Saber, 2007] Distributed Kalman Filter (DKF) is only

valid for sensors with identical sensing models. It is applicable only to homogeneous

multi-sensor fusion.

x(k + 1) = Akx(k) + fi(k)

mi(k) = Bi(k)x(k) + vi(k)

Here, xk denotes the state of a dynamic process, Bi = B, ∀i, we get

mi(k) = B(k)x(k) + vi(k)
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[Algorithm A] Distributed Kalman Filtering Algorithms with consen-
sus filtering of the measurement and covariance information. [Olfati-
Saber, 2007]

1 : Initial State : ci = 0, bi = 0, Ni = nN0, ωi = x(0)
2 : Produces new data in neighbourhoods, sensors i and j at time tk.
3 : Invite measurement data from neighbour sensors and update it:

uj = BT
j R
−1
j mj, ∀j ∈ Ni ∪ {i}

ci ← ci + ε
∑
j∈Ni

[(cj − ci) + (uj − ci)]

ŷi = ci + ui

4 : Invite new covariance data from neighbour sensors and update it:

Uj = BT
j R
−1
j Bj, ∀j ∈ Ni ∪ {i}

v̇i = −L̂vi − L̂Ui,
gi = vi + Ui

bi ← bi + ε
∑

j∈Ni∪{i}
[(bj − bi) + (gj − bi)]

Ŝi = bi + Ui

5 : Estimate the state by µKF:

Mi(k) = (Ni(k)−1 + Si(k))−1,

x̂i(k) = ωi +Mi(k)(yi(k)− Si(k)ωi),
6 : Update the state for time tk+1

Ni(k + 1)← AkMi(k)ATk +Q(k),
ωi(k + 1)← Akx̂i(k)

7 : (End) Move to step 2 for time tk+1
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Figure 4.2: The architecture for distributed Kalman filtering:(a)description of con-
sensus filters and µKF at node i and (b) communication way between different nodes
of consensus filters in neighbourhoods. [Olfati-Saber, 2005b]
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Fig. 4.2 (a) describes how two dynamic consensus problems are solved using

different consensus filter and µKF at sensor i. Two types of information, measurement

and covariance data, from sensor j are transferred into sensor i and are used to collect

information. Once this has occurred, the local micro-Kalman filter then calculates the

state estimate. Fig. 4.2 (b) shows how measurements and covariance data exchange

at two different sensors i and j. Each sensor invites two types of data from other

sensors to exchange information. Then, each local micro-Kalman filter is calculated.

As a result, each sensor gets the same state estimate, x̂, which is the centralized

estimate when consensus is reached.

4.3.3 Distributed Kalman Filter Type [II] : Consensus on

Estimation

Algorithm A has a key weakness related to Assumption 4.3.3. Since each sensor is

subject to its own white Gaussian noise, it cannot yield agreement of measurement

between neighbour sensors. The limitations of Algorithm A motivates the develop-

ment of alternative distributed Kalman filters Algorithm B and Algorithm C. The

new algorithms are based on the following assumption.

Assumption 4.3.4. [Olfati-Saber, 2007] Distributed Kalman Filter (DKF) type [II]

is valid for sensors with different sensing models. It is applicable to heterogeneous

multi-sensor fusion.

x(k + 1) = Akx(k) + fi(k)

mi(k) = Bi(k)x(k) + vi(k)
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The measurement matrix Bi’s are different across the whole network and the state of

a dynamic process x(k) is collectively observable, Bi 6= B, ∀i

A different approach is considered here, where the distributed Kalman filtering is

based on the exchange of state estimates between neighbouring sensors rather than on

the measurement and covariance. Olfati-Saber [2007] named this second class of the

DKF algorithms a type II algorithm. Each sensor calculates states and estimates by

local Kalman filter, and then exchange the information between neighboring sensors.

It updates the state of the local Kalman filter before moving to the next step. The

new algorithm is shown below. Recall that local Kalman filter iterations are based

on (4.40) ∼ (4.43)) where sensor i locally compute yi(k) and Si(k).
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[Algorithm B] Distributed Kalman Filtering Algorithms with consensus
based on state estimate. [Olfati-Saber, 2007]

1 : Initial State : Ni = N0, χi = x(0)
2 : Produces new data in neighbourhoods, sensors i and j at time tk.
3 : Combine measurement data and covariance matrices locally from

neighbour sensors:

uj = BT
j R
−1
j mj, ∀j ∈ Ni ∪ {i}

Uj = BT
j R
−1
j Bj, ∀j ∈ Ni ∪ {i}

4 : Estimate the state by local Kalman filter:

Mi(k) = (Ni(k)−1 + Si(k))−1,

ψi(k) = χi(k) +Mi(k)(yi(k)− Si(k)χi(k))
5 : Estimate the state by consensus filter.

x̂i(k) = ψi(k) + ε
∑
j∈Ni

(ψj(k)− ψi(k))

6 : Update the state of the local Kalman filter for time tk+1:

Ni(k + 1)← AkMi(k)ATk +Q(k),
χi(k + 1)← Akx̂i(k)

7 : (End) Move to step 2 for time tk+1

Assuming that ψi is the intermediate state estimate, each sensor exchanges the

information of input, ui and Ui, and intermediate state estimate ψi to its neighbour.

As a result, Algorithm B attempts to compute values of the state estimates that are

close between neighbour sensors by decreasing the differences caused by measurement

noise. It implements a consensus step right after the estimation step of two local

Kalman filter. One can combine the two different steps such as consensus step after

the local Kalman filtering step into a single one. This new “Consensus on estimates”

is a more rigorous approach. Additionally, Algorithm C tends to be faster than

Algorithm B because the information from local Kalman filter does not have to be
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communicated to the next step to establish consensus states. It is implemented

simultaneously in the distributed observer.

[Algorithm C] Iterative Kalman - Consensus filter : Distributed
Kalman filtering Algorithm with an observer. [Olfati-Saber, 2007]

1 : Initial State : Ni = N0, ωi = x(0)
2 : Produces new data in neighbourhoods, sensors i and j at time tk.
3 : Combine measurement data and covariance matrices locally from

neighbour sensors:

uj = BT
j R
−1
j mj, ∀j ∈ Ni ∪ {i}

Uj = BT
j R
−1
j Bj, ∀j ∈ Ni ∪ {i}

4 : Estimate the state by computing Kalman-Consensus filter:

Mi(k) = (Ni(k)−1 + Si(k))−1,

x̂i(k) = ωi +Mi(k)(yi(k)− Si(k)ωi) + εMi

∑
j∈Ni

(ωj(k)− ωi(k)),

5 : Update the state of the Kalman-Consensus filter for time tk+1:

Ni(k + 1)← AkMi(k)ATk +Q(k),
ωi(k + 1)← Akx̂i(k)

6 : (End) Move to step 2 for time tk+1

In Algorithm C, each sensor exchanges the information of input, ui and Ui, and

prediction ωi to its neighbour. In the simulation results in [Olfati-Saber, 2007], the

performance of Algorithm C is shown to be improved.

4.4 Consensus-second order filter

In this section, we develop distributed algorithms for a class of nonlinear systems.

In section 4.3, we presented some relevant techniques for a class of distributed linear

dynamical systems using local Kalman filters and consensus filters. We propose to
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develop a distributed nonlinear estimation technique that combines the second order

observer and consensus filters. The approach is similar to the technique proposed in

sections 4.2 and 4.3. The second order filtering iterations for sensor i are of the form:

ẋ(t) = Ax(t) + xT (t)Fx(t) (4.49)

m(t) = Cx(t) + v(t) (4.50)

We design the algorithms that consider the continuous time nature of (4.49) and

(4.50), while inferring estimates in discrete-time to account for fixed sampling rates.

The continuous-time second order filters are given by:

ω̇(t) = Aω(t) + ω(t)TFiω(t) + tr(FS(t)) (4.51)

Ṡ(t) = (A+ 2ω(t)TF )S(t) + S(t)(A+ 2ω(t)TF )T (4.52)

The filter variable ω(t) is an estimate of x(t) between measurements and it is expressed

as ω(tk) = x̂k.

4.4.1 Distributed second order Filter Type I : Consensus-

Based Fusion of Sensory Data

In a distributed algorithm, we use the discrete-time version of the measurement and

covariance. We first compute two sets of data at each sensor i and j at time tk based

on initial conditions. Each sensor invites data from neighbouring sensors to collect

the measurement data for the low-pass consensus filter and the covariance data for

the band-pass consensus filter. The output yi(k) and Si(k) of the consensus filter
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gives the consensus state expressed as y(k) and S(k) in Algorithm A-I. Using the

second order filter, we estimate the state using the discrete-time recursion at time tk

as follows:

Gk = SkC
T [CSkCT +Rk]−1 (4.53)

x̂k = ωk +Gk[yk − Cωk] (4.54)

Σk = Sk − SkCT [CSkCT +Rk]−1CSk (4.55)

Algorithm A-I and Algorithm A-II are distributed algorithms of the second order

filter (4.51) ∼ (4.55) with consensus filter for nonlinear systems.
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[Algorithm A-I] Distributed second order Filtering Algorithms with
consensus filtering of the state information.

1 : Set initial states at time t0 : x0, ω0, S0,mo

2 : Produces new data in neighbourhoods, sensors i and j at time tk. :
x(k), ω(k), S(k),m(k)

3 : Invite measurement data from neighbour sensors and update it:

uj = Cxj(k) + vj(k) ∀j ∈ Ni ∪ {i}
ci ← ci + ε

∑
j∈Ni

[(cj − ci) + (uj − ci)]

yi = ci + ui

4 : Invite new covariance data from neighbour sensors and update it:

Uj = Sj, ∀j ∈ Ni ∪ {i}
v̇i = −L̂vi − L̂Ui,
gi = vi + Ui

bi ← bi + ε
∑
j∈Ni

[(bj − bi) + (gj − bi)]

Si = bi + Ui

5 : Calculate the gain and estimate of the state:

Gi(k) = Si(k)CT [CSi(k)CT +Ri(k)]−1

x̂i(k) = ωi(k) +Gi(k)[yi(k)− Cωi(k)]
Σi(k) = Si(k)− Si(k)CT [CSi(k)CT +Ri(k)]−1CSi(k)

6 : Update the state for time tk+1

Si(k + 1)← Σi(k)
ωi(k + 1)← x̂i(k)

7 : (End) Move to step 2 for time tk+1

Algorithm A-I enables the fusion of measurement and covariance data. It is assumed

that each sensor has white Gaussian noise. In this case, collecting measurement data

to come up with the consensus states is not necessary since the measurement at each

sensor is meant to be different. Therefore, we keep each different measurement value
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to estimate the state. Algorithm A-II shows that one can compute the average S(k)

without calculating y(k).

[Algorithm A-II] Distributed second order Filtering Algorithms with
consensus filtering of the covariance information only.

1 : Set initial states at time t0 : x0, ω0, S0,mo

2 : Produces new data in neighbourhoods, sensors i and j at time tk. :
x(k), ω(k), S(k),m(k)

3 : Invite new covariance data from neighbour sensors and update it:

Uj = Sj, ∀j ∈ Ni ∪ {i}
v̇i = −L̂vi − L̂Ui,
gi = vi + Ui

bi ← bi + εα
∑
j∈Ni

[(bj − bi) + (gj − bi)]

Si = bi + Ui

4: Calculate the gain and estimate of the state:

Gi(k) = Si(k)CT [CSi(k)CT +Ri(k)]−1

x̂i(k) = ωi(k) +Gi(k)[mi(k)− Cωi(k)]
Σi(k) = Si(k)− Si(k)CT [CSi(k)CT +Ri(k)]−1CSi(k)

5 : Update the state for time tk+1

Si(k + 1)← Σi(k)
ωi(k + 1)← x̂i(k)

6 : (End) Move to step 2 for time tk+1

In Algorithm A-II, sensor i sends data of the state and input of its consensus

filter (band-pass consensus filter). The output Si(k) of the band-pass filter attempts

to provide a consensus state S(k).
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4.4.2 Distributed second order Filter Type II : Consensus on

Estimation

As discussed in the alternative approach in section 4.4.3, one can also consider a

distributed nonlinear system based on the state estimate in situations where the

sensor data yields different measurements. This is a type II second order filter.

[Algorithm B-I] Distributed Kalman Filtering Algorithms with con-
sensus based on state estimate. [Olfati-Saber, 2007]

1 : Set initial states at time t0 : x0, ω0, S0, yo
2 : Produces new data in neighbourhoods, sensors i and j at time tk. :
x(k), ω(k), S(k), y(k)

3 : Combine measurement data and covariance matrices locally from
neighbour sensors:

uj = Cxj(k) + vj(k) ∀j ∈ Ni ∪ {i}, yi =
∑
j∈Ji

uj

Uj = Sj, ∀j ∈ Ni ∪ {i}, Si =
∑
j∈Ji

Uj

4: Calculate the gain and intermediate estimate of the state:

Gi(k) = Si(k)CT [CSi(k)CT +Ri(k)]−1

ψi(k) = ωi(k) +Gi(k)[yi(k)− Cωi(k)]
Σi(k) = Si(k)− Si(k)CT [CSi(k)CT +Ri(k)]−1CSi(k)

5 : Estimate the state by consensus filter.

x̂i(k) = ψi(k) + ε
∑
j∈Ni

(ψj(k)− ψi(k))

6 : Update the state for time tk+1

Si(k + 1)← Σi(k)
ωi(k + 1)← x̂i(k)

7 : (End) Move to step 2 for time tk+1

Assuming that ψi is the intermediate state estimate, each sensor exchanges the
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information of input, ui and Ui, and intermediate state estimate ψi to its neighbours.

As a result, Algorithm B-I tries to approximate state estimates that minimize the

differences caused by measurement noise. It implements a consensus step right after

the estimation step of the local second order filter. Since measurements and covariance

are not collected at each sensor, the process of estimation is faster. In a large-scale

sensor network, the local state estimates can provide global estimates that are subject

to consensus constraints. Algorithm C-I is a combination of a consensus step a local

second order filtering step. This new “Consensus on estimate” is a more rigorous, as

well as faster than Algorithm B-I since the information from the local second order

filter does not have to be sent to the next step to determine consensus states. We

propose to use this algorithm in concert with the higher order filter from Chapter 3.

Estimation of states in a linear system is determined relatively easily such that the

distributed observer is quite accurate. The performance of the nonlinear distributed

observer as designed in this thesis is tested through simulation in the next section.
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[Algorithm C-I] Iterative second order - Consensus filter : Distributed
second order filtering Algorithm based on state estimate.[Olfati-Saber,
2007]

1 : Set initial states at time t0 : x0, ω0, S0, yo
2 : Produces new data in neighbourhoods, sensors i and j at time tk. :
x(k), ω(k), S(k), y(k)

3 : Combine measurement data and covariance matrices locally from
neighbour sensors:

uj = Cxj(k) + vj(k) ∀j ∈ Ni ∪ {i}, yi =
∑
j∈Ji

uj

Uj = Sj, ∀j ∈ Ni ∪ {i}, Si =
∑
j∈Ji

Uj

4: Estimate the state by 2nd order - Consensus filter.:

Gi(k) = Si(k)CT [CSi(k)CT +Ri(k)]−1

x̂i(k) = ωi(k) +Gi(k)[yi(k)− Cωi(k)] + εSi(k)
∑
j∈Ni

(ωj(k)− ωi(k))

Σi(k) = Si(k)− Si(k)CT [CSi(k)CT +Ri(k)]−1CSi(k)
5 : Update the state for time tk+1

Si(k + 1)← Σi(k)
ωi(k + 1)← x̂i(k)

6 : (End) Move to step 2 for time tk+1

4.5 Simulation Example

In this section, we test the performance of the observer for the nonlinear distributed

system using Algorithms A-II, Algorithms B-I, and Algorithms C-I. Consider the
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nonlinear dynamical system given by:

ẋ1 = −x1 − x2x1

ẋ2 = −x3 + x2
1

ẋ3 = x2


Main System (4.56)

This system is Lyapunov stable and belongs to the class of systems considered in

Chapter 3. That is,

ẋ(t) = Ax(t) +
n∑
k=1

ekx
T (t)Fkx(t)

m(t) = Cx(t) + %(t)

where state x(t) ∈ R3, Ci and Cj are different measurement matrices at each sensor,

and the measurement m(t) is observed at fixed sampling times. %(t) is discrete white

Gaussian noise with zero mean E{%(t)} = 0 and constant covariance Cov{%(t)} =

R(t). The measurement matrices are:

Ci =


1

1

0



T

, Cj =


1

0

1



T

,

The matrices A, F1, F2, and F3 are:

A =


−1 0 0

0 0 −1

0 1 0

 , F1 =


0 0 0

−1 0 0

0 0 0

 , F2 =


1 0 0

0 0 0

0 0 0

 , F3 =


0 0 0

0 0 0

0 0 0

 ,
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Let the state estimate be ω(t) = x̂(t) between observations given by the following

system of ordinary differential equations:

ω̇ = Aω(t) +
n∑
k=1

ekω(t)TFkω(t) +
n∑
k=1

ektr(FkS(t)) (4.57)

where S(t) is the positive definite solution of the following differential equation:

Ṡ(t) = (A+ 2
n∑
k=1

ekω(t)TFk)S(t) + S(t)(A+ 2
n∑
k=1

ekω(t)TFk)T . (4.58)

At time tk, let S(tk) = Sk, R(tk) = Rk, m(tk) = mk, and ω(tk) = ωk.

[Algorithm A-II]

Invite new covariance data from neighbour sensors and update it:

Uj = Sj, ∀j ∈ Ni ∪ {i}

v̇i = −L̂vi − L̂Ui,

gi = vi + Ui (4.59)

bi ← bi + εα
∑
j∈Ni

[(bj − bi) + (gj − bi)]

Si = bi + Ui

Calculate estimate of the state

x̂i(k) = ωi(k) +Gi(k)[mi(k)− Cωi(k)] (4.60)
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The state estimates for the next two algorithms at time tk are given by:

[Algorithm B-I]

ψi(k) = ωi(k) +Gi(k)[mi(k)− Ciωi(k)] (4.61)

x̂i(k) = ψi(k) + δ
∑
j∈Ni

(ψj(k)− ψi(k)) (4.62)

[Algorithm C-I]

x̂i(tk) = ωk +Gk[mk − Ciωk] + δSi(tk)
∑
j∈Ni

(ωj(tk)− ωi(tk)) (4.63)

where the δ is step size and the gain matrix Gk is given by

Gk = SkC
T
i [CiSkCT

i +Rk]−1 (4.64)

The covariance matrix of the state variables is described by,

Σk = Sk − SkCT [CSkCT +Rk]−1CSk. (4.65)

4.5.1 Simulation Results

The dynamical equations of the plant (4.56) and of the filter (4.57) were integrated

using ODE15s function. The system x(t), filter variable ω(t) and covariance S(t)

are updated in continuous-time. The state estimates are updated at each sampling

time. The observations were taken every second, and the running time as from t=0 to

t=10000. During the simulation, the observation white Gaussian noise is generated

by random numbers sampled from normal distribution with mean parameter, 0 and
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standard deviation parameter 0.1. At time t=0, the initial states were set to be

Gaussian random variables and independent. The initial state variable, x(0), the

initial filter variables ω(0) at sensor i and j, and the initial covariance are as follows:

x(0) =


1

2

1

 , S(0) =


1 0 0

0 1 0

0 0 1

 , ωi(0) =


4

3

2

 , ωj(0) =


2

1

3

 ,

[Algorithm A-II]

Figure 4.3 shows that the estimation of states has very rough behavior, although

they estimate states eventually. The solid line is the plant behavior and the two

dotted lines show the behavior of the neighbouring sensors. In figure 4.5 and 4.6,

the estimation error goes to zero slowly compared to Algorithm B-I and Algorithm

C-I. Therefore, the performance of distributed estimation based on fusion of data is

relatively less efficient than distributed estimation based on consensus on estimation.

[Algorithm B-I]

In figure 4.7, the state, x1 converges to zero value while state, x2 and x3 display a

sinusoidal response. Through the communication between sensor i and j based on

estimates as we developed in Algorithm B-I, x2 and x3 can be estimated appropri-

ately. Solid line gives the plant behaviour, and two dotted lines are behaviour of

neighbouring sensors. They behave in a very similar manner. After the estimation

of states by the nonlinear observer at each sensor, a consensus filter is used to reach

equilibrium on the consensus states. The overall process yields a fast local estimate

with slow consensus. In figure 4.8, we see that the trajectory of nonlinearity do not

track properly initially. They are shown to become appropriately as consensus is
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reached. Also, figures 4.9 ,4.10 indicate that the errors xk − x̂k converge to zero, but

relatively slowly.

[Algorithm C-I]

Figure 4.11 shows the plant behaviour always with the distributed estimates from

the different sensors. The solid line estimates the plant behaviour, and the two dotted

lines show the behaviour of the neighbouring sensors. In contrast to figure 4.8, the

estimation of the states converge very quickly to the consensus value as shown in figure

4.12. It demonstrates that Algorithm C-I provides an effective estimation process. In

comparison to Algorithm B-I, this algorithm provides a faster and simpler mechanism

to achieve consensus of the state estimates. In addition, as shown in the figures 4.13

and 4.14, the errors between the states and the estimation, xk − x̂k, converge to zero

values despite relatively large initial errors.

4.5.2 Discussion of Results

A sensor network consists of a large number of sensor nodes. Each sensor computes

some level of communication, collects data, and conducts signal processing, which can

build up a sensing network. Due to technical problems, such as limited sensor power

and computational ability associated with communications between sensors in large-

scale networks, one attempts to design a distributed algorithm that will reduce the

communication level required between all-to-all links, thus addressing this problem.

We applied the second order observer to the distributed system using consensus filter.

We set two different sensor nodes, i and j, and applied two different methods

Algorithm B-I and Algorithm C-I to a nonlinear system. The purpose of this method

was to check the feasibility for two nodes to communicate with each other to come
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up with consensus states in the nonlinear system. As demonstrated in the simulation

results, two different sensor nodes communicated properly to get the same estimates.

Using these algorithms, if we assume that there exists a significant number of sensor

nodes in a system, estimation of states should occur. These algorithms also allowed

one to solve problems related to unlimited single sensor energy, as well as commu-

nication capacity for sensors. The proposed method has the advantage that it can

provide consensus in the face of sensor malfunction and failure.

To achieve these results, we first applied the second order filter and the consensus

filter. This process proved to be effective, yet inefficient due to the long processing

time required to display the results. We therefore, combined two filters to design

the distributed observer for a class of nonlinear system. This method proved more

efficient and rigorous due to the fact that the information from the local second order

filter does not have to be sent to the next step to determine consensus states.
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Figure 4.3: [Algorithm A-II] Comparison of the performance of distributed second
order kalman filter at different sensor i and j (states “—”, estimation (i node) of
states “- - -”, estimation (j node) of states “- · -” )
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Figure 4.4: [Algorithm A-II] The trajectory behaviour of the nonlinear system for the
states x2, x3 (states “—”, estimation (i node) of states “- - -”, estimation (j node) of
states “- · -” )
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Figure 4.5: [Algorithm A-II] Time course plot of the state estimation error e = x− x̂
at sensor i
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Figure 4.6: [Algorithm A-II] Time course plot of the state estimation error e = x− x̂
at sensor j
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Figure 4.7: [Algorithm B-I] Comparison of the performance of distributed second
order kalman filter at different sensor i and j (states “—”, estimation (i node) of
states “- - -”, estimation (j node) of states “- · -” )
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Figure 4.8: [Algorithm B-I] The trajectory behaviour of the nonlinear system for the
states x2, x3 (states “—”, estimation (i node) of states “- - -”, estimation (j node) of
states “- · -” )
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Figure 4.9: [Algorithm B-I] Time course plot of the state estimation error e = x− x̂
at sensor i
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Figure 4.10: [Algorithm B-I] Time course plot of the state estimation error e = x− x̂
at sensor j
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Figure 4.11: [Algorithm C-I] Comparison of the performance of distributed second
order kalman filter at different sensor i and j (states “—”, estimation (i node) of
states “- - -”, estimation (j node) of states “- · -” )
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Figure 4.12: [Algorithm C-I] The trajectory behaviour of the nonlinear system for the
states x2, x3 (states “—”, estimation (i node) of states “- - -”, estimation (j node) of
states “- · -” )
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Figure 4.13: [Algorithm C-I] Time course plot of the state estimation error e = x− x̂
at sensor i
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Figure 4.14: [Algorithm C-I] Time course plot of the state estimation error e = x− x̂
at sensor j



Chapter 5

Conclusion and Future Work

This thesis has introduced and detailed a new distributed state estimation for a class

of a nonlinear systems. The estimation technique was developed in three steps. The

first step involved the design of an observer for nonlinear systems that arise in the

application of POD-based model reduction techniques. The POD-based technique

preserves the nonlinearity of the Navier-Stokes equation. It is shown that we can

design nonlinear observer for the combined estimation of velocity field, contaminant

field, and energy field.

The second step involved the design of a distributed observer with multiple sensors.

The consensus filter was embedded in the local nonlinear observer for the fusion of

data of measurement and covariance. Through exchange of information from each

neighbouring sensor that exploits the availability of multiple measurements, local

state estimates can be obtained. The final step resulted in the design of distributed

observer with consensus based on state estimation. In this last step, the distributed

observer was added to a consensus filter in the nonlinear observer. The observer from

the last step is shown to provide better performance than the nonlinear observer

90
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embedded consensus filter.

The design for an observer for a nonlinear system has emerged from extensive

and varied research processes. Extended Kalman filter(EKF) and Unscented Kalman

filter(UKF) were considered as an observer for the nonlinear system in [Guay and

Hariharan, 2008] and [Guay et al., 2009]. Since EKF is based on a time-varying linear

approximation of the nonlinear system, the performance limitations of the EKF are

well understood and widely reported. Although the UKF is a nonlinear filter that

is able to handle the nonlinearities, the UKF does not significantly outperform an

EKF for the dynamical system,nor does it result in a faster process. In contrast,

the second order filter does not require any approximation of dynamics other than

the model reduction step. As a result, the second order filter provides a much larger

region of stability. Therefore, the nonlinear observer can handle larger perturbations

and larger errors between the states and the state estimates.

In a distributed system, where a number of sensors are available, one needs to

develop new scalable algorithms to estimate states efficiently. Since it appears to be

nearly impossible to communicate all-to-all link sensors in a decentralized system, a

nonlinear distributed observer is required in application by adding consensus filter.

The advantage of the consensus filter is that all sensors do not have to communicate

with one another. Only neighbouring sensors within a certain distance can exchange

their information to come up with the average states estimation. We demonstrated the

new design of distributed observer through developing algorithms. The distributed

second order filter type I is collecting data of measurements and covariance from each

sensor by communicating. The simulation results show that the estimation of the

states is accurate as well as reliable. The objective of the distributed second order
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filter of type II is to reduce disagreement of the states estimation by each sensor. The

new Algorithms B-I and C-I have better performance than Algorithms A-I & II and

the local POD based second order observer. As the simulation results are shown, the

last Algorithm C-I provides the best performance.

In future work, the proposed distributed observer should applied to design of a

POD-based distributed observer to Navier-Stokes flow and contaminant flow from

CFD model. As discussed in Chapter 3, the application of POD-based model re-

duction techniques yield nonlinear systems that can be readily handled using the

proposed second order observer. In most applications, the estimation of flow charac-

teristics rely on a spatially distributed sensor system. Using the results of the thesis,

one could conceive a distributed observer design in complex flows in which each sensor

can exchange information with its neighbourhoods to obtain an overall estimate of

the flow characteristics.

As mentioned earlier, each sensors possesses its own limited energy source. To

reduce the consumption of energy, we should consider the optimization of sensor

network and sensor ability and capability. In this thesis, the simulation study was

limited to a system with two sensor nodes potentially placed at a certain distance of

each other. The question of sensor placement and optimization of distance between

each sensor was not considered. In addition to the relative location of sensors, one

must also consider the connectivity of the communication between sensors. Future

work should focus on how best to prioritize the information exchange in order to save

energy for activity time of the sensor networks.
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