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Abstract

A model free control technique (extremum seeking) is employed to address problems

of large-scale systems involving multi-agents in real-time. This thesis focuses on the

use of extremum seeking control in a distributed, coordinated and a cooperative fash-

ion to solve distributed control and optimization problems.

First, the problem of maximizing the power produced in a wind farm is considered. To

tackle this problem, a distributed time-varying extremum seeking control (TVESC)

technique is employed to overcome the need to provide accurate models of aerody-

namic wake interactions among the wind turbines. Solutions in continuous-time and

discrete-time are presented.

Secondly, precise knowledge of the structure of network connectivity has been uti-

lized in solving cooperative optimization problems of multi-agent systems to achieve

global objectives. In this thesis, a distributed proportional-integral extremum seeking

control technique is designed to tackle such problems over unknown networks.
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Chapter 1

Introduction

The optimization of an unknown cost function to its extremum and the stabilization

of a complex dynamical system require the use of control approaches ranging from

model based (e.g Optimal Control and Model predictive Control) to model free (e.g

Extremum Seeking Control) design techniques. When it comes to solving large-scale

real-time optimization problems involving multi-agents, control approaches employed

could either be centralized or distributed (decentralized). In a centralized approach,

the individual agents that make up a system are controlled by a single decision maker.

This decision maker monitors, receives, and processes information from all agents and

also sends processed results back to the agents. The main advantage of this control

approach is that the decision maker has full knowledge of the state of the system at

any given time and can make useful decision(s) that help meet global objective(s). As

the number of agents increases, it becomes difficult for the decision maker to perform

its task due to the increase in computational complexity. This phenomenon could

result in the transmission of inaccurate information, loss of information and increase

in computation time. In addition, centralized approaches are complex and most im-

portantly lack system robustness as failure of the decision maker could mean failure
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of the entire system.

Most of the challenges highlighted above can be effectively avoided if one adopts a

distributed approach. In a distributed environment, multiple decision makers can

be utilized. Each subsystem or agent is controlled by a local decision maker. With

the help of the decision maker, each agent’s task can be limited to the solution of a

simpler local problem. Each local problem can be solved with or without the cooper-

ation of neighbouring agents. In a cooperative environment, agents work with other

agents through local communication to find the best solution that meets global (or

centralized) objective(s) of the system. Some of the advantages of distributed control

includes but are not limited to effectiveness, flexibility, scalability and adaptiveness.

The greatest advantage of distributed control is system robustness. This implies that

the failure of a decision maker does not necessarily mean overall system failure as the

system can absorb the effect of a failure and quickly recover through the help of other

decision makers.

Graph theory provides the tools necessary to identify structures and the properties of

distributed networks. A network can be effectively represented as a graph in which

agents are identified as nodes and edges identify the existence of communication links

between agents. Figures 1.1 and 1.2 provide a schematic representation of a central-

ized network with 20 agents and a distributed network with 30 agents, respectively.

It is seen from Figure 1.1 that all the agents can communicate their information with

agent 20. Agent 20 can also communicate with all the agents, it has perfect knowledge

of the system. As a result, the system is controlled by a single decision maker.
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From Figure 1.2, each agent is controlled by a local decision maker and can only

communicate with a few other agents. There is no central decision maker in this case

so the agents solve their local problem with the cooperation of neighbouring agents.

This thesis focuses on the optimization and control of large-scale multi-agent systems

(MAS) in a distributed fashion using a model free real-time optimization technique

called Extremum Seeking Control (ESC). Optimal Control and Model Predictive Con-

trol are model based control approaches that rely on the knowledge of the structure

of the cost function to be optimized and the system dynamics. In Model Predictive

Control, the model of the system is used in the computation of optimal actions that

optimizes a known function. The model is assumed to be complete and perfect [4],

which is unrealistic. For example, in the area of wind farm power maximization,

it is known that aerodynamic interactions among wind turbines limit overall power

capture. It is also known that there are no accurate models that completely describe

these interactions. In this situation, the use of a model based control approach only

produces sub-optimal results, optimality can be achieved when a model free control

approach is considered. The use of a model-free approach such as ESC eliminates the

need for knowledge of the structure of the cost function.

ESC is a gradient based optimization and an adaptive control approach used in locat-

ing and maintaining the optimum of a cost function provided that this function and

its optimum exist [5]. ESC does not assume knowledge of the structure of this cost to

track the optimum, it requires measurements of this unknown cost to estimate its gra-

dient. This implies that the resulting ESC system utilizes a basic gradient descent to
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identify a local optimum of the measured cost. ESC has been applied in heating and

cooling systems, flow control, energy conversion, agents and sensor networks, plasma

control, optimization in bio-processes, brake systems, formation control, process con-

trol and internal combustion engines [4]. ESC has developed over the years leading

to the propositions of several alternative design techniques. This thesis focuses on

the design and implementation of ESC in a distributed manner for the control and

optimization of MAS.

1.1 Objectives and Contributions

A cooperative ESC technique is used to overcome the need to provide accurate models

of aerodynamic interactions among wind turbines to provide an effective technique

for the maximization of power production in a wind farm. The first objective of

this thesis is to address the wind-farm power maximization problem posed in [3]

in a distributed fashion using the time-varying extremum seeking control (TVESC)

technique proposed in [6] for continuous-time systems. It is important at this point

to clearly state that this problem has been tackled using the standard perturbation

based extremum seeking control (PBESC) technique [3]. Solving this problem using

the time-varying technique will provide the opportunity to effectively make meaning-

ful comparison between the two techniques based on the results obtained. Currently

no solution to this problem using extremum seeking control in discrete-time is avail-

able so the second objective of this thesis is to provide a solution in discrete-time

using the TVESC technique for discrete-time systems proposed in [7].
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Most of the model free approaches that have been employed in solving distributed op-

timization problems have used the exact knowledge of network connectivity to achieve

system-wide objectives. The third objective of this thesis is to design a distributed

proportional-integral extremum seeking control technique to solve the problem of

dynamic consensus estimation and distributed optimization of large-scale MAS over

unknown networks in real-time.

1.2 Organization of Thesis

This thesis is structured as follows. A rigorous review on the development of ex-

tremum seeking control and some of the proposed extremum seeking control tech-

niques is given in Chapter 2. Chapter 2 also provides a review of existing works on

distributed control and optimization of MAS.

In Chapter 3, a wind farm power maximization problem is presented. The wind

farm model, the communication network, an average dynamic consensus estimator

and the distributed control algorithm are described. With all these in place, solu-

tions of the wind farm optimization problem are presented in both continuous-time

and discrete-time. The results obtained using the distributed TVESC approach are

compared to the performance of the PBESC technique. More simulation examples

are included to show the effectiveness of the algorithm and also demonstrate that the

application to a large-scale is possible.
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The control and optimization of large-scale systems involving multi-agents is ad-

dressed from a different point of view in Chapter 4. In the absence of exact knowl-

edge of network connectivity among agents, it is shown that global objectives can still

be met in real-time using a distributed proportional-integral extremum seeking con-

trol technique. First, the optimization problem is presented then the communication

network and the control algorithm are described. Simulation examples showing the

effectiveness of the proposed control technique are also included. Convergence of the

algorithm to a small neighbourhood of the unknown minimizer of the overall cost is

established.

In Chapter 5, a summary of the contributions of this thesis is presented. Areas

of future research are proposed.
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Chapter 2

Literature Review

The basic idea of ESC for a static map as proposed in [1] is first presented. Consider

the basic ESC scheme shown in Figure 2.1 where θ is the input, k is the adaptation

gain, a is the amplitude of the excitation signal and ω is the frequency of the excitation

signal. Let θ̃ = θ∗ − θ̂, ỹ = y∗ − ŷ and k > 0. Recall that the goal of ESC is to drive

the cost function to its extremum and this can only be achieved when θ̃ −→ 0 and as

such θ̂ −→ θ∗ and ŷ −→ y∗. Let the cost function be represented as

f(θ) = f ∗ +
f ′′

2
(θ − θ∗)2

y = f(θ)

(2.1)

where f ∈ C2. If the minimization of the f(θ) is considered, then the Hessian

f ′′ > 0. From Figure 2.1, θ = θ̂ + a sinωt. The excitation signal (a sinωt) is added

to the input to ensure that the measured cost is sufficiently excited to estimate the

unknown gradient.
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Figure 2.1: Basic extremum seeking scheme [1].

The addition of the excitation signal to the input generates a periodic response of the

cost and when passed through the washout or the high pass filter, the bias component

is eliminated. This signal response undergoes demodulation which results in the

generation of high frequency signals that diminish when passed through an integrator.

This is done to estimate the gradient of the cost and to drive θ̂ to θ∗. Eventually, it

can be shown that the average trajectories of the ESC system are such that

˙̃θ ≈ −kaf ′′
2

θ̃

Since the averaged system converges to the unknown optimum, the actual system can

be shown to enter a neighbourhood of the unknown optimum for a specific choice of

the ESC tuning parameters, k, a and ω.
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2.1 Background

Extremum Seeking Control was first introduced in [8]. Even in Russia as early as 1943,

reports have it that remarkable investigations in this area had already begun [9]. The

application of ESC to the optimization of internal combustion engines was first re-

ported in [10], where ESC was referred to as extremum control and self-optimizing

control. At this time, there were no concrete analytical or even systematic schemes for

ESC. As a result, it became less appealing as other optimization techniques and adap-

tive control methods became advantageous. ESC deals with regulation to unknown

set points or reference trajectories but these adaptive control techniques depended on

the knowledge of the set points to control linear [11] and nonlinear [12] systems.

In the early 2000, ESC made a strong come back after stability results based on av-

eraging analysis and singular perturbation (standard perturbation based extremum

seeking control approach) for a class of general nonlinear dynamic systems was pro-

vided [13]. This contribution ignited significant research effort to address the numer-

ous challenges or limitations associated with ESC and the development of alternative

ESC techniques with improved performance and robustness. In [13], the system dy-

namics and the stabilizing controller have to operate on a fast time-scale compared

to the dynamics of the ESC. This limitation restricts the tuning of the excitation

signal and the filters (High-pass and the low-pass) which must remain slower than

the system dynamics. The design of the ESC requires that the chosen adaptation

gain (k), the amplitude (a) of the excitation signal are small. The frequency (ω) of

this signal must be chosen to be small but larger than the tuning parameters of the

filters. Consequently, it follows that convergence of the system to a neighbourhood
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of the unknown optimum is required to be slow.

2.1.1 Addressing the limitations associated with the selection of ESC

tuning parameters

In [14], ESC design for a class of Hammerstein/Wiener processes was proposed. A

dynamic phase-lead compensator is incorporated to the ESC scheme. The addition of

the compensator is such that the adaptation gain can be increased freely to improve

the transient performance. Also, ω and ka2 must be chosen such that ω is larger

than ka2, large enough to ensure time-scale separation. Improvement in adaptation

transients, stability and performance of the scheme was reported. A discrete-time

version of this work was presented in [15].

In [16], an analysis of the non-local properties of ESC was presented. The results

established new criteria for the selection of tuning parameters for PBESC. In this

work, systems of the following form are considered:

ẋ = f(x, u) (2.2)

y = h(x) (2.3)

where x ∈ Rn is the state, u ∈ R is the input, y ∈ R is the output. f : Rn ×R→ Rn

and h : Rn → R are continuously differentiable functions. The control law is of the

form:

u = α(x, θ) (2.4)
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where θ is the scalar parameter. θ is of the form:

θ = θ̂ + a sin(ωt)

so the system (2.2) becomes:

ẋ = f(x, α(x, θ̂ + a sin(ωt))) (2.5)

and

˙̂
θ = kh(x)b sin(ωt).

Under mild assumptions concerning the dynamics of the system and the unknown

cost function, semi-global practical stability of the unknown optimum equilibrium of

the ESC system was demonstrated. An extension of this work to global ESC was

studied in [17] where convergence to a small neighbourhood of the global optimum

is shown from an arbitrarily large domain of attraction. The satisfaction of the con-

ditions implies that the controller can be easily tuned to ensure convergence to this

small neighbourhood.

Further contributions to the improvement of the performance of ESC were reported

in [18] and [19] where the impact of the choice of the excitation signal was studied. A

study of the effect of the shape of the excitation signal on the speed of convergence,

domain of attraction and accuracy of ESC was carried out in [18]. The effect was

studied using a gradient system that behaved like the true system in the presence of

three different excitation signals d(.). The excitation signals are sine wave, square
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wave and triangle wave satisfying

∫ T

0

d(s)ds;
1

T

∫ T

0

d2(s)ds>0; max
s∈[0,T ]

|d(s)| = a

where a > 0 is the amplitude of the signal. The excitation signals are periodic

functions of period T > 0 and ω = 2π
T

. From the results obtained in [18], the authors

arrived at the following conclusions:

• the performance of the ES controller (in terms of domain of attraction and accu-

racy ) using the different excitation signals is almost the same as the amplitude

a and a controller parameter δc approach zero for ω > 0;

• the speed of convergence of the true system is determined by the speed of

convergence of the gradient system and a multiplier factor;

• this multiplier factor depends on a and w of the excitation signal, δc and the

power of some normalized excitation signal pd;

• the normalized excitation signal has to be of the same shape as the excitation

signal but with a = 1 and T = 2π and pd differs for each signal;

• using the same a and w for all three excitation signals, the speed of convergence

of the controller is fastest with the square wave, followed by the sine wave then

the triangle wave.

A Newton-based extremum seeking control technique was proposed in [20]. By us-

ing averaging and singular perturbation to prove stability of the proposed scheme,

the authors were able to show (as opposed to using gradient-based techniques) that
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convergence of the ESC can be independent of the unknown Hessian of the unknown

cost function.

A class of nonlinear systems with parametric uncertainties was studied in [21] us-

ing a different ESC technique that involves the estimation of unknown parameters

and the design of an adaptive extremum seeking controller to solve the required op-

timization problem. In this study, the structure of the cost function to be optimized

was assumed to be known (so no measurement is required) and depended on the

states and some unknown parameters. The successful application of this technique

also required the excitation signal to be designed in a such a way that it meets a

persistence of excitation (PE) condition that ensures parameter convergence. One

limitation associated with this technique is the difficulty associated with designing

this excitation signal such that it meets a PE condition. This challenge was addressed

in [22]. The PE condition was modified and an online technique for designing the

excitation signal to easily meet this condition was suggested.

A time-varying ESC technique was proposed in [6] and a discrete time version in [7].

The unknown gradient is estimated as a time-varying parameter in this technique.

In contrast to [22] and [21], measurements of the cost is needed but no knowledge

of the structure of the cost is required and no parametrization of the cost is needed.

Flexibility in selecting the ESC tuning parameters to achieve convergence to a neigh-

bourhood of the unknown optimum of the measured cost function and improvement

in transient performance can be claimed. This ESC technique will be applied to solve

the wind farm maximization problem presented in chapter 3 of this thesis.
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A discrete-time ESC technique was proposed for tracking the optimum of an un-

known cost function in [23]. A quadratic cost approximates the unknown cost and

an estimation routine employed in estimating the gradient and the Hessian of the

cost. With a linear time-varying Kalman filter as the estimator, the optimum of the

cost can be located using a Newton based optimization or a steepest descent method.

This technique was applied to solve the problem of formation flight for drag reduction.

A sampling based optimization technique for ESC of dynamical systems was pro-

posed in [24]. This technique incorporates the discrete-time Shubert algorithm to

extremum seeking control and knowledge of the Lipschitz constant of the plant’s

model is required. Provided the input (u) is initiated from a compact set, it was

shown that the output (y) is guaranteed to reach a neighbourhood of the global op-

timum. A key tuning parameter of the ESC is the sampling period. The sampling

period can be adjusted to enlarge the domain of attraction of the ESC. The sampling

period also determines the speed of convergence and accuracy of this technique. The

longer the sampling period, the slower the convergence rate but accuracy is improved

.

2.1.2 Addressing the limitations associated with time-scale separation

In an attempt to improve the performance of ESC, one needs to eliminate the re-

quirement of a time-scale separation. The technique proposed in [21] does not require

time-scale separation but can only be implemented when the structure of the cost

function is known as discussed above. In the absence of such knowledge but in the
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presence of multiple identical units with different inputs, [25] has shown that the

need for time-scale separation can be eliminated. The technique ensures that the

optimization and the system dynamics are nearly in the same time-scale. In contrast

to the perturbation way of estimating the gradient of the unknown cost function, the

finite difference between the outputs measurements can be used in gradient estima-

tion. Fast convergence to the unknown optimum was shown.

A proportional-integral extremum seeking control (PI-ESC) technique was proposed

in [26] that requires no knowledge of the model of the system and the cost function

to be optimized. A time-varying parameter estimation technique is used to estimate

key parameters of the cost function dynamics. Using the estimated parameters, a PI

controller is proposed to drive the system to its steady-state optimum. The controller

is of the form:

u = −kgθ̂1 + û+ d(t)

˙̂u = − 1

τI
θ̂1

(2.6)

where kg > 0 and τI > 0 are the proportional gain constant and the integral gain

constant respectively. θ̂1 can be interpreted as an estimate of the real-time gradient

of the unknown cost. It is not the steady-state gradient that is estimated in standard

ESC techniques. The bounded dither signal, d(t) is such that ‖d(t)‖ ≤ D ∀t ≥ 0

where D > 0 is a constant.

Modification of this technique for solving large-scale problems involving multi-agents

in a distributed fashion was proposed in [27]. The controller for an agent, say agent
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i is of the form:

ui = −kgθ̂1,i + ûi + di(t)

˙̂ui = − 1

τI
θ̂1,i.

(2.7)

A numerical optimization-based extremum seeking control technique was proposed in

[28]. This work was an improvement of the work carried out in [29]. It involves the

design of a robust state regulator that can handle disturbances and unknown plant

dynamics for state feedback linearizable systems. It also avoids the need for time-scale

separation but requires the availability of the measurement of the true gradient.

2.2 Distributed control of multi-agent systems

In light of the advantages of distributed control over centralized control, many re-

searchers have focused on the development and analysis of new distributed techniques

for the solution of large-scale problems of MAS. The solution of cooperative and co-

ordinated control problems associated with MAS requires the coordination of the

actions of the individual agents to optimize a given global cost function. This idea

has been applied to resource allocation, formation control, source seeking, mobile

communication, power maximization, etc. Some contributions on distributed control

and optimization of MAS are reviewed below.

2.2.1 Resource Allocation

Ideas from the field of game theory have been employed in addressing resource allo-

cation problems. One such problem was tackled in a distributed fashion in [30] where
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a limited set of resources R = {r1, . . . , rn} are to be shared among a set of agents

V = {1, . . . , p}. Here, p refers to the number of agents involved. Each agent i ∈ V

can only take a single action or resource ai = r ∈ Ai ⊆ R. Each resource r ∈ Ai has

its welfare function (Yr) that is unknown and separable, the numerical value of this

unknown function depends on the number of agents using r. This is to say that:

∀r ∈ Ai : Yr : {0, 1, . . . , p} −→ R+.

The overall welfare function is of the form:

J(a) =
∑
r∈Ai

Yr(|a|r) (2.8)

where a = (a1, a2, . . . , ap) ∈ A represents an allocation and |a|r = |{i ∈ V : ai = r}|

denotes the number of agents that used resource r in a. The set A =
∏

i∈V Ai is the

Cartesian product of sets Ai (the set of allocations).

Since the welfare function is separable and unknown, the unknown utility function

for agent i is simply:

Yi =
Yr(|a|r)
|a|r

(2.9)

The objective is to find a∗ that maximizes J(a), that is:

a∗ ∈ arg max
a∈A

J(a) (2.10)

It was demonstrated that the agents can work independently to achieve the desired

objective. Results show convergence to a Nash equilibrium.
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Consider a set of agents V = {1, . . . , p} faced with an optimization problem of the

form:

min
x
J(x) (2.11)

s.t.

J(x) =

p∑
i=1

hi(x). (2.12)

where hi : Rn −→ R, x ∈ Rn. For i ∈ V , hi refers to agent i’s local cost function

that depends on x, the entire resource allocation vector. J is the overall cost function

to be minimized. A cooperative approach for solving this problem in a distributed

fashion using a subgradient technique was proposed in [31]. The agents work to

minimize J by minimizing their respective local cost functions that are known, convex

and nonsmooth. Each agent estimates x, by xi(k). Agent i communicates xi to its

neighbours over a directed connected time-varying network. Agent i updates xi at

every k step using xj from its j neighbours and the subgradient information of its

local cost function. This is done using:

xi(k + 1) =

p∑
j=1

aij(k)xj(k)− λi(k)di(k) (2.13)

where aij is the weight agent i gives to the information xj that it receives from j,

λi > 0 is the step size used by agent i and di is the vector of the subgradient of agent

i′s local cost at xi. aij is an element of ai and ai ∈ Rp ∀k ≥ 0 is agent i’s vector of

weights, a stochastic vector, such that:

p∑
j=1

aij(k) = 1.
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Through communication with their respective neighbours, [31] has shown that the

agents reach consensus on their estimates of x and converge to a neighbourhood of

x∗.

The combination of extremum seeking control with ideas from game theory (local

replicator system proposed in [32]) was proposed in [2] to solve resource allocation

problems of MAS with stable dynamics. The goal is to find the optimal resource

allocation that maximizes a smooth unknown overall cost function. It requires the

collaboration of each agent with its neighbours over an undirected connected commu-

nication network G = (VG, EG). Let VG = {1, . . . , p} be the vertex set of the agents

and EG ⊂ VG× VG be the edge set respectively. ∀i, j ∈ VG, let Ni = {j : (1, j) ∈ EG}

be the set of agent i′s neighbours. With the simplex ∆X = {xi ≥ 0:
∑p

i=1 xi = X},

[2] considered the problem,

max J(θ)

s.t. xi ∈ ∆X and θ̇i = gi(θi, xi).

(2.14)

J(θ) =
∑p

i=1 yi and yi = fi(θi). J ∈ R is the unknown overall cost to be maximized,

yi ∈ R is agent i′s unknown local cost. θi ∈ R is agent i′s internal state, X is

the limited resource to be shared among the agents and xi is agent i’s share of X.

fi : R −→ R and gi : R × ∆X −→ R. The schematic representation of the system

for agent i as found in [2] is shown in Figure 2.2. a > 0 is the amplitude of the

excitation signal, D > 0 is a positive constant to be assigned, ω > 0 is the frequency

of the excitation signal, ωL > 0 is the frequency of the low pass filter and k > 0 is

the adaptation gain. γi is the output of the low pass filter for the cost yi.
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θ̇i = gi(θi, xi)

yi = fi(θi)

ωL
s+ ωL

k

s

1

X

ai sin(ωit) sin(ωit)
∑

j∈Ni
(γj +D)x̂j

∑
j∈Ni

x̂j D

xi

x̂i +

−

γi

yi

Figure 2.2: Schematic representation of the system for agent i [2].

The local replicator system applied is of the form:

˙̂xi = k
x̂i
X

(
(γi +D)

∑
j∈Ni

x̂j −
∑
j∈Ni

(γj +D)x̂j

)
(2.15)

where γ̇i = −ωL (γi − fi(θi) sin(ωt)). Each agent i communicates its information with

its neighbours and receives its neighbours’ information to reach x∗i . Under suitable

assumptions, convergence of the system to a neighbourhood of the optimum was

proven.

2.2.2 Source Seeking

ESC has been applied to the problem of source seeking. One such problem was

considered in [33] for a single agent system where no information about the agent’s

position or velocity is available but the agent has access to the measurement of an
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unknown nonlinear function that represents the spatial distribution of a signal field.

This unknown function has a local maximum that is desirable so the agent wants to

maximize the unknown cost to the unknown local maximum using extremum seeking

control . In the plane, the agent’s position (x, y) and velocity inputs (vx), (vy) are of

the form:

ẋ = vx, ẏ = vy. (2.16)

The unknown function to be maximized is of the form:

J = f(x, y) = f ∗ − qx(x− x∗)2 − qy(y − y∗)2 (2.17)

where qx, qy > 0 are constants to be specified, (x∗, y∗) is the maximizer of f and f ∗

the maximum. The ESC employed for the agent is represented as:

vx = aω cos(ωt) + Cxξ sin(ωt)

vy = aω sin(ωt)− Cyξ cos(ωt)

ξ =
s

s+ h
[J ]

(2.18)

where a > 0 is the amplitude of the excitation signal, ω is the frequency of the ex-

citation signal, Cx, Cy > 0 are positive constants to be specified and ξ is the output

signal of the high pass filter for the cost.

The multi-agent version of problem (2.16) and (2.17) was tackled in [34] using stochas-

tic extremum seeing control in an uncooperative fashion. It was shown that the

multi-agent system converge to a Nash equilibrium. The approach proposed in [34]

considered random perturbations as the excitation signal in the ESC scheme. In this
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scheme, the effect of agent interactions was accounted for by providing each agent

with a measurement of its distance to its neighbours. Let V = {1, . . . , p}, then

∀i ∈ V , (2.16) and (2.17) becomes (2.19) and (2.20) respectively.

ẋi = vxi, ẏi = vyi (2.19)

fi(xi, yi) = f ∗ + qx(xi − x∗)2 + qy(yi − y∗)2 (2.20)

Let Ni be the set of agents that interact with agent i, then the distance dij(x, y)

between agent i and j is represented as:

dij(x, y) =
√

(xi − xj)2 + (yi − yj)2. (2.21)

At this point, the local cost for agent i becomes:

Ji = fi +
∑
j∈Ni

wijd
2
ij (2.22)

where wij is the weight that agent i gives to the distance it measures from j.

The objective is to use stochastic extremum seeking to solve the optimization problem

min
xi,yi

Ji (2.23)
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This problem was tackled in [34] following a leader-follower approach. The proposed

ESC for agent i is of the form:

vxi = aζ̇1i + Cxξiζ1i + νxi

vyi = aζ̇2i + Cyξiζ2i + νyi

ξi =
s

s+ h
[Ji]

ζ1i = cos(Bi(
t

ε
))

ζ2i = sin(Bi(
t

ε
))

(2.24)

where Bi is the 1-dimensional Brownian motion for agent i. The terms νxi and νyi are

added to enlarge the area where the agents are deployed. Additionally, these terms

are such that νxi, νyi = 0 when agent i is a follower agent and νxi, νyi 6= 0 when it is

an anchor agent.

2.2.3 Formation Control

Distributed extremum seeking control has been applied to formation control prob-

lems. In a dynamic or an uncertain environment, it is known that changes in the

environment can affect communication quality and control of the agents so the use

of non adaptive techniques will only result in sub-optimal separation distance among

the agents. Problems of this form have been tackled in [35] and [36] in a cooperative

fashion in real time using distributed extremum seeking control where the goal is to

find the optimal separation distance between agents by maximizing a cost function.
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2.2.4 Stabilization and Optimization

The use of a dynamic average consensus estimator and a proportional integral ex-

tremum seeking control technique for optimization and stabilization have been stud-

ied. In [27], the distributed optimization of MAS with unknown dynamics was studied

while stabilization of unstable dynamics and distributed optimization of MAS was

proposed in [37]. The distributed optimization process requires the agents to share

information with their neighbours over an undirected connected communication net-

workG. LetG = (VG, EG) where VG = {1, . . . , p} is the vertex set and EG ⊂ VG×VG is

the edge set. p is the number of agents in the network and Ni = {j ∈ VG : (i, j) ∈ EG}

is the set of agent i′s neighbours ∀i ∈ VG. In [27] and [37], the following problem is

considered

min J(x) =

p∑
i=1

fi(x) (2.25)

s.t.

ẋi = pi(x) + qi(x)u (2.26)

yi = fi(x) (2.27)

where J(x) is the unknown overall cost function to be minimized and yi = fi(x) is

the unknown local cost function for agent i, x ∈ Rn is the vector of state variables,

u ∈ U ⊂ Rp is the vector of input variables, pi(x) and qi(x) are smooth vector valued

functions of x.

As reported in [27] and [37], the solution to this problem requires:
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• agent i to estimate the average of the overall cost (Ĵi), agent i does this by com-

municating with its neighbours Ni over the network G and a dynamic average

consensus estimator such as the one proposed in [38] ensures that the agents

reach consensus on this estimate;

• the dynamics of this cost is parametrized to obtain agent i estimate of the

gradient of the overall cost. This is done using a parameter estimation technique

such as the one proposed in [26];

• with agent i’s estimate of the gradient of the overall cost, a distributed

proportional-integral extremum seeking controller is designed to reach the

steady state unknown optimum of the overall cost.

The dynamic average consensus estimator for the problem is represented as:

 ˙̂
J

ẇ

 =

 −Iγ − kPL kIL
T

−kIL 0


 Ĵ

w

+

 Iγ

0

 f(x) (2.28)

where [Ĵ , ω]T ∈ R2p is the internal estimator state and L is the Laplacian matrix for

the network, kP , kI and γ > 0 are positive constant to be chosen. The distributed

proportional-integral extremum seeking control is given by:

ui = −kgθ̂1,i + ûi + di(t)

˙̂ui = − 1

τI
θ̂1,i

where kg > 0 is the proportional gain constant and τI > 0 is the integral gain constant,

θ̂1,i and di(t) are agent i’s estimate of the gradient of the unknown overall cost and

bounded dither signal respectively.
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Fast convergence to the unknown optimum was reported in [27] and [37]. Stabilization

over short times was shown in [37].

2.3 Summary

In this chapter, the basic idea and the background of extremum seeking control was

introduced. Some of the contributions made to address the challenges associated with

ESC were established and a review of some developed ESC techniques for performance

improvement was made. Also, some of the works on control of MAS in a distributed

approach using ideas from game theory and extremum seeking control were presented.

Works on resource allocation problems of MAS were reviewed and results show that

such problems can be tackled effectively in a distributed fashion to yield optimal

results. In this chapter, some of contributions made in an attempt to tackle source

seeking problems of MAS in an uncooperative manner using stochastic extremum

seeking control was presented. Results show convergence to a Nash equilibrium. It

has been established that formation control problems involving MAS have been solved

using distributed extremum seeking control to find the optimal separation distance

between agents while maximizing an unknown cost. Also, extremum seeking con-

trol has been shown to be effective in addressing MAS problems when it comes to

optimizing systems with unknown dynamics and stabilizing systems with unstable

dynamics.
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Chapter 3

Distributed Extremum Seeking Control of Wind

Farms

3.1 Introduction

Wind turbines extract energy from the wind for power generation and they can be

located separately or grouped (wind farms) but are preferred grouped because of the

reduced average cost of energy due to economy of scale [39]. In a wind farm - a group

of wind turbines over an area of land (on shore) or water body (off shore), an upstream

turbine generates a wake and as a result reduces the wind speed and increases the

turbulence of any turbine downstream from it. Because of this wake interference the

downstream turbine generates less power than is expected. Grouping brings into the

picture the challenge of aerodynamic interaction leading to suboptimal power capture

compared to the power that can be generated with the same number of isolated wind

turbines. Control techniques employed in maximizing the power generated by a single

wind turbine is inefficient for maximizing the power capture of a group of turbines.

Currently, the installation of an array of wind turbines is increasing so the search for

control algorithms that can help increase wind farm power capture is needed. Efforts
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have been made to address the effect of aerodynamic interactions among turbines.

Techniques for selecting and positioning of turbines at strategic locations under fixed

wind inflow conditions was proposed in [40] and under varying wind conditions in [41].

Wake models have been developed as found in [42], [43], [44] and [45]. Currently, few

models exist to describe the aerodynamic wake interactions. Even the most advanced

and computationally expensive models fail to accurately describe the interactions, so

the use of control algorithms that are model independent is desirable. Wind farm

power maximization problems have been tackled using model free control approaches

in a distributed manner.

Consider a connected communication graph G = (VG, EG). V = {1, . . . , p} is the

vertex set representing the set of wind turbines in a wind farm, EG ⊂ VG × VG is the

edge set and p represent the number of wind turbines. Each wind turbine i ∈ V has its

input ai ∈ Ai which is the turbine’s control parameter referred to as the axial induc-

tion factor. The axial induction factor ai is the relative decrease in wind speed from

the free stream to the turbine’s rotor plane. Let Ai = {ai : 0 ≤ ai ≤ 0.5} be turbine

i’s discretized set of allowable axial induction factors and a = (a1, a2, . . . , ap) ∈ A be

the joint axial induction factors of the turbines. The set A =
∏

i∈V Ai is the Carte-

sian product of sets Ai which is the set of allowable joint axial induction factors.

Under the assumption of uniform wind where the free stream wind speed and direc-

tion are constant with respect to time, using ideas from game theory, [46] considered
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the problem of finding a∗ that maximizes J(a). That is:

a∗ ∈ arg max
a∈A

J(a)

J(a) =

p∑
i=1

hi(a).

(3.1)

hi(a) is the unknown local cost function for the power produced by turbine i and

it takes the form seen in [39]. J(a) is the unknown overall cost function for all the

turbines which represents the total power produced in the wind farm. hi(a) depends

on the wind speed seen at turbine i with the wind speed represented using park model

that can be found in [39].

The authors proposed two model-free control algorithms for solving (3.1). The first

is the safe experimentation dynamics (SED) distributed algorithm and the second

is the payoff-based distributed learning for Pareto optimality (PDLPO). Using SED

distributed algorithm requires turbine i to have access to the power produced by all

the turbines in the wind farm. This is to say that ∀t > 0, ai(t) relies on ai(τ) and

J(a(τ)) where τ ≤ t− 1. Restricted communication between agents is required with

the payoff-based distributed learning for Pareto optimality. Since ai(t) relies on aj(τ)

and hi(a(τ)), turbine i is only required to communicate with its neighbours in the

set Ni = {j ∈ VG : (i, j) ∈ EG}. As reported in [46], these decentralized algorithms

provide convergence (in the probabilistic sense since turbine i lacks the knowledge of

the functional form of its local cost) to a∗ that maximizes the power capture of the

wind farm.
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The combination of dynamic average consensus estimation and perturbation based

extremum seeking control has been implemented in a distributed fashion for wind

farm power maximization [3]. Cooperative control was considered where each wind

turbine (agent) could exchange information with its neighbours over an undirected

network with the goal of maximizing the unknown overall cost function. The ability

of the agents to work together to maximize the overall cost requires each agent to

first maximize its local cost. With the communication network G described above,

the problem considered in [3] is as follows:

max
u∈Rp

J(u) (3.2)

where

J(u) =

p∑
i=1

hi(u). (3.3)

u is the input vector for the agents, hi(u) is the unknown local cost function for

the power produced by agent i, it depends on u. J(u) is the unknown overall cost

function, it represents the total power produced by the agents in the wind farm.

The model of the wind farm employed is found in [46]. The solution to (3.2) requires

the solution to a consensus estimation problem. Agent i ∈ VG through communication

with its neighbours is required to estimate the average (Ĵi) of the overall cost. That

is

Ĵi =
1

p

p∑
i=1

hi(u). (3.4)

For agent i to track (Ĵi), a dynamic average consensus estimator is required. The

estimator proposed in [3] for solving (3.2) is similar to that shown in (2.28) and takes
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the form:  ˙̂
J

ẇ

 =

 −I − ρLP −LTI

LI 0


 Ĵ

w

+

 I

0

h(u) (3.5)

where LI and LP are Laplacian matrices of G and ρ > 0.

Figure 3.1 shows the schematic representation of the system for agent i. Conver-

gence of the algorithm to a neighbourhood of the maximizer of J was shown.

Dynamic Average Consensus Estimatorhi(u)

s

s+ ωh

1

s+ ωl

1

s
εki

ai sin(ωit+ φi) sin(ωit+ φi)

Ĵiui yi

ûi

Figure 3.1: Schematic representation of the control algorithm for agent i [3].

The control algorithm is described in three steps:

• agent i takes its input ui then measures its unknown local cost yi, it is important

to note that an excitation signal is added to the input to sufficiently excite the

measured cost so that its gradient information can be obtained;

• this output signal yi is sent into the dynamic average consensus estimator where

agent i communicates with its neighbours and Ĵi is estimated;
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• finally, Ĵi is fed into the extremum seeking loop where the estimate of the

gradient is obtained and ui produced.

In this chapter, a wind farm power maximization problem is addressed in a dis-

tributed fashion as mentioned in Chapter 1 using a time-varying extremum seeking

control (TVESC) technique. Each wind turbine (identified as an agent) has access to

the measurement of its unknown local power generation. The goal is to maximize the

unknown wind farm power generation. A cooperative approach is employed where

the agents work together to maximize this overall objective function. This approach

requires every agent to exchange information with its neighbours over an undirected

connected communication network. Each agent is also expected to estimate the mean

of the overall cost. This task is achieved using a dynamic average consensus esti-

mator to be presented in this chapter. The dynamics of each agent’s cost estimate

is parametrized and a parameter estimation routine is used to estimate the gradient

of this cost. A distributed extremum seeking controller is designed to ensure that

the overall cost is maximized. This problem is tackled via numerical simulations and

results in continuous-time and discrete-time are provided.

3.2 Power maximization in continuous-time

3.2.1 Problem Description

Consider the following maximization problem,

max
u∈Rp

J(u) (3.6)
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J(u) =

p∑
i=1

hi(u). (3.7)

A network of p agents is considered. Let i = 1, . . . , p, u be the vector of input variables

(axial induction factors for all agents) taking values in U ⊂ Rp, J : Rp −→ R is the

variable to be maximized referred to as the overall cost function (unknown wind

farm power generation) and depends on u, hi : Rpi −→ R is the unknown local cost

(unknown local power generation) for agent i. The functions J and hi are assumed

to be smooth. To tackle this problem, the following assumptions are made.

Assumption 1: Agent i has access to the variable ui and uses it to measure the

numerical value of its unknown local cost.

Assumption 2: Let u∗ be the unique maximizer of problem (3.6), the total cost

function J is such that:

(u− u∗)T ∂J(u)

∂u
≤ −γ1‖u− u∗‖2 (3.8)

∀u ∈ U with γ1 > 0.

Remark 1: Since J is smooth, then it satisfies:

‖J‖ ≤ γ2 ‖∂J
∂u
‖ ≤ γ3 ‖ ∂2J

∂u∂uT
‖ ≤ γ4 (3.9)

∀u ∈ U with γ2, γ3, γ4 > 0.
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3.2.2 Communication Network

Assumption 3: The communication network for the agents is illustrated using a

time-invariant undirected connected graph G = (VG, EG).

VG = {1, . . . , p} is the vertex set representing the set of agents in the wind farm and

EG ⊂ VG×VG is the edge set. An edge acts as the communication route between two

agents. Agents i and j can exchange information means (i, j) ∈ EG ⇔ (j, i) ∈ EG

and (i, j) /∈ EG ⇔ (j, i) /∈ EG means otherwise. ∀i, j ∈ VG : Ni = {j : (i, j) ∈ EG}.

Ni represents the set of agent i’s neighbours.

3.2.3 Wind Farm Model

The wind farm is modelled with reference to [46]. Consider an offshore wind farm

with p number of agents and a matrix C ∈ Rp × Rp associated with its layout. In

this wind farm, the agents are located at coordinates {(y1, x1), . . . , (yp, xp)} from a

common point. The agents are assumed to be identical such that they have the same

diameter. It is assumed that agent i is downstream from agent j. The following

assumptions about the wind is made.

Assumption 4 : Uniform wind with constant direction and free stream wind speed.

Assumption 5 : The wind farm is oriented and wind is blowing in the positive

horizontal direction.

Power Model

The power captured by agent i in the wind farm is given as:

hi(u) =
1

2
ρairaiCp(ui)Vi(u)3 (3.10)
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where:

• ρair refers to the density of air = 1.225 kg/m3;

• ai is the area of disk generated by the blades of agent i in m2;

• Cp(ui) is the power efficiency coefficient;

• Vi(u) is the aggregate wind speed seen at agent i in (m/s).

Power Efficiency Coefficient

The power efficiency coefficient Cp(ui) is of the form:

ui(1− ui)2. (3.11)

Wake Interaction Model

The aggregate wind speed seen at agent i is represented as:

Vi(u) = V∞

(
1− δVi(u)

)
(3.12)

where:

• V∞ is the free stream wind speed in (m/s);

• δVi(u) is the aggregate wind speed deficit seen at agent i and is given as

δVi(u) = 2

√ ∑
j∈Ni : xj<xi

(
ujC[j, i]

)2

. (3.13)
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C[j, i] =

(
d̄j

d̄j + 2k(xi − xj)

)2 aoverlap
j−→i

ai
(3.14)

where:

• d̄j is the diameter in m of the disk generated by the blades of agent j;

• k = 0.04 is the roughness coefficient for offshore locations, it defines the slope

at which the wake expands out from the agent [46];

• xi is agent i′s distance in m from a common point in the wind direction;

• xj is agent j′s distance in m from this common point in the wind direction;

• aoverlap
j−→i is the area of overlap between the wake generated by agent j and the

disk generated by the blades of agent i

Assumption 6 : Agent i is in the wake of agent j such that there is no overlap.

That is aoverlap
j−→i = ai.

With this assumption, (3.14) becomes:

C[j, i] =

(
d̄j

d̄j + 2k(xi − xj)

)2

. (3.15)

The wind speed seen at agent i takes into account the effect of aerodynamic wake

interaction among agents. (3.12) can be written as:

Vi(u) = V∞

(
1− 2

√ ∑
j∈Ni : xj<xi

(
ujC[j, i]

)2
)

(3.16)
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3.2.4 Distributed Extremum Seeking Control

Consensus Estimation

The goal of agent i is to obtain an estimate of the overall cost in the form of the

average cost, Ĵi = 1
p

∑p
i=1 hi. This will be tackled using the proportional-integral

dynamic average consensus estimator proposed in [38]. Ĵi is updated using agent i′s

local cost hi and the available information from its neighbouring agents (Ĵj∈Ni
from

the other agents it communicates with). Consider the communication network above,

let A ∈ Rp×p be an adjacency matrix with elements aij equals 1 provided information

can flow between i and j and 0 otherwise but aii must be zero. Let D ∈ Rp×p be

a degree matrix with zeros everywhere but the diagonals (the diagonals contain the

number of neighbours agent i has). The Laplacian matrix L ∈ Rp×p is defined as

L = D − A. Let Ĵ = [Ĵ1, . . . , Ĵp]
T then the estimator takes the form:

 ˙̂
J

ẇ

 =

 −Iγ − kPL kIL
T

−kIL 0


 Ĵ

w

+

 Iγ

0

h(u) (3.17)

where [Ĵ , ω]T ∈ R2p is the internal estimator state, kP , kI and γ > 0 are positive

constants to be assigned.

Parametrization of the local cost dynamics of agent i

The dynamics of the overall cost is given as:

J̇ = u̇T
∂J(u)

∂u
(3.18)



3.2. POWER MAXIMIZATION IN CONTINUOUS-TIME 39

where θ1 = ∂J(u)
∂u

= [θ1,1, . . . , θ1,p]
T . The local cost dynamics for agent i is given by:

J̇

p
= u̇i

∂J(u)

∂ui
(3.19)

The local cost dynamics for agent i is parametrized as:

J̇

p
= u̇iθ1,i. (3.20)

where θ1,i = ∂J(u)
∂ui

. Recall that agent i′s local cost depends on the inputs of other

agents so this effect has to be accounted for. Let ˙̆uT θ̆ = θ0,i ∈ R be the bias term

accounting for the effect of the other agents and J̇i = J̇
p

then (3.20) becomes:

J̇i = θ0,i + u̇iθ1,i (3.21)

θ0,i and θ1,i are the time-varying parameters to be estimated. It is important to note

that agent i has access to Ĵi not Ji so Ĵi is used instead of Ji in the estimation routine.

Parameter Estimation

The local parameters θ1,i and θ0,i for agent i are estimated using the parameter

estimation routine found in [6]. Let the vector of parameter estimates be θ̂i = [θ̂0,i,

θ̂1,i]
T . The regressor vector is defined as φi = [1, u̇i]

T . The predicted output for a

given value of the estimate θ̂i is denoted by ẑi. The output prediction error is given

by ei = Ĵi − ẑi. The prediction dynamics for (3.21) is written as:

˙̂zi(t) = φTi θ̂i(t) +Kei(t) + ci(t)
T ˙̂
θi(t), ẑi(0) = hi(0) (3.22)
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where K > 0 is a constant to be specified. The dynamics of ci(t) is given by:

ċi(t)
T = −Kci(t)T + φTi (t), ci(0) = 0. (3.23)

Let ηi be an auxiliary variable,

ηi(t) = ei(t)− cTi (t)θ̃i(t) (3.24)

where θ̃i = θi − θ̂i. Recall that agent i does not have access to θi but θ̂i. This simply

means that it only has an estimate of ηi. Let this estimate be η̂i, the dynamics of η̂i

is of the form:

˙̂ηi(t) = −Kη̂i(t). (3.25)

Σi ∈ R2×2 is a covariance matrix with dynamics

Σ̇i(t) = ci(t)
T ci(t)−KTΣi(t) + δI, Σi(0) = αI > 0. (3.26)

Its inverse is defined by the matrix differential equation

Σ̇−1
i (t) = −Σ−1

i (t)ci(t)c
T
i (t)Σ−1

i (t) +KTΣ−1
i (t)− δΣ−2(t) (3.27)

where Σ−1
i (0) = 1

α
I > 0, α, δ and KT > 0 are constants to be assigned. The proposed

parameter update law is given as:

˙̂
θi = Proj

(
Σ−1
i (t)

(
ci(t)(ei(t)− η̂i(t))− σθ̂i(t)

)
,Θ
)

(3.28)
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where σ > 0 and Θ is a ball of finite radius centered at 0. Proj{.,Θ} denotes a

Lipschitz projection operator onto the set Θ [12]. The application of the projection

algorithm is such that:

θ̂i(0) ∈ Θ =⇒ θ̂i(t) ∈ Θ, ∀t ≥ 0. (3.29)

The operator bounds θ̂i and ensures that:

θ̃Ti ΣiProj

(
Σ−1
i (t)

(
ci(t)(ei(t)− η̂i(t))− σθ̂i(t)

)
,Θ

)

≤ θ̃Ti

(
ci(t)(ei(t)− η̂i(t))− σθ̂i(t)

) (3.30)

The signals of the closed-loop ESC system must be such that the following Persistence

of Excitation condition is met.

Assumption 7: There exist constants α1 and T > 0 such that

∫ t+T

t

ci(τ)ci(τ)Tdτ ≥ α1I, ∀t > 0. (3.31)

Distributed Extremum Seeking Controller Design

The distributed extremum seeking controller of the form (3.32) is proposed to solve

the optimization task

u̇i(t) = kgθ̂1,i(t) + di(t) (3.32)

where kg > 0 is the optimization gain, di(t) is the dither signal and is such that

‖di(t)‖ ≤ D1 ∀t ≥ 0 and D1 > 0. The schematic representation of the control

algorithm for agent i is shown in Figure 3.2.
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Dynamic Average Consensus Estimatorhi(u)

˙̂zi = φTi θ̂i +Kei + cTi
˙̂
θi

˙̂
θi = Proj

(
Σ−1
i

(
ci(ei − η̂i)− σθ̂i

)
,Θ
)

Σ̇i = cTi ci −KTΣi + δI

ċi = −Kci + φi

˙̂ηi = −Kη̂i

1

s
kg

di

Ĵi

+

ẑi

−

ei

u̇i +

θ̂1,i θ̂0,i

fi

+

ui

Figure 3.2: Schematic representation of the distributed control algorithm for agent i.

3.2.5 Simulation Examples

A three agent system

Consider a three agent system with agents located at coordinates {(0, 0), (0, 5d̄), (0, 10d̄)}

such that xj < xi and d̄ = 77 m for all agents. The ESC tuning parameters were

selected as: σ = 1 × 10−9, K = KT = 50, δ = 4.5 × 10−9, α = 1 × 10−9, kg = 1
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×10−3, d(t) = 0.1 [sin(100t), sin(130t), sin(190t)]T . γ = kP = kI = 10000. The

control algorithm was initiated at: ui(0) = 0.33, θ̂i(0) = [0.01, 0]T , ci(0) = [0, 0]T

Σi(0) = I2×2, Ĵi(0) = hi(0), wi(0) = 0 and ẑi(0) = hi(0).
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Figure 3.3: The overall cost and the inputs as a function of time for a three agent
system using distributed TVESC technique.
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D, A and L for this system are:

D =


1 0 0

0 2 0

0 0 1

 A =


0 1 0

1 0 1

0 1 0

 L =


1 −1 0

−1 2 −1

0 −1 1


Result using TVESC technique

The simulation result is shown in Figure 3.3. The unknown optimum power generation

is J∗ = 7.4016 × 105 Watts with maximizer u∗ = [0.1990, 0.1548, 0.3333]T . It is

known that a single isolated wind turbine is maximized at an axial induction factor

of 1
3
. However, this may not be optimal for an array of wind turbines in a wind

farm. The power captured by the third agent is maximized at u∗3 = 0.3333. This is

expected as there are no other agents operating in its wake. From the results obtained,

convergence to the unknown optimum is recorded in approximately 12 seconds.

Result using PBESC technique

In Figure 3.4, we reproduce the simulation result for this example as presented in [3]

where the PBESC technique was used. The wind farm model described above is the

same as the wind farm model used in [3] except for (3.16). The tuning parameters

are found in [3]. From Figure 3.4, convergence to a neighbourhood of the optimum

is observed in approximately 130 seconds. The transient behaviour is significantly

slower than that observed for the distributed TVESC optimization technique.
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Figure 3.4: The overall cost and the inputs as a function of time for a three agent
system using distributed PBESC technique.

3.3 Power maximization in discrete-time

In this section, the time-varying extremum seeking control technique proposed in [7]

is generalized for the design of distributed optimization algorithms, as in the previous
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section, for discrete-time systems.

3.3.1 Problem Description

Consider the wind farm maximization problem below,

max
uk∈Rp

J(uk) (3.33)

J(uk) =

p∑
i=1

hi(uk) (3.34)

The same network described above is considered where i = 1, . . . , p. uk is the vector

of input variables at the kth time step taking values in U ⊂ Rp. J : Rp −→ R is

the variable to be maximized at the kth time step referred to as the overall cost

function and hi(uk) is the unknown local cost function for agent i. J and hi are

assumed to be smooth functions of uk. The objective is to find the u∗ that maximizes

(3.33). As in the previous section, assumptions 1, 2 and 3 are invoked. Similarly, the

communication network and the wind farm model fulfill assumptions 4, 5 and 6.

3.3.2 Distributed Extremum Seeking Control

Consensus Estimation

For agent i to obtain its estimate of the overall cost, a discrete-time dynamic average

consensus estimator is required. Let Ĵk = [Ĵ1(k), . . . , Ĵp(k)]
T . The discretization of the
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continuous-time estimator as seen in (3.17) yields an estimator of the form:

 Ĵk+1 − Ĵk

wk+1 − wk

 = δ1

 −Iγ − kPL −kILT

−kIL 0


 Ĵk

wk

+ δ1

 Iγ

0

hk (3.35)

(3.35) can be rewritten as:

 Ĵk+1

wk+1

 =

(
I + δ1

 −Iγ − kPL −kILT

−kIL 0

)
 Ĵk

wk

+ δ1

 Iγ

0

hk (3.36)

where [Ĵk wk]
T ∈ R2p represents the estimator’s internal state, kP , kI , γ and δ1 are

positive constants. In what follows, ∆Ĵk = Ĵk+1 − Ĵk.

Parametrization of the local cost dynamics of agent i

The overall cost dynamics is parametrized as:

∆Jk = θT1(k)∆uk (3.37)

where ∆Jk = Jk+1 − Jk, ∆uk = uk+1 − uk and θ1(k) =
∫ 1

0
∂J
∂u

(λuk+1 + (1− λ)uk)dλ =

[θ1,1, . . . , θ1,p]
T . Parametrization of the local cost dynamics of agent i takes the form:

∆Jk
p

= θ1,i(k)∆ui(k) (3.38)

∆Ji(k) = ∆Jk
p

. Let ∆ŭTk θ̆k = θ0,i(k) ∈ R be the bias term accounting for the effect of

other agents on agent i, then (3.38) becomes:

∆Ji(k) = θ0,i(k) + θ1,i(k)∆ui(k) = φTi(k)θi(k) (3.39)
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where θi(k) = [θ0,i(k), θ1,i(k)]
T is the vector of time-varying parameters that needs to

be estimated and φi(k) = [1,∆ui(k)]
T is the regressor vector. The estimation routine

proposed in [7] is used.

Parameter Estimation

Let the vector of parameter estimates be θ̂i(k) = [θ̂0,i(k), θ̂1,i(k)]
T , the regressor vector

is φi(k) = [1,∆ui(k)]
T . The predicted output for a given value of the estimate θ̂i(k) is

denoted by ∆ẑi(k). The output prediction error is given by ei(k) = ∆Ĵi(k) − ∆ẑi(k).

The estimator model for (3.39) becomes:

∆ẑi(k) = φTi(k) θ̂i(k) . (3.40)

Let Σi(k) ∈ R2×2 be a covariance matrix obtained from:

Σi(k+1) = α2Σi(k) + φi(k)φ
T
i(k), Σi(0) = α3I > 0 (3.41)

where α2 and α3 > 0 are constants to be assigned. The parameter update law is as

follows:

Σ−1
i(k+1) =

1

α2

Σ−1
i(k) −

1

α2
2

Σ−1
i(k)φi(k) (1 +

1

α2

φTi(k)Σ
−1
i(k)φi(k))

−1φTi(k)Σ
−1
i(k) (3.42)

where Σ−1
i(0) = 1

α2
I,

θ̂i(k+1) = Proj
(
θ̂i(k) +

1

α2

Σ−1
i(k)φi(k) (1 +

1

α2

φTi(k)Σ
−1
i(k)φi(k))

−1ei(k),Θ1

)
(3.43)

where θ̂i(0) ∈ Θ1 and Θ1 is a ball centred at the origin. This projection operator is an
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orthogonal projection onto the surface of the uncertainty set applied to the parameter

estimate. The application as seen in [47] of the projection algorithm is such that:

θ̂i(k+1) ∈ Θ1, ∀k ≥ 0.

The signals of the closed-loop system must be such that the following Persistence of

Excitation condition is met.

Assumption 8: There exist constants α4 and T1 > 0 [47] such that

1

T1

k+T1−1∑
m=k

φi(m)φ
T
i(m) > α4I, ∀k > T1. (3.44)

Distributed Extremum Seeking Controller Design

The distributed controller proposed to solve the extremum seeking task is of the form:

ui(k+1) = ui(k) + kgθ̂1,i(k) + di(k) (3.45)

where kg > 0 is the optimization gain, di(k) is the dither signal for agent i and is such

that ‖di(k)‖ ≤ D2 ∀k ≥ 0 and D2 > 0.

3.3.3 Simulation Examples

The three agent system

Consider the three agent system discussed earlier with agents located at the same

coordinates, xj < xi and d̄ = 77 m for all agents. The same network parameters D,

A and L are considered. The tuning parameters were selected as: δ1 = 1 × 10−3,

α2 = 3 × 10−6, α3 = 1 × 10−8, kg = 3 × 10−4, dk = 1 × 10−5 [sin(20k), sin(27k),
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sin(33k)]T . γ = 50, kP = kI = 300. The control algorithm was initiated at: ui(0) =

0.25, θ̂i(0) = [0.001, 0]T , Σi(0) = I2×2, Ĵi(0) = hi(0) and wi(0) = 0.
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Figure 3.5: The overall cost and the inputs as a function of time for the three agent
system.
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Result

The simulation result for this example is seen in Figure 3.5. The following optimal

conditions were obtained J∗ = 7.4016×105 Watts and u∗ = [0.1990, 0.1548, 0.3333]T .

The distributed control algorithm is able to drive the system to the unknown optimum

of the overall cost. Fast convergence to this optimum is observed.

A five agent system

Consider a five agent system with identical agents (d̄ = 77m). The agents are located

at coordinates {(0, 0), (0, 5d̄), (0, 10d̄), (0, 15d̄), (0, 20d̄)} such that xj < xi. D, A and

L for this system are:

D =



1 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 1


A =



0 1 0 0 0

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

0 0 0 1 0


L =



1 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

0 0 0 −1 1


The tuning parameters were chosen as: δ1 = 1× 10−3, α2 = 3× 10−6, α3 = 1× 10−8,

kg = 2 × 10−3, dk = 1 × 10−5 [sin(19k), sin(25k), sin(30k), sin(34k), sin(38k)]T .

γ = 30, kP = kI = 280. The control algorithm was started off at: ui(0) = 0.1,

θ̂i(0) = [0.001, 0]T , Σi(0) = I2×2, Ĵi(0) = hi(0) and wi(0) = 0.

Result

The simulation result is shown in Figure 3.6.The optimum for this problem is u∗ =

[0.1893, 0.1390, 0.1479, 0.1606, 0.3333]T and J∗ = 1.0603 × 106 Watts. This result



3.3. POWER MAXIMIZATION IN DISCRETE-TIME 52

confirms the effectiveness of the proposed distributed control technique.
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Figure 3.6: The overall cost and the inputs as a function of time for a five agent
system.

.
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3.4 Conclusions

In this chapter, the wind farm power maximization problem was solved using a dis-

tributed time-varying extremum seeking control (TVESC) approach to be precise.

This problem was tackled both in continuous and in discrete-time and useful re-

sults were obtained. Comparisons between the TVESC and the PBESC techniques

demonstrated clearly the improvement in performance obtained with the TVESC.

Most importantly, the results in this Chapter demonstrate the power of coordination

and cooperation in the design of a distributed ESC system suitable for multi-agent

systems with unknown or uncertain mathematical descriptions.
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Chapter 4

Consensus Estimation and Distributed Extremum

Seeking Control over Unknown Networks

4.1 Introduction

In this chapter, the solution of large-scale real-time optimization problems in the

absence of precise knowledge of network connectivity is considered. In the proposed

approach presented in this chapter, it is assumed that the communication network

is unknown. In this environment, we consider the problem of ensuring that each

agent minimizes the system’s overall cost (i.e., the sum of the local cost of all the

agents). Each agent has access to the measurement of two cost functions referred

to as the local cost and the local disagreement cost, respectively. The objective is

to optimize the system to the unknown optimum of the unknown overall cost which

depends on the minimization of the local disagreement cost of all the agents. For

the local disagreement cost functions to be minimized, dynamic consensus estimation

is required. This ensures that the agents reach agreement on their inputs. To help

tackle this challenging problem, a distributed proportional-integral extremum seeking

control technique is proposed. This technique solves the distributed optimization
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problem by the simultaneous minimization of the local disagreement cost and the

overall cost. A two-time scale approach is proposed in which the consensus can

be achieved at a faster time-scale than the minimization of the overall cost. Two

simulation examples are treated to show the effectiveness of this technique.

4.2 Notation

In the description of the distributed optimization approach, the following notation is

adopted.

• The connected network or graph G = (VG, EG).

• VG = {1, . . . , p} is the vertex set with elements denoted as vertices or nodes.

The vertices are referred to as agents.

• EG is the edge set with elements called edges.

• p refers to the number of agents in the vertex set.

• ∀i, j ∈ VG, Ni = {j : (i, j) ∈ EG} refers to the set of agent i’s neighbours.

• u is the vector of input variables taking values in U ⊂ Rp.

• ūi is the vector of agent i′s input and those of its neighbours. It takes values in

Ui ⊂ U .

• ui ∈ R is agent i′s local input (the decision variable).

• u is agent i′s local input after consensus is reached. That is ui becomes u ∀i.

• dij is the weight of the shortest path from i to j considering all the possible

path from i to j in the network.
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4.3 Problem Description

Consider the following minimization problem

min
u
J(u) (4.1)

s.t.

J(u) =

p∑
i=1

hi(u) (4.2)

u = arg min
ui

Li(ūi) (4.3)

Li(ūi) =
∑
j∈Ni

dij(ui − uj)2 ∀i ∈ VG. (4.4)

A network of p agents is considered. J : R −→ R is the variable to be minimized

referred to as the unknown overall cost function. It depends on u and is assumed to

be an unknown smooth function of u. hi : R −→ R is the unknown local cost function

for agent i. Li(ūi) : Rpi −→ R is agent i′s unknown local disagreement cost function.

It provides the measurement of the disagreement between agent i′s input and those

of its neighbours and is assumed to be an unknown smooth function of ūi.

To proceed, the following assumptions are required.

Assumption 1: Agent i has access to the variable ui and can measure hi and Li.

Assumption 2: J(u) and Li(ūi) are such that

(u− u∗)∂J(u)

∂u
≥ γ(u− u∗)2 (4.5)
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and

(ūi − u)T
∂Li(ūi)

∂ūi
≥ γs‖ūi − u‖2 (4.6)

∀ūi ∈ Ui with positive constants γ > 0 and γs > 0.

The total disagreement cost function L =
∑p

i=1 Li is an unknown smooth function of

u. L : Rp −→ R and satisfies Assumption 3.

Assumption 3: L(u) is such that

(u− u)T
∂L(u)

∂u
≥ γd‖u− u‖2 (4.7)

∀u ∈ U and γd > 0.

4.4 Distributed Extremum Seeking Control

4.4.1 Consensus Estimation

Two communication networks are considered. The first communication network for

the agents is illustrated using a time-invariant undirected connected weighted graph

while the second is represented as a time-invariant directed connected weighted graph.

Each communication network is represented as G = (VG, EG).

The networks are seen in Figures 4.1 and 4.2 respectively. Recall that a node repre-

sents an agent and an edge connects two agents and acts as the pathway for communi-

cation. Let H ∈ Rm be a vector of positive weights. Each edge connecting two agents

is assigned a positive weight and the distance dij between agents i and j ∀i, j ∈ VG

is computed. dij satisfies:
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• dij ≥ 0 ∀i, j ∈ VG

• dij = 0 iff i = j

• ∀i, j ∈ VG, dij = dji if the graph is undirected, otherwise it is directed.

Du ∈ Rp×p and Dd ∈ Rp×p are distance matrices with elements dij for the undirected

and the directed networks.

Recall that agent i has its input ui, a consensus estimation approach is needed to

ensure that ui −→ uj −→ u. Once all agents operate using the same value of the

decision variable, it is possible to minimize the overall cost.
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Figure 4.1: Undirected Graph G for a 50 agent system.
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To achieve this, a local disagreement cost function of the form (4.4) is introduced

Li(ūi) =
∑
j∈Ni

dij(ui − uj)2

where ui and uj are the inputs of agents i and j. Since agent i can communicate

with its neighbours, Li provides the measurement of the total disagreement between

agent i and its neighbours. Agents i and j agree if and only if ui = uj and they

disagree otherwise. When i and j agree, no contribution is made to Li, when they

disagree, Li > 0 and has to be minimized. This minimization ensures that ∀i, j ∈

VG, the inputs achieve the consensus value u. The proposed distributed PI-ESC

approach incorporates local disagreement functions and computes the minimizer u.

The algorithm also ensures that u is driven to u∗, the minimizer of the overall cost,

J .

4.4.2 Parametrization of agent i′s local cost dynamics

The dynamics of the overall cost function J is given by:

J̇ =
∂J

∂u
u̇. (4.8)

Let θJ1 = ∂J
∂u

, then J̇ = θJ1u̇. Agent i′s local cost dynamics is of the form:

ḣi = u̇i
∂hi(ui)

∂ui
. (4.9)

This local cost dynamics is parametrized as:

ḣi = u̇iθh1,i (4.10)
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where θh1,i = ∂hi(ui)
∂ui

.

In a distributed environment, it is known that an agent is affected by other agents in

the system. In this case, the local cost of agent i depends only on its input. We can

add at term to account for the actions of other agents. Taking this into consideration,

(4.10) becomes:

ḣi = θh0,i(t) + u̇iθh1,i(t) (4.11)

The bias term θh0,i ∈ R accounts for the effect of other agents on i.The dynamics of

agent i′s local disagreement cost is as follows:

L̇i =
∑
j 6=i

u̇j
∂L(ūi)

∂uj
+ u̇i

∂L(ūi)

∂ui
(4.12)

This cost is parametrized as follows:

L̇i = θL0,i(t) + θL1,i(t)u̇i (4.13)

Since agent i depends on the inputs of other agents, θL0,i is the term accounting for

the effect of the agents on agent i. At this point, a parameter estimation routine for

estimating the local parameters θh1,i, θL1,i and θL0,i is employed.

4.4.3 Parameter Estimation

The parameter estimation routine proposed in [26] is considered. Let the vectors of

parameter estimates be θ̂h,i = [θ̂h0,i, θ̂h1,i]
T and θ̂L,i = [θ̂L0,i, θ̂L1,i]

T . The regressor

vectors are φh,i = [1, u̇i]
T and φL,i = [1, u̇i]

T . The predicted output for a given value of

the estimate θ̂h,i is denoted by ẑi. Similarly v̂i is the predicted output corresponding

to the estimate θ̂L,i. The output prediction errors are given by eh,i = hi − ẑi and
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eL,i = Li − v̂i. The prediction error dynamics for (4.11) and (4.13) are written as:

˙̂zi(t) = φTh,iθ̂h,i(t) +K1eh,i(t) + ch,i(t)
T ˙̂
θh,i(t), ẑi(0) = hi(0) (4.14)

˙̂vi(t) = φTL,iθ̂L,i(t) +K2eL,i(t) + cL,i(t)
T ˙̂
θL,i(t), v̂i(0) = Li(0) (4.15)

where K1 > 0 and K2 > 0 are constants to be specified. The dynamics of ch,i(t) and

cL,i(t) are described by

ċh,i(t)
T = −K1ch,i(t)

T + φTh,i, ch,i(0) = 0 (4.16)

ċL,i(t)
T = −K2cL,i(t)

T + φTL,i, cL,i(0) = 0. (4.17)

Let ηh,i and ηL,i be auxiliary variables

ηh,i = eh,i − cTh,iθ̃J,i, (4.18)

ηL,i = eL,i − cTL,iθ̃L,i. (4.19)

where θ̃h,i = θh,i − θ̂h,1 and θ̃L,i = θL,i − θ̂L,i. The variables η̂h,i and η̂L,i are filtered

estimates of ηh,i and ηL,i with dynamics:

˙̂ηh,i(t) = −K1η̂h,i(t) (4.20)
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˙̂ηL,i(t) = −K2η̂L,i(t). (4.21)

Let Σh,i ∈ R2×2 and ΣL,i ∈ R2×2 be covariance matrices with dynamics

Σ̇h,i(t) = ch,i(t)
T ch,i(t)−KT1Σh,i(t) + δ2I, Σh,i(0) = α5I > 0 (4.22)

Σ̇L,i(t) = cL,i(t)
T cL,i(t)−KT2ΣL,i(t) + δ3I, ΣL,i(0) = α6I > 0 (4.23)

where α5, α6, δ2, δ3, KT1 and KT2 > 0 are constants to be assigned. The parameter

update law is:

˙̂
θh,i = Proj(Σ−1

h,i(ch,i(eh,i − η̂h,i)− σ1θ̂h,i),Θ2) (4.24)

˙̂
θL,i = Proj(Σ−1

L,i(cL,i(eL,i − η̂L,i)− σ2θ̂L,i),Θ3) (4.25)

where σ1 and σ2 > 0. Θ2 and Θ3 are balls of finite radii centered at 0. Proj{.,Θ2}

and Proj{.,Θ3} denote Lipschitz projection operators onto the sets Θ1 and Θ2 [12].

The application of the projection algorithm is such that:

θ̂h,i(0) ∈ Θ2 =⇒ θ̂h,i(t) ∈ Θ2, ∀t ≥ 0 (4.26)

θ̂L,i(0) ∈ Θ3 =⇒ θ̂L,i(t) ∈ Θ3, ∀t ≥ 0 (4.27)
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The operators bounds θ̂h,i and θ̂L,i. They ensure that:

θ̃Th,iΣh,iProj

(
Σ−1
h,i(t)

(
ch,i(t)(eh,i(t)− η̂h,i(t))− σ1θ̂h,i(t)

)
,Θ2

)
(4.28)

≤ θ̃Th,i

(
ch,i(t)(eh,i(t)− η̂h,i(t))− σ1θ̂h,i(t)

)
(4.29)

θ̃TL,iΣL,iProj

(
Σ−1
L,i(t)

(
cL,i(t)(eL,i(t)− η̂L,i(t))− σ2θ̂L,i(t)

)
,Θ3

)
(4.30)

≤ θ̃TL,i

(
cL,i(t)(eL,i(t)− η̂L,i(t))− σ2θ̂L,i(t)

)
(4.31)

The signals of the closed-loop ESC system must be such that the following Persistence

of Excitation condition is met.

Assumption 4: There exist constants α7, α8, T1 and T2 > 0 such that

∫ t+T1

t

ch,i(τ1)ch,i(τ1)Tdτ1 ≥ α7I, t > 0. (4.32)

∫ t+T2

t

cL,i(τ2)cL,i(τ2)Tdτ2 ≥ α8I, t > 0. (4.33)

4.4.4 Distributed Extremum Seeking Controller design

A distributed proportional-integral extremum seeking controller of the form (4.34) is

proposed to solve the optimization task

u̇ = −kgθ̂h1 −
1

τI
θ̂L1 + û + d(t)

˙̂u = − 1

τI
θ̂L1

(4.34)
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Similarly,

u̇i = −kgθ̂h1,i −
1

τI
θ̂L1,i + ûi + di(t)

˙̂ui = − 1

τI
θ̂L1,i

(4.35)

where kg > 0 and τI > 0 are the proportional gain constant and the integral gain

constant respectively. ûi is the integral part of the controller that ensures that conver-

gence is attained. The bounded dither signal, di(t) is such that ‖di(t)‖ ≤ D3 ∀t ≥ 0

and D3 > 0. The schematic representation of the proposed distributed PI-ESC algo-

rithm for agent i is shown in Figure 4.3.

Theorem 1: Consider the distributed extremum seeking controller (4.35), the pa-

rameter estimation algorithm (4.22) - (4.25) and let Assumptions 1 to 4 hold, then

there exist gains K1, K2, KT1, KT2, σ1, σ2, δ2, δ3, kg and τI such that the system

converges to a neighbourhood of the minimizer u∗ of the overall cost function J .

Proof : If we have θh1,i and θL1,i, at convergence, the controller can be expressed as:

u̇i = −kgθh1,i −
1

τI
θL1,i + ûi

˙̂ui = − 1

τI
θL1,i.

Let L =
∑p

i=1 Li and L′′ = ∂2L
∂u2

, collecting ˙̂ui and u̇i results in:

u̇ = −kgθh1 −
1

τI
LG + û

˙̂u = − 1

τI
LG

(4.36)
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where LG =
∫ 1

0
L′′(λu)dλ and satisfies 1TpLG = 0. The multiplication of ˙̂u in (4.36)

by 1Tp results in:

1Tp
˙̂u = 0⇒ 1Tp û(t) = 1Tp û(0) = 0 ∀t ≥ 0. (4.37)

The multiplication of u̇ by 1Tp yields:

1Tp u̇ = −kg1Tp θh1 + 1Tp û. (4.38)

Since 1Tp û = 0, it follows that:

1Tp u̇ = −kg1Tp θh1

p∑
i=1

u̇ = −kg
p∑
i=1

θh1

(4.39)

At ˙̂u = 0, this means that θL1 = 0 so ui = uj = u. At this point u = [u, · · · , u]T and

convergence is achieved as (4.39) yields:

pu̇ = −kgpθh1,i

u̇ = −kgθh1,i

(4.40)

Since we do not have access to θhi,1 and θLi,1, their estimates can be obtained using

the parameter estimation routine described above. In [27] and [37], it is shown that

this can be achieved. We reiterate these developments here. Recall that

u̇ = −kgθ̂h1 −
1

τI
θL1 + û + d (4.41)
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where θ̂h1 = θh1− θ̃h1 and θ̂L1 = θL1− θ̃L1. To show that θ̂h1 −→ θh1 and θ̂L1 −→ θL1,

consider the Lyapunov function:

W =

p∑
i=1

(
1

2
η̃Th,iη̃h,i +

1

2
η̃TL,iη̃L,i +

1

2
θ̃Th,iΣh,iθ̃h,i +

1

2
θ̃TL,iΣL,iθ̃L,i

)
(4.42)

where η̃h,i = ηh,i− η̂h,i, η̃L,i = ηL,i− η̂L,i, θ̃h,i = θh,i− θ̂h,i and θ̃L,i = θL,i− θ̂L,i. Solving

for ˙̃ηh,i, ˙̃ηL,i, Σ̇h,i, Σ̇L,i,
˙̃θh,i and ˙̃θL,i, substituting the results in Ẇ yields:

Ẇ ≤
p∑
i=1

(
−K1η̃

T
h,iη̃h,i −K2η̃

T
L,iη̃L,i − η̃Th,icTh,iθ̇h,i − η̃TL,icTL,iθ̇L,i

+
1

2
θ̃Th,iθ̃h,i(c

T
h,ich,i −KT1Σh,i + δ2I) + θ̃Th,iΣh,iθ̇h,i

+
1

2
θ̃TL,iθ̃L,i(c

T
L,icL,i −KT2ΣL,i + δ3I) + θ̃TL,iΣL,iθ̇L,i

−θ̃Th,ich,i(eh,i − η̂h,i)− θ̃TL,icL,i(eL,i − η̂L,i) + σ1θ̃
T
h,iθ̂h,i

+σ2θ̃
T
L,iθ̂L,i

)
. (4.43)

Rearranging one obtains,

Ẇ ≤
p∑
i=1

(
−K1η̃

T
h,iη̃h,i −K2η̃

T
L,iη̃L,i − η̃Th,icTh,iθ̇h,i − η̃TL,icTL,iθ̇L,i

+
1

2
θ̃Th,ic

T
h,ich,iθ̃h,i +

1

2
θ̃TL,ic

T
l,icL,iθ̃L,i −

KT1

2
θ̃Th,iΣh,iθ̃h,i

−KT2

2
θ̃TL,iΣL,iθ̃L,i +

δ2

2
θ̃Th,iθ̃h,i +

δ3

2
θ̃TL,iθ̃L,i + θ̃Th,iΣh,iθ̇h,i

+θ̃TL,iΣL,iθ̇L,i − θ̃Th,ich,i(eh,i − η̂h,i)− θ̃TL,icL,i(el,i − η̂L,i)+

σ1θ̃
T
h,iθ̂h,i + σ2θ̃

T
L,iθ̂L,i

)
.

Also recall that:



4.4. DISTRIBUTED EXTREMUM SEEKING CONTROL 67

cTh,iθ̃h,i = eh,i − η̃h,i − η̂h,i and cTL,iθ̃L,i = el,i − η̃L,i − η̂L,i.

Substituting the above in Ẇ yields:

Ẇ ≤
p∑
i=1

(
−K1η̃

T
h,iη̃h,i −K2η̃

T
L,iη̃L,i − η̃Th,icTh,iθ̇h,i − η̃TL,icTL,iθ̇L,i

+
1

2
(eh,i − η̃h,i − η̂h,i)T (eh,i − η̃h,i − η̂h,i)−

KT1

2
θ̃Th,iΣh,iθ̃h,i

+
1

2
(eL,i − η̃L,i − η̂L,i)T (eL,i − η̃L,i − η̂h,i)−

KT2

2
θ̃TL,iΣL,iθ̃L,i

+
δ2

2
θ̃Th,iθ̃h,i +

δ3

2
θ̃TL,iθ̃L,i + θ̃Th,iΣh,iθ̇h,i + θ̃TL,iΣL,iθ̇L,i

−(eh,i − η̃h,i − η̂h,i)T (eh,i − η̂h,i) + σ1θ̃
T
h,iθ̂h,i

−(eL,i − η̃L,i − η̂L,i)T (eL,i − η̂L,i) + σ2θ̃
T
L,iθ̂L,i

)
.

Simplifying results by completing the squares yields (4.44).

Since −1
2
(eh,i − η̂Th,i)(eh,i − η̂h,i) ≤ 0, −1

2
(eL,i − η̂TL,i)(eL,i − η̂L,i) ≤ 0, θ̂h,i = θh,i − θ̃h,i

and θ̂L,i = θL,i − θ̃L,i, (4.44) becomes (4.45)

Ẇ ≤
p∑
i=1

(
−K1η̃

T
h,iη̃h,i −K2η̃

T
L,iη̃L,i − η̃Th,icTh,iθ̇h,i − η̃TL,icTL,iθ̇L,i

+
1

2
η̃Th,iη̃h,i −

1

2
(eh,i − η̂h,i)T (eh,i − η̂h,i) +

1

2
η̃TL,iη̃L,i

−1

2
(eL,i − η̂L,i)T (eL,i − η̂L,i)−

KT1

2
θ̃Th,iΣh,iθ̃h,i +

δ2

2
θ̃Th,iθ̃h,i

−KT2

2
θ̃TL,iΣL,iθ̃L,i +

δ3

2
θ̃TL,iθ̃L,i + θ̃Th,iΣh,iθ̇h,i + θ̃TL,iΣL,iθ̇L,i

+σ1θ̃
T
h,iθ̂h,i + σ2θ̃

T
L,iθ̂L,i

)
. (4.44)
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Ẇ ≤
p∑
i=1

(
−K1η̃

T
h,iη̃h,i −K2η̃

T
L,iη̃L,i − η̃Th,icTh,iθ̇h,i − η̃TL,icTL,iθ̇L,i

+
1

2
η̃Th,iη̃h,i +

1

2
η̃TL,iη̃L,i −

KT1

2
θ̃Th,iΣh,iθ̃h,i +

δ2

2
θ̃Th,iθ̃h,i

−KT2

2
θ̃TL,iΣL,iθ̃L,i +

δ3

2
θ̃TL,iθ̃L,i + θ̃Th,iΣh,iθ̇h,i + θ̃TL,iΣL,iθ̇L,i

+σ1θ̃
T
h,iθh,i − σ1θ̃

T
h,iθ̃h,i + σ2θ̃

T
L,iθL,i − σ2θ̃

T
L,iθ̃L,i

)
. (4.45)

Rearranging yields:

Ẇ ≤
p∑
i=1

(
−η̃Th,i(K1 −

1

2
)η̃h,i − η̃Th,icTh,iθ̇h,i + θ̃Th,iΣh,iθ̇h,i

−KT1

2
θ̃Th,iΣh,iθ̃h,i − (σ1 −

δ2

2
)θ̃Th,iθ̃h,i + σ1θ̃

T
h,iθh,i

−η̃TL,i(K2 −
1

2
)η̃L,i − η̃TL,icTL,iθ̇L,i + θ̃TL,iΣL,iθ̇L,i

−KT2

2
θ̃TL,iΣL,iθ̃L,i − (σ2 −

δ3

2
)θ̃TL,iθ̃L,i + σ2θ̃

T
L,iθL,i

)
. (4.46)

Applying Young’s inequality to the indefinite terms (η̃Th,ic
T
h,iθ̇h,i, θ̃

T
h,iΣh,iθ̇h,i,

θ̃Th,iθh,i, η̃
T
L,ic

T
L,iθ̇L,i, θ̃

T
L,iΣL,iθ̇L,i, θ̃

T
L,iθL,i), there exist constants K3, K4, K5 and

K6 > 0 such that (4.46) becomes (4.47). Rearranging (4.47), (4.48) is obtained.

Ẇ ≤
p∑
i=1

(
−η̃Th,i(K1 −

1

2
)η̃h,i +

K3

2
η̃Th,ic

T
h,ich,iη̃h,i +

1

2K3

θ̇Th,iθ̇h,i

+
K4

2
θ̃Th,iΣh,iθ̃h,i +

1

2K4

θ̇Th,iΣh,iθ̇h,i −
KT1

2
θ̃Th,iΣh,iθ̃h,i

−(σ1 −
δ2

2
)θ̃Th,iθ̃h,i +

σ1

2
θ̃Th,iθ̃h,i +

σ1

2
θTh,iθh,i − η̃TL,i(K2 −

1

2
)η̃L,i

+
K5

2
η̃TL,ic

T
L,icL,iη̃L,i +

1

2K5

θ̇TL,iθ̇L,i +
K6

2
θ̃TL,iΣL,iθ̃L,i +

1

2K6

θ̇TL,iΣL,iθ̇L,i

−KT2

2
θ̃TL,iΣL,iθ̃L,i − (σ2 −

δ3

2
)θ̃TL,iθ̃L,i +

σ2

2
θ̃TL,iθ̃L,i +

σ2

2
θTL,iθL,i

)
. (4.47)
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Ẇ ≤
p∑
i=1

(
−η̃Th,i(K1 −

1

2
)η̃h,i +

K3

2
η̃Th,ic

T
h,ich,iη̃h,i +

1

2K3

θ̇Th,iθ̇h,i

−(
KT1

2
− K4

2
)θ̃Th,iΣh,iθ̃h,i +

1

2K4

θ̇Th,iΣh,iθ̇h,i +
σ1

2
θTh,iθh,i − (

σ1

2
− δ2

2
)θ̃Th,iθ̃h,i

−η̃TL,i(K2 −
1

2
)η̃L,i +

K5

2
η̃TL,ic

T
L,icL,iη̃L,i +

1

2K5

θ̇TL,iθ̇L,i − (
KT2

2
− K6

2
)θ̃TL,iΣL,iθ̃L,i

+
1

2K6

θ̇TL,iΣL,iθ̇L,i +
σ2

2
θTL,iθL,i − (

σ2

2
− δ3

2
)θ̃TL,iθ̃L,i

)
. (4.48)

Let K̃T1 = KT1 −K4 > 0 and K̃T2 = KT2 −K6 > 0, then the inequality becomes:

Ẇ ≤
p∑
i=1

(
−η̃Th,i(K1 −

1

2
)η̃h,i +

K3

2
η̃Th,ic

T
h,ich,iη̃h,i +

1

2K3

θ̇Th,iθ̇h,i

−K̃T1

2
θ̃Th,iΣh,iθ̃h,i +

1

2K4

θ̇Th,iΣh,iθ̇h,i − (
σ1

2
− δ2

2
)θ̃Th,iθ̃h,i

+
σ1

2
θTh,iθh,i − η̃TL,i(K2 −

1

2
)η̃L,i +

K5

2
η̃TL,ic

T
L,icL,iη̃L,i +

1

2K5

θ̇TL,iθ̇L,i

−K̃T2

2
θ̃TL,iΣL,iθ̃L,i +

1

2K6

θ̇TL,iΣL,iθ̇L,i − (
σ2

2
− δ3

2
)θ̃TL,iθ̃L,i +

σ1

2
θTh,iθh,i

)
.

Collecting terms,

Ẇ ≤
p∑
i=1

(
−η̃Th,i(K1 −

1

2
− K3

2
cTh,ich,i)η̃h,i +

1

2K3

θ̇Th,iθ̇h,i

−K̃T1

2
θ̃Th,iΣh,iθ̃h,i +

1

2K4

θ̇Th,iΣh,iθ̇h,i − (
σ1

2
− δ2

2
)θ̃Th,iθ̃h,i

+
σ1

2
θTh,iθh,i − η̃TL,i(K2 −

1

2
− K5

2
cTL,icL,i)η̃L,i +

1

2K5

θ̇TL,iθ̇L,i

−K̃T2

2
θ̃TL,iΣL,iθ̃L,i +

1

2K6

θ̇TL,iΣL,iθ̇L,i − (
σ2

2
− δ3

2
)θ̃TL,iθ̃L,i

+
σ2

2
θTL,iθL,i

)
. (4.49)
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We proceed to establish the boundedness of the positive definite matrices Σh,i and

ΣL,i. Integrating (4.22) and (4.23) and using Assumption 4 for t ≥ T1 and t ≥ T2

respectively, then

Σh,i = e−KT1tΣh,i(0) +

∫ t

0

e−KT1(t−τ1)
(
ch,i(τ1)cTh,i(τ1) + δ2I

)
dτ1

≥
∫ t

t−T1
e−KT1(t−τ1)

(
ch,i(τ1)cTh,i(τ1) + δ2I

)
dτ1

≥ e−KT1T1(α7 + δ2T1)I

ΣL,i = e−KT2tΣL,i(0) +

∫ t

0

e−KT2(t−τ2)
(
cL,i(τ2)cTL,i(τ2) + δ3I

)
dτ2

≥
∫ t

t−T2
e−KT2(t−τ2)

(
cL,i(τ2)cTL,i(τ2) + δ3I

)
dτ2

≥ e−KT2T2(α8 + δ3T2)I.

When t < T1 and t < T2,

Σh,i ≥ e−KT1T1α5I and ΣL,i ≥ e−KT2T2α6I.

Consequently,

Σh,i ≥ e−KT1T1 min[(α7 + δ2T1), α5]I ∀t > 0

and

ΣL,i ≥ e−KT2T2 min[(α8 + δ3T2), α6]I ∀t > 0.

The Lipschitz projection operator employed in the parameter estimation routine en-

sures that θ̂h,i and θ̂L,i are bounded. As a result of the boundedness of θ̂h,i and θ̂L,i,

u̇i, ch,i and cL,i are bounded. This implies that there exist positive constants g1, and
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g2 such that:

ch,ic
T
h,i < g1I and cL,ic

T
L,i < g2I ∀t > 0.

Consequently,

Σh,i = e−KT1tΣh,i(0) +

∫ t

0

e−KT1(t−τ1)
(
ch,i(τ1)cTh,i(τ1) + δ2I

)
dτ1

≤ (α5 +
g1 + δ2

KT1

)I

Σl,i = e−KT2tΣL,i(0) +

∫ t

0

e−KT2(t−τ2)
(
cL,i(τ2)cTL,i(τ2) + δ3I

)
dτ2

≤ (α6 +
g2 + δ3

KT2

)I.

Now, let

ζ1 = e−KT1T1 min[(α7 + δ2T1), α5] and ζ2 = (α5 + g1+δ2
KT1

)

ζ3 = e−KT2T2 min[(α8 + δ3T2), α6] and ζ4 = (α6 + g2+δ3
KT2

),

then

ζ1I ≤ Σh,i ≤ ζ2I and ζ3I ≤ ΣL,i ≤ ζ4I.

Recall that cTh,ich,i < g1 and cTL,icL,i < g2. Substituting δ2 = σ1, δ3 = σ2, K1 = k1 + 1
2
,

K2 = k2 + 1
2

and the bounds for cTh,ich,i, c
T
L,icL,i, Σh,i and ΣL,i, in (4.49), then

Ẇ ≤
p∑
i=1

(
−η̃Th,i(k1 −

K3

2
g1)η̃h,i +

1

2K3

θ̇Th,iθ̇h,i

−K̃T1

2
ζ1θ̃

T
h,iθ̃h,i +

1

2K4

ζ2θ̇
T
h,iθ̇h,i +

σ1

2
θTh,iθh,i

−η̃TL,i(k2 −
K5

2
g2)η̃L,i +

1

2K5

θ̇TL,iθ̇L,i

−K̃T2

2
ζ3θ̃

T
L,iθ̃L,i +

1

2K6

ζ4θ̇
T
L,iθ̇L,i +

σ2

2
θTL,iθL,i

)
. (4.50)
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Let

G1 = k1 − K3

2
g1, G2 = K̃T1

2
ζ1, G3 = 1

2K3
+ 1

2K4
ζ2,

G4 = k2 − K5

2
g2, G5 = K̃T2

2
ζ3, G6 = 1

2K5
+ 1

2K6
ζ4.

Recall that K̃T1 > 0 and K̃T2 > 0, let k1 >
K3

2
g1 and k2 >

K5

2
g2, then

Ẇ ≤
p∑
i=1

(
−G1‖η̃h,i‖2 −G2‖θ̃h,i‖2 +G3‖θ̇h,i‖2 +

σ1

2
‖θh,i‖2

−G4‖η̃L,i‖2 −G5‖θ̃L,i‖2 +G6‖θ̇L,i‖2 +
σ2

2
‖θL,i‖2

)
. (4.51)

From (4.51), it is seen that provided θh,i, θ̇h,i. θL,i and θ̇L,i are bounded, η̃h,i, θ̃h,i, η̃L,i

and θ̃L,i will be bounded and approach a neighbourhood of the origin. Therefore, the

parameter estimates will reach a neighbourhood of their true values.

Since the parameter estimates converge to a neighbourhood of their true values, the

next step is to show that the bias term ûi converges to a neighbourhood of u. Let

ũi = ûi − u then consider the Lyapunov function:

Y = W +M (4.52)

where M = 1
2
ũT ũ. The differentiation of (4.52) gives Ẏ = Ẇ + ũT ˙̃u. Recalling that

ũ = û− u, ˙̃u = ˙̂u, ˙̂u = − 1
τI
θ̂L1 and θ̂L1 = θL1 − θ̃L1, then:

Ẏ = Ẇ + ũT
( 1

τI
θ̃L1 −

1

τI
θL1

)
. (4.53)

(4.53) can be written as:

Ẏ = Ẇ +

p∑
i=1

( 1

τI
ũiθ̃L1,i −

1

τI
ũiθL1,i

)
. (4.54)
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The substitution of Ẇ in (4.54) results in:

Ẏ ≤
p∑
i=1

(
−G1‖η̃h,i‖2 −G2|θ̃h,i‖2 +G3‖θ̇h,i‖2 +

σ1

2
‖θh,i‖2 −G4‖η̃L,i‖2

−G5|θ̃L,i‖2 +G6‖θ̇L,i‖2 +
σ2

2
‖θL,i‖2 +

1

τI
ũiθ̃L1,i −

1

τI
ũiθL1,i

)
.

Collecting the ũiθL1,i terms and using Assumption 3, it follows that:

Ẏ ≤
p∑
i=1

(
−G1‖η̃h,i‖2 −G2|θ̃h,i‖2 +G3‖θ̇h,i‖2 +

σ1

2
‖θh,i‖2 −G4‖η̃L,i‖2

−G5|θ̃L,i‖2 +G6‖θ̇L,i‖2 +
σ2

2
‖θL,i‖2 +

1

τI
ũiθ̃L1,i −

1

τI
γd‖ũi‖2

)
. (4.55)

Applying Young’s inequality to the indefinite terms in (4.55) then there exist a con-

stant α9 > 0 such that:

Ẏ ≤
p∑
i=1

(
−G1‖η̃h,i‖2 −G2|θ̃h,i‖2 +G3‖θ̇h,i‖2 +

σ1

2
‖θh,i‖2 −G4‖η̃L,i‖2

−G5|θ̃L,i‖2 +G6‖θ̇L,i‖2 +
σ2

2
‖θL,i‖2 − 1

τI
γd‖ũi‖2 +

α9

2τI
‖ũi‖2

+
1

2α9τI
‖θ̃L1,i‖2

)
.

Rearranging the last inequality gives:

Ẏ ≤
p∑
i=1

(
−G1‖η̃h,i‖2 −G2|θ̃h,i‖2 +G3‖θ̇h,i‖2 +

σ1

2
‖θh,i‖2 −G4‖η̃L,i‖2

−G5|θ̃L0,i‖2 +G6‖θ̇L,i‖2 +
σ2

2
‖θL,i‖2 − (

1

τI
γd −

α9

2τI
)‖ũi‖2

−(G5 −
1

2α9τI
)‖θ̃L1,i‖2

)
. (4.56)
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Let G7 =
(
γd
τI
− α9

2τI

)
and G8 =

(
G5 − 1

2α9τI

)
, to make G7 > 0, we pick α9 < 2γd.

To make G8 > 0, we pick τI <
1

2α9G5
. Making τI large enough but less than 1

2α9G5

ensures that ũi is bounded and enters a neighbourhood of the origin as ûi approaches

a neighbourhood of u. Therefore:

Ẏ ≤
p∑
i=1

(
−G1‖η̃h,i‖2 −G2|θ̃h,i‖2 +G3‖θ̇h,i‖2 +

σ1

2
‖θh,i‖2 −G4‖η̃L,i‖2

−G5|θ̃L0,i‖2 +G6‖θ̇L,i‖2 +
σ2

2
‖θL,i‖2 −G7‖ũi‖2 −G8‖θ̃L1,i‖2

)
. (4.57)

Since ûi approaches a neighbourhood of u, this implies that ˙̂ui = 0 therefore, the ESC

algorithm reduces to u̇ = −kgθ̂h1 + û + d, where u = [u, · · · , u]T . The multiplication

of u̇ by 1Tp yields:

1Tp u̇ = −kg1Tp θ̂h1 + 1Tp û + 1Tp d (4.58)

But 1Tp û = 0, (4.58) simplifies to:

p∑
i=1

u̇ = −kg
p∑
i=1

θ̂h1,i +

p∑
i=1

di

pu̇ = −kgpθ̂h1,i + pdi

u̇ = −kgθ̂h1,i + di

(4.59)

Finally, we focus on showing that u approaches a neighbourhood of the u∗, the min-

imizer of the overall cost. Let ũ = u − u∗, ũ = u − u∗ and V = 1
2
ũT ũ, consider the
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Lyapunov function:

W = Y + V (4.60)

The differentiation of (4.60) w.r.t. time yields:

Ẇ = Ẏ + ũT ˙̃u. (4.61)

Since ũ = u− u∗ then ˙̃u = u̇. Recalling that θ̂h1 = θh1− θ̃h1, the substitution of u̇ in

(4.61) gives:

Ẇ = Ẏ − kgũT θh1 + kgũ
T θ̃h1 + ũTd. (4.62)

(4.62) can be written as:

Ẇ = Ẏ +

p∑
i=1

(
kgũθ̃h1,i − kgũθh1,i + ũdi

)
(4.63)

Substituting Ẏ yields:

Ẇ ≤
p∑
i=1

(
−G1‖η̃h,i‖2 −G2|θ̃h,i‖2 +G3‖θ̇h,i‖2 +

σ1

2
‖θh,i‖2 −G4‖η̃L,i‖2

−G5|θ̃L0,i‖2 +G6‖θ̇L,i‖2 +
σ2

2
‖θL,i‖2 −G7‖ũi‖2 −G8‖θ̃L1,i‖2 .

−kgũθh1,i + kgũθ̃h1,i + ũdi

)
(4.64)
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It is important to state that at consensus, ũ and θh1,i are same for all the agents so

it follows that pũθh1,i = ũθJ1. By the convexity of the overall cost we have:

pũθh1,i ≥ γũ2

ũθh1,i ≥
γ

p
ũ2

−kgũθh1,i ≤ −
kg
p
γũ2

(4.65)

Substituting (4.65) in (4.64) results in:

Ẇ ≤
p∑
i=1

(
−G1‖η̃h,i‖2 −G2|θ̃h,i‖2 +G3‖θ̇h,i‖2 +

σ1

2
‖θh,i‖2

−G4‖η̃L,i‖2 −G5|θ̃L0,i‖2 +G6‖θ̇L,i‖2 +
σ2

2
‖θL,i‖2

−G7‖ũi‖2 −G8‖θ̃L1,i‖2 − kg
p
γũ2 + kgũθ̃h1,i + ũdi

)
. (4.66)

Applying Young’s inequality to the indefinite terms, there exist constants α10 > 0

and α11 > 0 such that:

Ẇ ≤
p∑
i=1

(
−G1‖η̃h,i‖2 −G2|θ̃h,i‖2 +G3‖θ̇h,i‖2 +

σ1

2
‖θh,i‖2

−G4‖η̃L,i‖2 −G5|θ̃L0,i‖2 +G6‖θ̇L,i‖2 +
σ2

2
‖θL,i‖2

−G7‖ũi‖2 −G8‖θ̃L1,i‖2 − kg
p
γ‖ũ‖2 +

α10

2
kg‖ũ‖2

+
1

2α10

kg‖θ̃h1,i‖2 +
α11

2
‖ũ‖2 +

1

2α11

‖di‖2

)
. (4.67)
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We can rewrite (4.67) as:

Ẇ ≤
p∑
i=1

(
−G1‖η̃h,i‖2 −G2|θ̃h0,i‖2 +G3‖θ̇h,i‖2 +

σ1

2
‖θh,i‖2

−G4‖η̃L,i‖2 −G5|θ̃L0,i‖2 +G6‖θ̇L,i‖2 +
σ2

2
‖θL,i‖2

−G7‖ũi‖2 −G8‖θ̃L1,i‖2 − (
kg
p
γ − α10

2
kg −

α11

2
)‖ũ‖2

−(G2 −
1

2α10

kg)‖θ̃h1,i‖2 +
1

2α11

‖di‖2

)
. (4.68)

Let G9 = (kg
p
γ − α10

2
kg − α11

2
), by choosing α10 = γ

p
then kg can be chosen such that

kg > pα11

γ
and this ensures that G9 > 0. Also let G10 = (G2 − 1

2α10
kg), G10 > 0 by

choosing kg such that kg < 2α10G2. Therefore,

Ẇ ≤
p∑
i=1

(
−G1‖η̃h,i‖2 −G2|θ̃h0,i‖2 +G3‖θ̇h,i‖2 +

σ1

2
‖θh,i‖2 −G4‖η̃L,i‖2

−G5|θ̃L0,i‖2 +G6‖θ̇L,i‖2 +
σ2

2
‖θL,i‖2 −G7‖ũi‖2 −G8‖θ̃L1,i‖2

−G9‖ũ‖2 −G10‖θ̃h1,i‖2 +
1

2α11

‖di‖2

)
. (4.69)

We know that the dither signal is bounded. Since u̇ is bounded, θ̇h1,i and θ̇L1,i are

bounded. Likewise θ̇h0,i and θ̇L0,i are bounded since θh0,i and θL0,i are bias terms

unaffected by the controller and can be bounded by positive constants. Therefore

θ̇h,i, θh,i, θ̇L,i and θL,i are bounded. This Lyapunov derivative shows that η̃h,i, η̃L,i,

θ̃h,i, θ̃L,i, ũi and ũ are bounded. η̃L,i, θ̃L,i, and ũi enter a neighbourhood of the origin

as ûi approaches a neighbourhood of u. η̃h,i, θ̃h,i and ũ also approach a neighbourhood

of the origin as u converges to a neighbourhood of u∗. The size of this neighbourhood

depends on the positive terms in (4.69). This completes the proof.
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yi = hi(ui)

˙̂zi = φTh,iθ̂h,i +K1eh,i + cTh,i
˙̂
θh,i

˙̂vi = φTL,iθ̂L,i +K2eL,i + cTL,i
˙̂
θL,i

˙̂
θh,i = Proj

(
Σ−1
h,i

(
ch,i(eh,i − η̂h,i)− σ1θ̂h,i

)
,Θ2

)
Σ̇h,i = cTh,ich,i −KT1Σh,i + δ2I

ċh,i = −K1ch,i + φh,i

˙̂ηh,i = −K1η̂h,i

˙̂
θL,i = Proj

(
Σ−1
L,i

(
cL,i(eL,i − η̂L,i)− σ2θ̂L,i

)
,Θ3

)
Σ̇L,i = cTL,icL,i −KT2ΣL,i + δ3I

ċL,i = −K2cL,i + φL,i

˙̂ηL,i = −K2η̂L,i

li = Li(ūi)

1

τIs

1

s
1
τI

kg

ai sin(ωit)

yi

+

ẑi

−

li

+

v̂i

−

eh,i

eL,i

θ̂h1,i θ̂h0,i

θ̂L1,i θ̂L0,i

+

+

ûi

−

+
u̇iui −

Figure 4.3: Distributed control algorithm for agent i.
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4.5 Simulation Examples

4.5.1 Example 1

Consider a 50 agent system where the agents communicate over the undirected net-

work shown in Figure 4.1. Weight were assigned to the edges from the vector H ∈ Rm.

Using the edge weights, di,j was computed. The distance matrix Du contains the el-

ements dij from agent i to j.

H =



0.99

0.97

0.95

...

0.17


Du =



0 0.83 0.47 . . . 0.89

0.83 0 1.30 . . . 1.72

0.47 1.30 0 . . . 1.36

...
...

...
. . .

...

0.89 1.72 1.36 . . . 0


The objective is to minimize the sum of the local cost of all the agents. The local

cost are:

h1 = 0.5e−0.5u1 + 0.4e0.3u1 h2 = (u2 − 4)2

h3 = 0.5u2
3 ln(1 + u2

3) + u2
3 h4 = u2

4 + e0.1u4

h5 = ln(e−0.1u5 + e0.3u5) + 0.1u2
5 h6 =

u26
ln(2+u26)

h7 = 0.2e−0.2u7 + 0.4e0.4u7 h8 = u4
8 + 2u2

8 + 2

h9 =
u29√
1+u29

+ 0.1u2
9 h10 = (u10 + 2)2

h11 = 5u2
11 + e3u11 h12 = (u12 + 5)2 + (u12 + 5)2

h13 = 4u2
13 +

0.3u213√
u213+1

h14 = (u14 − 10)2 + (u14 + 2)2

h15 = e−10u15 + e−0.5u15 h16 = (u2
16 + 0.5)2 + 8u2

16

h17 = e−0.3u17 + e0.2u17 h18 = e−10u18 + (4 + u18)2

h19 = 0.6u2
19e

0.6u19 + 0.5u2
19 h20 = 0.7u2

20 + (0.5− u20)2
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h21 = u2
21e

2u21 h22 = u2
22 + e2u22

h23 = (0.7u23)2 h24 = (4− u24)2

h25 = u2
25 h26 = (u26 − 1)2 + (u26 − 2)2

h27 = (u27 − 2)2 + (u27 − 3)2 h28 = (u28 − 3)2 + (u28 − 4)2

h29 = (u29 − 4)2 + (u29 − 5)2 h30 = (u30 − 5)2 + (u30 − 6)2

h31 = (u31 − 6)2 + (u31 − 7)2 h32 = (u32 − 7)2 + (u32 − 8)2

h33 = (u33 − 8)2 + (u33 − 9)2 h34 = (u34 − 9)2 + (u34 − 1)2

h35 = (u35 − 2)2 + (u35 − 9)2 h36 = (u36 − 3)2 + (u36 − 9)2

h37 = (u37 − 4)2 + (u37 − 9)2 h38 = (u38 − 5)2 + (u38 − 9)2

h39 = (u39 − 6)2 + (u39 − 9)2 h40 = (u40 − 7)2 + (u40 − 9)2

h41 = ln(e0.5u41 + e0.3u41) + u2
41 h42 =

10u242
ln(10+u242)

h43 = u2
43 + 0.5u2

43 h44 = e−u44 + u2
44

h45 = 0.1u2
45e

0.1u45 + 2u2
45 h46 = 7u2

46 + (7− u46)2

h47 = 4u2
47e

4u47 h48 = 0.4u2
48 + e0.4u48

h49 = (u49 − 10)2 + (u49 − 10)2 h50 = (u50 − 8)2 + (u50 − 8)2

The tuning parameters were selected as: σ1 = σ2 = 1 × 10−8, K1 = K2 = KT1 =

KT2 = 100, δ2 = δ3 = 5 × 10−9, α5 = α6 = 1, kg = 6 × 10−3, τI = 16.66, d(t) =

0.3 [sin(500t), sin(494t), . . . , sin(361t), sin(358t)]T . The initial conditions were cho-

sen as: u(0) = [0.4, . . . , 0.6]T , θ̂h,i(0) = θ̂L,i(0) = [0.01, 0]T , ch,i(0) = cL,i(0) = [0, 0]T ,

Σh,i(0) = ΣL,i(0) = I2×2, ẑi(0) = hi(0) and v̂i(0) = Li(0).

Result 1

Figure 4.4 shows the result obtained for example 1, J∗ = 1580 and u∗ = 0.7201. The

overall cost and the inputs are shown to converge very fast to J∗ and u∗ respectively.
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This result shows the effectiveness and robustness of the proposed technique and

validates the role of cooperation and coordinated control in multi-agent systems.
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Figure 4.4: Plot of the overall cost and the inputs as a function of time for a 50 agent
system when the communication network is undirected.
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4.5.2 Example 2

Consider a system with 25 agents where the communication network is directed as

seen in Figure 4.2. The local cost for the agents are the last 25 cost functions used

in example 1.

Dd =



0 6.27 2.77 . . . 3.62

5.39 0 2.30 . . . 3.15

3.09 3.50 0 . . . 0.85

...
...

...
. . .

...

2.29 8.51 5.01 . . . 0


The same initial conditions and tuning parameters as seen above were used except

for ω and u(0). d(t) = 0.3 [sin(500t), sin(497t), . . . , sin(432t), sin(429t)]T and u(0) =

[0, . . . , 0.24]T .

Result 2

The result for example 2 is presented in Figure 4.5, J∗ = 1328 and u∗ = 0.7731. The

overall cost is minimized and fast convergence (in approximately 22 seconds) to the

optimum is recorded. This result confirms the effectiveness of the proposed technique.

4.6 Conclusion

A distributed proportional-integral extremum seeking control technique is proposed

to solve a distributed optimization problem for a system with unknown network and

unknown cost functions. The results show that in the absence of precise knowledge

of network connectivity, global objectives can still be met. By taking measurements

of the local cost and the local disagreement cost functions, the proposed technique
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ensures that the disagreement among the agents is minimized so that consensus on

their inputs is reached and ultimately, the overall cost is minimized. The results adds

to the literature on distributed extremum seeking control.

0 10 20 30 40 50 60
1300

1350

1400

1450

1500

1550

J

t

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

u

t

Figure 4.5: Plot of the overall cost and the input as a function of time for a 25 agent
system when the communication network is directed.
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Chapter 5

Conclusions

In Chapter 1 of this thesis, the basic idea of distributed control for use in the opti-

mization of large scale systems involving multi-agents was introduced. The advan-

tages of distributed control over centralized control were enumerated. Extremum

seeking control (ESC) was also introduced as the real-time optimization technique to

be employed since it requires no knowledge of the mathematical model(s) describing a

complex nonlinear system to drive the system to its unknown optimum. In Chapter 2,

a review of some of the useful contributions made in the area of extremum seeking

control (which includes some of the proposed ESC techniques) was presented. Re-

search work involving the application of extremum seeking control and ideas from the

field of game theory in addressing problems of MAS were also reviewed. The focus of

Chapter 3 was on the control and optimization of the power produced by wind farms

using a distributed TVESC technique. Since aerodynamic interactions among wind

turbines limit overall power capture in a wind farm and at the moment, there are no

accurate models that perfectly describe these interaction. The use of extremum seek-

ing control provides an effective mechanism to maximize the power produced. Useful

results were obtained both in continuous-time and discrete-time. Comparisons were
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made between these results and those obtained in [3] were the PBESC technique

was employed. In Chapter 4, the problem of distributed optimization over unknown

networks was considered since most of the work done on distributed control of MAS

have used the knowledge of network connectivity to achieve global objectives [3],[27]

and [37]. It was shown that if an agent can have access to the measurements of the

disagreement between its input and those of its neighbours, a PI-ESC technique can

be designed such that global objectives are met. From the results obtained, it can be

concluded that extremum seeking control is a powerful and an effective technique for

steady-state real-time optimization of MAS in a distributed fashion. The distributed

TVESC and the distributed PI-ESC techniques employed in this thesis are robust and

show fast convergence to the unknown optimum. These techniques can be utilized in

addressing other MAS problems as their effectiveness cannot be overemphasized.

5.1 Future Work

The assumptions made about the wind in Chapter 3 are not necessarily realistic

since the wind is chaotic in nature. The next step will be to relax the assumptions

and improve upon the control algorithm to accommodate the varying nature of the

wind. Another future work will be to incorporate dynamics (unstable dynamics)

to the problem addressed in Chapter 4, so that the problem of stabilization and

optimization can be addressed simultaneously. Finally the two problems tackled in

this thesis will be addressed using a time-varying communication network.
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[31] A. Nedić, A. Ozdaglar, Distributed subgradient methods for multi-agent op-

timization, IEEE Transactions on Automatic Control 54 (1) (2009) 48–61.

doi:10.1109/TAC.2008.2009515.

[32] A. Pantoja, N. Quijano, K. M. Passino, Dispatch of distributed generators using

a local replicator equation, in: Proceedings of the 50th IEEE Conference on

Decision and Control and European Control Conference, 2011, pp. 7494–7499.

doi:10.1109/CDC.2011.6160627.

[33] C. Zhang, A. Siranosian, M. Krstić, Extremum seeking for moderately un-
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