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Abstract

This work presents three techniques for parameter identification for nonlinear systems. The

methods presented are expanded from those presented in Adetola and Guay [3, 4, 5] and

are intended to improve the performance of existing adaptive control systems. The first two

methods exactly recover open-loop system parameters once a defined convergence condition

is met. In either case, the true parameters are identified when the regressor matrix is of

full rank and can be inverted. The third case uses a novel method developed in Adetola

and Guay [5] to define a parameter uncertainty set. The uncertainty set is periodically

updated to shrink around the true value of the parameters. Each method is shown to be

applicable to a large class of linearly parameterized nonlinear discrete-time system. In each

case, parameter convergence is guaranteed subject to an appropriate convergence condition,

which has been related to a classical persistence of excitation condition. The effectiveness of

the methods is demonstrated using a simulation example. The application of the uncertainty

set technique to nonlinearly parameterized systems constitutes the main contribution of the

thesis. The parameter uncertainty set method is generalized to the problem of adaptive

estimation in nonlinearly parameterized systems, for both continuous-time and discrete-

time cases. The method is demonstrated to perform well in simulation for a simplified

model of a bioreactor operating under Monod kinetics.

i



Acknowledgements

First and foremost I express my appreciation and gratitude to Dr. Martin Guay for his
patient and skilled guidance through the completion of my degree. Of course thanks must
go to Nick Hudon, for his friendship and many hours of guidance, company, and advice
academic and otherwise. The rest of the group in G37, Kai, Mike, Scott, Saman, and YJ
thank you for making the office lively and fun. I treasure the friends I’ve made over the
course of the past two years. Fitz, thank you for always being around for coffee or just to
chat. TK, for the company on the bike, even in the early morning. Adam, Laura, Katie,
Eric, my roommates James and Ian, and all the rest of my friends in Kingston, and of course
those who’ve moved away, thank you for making my time at Queens’ truly memorable. Last,
though certainly not least, I thank my parents, I hope that you both know how grateful
I am for your unwavering support, and how much I appreciate everything you’ve done to
help me get to this point.

ii



Table of Contents

Abstract i

Acknowledgements ii

Table of Contents iii

List of Figures v

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Adaptive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Identification Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Adaptive Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 2: Linearly Parameterized Discrete-time Systems . . . . . . . . . 12
2.1 Finite-time Parameter Identification . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Problem Description and Assumptions . . . . . . . . . . . . . . . . . 13
2.1.3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.4 Simulation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Adaptive Compensation Design . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Adaptive Compensation . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Simulation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Parameter Uncertainty Set Estimation . . . . . . . . . . . . . . . . . . . . . 24
2.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Problem Description and Assumptions . . . . . . . . . . . . . . . . . 24
2.3.3 Adaptive Estimation of Uncertain Systems . . . . . . . . . . . . . . 25
2.3.4 Simulation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 3: Nonlinearly Parameterized Discrete-time Systems . . . . . . . 36

iii



3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Parameter Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Uncertainty Set Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Simulation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Chapter 4: Nonlinearly Parameterized Continuous-time Systems . . . . . 51
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Problem Statement and Assumptions . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Parameter Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Set Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Simulation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Chapter 5: Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1 Future Work and Research Direction . . . . . . . . . . . . . . . . . . . . . . 68

iv



List of Figures

2.1 Time course plot of the parameter estimates and true values, under the finite
time estimation algorithm, the dashed lines (- -) represent the true parameter
values, the solid lines (–) represent the parameter estimates. . . . . . . . . . 18

2.2 Time course plot of the parameter estimates and true values, under the adap-
tive compensator algorithm, the dashed lines (- -) represent the true param-
eter values, the solid lines (–) represent the parameter estimates. . . . . . . 23

2.3 Time course plot of the system state. . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Time course plot of the parameter estimates and true values under the pa-

rameter uncertainty set algorithm, the dashed lines (- -) represent the true
parameter values, the solid lines (–) represent the parameter estimates. . . . 34

2.5 The progression of the radius of the parameter uncertainty set at time steps
when the set is updated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Time course plot of the parameter estimates and true values under the pa-
rameter uncertainty set algorithm, the dashed lines (- -) represent the true
parameter values, the solid lines (–) represent the parameter estimates. . . . 48

3.2 Time course plot of the state prediction error ek = xk − x̂k. . . . . . . . . . 49
3.3 The progression of the radius of the parameter uncertainty set and the mag-

nitude of the variable δ̃ at time steps when the set is updated. . . . . . . . 50

4.1 Time course plot of the parameter estimates and true values under the pa-
rameter uncertainty set algorithm, the dashed lines (- -) represent the true
parameter values, the solid lines (–) represent the parameter estimates . . . 63

4.2 Time course plot of the state prediction error ek = xk − x̂k . . . . . . . . . 64
4.3 The progression of the radius of the parameter uncertainty set and the mag-

nitude of the variable δ̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

v



Chapter 1

Introduction

1.1 Motivation

Parameter identification is an important feature in many control situations. Many adaptive

control systems are centered on an unknown reference trajectory. System dynamics often

rely on a set of unknown system parameters. The ability to estimate these unknown model

parameters is desirable in order reduce the impact of uncertainties and improve the ro-

bustness of closed-loop systems. It is generally known that efficient parameter convergence

increases the robustness properties of closed-loop adaptive systems (Lin and Kanellakopou-

los [22]). One such class of control applications are known as adaptive extremum-seeking

control systems. The objective of an adaptive extremum-seeking control system is the opti-

mization of a user defined cost function, that may depend on unknown system parameters.

In applications of these control systems such as Guay et al. [15] and Wang et al. [27], knowl-

edge of the system parameters is crucial. The performance of the parameter identification

method has a great impact on the performance of the system.

1



CHAPTER 1. INTRODUCTION 2

1.2 Literature Survey

1.2.1 Adaptive Control

Goodwin and Sin [13] categorize control problems in three classes according to difficulty.

Deterministic control problems deal with control systems that are perfectly known with no

disturbances. Stochastic control problems deal with systems with known dynamics, subject

to stochastic disturbances. Adaptive control refers to a class of problems for uncertain

systems subject to parametric uncertainties and disturbances. Adaptive control systems

are considered when the system’s dynamics contain unknown parameters whose values are

required for the design of a well-posed control system. The goal of adaptive control is to

implement a control algorithm without complete knowledge of the system. Adaptive control

has found many interesting applications in air flight control, bioprocess control (Bastin and

Dochain [7]), and many other fields. It has recently been considered in the development of

new techniques for real-time optimization of dynamic processes.

Incomplete knowledge of system dynamics can be a result of a number of uncertainties.

Uncertainty can be introduced by exogenous disturbances, unmodelled dynamics or para-

metric uncertainty. This work concerns uncertainty as a result of unknown parametric.

Ioannou and Sun [18] describe classical adaptive control as algorithms where the control

system consists of a state or output feedback law that depends on uncertain parameters.

Some identification scheme is utilized to provide estimates of the unknown parameters on-

line, using the available information. States or outputs are estimated using estimates of the

unknown parameters, a controller is designed to execute some control task on this predicted

feedback.

Adaptive extremum-seeking control solves a class of adaptive control problems that deal

with applying control to a system in order to track an optimum on a defined objective

function that is dependent on unknown parameters. Parameter estimation or identification
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is of great importance as parameter convergence is necessary to ensure that the true opti-

mum of the unmeasured objective function is found. Conditions under which identification

is guaranteed can be difficult to meet, and deal primarily with system state trajectories in

closed-loop. Nevertheless, it is necessary to rely on such conditions to be able to guaran-

tee that a given estimation scheme converges to the true parametric values. A common

approach to solving these problems is Lyapunov-based adaptive extremum-seeking control.

Examples for these applications are presented in Guay et al. [15] and Guay and Zhang [14].

Persistence of excitation

The process of online estimation is integral to adaptive control algorithms. In order to

gather information regarding the system, there must be some sort of system excitation.

In open loop system, input variables may be used to provide the necessary excitation. In

closed-loop system, it is customary to consider injection of a perturbation signal in the

system by introducing a dither signal about the desired setpoint.

Persistence of excitation (PE) conditions are defined to guarantee convergence of the pa-

rameter values to their true values (or to a neighbourhood of the true values). It is akin

to the full rank requirement of the regressor matrix in standard regression analysis. They

are sufficient conditions that must be imposed on the system’s trajectories to ensure there

is enough information about the parameters to claim parameter convergence. For systems

subject to external excitation signals, it is said that the signals are sufficiently rich if they

yield system trajectories that are persistently exciting. The book by Khalil [19] provides

the following formal definition of persistence of excitation:

Definition 1.2.1. A matrix of signals ω ∈ Rn×p is said to be persistently exciting if, at

time t, there exists constants, c1, c2 and T0 such that
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c2Ip×p ≥
∫ t+T0

t
ωT (τ)ω(τ)dτ ≥ c1Ip×p. (1.1)

From Goodwin and Sin [13], it follows that for discrete time signals,

Definition 1.2.2. A matrix of signals ωk ∈ Rn×p can be said to be persistently exciting, at

time step k, if there exist constants, c1, c2 and K0 such that

c2Ip×p ≥
k+K0∑
i=k

ωT
i ωi ≥ c1Ip×p. (1.2)

The implication of Definitions 1.2.1 and 1.2.2 is that at any time or time step, there exists a

subsequent time or time step where, over the defined time period, the sum of the magnitudes

of the signal in question (if a vector of signals or a single signal is concerned) is non-

zero, or a matrix of signals is positive definite. Adetola and Guay [1] note that in many

cases, including the ones presented in this work, the persistence of excitation condition is

dependant on sufficient signal richness of an injected perturbation.

Parameter convergence in adaptive control may require external excitation that is suffi-

ciently rich to ensure that some suitable PE condition is met. The main problem associated

the addition of an external excitation signal (or dither signal) is that this additional exci-

tation acts in a manner similar to an injected disturbance. This feature of adaptive control

systems can, in fact, reduce transient performance. As stated above, PE conditions imply

that the excitation requirements hold for all times. Recently, several results on intelligent

excitation signals, where the magnitude of the excitation signal is adjusted as needed to

ensure convergence, have become available from Adetola and Guay [2] and Cao and Wang

[10]. Such results provide conditions under which one can reduce the impact of the external

signals. However, they do no provide mechanisms to remove the external dither signal when

parameter convergence can be confirmed.
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Lin and Kanellakopoulos [22] and Adetola and Guay [1] identify a common issue in the

study of persistence of excitation conditions with respect to convergence in adaptive control

algorithms. In many cases, the relation between the system trajectories, the external dither

signal and the persistence of excitation is unknown because the persistence of excitation

condition may depend on the system’s closed-loop trajectories which are dependent on the

parameter estimates. As a result, it is very difficult to define conditions under which a

dither signal can be guaranteed to be sufficiently rich a priori.

In this thesis, we focus on the approaches presented in Adetola and Guay [3, 4, 5]. These

recent results provide effective techniques to guarantee parameter convergence that yield a

number of alternatives to monitor external excitation. The techniques rely on alternative

persistence of excitation conditions (referred to as convergence conditions) that can be

monitored online to confirm that parameter convergence can be achieved in finite-time. As

a result, it is possible to introduce mechanisms for dither signal removal when sufficient

information about the unknown parameters has been gathered.

Lyapunov Stability

The concept of Lyapunov stability is central to several of the conclusions that are made in

this work. Khalil [19] demonstrates that the Lyapunov stability theorem for continuous-time

systems is

Theorem 1.2.1. Consider the system:

ẋ = f(x). (1.3)

Let x = 0 be an equilibrium point for (1.3), and D ⊂ Rn be a domain containing x = 0.

Let V : D → R be a continuously differentiable function such that

V (0) = 0 and V (x) > 0 in D − {0}, (1.4)
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if

V̇ (x) ≤ 0 in D − {0}, (1.5)

then x = 0 is stable. Further, if

V̇ (x) < 0 in D − {0}, (1.6)

then x = 0 is asymptotically stable.

Lin [23] shows that in the case of discrete-time systems the Lyapunov stability theorem

becomes:

Theorem 1.2.2. For the system

xk+1 = xk + F (xk). (1.7)

Let xe be an equilibrium point for (1.7) where V (xe) = 0, where V (xk) is a continuous,

positive definite function V : Rn → R, locally defined on a neighborhood U of the equilibrium

point xe ∈ Rn. Then if

V (xk+1)− V (xk) ≤ 0 ∀xk ∈ U, (1.8)

then xe is stable. Further, if

V (xk+1)− V (xk) < 0 ∀xk ∈ U, (1.9)

then xe is asymptotically stable.

Theorems 1.2.1 and 1.2.2 will be used throughout this work to analyze the asymptotic

behaviour of the proposed estimation techniques.
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1.2.2 Identification Methods

In adaptive control, there exist two large classes of applications, known as identifier-based

and non-identifier-based adaptive control algorithms. A non-identifier-based algorithm ap-

plies a control law which is defined for the appropriate class of systems, the control law

does not require any knowledge of the open-loop system parameters. Non-identifier-based

control algorithms use the relation between inputs and states or outputs to design control

laws that will solve stabilization or tracking problems. Identifier-based methods differ in

that they attempt to provide estimates for unknown system parameters, and then to achieve

the desired control task based on these estimates. The methods presented in this thesis are

directly applicable to identifier-based control algorithms. The identification methods used

in these algorithms will be discussed more thoroughly below.

Ilchmann [17] states that the primary purpose of most non-identifier-based control algo-

rithms is to develop a feedback control law that solves a stabilization or tracking problem

without the complexity of an identification step. Though they appear starkly different from

the identifier-based methods developed in this thesis, the results presented herein suggest

that they could be coupled to methods we discuss. As a result of the decoupled control and

identification tasks developed by Adetola and Guay [3, 4, 5] and expanded in this work,

a control law developed for a non-identifier-based control algorithm, could potentially be

utilized in parallel with the identification methods presented here.

Least Squares Methods

The application of least squares methods to on-line parameter estimation is well discussed

in the literature. Goodwin and Sin [13] describe a least squares method as an optimization

problem where a cost function, a sum of squared residuals, is minimized. The cost function

or objective function is constructed based on the magnitude of the difference between the
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true system state or output, and a system state or output predicted from estimated param-

eters. The solution to this problem is a set of parameter that minimizes the cost function.

This corresponds to a set of parameters at which the gradient of the cost function is equal

to zero. The application of a least squares algorithm to a linear system is rather simple as

analytical solutions to the linear least squares problem are well known. When applied to

a nonlinearly parameterized system it is often necessary to apply a numerical technique to

find a solution.

A recursive least squares method may be applied to the type of identification problems

addressed in this thesis. This method involves defining a function of the true state and

the predicted state at some time step k and all time steps previous to k. The gradient of

the cost function with respect to the unknown parameters is taken at each time step. The

solution to the recursive least squares problem is a set of parameters that minimizes the

cost function, or the set of parameters that produces the smallest sum of residuals. Billings

and Voon [8] apply a common variation on the least squares method for nonlinear systems

by introducing a forgetting factor. This factor applies a weight to the residuals in the cost

function that emphasizes the influence of recent measurements.

Other Identification Techniques

Few recent studies are available regarding parameter identification for discrete-time systems

in the context of adaptive control. Zhao and Kanellakopoulos [31, 32] propose a control

method for both output-feedback systems and strict-feedback systems using a two-step

approach that separates the identification algorithm from the control task. In the first

step of this approach, the discrete-time system is driven to a state where an orthogonalized

projection scheme is known to converge in finite-time. It is guaranteed that a sufficient

amount of parameter information is gathered in a finite number of time steps. The second

step uses the identified parameters to apply a control law as if the parameters were known.

This approach assumes that the system is free from noise, though robustness is shown for
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a small additive random noise.

1.3 Adaptive Identification

The primary contributions of this work are the adaptation and extension of parameter

identification methods developed in Adetola and Guay [3, 4, 5], and the application of one

of the methods to a broader class of systems.

The first method, the finite-time identification method, allows the direct and exact recovery

of parameters immediately once a convergence condition is met. This method requires the

online inversion and computation of the rank of a regressor matrix. Because the parameters

are identified immediately, it is possible to remove any excitation signals at the moment the

parameters are recovered. To apply this method to discrete time systems it was necessary to

apply a modified state predictor that ensured that the auxiliary variable remained finitely-

summable, and could be tracked by a simple recursion.

The second method is a refinement of the first, it uses an adaptive compensator to eliminate

the need for online inversion and rank computation of a matrix. The parameter estimation

error can be shown to be non-increasing, and convergence is guaranteed once a convergence

condition is met. Minimal modification was required to adapt this method for use with

discrete-time systems. The proof of convergence of the parameter estimation error is pre-

sented in a simpler manner than in the literature while demonstrating the guarantee that

performance is recovered from the finite-time algorithm.

The third method defines a parameter uncertainty set, similar to the one developed in

Adetola and Guay [5], that evolves based on a worst-case estimate in order to shrink around

the true parameter values. Further, the parameter estimates are not allowed to fall outside

the uncertainty set. This method ensures convergence of the parameter estimates to the

true parameters, provided the true parameters fall within the initial uncertainty set, as the

update algorithm ensures non-exclusion of the true parameter values. In a practical sense
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this algorithm guarantees parameter convergence as long as a nominally good estimate of

the parameters can be made to initiate the algorithm.

The parameter uncertainty set method presented in Adetola and Guay [5] is modified sig-

nificantly in its application to discrete-time systems. The new state predictor developed

for the finite-time identification method is implemented to ensure that the auxiliary vari-

able estimation error is a finitely-summable signal. A projection algorithm is developed

based on the principles presented in Goodwin and Sin [13]. The project algorithm guar-

antees that the parameter estimates remain within a known compact set while preserving

the monotonous decrease of the candidate Lyapunov function for the parameter estimation

error. The convergence properties of the system, operating under the parameter uncertainty

set are guaranteed, provided a defined convergence criteria is met. This convergence criteria

has been related to a classical definition of persistence of excitation.

The main contribution of this work is the generalization of an uncertainty set-update method

to nonlinearly parameterized systems. Work in this area has been limited in the literature to

specific classes of systems. The most significant approach to solve this problem can be found

in several works by Cao et al. [11], Annaswamy et al. [6], Kojic et al. [20] and Netto et al. [26].

Their approach exploits convexity of the system dynamics with respect to the parameters

to develop a class of min-max adaptive estimation routines. A gradient-based approach is

proposed subject to a worst-case parameter set. Several authors have also studied this class

of problems for specific applications. One such application presented by Boskovic [9] and

Zhang and Guay [29], is the study of microbial growth kinetics where most models, due

to the importance of classical enzyme kinetics models, are nonlinearly parameterized. The

nonlinearity of these models precludes the use of normal techniques to establish parameter

convergence. For Monod models, it can be demonstrated that parameter convergence can

be achieved subject to a conservative persistence of excitation condition that can only

be derived using highly tailored Lyapunov-based arguments. Another leading approach

presented by Zhang et al. [30],Wang [28],Ge [12] consists of approximating the nonlinearity
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using neural networks. The main drawbacks of these techniques is that such approximations

cannot be used to uniquely reconstruct the unknown parameter vector. In this work, a

different approach is undertaken and it is demonstrated that nonlinearly parameterized

systems may be treated as linearly parameterized systems subject to bounded uncertainties,

where the nonlinearity is treated as a bounded disturbance.

1.4 Overview of the Thesis

The primary focus of this thesis is a set of solutions to a parametric identification problem.

Solutions are presented for a series of different incarnations of the system in question. In

Chapter 2 two simple methods to recover exact parameter values in finite-time are applied

to systems without uncertainty, other than the unknown parameters. Furthermore, this

chapter demonstrates the application of the parameter uncertainty set method to linearly

parameterized systems with bounded disturbances. In Chapters 3 and 4 it is demonstrated

that the method in question can be applied to nonlinearly parameterized systems, where the

nonlinearity is treated as a bounded disturbance. In total this work comprises three methods

in five applications, each method is proven to guarantee convergence of the parameter

estimates to the true values of the parameters given a defined convergence condition. The

convergence condition have been related to a classical definition of persistence of excitation,

and it is concluded that persistently exciting state trajectories are a sufficient condition in

all cases to guarantee convergence.



Chapter 2

Linearly Parameterized

Discrete-time Systems

The methods presented in this section are adapted from those presented in Adetola and

Guay [3, 4, 5]. They are modified to guarantee convergence of parameter error for discrete-

time systems of the form (2.1), in which the parameters appear linearly. The first section

in this chapter applies a method from literature, that guarantees parameter convergence

in finite-time for continuous-time systems, to discrete-time systems. The second method

solves a computational complexity problem presented in the first method. The third section

demonstrates a method that provides guaranteed convergence (provided a convergence con-

dition is met) of the parameter estimation error in the presence of certain types of exogenous

disturbances.

12
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2.1 Finite-time Parameter Identification

2.1.1 Overview

This section demonstrates the simplest, most straight forward identification technique pre-

sented in this work. The finite-time identification method is most applicable to simple

systems, where problems of computational complexity will not arise. Because this method

involves the inversion of the parameter covariance matrix (of size p×p where p is the number

of parameters) at each time step, for systems with a large number of parameters, the com-

putational complexity can become quite high. However, for systems with few parameters

this method guarantees, exact and immediate convergence of the parameter values to their

true values, once the appropriate convergence condition is met.

2.1.2 Problem Description and Assumptions

Consider the system:

xk+1 = xk + F (xk, uk) +G(xk, uk)θ, (2.1)

where xk ∈ Rn is a state at some time step k, uk ∈ Rm is the control input at some time

step k, and θ ∈ Rp is a column vector of system parameters.

Assumption 2.1.1. The state of the system, xk, is known at all time steps k.

Assumption 2.1.2. There is some known, bounded control law, uk, that achieves some

control objective.

Assumption 2.1.3. The state and input variables evolve on a compact set, xk ∈ X ⊂ Rn,

uk ∈ U ⊂ Rm.
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2.1.3 Theory

Consider the following state predictor:

x̂k+1 = x̂k + F (xk, uk) +G(xk, uk)θ̂k+1 +Kkek − ωk(θ̂k − θ̂k+1) +Kkωk(θ̂k − θ̂k+1), (2.2)

where θ̂k is the vector of parameter estimates at time step k given by any update law, Kk

is a correction factor at time step k, ek = xk − x̂k is the state estimation error at time step

k. The variable ωk is an output filter generated by

ωk+1 = ωk +G(xk, uk)−Kkωk

ω0 = 0. (2.3)

Let the parameter estimation error at some time step k be θ̃k = θ− θ̂k. Now from (2.2) and

(2.1) the state estimation error at time step k + 1 is given by

ek+1 = ek +G(xk, uk)θ̃k+1 −Kkek + ωk(θ̂k − θ̂k+1)−Kkωk(θ̂k − θ̂k+1). (2.4)

Define the auxiliary variable:

ηk = ek − ωkθ̃k. (2.5)

From (2.3),(2.4) and (2.5) it follows that

ηk+1 = ηk −Kkηk

η0 = e0. (2.6)
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Let Qk ∈ Rp×p and Ck ∈ Rp be defined as

Qk+1 = Qk + ωT
k ωk

Q0 = 0 (2.7)

Ck+1 = Ck + ωT
k (ωkθ̂k + ek − ηk)

C0 = 0. (2.8)

Lemma 2.1.1. If there exists some time step kc such that Qkc is invertible, that is,

Qkc =

kc∑
i=0

ωT
i ωi ≻ 0, (2.9)

then the parameters are given by

θ = Q−1
k Ck ∀k ≥ kc. (2.10)

Proof. This result can be shown from

Qkθ =

k∑
i=0

ωT
i ωi[θ̂i + θ̃i]. (2.11)

Upon substitution with (2.5), it follows that

θ = Q−1
k

k∑
i=0

ωT
i (ωiθ̂i + ei − ηi)

= Q−1
k Ck ∀k ≥ kc, (2.12)

which proves the result.
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Persistence of Excitation

For the purposes of the result presented in this section, persistence of excitation conditions

are imposed in an attempt to guarantee the convergence of the identification task. The

persistence of excitation conditions are sufficient to guarantee that will occur. In this

section a necessary condition for parameter convergence is

rank(Qkc) = p, (2.13)

or

rank(

kc∑
i=0

ωT
i ωi) = p. (2.14)

The classical persistence of excitation condition from (1.2.2) being met at any time step by

the output filter, is sufficient to guarantee that the parameter convergence condition will

be met at some time step kc.

2.1.4 Simulation Example

Consider the following nonlinear system:

x1(k + 1) = x1(k) + 0.01[x2(k) + u3(k) + x3(k)θ1 − x1(k)θ3]

x2(k + 1) = x2(k) + 0.01[(1 + x3(k))u1(k) + x1(k)θ2 − x2(k)θ3]

x3(k + 1) = x3(k) + 0.01[x1(k) + u2(k) + x2(k)θ3 − x3(k)θ3], (2.15)

where θ = [θ1, θ2, θ3]
T . The input is taken as constant, uk = [−0.1 0.1 0.2]T . The true

parameter values are θ = [34 3 0.72]T . Fig. 2.1 shows the parameter estimates converging

to the true values immediately at the time step when the regressor matrix Qk has full

rank. It is known from the simulation results and may be observed in the time course plot
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of the parameter estimates that the convergence condition is met at time step kc = 95.

As expected, the convergence of the parameter estimates to their true unknown values is

immediate once the persistence of excitation condition is met. The main drawback with

the technique is the requirement to check the non-singularity of Qk at each step. This

requirement can add, in some cases, some computational complexity that may reduce the

applicability of this technique to more complex problems. This problem will be addressed

in subsequent sections.



CHAPTER 2. LINEARLY PARAMETERIZED DISCRETE-TIME SYSTEMS 18

0 50 100 150 200
−20

0

20

40

θ 1

0 50 100 150 200
−20

0

20

40

θ 2

0 50 100 150 200
−10

0

10

20

θ 3

time step

Figure 2.1: Time course plot of the parameter estimates and true values, under the finite
time estimation algorithm, the dashed lines (- -) represent the true parameter values, the
solid lines (–) represent the parameter estimates.
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2.2 Adaptive Compensation Design

2.2.1 Overview

This section presents an identification method that provides a refinement of the finite-

time identification method. Application of the finite-time identifier is problematic since it

requires that the non-singularity of Qk be checked at all time steps. In this section, an

adaptive compensation design proposed by Adetola and Guay [4], is implemented. The

technique recovers exponential stability of the parameter estimation error in finite-time

without the need to test the matrix Qk.

2.2.2 Adaptive Compensation

We consider the system (2.1) subject to Assumptions 2.1.1, 2.1.2 and 2.1.3.

Consider the state predictor for system (2.1):

x̂k+1 = x̂k + F (xk, uk) +G(xk, uk)θ
o +Kk(xk − x̂k), (2.16)

where Kk > 0 and θo is the vector of initial parameter estimates.

As in the preceding section, define the auxiliary variable and the filter dynamic as

ηk = xk − x̂k − ωk(θ − θo) (2.17)

ωk+1 = ωk +G(xk, uk)−Kkωk (2.18)

ω0 = 0.

The auxiliary variable ηk can be generated from

ηk+1 = ηk −Kkηk

η0 = e0. (2.19)
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Let Q and C be generated by

Qk+1 = Qk + ωT
k ωk

Q0 = 0 (2.20)

Ck+1 = Ck + ωT
k (ωkθ

o + ek − ηk)

C0 = 0, (2.21)

and let kc be a time step at which Qkc ≻ 0.

The parameter update law proposed in Adetola and Guay [4] is modified to become

θ̂k+1 = θ̂k + Γk(Ck −Qkθ̂k). (2.22)

It follows from (2.22) that the dynamics of the parameter estimation error are

θ̃k+1 = θ̃k − Γk(Ck −Qkθ̂k). (2.23)

Since, Qkθ = Ck, it follows that

θ̃k+1 = θ̃k − Γk(Qkθ −Qkθ̂k) (2.24)

θ̃k+1 = (I − ΓkQk)θ̃k. (2.25)

Define the variable: Γk = 1
∥Qk∥+ϵ , where ϵ is some small positive number. It follows that

θ̃k+1 = (I − Qk

∥Qk∥+ ϵ
)θ̃k. (2.26)

It follows from (2.26) that θ̃ is non increasing, and for all time steps k ≥ kc,

lim
k→∞

θ̃k = 0. (2.27)
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Persistence of Excitation

In this section the condition for parameter convergence, that the matrix Qk has full rank,

becomes a sufficient, not a necessary condition. It is possible that identification could occur

without (2.13) being met, as it has been proven that the parameter estimation is non-

increasing at all time steps, regardless of whether the convergence condition is met. It is

possible to conclude however, that if the classical persistence of excitation condition is met

by the output filter at any time step, the convergence condition is guaranteed.

2.2.3 Simulation Example

Consider the following nonlinear system:

x1(k + 1) = x1(k) + 0.01[x2(k) + u3(k) + x3(k)θ1 − x1(k)θ3]

x2(k + 1) = x2(k) + 0.01[(1 + x3(k))u1(k) + x1(k)θ2 − x2(k)θ3]

x3(k + 1) = x3(k) + 0.01[x1(k) + u2(k) + x2(k)θ3 − x3(k)θ3], (2.28)

where θT = [θ1, θ2, θ3]. The input is taken as constant, uk = [−0.1 0.1 0.2]T . The true

parameter values are θ = [3.4 3 0.72]T .

It is known from the simulation data that the parameter convergence condition is met at time

step kc = 95, demonstrating that performance of the finite-time identification algorithm

is recovered exactly. It can be seen in Fig. 2.2 that the parameter estimates converge

to the true parameter values asymptotically beyond time step kc. While convergence is

slower in this case than in the method presented in Section 2.1, eliminating the need for

online matrix rank calculation and inversion decreases the computational complexity of the

algorithm. Both methods solve an identification problem for the same type of system, and

it is demonstrated that the parameter convergence condition is met in the same number

of time steps. This method represents an improvement over the finite-time method if
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the computational complexity limitation of the previous method outweighs the additional

convergence time required by the adaptive compensator method. It is of note that parameter

scaling becomes important in this case. An increase of an order of magnitude in one of the

parameters can increase the time to identification for that parameter by 20-30 times, even

though the convergence condition will be met at the same time step.

One obvious disadvantage of the finite-time and adaptive compensator techniques is that

they are susceptible to the effect external disturbances and unmodelled dynamics. This

is especially true in the finite-time technique since the parameter convergence condition

requires the exact knowledge of the rank of Qk. Since the knowledge of this rank can be

subject to effect of unmodelled uncertainties, the finite-time technique may prove to be

unreliable in application. It is important to note that some degree of nominal robustness

may be achieved by an appropriate choice of the tuning parameter Kk. In this next section,

a technique is presented that takes into account the effect of unmodelled uncertainties.
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Figure 2.2: Time course plot of the parameter estimates and true values, under the adaptive
compensator algorithm, the dashed lines (- -) represent the true parameter values, the solid
lines (–) represent the parameter estimates.
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2.3 Parameter Uncertainty Set Estimation

2.3.1 Overview

The identification method presented in this section addresses a slightly different problem

than the methods presented above. The adaptive compensator and finite-time identification

methods provide effective mechanisms to recover the exact system parameters under cer-

tain circumstances. However, the properties of these designs can be lost in the presence of

exogenous disturbance variables and model mismatch. In this section, a parameter estima-

tion technique is proposed to handle nonlinear systems subject to exogenous disturbance

variables. The technique generalizes a novel uncertainty set-update formulation devised

in Adetola and Guay [5] that provides robust performance when coupled to a parameter

estimation technique similar to the adaptive compensator Design.

2.3.2 Problem Description and Assumptions

In this section, we consider a class of uncertain linearly parameterized systems defined as

follows:

xk+1 = xk + F (xk, uk) +G(xk, uk)θ + ϑk, (2.29)

where xk ∈ Rn is a state at some time step k, uk ∈ Rm is the control input at some time

step k, and θ ∈ Rp is a column vector of system parameters.

Assumption 2.3.1. The state of the system, xk, is known at all time steps k.

Assumption 2.3.2. There is some known, bounded control law, uk ,that achieves some

control objective.

Assumption 2.3.3. The state and input variables evolve on a compact set, xk ∈ X ⊂ Rn,

uk ∈ U ⊂ Rm.
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Assumption 2.3.4. ϑk ∈ Rn is a vector of bounded disturbances that satisfies ∥ϑk∥ ≤

Mϑ < ∞ ∀k, where Mϑ is a positive constant.

Assumption 2.3.5. It is assumed that θ is uniquely identifiable and lies within an initially

known compact set defined by the ball function Θ0 = B(θ0, z0), where θ0 is an initial estimate

of the unknown parameters and z0 is an initial estimate of the radius of the parameter

uncertainty set.

2.3.3 Adaptive Estimation of Uncertain Systems

Parameter Update

Consider the uncertain nonlinear system (2.29). Using the state predictor defined in (2.2)

and the output filter defined in (2.3), the prediction error ek = xk − x̂k is given by

ek+1 = ek +G(xk, uk)θ̃k+1 −Kkek + ωk(θ̂k − θ̂k+1)−Kkωk(θ̂k − θ̂k+1) + ϑk

e0 = x0 − x̂0. (2.30)

The auxiliary variable ηk dynamics are as follows

ηk+1 = ek+1 − ωk+1θ̃k+1 + ϑk, (2.31)

η0 = e0.

Since ϑk is unknown, it is necessary to use an estimate, η̂, of η . The estimate is generated

by the recursion

η̂k+1 = η̂k −Kkη̂k, (2.32)

η̂0 = η0.
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The resulting dynamics of the η estimation error are

η̃k+1 = η̃k −Kkη̃k + ϑ. (2.33)

Let the identifier matrix Σk be defined as

Σk+1 = Σk + ωT
k ωk (2.34)

Σ0 = αI ≻ 0,

where α ∈ R > 0. The inverse of the identifier matrix is generated by the recursion

Σ−1
k+1 = Σ−1

k − Σ−1T

k ωT
k

(
I + wkΣ

−1
k wT

k

)−1
ωkΣ

−1
k (2.35)

Σ−1
0 =

1

α
I ≻ 0.

From equations (2.2), (2.3), and (2.33) the preferred parameter update law is

θ̂k+1 = θ̂k +Σ−1
k ωT

k

(
I + wkΣ

−1
k wT

k

)−1
(ek − η̂k). (2.36)

To ensure that the parameter estimates remain within the constraint set Θk, we propose to

use a projection operator of the form

¯̂
θk+1 = Proj{θ̂k +Σ−1

k ωT
k

(
I + wkΣ

−1
k wT

k

)−1
(ek − η̂k),Θk}. (2.37)

The operator Proj represents an orthogonal projection onto the boundary of the uncertainty

set applied to the parameter estimate. The parameter uncertainty set is defined by the ball

function B(θc, zθc), where θc and zθc are the parameter estimate and set radius found at

the latest set update.

Following Goodwin and Sin [13], the projection operator is designed such that:
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• ¯̂
θk+1 ∈ Θk

• ¯̃
θTk+1Σk+1

¯̃
θk+1 ≤ θ̃Tk+1Σk+1θ̃k+1.

It will be shown that the parameter update law defined in (3.18) guarantees convergence of

parameter estimates to the true values.

We employ the following lemma, as described by Haddad [16].

Lemma 2.3.1. Consider the system:

xk+1 = Axk +Buk, (2.38)

where A is a stable matrix with eigenvalues inside the unit circle and B is a matrix of

appropriate dimension. Then it can be shown that

k−1∑
k=0

xTk+1xk+1 ≤ δ2
K−1∑
k=0

uTk uk (2.39)

for some δ > 0 and K − 1 > 0.

Let l2 denote the space of square finitely-summable signals and consider the following lemma.

Lemma 2.3.2. The identifier (2.35) and parameter update law (3.18) are such that θ̃k =

θk − θ̂k is bounded. Furthermore, if

ϑk ∈ l2 or
∞∑
k=0

[∥η̃k∥2 − γ∥ek − η̂k∥2] < +∞ (2.40)

and

lim
k→∞

Σk = ∞ (2.41)

are satisfied, then θ̃k converges to 0 asymptotically.
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Proof. Let Vθ̃k
= θ̃Tk Σkθ̃k, it follows from the properties of the projection operator that

Vθ̃k+1
− Vθ̃k

=
¯̃
θTk+1Σk+1

¯̃
θk+1 − θ̃Tk Σkθ̃k ≤ θ̃Tk+1Σk+1θ̃k+1 − θ̃Tk Σkθ̃k.

Using the parameter update law, θ̃k+1 can be written as

θ̃k+1 = θ̃k − Σ−1
k ωT

k

(
I + wkΣ

−1
k wT

k

)−1
(ek − η̂k)

= θ̃k − Σ−1
k ωT

k

(
I + wkΣ

−1
k wT

k

)−1
(wkθ̃k + η̃k)

or,

θ̃k+1 = Σ−1
k+1Σkθ̃k − Σ−1

k ωT
k

(
I + wkΣ

−1
k wT

k

)−1
η̃k. (2.42)

Upon substitution of the parameter update law, the identifier matrix dynamics, the filter

dynamics and the auxiliary variable dynamics, the rate change of the Vθ̃k
is given by

Vθ̃k+1
− Vθ̃k

≤ −(ek − η̂k)
T
(
I + wkΣ

−1
k wT

k

)−1
(ek − η̂k) (2.43)

+ η̃Tk
(
I + wkΣ

−1
k wT

k

)−1
η̃k.

From the η̃k dynamics given in (2.33), it follows from Lemma 2.3.1 if ϑk ∈ l2 then η̃k ∈ l2.

Taking the limit as k → ∞, the inequality becomes

lim
k→∞

Vθ̃k
= Vθ̃0

+

∞∑
k=0

Vθ̃k+1
− Vθ̃k

(2.44)

≤ Vθ̃0
−

∞∑
k=0

[
(ek − η̂k)

T
(
I + wkΣ

−1
k wT

k

)−1
(ek − η̂k)

]
(2.45)

+
∞∑
k=0

[
η̃Tk
(
I + wkΣ

−1
k wT

k

)−1
η̃k

]
. (2.46)

By the boundedness of the trajectories of the system, it follows that there exists a number
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Γ > 0 such that

1 ≥ ∥
(
I + wkΣ

−1
k wT

k

)−1 ∥ ≥ Γ.

As a result, the following inequality is obtained

lim
k→∞

Vθ̃k
≤ Vθ̃0

− γ

∞∑
k=0

[
(ek − η̂k)

T (ek − η̂k)
]
+

∞∑
k=0

[
η̃Tk η̃k

]
. (2.47)

Therefore if the conditions (2.40) are met then the right hand side of (2.47) is finite. As a

result, it is possible to conclude that, if the parameter convergence condition, (2.41), is met

then

lim
k→∞

θ̃k = 0, (2.48)

as required.

Set Update

An update law that measures the worst-case progress of the parameter update law is adapted

from the one proposed in Adetola and Guay [5], and is defined as follows:

zθk =

√
Vzθk

4λmin[Σk]
(2.49)

Vzθk+1
= Vzθk − (ek − η̂k)

T
(
I + wkΣ

−1
k wT

k

)−1
(ek − η̂k) + (

Mϑ

Kk
)2 (2.50)

Vzθ0 = 4λmax[Σ0](zθ̂0)
2. (2.51)

The parameter uncertainty set, defined by the ball function B(θc, zθc) is updated using the

parameter update law (2.37) and the error bound (2.49) according to the following algo-

rithm:
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Algorithm 2.3.1. Beginning at time step k = 0, the set is adapted according to the fol-

lowing iterative process

1. Initialize zθc = zθ0 , θc = θ̂0

2. At time step k, using equations (2.37) and (2.49) perform the update

(θc, zθc) =


(θ̂k, zθk) if zθk ≤ zθc − ∥θ̂k − θc∥

(θc, zθc) otherwise

(2.52)

3. Return to step two and iterate, incrementing to time step k + 1

Lemma 2.3.3. The algorithm ensures that

1. the set is only updated when updating will yield a contraction,

2. the dynamics of the set error bound described in (2.49) are such that they ensure the

non-exclusion of the true value θ ∈ Θk, ∀k if θ0 ∈ Θ0.

Proof. 1. If Θk+1 * Θk then

sup
sϵΘk+1

∥s− θ̂k∥ ≥ zθk (2.53)

However, it is guaranteed by the set update algorithm presented, that Θ, at update

times, obeys the following

sup
sϵΘk+1

∥s− θ̂k∥

≤ sup
sϵΘk+1

∥s− θ̂k+1∥+ ∥θ̂k+1 − θ̂k∥ (2.54)

≤ zθk+1
+ ∥θ̂k+1 − θ̂k∥ ≤ zθk .

This contradicts (2.53). Therefore, Θk+1 ⊆ Θk at time steps where Θ is updated.

2. It is known, by definition, that
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Vθ̃k
≤ Vzθk , ∀k ≥ 0. (2.55)

Since, Vθ̃k
= θ̃Tk Σkθ̃k,

∥θ̃k∥2 ≤
Vzθk

λmin[Σk]
= 4z2θk , ∀k ≥ 0. (2.56)

Therefore, if θ ϵ Θ0, then θ ϵ Θk ∀ k ≥ 0.

Persistence of Excitation

In this section we have defined a different convergence condition. Successful identification

will occur if

lim
k→∞

Σk = ∞. (2.57)

It follows from the classical definition of persistence of excitation in (1.2.2), and from the dy-

namics of the identifier matrix (2.35), that if the output filter meets the classical persistence

of excitation condition for all time steps, then the identifier matrix will grow unbounded.

This is a sufficient condition for successful identification. It is possible that identification

can occur without a persistently exciting output filter signal.
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2.3.4 Simulation Example

Consider the following nonlinear system:

x1(k + 1) = x1(k) + 0.01[x2(k) + u3(k) + x3(k)θ1 − x1(k)θ3 + ϑ1(k)]

x2(k + 1) = x2(k) + 0.01[(1 + x3(k))u1(k) + x1(k)θ2 − x2(k)θ3 + ϑ2(k)]

x3(k + 1) = x3(k) + 0.01[x1(k) + u2(k) + x2(k)θ3 − x3(k)θ3 + ϑ3(k)], (2.58)

where θ = [θ1 θ2 θ3]
T . The input is taken as constant, uk = [−0.1 0.1 0.2]T . The true pa-

rameter values are θ = [34 3 0.72]T . The bounded noise term is ϑ = [sin(k) sin(k) sin(k)]T .

The system state trajectories are shown in Fig. 2.3. The parameter estimates are shown

to converge to a neighborhood around their true values in Fig. 2.4, however convergence

is limited by the injected noise, and cannot converge to the true values as the prediction

algorithm can not account for the unknown noise. The set is shown to contract at all update

instances in Fig. 2.5. Parameter convergence is achieved at a rate similar to that achieved

in Section 2.1. It is reasonable to compare the performance of this algorithm with the two

previously presented methods since the system in question is effectively the same, with the

addition of an injected noise. The convergence of this algorithm on a time frame similar to

the finite-time identification algorithm, while sharing the advantages in computational com-

plexity of the adaptive compensator algorithm demonstrates its effectiveness in application

to the types of systems presented in Sections 2.1.2, 2.2.2 and 2.3.2.

2.4 Conclusion

In this chapter, we have demonstrated the guaranteed convergence results for all three

methods discussed in this work. For each method parameter convergence has been proven,

given a parameter convergence condition. The parameter convergence has been related to
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Figure 2.3: Time course plot of the system state.

the classical definition for persistently exciting signals. It can be concluded that a persis-

tently exciting output filter is, at least, a sufficient condition for parameter identification.

Each method has been illustrated using a simple simulation example, that demonstrates

successful identification of the unknown system parameters. These results present solutions

to the identification problems posed in Sections 2.1.2, 2.2.2 and 2.3.2. These identification

tasks were completed without additional excitation of the system state (except in the case

of the unmeasured exogenous disturbance in Section 2.3). The system states were, how-

ever, transient at all time steps, suggesting that the trajectories may have already been

sufficiently rich.
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Figure 2.4: Time course plot of the parameter estimates and true values under the parameter
uncertainty set algorithm, the dashed lines (- -) represent the true parameter values, the
solid lines (–) represent the parameter estimates.
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Figure 2.5: The progression of the radius of the parameter uncertainty set at time steps
when the set is updated.



Chapter 3

Nonlinearly Parameterized

Discrete-time Systems

3.1 Overview

In this chapter, the parameter uncertainty set method is adapted so that it may be ap-

plied to a more general identification problem. The application in this chapter considers

nonlinearly parameterized nonlinear systems. The nonlinearity in the parameters means

that the algorithm cannot be applied directly as it was in Section 2.3. We apply a method

of to restate the system in terms of a variable δ that represents the distance between the

parameter estimate and the current center of the uncertainty set. Though the restated

system remains nonlinearly parameterized, it is demonstrated in this chapter how it can be

treated similarly to a linearly parameterized system.

3.2 Problem description

Consider the system:

xk+1 = xk + F (xk, uk, θ), (3.1)

36



CHAPTER 3. NONLINEARLY PARAMETERIZED DISCRETE-TIME SYSTEMS 37

where xk ∈ Rn is a state at some time step k, uk ∈ Rm is the control input at some time

step k, and θ ∈ Rp is a column vector of system parameters.

Assumption 3.2.1. The state of the system, xk, is known at all time steps k.

Assumption 3.2.2. There is some known, bounded control law, uk that achieves some

control objective.

Assumption 3.2.3. The state and input variables evolve on a compact set, xk ∈ X ⊂ Rn,

uk ∈ U ⊂ Rm.

Assumption 3.2.4. θ is uniquely identifiable and lies within an initially known compact

set defined by the ball function Θ0 = B(θ0, z0), where θ0 is some initial estimate of the

parameters and z0 is the initial radius of the uncertainty set.

3.3 Parameter Update

The problem is first restated by describing the true parameter values as follows:

θ = θc + δ, (3.2)

and the parameter estimates by

θ̂k = θc + δ̂k, (3.3)

where θc represents the center of the parameter uncertainty set defined by the ball Θ.

It is known from the mean-value theorem and (3.2) that

F (xk, θc + δ)− F (x, θc) = (

∫ 1

0

∂F

∂θ
(xk, θc + λδ)dλ)δ. (3.4)
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Now, let

Ψ(xk, θc, δ) =

∫ 1

0

∂F

∂θ
(xk, θc + λδ)dλ, (3.5)

and

∆Ψ(xk, θc, δ) = Ψ(xk, θc, δ)−Ψ(xk, θc, 0). (3.6)

The following state predictor is used:

x̂k+1 = x̂k + F (xk, θc + δ̂k) +Kkek + (cTk −KcTk +Ψ(xk, θc, 0))(δ̂k+1 − δ̂k). (3.7)

Applying the state predictor (3.7), the error dynamics are given by

ek+1 = ek +∆Ψ(xk, θc, δ)δ −Ψ(xk, θc, 0)δ̃k −Kkek (3.8)

−(cTk −KcTk +Ψ(xk, θc, 0))(δ̂k+1 − δ̂k)−∆Ψ(xk, θc, δ̂k)δ̂k.

Since the term ∆Ψ(xk, θc, δ̂k)δ̂k is known at all time steps, the state predictor is modified

to be

x̂k+1 = x̂k + F (xk, θc + δ̂k) +Kkek (3.9)

+(cTk −KcTk +Ψ(xk, θc, 0))(δ̂k+1 − δ̂k)−∆Ψ(xk, θc, δ̂k)δ̂k,

and the error dynamics become

ek+1 = ek +∆Ψ(xk, θc, δ)δ +Ψ(xk, θc, 0)δ̃k −Kkek (3.10)

−(cTk −KcTk +Ψ(xk, θc, 0))(δ̂k+1 − δ̂k).
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In this case, the auxiliary variable ηk is given by

ηk = ek − cTk δ̃k. (3.11)

The output filter is defined as

cTk+1 = cTk +Ψ(xk, θc, 0)−Kkc
T
k , (3.12)

c0 = 0.

The auxiliary variable dynamics are given by:

ηk+1 = ∆Ψ(xk, θc, δ)δ + ηk −Kkηk. (3.13)

It is necessary to employ an estimate of the true value of ηk, this estimate is given by the

recursion

η̂k+1 = η̂k −Kη̂k, (3.14)

η̂0 = e0.

Let the identifier matrix Σk be defined as

Σk+1 = Σk + ckc
T
k (3.15)

Σ0 = αI ≻ 0,

where α ∈ R > 0. The inverse of the identifier matrix is generated by the recursion

Σ−1
k+1 = Σ−1

k − Σ−1
k ck(I + ckΣ

−1
k cTk )

−1cTkΣ
−1
k (3.16)

Σ−1
0 =

1

α
I ≻ 0.
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The parameter update is performed indirectly by updating the variable δ̂,

δ̂k+1 = δ̂k +Σ−1
k ck

(
I + cTkΣ

−1
k ck

)−1
(ek − η̂k). (3.17)

To ensure that the parameter estimates remain within the constraint set Θk, we propose to

use a projection operator of the form:

¯̂
δk+1 = Proj{δ̂k +Σ−1

k ck
(
I + cTkΣ

−1
k ck

)−1
(ek − η̂k),Θk}. (3.18)

The operator Proj represents an orthogonal projection onto the boundary of the uncertainty

set applied to the parameter estimate. The parameter uncertainty set is defined by the ball

function B(θc, zθc), where θc and zθc are the parameter estimate and set radius found at

the latest set update.

Following Goodwin and Sin [13], the projection operator is designed such that:

• ¯̂
θk+1 ∈ Θk

• ¯̃
δTk+1Σk+1

¯̃
δk+1 ≤ δ̃Tk+1Σk+1δ̃k+1.

It will be shown that the parameter update law (3.18) guarantees convergence of the pa-

rameter estimation error θ̃k = (θc + δ)− (θc + δ̂k) to zero.

3.4 Uncertainty Set Update

The parameter uncertainty set, defined by the ball function B(θc, zθc) is updated using the

parameter update law (3.18) and the error bound (3.20) according to the following algo-

rithm:

Algorithm 3.4.1. Beginning at time step k = 0, the set is adapted according to the fol-

lowing iterative process
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1. Initialize zθc = zθ0 , θc = θ̂0

2. at time step k, using equations (3.18) and (3.20) perform the update

(θc, zθc) =


(θ̂k, zθk) if zθk ≤ zθc − ∥θ̂k − θc∥

(θc, zθc) otherwise

(3.19)

3. in the case when the uncertainty set is updated, the following values are reset as

follows: cTk = 0 and η̂k = ek

4. Return to step two and iterate, incrementing to time step k + 1

An update law that measures the worst-case progress of the parameter update law is adapted

from the one proposed in Adetola and Guay [5]

zθk =

√
Vzθk

4λmin[Σk]
(3.20)

V̄zθk+1
= Vzθk − (ek − η̂k)

T
(
I + cTkΣ

−1
k ck

)−1
(ek − η̂k) + (

Lz2θk
Kk

)2 (3.21)

Vzθk+1
=

 Vzθk if V̄zθk+1
≥ Vzθk

V̄zθk+1
otherwise

(3.22)

Vzθ0 = 4λmax[Σ0](zθ0)
2. (3.23)

Since the set is updated using the same update condition as (2.3.1) it follows that the

proof of contraction from (2.53) applies, hence, Θk+1 ⊂ Θk. The main difference arises

from the choice of update of Vzθk+1
described by (3.22). In this case, any increase in Vzθk

is disregarded to remove some conservativeness associated with the nominal uncertain set
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update based on (3.21).

In addition to the non-exclusion property, one needs to ensure that the true value of the

parameters, θ = θc+δ remain within the uncertainty set. In previous sections, we considered

the application of the comparison principle as follows.

First, one assumes that, at step k,

Vzθk ≥ Vδ̃k
. (3.24)

Then if,

Vzθk+1
− Vzθk ≥ Vδ̃k+1

− Vδ̃k
, (3.25)

it follows that

Vzθk+1
≥ Vδ̃k+1

. (3.26)

Hence, one concludes that

∥δ̃k+1∥2 ≤
Vzθk+1

λmin [Σk+1]
= 4z2θk+1

. (3.27)

For the set update of Vzθk given by (3.22), it is important to guarantee that the non-

exclusion property is still preserved. The projection algorithm always guarantees that the

estimation errors are as follows:

∥δ̃k∥2 ≤ 4z2θc
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Therefore, one can always assume that

∥δ̃k∥2 ≤
Vzθk

λmin [Σk]
≤ 4z2θc .

The rate of change of Vδ̃ is given by

Vδ̃k+1
≤ Vδ̃k

− (ek − η̂k)
T
(
I + cTkΣ

−1
k ck

)−1
(ek − η̂k) (3.28)

+η̃Tk
(
I + cTkΣ

−1
k ck

)−1
η̃k.

One can also write,

Vδ̃k+1
≤ Vzθk − (ek − η̂k)

T
(
I + cTkΣ

−1
k ck

)−1
(ek − η̂k) + η̃Tk η̃k.

By construction,

λmin [Σk+1] ∥δ̃k+1∥2 ≤ Vzθk − (ek − η̂k)
T
(
I + cTkΣ

−1
k ck

)−1
(ek − η̂k) + (

Lz2θc
Kk

)2.

Hence,

∥δ̃k+1∥2 ≤ 1

λmin [Σk+1]

(
Vzθk − (ek − η̂k)

T
(
I + cTkΣ

−1
k ck

)−1
(ek − η̂k) + (

Lz2θc
Kk

)2

)
.

Since,

λmin [Σk+1] ≥ λmin [Σk] ,
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it follows that

∥δ̃k+1∥2 ≤ 1

λmin [Σk]

(
Vzθk − (ek − η̂k)

T
(
I + cTkΣ

−1
k ck

)−1
(ek − η̂k) + (

Lz2θc
Kk

)2

)

=
Vzθk

λmin [Σk]
−

(
(ek − η̂k)

T
(
I + cTkΣ

−1
k ck

)−1
(ek − η̂k)− (

Lz2θc
Kk

)2
)

λmin [Σk]

≤ 4z2θc −

(
(ek − η̂k)

T
(
I + cTkΣ

−1
k ck

)−1
(ek − η̂k)− (

Lz2θc
Kk

)2
)

λmin [Σk]
(3.29)

From the last inequality we see that by the action of the projection algorithm the set update

will only lead to potential exclusion of the true value of the parameters if

(
(ek − η̂k)

T
(
I + cTkΣ

−1
k ck

)−1
(ek − η̂k)− (

Lz2θc
Kk

)2

)
> 0. (3.30)

Therefore, one only needs to update the value of Vzθk+1
when it leads to a decrease, or

alternatively, when the inequality (3.30) is met. We can write this in the form of a lemma

as follows.

Lemma 3.4.1. The set-update procedure 3.4.1 is such that

1. the set is only updated when updating will yield a contraction,

2. the dynamics of the set error bound described in (3.20) are such that they ensure the

non-exclusion of the true value, that is, θ ∈ Θk, ∀k if θ0 ∈ Θ0.

We are now ready to state the main result of this chapter.

Theorem 3.4.1. The identifier (3.16), the parameter update law (3.18), and the set update

procedure algorithm 3.4.1 are such that δ̃ = δ − δ̂ and therefore θ̃k = θk − θ̂k are bounded.

Furthermore, if

lim
k→∞

λmin [Σk] = ∞ (3.31)
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is satisfied, then θ̃k converges to 0 asymptotically.

Proof. Since, Vδ̃k
= δ̃Tk Σkδ̃k, then it follows by the non exclusion property of the set update

algorithm that,

∥δ̃k∥ ≤ Vzθk

λmin(Σk)
= 4z2θk ≤ 4z2θc , ∀k ≥ 0. (3.32)

Since Vzθk is non-increasing, by construction, and since λmin [Σk] is increasing, there exists

a finite integer N such that

zθk ≤ zθc − ∥δ̂N∥,

leading to a shrinking of the set. Applying the set update yields to a re-centered uncertainty

set with a smaller uncertainty radius containing the unknown value of the parameters.

Repeating sequentially, it follows that, as k → ∞, the properties of the set update are such

that the uncertainty radius zθc will tend asymptotically to zero. This is, in turn, guarantees

that limk→∞ ∥δ̃k∥ = 0 and, by the non-exclusion property, that the center of the uncertainty

set θc converges to the true value of the parameters θ.

3.5 Simulation Example

Consider the following system representing a chemostat operating under Monod kinetics,

similar to those described by Monod [24] and Monod [25], discretized using a finite differ-

ences method.

x1(k + 1) = x1(k) + ∆t

{
θ1x1(k)x2(k)

θ2 + x2(k)
−Dx1(k)

}
x2(k + 1) = x2(k) + ∆t

{
−θ3x1(k)x2(k)

θ2 + x2(k)
+ S0 −Dx2(k),

}

where the system states have the following units x(k)[=][gcellsL
gsubstrate

L ]. The parameter

vector represents θ = [µmax Ks
1

Yx/s
]T , with units θ[=][h−1 gsubstrate

L
gsubstrate

gcells
]T and values
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θ = [0.33 0.5 0.66]T . The control input, the substrate feed rate S0 = 5gsubstrate
L·h is kept

constant and the input dilution rate, D is oscillated sinusoidally such that D = 0.1 +

0.05sign(sin(2(k + 1)) 2
π·72) + 0.04sign(cos 2(k+1)

π·36 )h−1. The correction factor is K = 0.05,

and the upper bound is L = 2. ∆t is the size of the time step defined as ∆t = 1
3600h.

It is shown in Fig. 3.1 that the parameter estimates converge asymptotically to their

true values. It is possible to observe the effect of the uncertainty set and the projection

algorithm in Fig. 3.1. The magnitude of oscillations in the parameter estimates shrinks

as the identification task progresses, this is as a result of the constraint imposed by the

projection algorithm. The radius of the parameter uncertainty set decreases at each instance

the set is updated (Fig. 3.3). Furthermore, the results shown in Fig. 3.3 also demonstrate

that the magnitude of the δ variable error is always smaller than the radius of the set.

Since the δ variable error is equal to the parameter estimation error, it is possible to verify

that the true parameters remain within the uncertainty set throughout the simulation.

It is important to note that we can confirm that the construction of Vzθ does not lead

to an exclusion of the true parameters. The construction of the worst case Lyapunov

function leads to improved convergence performance since only changes that can progress the

identification task are considered. Fig. 3.2 shows the state prediction error. Convergence of

the state prediction error to zero is expected and consistent with successful identification. It

follows from (3.10) that the state prediction will approach the true state when δ̃ approaches

zero, which is a consequence of the shrinking of the uncertainty set. It follows logically that

when the parameters are identified, as a result of the construction of the state predictor,

the prediction will approach the true state.

3.6 Conclusion

In this chapter we have demonstrated, that the parameter uncertainty set method devel-

oped by Adetola and Guay [5] and generalized to discrete-time systems in Chapter 2, can
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be applied to nonlinearly parameterized systems. The approach from Chapter 2 is applied

in a sequential manner such that nonlinearly parameterized systems can be treated as lin-

early parameterized uncertain systems at each step. It can be concluded from the classical

persistence of excitation condition, that an output filter that meets the persistence of exci-

tation condition at all time steps is a sufficient condition under which convergence of the

parameter estimates to the true parameter values is guaranteed. This conclusion follows

from the convergence condition defined by (3.31) and the argument made in Section 2.3.3.

The application of this method has been applied to highly nonlinear system of a bioreactor

operating under Monod kinetics.
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Figure 3.1: Time course plot of the parameter estimates and true values under the parameter
uncertainty set algorithm, the dashed lines (- -) represent the true parameter values, the
solid lines (–) represent the parameter estimates.
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Figure 3.2: Time course plot of the state prediction error ek = xk − x̂k.
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Figure 3.3: The progression of the radius of the parameter uncertainty set and the magni-
tude of the variable δ̃ at time steps when the set is updated.



Chapter 4

Nonlinearly Parameterized

Continuous-time Systems

4.1 Overview

The method developed in Section 2.3 and modified in Chapter 3 is adapted further in this

chapter to be applied to nonlinearly parameterized continuous-time systems.

4.2 Problem Statement and Assumptions

Consider the nonlinear system:

ẋ(t) = F (x(t), u(t), θ) (4.1)

where x(t) ∈ Rn is a state at some time t, u(t) ∈ Rm is a the control input at some time ,t,

and θ ∈ Rp is a column vector of system parameters.

Assumption 4.2.1. The state of the system, x(t), is known at all times t ≥ 0.

51
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Assumption 4.2.2. There is some known, bounded control law, u(t), that achieves some

control objective.

Assumption 4.2.3. The state and input variables evolve on a compact set, x(t) ∈ X ⊂ Rn,

u(t) ∈ U ⊂ Rm.

Assumption 4.2.4. θ is uniquely identifiable and lies within an initially known compact

set defined by the ball function Θ0 = B(θ0, z0), where θ0 is some initial estimate of the

parameters and z0 is the initial radius of the uncertainty set.

4.3 Parameter Update

As above, the problem is restated with respect to a new variable δ. Let

θ = θc + δ, (4.2)

where θc is the center of the parameter uncertainty set, and δ is a vector between the center

of the set and the true parameter values. In this case, the parameter estimate to be used

in the state predictor (4.4) is given by

θ̂ = θc + δ̂. (4.3)

The following state predictor, similar to the one given by (2.2), is proposed:

˙̂x = F (x, θc + δ̂) +Ke+ cT
˙̃
δ. (4.4)

As shown in Chapter 3, let

Ψ(x, θc, δ) =

∫ 1

0

∂F

∂θ
(x, θc + λδ)dλ, (4.5)
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and,

∆Ψ(x, θc, δ) = Ψ(x, θc, δ)−Ψ(x, θc, 0). (4.6)

From (4.4) and (4.5) and (4.6), the error dynamics can then be described by

ė = ∆Ψ(x, θc, δ)δ +Ψ(x, θc, 0)δ̃ −∆Ψ(x, θc, δ̂)δ̂ −Ke− cT
˙̃
δ. (4.7)

From (4.7), the state predictor is modified to

˙̂x = F (x, θc + δ̂) +Ke+ cT
˙̃
δ −∆Ψ(x, θc, δ̂)δ̂, (4.8)

and the error dynamics become

ė = ∆Ψ(x, θc, δ)δ +Ψ(x, θc, 0)δ̃ −Ke− cT
˙̃
δ (4.9)

e(0) = x(0)− x̂(0).

Similar to the application of the parameter uncertainty set to linearly parameterized sys-

tems, the output filter is designed as follows

ċT = Ψ(x, θc, 0)−KcT (4.10)

cT (0) = 0.

An auxiliary variable η is given by

η(t) = e(t)− cT (t)δ̃(t). (4.11)
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The auxiliary variable dynamics are then given by

η̇ = ∆Ψ(x, θc, δ)δ −K(e− cT δ̃). (4.12)

Since the true value of δ is unknown, an estimate for the auxiliary variable is tracked by

˙̂η = −Kη̂. (4.13)

Now, let the identifier matrix Σ be defined by

Σ̇ = ccT (4.14)

Σ(0) = αI,

where αI ≻ 0, and α ∈ R > 0.

The inverse of the identifier matrix is given by

Σ̇−1 = Σ−1ccTΣ−1 (4.15)

Σ−1(0) =
1

α
I.

As above, the parameter estimate is not updated directly, rather, the δ̂ variable is updated

with the following update law

˙̂
δ = Proj{Σ−1c(e− η̂)}, (4.16)

where Proj represents an orthogonal projection of the gradient of the δ variable onto the

surface of the ball Θ. More information on the project algorithm can be found in Krstic

et al. [21].
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Assumption 4.3.1. For all x ∈ X, u ∈ U and θ0 ∈ Θ0, there exists a constant L > 0 such

that

∥∆Ψ(x, θc, δ)δ∥ ≤ L∥δ∥2 (4.17)

As a consequence of Assumption 4.3.1, it follows that:

∥∆Ψ(x, θc, δ)∥ ≤ Lz2θc = ϑ. (4.18)

Lemma 4.3.1. The identifier (4.15) is such that for every θ0 ∈ Θ0, the estimation error,

δ̃ = δ − δ̂, and the auxiliary variable estimation error, η̃ = η − η̂, are bounded.

Proof. Consider the η̃ dynamics and the Lyapunov function Vη̃ = 1
2 η̃

T η̃. The rate of change

of Vη̃ is given by

V̇η̃ = −Kη̃T η̃ + η̃T∆Ψ(x, θc, δ)δ, (4.19)

it follows that

V̇η̃ ≤ −K∥η̃∥2 + ∥η̃∥ϑ. (4.20)

As a result it is guaranteed that V̇η̃ ≤ 0 ∀η̃ ∈ Rn, if ∥η̃∥ > ϑ
K . Since η̃(0) = 0, it can be

concluded that ∥η̃(t)∥ ≤ ϑ
K .

Let

Vδ̃ = δ̃TΣδ̃. (4.21)
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It follows (4.16) that

V̇δ̃(t) = −(e− η̂)T (e− η̂) + ∥η̃∥2

≤ −(e− η̂)T (e− η̂) + (
Lz2θc
K

)2. (4.22)

Since ∥η̃∥2 is bounded, it follows that ∥δ̃∥2 is also bounded. The projection algorithm

guarantees that

∥δ̃∥2 ≤ ∥δ∥2 + ∥δ̂∥2 ≤ 4z2θc . (4.23)

The following persistence of excitation condition will be required to guarantee convergence

of δ̃ to a neighborhood of the origin.

Assumption 4.3.2. There exists positive constants T and kN

∫ t+T

t
c(τ, θc)

T c(τ, θc)dτ ≥ kN (θc), ∀t > 0, ∀θ0 ∈ Θ0. (4.24)

The persistence of excitation condition (4.24) considers the dependence of the filter dynamics

on the current value of the center of the uncertainty set. When the set is updated, a change

will occur in the regressor matrix, Ψ(x, θc, 0), and subsequently in the filter dynamics. Now,

consider the convergence properties of the estimates δ̂ at a fixed value θc.

Lemma 4.3.2. Assume that the persistency of excitation condition (4.24) is met. Then the

parameter estimation scheme given by (4.16) and Algorithm 4.4.1 is such that the parameter

estimation error converges exponentially to a neighborhood of the origin.

Proof. It is clearly observable that
˙̃
δ = − ˙̂

δ. It follows from the projection algorithm that

the rate of change of Vδ̃ along the trajectories of the closed-loop system about the center of
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the uncertainty set is

V̇δ̃ ≤ −2δ̃T ccT δ̃ − 2δ̃T cη̃ + δ̃T ccT δ̃ (4.25)

≤ −δ̃T ccT δ̃ − 2δ̃T cη̃.

Consider the Lyapunov function W = Vδ̃ + η̃T η̃.

Ẇ ≤ −δ̃T ccT δ̃ − 2δ̃T cη̃ −Kη̃T η̃ + η̃T∆Ψ(x, θc, δ)δ. (4.26)

There exist positive constants kz and KZ such that KZ > kz > 1 such that

Ẇ ≤ −(1− 1

kz
)δ̃T ccT δ̃ − (KZ − kz)η̃

T η̃ + η̃T∆Ψ(x, θc, δ)δ (4.27)

≤ −k1δ̃
T ccT δ̃ − k2η̃

T η̃ + k3η̃
T η̃ +

1

k3
(Lz2θc)

2.

For k2 > k3

Ẇ ≤ −k1δ̃
T ccT δ̃ − k4η̃

T η̃ +
1

k3
(Lz2θc)

2 (4.28)

If the persistence of excitation condition (4.24) is met, it follows that

Ẇ ≤ −γ1c1Vδ̃ − k4η̃
T η̃ +

1

k3
(Lz2θc)

2 (4.29)

≤ −k5W +
1

k3
(Lz2θc)

2,

which confirms that the parameter estimation error δ̃ and the η estimation error, η̃, converge

exponentially to a neighborhood of the origin for any value θ0 ∈ Θ0.
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4.4 Set Update

Similar to the method applied to the linearly parameterized system, an update law that

measures the worst-case progress of the parameter update law is proposed based on the one

utilized by Adetola and Guay [5].

zθ(t) =

√
Vzθ(t)

4λmin(Σ(t))
(4.30)

Vzθ(0) = 4λmax(Σ(0))z
2
θ0 (4.31)

Vη(0) = ∥η̃(0)∥2 = 0 (4.32)

V̇η = −KVη + (Lz2θc)
2 (4.33)

˙̄Vzθ = −(e− η̂)T (e− η̂) + Vη. (4.34)

The following condition is imposed on the progression of Vzθ,

V̇zθ(t) =


˙̄Vzθ(t) if ˙̄Vzθ(t) ≤ 0

0 otherwise

(4.35)

The parameter uncertainty set is updated using the following algorithm:

Algorithm 4.4.1. beginning at time t0, the set is adapted according to the following itera-

tive process

1. Initialize zθc = zθ0 , θc = θ0 + δ̂(t0)

2. At time t, using equations (4.16) and (4.34) perform the update

(θc, zθc) =


(θ̂(t), zθ(t)) if zθ(t) ≤ zθc − ∥θ̂(t)− θc∥

(θc, zθc) otherwise

(4.36)

3. In the case when the uncertainty set is updated, the following values are reset: cT (t) =
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0 and η̂(t) = e(t)

4. Return to step two and iterate, incrementing to time t+∆t where ∆t is some appro-

priate time interval

Lemma 4.4.1. The algorithm ensures that

(a) the set is only updated when updating will yield a contraction, and

(b) the projection algorithm is such that the non-exclusion of the true value θ ∈ Θ(t)

is ensured ∀t if θ(t0) ∈ Θ(t0).

Proof. (a) At update instance i, at time ti, where the previous update occurred at

time ti−1, If Θ(ti) * Θ(ti−1) then

supsϵΘ(ti)
∥s− θc(ti−1)∥ ≥ zθ(ti−1). (4.37)

However, it is guaranteed by the set update algorithm presented, that Θ, at

update times, obeys the following

sup
sϵΘti

∥s− θc(ti−1)∥

≤ sup
sϵΘti

∥s− θc(ti)∥+ ∥θc(ti)− θc(ti−1)∥ (4.38)

≤ zθ(ti) + ∥θc(ti)− θc(ti−1)∥ ≤ zθ(ti−1).

This contradicts (4.37). Therefore, Θ(ti) ⊆ Θ(ti−1) at times where Θ is updated.

(b) It is shown in (4.23) that

∥δ̃(t)∥ ≤ 2zθc .
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Since it is easily demonstrable that

θ̃ = (θc + δ)− (θc + δ̂) = δ̃,

one can conclude that θ ∈ Θ(t), ∀t if θ0 ∈ Θ(t0).

Remark 4.4.1. Further work is required to provide a formal proof of convergence of this

scheme in the continuous-time case. However following the proof in the discrete-time case,

it is clear that a constructive proof should be rather straight forward. At this point, we

can sketch that if the persistency of excitation condition is met, then λmin [Σ(t)] will grow

unbounded. Since Vzθ is bounded as a result of (4.35), we can take the following limit:

lim
t→∞

z2θ = lim
t→∞

Vzθ(t)

4λmin[Σ(t)]
(4.39)

which implies that

lim
t→∞

z2θ = 0. (4.40)

It can therefore be concluded that the parameter estimates must converge to the true values

of the parameters since the parameter estimates and the true parameters cannot be excluded

from the shrinking set. A formal proof of this result will be provided in future work.
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4.5 Simulation Example

Consider the following system representing a chemostat operating under Monod kinetics

similar to those described by Monod [24] and Monod [25]

ẋ1 =
θ1x1x2
θ2 + x2

−Dx1

ẋ2 =
−θ3x1x2
θ2 + x2

+ S0 −Dx2,

where the system states have the following units x(t)[=][gcellsL
gsubstrate

L ]. The parameter

vector represents, θ = [µmax Ks
1

Yx/s
]T , with units θ[=][h−1 gsubstrate

L
gsubstrate

gcells
]T and values

θ = [0.33 0.5 0.66]T . The control input, the substrate feed rate S0 = 5gsubstrate
L·h is kept

constant and the input dilution rate, D is oscillated sinusoidally such that D = 0.1 +

[0.05sign(sin(0.0005t))]h−1. The upper bound is L = 0.032, and the correction factor used

is K = 0.5.

The results shown in Fig. 4.1 demonstrate that the parameter estimates converge to their

true values. The excitation injected to the system results in the prediction error trajectories

given in Fig. 4.2. The radius of the parameter uncertainty set is demonstrated to shrink

each instance the set is updated in Fig. 4.3. It can also be seen that the magnitude of the

δ variable error is always less than the radius of the estimated uncertainty set. Since the δ

variable error is equal to the parameter estimation error, it is possible to verify that the true

parameters remain within the uncertainty set throughout the simulation. Fig. 4.2 indicates

that the magnitude of the state estimation error approaches zero as the identification task

is completed. This follows logically from the state estimation error dynamics, and the state

prediction dynamics. As the identification task progresses, and the parameter estimates

approach the true parameter values, it is expected that the center of the uncertainty set

will approach the true parameter values. Although this was not formally proven, the results

shown in Fig. 4.3 suggest that the center of the uncertainty set will converge to the true
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parameters. Therefore it is possible to conclude that as the parameter estimates approach

the true parameter values, the δ̃, δ̂ and δ values, as well as their rates of change will

approach zero. Parameter convergence occurs at a slower rate than in Section 3.5, we do

not offer an explanation for this result, it is possible that this is as a result of differences in

computational and numerical methods, though it is not verified.

4.6 Conclusion

In this chapter, we demonstrated that the adapted parameter uncertainty set method de-

veloped in Chapter 3 is applicable to continuous-time nonlinearly parameterized systems.

Though the proof guaranteeing convergence is incomplete, it is reasonable to conclude that

based on the convergence result presented in Chapter 3, that such a result can be provided.

A guarantee of convergence will be provided in a future work. In a similar manner to the

conclusion made in Chapter 3, we can conclude that an output filter that meets the per-

sistence of excitation condition at all times throughout the application of the algorithm is

a sufficient condition for successful identification of the unknown parameters. The applica-

tion of this method is illustrated using a highly nonlinear system representing a chemostat

operating under Monod kinetics.
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Figure 4.1: Time course plot of the parameter estimates and true values under the parameter
uncertainty set algorithm, the dashed lines (- -) represent the true parameter values, the
solid lines (–) represent the parameter estimates
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Figure 4.2: Time course plot of the state prediction error ek = xk − x̂k
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Figure 4.3: The progression of the radius of the parameter uncertainty set and the magni-
tude of the variable δ̃



Chapter 5

Conclusions

The identification methods proposed in Chapter 2 provided a set of novel adaptive estima-

tion techniques applicable to a class of discrete-time nonlinear systems. In Chapters 3 and

4, it is shown that the parameter uncertainty set method derived for linearly parameterized

systems, can be generalized to generate a suitable technique applicable to a large class of

nonlinearly parameterized systems. The proposed technique is shown to be effective for the

identification of growth kinetic parameters in a chemostat operating under Monod kinetics

in Sections 3.5 and 4.5.

We propose three distinct identification methods. Section 2.1 utilizes a type of identifier

matrix that is present throughout the rest of the work. The identifier matrix is used both

in the identification algorithm, and in the characterization of the convergence condition.

This condition, based on the defined identifier, may be independent from the control input,

the benefits of this decoupling are discussed below. The method presented in Section 2.2

introduces a specific online parameter updating law. This method marks an improvement

not only by the reduction of computational complexity, but also by providing more accurate

parameter estimates as the algorithm progresses. This is a benefit if the scheme is utilized

with a control law that depends on parameter estimates. As a result of the nature of the

parameter update law, the norm of the parameter estimation error can be shown to be

66
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non-increasing, even if the convergence condition is not yet met. This means that while the

identification scheme progresses, the control law will be supplied with parameter estimates

of, in the worst case, non-decreasing and, potentially, increasing precision.

The third method, applied in Section 2.3 and in Chapters 3 and 4, is more widely applicable

than the previous methods. The parameter uncertainty set method is demonstrated to be

applicable to linearly parameterized systems with additive noise, as well as nonlinearly

parameterized systems. Provided a convergence condition is met, this method guarantees

convergence of the parameter estimates to their true values. Further, the uncertainty set

provides a metric for the accuracy of the parameter estimates at any given time by providing

an upper bound for the error of the parameter estimates. The algorithm automatically

updates this upper bound when it can be guaranteed that an update will yield a contraction

of the uncertainty set, while still accurately confining the parameter estimates and true

values. The update algorithm provides an indicator as to the progress towards successful

identification.

The methods presented herein provide several advantages over previous work. The primary

departure from the literature is the development of self-contained identification algorithm.

The results in this thesis suggest that it is possible to perform an identification task in-

dependent from a desired control task. Further, these result imply that the identification

methods presented in this thesis could be used to improve many existing control strategies.

The formulation of the parameter uncertainty set method, applied to nonlinearly parame-

terized systems, greatly expands the applicability of the method to a larger class of systems.

Further, in the nonlinearly parameterized case, the construction of the worst case Lyapunov

function removes some of the conservativeness from prior applications of this method, it is

reasonable to conclude that this leads to a more efficient identification algorithm.
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5.1 Future Work and Research Direction

There are several limitations to the work presented here, some of which provide avenues for

further research. The primary limitation is the assumption that the system state is available

for measurement. Further, all the methods presented require that model structure be well

known. These assumptions can limit the application of the algorithm. It will be necessary

to employ a technique to guarantee successful implementation of the methods when the

system state is not known. A possible solution to this problem is the use of a state observer

to recover system state values from measured system outputs. This solution would require

the assumption that the system in question is observable at all times or time steps.

With regards to Chapter 4, it is necessary to provide a formal argument that the imposed

restriction on the Vzθ value ensures that the true parameter values are not excluded from

the set. It also remains to be proven that it is possible to ensure that if the persistence of

excitation condition is met, then it will follow that the Σ matrix grows unbounded.

The primary avenue for further research in this area is to properly define the conditions that

guarantee that the persistence of excitation conditions are met for each of the algorithms. In

the case of the systems without disturbances, it is expected that this may be accomplished

by developing a relationship between the output filter and the identifier matrix Qk. It may

be possible to determine what properties the output filter, or the closed-loop trajectories

must have to ensure that kc is reached, and what effect those properties have on the size

of kc. In the cases where disturbances are present, it is likely that it will be necessary to

develop a metric for the growth of the covariance matrix Σk, and its relation to the output

filter, and the closed loop system trajectories. With this metric it may be possible to

identify the properties of the output filter signal or the closed loop trajectories that ensure

the unbounded growth of the Σk matrix.

It is possible that some condition exists with respect to the definition of the correction

factor or the output filter that could guarantee that the appropriate convergence condition
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is met in each case. It may also be necessary to explore the injection of a dither signal

similar to those applied in Lyapunov based adaptive control algorithms such as Guay et al.

[15] to produce system excitation, particularly in the case of the nonlinearly parameterized

systems. A dither signal may be necessary to guarantee that the convergence conditions

are met. At this point, it remains a challenge to develop alternative conditions that can be

used to guarantee the existence of state trajectories that meet a persistence of excitation

condition. Such techniques could prove extremely useful in the analysis and design of

adaptive control systems. The techniques proposed in this work can potentially lead to

some suitable alternative conditions that guarantee parameter convergence.
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