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ABSTRACT 

 The purpose of this thesis is to research methods that will be used to discover the 

profitability and risk of spatially arbitraging soybeans.  A portfolio is used to analyze trading 

strategies, and the dependence measures is critical when simulating all of the variables.  The 

dependence measures will aid in selecting the appropriate assets for the portfolio.  The profits 

and risks for each asset will be analyzed and an optimization procedure will weigh the assets 

appropriately in bushels.  Strategizing has become very important for merchandisers, because of 

the added risk associated with trading commodities.  The results indicate that spatial arbitrage 

profits exist, but each origin does not always spatial arbitrage opportunities.  These trades carries 

a great deal of risk as a firm becomes more vertically integrated. 
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CHAPTER 1. STATEMENT OF PROBLEM 

Introduction 

 The agriculture industry has seen many changes, including increased volatility in the 

futures price, basis price, and transportation costs.  Commodity traders have to analyze many 

variables to find a profitable trading strategy.  Where to buy, through what port to sell, and by 

what mode of transportation are decisions that reduce the portfolio’s risk.  Transportation, grain 

inventory, etc. need to be planned in advance to effectively arbitrage.  “Arbitrage” is a term that 

refers to the ability to profit from mispriced assets.  The profitability that comes from the trading 

strategy is called spatial arbitrage.  Country elevators, the Pacific Northwest Port (PNW), and the 

U.S Gulf Port (USG) should all differ in basis price equal to transfer costs.  Traders can spatial 

arbitrage grain that differs in price more than the transfer costs between the origins, ports, or any 

other location that is buying/selling grain.  Traders keeps markets integrated, and markets that 

become less correlated are quickly arbitraged back to an efficient market place (Baulch, 1997).  

 The purpose of this thesis is to research develop a model to analyze spatial arbitrage  

profitability, and intermarket relationships between ports and origins.  A portfolio is used to 

analyze trading strategies, and the dependence measures are critical when simulating all the 

variables.  The dependence measures aid in selecting the appropriate assets for the portfolio.  The 

profits and risks for each asset are analyzed, and an optimization procedure weighs the assets 

appropriately in bushels.  Strategizing has become very important for merchandisers because of 

the added risk associated with trading commodities.  The behavior of the basis and transportation 

is seasonal; however, they have become more volatile.  With this added risk, there should be 

increased spatial arbitrage opportunities, or higher profits, but risk and profits do not always 

move in tandem.  It is widely thought that investors would adjust their portfolio if they could 
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achieve the same profits with lower risk (Markowitz, 1952).  This problem is the focus of this 

research.  There are commodity traders who have a portfolio of assets to move soybeans from 

origin to destination, but traders would like to create a portfolio that has the greatest profit with a 

limited amount of risk. 

 In 2004, soybeans had a high degree of risk, but in 2005-2007, deviation from the mean 

was about $.10/bu. Then, in 2008, the risk increased to $.20/bu, increasing further to $.30/bu in 

2009 (Wilson and Dahl, 2011).  There could be many factors causing the added volatility at the 

origin and destination basis.  Some of these influential factors are discussed briefly in this 

chapter but can be found in greater detail in Wilson and Dahl (2011). 

Spatial Arbitrage 

 Spatial arbitrage is the opportunity to capitalize on missed price markets.  Spatial 

arbitrage is a profitable opportunity that exists when the price difference between two spatial, 

distanced locations varies more than transfer costs (Baulch, 1997).  Hence, the major variables 

impacting the decision to arbitrage are the transfer costs as well as the origin and destination 

basis.  Policies, bottlenecks, geography, and lack of information are barriers between markets.  

Arbitrage is the mechanism that allows markets to become efficient and integrated.  Barriers 

between the markets restrict the arbitrager’s ability to profit from inefficiencies.  There would be 

a poor allocation of resources if the arbitrage mechanism failed. 

The Borenstein and Kellogg (2012) found that existing spatial arbitrage opportunities 

could not be captured due to bottlenecks in the supply chain.  The exporting pipeline from 

Cushing, Oklahoma, was at capacity, which restricts arbitragers.  The global oil market price 

tended to be greater than the West Texas Intermediate (WTI) price at Cushing, Oklahoma.  The 

small transfer costs from Cushing, Oklahoma, to the U.S gulf ports gave arbitragers a large profit 
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opportunity.  The risk associated with the trade were minimal because the fluctuation in transfer 

cost was nil and because the WTI and global oil prices were spread positively.  By arbitraging 

the price spread between WTI and global oil, the net price should only differ by transfer costs. 

(Wilson, 2012) found that the Panama Canal is at capacity.  The Panama Canal is 

expanding to handle larger ships that produce greater economies of scale for ocean shippers.  

During this expansion period, (Wilson, 2012) found that there was less traffic moving through 

the canal and a greater shipping demand for the PNW.  A bottleneck at the canal and the 

increased toll fees could be contributing to the shift of grain flow towards the PNW.  Spatial 

arbitrage between the PNW and USG seems like a short-term battle because of the expansion at 

the Panama Canal, but as the global population continues to grow, the need to enhance our 

transportation system becomes a top priority.  

Spatial arbitrage opportunities in the oil industry could be the same as the spatial 

arbitrage opportunities for soybeans.  Bottleneck at the canal could also be causing the ocean rate 

spreads found in (Wilson and Dahl, 2011), which creates larger spreads between the PNW and 

USG basis.  When missed priced assets are found, they become arbitraged away quickly.  In 

some cases, the bottleneck is not discovered or expanded, so the spatial arbitrage is never earned.  

The bottleneck found in the oil industry has not been expanded yet, so the oil refineries in the 

Midwest are capitalizing on cheap crude oil due to excess supply.  The inefficient U.S. market 

would minimally reduce the welfare of global oil consumers (Borenstein and Kellogg, 2012).  

However, oil refiners in the U.S. Midwest gain a competitive advantage over other U.S oil 

refiners.  



 

4 

 

Somewhere along the agriculture supply chain, businesses are earning economic profits 

similar to Midwest oil refineries.  The Market Integration section will discuss factors that cause 

barriers to markets which lead to less-integrated markets. 

Change to the Basis 

 The basis at each location depends largely on the cost of transporting the commodity 

from the origin to destination.  Origin basis also depends on local supply and demand.  

Intermarket demand from feedlots and bio-fuel plants affects the basis between geographically 

separated locations, but through arbitrage, the difference equals the transfer costs unless there are 

barriers between markets. 

 Rail, barge, and ocean shipping have become more volatile, greatly impacting volatility 

of the basis at every location.  The origin basis along the Mississippi River is stronger than the 

Dakotas because of the ease of shipping with a less-expensive transportation mode.  The 

soybeans produced along the Mississippi River are higher quality than ones from the Dakotas, 

which results in a higher basis. 

The quality of the soybean crop also has a large effect on the destination basis.  There is a 

noticeable difference  in soybean oil and test weight between northern soybean-production states 

and southern states (Wilson, 2012).  Quality differences between the Dakotas and states along 

the Mississippi River could be a contributing factor to the large spread for the destination basis 

price.  Soybean prices currently exclude premiums/discounts, so the destination basis could 

reflect the quality difference.  Asian countries are willing to pay a premium for soybeans shipped 

from the USG because of the significant difference in soybean quality. 

 There are origins that will almost always ship to the PNW, but other origins (farther east) 

can be undecided about which direction their grain will flow.  The origins that are undecided 
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about their grains’ directional flow will be pulled towards the direction offering the greatest net 

price.  The boundary for whether the grain will ship west or east changes depending on multiple 

variables, and a majority of these variables have become more volatile. 

 Other variables that significantly impact the origin basis are ocean-rate spreads, 

outstanding export sales, concentration in the grain-handling industry, measures of railcars late, 

the ratio of grain stocks to storage capacity, futures prices, and varying measures of futures and 

destination spreads (Wilson and Dahl, 2011).  The significance for transportation costs was 

indicated earlier, and the changes in that industry are explained in greater detail in the Changes 

in Transportation section. 

 At the origin, operating margins have a small influence on the basis, but in recent years, 

facilities have a higher operating margin due to the increased volatility in market variables.  

Facilities have to put up a substantial capital in their margin account and suffer some opportunity 

costs.  The PNW and USG basis spreads have increased in recent years due to the amplified 

volatility in the shipping industry, which is mostly caused by the oil market.  The destination 

basis has also become more volatile due to the seasonality of soybean demand and the 

transportation spread from China.  The increased soybean demand from Asian countries also 

creates a large spread between PNW and USG.  

Changes in Transportation  

 The volatility regarding transportation rates has increased for rail, barge, and ocean 

shipping.  Of the three transportation modes, the volatility for ocean rates has increased the most 

(Wilson and Dahl, 2011).  

 Overall, the railroad industry has become more efficient over the years.  The primary 

railcar market has the lowest amount of risk, but the secondary railcar market is more volatile 
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(Wilson and Dahl, 2011).  The railroads realizes greater economies of scale due to larger railcars 

as well as faster loading and unloading at the origin and destination.  Grain handlers also realize 

the benefit of a more efficient rail system.  Grain handlers realize economies of scale when 

shipping greater distances because their fixed costs for transporting grain decrease with distance.  

The costs of transporting, in some cases, increase at a decreasing rate or are non-linear.  The non-

linearity can be seen with all transportation modes. 

 Efficiency payments are made to shuttle facilities and terminals if they can load/unload a 

shuttle train within a specified time period.  Efficiency payments are incentives for new grain-

handling facilities to load shuttle trains which increase the railcar turnaround.  These adoptions 

from the railroad industry and grain-handling firms have made transporting by rail more 

competitive with other modes of transportation (Wilson and Dahl, 2011). 

 The costs of shipping via barge have also increased for soybeans and corn (Wilson and 

Dahl, 2011).  Seasonality plays a key role in the cost of shipping; after the soybean and corn 

harvest, barges are high in demand (Miljkovic, et al., 2000).  A reason for the increased barge 

rates in recent years could be due to more corn production.  An acre of corn can produce five 

times the yield of soybeans, so more barges are needed to move the larger quantity of grain due 

to higher export demands.  Oil prices along with barge supply and demand are key determinant 

of barge rates. 

All three modes used to transport ethanol—rail, barge, and truck—are at or near capacity.  

Total rail freight is forecast to increase from 1,879 million tons in 2002 to 3,525 million 

tons by the year 2035, an increase of nearly 88 percent.  Federal Highway Administration 

projects truck freight to almost double from 2002 to 2020, and driver shortages are 

projected to reach 219,000 by 2015. (Denicoff, 2007)  
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When goods and services reach their capacity levels, there becomes a shortage in supply, and 

then, the volatility and the price in those industries tend to increase. 

 Finally, ocean rates have also seen an increasing trend (Hummels, 2007).  The increased 

price of oil has a significant effect on ocean rates.  There has been a larger ocean-rates spread for 

shipping from the USG or PNW.  This spread is largely due to the competition for shipping from 

other industries.  The Panama Canal has reached its capacity, driving up the costs of shipping 

from the USG.  

Shifts in Supply and Demand 

China's demand for soybeans is far greater than what was expected in the past few years.  

China's middle class has been growing, demanding more meat production and, alternatively, 

increasing China's soybean demand. 

China's soybean consumption outpaced the increase in domestic production during the 

last 25 years mainly because of increases in consumption of soybean oil and meal 

induced by income and population growth, particularly in large urban areas.  In 2003/04, 

according to USDA estimates, soybean consumption in China reached more than 34.4 

million metric tons, four times the volume in 1980.  In response to the rapid growth in 

demand, China now imports about half of its total soybean consumption. China's soybean 

imports accounted for about one-third of world soybean imports in 2003. (Tuan, et al., 

2004) 

The U.S transportation infrastructure and the Panama Canal were unprepared for the 

growth of China's middle class.  The main reason for the growth in exports at the PNW as well 

as the spread in the basis between the PNW and USG. 
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 Other shifts in the supply and demand are due to the increase of bio-fuels.  In the past few 

years, the United States has increased the use of bio-fuels, which has increased the acres for corn 

production.  Since 2005, the United States had plans to increase its bio-fuel production from 4 

billion gallons a year (bgy) in 2006 to 7.5 bgy in 2012.  (Denicoff, 2007) predicted that, by 2016, 

ethanol production would reach 15 billion gallons. With the planned increase in bio-fuel 

production, the USDA projected that U.S. farmers would shift soybean acres to corn acres.  Corn 

production was planned to increase from 13.05 billion bushels in 2007 to 14.5 billion bushels in 

2016 (Denicoff, 2007). 

 All these changes in agriculture affect the basis at the origins and destinations.  There has 

been an increase in volatility at every aspect of the agriculture industry’s supply chain.  In most 

cases, the end user suffers from the grain industry’s volatility because value-added products tend 

to have sticky prices.  Sticky prices at the retail level are due to the costs of adjusting the finished 

goods’ price.  These sticky prices will significantly reduce the volatility from the raw-material 

market, making business more risky at the retail level.  Farmers and elevators also have a 

difficult time managing the industry’s added volatility.  Commodity traders are typically great at 

reducing the risk by hedging with the futures market.  Commodity traders handle large volumes 

of soybeans, and it is critical to reduce as much risk as possible.  Both commodity traders and 

farmers are susceptible to changes in the basis.  In the past, the basis was more predictable, but 

volatility in the shipping industry has altered that seasonality. 

Problem Statement 

 A commodity trader’s strategy was straightforward before the added volatility for all 

modes of transportation, which then also affects the basis values at the origin and destination.  A 

majority of the soybeans were shipped through the U.S. gulf ports in the past (Wilson, 2012) 
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because of the cheap transportation provided by the Mississippi River.  Since 2002-2004, there 

have been some major changes in shipment flows for soybeans (Wilson, 2012).  As indicated 

earlier, the basis spread between the USG and PNW has grown.  The increasing spread indicates 

a shift in the flow of grain from the Midwest. 

 This added risk in trading commodities needs a method to manage and capitalize on these 

new shifts in grain trading, so this study will focus on managing the added risk as well as 

capturing the most profitable spatial-arbitrage opportunity.  There has been a significant increase 

in the basis risk for soybeans during the last eight years (Wilson and Dahl, 2011).  The standard 

deviation for soybean basis values has reached a new norm of $.20-.$30/bu, and new, profitable 

opportunities arise with this added variability (Wilson and Dahl, 2011).  A trading strategy needs 

to be developed to capture the most profitable trades. 

 Spatial-arbitrage opportunities may exist because of the increased PNW and USG spread 

and the added volatility.  The variables should be highly correlated within the portfolio, and the 

basis values between the ports should always be in equilibrium.  The origin basis should equal 

the destination basis minus transfer costs.  However, demands from these ports have become 

more volatile, and the ocean rate volatility has increased (Wilson and Dahl, 2011).  The added 

volatility makes it more difficult for markets to stay integrated. 

 Arbitrage opportunities may also exist between ports and origins because of the increased 

competition in certain geographical regions.  Storage capacity has become tighter due to traders 

holding onto their long positions.  The volatility and the current value of the futures price have 

increased the costs for business across the supply chain.  More volatility for rail, barge, and 

ocean rates has increased the transportation costs and made those assets more risky.  The 
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research conducted for this paper focuses on creating a trading strategy for commodity traders 

who are trading soybeans from the origin to the destination and then expanding internationally.  

Objectives 

 The agriculture industry has seen many changes and has become more risky in the 

process.  The shipment of soybean flow has shifted towards the PNW.  This thesis uses the most 

recent methodology from similar research problems to answer the questions.  There are two 

major objectives for the thesis.  The first one is to analyze the intermarket relationships in the 

soybean market.  The second objective is to discover the origins that generate, on average, the 

greatest spatial-arbitrage profit and probability of occurrence.  Determining where the greatest 

spatial-arbitrage profit occurs and how often spatial-arbitrage opportunities exist provides 

information for a company that is interested in merchandising soybeans.  The merchandising 

company would be able to determine where to place country elevators.  The most important 

theory is dependence measures because the input used for our simulation’s optimization model 

needs to hold the correct relationships between variables.   

A portfolio is created where a trader owns origins with soybeans or buying soybeans 

from origins located strategically so a firm can optimally transfer grain at least cost and risk to 

gain the largest amount of profit.  Most literature about trading strategies and spatial arbitrage 

uses parametric modeling.  Pearson linear correlation is one of the dependence measures used in 

this thesis, for simplicity, and is considered more of a parametric model.  The most recent 

methodology used for market integration is a non-parametric model.  The shift to non-parametric 

modeling in market integration research, such as (Goodwin, et al., 2011) is not surprising due to 

the non-linearity of market relationships.  The dependency measure used by (Goodwin, et al., 

2011) is copula.  Copula is the other dependency measure that will be used for this thesis, and it 
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is much more complex.  Copula is used heavily in the finance and insurance industry.  Copula 

provides a methodology with the fewest assumptions about the distributions and the correlation 

between assets in the portfolio. 

This research hopes to clarify the reasons for the shifts in market boundaries, and the 

increasing flow of soybeans to the PNW while finding the trading strategy that maximizes 

returns with a limited amount of risk.  (Wilson and Dahl, 2011) found that there has been a shift 

in the flow of grain for soybeans.  

Hypothesis 

The trading strategy developed for the data’s time period suggests that more origins 

located in southern states will trade towards the PNW because it provides a greater return for the 

risk.  This shift in grain flow could be due the discovery of spatial arbitrage for soybeans.  The 

Panama Canal has reached its capacity (Wilson, 2012), which forms a bottleneck.  The 

bottleneck at the Panama Canal is similar to the problems in Cushing, Oklahoma, that were 

reported by (Borenstein and Kellogg, 2012), and on top of the bottleneck, there are higher-

quality yields from southern soybean-producing states. 

Organization 

 Chapter 2 discusses the literature related to the research of this thesis.  The literature 

review consists of literature about the Law of One Price, Arbitrage, Market Integration, Portfolio 

Theory, and Trading Strategies.  The methodology of the research is reviewed in Chapter 3, and 

this chapter consists of the theory of price discovery, basis theory, the theory of competitive 

intermarket prices, and the law of one price in relation to this thesis topic.  Chapter 4 discusses 

the empirical model and the data used for this research.  Next is a discussion about dependence 

measures, such as Pearson linear correlation, rank correlation, and tail dependence measures.  
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Within the Copula section, the background of copula, basic copula, and copula families are 

explained in great detail.  The final section touches on simulation procedures.  Chapter 5 

explains the copula results and their significance in great detail.  The chapter begins with the 

results of the basis case, and the following sections cover the sensitivity results.  Copula and 

Normal Risk Constrained Optimization is compared in the results.  Normal Risk Constrained 

Optimization is deemed appropriate because of the assumption made on the marginal 

distributions and its dependency measure.  Chapter 6 discusses the conclusions drawn from the 

results and the implications for the agriculture industry.  
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CHAPTER 2. BACKGROUND AND RELATED LITERATURE 

Introduction 

 The agriculture industry has seen many changes in recent years, and the biggest change is 

volatility.  Market-price volatility makes business much more risky.  Another important change 

is the increasing spread between the Pacific Northwest basis and the U.S. Gulf basis.  This 

increasing spread between PNW and USG is similar to the larger spread between WTI oil and 

Brent crude oil.  (Borenstein and Kellogg, 2012) discovered that arbitrage opportunities existed, 

but they were constrained by bottlenecks in the oil supply-chain.  The spread for soybeans 

between two ports may be due to both transportation costs and quality issues.  Japan buys no 

soybeans from the PNW port because there is a noticeable difference in protein and oil content, 

hence Japan is willing to pay a .35 $/bu premium for higher-quality soybeans (Wilson, 2012).  

Volatility in the soybean basis makes it more difficult for markets to be integrated in the short 

run.  If markets become less integrated, it opens the door for spatial-arbitrage opportunities.  The 

Market Integration section highlights other factors that lead to arbitrage opportunities or poorly 

integrated markets. 

 A portfolio is created where a trader owns origins with soybeans or buying soybeans 

from origins located strategically so a firm can optimally transfer grain at least cost and risk to 

gain the largest amount of profit.  Based on the profits and risk, we can decide where to buy and 

sell soybeans.  The portfolio’s assets are highly correlated with each other; however, that 

correlation may be non-linear.  The cost of transportation has an effect on the basis.  However, 

many industries use the same modes of transportation.  During soybean harvest, the 

transportation costs should be more correlated with the basis values because transportation is at 

such a high demand. 
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 The literature review tells the story about how spatial arbitrages effect market 

relationships and new methods to analyze market relationships.  Most literature regarding 

arbitrage has been about market relationships or price transmission.  Two markets with 

homogeneous products should move in a one-to-one relationship.  If these markets fail to move 

in a one-to-one relationship, then a risky arbitrage opportunity would exist.  Arbitragers would 

be able to hedge their price risk with the use of a derivative for certain commodities.  There are 

still risks involved with the basis, transportation costs, and quality aspects.  Homogeneous 

products, such as soybeans, which are in a freely functioning market should efficiently transmit 

prices from market to market so that the differences between markets are transfer costs.  That 

being said, there should be no profitable arbitrage opportunities.  Efficient markets are abiding 

by the law of one price (LOP) because of arbitrage.  

 Some economists think that a freely functioning market should efficiently link prices 

across regional markets, but if markets are not freely functioning, arbitrage opportunities arise.  

In early studies about market transmission, economists discovered that the law of one price is not 

completely accurate, meaning that prices do not move in an exact one-to-one manner.  Isard 

(1977), Protopapadakis and Stoll (2012), Thursby et al. (1986), and Ardeni (1989) did not 

completely agree with LOP.  Those researchers found an LOP failure in the short and long runs 

using parametric techniques in many commodities because of sticky prices. 

 Recent literature, such as (Goodwin, et al., 2011) was not in complete opposition to LOP.  

The empirical evidence in the literature about market integration found that lags for adjusting 

prices between markets can tend to be longer than expected.  The most recent literature 

illustrated that LOP is relevant in the long run. Parametric and non-parametric techniques were 

used to support LOP  The first technique used to support the long-run LOP was co-integration 
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(Engle and Granger, 1987).  The co-integration technique was transformed into a threshold times 

series model which allowed for non-liner modeling.  The most recent technique used a copula 

based model, which is a non-parametric model, and this technique found evidence to support 

LOP (Goodwin, et al., 2011). 

 Researchers studying market integration concentrated on finding whether two markets 

adjust prices accordingly to achieve equilibrium LOP.  Included in this literature review is 

literature on Efficiency Frontier regarding ways to measure return gains with minimal risk.  

Other studies, such as trading strategies, are included in the literature review and have not had 

much attention in market integration.  The literature regarding trading strategies and arbitrage is 

my research contribution.  Previous literature that is explained further in this thesis’ literature 

review is Arbitrage, Law of One Price, Market Integration, Portfolio Theory, and Trading 

Strategies.   

Arbitrage 

 Arbitrage can happen in all marketplaces.  Arbitrage is the process that shifts markets 

from inefficiency to efficiency.  An arbitrager searches for mispriced goods and tries to make a 

profit from the market inefficiencies.  Arbitrage can be found in spatially mispriced, tangible 

goods, or it can be discovered in mispriced intangible assets, such as options.  Tangible assets, 

such as soybeans, are spatially arbitraged in this thesis.   

 Market integration, the law of one price, and arbitrage are all closely related topics.  A 

common concern for the market-integration, law-of-one-price, and arbitrage literature is transfer 

costs.  The public does not know what a firm transfer costs are because business transactions 

between merchandisers and transportation companies are private information.  These 

unobservable costs make it difficult to put an accurate value on spatial arbitrage, whether a 
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market is abiding by the law of one price, or if the markets are truly integrated.  A majority of the 

methodology developed to test market-integration and arbitrage opportunity checks for the 

probability of market efficiency or a market relationship. 

 Threshold autoregression is a technique that is used to achieve estimated results on the 

return to arbitrage.  There are many costs associated with spatially arbitraging commodities.  As 

a researcher, some of these costs are available publicly, but knowing exactly what a commodity 

trader pays for transportation is unlikely.  There are many other direct costs, such as 

loading/unloading, insurance, and storage, associated with a trade. 

 Arbitrage is the process that makes the law-of-one-price theory possible.  Arbitrage is the 

force applied by arbitragers to keep markets integrated and to follow the law of one price.  

Arbitrage does not work perfectly and, in most cases, carries a large amount of risk (Shleifer and 

Vishny, 1997).  In some cases, arbitragers do not attempt to arbitrage a market due to the amount 

of risk involved.  Therefore, the market remains inefficient until the risk is matched with the 

return.  As market prices spread farther apart, it takes an additional amount of capital to converge 

them back to an equilibrium price, and the markets could continue to spread.  If the markets 

continue to diverge, more capital is needed, and more risk is involved in the transfer.  Arbitragers 

are keen traders and investors.  Like a rational investor, if arbitragers can gain the same profit 

with a lower amount of risk, they trade those assets compared to a more risky trade (Ali, et al., 

2003). 

 The spread between the PNW and the USG is diverging.  This increased spread is similar 

to the arbitrage opportunities seen in (Borenstein and Kellogg, 2012) study.  Grain commodity 

traders are already investing capital in the physical commodity, but they need to find a strategy 

that limits their risk and maximizes spatial-arbitrage profits. 



 

17 

 

 The study done by (Borenstein and Kellogg, 2012) about the increasing spread between 

the (WTI) oil price and Brent crude oil is highly related to the objective for this thesis.  Oil has 

different grades, but in reality, they should have similar prices through arbitrage.  Before oil 

fracking in North Dakota and Canada, the WTI and Brent crude oil had small price spreads 

(Borenstein and Kellogg, 2012). 

 The increase in North Dakota oil production overwhelmed the export pipeline from 

Cushing, Oklahoma, where the WTI oil price is derived.  The excess supply at Cushing lowered 

the WTI oil price, which represents an arbitrage opportunity for selling more to the export 

market.  This arbitrage opportunity remained due to constraints in the supply chain.  Oil 

refineries in the upper Midwest benefited from the lower WTI oil price (Borenstein and Kellogg, 

2012).  Midwest refineries produced a product at the lower WTI oil price.  The study about the 

oil industry discovered that the constraint in the supply chain caused a spatial-arbitrage 

opportunity, but the study was more concerned about the effect of Midwest fuel prices.  This 

study used an ordinary least squares (OLS) model to regress price changes in crude oil and 

Midwest fuels prices. 

 China has gone through a great economic transition since 1988.  China is interested in 

how integrated its commodity marketplace is compared to historical market integration across a 

time period of great policy changes (Park, et al., 2002).  Many factors can inhibit market 

efficiency.  Infrastructure bottlenecks, managerial incentive reforms, and production-

specialization policies are all contributing factors that affect market integration (Park, et al., 

2002).  In the research of Park et al (2012) used a parity-bounds model that follows Baulch 

(1997) and Sexton et al. (1991), which was extend from (Spiller and Huang, 1986). 
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 The goal of research about China’s market integration is to understand whether the lack 

of integration, if any, is related to failed arbitrage, autarky, or trade-flow switching.  The parity-

bounds model is a useful tool to discover the source of failed integration.  China would like to 

understand if the failed arbitrage is from barriers between marketplaces or if commodity traders 

are still learning how to arbitrage.  Autarky is when price differences are greater than the transfer 

costs between markets.  Trade-flow switching may be due to successful arbitrage, which would 

allow other markets to seem less integrated when there is trade-flow switching.  Researchers 

using conventional market-integration tests would assume less market integration due to trade-

flow switching. 

 A study about international market integration for gold from 1890 to 1908 (Clark, 1984) 

is similar to the previous review studies (Park, et al., 2002; Borenstein and Kellogg, 2012).  A 

very noticeable similarity between those research papers is the barriers between markets.  From 

1890 to 1908, there was a noticeable flow of gold to an unprofitable location.  Researchers 

thought that it was the government interaction that caused the unprofitable flow.  Market 

exchange rates and the official exchange rates could fluctuate within a certain bandwidth.  The 

bandwidth is associated with the cost of shipping gold; sometimes, the rate difference was 

greater than the bandwidth.  Once the bandwidth passes the "gold points," arbitragers participate 

in the marketplace (Clark, 1984).  Arbitragers’ participation in the market limits the monetary 

authorities’ discretionary power over the nation’s money supply (Clark, 1984).  However, there 

were times that either the Bank of England or the U.S. Treasury possessed discretionary powers 

to promote gold imports and ban gold exports.  These barriers created by government policy 

would lead to market inefficiencies and unprofitable trades. 
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 A major concern in the (Clark, 1984) study was the estimation of transfer costs.  As noted 

earlier, these costs are not all available and could bias the profitable opportunities upwards.  

Other gold-trading costs are opportunity costs.  There could be a significant amount of capital 

involved in buying and moving gold, and researchers used time and interest rate as the 

opportunity costs.  The interest rate worked against the arbitragers’ profit with the amount of 

time required to ship gold across the Atlantic Ocean.  The interest rate is the main factor 

inhibiting a profitable trade.  A majority of the other risks could be hedged using forward 

contracts. 

Law of One Price 

 The law of one price is a theory that was discovered many years ago.  The law of one 

price would have failed, even in the early years of trade, due to the inefficiency of arbitrage.  

Arbitragers would still be trying to discover the process of arbitrage, which would lead to 

inefficient markets.  Price-discovery information would only exist between traders and would be 

very private.  Price discovery would be happening, literally, as commodity traders negotiated 

their price; the relay of that price would have occurred very slowly.  Slow market movements 

limits the opportunities for arbitragers, hence the failure of the law of one price.  There would be 

almost no volatility because the prices would not change until commodity traders met to 

negotiate. 

 Society has become more sophisticated, and a lot has changed in the business of 

exchanging goods.  Tools have been created to speed up price discovery and information sharing.  

The futures market is where most commodities achieve price discovery, and it takes place in a 

matter of seconds.  There are factors such as exchange rates, transfer costs, homogeneous 

products that are slightly differentiated due to quality, and many other variables that determine 
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the price of goods between markets.  The volatility of commodity prices has increased 

substantially in recent years, and the time to relay these price changes happens instantaneously. 

 It seems as if price discovery and timing for relaying the price information have become 

so fast that price adjustments between integrated markets have become sticky in the very short 

run.  There has been much controversy in the market-integration literature that started by 

disagreeing with LOP completely and evolved to new techniques for calculating market 

integration that agreed with LOP in the long run. 

 (Isard, 1977) was one of the first to disagree with LOP.  His research on apparel and 

paper products discovered that, from 1969 through 1977, prices were fairly constant.  Empirical 

evidence found that prices have been heavily influenced by the exchange rate, and paper and 

apparel moved towards their initial level after the price change.  (Isard, 1977) tested the price 

indexes for several commodities and found that the exchange rate was a significant independent 

variable that affects the currency price of close, substitutable products from different countries.  

In his research, Isard used regression analysis to confirm his results.  Isard concluded that the 

exchange rate causes short-run price changes that persist for several years.  By this conclusion, 

Isard was able to prove, with his empirical results, that the LOP was violated for these 

commodities between countries.  

 (Protopapadakis and Stoll, 2012) used commodities from different countries that are 

traded on the futures market.  This research used individual commodities, rather than price 

indices, giving more true estimates of market integration.  Coffee, sugar, soybean meal, and 

wheat were more likely to veer from LOP in the short run, but the LOP validity holds in the long 

run (Protopapadakis and Stoll, 2012).  Arbitrage opportunities arose in the short run, allowing 

prices to converge back to one price in the long run. 
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 (Ardeni, 1989) disagreed with previous empirical analysis (Isard, 1977; Protopapadakis 

and Stoll 2012; Thursby et al., 1986) about market integration.  (Ardeni, 1989) disagreed with 

most empirical work done prior to 1989 because researchers failed to take times-series data into 

account.  If previous research did take times-series data into account, when previous researchers 

transformed these variables by first differences or correcting for serial correlation.  (Plosser and 

Schwert, 1978) found that first differencing is not a solution to nonstationarity.  First 

differencing may transform the variable to stationary data, but it alters the data enough to bias 

the empirical results.  Ardeni (1989) used co-integration approach to test the long-run 

relationship between variables that are nonstationary without imposing restrictions on short-run 

dynamics.  He used the unit root test and the co-integration test for a group of commodities from 

four countries.  Ardeni (1989) found no support for LOP with his empirical results in the short 

run or the long run. 

 Some previous literature actually supports LOP.  As pointed out that most early empirical 

analysis was flawed because they failed to account for nonstationarity in the data sets.  Non-

stationarity times-series data is unpredictable, occasionally observations in the data set veer off 

from the rest of the data points randomly, and this would lead previous analysis inaccurate. 

 Co-integration techniques were created by (Engle and Granger, 1987), and were used to 

support LOP in the long run.  The research in (Ardeni, 1989) was still able to reject LOP in the 

long run using co-integration techniques.  There was support of the LOP in (Buongiorno and 

Uusivuori, 1992) study in the long-run for pulp and paper commodities.  (Buongiorno and 

Uusivuori, 1992) they used (Engle and Granger, 1987) co-integration techniques for their 

empirical analysis.   
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 The problem with co-integration techniques and other parametric techniques is that they 

assume that market relationships are linear.  However, market relationships may be non-linear 

due to seasonality and the changing of transfer costs (Park, et al., 2007).  This research used a 

threshold co-integration approach to test natural-gas markets.  Researchers found non-linear 

price adjustments in seven different gas markets.  The non-liner price adjustments were due to 

season, geographical location, and the local market’s supply and demand.  Developing threshold 

co-integration models that account for non-liner price adjustments have helped support the LOP 

in the long run and have helped measure price adjustments in the short run. 

 The most recent model for measuring market integration utilizes a copula.  Copulas use 

joint distribution of prices that are separated by space and is applied to weekly data.  Copulas 

have been used more abundantly in the finance industry as a tool in risk management.  

(Goodwin, et al., 2011) is the first to use a copula-based model to test non-linear, spatial-

arbitrage relationships.  (Goodwin, et al., 2011) found that large market adjustments occur when 

there are large price differences.  The copula based model found similar results to the co-

integration models have found in past literature. 

 The literature on LOP has agreed that market are efficient in the long-run but not in the 

short-run.  Early literature has failed in analyzing market integration because the arbitrage 

opportunities in the short run are quickly unprofitable and lead to a long-run, intermarket 

equilibrium price. 

Market Integration 

 Market integration is very similar to the LOP, but researchers are now interested in 

determining what markets are less integrated due to outside influences.  (Vollrath and Hallahan, 

2006) wrote about market integration between the livestock markets in the United States and 
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Canada.  Market integration affects growth, induces structural change, changes the location of 

economic activity, and depends on the viability of agriculture firms/farms (Vollrath and 

Hallahan, 2006). 

 The focus is researching market integration based on transmission shocks across the 

borders.  The tested livestock markets are slaughter steers, hogs, whole chicken, two cuts of beef, 

and two pork products.  The transmission shocks would be policies created by the United States 

and Canada.  Most policies have a tendency to create barriers between markets.  These barriers 

cause the markets to be inefficient or cause structural breaks between markets that were highly 

integrated.  This research examines a time when the Canadian-U.S. Free Trade Agreement 

(CUSTA) and, later, the North American Free Trade Agreement (NAFTA). 

 The empirical model used in this research adopts a multi-faceted approach that is closely 

related to the theoretical underpinnings of LOP.  In the empirical model, researchers control or 

assume delivery lags, transfer costs, seasonal cycles, and government policies.  A detailed model 

is represented below: 

                                                  

                                        
(1) 

 Here, researchers control for own-currency price and use dummy variables to control for 

government policies.  The pt variable represents the domestic price, and    represents transfer 

costs.  Variables    and (     ) represent own-currency price elasticity before and after the 

CUSTA and NAFTA policies.  The dummy variable,   , is 0 if the time frame is before CUSTA 

and NAFTA, and the dummy variables takes the value of 1 after the policy change.  The nt 

variable represents the error term which is due to seasonality and cycles.  It is best to remove the 

exchange rate from the equation because of the exchange rate’s non-linearity (Goldberg and 
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Knetter, 1997).  Then, (Vollrath and Hallahan, 2006) account for seasonality and cycles with the 

nt term. This model cannot show the impacts of the exchange rate on commodity prices because 

of the price-adjustment lag.  This model is linear, which is why it is best to remove variables that 

are non-linear.  However, the variables that are controlled for may be statistically significant to 

the price changes between markets.   

 These parametric models have their flaws, such as assumptions about price behavior, and 

are too restrictive or unrealistic about the distributions (Serra, et al., 2006).  Non-parametric 

techniques should have fewer, less-restrictive assumptions.  Parametric-threshold models require 

stationary thresholds, but if the markets tend to have changing transfer costs, non-parametric 

techniques should be used (Serra, et al., 2006).  In the past, most empirical models made 

assumptions about transfer costs, however, current studies have recognized the importance of 

including transfer costs (Serra, et al., 2006). 

 The Vietnamese rice market was studied heavily by (Lutz, et al., 2006) to see how 

integrated it was.  The Vietnamese try and untangle the ramifications of policies enacted in 1975 

that introduced collectivized agriculture.  Originally, privatized trade was prohibited, and 

marketing organizations controlled the rice market, creating market barriers and leading to 

noncompetitive markets.  In the last 20 years, much has been done to liberalize domestic rice 

markets.  The liberalization is due to policy changes.  The integration of the rice market is tested 

after the policy changes.  Small millers have accumulated enough capital to deal with large-scale 

transfers (Luu and Hai, 2003).  "This indicates that the liberalization policy has been successful 

and facilitated the private market” (Lutz, et al., 2006).  A research paper by Minot and Goletti 

(2000) found that the market integration between spot markets is weak, and their research lead to 

(Lutz, et al., 2006) research topic.  This weak relationship is an indicator that these markets are 
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not behaving efficiently and that an arbitrage opportunity may exist.  Markets that are not 

perfectly integrated can lead to inaccurate price information as well as produce being moved to 

surplus markets (Tomek and Robinson, 2003). 

 (Lutz, et al., 2006) empirical model is created to focus on the spatial price difference 

between rice markets.  Monthly average prices were used by (Minot and Goletti, 2000), and they 

found that there was market deficiency between the northern and southern markets.  Lutz 

concluded that Minot and Goletti's work was unjust because monthly averages do not represent 

day-to-day prices.  Daily, or even weekly, price data would be much better for this type of 

analysis.  Lutz et al. used weekly data because most traders use phones and because 

transportation can take up to weeks for moving the commodities.  "Consequently, average month 

prices do not reflect the short-run adaptation process we are interested in” (Lutz, et al., 2006) 

 An econometric model called johansen maximum likelihood estimation was used by 

(Lutz, et al., 2006).  They started with a simple mathematical model to test market integration 

based on multiple, co-integrating vectors.  The model has a vector of market prices at time t, for 

the n markets under consideration, and assumes that the present market prices are related to their 

own and past values.  In the equation, p is an endogenous variable, and if prices are stationary, 

the model can be estimated by OLS.  However, if the prices are non-stationary, the value of p 

can be misleading.  A Box-Jenkins method was used to deal with non-stationary prices.  The 

problem with non-stationary prices co-movements cannot be realized.  Lutz et al. combined both 

methods; however, the parameters enter the model in a non-linear way.  Hence, they have to use 

maximum likelihood estimation.  Maximum likelihood estimation can be used with linear or 

non-linear data.  All markets are integrated in the long run, and the Ho Chi Minh City and the 

Mekong River Delta markets are strongly correlated in the short run (Lutz, et al., 2006). 
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 To more accurately analyze market integration due to the effects of transmission shocks, 

a multivariate vector autoregresssion (VAR) model is used in (Vollrath and Hallahan, 2006) 

study.  (Vollrath and Hallahan, 2006) tested McNew's (1996)’s and McNew and Fackler’s (1997) 

notion of market connectedness using the VAR model.  (Vollrath and Hallahan, 2006) combined 

the VAR and LOP models to generate this equation: 

 
                   

 

   

             

 

   

  

         

  

   

                          

(2) 

 There are three subscripts for each right-hand-side coefficient: the first one refers to the 

equation in the system; the second one is for season or lag-length; and the last one is for 

endogenous variables.  The variables in the model are described as P1 (U.S. price), P2 (partner-

country price), SDj (monthly seasonally dummies), A (policy dummy), and G (other government 

policies potentially affecting price) (Vollrath and Hallahan, 2006). 

 Akaike and Schwartz-Bayesian information criteria are (Lutz, et al., 2006) used to choose 

the number of lags for each endogenous variables (Vollrath and Hallahan, 2006).  They also used 

the Wald test to ensure that the lags were long enough to model estimation-generated white-noise 

residuals.  (Vollrath and Hallahan, 2006) also used (Pesaran and Shin, 1998) generalized 

impulse-response method because it does not impose mathematical transformation on the 

variables in the VAR part of the model.   

 Next, the Granger causality, impulse functions, and impact multipliers are used to 

generate insight about the nature of adjustment between the U.S. and Canadian livestock 

markets.  These tests show how quickly the country responds to shocks in other countries.  The 

vector autoregressive (VAR) model is useful because it is not necessary to transform non-
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stationary data to stationary data.  (Plosser and Schwert, 1978) found that transforming data from 

non-stationary to stationary manipulated the data, leaving inaccurate results.  The VAR model 

works much better because all significant variables are included.  The VAR model is able to 

provide feedback about the effects on all endogenous variables.  Only two things need to be 

distinguished: the variables that interact with each other and the largest number of lags needed.  

This model is supposed to be free of restrictions and assumptions, but one must decide how 

many lags should be included.  In some cases, a large number of lags are needed to capture the 

dynamics of the data being modeled.  Adding more lags to the model decreases the degrees of 

freedom, which can lead to overestimating the model. 

 Similar to (Vollrath and Hallahan, 2006) study (Serra, et al., 2006) used an 

autoregression model to test market integration.  Serra et al. used locally weighted regression 

techniques to modify the parametric threshold autoregressive (TAR) model into a non-parametric 

model.  Serra et al. hypothesized that it will create a smoother price behavior than the original 

TAR model.  Local polynomial-fitting techniques require the adoption of several decisions, such 

as the local polynomial.  Bandwidth needs to be selected for an appropriate local polynomial.  A 

value close to 1 would be more biased with less white noise.  A smaller value would be less 

biased and have more white noise.   

 A frequently used method to determine bandwidth is cross-validation (Serra, et al., 2006).  

The bandwidth is chosen based on minimizing the squared prediction error in the cross-

validation method (Serra, et al., 2006).   

 Once the bandwidth is selected, a weighted, least-squares regression is estimated, and 

observations farther from xk are weighted less (Serra, et al., 2006).  Local Linear regression 
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(LLR) generates parameters that cannot be tested with a normal statistical test, so a graphical 

inspection of the plotted results and confidence interval are relied used to test results. 

 These auto-regression techniques work better with non-stationary data compared to 

parametric techniques.  These non-parametric auto-regression models are not only better because 

they can model non-stationary data, but these models also tend to have fewer assumptions.  

Although auto-regression models have fewer assumptions than other parametric models, there is 

another empirical model with even fewer assumptions.   

 Copula is used to test market integration for an oriented strand board (Goodwin, et al., 

2011).  The use of copula helps imply a transfer-cost band which has often been assumed in 

other literature about market integration.  Six different copula models were considered in 

(Goodwin, et al., 2011) research.  The Gaussian, Student t, Clayton, rotated Clayton, Gumbel, 

and rotated Gumbel methods all have varying degrees of tail and state dependence as the 

degrees-of-freedom parameter changes.  The choice of the copula depends on the degrees-of-

freedom parameter.  As the degrees-of-freedom parameter changes, the tail dependence also 

changes, and the type of copula that fits that tail dependence also changes.  The choice of the 

copula function determines the nature of the correlation.  More literature needs to address how to 

choose the correct copula model (Goodwin, et al., 2011).  A familiar equation from 

autoregressive model is as follows: 
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where p
i 
and p

j
 are logarithmic prices in regions i and j; a and b are parameters that reflect the 

degree of market integration; and b represents the LOP error, which is the difference in 

    
       

 
.  In some cases, a represents a proportion of the price difference as transfer costs.  
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(Goodwin, et al., 2011) used the widely recognized correspondence between Equation 3 and the 

linear Pearson correlation coefficient:  

 
     

  

  
, (4) 

where y and x correspond to random variables,     
      

 
  and      

       
 

 ; p is the Pearson 

correlation coefficient; and        represents the standard deviation of random variable y (x).  

The linkage between markets i and j is represented by p.  Both p and b have similar regime 

switching.  This regime switching is dependent on market conditions.  Copula comes into the 

model by considering the joint distribution function of     
      

 
  and      

       
 

 .  Sklar's  

Theorem, implies that any joint probability function can be represented in terms of a marginal 

densities function known as a "copula" (Sklar, 1959).   

 Copula models allow researchers to capture the extreme event or shock to a market that 

causes disequilibrium.  These extreme events are found at the tails of a distribution, and different 

copula models allow researchers to analyze these price movements.  By using copula, 

researchers are able to tell if there is a large or small price differential and to measure the speed 

of price adjustments back to equilibrium. 

 There are two methods for representing the multivariate distribution in terms of 

dependent marginal distributions (Goodwin, et al., 2011).  Joint maximum likelihood estimation 

or two-stage statistical procedure are alternatives to estimating the copula parameter.  (Goodwin, 

et al., 2011) uses the two-stage approach, Canonical Maximum Likelihood method. 

 The data consist of four regions: Eastern Canada, North Central United States, and 

Southeast United States. The Southwest U.S. research had a positive correlation for each market 

pair, which is required for spatial market integration.  (Goodwin, et al., 2011) applied Ordinary 
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Least Squares Estimation and found a strong degree of integration between the markets.  Next, 

six Maximum Likelihood Estimation models were utilized to fit the six different copula models.  

Different fit statistics were used to try to discover which of the six copula models worked best.  

The Cramer von Mises statistic is the preferred model-selection criteria (Goodwin, et al., 2011). 

 Interpretation of the tail dependence allows researchers to discover if one market tends to 

export to another consistently, and the price difference tends to be either positive or negative.  

Within the wood market, there was a definite basis pattern where one market price tended to be 

above all other markets (Goodwin, et al., 2011). 

 Researchers interpreted the copula estimates in two ways.  First, they evaluate the 

probability distribution function (p.d.f) implied by the copula for the sample data.  Next, they 

evaluate the copula estimates using standard marginal distributions (Goodwin, et al., 2011). 

 Goodwin et al. (2011) found that their research was similar to autoregressive models 

because market adjustments are generally quicker in response to large price differences.  It was 

also discovered that copula models provide even stronger evidence of non-linearities in market 

linkage.  They also found that it is difficult to select a specific parametric copula or copula 

family. 

Portfolio Theory 

 Portfolio theory is used to help manage a diverse set of stocks.  Later in the 1980s, it was 

used to find the risk-minimizing hedge ratio between two markets.  The model is a simple mean-

variance model, where hedgers are able to maximize their return subject for the amount of risk 

they were willing to take.  Other methods of determining a proper hedge ratio would be the use 

of parametric modeling. 
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 The original assumption is that most hedgers with a cash position, farmers, 

merchandisers, and end-users want to achieve the minimum amount of risk as possible.  A 

traditional hedge assumes a hedge ratio of one.  If the goal of the hedger is to completely offset 

the risk, he/she would choose a traditional hedge ratio, however, if the futures price and the cash 

price are not 100% correlated, the hedger could be over hedging or under hedging.  A hedger 

would obtain the best hedge ratio by using the mean-variance model or some other non-

parametric multivariate model.  Also, by utilizing the mean-variance model, a hedger is able to 

adjust the hedge ratio to a risk level that he/she is willing to take based on the portfolio’s higher 

return. 

 (Haigh, 1999) studied hedging strategies, and research found that portfolio theory works 

better for more risk-loving traders.  The assumption made about commodity traders is that they 

only have a price risk associated with the commodity they are trading.  However, a commodity 

trader also has to deal with the price risk associated with transportation and the basis risk.  If the 

trader is an importer of the commodity, he/she also has to deal with the freight price risk and 

changes in the exchange rate.  Multiple models were used when testing for an optimal hedge 

ratio.  (Haigh, 1999) used an Ordinary Least Squares (OLS) model, a seemingly unrelated 

regression (SUR) model, and a multivariate GARCH (MGARCH) model to determine the 

optimal hedge ratio for a traders cash position.  An assumption for this research is that hedgers 

are trying to minimize risk by using this non-parametric model (Haigh, 1999).  The MGARCH 

model gave the highest percentage of risk reduction by hedging transportation and the exchange 

rate.  Next, the SUR model gave the second-best risk-reduction percentage, followed by the OLS 

model. 
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 If a hedger were to simply hedge grain, freight, and the exchange rate individually, with a 

hedge ratio of one, then the hedger would have overestimated the number of contracts needed to 

minimize the risk.  The reason for this phenomenon is that assets in the portfolio could already 

partially hedge each other, hence the trader would need fewer contracts than if each asset were 

hedged alone.  "Surprising, is the lack of importance of the CBOT contract for the grain 

importer” (Haigh, 1999 p.14).  Hedging the exchange and freight rates acts like a natural hedge 

for the grain assets in the portfolio. 

 The results show how important it is for a hedger to analyze a portfolio with multiple 

assets together, rather than hedging them individually.  However, a portfolio might present 

profitable return for the extra risk involved, and the regression model would not allow a trader to 

adjust his/her hedge ratio in a manner to measure the mean-variance. 

Trading Strategies 

 Highly integrated markets that do not have a one-to-one price relationship will present a 

spatial-arbitrage opportunity.  (Flores, 2011) researched a low-investment strategy used by a 

fresh produce farmer.  The method Flores created could be similar to firms/farms that were 

interested in capitalizing on markets with highly variable price movements.  There has been 

much literature about market integration, however, "there has been little attention given to assess 

the effect of the level of market integration on the opportunity of arbitrage within commodity 

markets" (Flores, 2011 p. 20). 

 (Flores, 2011) uses portfolio theory, which was trying to maximize returns while 

minimizing risk (VAR).  The methods are about developing a strategy so that a trader can make 

decisions based on a two-market structure.  The assumptions are high transfer costs, liquidity, 

market accessibility, price characteristics similar to financial instruments, infinite product 
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availability at the base market, and always having a demand at the target market to cover the full 

shipment. 

 The decision-making policy has to do with the price differential or a threshold point.  

Another main objective of (Flores, 2011) research is to determine the optimal value of the 

threshold point.  The assumption are made about the price distribution and the market behave 

randomly.  The main objective is to develop methods for profitable arbitrage opportunities in this 

thesis, not necessarily selecting the correct distribution for transportation costs and prices. 

 A certain threshold value or price differential will result, on average, in a long-term profit 

(Flores, 2011).  Pragmatic and theoretical approaches are used to locate this optimal threshold 

point.  The pragmatic approach fixes a price differential between the two markets and applies 

different threshold values that maximize the expected rate of return.  This process has many 

iterations; then, the data are collected to be analyzed.  Once the data are collected, they are put 

into a histogram to determine the observations’ frequency distribution. 

 (Flores, 2011) next step is to determine the expected profit per threshold and the standard 

deviations.  (Flores, 2011) uses a statistical distribution that adequately fits the histograms 

created earlier.  The components of operation and the number of times that arbitrage 

opportunities arise need to be considered before the optimal threshold value (K) is selected.  The 

second approach to determine the optimal value of K would be to use the theoretical approach.  

This approach also optimizes expected profit; however, it uses the distribution of the price 

differentials for two market structures.  The key parameters for the model are the product price 

per pound at market i and time t, transfer costs between locations i and j, and transfer time from 

market i to j.  The transfer cost is assumed to be fixed throughout the operational period.  The 

transfer time is determined by variables.  All these variables form the expected profit model.  
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The expected profit model is two equations; one is the difference in price at time t.  The other 

equation is the difference in lagged price at location i and the current price at location j. 

 (Flores, 2011) expected profit is then maximized, depending on the decision factor, K.  

Next, the differentiated equation is set equal to zero.  Setting the equation equal to 0 makes it 

possible to find the global maximum which, in turn, finds the optimal threshold value, K.  

 Next, methods are developed for a firm/farm interested in a strategy for short-term profits 

based on current market conditions.  The methods for this short-term spatial-arbitrage 

opportunity are developed similar to the previous long-term methods.  A pragmatic approach 

uses a binomial lattice structure to determine the threshold that generates the highest 

probabilistic projections of profit and losses (Flores, 2011). 

 (Flores, 2011) developed a strategy to minimize the risk of a loss due to disappearance of 

the arbitrage opportunity for any given product.  Markowitz's portfolio theory is the method used 

to reduce the trader’s risk.  He uses a portfolio of commodities and determines the weights for 

each product and ships to a given origin that minimizes the risk while maximizing returns. 

 Return is calculated by the amount received due to the spatial arbitrage from the 

investment.  Next, the rate of return is calculated by the difference between the amount received 

and the amount invested; and then divided by the amount invested.  Then, the average rate of 

return is calculated along with the standard deviation.  A lognormal distribution for the rate of 

return is used and tested with the Chi-Square Goodness-of-Fit Test.  These parameters of the best 

fit are used to calculate the average rate of return and the standard deviation. 

Summary 

 The literature review regarding Arbitrage, the Law of One Price, Market Integration, 

Portfolio Theory, and Trading Strategies has laid the foundation for this thesis’ research.  The 
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law of one price holds in the long term, but there are risky arbitrage opportunities in the short 

run.  Different parametric and non-parametric models developed to study the law of one price 

have lead to the study of relationships between markets for different goods.  The models have 

lead to studying markets between countries as well as how market barriers, markets shocks, etc. 

affect intermarket relationships. 

 Using portfolio theory to manage assets in a way that determines the amount of risk 

associated with a given return is important for risk-loving traders.  Literature in this field is 

related to a hedger importing grain commodities and has multiple price-risky assets.  This 

literature has found that combining the assets and then determining the hedge ratio gives a more 

accurate result than individually hedging each asset.  

 The research reviewed in this chapter deals with creating a trading strategy based on 

inter-market relationships diverging from the law of one price in the short run to realize some 

return.  There is very little literature in the field of trading strategy, but there is a vast amount of 

literature in the law-of-one-price and inter-market relationship fields.  The research reviewed in 

this chapter helps lay the foundation for research about trading strategies and arbitrage, the 

fundamental objectives of this thesis. 

 This study tries to incorporate some of the most recent methods from previous literature 

that were reviewed in this chapter to create a trading strategy that can locate markets with a large 

price spread.  Next, portfolio theory allows us to combine our risky assets to establish a portfolio 

that minimize the risks of transportation, along with destination and origin basis, so that we can 

capitalize on the soybean market’s disequilibrium. 

 The contribution of this research is to the literature about trading strategies and arbitrage, 

and uses the most current methods for market integration which allow for non-stationary, non-
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liner market-price data.  Using copula allows the data to be simulated and to continue their 

dependency between assets.  Fewer assumptions are made in these methods compared to the 

techniques used in previous research about trading strategies. 
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CHAPTER 3. THEORETICAL RELATIONS 

Introduction 

 Previous research (Borenstein and Kellogg, 2012; Protopapadakis and Stoll, 2012; 

Goodwin et al., 2011) and the rest of the literature reviewed in Chapter 2 created a theoretical 

models that was somehow linked to the theory of competitive intermarket prices.  Competitive 

intermarket prices are the major theoretical concept analyzed in this chapter.  A trading strategy 

is developed based on the boundary fluctuation between trading regions.  Soybean market 

boundaries are in continuous fluctuation, and the theory of competitive inter-market prices can 

help explain this fluctuation.  (Wilson and Dahl, 2011) discovered that the PNW versus USG 

spread has increased.  These spreads could be increasing due to changes in supply and demand 

and/or increased ocean-shipping costs.  These spreads are quite volatile, so the market 

boundaries are always changing.  (Borenstein and Kellogg, 2012), in a study about the oil 

industry, discovered barriers that prevent a location from shifting its excess supply to alternative 

markets offering a higher price.  The Panama Canal has reached its capacity, much like the oil 

export pipeline in Cushing, Oklahoma.  The capacity constraint indicates that, as the market 

boundaries are unable to shift, there are locations that cannot sell their commodities to a market 

with excess demand because of supply-chain barriers.   

 Theoretical concepts, such as arbitrage, the law of one price, and market integration, are 

all related to the theory of competitive inter-market prices.  Because of arbitrage and the law of 

one price, there are competitive intermarket prices.  Because of competitive intermarket prices, 

there is market integration.  All other theoretical concepts considered in this chapter lay the 

foundation to help understand the theory of competitive intermarket prices.  The next section in 

this chapter discusses Price Discovery.  Then, Basis Theory is explained in detail.  Next, the 
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Theory of Competitive Intermarket Prices is explained.  Finally, the law of one price is explained 

in relation to this thesis topic. 

Price Discovery 

 The direct functions of a market are transportation, storage, and transfer of ownership and 

are all extremely important for a functioning market.  These direct functions are discussed in 

greater detail in the Theory of Competitive Intermarket Prices section.  An important function is 

the movement of commodities across markets, and the most important function is price 

discovery.  Supply and demand are the fundamentals of price discovery, and related topics found 

in microeconomic theory are discussed in this chapter. 

 Price discovery is sometimes less than perfect.  If price discovery were to work perfectly, 

all buyers and sellers would have perfect information at the same, or zero, cost (Tomek and 

Robinson, 2003).  If everyone truly had perfect information, then the market price would be in 

equilibrium.  In practice, perfect market information is rarely available, so we have mechanisms 

where buyers and sellers can discover the true market-price equilibrium.  Negotiation, 

administrative decisions, and auctions are the three categories of price mechanisms where price 

discovery takes place (Tomek and Robinson, 2003).  Negotiations are mostly performed 

privately between a buyer and a seller.  An example of a private negotiation would be a country 

elevator and the railroad negotiating transportation costs.  Administrative decisions would be the 

price set by firm managers, such as the prices set at most retail stores.  An auction is similar to 

the futures market at the Minneapolis Grain Exchange, which is a double auction (Schrimper, 

2001).  Buyers bid while sellers ask for any given price until an agreement between the players is 

reached.  However, a price agreement is almost never reached on the first bid and asked prices 

because decisions are made with less-than-perfect market information.   
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 Commodities, such as soybeans, have price discovery at multiple levels.  Price discovery 

takes place globally, nationally, regionally, and locally.  Price discovery is a searching process, 

and any given information set used to obtain a market equilibrium condition can contain a certain 

amount of noise (Tomek and Robinson, 2003).  The complexity of price discovery increases as 

the market becomes more global.  The larger the information set used, the more complex the 

price discovery process is.  A larger information set carries more noise in the price-discovery 

process.  Nationally, price discovery is more complex than regionally or at the country elevator 

because there are non-commercial buyers/sellers involved at the national level.  Non-commercial 

buyers/sellers are using the futures market to seek profit and, in some cases, significantly alter 

the market.  Price discovery at the national level or futures markets can significantly alter the 

cash price at country elevators.  Commercial players in the futures market can also bring a fair 

amount of noise to the price-discovery process.  The research conducted for this thesis 

completely avoids the complexity of the price-discovery process in the futures market because, 

for soybeans, every country elevator and port are subject to the futures market.  Every port and 

country elevator are not subject to the same cash price, which is why Basis Theory is reviewed in 

a later section.  The price discovery of the basis is conceived in a similar fashion. 

 Supply and demand are the local factors discussed in this section.  Adam Smith was one 

of the first economists who had the idea of the "invisible hand" directing the flow of resources to 

locations with the greatest value (Nicholson and Snyder, 2007).  The basics of the demand curve 

start with an individual desire to purchase a basket of goods and services with a limited amount 

of income.  Each consumer is trying to purchase the right combination and quantity of goods and 

services to maximize his/her utility subject to his/her income constraint.  “Utility” is a term used 

to describe someone's measurement of satisfaction from a set of goods purchased (Tomek and 
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Robinson, 2003).  An assumption made about each individual is that he/she always prefers 

getting more than less of the goods and services.  Each consumer has his/her own utility function 

for a set of goods, and the person’s tastes and preferences change throughout his/her lifetime, 

altering the utility function.   Figure 1 represents the difference in an individual’s utility by 

purchasing alternative combinations of good X and good Y.  U1, U2, and U3 represent the 

individual’s indifference curves.  Anywhere along  the indifference curve represents the same 

utility for that individual.  An individual is reaching a higher utility on the indifference curves 

located upwards and to the right.  If the price of good X decreased, the individual would buy 

more of good X and possibly more of good Y.  Price and quantity are inversely related based on 

the logical behavior of a consumer, which is why the demand curve is downward sloping.  The 

inverse relationships between price and quantity are defined as the "law of demand" and can be 

explained by the substitution and income effect of a price change in Figure 1 (Tomek and 

Robinson, 2003).   

 

 

   Figure 1. Individual Consumer Preferences  

   (Tomek and Robinson, 2003). 
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 However, there are demand curves that are upward sloping, and this curve is called 

Giffen's paradox.  A demand curve can be upward sloping if the good or service is an inferior 

good and if there are no close substitutes (Nicholson and Snyder, 2008).  Giffen's paradox is 

explained in greater detail in Nicholson and Snyder (2007, 2008).  Goods and service can be 

categorized into two broad categories, normal and inferior good.  A normal good can either be a 

necessary good or a luxury good.  The classification of a good is important because it determines 

if a good decreases/increases with a change in a consumer’s real income. 

 Individual consumer demands produce a market demand.  There are two different 

movements with the market demand.  A change in quantity demand is a shift along the demand 

curve.  A change in quantity demand is due to a change in price.  A shift in demand is due to 

changes in population, income, prices of substitutes and complements, and consumers’ tastes and 

preferences.  As the population increases, more goods and services are needed, shifting the 

demand curve upwards and to the right.  An increase in real income allows individuals to have a 

smaller budget constraint, allowing them to buy more goods and services, which shifts the 

demand curve upwards and to the right.  However, if the good is an inferior good, consumers 

may prefer a more desirable good, and  would shift the demand curve for the inferior good to the 

left.  The demand curve for a normal good would shift to the right. A shift in demand is related to 

the prices for substitutes and complements because each individual is trying to maximize his/her 

utility.  For example, if the price of corn increases relative to wheat, then chicken farmers buy 

less corn and more wheat to feed their chickens.  Corn contains more energy than wheat, but the 

increased corn price decreases the chicken farmers’ utility more than buying wheat with less 

energy. 
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 Complements have a different impact on the related good because both goods are needed 

to satisfy the consumer.  If the price of corn increases, then the demand for chickens decreases 

because corn and chickens are complements.  Changes in consumers’ tastes and preferences alter 

their utility function which causes the consumers’ demand curve to shift.  All prices, in theory, 

are linked in an interdependent system (Tomek and Robinson, 2003).  These concepts are 

important to understand market demand.  Agricultural products such soybeans produce multiple 

products, and each product has its own market demand.  Another demand factor comes from 

global consumers’ demand and the exchange rate between countries. 

 Another concept to better understand market demand is elasticity, which is the slope of 

the demand curve at its different points.   Own-price elasticity shows the responsiveness of 

consumers’ change in quantity relative to the price change and can be seen in Equation 5.  

Elasticity is calculated by the percentage change in quantity (Qi) over the percentage change in 

price (Pi).   

 

    

   
  
   
  

 (5) 

 Percentages are used to calculate elasticity to remove the conflict of different measuring 

units, which allows researchers to compare elasticity between products.  There are three 

descriptions of price elasticity.  An elastic demand curve has price elasticity greater than 1.  An 

inelastic demand curve has price elasticity less than 1.  A unitary elasticity demand curve has 

price elasticity equal to 1.  Demand elasticity is an important factor to understand when trying to 

figure out how much the quantity demand is going to change due to the price change. 

 Cross-price elasticity and income elasticity are other important functions used to help 

understand the relationships between commodities and changes in real income.  Cross-price 
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elasticity is used to determine if a good is a complement or a substitute, and it also determines 

how changes in these goods affect one another.  These types of elasticity are important to 

understand the demand relationship between different commodities because the substitutes and 

complements can greatly alter market demand, but does not need as much attention regarding the 

research conducted in this thesis.  The concepts of elasticity are provided in great detail by 

Tomek and Robinson (2003) and Nicholson and Snyder (2007, 2008). 

 The market’s supply curve is somewhat similar to the market’s demand curve.  Instead of 

individual consumers trying to maximize their utility to make the demand curve, the supply 

curve has individual firms that are trying to maximize their profits.  Figure 2 shows a graph of an 

individual firm’s marginal cost, average total cost, and the average variable cost.  The 

mathematics behind a firm trying to maximize its profits is shown in great detail in (Nicholson 

and Snyder, 2008).  For simplicity, a firms production is where marginal costs equal marginal 

revenue.  Marginal cost is the price of producing one more unit, and marginal revenue is the 

return from producing an additional unit.  Agriculture is assumed to be a perfectly competitive 

marketplace; they are price takers, so the marginal revenue of producing one more unit is equal 

to the market price.  The marginal cost curve is upward sloping; as the market price increases, 

there is an increase in the profit-maximizing output (Tomek and Robinson, 2003). 

 A firm’s average variable cost and average total cost are important when deciding 

whether to continue to produce goods.  If the market price is below the average variable cost, 

then the firm is unprofitable and has reached its shutdown point.  If the market price is below the 

average total cost, then production is still profitable, but the firm is unable to cover all of its fixed 

costs.  However, the cost of shutting the firm down is greater than the loss on its fixed costs. 
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   Figure 2. Cost Curves and Optimum Output at Alternative Prices   

   (Tomek and Robinson, 2003). 

 

 Opportunity costs are also important when choosing whether to remain in production or 

to adjust the flow of the firm’s resources to produce an alternate commodity.  A farm can 

produce multiple products with the same long-term assets.  A producer switches to an alternate 

commodity if the opportunity costs are too great.  These decision variables are different across 

firms or farms.  However, firms all make decisions based on the same influential variables.  

 Figure 3 represents the supply curve at alternate time periods.  In the short run, there are 

uncontrollable variables, such as weather, disease, and pests.  Through time, the supply curve is 

different in agriculture compared to other industries because the quantity supplied to the market 

cannot be increased during the growing season.  Other industry supply curves could be altered 

instantly if the market price falls below the firm’s average variable cost.  In the short run, the 

supply curve is vertical because farms cannot alter the quantity supply because there is not 

enough time to produce more, but those uncontrollable factors can cause the supplied quantity to 

increase or decrease.  However, in the short run, production may be augmented due to 

inventories or imports (Tomek and Robinson, 2003).    
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    Figure 3. Changing Supply-Price Relationships Through Time   

    (Tomek and Robinson, 2003). 

 

 In the short run, resources can still be altered to increase/decrease a supply.  The supply 

curve could be viewed as a summation of individual farms’ marginal cost curves.  Through time, 

the supply curve becomes flatter because there is more time for farmers to adjust their 

production. 

 The long-run factors would be changes in technology, such as genetically modified crops 

or a new hybrid seed.  These variables cause a shift in the supply curve.  Movements along the 

curve are due to factors such as input prices, the prices of related goods, the prices of joint 

products, technology changes, or government policies.  Combining these firms or farms together 

creates the market supply curve which is represented in Figure 3. 

 The elasticity of the supply curve depends greatly on time, in some cases, as noted in the 

previous section.  The calculation of elasticity of supply is listed in Equation 6 where Q refers to 

quantity and P refers to price. 
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 (6) 

 However, in the long run, the supply curve can depend greatly on the farm’s geographical 

location.  Some farms’ locations restrict their ability to produce certain commodities due to 

climate or soil.  A more restricted farm would be more inelastic than a less-restricted farm.  Less-

restrictive farms are more elastic and would be more willing to alternate crops depending on the 

market price.  The supply curve’s elasticity may vary along the curve in the long run due to sunk 

or switching costs.   

 The previous section reviewed the basics of the supply and demand theory.  Now, the 

supply and demand can be combined to produce an equilibrium price.  Marshall showed that 

demand and supply work simultaneously; therefore, in some situations, it is difficult to determine 

which one is causing the new equilibrium price (Nicholson and Snyder, 2007).  The equilibrium 

price is where the supply and demand curves intersect.  The simplicity of the Marshall's supply 

and demand is found in Figure 4 can be misleading because there have been many theories 

created to explain why supply and demand take this shape.   

 
   Figure 4. The Marshall Supply-Demand Cross 

 (Nicholson and Snyder, 2007). 
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 However, the supply-and-demand curve is not always linear.  Supply and demand do not 

always replicate what is found in Figure 4.  The complexity of supply and demand can be studied 

further through the mathematics in Nicholson and Snyder (2007, 2008), but the basic 

fundamentals were already reviewed in this section. 

 A perfectly competitive market assumes that all buyer and sellers have perfect market 

knowledge, that each buyer and seller act economically, and that there are zero barriers of entry 

in all directions.  In theory, the price-discovery process would locate the true market-equilibrium 

price on the first bid and asking price.  Perfectly competitive markets always shift commodities 

to the trade-deficit market, but these kinds of markets are rare.  Most markets operate less than 

perfectly because they lack one of the assumptions for a perfectly competing market.  When a 

market operates in a less-than-perfect fashion, there are trade deficits, and that market may never 

satisfy the consumers’ demand until arbitragers discover the mispriced basis bids.  The trade 

deficits that occur between markets are discussed in detail in the following section. 

Basis Theory 

 The research conducted for this thesis is highly dependent on the basis.  The basis is what 

sets regions apart from one another in price.  The basis is used to determine market efficiency 

and market integration for this thesis.  Understanding the integration and efficiency of a market 

helps determine where arbitrage opportunities are available, which helps to identify intermarket 

trading strategies.  Understanding the basis helps explain one of the main concepts for the theory 

of competitive inter-market prices.  The grain-flow shifts are due to changes in the basis or the 

supply and demand.  There are many factors that differentiate the basis among regions.   

 Traditionally, it has been thought that the basis is cash minus futures price (Wilson and 

Dahl, 2011).  The futures price is the expected future-delivery spot price at the end of the futures 
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contract (Tomek and Robinson, 2003).  The cash price is the current spot price.  Futures and cash 

prices are known to be highly correlated, which is why futures contracts work well as a hedge.  

Both the futures and cash prices are determined by the current and expected supply and demand. 

 Changes in the basis are more predictable than changes in the futures price because the 

factors that affect the basis are more consistent.  The futures market and spot prices signal the 

trader or producer long physical grain whether to store or sell.  Inventory is a factor that can alter 

the grain supply within a growing season.  There is a cost for storing inventory, and it is partially 

reflected in the basis.  Through time, the change in the basis is equal to changes in storage costs, 

changes in transportation, and changes in quality by premium and discounts.  If a merchandiser 

was to hedge his/her positions, he/she would have zero price risk but would still be subject to 

basis risk.  Through time, the merchandiser would expect to gain a return on the basis equal to 

the storage costs (Tomek and Robinson, 2003).  To determine the storage price, we need a 

supply and demand curve, which is represented in Figure 5. 

 
        Figure 5. Supply and Demand Curve of Storage 

 (Tomek and Robinson, 2003). 
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 The supply curve for storage takes a non-linear shape due to the fixed storage interval 

and the variable costs, such as labor, energy, interest rate, and the value of the commodity being 

stored.  The storage cost can be negative or positive.  There can be times when grain is stored 

even though the economics are telling the grain handler to sell; this unprofitable storage occurs 

when processors need to store the commodity as an input to continue their processing operation, 

and is called a convenience yield (Tomek and Robinson, 2003).  An alternative motive for 

processors to store grain unprofitably is because of transaction costs (Chavas, et al., 2000).  

Processors continue to store grain until the storage cost is greater than the transaction costs of 

delivering grain at a later date.  The costs of storing grain become flat at a given amount of 

inventory because of economies of scale.  The storage costs begin to increase again after 

inventory surpasses the maximum amount of storage available.  Then, grain has to be stored 

outside and is subject to spoilage; is the upward slope of the storage supply.  Supply shifts 

upwards and to the left, or downwards to the right, depending on the variable costs of storage.  

An increased interest rate shifts the supply curve upwards and to the left (Tomek and Robinson, 

2003). 

 The demand function is similar to the concepts covered in the Theory of Supply and 

Demand section.  The demand curve is downward sloping and shifts along the supply curve.  The 

main shifter in demand is the difference in grain production from year to year.  During periods of 

high production, the storage demand is greater.  The demand for storage could be lower or higher 

during periods of low production.  Long physical grain traders base their decision on the next 

year’s expected production.  The predictability of the basis is due to the storage cost.  A 

producer's demand for storage will be large at harvest time, and as a new growing season 

approaches, the demand will fall, decreasing the storage price.   
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 Theoretically, the basis would partially equal the storage costs if the commodity was 

produced, stored, and consumed in the same region.  In reality, regions trade grain with each 

other because some locations are more specialized for producing certain commodities than others 

or because some have a surplus supply or excess demand.  Table 1 lists some major variables 

that affect the basis.   

 The variables given in Figure 6 are similar to the variables that affect trade in the theory 

of competitive intermarket prices.  The basis is derived from the region offering the largest net 

price, and all other regions or locations offer the same basis minus transfer costs.  Regions trade 

with each other, so there has to be a difference in basis that is less than or equal to transfer costs.  

If regions differ by a basis greater than the transfer costs, inefficiencies would be quickly 

arbitraged.  If region cost differences are less than the transfer costs, then no trade will occur; 

refer to Table 1.  Transportation is included in the transfer costs, and within transportation costs, 

there are many variables.  Transportation by railroad includes variables such as rail tariff rates 

between regions, fuel service charges between regions, and rail car value from the primary or 

secondary market.  Some country elevators are offered efficiency payments from the railroad for 

loading or unloading a shuttle train in a timely manner.  The rebates should also be included as 

part of the transfer costs, where these rebates would reduce the transfer costs for products 

compared to regions that do not have the capability to load and unload shuttle trains.  The last 

variable listed is margin, which is also known as the handling margin.  The handling margin 

represents interest rates, the value of grain, labor, energy, and the cost of storage. 
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Table 1. Alternative Formulations for Grain Pricing or Basis Values  

   (Wilson and Dahl, 2011). 

 Basis Definition Comment 

1 Bo=Co-F Basis is constant and highly predictable. 

2 Bo=Bd-M-T More complex, but, still simple and 

predictable. 

3 Bo=Bd-MAX[(Bd1-To1),Bd2-To2),(Bd3-To3)]-M-F Includes impacts of multiple destination 

markets; and that the basis is derived 

from the market yielding the maximum 

net returns. 

4 Bo=Bd-[Roj+FSCoj+CAR-EP]-M-F Includes impacts of each of the primary 

elements of shipping by rail. 

Variable definitions: 

Co     : cash price at origin 

F       : futures price 

Bo     : basis value at origin o 

Bd     : basis value at destination d 

Bdj    : basis value at destination dj 

T      : transportation costs 

Toj    : transporation costs from o to j 

Roj    : rail tariff rates from o to j 

FSCoj: fuel service charge from o to J 

CAR : rail car values from either primary or secondary market 

EP     : efficency payments {OEP, DEP} 

M      : margins 

 

 

 

 The basis is an important factor in determining different cash prices between trading 

regions.  Regions that trade with each other should have their basis intertwined.  Regions that 

trade between each other should differ in basis by the transfer costs (Bressler and King, 1970).  

However, transfer costs are becoming more complicated due to each feature listed in Table 1 

because of the amount of volatitiliy in the shipping industry (Wilson and Dahl, 2011).  Volatily 

in the shipping industry is making market relaitonships more complex and difficult to predict.  

The theoretical concept behind the basis is that, through time, changes in the basis should be 

equal to storage costs.  The current cash price is expected to converge to some futures contract, 
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and when that happens, the difference in the cash and the futures contract price should differ by 

the transaction costs (Tomek and Robinson, 2003).   

 The price-discovery process happens in a similar fashion at each country elevator.  All 

locations handling grain are subject to the same futures price, which is discovered by information 

regarding the supply and demand expectations.  The Price Discovery section provides great 

detail about the theory of supply and demand.  The spreads between futures markets is a 

determinate of supply and demand at country elevators because producers make decisions about 

current and future spot prices which affect the basis.  Theoretically, the basis is known to be 

partially derived from the storage costs, and producers who decide to store more grain in their 

inventory will increase their storage cost.  Another factor influencing the basis relates to the 

theory of competitive intermarket prices section.  Country elevators or regions trade between 

each other because of local economic factors.  The competition between regions intertwines the 

regions’ basis, and now, transfer costs are a factor influencing the basis.  If the trading region’s 

basis disregards transfer costs, then arbitragers take advantage of the profitable opportunity. 

Theory of Competitive Spatial-Market Prices 

 Chapter 2 reviewed the literature that discusses multiple theoretical models used to test 

for market integration and other theoretical models to test for market efficiency, which is related 

to how intermarkets compete between regions.  Through the literature about market integration 

and testing the laws of one price, researchers have agreed on the non-linear behavior between 

markets.  The rest of this section highlights the theory behind competitive intermarket prices and 

how the relationship between markets can be non-linear. 

 Spatial price relationships are determined by two main factors.  Supply and demand help 

determine the equilibrium basis.  As the basis at each region changes, it can alter the flow of 
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commodities between regions.  Similar to the changes in basis, changes in transfer costs between 

regions can also alter the flow of commodities.   

 For example, a heavily populated area would have excess demand, and a production area 

would have a supply surplus, both of which are represented in Figure 6.  Region A would have a 

supply surplus, and region B would have excess demand.  Each location would have a different 

equilibrium basis due to the laws of supply and demand discussed in the previous section.  

Suppose that there were 0 transfer costs between regions A and B and that there was a difference 

in basis similar to Figure 6.  Traders would arbitrage the profitable opportunity until both 

markets shared the same basis (Bressler and King, 1970).  Once these two markets were at the 

same basis, they would be following the law of one price, which was determined to be flawed in 

the short run according to research (Isard, 1977; Protopapadakis and Stoll, 2012; Thursby et al., 

1986; Ardeni, 1989).  Latest literature has discovered  the law of one price was flawed in the 

short run because the methods discussed in Chapter 2 lead one to believe that regions trading 

with each other differed in price more than the transfer costs. 

 In this example, the excess supply and demand equals 15 units.  Fifteen units would be 

traded, assuming zero transfer costs, but in reality, these costs are greater than zero.  The number 

of units traded between markets would decline as transfer costs increase.  Which can also be seen 

in Figure 6:(the lower graph by the x and y line).  Transfer costs of 20 dollars would entail 0 

units being traded.  If the transfer costs equaled 10, there would be 7.5 units transferred.  The 

basis at A and B would differ by the transfer costs after traders profit from the arbitrage 

opportunity.  
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   Figure 6. Two-Region Spatial Equilibrium Model  

 (Tomek and Robinson, 2003). 

 

 Figure 6 is similar to Figure 7 and has multiple locations; each location has its own basis.  

In this example, locations X and Y are mainly production regions, so they have a supply surplus 

and the cheapest basis.  Markets A and B are mainly consuming regions, so these regions have 

excess demand.  In this example, Market A would buy only from location X.  Market B would 

buy from locations X and Y.  In some instances, there are supply constraints similar to the oil-

pipeline constraint discovered in (Borenstein and Kellogg, 2012).  The same kind of constraints 

can happen with rail, barge, and ocean shipping.  The other important decision factor is the 

transfer costs between regions.  
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   Figure 7. Hypothetical Markets  

    (Tomek and Robinson, 2003). 

 

 There are many variables besides transportation costs that are included in the transfer 

costs.  The average transportation cost does not represent transfer costs or the arbitrage costs 

between two locations (Tomek and Robinson, 2003).  Transfer costs include other variables, 

such as loading and unloading; entrepreneurial expertise and time; contracting; insurance; 

financing; and fees associated with testing, grading and meeting phytosanitary standards (Tomek 

and Robinson, 2003).  Some other non-observable costs are the risks associated with moving a 

commodity over space (Tomek and Robinson, 2003).  Some risks are time lapses in shipment, 

which would result in demurrage charges.  There is the risk of contract failure, and most 

commodity prices are extremely volatile; therefore, contract failure could be costly.  These costs 

are difficult to obtain because a majority of the transfer costs are private information. 

 Shipping different commodities can contain different relationships with transfer costs and 

haul lengths.  Figure 8 shows four different transfer costs in relation to the length of haul: linear, 

horizontal, conventional, or exponential.  Line A is a horizontal line, which means that transfer 

costs are the same regardless of the haul length.  Line B is a conventional zone rate system 

because transfer costs increase with the length of haul and increase with a series of differentiated 

steps (Bressler and King, 1970).  Transfer costs in line C takes on an initial charge, but then they 

increase linearly with the length of haul.  Line D is exponential, which means that it is increasing 
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at a decreasing rate through the haul length.  The non-linear behavior of spatial-price 

relationships is due to changes in transfer costs through time. 

 

 
    Figure 8. Alternative Transfer Costs-Distance Relationships  

   (Bressler and King, 1970). 

 

 The non-linear behavior of transfer costs cause the market boundaries to constantly 

fluctuate with the changes in transfer costs.  Transfer costs are random and this causes the non-

linear relationship between markets.  Figure 9 shows the mean and standard deviation of a line 

similar to line C in Figure 8.  Even though line C increases with the length of haul, through time, 

it can also move somewhere between +1 and -1standard deviation. 

 Market boundaries can also fluctuate with changes in the local supply and demand for 

each marketing region.  There are instances where the market boundary cannot adjust to the 

market’s needs due to barriers.  There are different kinds of barriers, such as geography, politics, 

and supply-chain constraints.  For simplicity, Figure 10 only uses two markets to highlight the 

shift in market boundaries due to changes in basis and/or transfer costs. 
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                  Figure 9. Mean Transfer Costs-Distance Relationship. 

 

 As the basis for market A decreases and the basis for market B increases, the boundary 

line shifts closer to market A.  Producers located more than 275 miles from market A will ship 

their goods to market B.  Producers located less than 275 miles from market A will ship their 

goods there. 

 
        Figure 10. Effect of Changes in Market Prices and Transfer Costs  

 (Tomek and Robinson, 2003). 

 

 Figure 10 is an example with only two markets and assumes that the boundary line is 

linear, which means transfer costs would resemble line C in Figure 8.  The net basis price will 



 

58 

 

vary along the boundary line, depending on distances to the destination market.  Figure 11Figure 

11 gives a representation of two market regions with multiple suppliers.  This graph illustrates 

the variability along the boundary line, depending on distance.  Each supplier can sell to either 

market, but the market offering the largest net price will receive the supplier’s produce. 

 

 

   Figure 11. Boundary Between Area Supplying Alternative Markets  

 (Tomek and Robinson, 2003). 

 

 Figure 11 also assumes transfer costs similar to line C in Figure 8, because the isocost 

contour lines are spaced equally apart.  Transportation costs increase with the length of haul in a 

linear fashion, with transfer costs equal to T1-T0=T2-T1 (Bressler and King, 1970).  Figure 11 is 

a simplistic example, but there can be multiple regions, and suppliers may have many regions to 

sell their produce.  In reality, these isocost contour lines would not always be separated equally 

because of geography, alternate modes of transportation, and using multiple modes of 
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transportation (Bressler and King, 1970).  These topographical influences can greatly reduce the 

amount of resources flowing into and out of a location.  Locations with topographical influences 

would contain boundary lines that are less likely to fluctuate enough to alter the flow of 

resources.  There are alternative modes of transportation, and each mode depends on the haul 

length.  Simple modes of transportation, such as trucks, usually have a higher transport rate.  

More complex modes or modes that include higher fixed costs, such as barges or ocean shipping, 

tend to have a lower cost per length of haul (Bressler and King, 1970).  This concept is important 

to remember for this thesis because three modes of transporation are analyzed. 

Spatial Arbitrage Theory 

 Arbitrage is the mechanism that aids in determining prices and production and 

consumption allocations (Bressler and King, 1970).  The theory of spatial arbitrage is highly 

related to the law-of-one-price theory and theory of competitive spatial-market prices because it 

is the mechanism that allows spatial market to compete which forces the market to try and abide 

by the LOP.  Spatial arbitrage is not a riskless arbitrage opportunity because a shipment cannot 

be delivered instantaneously, so the arbitrager is unaware if other shipments have been made to 

the destination market (Bressler and King, 1970).  Even though shipments cannot be made 

instantly forward contracts can be used in some instance to lock in the destination market price 

and deliver at own leisure, which eliminates some risk.   

 (Baulch, 1997) explains the theoretical spatial arbitrage equations as follows: 

 
  
    

  
   

 
    

 

(7) 

  
  is the export market price or destination market;   

  
 is the transfer costs from export market 

to the import market;   
 
 is the importing market price.  If the market represents Equation 7 than 
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trade occurs but there is not any arbitrage profits existing.  Equation 8 represents a time when no 

trade occurs from export market to import market, however an arbitrage trade could occur from 

import to export market.  If spatial markets do not represent the equilibrium condition in 

Equation 8 than there is some arbitrage opportunity existing.   

Equation 9 represents an arbitrage opportunity from shipping from the export market to the 

import market because the export market plus transfer cost is cheaper than the import market. 

 Spatial arbitrage opportunities exist until an arbitrager recognizes the profitable 

opportunity and the profits match the risk involved in the trade.  In some instances there can be 

barriers that prevents arbitragers from capitalizing on the arbitrage opportunity.  If arbitrage 

opportunities exist than the markets place is not efficient and the LOP fails in the short run.  The 

arbitrage mechanisms is what allows the LOP to succeed in the long-run.  

Theory About the Law of One Price 

 Competitive intermarket prices are due to the theory for the law of one price.  This theory 

states that markets should function efficiently so that any potential riskless profits through 

arbitrage trade are eliminated (Goodwin, et al., 2011).  There has been much controversy about 

the law of one price, and the theory was reviewed in Chapter 2.  The logic behind the law of one 

price is that markets, such as Figure 11, that trade with each other should only have one price.  

Past research has proven that LOP is true in the long run, however, in the short run, market 

boundaries are continuously fluctuating.  The difference in basis between regions should vary 

only by transfer costs, and LOP may be true in the long run.  Transfer costs are what cause the 

controversy among researchers who have studied the law of one price.  

   
    

  
   

 
    (8) 

   
    

  
   

 
    (9) 
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 Early researchers assumed that a transfer cost is a constant variable through time.  More 

recent research, such as (Goodwin, et al., 2011) has discovered that transfer costs are a random 

variable.  (Goodwin, et al., 2011) used a copula to test the law of one price because a copula is a 

dependency measure that allows variables to fluctuate within their own distribution.  An 

assumption made for this thesis is that the transfer cost fluctuates through time, but a majority of 

that fluctuation is due to transportation costs.  The remaining transfer costs still fluctuate through 

time, but all locations should differ in transfer costs close to zero.  The transportation-cost data 

are a random variable in the model due to the influential variables discussed in the section about 

the Theory of Competitive Spatial-Market Prices. 

 In the short run, there can be times when the basis between the two markets in Figure 10 

should differ due to an excess demand or supply surplus.  The difference in basis helps direct the 

flow of resources to a region that places more value on them.  Because of the different basis 

between regions and the arbitrage trading, there is a mechanism to direct resources to an area that 

maximizes the value of that resource.  The boundary fluctuation creates spatial arbitrage 

opportunities in the short run.  Short-run arbitrage trading allows the law of one price to hold in 

the long run. 

Summary 

 Price Discovery, the Theory of Competitive Spatial-Market Prices, and the Theory About 

the Law of One Price were summarized in great detail in this chapter.  The section on Price 

Discovery was very basic, but there were some important concepts to consider.  It is important to 

understand what factors influence supply and demand as well as the repercussions those 

variables have on the basis.  This Chapter highlighted why regions trade with each other as well 

as the law of supply and demand to show how trading with each other adjusts the basis. 
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 The section on the Theory of Competitive Spatial-Market Prices helped explain how 

transfer costs shift the boundary lines for whether regions trade with each other.  This section 

highlighted the point that transportation costs are random, which can causes the boundary lines 

to constantly fluctuate with changes in those costs.  Most variables that are included in the 

transfer costs are recognized because it is important to understand that there is more than just 

transportation costs when trading between regions.  An important concept to take to the next 

chapter is that transportation costs are the only transfer considered in this model.  Three modes 

of transportation analyzed in the model, rail, barge, and ocean shipping, and they rank from most 

expensive to least expensive for the length of haul.  An assumption is made that all other transfer 

costs differ between regions close to zero. 

 The section on the Theory About the Law of One Price was discussed because it 

highlights an important concept for the next chapter.  The law of one price stated that all markets 

should work efficiently enough to remove all profits from riskless arbitrage trading.  However, in 

the short run, there are times when the basis can differ between regions more than the transfer 

costs, which is why methods are discussed to create a trading strategy. 
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CHAPTER 4. EMPIRICAL METHODS 

Introduction 

 The merchandising industry has seen major shifts in recent years.  The increased use of 

bio-fuels and China’s demand for agriculture products have altered intermarket relationships 

between commodities.  The changes in the agriculture industry has led to the importance of 

understanding intermarket relationships.  The literature discussed in Chapter 2 indicates that 

there is great variation between intermarket relationships in the short run, and sparks interest in 

spatial-arbitrage opportunities. 

 There are two major objectives for this thesis.  The first objective is to discover spatial-

arbitrage opportunities in the soybean market.  The next objective is to discover the locations that 

offer a spatial-arbitrage profit most often as well as the origins with the largest profit.  

Determining where the greatest spatial-arbitrage profit occurs and how often spatial-arbitrage 

opportunities exists provides information for a company interested in merchandising soybeans.  

The merchandising company would be able to determine where to place country elevators.  The 

most important theory is dependence measures because the inputs in our simulation’s 

optimization model need to hold the correct relationships between variables. 

 There are asymmetric and symmetric dependency measures used in research.  An 

asymmetric dependency measure allows for a greater relationship to place more weight on one 

tail of the marginal distribution.  A symmetric dependency measure places equal weight on both 

tails of the marginal distribution.  There are many fallacies about the Pearson linear-correlation 

dependency method.  Linear-correlation measures have their place with multivariate, normal 

distributions or elliptical distributions which entail symmetric dependences.  However, linear 

correlation does not have a place in all multivariate distributions(Schmidt, 2006).  Copula is a 
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better dependence measure when dealing with asymmetric dependences or symmetrical 

dependencies because no assumptions are placed on the marginal distributions.  The discussion 

about competitive intermarket prices and market boundaries in Chapter 3 highlights the 

importance of using copula as the dependence measure because of the fluctuating boundaries.  

 The next section describes Model Specification.  The following section discusses data, 

distributions, and dependency measures.  Dependence measures, such as Pearson linear 

correlation and tail dependence, are discussed.  Within the tail-dependence measures section, the 

background of copula, copula families, copula parameter estimation, and best fit criteria are 

discussed.  The last section describes the Simulation and Optimization Procedures, such as 

Monte Carlo Simulation. 

Model Specification 

 Market integration, the law of one price, and spatial arbitrage are interrelated.  Below, 

this relationship is explained mathematically  The law of one price, or the law of market areas, 

can be explained with algebraic terms from (Bressler and King, 1970): 

              (10) 

where B is equal to the destination basis and t is equal to the transportation price from the origin 

to destination.  Equation 10 represents a market equilibrium condition, and if Equation 10 fails to 

equal each other Equation 11 follows: 

              (11) 

then the boundary line between these location switches, and for a short period of time, any origin 

located on the boundary line would realize a spatial-arbitrage opportunity: 

            (12) 
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Where    is the basis at destination,    is the basis at the origin, and tac is transportation costs 

from the origin to destination.  The following equation represents the profit function from the 

spatial arbitrage opportunity.  

                (13) 

 this is simply the differential of these values and if the there is a increase in transportation costs 

or    there is no spatial arbitrage as follows: 

          (14) 

 The mathematical definition of spatial arbitrage is similar to the theoretical profit 

function as follows: 

                    (15) 

where                            
 

 and                            
 

 include input (origins 

basis and transportation costs) prices and                            
 

 includes output 

(destination basis) prices.  Variable c distinguishes the costs in the spatial-arbitrage profit.  

Variable Q represents the quantity of soybean bushels bought/sold in equal amounts and is 

determined by the risk constrained optimization model. 

 Because we have a theoretical profit function, which is ultimately similar to profit from 

the theory of spatial arbitrage, we can create an optimization model that is dependent on a simple 

mean-variance portfolio: 

 

st. 

                             

          , 

  

(16) 
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where w is the upper bound of risk and   is the profit from the spatial arbitrage in Equation 16  

Variable σ is the portfolio risk, and Bac and ta are the risk associated with each random variable 

in the model. 

Notation  

 The following notations describe the parameters in the risk constrained optimization.  

The decision variables are decided by the risk constrained optimization model and represent the 

Q in Equation 15 and 16..  The Price Coefficients represent the basis values at the origin and 

destination, and transportation costs.  The remainder notations represents each of the 37 origins, 

2 destinations, 46 railroad and barge transportations, 2 ocean freight, and 2 time periods.  Time 

period 1 is the beginning of the week and time period 2.  The destinations are PNW and USG, 

and cost, insurance, and freight (CIF), and free on board (FOB) are signifying the price at the 

destination. 

Decision Variables 

   = number of bushels sold to PNW or USG port track 

   = number of bushels purchased from the origin 

   = number of transportation bushels 

   = number of ocean freight bushels 

  = number of bushels sold CIF 

 ρ = number of bushels sold FOB 

Price Coefficients 

 Trackj = price from selling at PNW or USG port track 

 CIFk = price from selling at PNW or USG plus ocean freight from port to Japan 

 FOBb= price from selling at PNW or USG FOB 

 Origini = Cost of buying at the origin 

 Tranr = Cost of shipping by railroad or barge 
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 Freighto = Cost of shipping from PNW or USG port to Japan 

Subscripts 

 j = 1,2,3, . . . J = port destination  

 i = 1,2,3, . . . I = origins 

 r = 1,2,3, . . . R = mode of transportation 

 k = 1,2,3, . . . K = CIF destination 

 b = 1,2,3, . . . B = FOB destination 

 o = 1,2,3, . . . O = ocean freight   

 t = 1,2,3, . . . T = number of time periods 

 The merchandiser’s goal for all sensitivities is to repetitively select the decision variables 

that have parameter coefficients that will maximize the portfolio's profit.  Each of the following 

models is slightly different for what this research is trying to analyze.   

Base Case 

 The base case specifies conditions that are most likely to persist as the most common 

commodity trading firms.  Later sensitivities are compared with the base case to analyze the 

difference between sensitivities.  The base case is meant to represent a firm that is not working as 

a vertically integrated company.  A vertically integrated firm and a non-vertically integrated firm 

are very different.  A vertically integrated firm owns more stages in the supply chain.  Hence, 

Equation 17 is a non-integrated firm because the firm does not own any grain prior to the spatial-

arbitrage opportunity.  The non-integrated firm would just buy and sell soybeans simultaneously 

during period 1 as indicated in Equation 17.  This firm is not exposed to basis risk or price risk 

because the commodity is simultaneously bought and sold.  If the firm sells some quantity of 

track, then a constraint forces the firm to buy the same quantities at the origin and transportation 

mode. Track is the PNW basis price loaded on a rail car.  The following profit function adds the 
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revenue and costs, but the decision variables are restricted to having a negative sign that 

transforms the model to follow the generic Equation 15  

 

                           

 

   

          

 

   

 

   

  

st.                

             

              

     

   
 
       

 
       

   
 
       

 
        

(17) 

 The boundaries, or restrictions, are comprised of the number of bushels that can be 

selected, and they have a dual purpose.  As indicated earlier, the profit function is similar to the 

theoretical profit function, however, due to the optimization procedure, the signs had to be 

adjusted.
1
  Constraints, or boundaries, were added to compensate for the sign changes in the 

profit function.  The boundaries for α constrain the number of bushels to be sold at the port 

between 0 and 8,740,032 bu/week.  The assumption is that the maximum that a port facility can 

unload is 8,740,032 bu/week.  Similarly, the decision variable, β, is the number of bushels to be 

sold and is constrained between 0 and 832,384.  An assumption is that a majority, or all, origins 

in the model can unload or load maximum of two shuttle trains per week (832,384 bushels).  The 

remaining constraints force the arbitrager to sell the same amount as he/she purchases.  These 

constraints allow the model to capture the arbitrage profit between markets. 

Sensitivities 

 Multiple sensitivities are conducted for this thesis and are used in comparisons with the 

base case: Adaptive to Changes in Risk, Risk Loving, Increase in Shuttle-Train Loading 

                                                 
1
 Because there are so many variables in the risk constrained optimization model, the profit function uses a sum 

product command in Microsoft Excel.  The constraints force   and   to be negative, transforming the empirical 
model back to the theoretical profit function. 



 

69 

 

Efficiency, Buy Track or CIF NOLA/Sell FOB, Vertical Integration Without Ocean Shipping, 

and Vertical Integration with Ocean Shipping.  Each sensitivity is designed to capture spatial 

arbitrage, but the constraints and objective function change slightly and can be reviewed in the 

following sections. 

Adaptive to Changes in Risk 

 This sensitivity is similar to the base case’s empirical model.  Becoming adaptive to 

changes in risk sensitivity is discovering the profitability of adapting to the changes in basis and 

transportation volatility over time.  Over time, the volatility is constantly changing with market 

conditions, and this sensitivity is able to capture these risk changes.  This sensitivity is able to 

detect if a certain location has become closer to/further from the market boundaries.  

 The difference between this sensitivity and the base case is that the firm is vertically 

integrated because soybeans can be purchased a week early; then, the firm stores the grain until 

the end of the week and everything gets sold at the end of the week.  Hence, the firm in this 

sensitivity is subject to basis risk and transportation risk every week.  The exponential weighted 

moving average is used to measure dynamic changes in volatility.  However, the combined 

purchase from the beginning of the week and the end of the week should not surpass the total 

number of trains that can be loaded at any origin because that is the maximum any facility is 

expected to load in one week.  At the end of the week, the merchandiser can still instantaneously 

buy soybeans from origins and sell the beans at either the PNW or USG.  Because the firm is 

storing soybeans for a week, it is subject to basis risk.  Along with changes in profits and risk, 

there is also a change with which origins looks more attractive.  To achieve the sensitivity 

objective, multiple simulations are run, adjusting λ from .8 to .9 to 1.  By using the exponentially 
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weighted moving average, λ is adjusted in Equation 18.  The adjustment of λ alters the 

calculation of  , which is described in the following equation:
2
 

 

                     
 

   

 (18) 

Adjusting λ in Equation 18 affects the weighting scheme for historical data.  When λ is close to 

0, there is more weight on recent observations, and λ at 1 is weighting observations equally. 

 Variable   in Equation 19 is the portfolio’s standard deviation.  Changes in λ adjust the 

weighting scheme when deriving variance, standard deviation, or volatility.  Depending on the 

data set, the standard deviation could become larger or smaller.  The time lag in Equation 19 

forces the model to behave as a vertically integrated, company-owned interior, country elevator 

and port facilities.   
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(19) 

Risk Loving 

 The risk-loving sensitivity is similar to the base case, however, a merchandiser is, again, 

able to purchases soybeans at the beginning of the week and to defer selling the soybeans until 

                                                 
2
 From Equation 18, σ enters the constraints in Equation 19 as the left-hand side risk constraint. 
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the end of the week; the merchandiser is also able to simultaneously buy and sell at the end of 

the week.  Allowing the firm to purchase soybeans at the beginning of the week is similar to 

operating vertically integrated because the model represents a firm already owns soybeans prior 

to the spatial-arbitrage opportunities.  Because the firm is vertically integrated and storing 

soybeans from one week to the next, there is basis risk.  The only difference is that, instead of 

being more risk averse and weary of risk changes, the firm is risk loving.  If a firm accepts more 

risk than the portfolio, profits should increase to some extent.  This sensitivity is able to 

determine the origins that are most likely to contribute to the portfolio’s spatial arbitrage.  The 

origins that contribute the greatest amount of spatial arbitrage for the risk are singling out the 

other origins and vice versa.  

 Multiple simulations are run, adjusting the risk measure   from 10% to 20% and 30%.  

The portfolio variance is combined and transformed to the portfolio standard deviation,  , which 

is the risk measure’s coefficient. 
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(20) 

Increase in Shuttle-Loading Efficiency 

 This sensitivity seeks to determine how an origin is better able to capitalize on spatial-

arbitrage opportunities compared to less-efficient country elevators.  Under this sensitivity, the 
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shuttle-train loading capacity is increased from one to five trains per week.  For this sensitivity, 

we selected Ayr, ND, as the origin for the illustration because it had average arbitrage profits 

from the base case.  It is interesting to see how an origin that has average arbitrage opportunities 

can earn more than a less efficiency elevator that does not upgrade their loading technology.  

This sensitivity was achieved by adjusting the loading constraints at Ayr, ND, loading shuttle 

trains capacity from one to five in a week.  PNW and USG are still constrained to only unload 

8,740,032 bushels, hence some locations that are less profitable should be selected less. 
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(21) 

Buying Track or CIF NOLA/Sell FOB 

 This sensitivity evaluates the spatial arbitrage from the trading FOB margin.  The revenue 

in this sensitivity is FOB, which stands for the basis price loaded on a ship at the port.  Buying 

track is the price for soybeans delivered to the port and loaded on railcars.  Buying CIF NOLA is 

purchased soybeans delivered to port and loaded on barges.  A merchandiser will trade through 

the port with the greatest FOB price because there is a greatest arbitrage opportunity.  There is 

also risk in this sensitivity because a merchandiser is able to purchase track at the beginning of 

the week and to hold it until the end of the week or period 2.  At the end of the week, the 

merchandiser is still able to simultaneously buy/sell soybeans and rail to achieve spatial 
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arbitrage.  If the PNW and USG ports are in a one-to-one relationship, the merchandiser will just 

be trading ocean-shipping differential.  This sensitivity determines which destination has the 

greatest FOB margin and, therefore, which port is earning the greatest profits.  The port that has 

the greatest spread could be due to the oil and protein quality differences between soybeans 

grown in northern or southern states. 

 The price coefficients are randomly drawn for FOB destinations and track origins.  The 

ports can only unload 8,740,032 bushels in a week.  The quantities sold at the port have to be 

purchased in the same amount from each origin. 
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(22) 

Vertical Integration Without Ocean Shipping 

 This sensitivity is about a merchandising company that is vertically integrated from 

origin to port, but does not trade ocean freight.  A merchandiser in this scenario is similar to the 

last sensitivity.  The merchandiser gains this margin from purchasing soybeans from the local 

farmers and then storing and shipping them to the PNW, USG, or some domestic demand.  The 

merchandiser is already taking on basis risk, but this model is able to determine which locations 

have a large spatial arbitrage.  The merchandisers can still spatial arbitrage soybeans at the end 

of the week like the other sensitivities.  The origins are still limited to the amount of grain they 

can load during the week.  The combined purchase from the beginning of the week and the end 

of the week cannot be greater than two shuttle trains a week.  The amount of grain purchased at 
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the origin has to match the amount of grain sold at the ports.  The amount of ocean freight to be 

purchased has to match the sum of all of the grain purchased at the origin.  The port facility is 

only able to unload a limited number of bushels in a week. 
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(23) 

Vertical Integration with Ocean Shipping 

 This sensitivity is about a merchandiser's company that is vertically integrated.  A firm 

that is vertically integrated has ownership of alternative stages in the supply chain.  In this case, 

the vertically integrated firm owns country elevators and export facilities.  This sensitivity shows 

that, if a grain-handling company owns the most profitable locations, its profits will increase.  

The merchandiser gains this margin from purchasing soybeans from the local farmers, and then 

storing and shipping them to some destination.  The merchandiser is already taking on basis risk, 

but this model will determine which locations would have a large spatial arbitrage. 

 The merchandisers can still spatial arbitrage soybeans at the end of the week like the 

other sensitivities.  The origins are still limited to the amount of grain they are able to load 

during the week.  The combined purchase for the beginning and the end of the week cannot be 

greater than two shuttle trains a week.  To better represent a vertically integrated merchandising 

firm, the amount of grain purchased at the origin has to match the amount of grain sold at the 
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ports.  This constraint forces the model to behave as a vertically integrated firm. The amount of 

ocean freight to be purchased has to match the sum of all grain purchased at the origin. 
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(24) 

Data Sources, Distribution, and Dependence Measures 

Data Sources 

 The extensive data set used for this research was collected and used in Wilson and Dahl  

(2011).  These soybean data are weekly numbers from 2004-2009.  The data used by Wilson and 

Dahl (2011) were collected in O'Neil (2010).  The data collected by (O'Neil, 2010) were from the 

following sources: barge freight rates (USDA-AMS Transportation Service Division), Rail 

Freight Rates (BNSF tariffs), CIF NOLA Barge Soybean Basis (Advanced Trading LLC; 

Bloomington, IL), Secondary Rail Car Value (Trade West Brokerage), PNW Rail Soybean Basis 

(Advanced Trading LLC, Blooming IL), rail fuel surcharge rates (Trade West Brokerage Co. and 

BNSF website), and origin basis price level (DTN prophet market information system).  Wilson 

and Dahl (2011) collected 10 more origin base price levels.  Also, ocean shipping rates from 

USG and PNW to Japan were collected by Wilson and Dahl (2011).  
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 All the origins collected by O'Neil (2010) and Wilson and Dahl (2011) are not used in 

this research.  The rail freight rates, daily car value, and rail fuel surcharge rates are used to 

calculate the transportation costs per bushel.  The rail rates, barge rates, and ocean shipping rates 

need to be transformed to have the same units as the origin and port basis, in dollars per bushel. 

Distributions 

 Input data distributions are very important to understand before making assumptions 

about which dependence measure is most appropriate for estimating the empirical models 

described in the Base Case and Sensitivity section.  Table 2 highlights the importance of 

considering the use of copula as the dependence measure for Monte Carlo simulation because the 

sample variables described below indicate that these variables are non-normal.  The variables in 

Table 2 are extremely skewed to the right, which means long right tails and short left tails
3
.   

          Table 2. Descriptive Statistics for a Sample of Input Data. 

Variables PNW Basis NOLA Basis Albany Basis Alden Basis 

Mean 0.61 0.45 -0.34 -0.59 

STDEV 0.29 0.28 0.33 0.38 

Skewness 0.61 1.42 0.99 1.56 

Kurtosis 2.56 5.96 3.09 4.91 

 

 

 Table 3 contains graphs of the best fit distribution and the parameters that fully indicate 

that the input variables are not normally distributed.  Below, the alternative dependence 

measures used and their assumptions are explained in greater detail to aid in selecting the most 

appropriate dependence measure for the research goals. 

 

                                                 
3
 The following tables and graphs on represent a few selected variables because there are so many variables used in 

this thesis it is too difficult to present them in this document.  Upon viewers request full tables are available from the 

author. 
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             Table 3. Graphs and Distribution Parameters for the Best Fit Distribution. 

Variables Graphs Distribution Parameters 

PNW Basis 

 

Laplace(0.60000,0.29505) 

NOLA Basis 

 

Laplace(0.43000,0.27257) 

Albany Basis 

 

LogLogistic(-1.9601,1.5932,9.1456) 

Alden Basis 

 

LogLogistic(-1.7742,1.1368,5.9862) 

 

Pearson Linear Correlation 

 Linear correlation and copula are alternate methods used for the simulation optimization 

models.  Linear correlation is a dependence measure that is used in many calculations to measure 

risk, to reduce risk through a portfolio of assets, and to develop a cross-hedge.  Linear correlation 

is calculated by the covariance divided by the product of standard devotions for X and Y.  The 

liner correlation coefficient is defined as follows: 

 
       

        

             
 (25) 

 

 The covariance causes a problem because the integral is taken over the domain of the 

variables and depends on the joint and marginal distributions (Nelsen, 2006).  From the 

covariance measure, we have found that the linear correlation measurement is not good for 

measuring dependency structures that are not linear, or if X and Y have different probability 

distribution functions (Cherubini, et al., 2012).  
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 Researchers need to be careful when using linear correlation because the upper and lower 

bounds are unknown or biased (Cherubini, et al., 2012).  The linear correlation methodology was 

used in early market-integration research, which led to uncertainty about the law of one price.  

The movements from liner-correlation to liner-regression models are based on the same 

normality assumptions.  Liner regression has the same assumptions as linear correlation: 

                   (26) 

Choosing a linear dependence measure when the data set is not normally distributed and has 

thick tails gives biased results.  Table 4 represents a sample linear-correlation matrix for a few 

variables that was used in the Normal Risk Constrained Optimization models.
4
 

     Table 4. Pearson Linear Correlation Matrix. 

Variables 

PNW 

Basis 

NOLA 

Basis 

Albany 

Basis 

Alden 

Basis 

Alton 

Basis 

Aurora 

Basis 

Ayr 

Basis 

Bayard 

Basis 

Beatrice 

Basis 

PNW 

Basis 
1.00 0.66 0.51 0.56 0.71 0.42 0.65 0.54 0.55 

NOLA 

Basis 
0.66 1.00 0.59 0.42 0.45 0.46 0.35 0.41 0.40 

Albany 

Basis 
0.51 0.59 1.00 0.78 0.67 0.83 0.66 0.78 0.77 

Alden 

Basis 
0.56 0.42 0.78 1.00 0.76 0.84 0.83 0.96 0.92 

Alton 

Basis 
0.71 0.45 0.67 0.76 1.00 0.63 0.91 0.81 0.83 

Aurora 

Basis 
0.42 0.46 0.83 0.84 0.63 1.00 0.72 0.85 0.80 

Ayr 

Basis 
0.65 0.35 0.66 0.83 0.91 0.72 1.00 0.86 0.86 

Bayard 

Basis 
0.54 0.41 0.78 0.96 0.81 0.85 0.86 1.00 0.94 

Beatrice 

Basis 
0.55 0.40 0.77 0.92 0.83 0.80 0.86 0.94 1.00 

 

 

                                                 
4
 Because there are 87 variables in the linear-correlation matrix, it is too large to include in the text or in the 

appendix, but the correlation matrix is available upon request. 
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Copula 

 Copula is a more complex dependency measure and allows for greater flexibility.  Copula 

parameters are unlike the Pearson linear correlation because the marginal distribution can be 

separated from the joint distribution and takes the shape of an empirical distribution.  It would be 

appropriate to use a normal distribution if the underling goal of the methodology was to analyze 

the data set for long-run outcomes, but the scope of this research is interested in short-run 

outcomes. 

 Selecting the correct copula for the problem at hand is the most crucial step.  Based on 

the assumption defined in the following section and the distributions of the input data discussed 

previously, copula is found to be superior to using Pearson's linear correlation. 

Copula was introduced by A. Sklar in 1959 when he was answering a question about the 

multi-dimensional probability function and its lower dimensional margins from M. Frechet and 

G. Dall' Aglio (Ubeda and Molina, 2003).  M. Frechet and G. Dall' Aglio asked Sklar a question 

related to their work on bivariate and trivariate distribution functions with given univariate 

margins.  

Nonparametric measures are used to test dependencies between random variables.  Then, 

copula found its way to managing risk in finance and the insurance industry because of the 

copula’s non-linear capabilities (Goodwin, et al., 2011).  Recently, copula has found its way into 

studying integrated market relationships (Goodwin, et al., 2011), which is related to this study.  

This section lists the basic concepts of copula.  The next section discusses the most common 

copula families and the makeup of the copulas within those families that were tested for use in 

the research questions at hand.   
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Transforming Marginal Distribution Functions 

 For some random variables (rvs), Xi, with continuous distribution functions,  

Fi, i=1,2,U1=F1(X1), U2= F2(X2), both are uniformly distributed random variables on [0,1].  For 

some joint distribution function (dfs) with marginal dfs, F1,F2:  

 F (x1,x2) =P(X1  x1,X2  x2) 

=P(F1(X1)  F1(x1), (F2(X2)  F2(x2)) 

=P(U1  F1(x1), U2  F2(x2)) 

=C( F1(x1), F2(x2)) 

  

(27) 

  

  

 The C stands for some copula, a distribution function [0,1]
2
 with standard uniform 

margins; C is the distribution function of the random vector (U1,U2)
T
.  Transforming the marginal 

distribution function to a uniform one allows for many other transformations. 

Skalar's Theorem 

 We have some random variables, X1,...,Xd, with continues distribution functions F1,...,Fd, 

and joint distribution function, F. Then, there exists a unique copula, C a distribution function on 

[0,1]
d
 with uniform margins such that all x=(x1,...,xd)

T 
 

d
:  

                               (28) 

 If one is interested in a particular copula because of concentration on the dependence 

towards a tail, but the interest is in the dependence of the other tail, one could write the inverse, 

Fi
-1

, of the copula to obtain u= (u1,...,ud)
T 

  [0,1]
d
 as follows: 

                                          (29) 

 

 By using generic Equation 28, we can construct a two-stage joint distribution function.  A 

marginal distribution function, F1,...,Fd, and add a copula of your choice for tail dependence.  

However, the pervious straightforward method of selecting a copula based on the distribution 

function would bias the results. 
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 Generic Equation 28 fixes the marginal distribution function, F1,...,Fd, and Equation 29 

allows for the coupling of the marginal dfs with a interdependence through some copula.  

Generic Equation 29 is the formulation of copulas.  Some of the most common copula families 

are Archimedean and Elliptical.   

 There are several copula families: Elliptical and Archimedean, which are Gaussian, 

Student t, Gumbel, Clayton, and Frank.  The following copula families are tested for the best-

fitted copula for any given portfolio in this research, which is why copula is briefly explained in 

the next sections. 

Elliptical Copula 

 Gaussian and Student t copulas are part of the Elliptical copula family.  Gaussian and 

Student t copulas are symmetric because they do not place additional probability on the tails, but 

Student’s t copula has some tail dependence.  

Gaussian Copula 

 The Gaussian copula is defined as follows:   

 

               
                

   

(30) 

 

From this equation, we can see that      is the joint distribution function, with     as the linear 

correlation coefficient and   is the normal distribution function.  From the defined equation 

above, we have 

      
             

   
 

           
     

          

       
     

      

  

      

  

 

  

(31) 
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Because the Gaussian copula is parameterized by the linear coefficient, which follows 

concordance order, the Gaussian copula is positively ordered with respect to the parameter which 

lies between -1 and 1: 

 
     
       

       
       

       
   

   

(32) 

 

           

We can see that the copula can reach its upper and lower bound: 

      
      (33)         

     
      (34) 

     
      (35) 

     

As for dependence measures, one can show that Gaussian copulas have neither upper nor lower 

tail dependence unless ρ=1: 

 
        

         
         

  
  

(36) 

          

Student t Copula 

 The other elliptical, symmetric copula is described below.  As we can see, the Student t 

copula starts with a similar equation as the Gaussian copula.  However, the two equations are 

different because of the added v parameter for the degrees of freedom: 

 
                 

        
       

   

(37) 

 

   

The Student t copula is different from the Gaussian copula because it has tail dependence and is 

defined as followed: 

 

             
 

           
   

          

       
 

        
  
     

  

  
     

  

 

   

(38) 
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 The Student t copula converges to the Gaussian copula as the number of degrees of 

freedom increases (Vose, 2008).  The smaller the degrees of freedom, the greater the difference 

between the two elliptical copulas.  When the degrees of freedom are small, the Student t copula 

is star shaped with the greatest concentration on the main diagonal, but as the degrees of freedom 

increase, it looks more like the Gaussian copula.  The easiest way to differentiate the Elliptical 

copulas is the number of observations found in the tails of the Student t copula compared to the 

Gaussian copula.  Like the Gaussian copula, the Student t is bounded by the linear correlation 

coefficient from -1 to 1 and is positively ordered with respect to ρ for the degrees of freedom.  

However, these elliptical copulas are better than the Pearson linear correlation when the 

researcher is interested in extreme dependence because copulas can reach the upper and lower 

bounds because of the following equations. 

      
      (39)         

     
     (40) 

     
     (41) 

           

As for tail dependence, for finite v or degrees of freedom 

 

        
           
          

  
   

(42) 

 

                

Archimedean Copula 

 The Archimedean copula families are asymmetric because they place more probability on 

the distribution tails compared to Elliptical copula families.  Copula will be much more attractive 

for data sets to emphasize asymmetric tail dependence. The Archimedean copula is generated as 

follows: 

          
              (43) 
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The generator is strict Archimedean copula iif        .  Each copula within the 

Archimedean copula family has its own, unique generating parameter, and Table 5 has them 

derived.
5
   

Table 5. Archimedean Copula Family. 

 Gumbel 

Copula                        α        α      α  

PDF 
         

                      

                     
  

 
 

                    
 

        

Parameter Range         

Kendall's Tau      
 

 
 

Tail Dependency            
 
   

Clayton 

Copula                     
 
 
  

PDF                                  
   

 
  

Parameter Range 
             

Kendall's Tau    
 

   
 

Tail Dependency      
 
       

Frank 

Copula           
 

 
     

                

        
  

PDF                       

Parameter Range              

Kendall's Tau 
         

 
 

   

 
 

Tail Dependency         

 

 

                                                 
5
 Detailed definitions and proofs are explained in great detail in Nelsen, R.B. 2006. An introduction to copulas. 2nd 

ed. New York: Springer. 
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Copula Parameter Estimation 

 Copula is superior to alternative dependence measures when focusing on the short term 

because it allows separation of the marginal distribution from the joint distribution.  The 

marginal distribution is the distribution that represents each variable in the data set.  The copula 

estimation is used to combine the marginal distribution for each variable into a multivariate 

distribution.   

 Maximum likelihood estimation is used to estimate the multivariate copula.  It is 

estimated by the following equation: 

                                      
 
   , (44) 

where     is the estimated copula parameter, or Kendall's tau; argmax is the mathematical 

function that provides the argument to maximize; ln is the natural logarithm; and 

                     are the estimated marginal distributions for x and y.  The copula parameters 

for all the copulas in this section are estimated by SAS.  Table 6 lists the estimated copula 

parameters from SAS. 

 The data set contained highly correlated variables, especially for the transportation 

variables.  The strong correlation between these variables created great difficulty in estimating 

the copula parameters for Archimedean and Elliptical copulas, and the Akaike information 

criterion (AIC).  The best-fit copula for this research was selected with less-than-perfect 

information.  The AIC best-fit criteria were not available from the SAS experimental copula 

procedure.  The scatter plots of the original data set supported using the Gaussian copula, but this 

information was less than perfect.  This research had too many variables to estimate a copula 

parameter, which caused the Kendall's tau correlation matrix to not be positive semi-definite. 
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 In order to estimate the copula parameters for Archimedean and Elliptical copulas, all the 

transportation data had to be removed from estimation, except for three variables.  Equation 45 

calculated the margins between     , which stands for rail PNW, rail USG, and barge 

transportation costs, and     , which is the remaining transportation variables.  Removing the 

margins forced some highly correlated variables to be excluded when estimating the copula 

parameter.  The removed variables had to be placed back into the data set after the copula-

parameter estimation. 

 
                 

   

(45) 

 

New price level data were estimated from the sample copula parameters listed in Table 6.  With 

these new price-level data, the margins removed from Equation 46 can be added back with 

Equation 46. 

 
                     

   

(46) 

 

 Equation 46 allows for       (new price level data created the margins) minus       the 

(new price level data calculated by the copula parameters).  Removing the margins allows the 

copula parameters in Table 6 to become positive semi-definite. 
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Table 6. Sample of Gaussian Copula Parameters. 

Variables PNW 

Basis 

NOLA 

Basis 

Albany 

Basis 

Alden 

Basis 

Alton 

Basis 

Aurora 

Basis 

Ayr 

Basis 

Bayard 

Basis 

Beatrice 

Basis 

PNW 

Basis 
1.0 .71 .57 .62 .73 .49 .68 .58 .57 

NOLA 

Basis 
.71 1.0 .63 .49 .49 .48 .40 .44 .42 

Albany 

Basis 
.57 .63 1.0 .78 .68 .84 .67 .79 .77 

Alden 

Basis 
.62 .49 .78 1.0 .80 .82 .84 .95 .92 

Alton 

Basis 
.73 .49 .68 .80 1.0 .65 .92 .83 .83 

Aurora 

Basis 
.47 .48 .84 .82 .65 1.0 .72 .85 .81 

Ayr 

Basis 
.68 .41 .67 .84 .92 .72 1.0 .86 .86 

Bayard 

Basis 
.58 .44 .79 .95 .83 .85 .86 1.0 .94 

Beatrice 

Basis 
.57 .42 .77 .92 .83 .81 .86 .94 1.0 

 

 Table 5 represents a sample of the Gaussian copula parameters estimated in SAS with 

maximum likelihood estimation.
6
  The values in Table 5 illustrate Kendall's tau estimates, but 

Kendall's tau and linear correlation cannot be compared.  Kendall's tau and linear correlations are 

not comparable because both types of dependence measure different types of relationships.  

Kendall's tau measures the probability of x and y moving in the same direction.  For instance, the  

PNW and NOLA basis have a relationship of .713, which means that, if the PNW basis 

increases, the NOLA basis has a 71% chance of increasing.  Table 4 represents a linear-

correlation matrix, and the relationship between the PNW and NOLA basis has a 66% positive 

liner relationship.  The PNW and NOLA basis always increase with a 66% positive relationship. 

                                                 
6
 Because there are 87 variables in Kendall's tau matrix, the size of the table is too large to be illustrated in the text 

or in the appendix.  Kendall's tau matrix is available upon request. 
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 Because the AIC criteria were not estimated for all of the copula families, they were not 

used in the selection process.  There were a large number of variables used to estimate the copula 

parameters, so AIC was not available.  Since there are so many variables or degrees of freedom, 

the copula would converge to a Gaussian copula (Vose, 2008).  Instead, scatter plots of the 

original data and the transformed data are utilized to help select the best-fit copula. 

 Figure 12 and 13 are scatter plots of the original data.  Also, the underlying assumption 

for each copula family is used to select the best-fit copula.  The research conducted in this thesis 

is not only interested in capturing the tail dependency, but also capturing the dependency in-

between the tails, hence the elliptical family is chosen.  There are 87 variables in the data set, 

which forces a Student t copula to converge into a Gaussian copula (Vose, 2008).  The 

underlying assumption forces the Gaussian copula to be the best fit, and Figure 14 is a sample 

scatter-plot matrix of the Gaussian copula. 

 The Gaussian copula is then used to estimate 10,000 new random variables that are used 

with the sensitivity models.  Before the new random variables are used in the empirical models, 

the transportation data that were removed have to be added to the new data set.  The margins 

between the three transportation variables and the remaining variables are calculated before 

estimating the copula parameter.  These margins are then added back to the newly estimated data 

to complete the data set with Equation 46. 
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        Figure 12. Original Scatter Plot Matrix. 

 

 From the original scatter plot in Figure 12, the data seem to have greater tail dependence 

when the values are small compared to when they are large.  Transforming the data set in Figure 

13 better reveals the relationship between variables, which allows for a simplistic way of 

choosing the best-fit copula.  From Figure 13, the data represent a Student t copula shape, but the 

Alden and Albany relationship is shaped like a Gaussian copula.  Because of the parameters in 

the Student t copula and the large number of variables estimated in this research, a Gaussian 

copula is the best fit.  The scatter plot matrix of the estimated copula data in Figure 14 represents 

the original data scatter-plot matrix in Figure 12.  Both figures show high-tail dependence when 

values are low compared to when the values are high. 
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     Figure 13. Transformed Scatter-Plot Matrix. 

 

 

 
              Figure 14. Empirical Margins, Gaussian Copula Scatter Plot Matrix.  

 

Simulation and Optimization Procedures 

 A portfolio is repetitively estimated to maximize spatial-arbitrage profit and to minimize 

risk.  Spatial-arbitrage opportunities are quantified as the percentage of time the optimization 

model finds each origin profitable enough to include in the portfolio.  Constraints are included in 

the optimization model to restrict the amount of risk that the portfolio can have.  Constraints also 
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force the model to behave as a non-integrated firm to a fully vertically integrated.  Origins and 

destinations are restricted by the amount of soybeans that can be loaded and unloaded in a week.  

 Monte Carlo simulation is used and allows for repetitive optimization.  Monte Carlo 

simulation uses the marginal distribution from variables in the data set and randomly draws 

values from that distribution.  The simulation is repetitively optimized in some models from 100 

to 1,000 iterations.  The two different dependency methods are the only variation between the 

Normal Risk Constrained Optimization and Copula Risk Constrained Optimization.  Monte 

Carlo simulation pulls from a normal marginal distribution in the Normal Risk Constrained 

Optimization.  All of the variables are linearly correlated.  However, with the Copula Risk 

Constrained Optimization method, Monte Carlo simulation is pulling draws from an empirical 

marginal distribution, and the data set is related by a Gaussian copula.
7
   

 The linear programming(Solver, 2013) quadratic is the optimization procedure used to 

maximize portfolio profits for these empirical models.  The algorithm used in the optimization 

procedure is called a standard linear problem/quadratic.  The software used for estimating the 

empirical models is Premium Solver (2013).  Premium Solver uses a primal simplex method 

with two-sided bounds on the variables.  Premium Solver is able to handle up to 2,000 decision 

variables.  Microsoft Excel uses a primal simplex method, but it is limited to 200 decision 

variables.  When setting up the empirical model, the number of variables approximately doubles 

from the original 87.  The number of constraints allowed with both software programs is also 

significantly different, forcing this researcher to use Premium Solver. 

 

                                                 
7
 The second major difference between these two methods is that @Risk has Monte Carlo simulation that uses a 

distribution function that can be correlated linearly for Normal risk constrained optimization model while the Copula 

risk constrained optimization model uses a looped macro code to pull the data estimated in SAS into the Copula 

Risk Constrained Optimization Model so that the macro acts like Monte Carlo simulation in @Risk. 
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Summary 

 Chapter 4 explained in great detail for the base case and the five sensitivities this research 

explored.  The empirical model specification was explained in detail.  This chapter also 

explained the Data Sources, Distribution, and Dependence Measures used with the Normal Risk 

Constrained Optimization and Copula Risk Constrained Optimization methods.  The statistical 

measures and distribution graphs support the use of copula as the main statistical method for the 

research.  Chapter 5 explains the Results from the empirical models and the methods described 

here in great detail. 
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CHAPTER 5. RESULTS 

Introduction 

 Chapter 4 explained the model specifications and methods used to analyze the base case 

and sensitivities.  Two alternate dependency measures are used in this research: copula and linear 

correlation.  These alternate methods are described as Normal Risk Constrained Optimization 

and Copula Risk Constrained Optimization.  Normal Risk Constrained Optimization utilizes 

assumptions that are widely used and accepted in academic research. Normal Risk Constrained 

Optimization is used to simplify the analysis at the beginning stages of research.  Copula Risk 

Constrained Optimization is the base case for this research and is compared to Normal Risk 

Constrained Optimization to illustrate the results of the overall difference between the underlying 

assumptions explained in Chapter 4.  Normal Risk Constrained Optimization and Copula Risk 

Constrained Optimization results are similar with respect to the difference between the 

dependency measures and distribution assumptions.   

 Copula Risk Constrained Optimization is the base-case assumption for this research, and 

each sensitivity’s results are explained in great detail.  The base case is compared to each 

sensitivity to discover the profitability of alternating a business structure.  Results obtained for 

the base case represent a non-vertically integrated company that is merchandising soybeans.  

Spatial arbitrage is obtained in the base case by simultaneously buying/selling the soybeans 

when an arbitrage opportunity arises, so merchandisers inherit no price or basis risk.  The 

merchandiser inherits no price or basis risk because the company is not storing any soybeans.  

The base case is non-integrated, and soybeans are simultaneously bought/sold, making the base 

case ideal to compare with each sensitivity. 
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 The adaptive sensitivity results explain merchandisers’ behavior in selecting certain 

origins for purchase changes as they become more sensitive to changes in market volatility.  The 

risk-loving sensitivity allows for the discovery of market boundaries.   

 The risk-loving sensitivity is also able to prove that there are greater spatial-arbitrage 

profits if a firm is willing to allow more risk.  Origins that have smaller spatial-arbitrage profits 

are located the furthest from the market boundaries and have little risk.  Locations closer to the 

market boundaries have the greatest spatial-arbitrage profits and the greatest amount of risk. 

 The sensitivity analyzing the increase for an origin’s train-loading efficiency is used to 

figure out how a more-efficient origin is able to capitalize on a larger amount of the spatial-

arbitrage profit compared to its competitors.  Ayr, ND, had average spatial-arbitrage profits in 

the base case and is selected as the origin to increase shuttle-loading efficiency.  Shuttle-train 

loading efficiency is increased from loading one train a week to  five trains. 

 The vertical-integration sensitivity results are the most interesting.  These results are used 

to determine how profits and risk increase as a company becomes more vertically integrated 

from the base case to including ocean shipping.  These sensitivities also show how the difference 

in the ocean shipping rate from PNW or USG effects the decision about what port to use when 

selling soybeans. 

 First, the results for the base case are explained using copula as the dependence measure.  

Next, the explanation of key points from the results for each sensitivity is illustrated, such as 

being adaptive to changes in risk, being risk loving, increased shuttle-train loading efficiency, 

buy track or CIF NOLA/sell CIF, vertical integration without ocean shipping, and vertical 

integration with ocean shipping.  The chapter ends with a Summary. 
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Copula Base-Case Results 

 Copula places fewer restrictions on the marginal distributions, and an empirical 

distribution is used for this analysis.  Empirical marginal distribution represents the actual data 

set used for this research exactly.  Maximum likelihood estimation is used to estimate the copula 

parameter.  All of the marginal distributions are combined to form a joint distribution, which is 

represented by the copula parameter.  An appropriate copula needs to be selected, and the AIC fit 

statistic is most widely used to compare copulas.  However, the AIC fit statistic is not always 

available, so scatter plots of the data are used for this thesis.  Also, assumptions and details about 

parameters in the derived copula are used in this research.  Gaussian, or normal, copula is 

selected to best represent the data set collected for this research.  This research requires an 

empirical model that represents the original data to analyze short-run events, which is why 

copula is the tool used. 

 This chapter explains the results of the base case, which represents a soybean trading firm 

that is non-integrated and has no strategized plan for capturing spatial arbitrage.  This sensitivity 

is created to best represent a firm as the simplest form.  The frequency of spatial arbitrage is an 

empirical issue, but there are locations that have greater spatial-arbitrage opportunities; those 

locations are near the market boundaries.  For the base case and each sensitivity, the percentage 

of time that spatial arbitrage was profitable and selected for the optimal portfolio is included in 

the results.  The base case is a non-integrated firm, so there is no vertical strategy; hence, the 

firm does not store any soybeans, so the firm inherit no price or basis risk.  Which allows the 

base case to be a good comparison for the risk and integration sensitivities.  

 Figure 15 illustrates the results.  The size of each dot represents the average weekly 

spatial-arbitrage profit.  Underlying the spatial-arbitrage profits in Figure 15, each county’s 
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soybean production per bushel is represented.  Darker colors indicate greater soybean production 

than lighter colors.  It could be supply-and-demand issues or transportation rates causing the 

spatial arbitrage.  The results in Figure 15 show the greatest spatial arbitrage occurring towards 

the edges of the greatest soybean production. 

  

 Figure 15. Copula Risk Constrained Optimization Base Case. 

 

 Figure 16 represents the probability of each origin being selected in the portfolio and the 

destination where each origin is most likely to ship soybeans.  From this figure, it is easy to see 

that most locations along the Mississippi River ship south via barge to the USG.  Origins located 

in Nebraska are indifferent about which destination to ship soybeans because those locations, 

such as Dorchester, NE, are located on the market boundaries.  Dorchester, NE, has, on average, 
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weekly arbitrage profits of $.20/bu.  The spatial arbitrage for Bradshaw, NE, always occurs when 

shipping to the USG, with average weekly arbitrage profits of $.09/bu.  

 Two methods are used in this research, and there are some noticeable differences.  

Normal Risk Constrained Optimization results for Alton, ND, have an average profit of 

$178,439, or $.21/bu, and the empirical model chooses that location 57% of the time and the 

remainder 43% of the time there are no spatial arbitrage opportunities.  Alton, ND, soybeans are 

shipped to PNW 50% of the time and to USG 7% of the time.  Copula Risk Constrained 

Optimization estimated Alton, ND, with an average profit of $109,230, or $.13/bu, and the 

empirical model chooses that location 60% of the time and the remainder of the time there are 

not spatial arbitrage profits.  Using Copula, Alton, ND, soybeans are shipped to PNW 56% of the 

time and go to USG 4% of the time.  Normal Risk Constrained Optimization overestimates some 

origins’ profits and underestimates the percentage of time, on average, that there is spatial 

arbitrage.
8
  The difference between these methods could be selecting the right and wrong origin 

to build or buy an existing facility in hopes of capturing spatial-arbitrage profits. Table 7 and 8 

show the results for all origins using Copula and Normal risk constrained optimization. 

                                                 
8
 The appendix displays full tables of both Normal Risk Constrained Optimization and Copula Risk Constrained 

Optimization average weekly arbitrage profits as well as the profits per bushel to compare all 37 origins.  The 

appendix also shows both methods’ average weekly portfolio profits, standard deviation, value at risk, and 

profit/risk ratio. 
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Figure 16. Copula Risk Constrained Optimization Probability of Profit/ Shipping Direction. 

 

 Profit is the product of profits per bushel and the number of bushels selected to be 

shipped by the simulation’s optimization model.  Bushels are the decision variable for each 

origin and destination.  The number of bushels shipped from each origin is constrained by their 

loading-capacity constraint.  Each destination is constrained by its unloading capacity 

constraints.  The simulation’s optimization model maximizes profit with a minimal amount of 

risk, and this constraint is why the model does not choose to ship all the available bushels from 

the most profitable location. 
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       Table 7. Copula Risk Constrained Optimization Base Case.  

Origins  $/Week    $/bu   Stdev   1/CV   PNW   USG  

Albany, IL 71,807 0.09 111,127 0.65  40% 

Alden, IA 40,126 0.05 112,374 0.36  19% 

Alton, ND 109,230 0.13 145,193 0.75 56% 4% 

Aurora, IN 179,530 0.22 203,673 0.88  61% 

Ayr, ND 118,740 0.15 196,425 0.61 60% 3% 

Bayard, IA 32,374 0.04 102,569 0.32  16% 

Beatrice, NE 98,996 0.12 150,808 0.66 36% 21% 

Bradshaw, NE 72,917 0.09 148,449 0.49  30% 

Breckenridge, MN 15,244 0.02 68,851 0.22  6% 

Cairo, IL 133,260 0.16 191,373 0.70  47% 

Cin Bunge, OH 96,397 0.12 165,007 0.58  41% 

Cin Cargill, OH 57,061 0.07 113,636 0.50  33% 

Creston, IA 19,767 0.03 86,302 0.23  9% 

Dorchester, NE 165,014 0.20 209,113 0.79 39% 27% 

Dubuque, IA 186,078 0.23 232,074 0.80  57% 

Edison, NE 99,102 0.12 160,207 0.62 34% 18% 

Evansville, IN 211,696 0.26 246,336 0.86  61% 

Finley, ND 96,279 0.12 171,304 0.56 40% 4% 

Fremont, NE 16,663 0.02 67,942 0.25 10% 2% 

Gurley, NE 292,758 0.35 242,373 1.21  82% 

Hinton, IA 11,251 0.02 64,860 0.17  6% 

Jamestown, ND 99,512 0.12 148,816 0.67 53% 4% 

Jasper, MN 0 0.00 0 0.00  0% 

Jeffersonville, IN  168,912 0.21 205,971 0.82  57% 

Madison, SD 12,117 0.02 59,290 0.20  6% 

Marion, SD 11,590 0.02 61,950 0.19  6% 

Maywood, NE 165,037 0.20 189,551 0.87 65% 4% 

Mellette, SD 181,553 0.22 205,064 0.89  62% 

Mitchell, SD 24,686 0.03 94,228 0.26  10% 

Mound City, IL 158,425 0.19 191,039 0.83  60% 

Mount Vernon, IN  197,068 0.24 262,528 0.75  51% 

Muscatine, IA 100,143 0.13 162,758 0.62  41% 

Nauvoo, IL 191,177 0.23 214,441 0.89  64% 

Pekin, IL 178,627 0.22 194,729 0.92  64% 

Pleasant Hill, IA 12,629 0.02 57,159 0.22  8% 

Red Oak, IA 6,100 0.01 33,533 0.18  4% 

Wolsey, SD 53,682 0.07 154,293 0.35  15% 
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 Normal Risk Constrained Optimization base case has average weekly portfolio profits of 

$5,291,855, which is significantly higher than the Copula Risk Constrained Optimization base 

average weekly portfolio profits of $3,685,545.  These differences are solely due to the variation 

in the input distributions and the type of dependence used to correlate the input variables.  In 

comparison, Normal Risk Constrained Optimization and Copula Risk Constrained Optimization 

output distributions are both lognormal, but they take different shapes from Figure 17 and 18.  

Normal Risk Constrained Optimization does not have a larger probability of zero profit, and 

Copula Risk Constrained Optimization shows a greater probability of zero profit.   

 Because the overall portfolio profits are much higher in the Normal Risk Constrained 

Optimization base case, some origins’ arbitrage profits must also be greater than the Copula Risk 

Constrained Optimization base-case results.  Alton, ND, for example, has $178,439/week profits, 

or $.21/bu, and is selected to have spatial-arbitrage opportunities 57% of the time for Normal 

Risk Constrained Optimization.  Copula Risk Constrained Optimization results illustrate that 

Alton, ND, has $109,230/week profits, or $.13/bu, and is selected to have spatial-arbitrage 

opportunities 60% of the time.  This one location can illustrate the difference in assumptions 

placed on distributions and dependency measures.  Because of having fewer assumptions on 

distributions and the ability to have non-linear relationships, Copula Risk Constrained 

Optimization is superior to Normal Risk Constrained Optimization.  Normal Risk Constrained 

Optimization overestimates the Alton, ND, arbitrage profits and underestimates the spatial-

arbitrage opportunities. 
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      Figure 17. Copula Risk Constrained Optimization Ayr, ND, Profit/Week Distribution. 

 

 

 

 
      Figure 18. Normal Risk Constrained Optimization Ayr, ND, Profit/Week Distribution. 
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  Table 8. Normal Risk Constrained Optimization Base Case. 

Origins  $/Week    $/bu   Stdev   1/CV   PNW   USG  

Albany,IL 139,935  0.17 256,634  0.55   40% 

Alden, IA 109,975  0.13 226,864  0.49   29% 

Alton, ND 178,439  0.21 258,001  0.69 50% 7% 

Aurora, IN 207,871  0.26 321,367  0.65   48% 

Ayr, ND 229,619  0.28 345,453  0.67 52% 7% 

Bayard, IA 67,853  0.08 184,137  0.37   20% 

Beatrice, NE 156,860  0.19 252,781  0.62 38% 13% 

Bradshaw, NE 117,073  0.15 226,052  0.52   32% 

Breckenridge, MN 71,184  0.09 198,839  0.36   18% 

Cairo, IL 143,755  0.18 237,516  0.61   43% 

Cin Bunge, OH 111,705  0.14 219,375  0.51   36% 

Cin Cargill, OH 108,620  0.13 209,412  0.52   35% 

Creston, IA 46,041  0.06 148,346  0.31   13% 

Dorchester, NE 177,341  0.22 287,416  0.62 36% 14% 

Dubuque, IA 213,652  0.26 339,756  0.63   45% 

Edison, NE 209,687  0.25 311,457  0.67 37% 17% 

Evansville, IN 150,120  0.19 291,741  0.52   39% 

Finley, ND 162,928  0.20 286,813  0.57 41% 6% 

Fremont, NE 226,906  0.27 418,450  0.54 30% 13% 

Gurley, NE 305,550  0.37 347,546  0.88   64% 

Hinton, IA 38,703  0.05 148,516  0.26   11% 

Jamestown, ND 188,962  0.23 294,137  0.64 47% 6% 

Jasper, MN 21,834  0.03 100,856  0.00   6% 

Jeffersonville, IN  193,764  0.24 303,330  0.64   47% 

Madison, SD 54,823  0.07 170,587  0.32   14% 

Marion, SD 36,941  0.05 131,924  0.28   10% 

Maywood, NE 375,517  0.45 484,348  0.78 46% 22% 

Mellett, SD 91,928  0.12 225,462  0.41   20% 

Mitchell, SD 55,177  0.07 176,446  0.31   15% 

Mound City, IL 181,442  0.22 257,926  0.70   54% 

Mount Vernon, IN  155,000  0.19 305,357  0.51   38% 

Muscatine, IA 154,226  0.19 272,627  0.57   37% 

Nauvoo, IL 176,346  0.22 286,463  0.62   43% 

Pekin, IL 227,474  0.28 312,222  0.73   52% 

Pleasant Hill, IA 31,231  0.04 114,716  0.27   11% 

Red Oak, IA 121,659  0.15 303,870  0.40   21% 

Wolsey, SD 97,615  0.12 236,110  0.41   21% 
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Sensitivities  

 Each of these sensitivities is designed to capture spatial arbitrage, and there is more 

explained from the results than just spatial arbitrage.  Market boundaries are constantly 

fluctuating with changes in the basis between markets and transportation costs.  Origins that have 

become more risky in recent years have shifted to the new market boundaries.  Adaptive to 

changes in risk, risk loving, increase in shuttle-train loading efficiency, buy FOB/sell track or 

CIF NOLA, vertically integrated without ocean shipping, and vertically integrated with ocean 

shipping results are explained in detail in the following sections.  

Adaptive to Changes in Risk 

 As explained in Chapter 4, this sensitivity uses model specifications similar to the vertical 

integration without ocean-shipping model.  The difference between these two sensitivities is that 

the empirical model for adaptive to changes in risk sensitivity uses the exponential weight 

moving average (EWMA) to aid in calculating the portfolio variance.  The EWMA is used to 

forecast volatility by weighting the historical data set differently through time by adjusting λ.  

The most common λ is set at .94 for forecasting volatility, but for this sensitivity, the objective is 

to determine how the empirical model selects alternative origins as λ is adjusted from .8, to .9 

and 1.   

 The base case has equal weights across all time periods, and a comparison between the 

two sensitivities is represented in Figure 19.  When λ is set to .8, there is more weight on the 

most recent observations.  As λ is adjusted to .9 and 1, there is more of an equal weight across 

observations.  Viewing Figure 19, the output from the empirical model shows that some origins 

have become more risky for the most recent variables while other variables are less risky.  As we 
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increase λ, some variables switch from being the most risky to being the least risky and vice 

versa.   

 Figure 19 shows that Alton, ND, has become more risky in recent years because the 

profits decrease when placing more weight on recent years.  Placing an equal weight across 

observations, Alton was less risky in the past.  The greater variability in Alton, ND, is due to the 

shifts in agriculture in recent years; these changes were explained in Chapter 1.  Alton, ND, 

could now be hypothesized to be located closer to the market boundary in recent years.  If 

located close to the market boundary, an origin basis would adjust constantly while outside 

influences shift the destination market where Alton, ND, will sell its soybeans. 

 Other locations, such as Alden, IA, have become less risky in recent years because, when 

more weight is placed on past observations, the profit decreases.  The profit for a grain trading 

firm in Alden, IA, decreases because Alden contributes less profit for the amount of risk added to 

the portfolio.  Alden, IA, is the opposite of Alton, ND, because Alton is farther from the market 

boundary, which is why the risk for this location has decreased.  

Risk Loving 

 This sensitivity is also involved with understanding changes in the risk measures affect 

how the empirical model selects the optimal origins for the portfolio.  A risk-loving individual is 

willing to have a greater risk for a small amount of profit.  This sensitivity also uses the same 

empirical model as the vertically integrated without ocean shipping sensitivity.  The portfolio 

variance is combined and transformed into the portfolio’s standard deviation.  This sensitivity 

adjusts σ from 10% to 20% and 30% standard deviation.  The objective of this sensitivity is to 

see how a merchandising company’s profits change and the market boundaries’ locations.  

Origins located close to a market boundary should have greater spatial-arbitrage opportunities.    
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 The risk-loving sensitivity illustrates locations that are selected less and some that are 

selected more.  This sensitivity is important to understand when a merchandising company is 

searching for locations that can deliver spatial-arbitrage opportunities.  The more risky origin 

basis has, on average, the greatest potential for producing the largest spatial-arbitrage 

opportunity.  The locations that are closest to the market boundaries are the most risky because 

the basis at that origin is constantly changing from the impacts of supply and demand at the 

origin and destination bases.  Transportation costs are also fluctuating, and the combination 

affects which destination market offers the greatest net price.   

 



 

 

1
0
6
 

 
      Figure 19. Adaptive to Changes in Risk. 
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 Figure 20 shows that Albany, IL, is a location that was offering average-size arbitrage 

profits, but as σ increases to 20%, the profits for this origin increase.  Then, as σ increases to 

30% ,Albany’s profits decrease.  Alternate location’s profits are greater, but the risk is also 

larger.  Figure 20 proves that greater spatial-arbitrage profits are present, but capturing those 

profits depends on the amount of risk a firm is willing to allow.   

 As indicated in Chapter 3, an arbitrager only invests in a profitable arbitrage opportunity 

if the reward is worth the risk.  If the arbitrage opportunity is not great enough for the amount of 

risk the firm would receive from the trade, then the market will remain non-integrated until those 

assets drift farther and increase the spatial-arbitrage profit.  Once there is a greater spatial-

arbitrage profit or the company allows more risk, the arbitrager will invest enough capital to 

trade those mispriced assets. 

 This sensitivity result clarifies that there are more spatial-arbitrage opportunities in the 

marketplace, but depends on the willingness to accept more risk.  Some locations, such as 

Albany, IL, are a safer trade than locations such as Mellette, SD.  This location might 

occasionally offer large spatial-arbitrage profits, but the majority of the time, the reward is not 

worth the risk.  Most locations in Iowa, South Dakota, and Indiana have decreasing profits as σ is 

increased.  Which indicates that these locations have a small amount of risk as well as spatial-

arbitrage profits.  North Dakota, Nebraska, and Illinois have greater spatial-arbitrage profits as σ 

increases, which means that these locations have more risk and are located closer to market 

boundaries. 
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Figure 20. Risk Loving. 
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Increase in Shuttle-Train Loading Efficiency 

 This sensitivity addresses the increased loading capacity for a shuttle loader.  The ability 

to increase an origin's loading capacity with average profits allows a greater amount of spatial 

arbitrage.  The base-case restrictions imply that port facilities are only able to unload about 

8,740,032 bushels in a week.  This sensitivity allows for a firm to increase the loading capacity at 

Ayr, ND from one to five trains a week, and all the competitors are only able to load two trains 

in a week.  By selecting only one location (Ayr, ND), this sensitivity determines the ability of 

one location to gain the maximum spatial-arbitrage opportunity available.  The model 

specifications used for this sensitivity are the same as the vertical integration without ocean 

shipping sensitivity.   

 Figure 21 compares the profits for Ayr, ND, with Gurely, NE, when the maximum 

number of shuttle trains that they are able to load in a week goes from one to five.
9
  Figure 21 

identifies that investing in technology at an origin that returns average arbitrage profits can 

greatly increase the ability to gain arbitrage opportunity compared to a alternate location that has 

the greatest spatial-arbitrage profits in the base case.  The spatial-arbitrage profits for Gurely, 

NE, remain the same as Ayr, ND, because a firm is more efficient at loading shuttle trains and 

their average arbitrage profits increase drastically.  The increase in Ayr, ND, profits proves that 

there are greater spatial-arbitrage opportunities, but facilities are constrained to capture the full 

arbitrage potential. 

 Ayr, ND, increases its average arbitrage profit from $101,360 when loading 1 shuttle 

train to $596,726 for loading 5 shuttle trains.  Increase a firms loading shuttle-train capacity from 

                                                 
9
 The appendix has a full table with all of the profits from increasing the trains from one to five.  
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one to five at Ayr, ND, only slightly affects other locations’ ability to be selected by the 

empirical model.
10

 

 

 
    Figure 21. Increase in Shuttle-Train Loading Efficiency. 

 

Buying Track or CIF NOLA/Sell FOB 

 This sensitivity is not vertically integrated and the firm is only trading soybeans at the 

port.  In this case, the firm buys track and sells FOB.  The difference is called the FOB margin, 

the difference in track basis and transferring soybeans from the railcar onto an ocean vessel.  If 

the USG port is receiving soybeans via barge, it is called CIF NOLA basis.  Again, the FOB 

margin, in this case, transfers the soybeans from the barge to an ocean vessel at the USG port.  

This sensitivity mainly determines when to sell FOB and when to buy Track or CIF NOLA.  

Both the PNW and USG ports have to constantly adjust their FOB basis bid as the ocean-

shipping rates change.  As indicated in Chapter 1, ocean shipping rates have become more 

volatile, so these locations have to constantly adjust their FOB basis bids to stay competitive 

                                                 
10

 The appendix contains tables with the probability of each origin being selected for each sensitivity, including the 

base case. 
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with each other.  Similarly, the ports have to adjust their Track or CIF NOLA basis bids to 

maintain some FOB margin. 

 Buying Track or CIF NOLA basis and then selling FOB basis has similar profits to some 

origins in the basis case; is seen in Figure 22. Both the base case and this sensitivity are not 

vertically integrated, but they are still very different.  Based on the results in Figure 22, the USG 

port offers greater arbitrage opportunities than PNW.  The USG port, on average, has an 

arbitrage profit of $.09/bu, and the PNW port only offers an average arbitrage profit of $.05/bu.  

These profits are significantly smaller than if the company was vertically integrated from the 

origin to port to ocean vessels.  The riskiness of the arbitrage opportunity increases as a firm 

becomes more vertically integrated, and is represented by Table 9.  As indicated earlier, the 

profits from this strategy are not very high for the amount of risk involved.  Of all of the 

integration steps, this strategy is, by far, the worst compared to other stages in the supply chain. 

Vertical Integration Without Ocean Shipping 

 This sensitivity deals with a company that owns origin and port facilities.  This firm 

would have the ability to purchase shuttle trains in advance compared to simultaneously 

buying/selling soybeans and buying transportation.  This sensitivity is used to determine how 

becoming more vertically integrated allows a company to capitalize further on spatial arbitrage, 

but this company would also inherit more risk.  This added risk is found in Table 9.  Becoming 

more vertically integrated increases the profits and risks because there are more stages in the 

transfer of goods.  A vertically integrated company is able to capitalize on the FOB margin 

discussed for the previous sensitivity for buying track or CIF NOLA/selling FOB by being more 

integrated, also from shipping between origin and destination.  Figure 22 shows the results from 

the base case and sensitivity buying track or CIF NOLA/selling FOB to fully integrated owning 
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ocean shipping.  From the results in Figure 22 it is obvious to see that becoming more vertically 

integrated spreads the risk and increases profit compared to the previous sensitivity.  

 Gurley, NE, has the greatest arbitrage profits of $.47/bu.  From these results, a couple key 

points are intriguing.  First, the key locations around the market boundaries are able to be singled 

out in Figure 22, and becoming more vertically integrated increases the arbitrage profits.  

 By using these empirical models, it would be easy to determine where companies should 

be investing their capital for country elevators to gain spatial-arbitrage profits.  As a company 

becomes more vertically integrated, the average probability that an origin is selected for the 

portfolio changes.  The results show that some locations are selected more because they exhibit 

greater spatial-arbitrage profits due to the company being more vertically integrated.  In Figure 

22, comparing Aurora, IN, the arbitrage profits increase, on average, $.37/bu, and this location’s 

probability of arbitrage opportunities increases from 55% to 81%.  The reason the spatial-

arbitrage opportunities increase with vertical integration is because the company already owns 

the assets it needs to profit from the spatial arbitrage, so it gains from the weekly basis change.  

The location is subject to basis risk.  For risk-adverse arbitragers, this strategy is second best to 

become vertically integrated. 

Vertical Integration with Ocean Shipping 

 Vertical integration with ocean shipping is only different from the previous sensitivity 

because it allows the company to own the right to ship soybean bushels in advance via ocean 

shipping.  Going from non-vertically integrated to full vertical integration creates a $.25/bu  

increase in the average spatial-arbitrage profits.  By including ocean shipping in this sensitivity, 

the spatial-arbitrage profits increase by $.11/bu compared to the previous sensitivity.  The extra 

$.11/bu comes from becoming more vertically integrated with ocean shipping for the two ports 
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analyzed in this thesis.  The conclusion from this sensitivity, along with the other sensitivities, is 

that there is spatial arbitrage along the entire supply chain, which is why the profits increase as 

we continue to add assets.  The risks also increase, which is explained in Table 9.   

 Origins such as Ayr, ND, have average spatial-arbitrage opportunities increase from 60% 

for the base case to 69% for the vertically integrated with ocean shipping sensitivity.  Ayr, ND, 

consistently ships to the PNW as its firm becomes more vertically integrated.  Iowa, South 

Dakota, and Minnesota are all poor locations to expand vertically integrated.  North Dakota, 

Nebraska, and Illinois all have good origins to include in the expansion of vertical integration. 

 Again, the added profits are from the added assets to the companies.  There is a lot more 

flexibility for a company that is vertically integrated.  A company is more aware of the changes 

at each stage of the supply chain.  Being more integrated allows the merchandiser to plan in 

advance in order to capture the spatial arbitrage to its fullest potential. 

Table 9. Portfolio Profits.  

Sensitivity Profit STDEV 1/CV 7 Day VAR 

    
1% 5% 

Base Case $3,685,545 $2,380,735 1.55 
  

VI w/o Ocean $6,573,203 $4,802,950 1.37 $(5,647,255) $(4,867,808) 

VI w/ Ocean $9,727,407 $11,444,601 0.85 $(10,037,396) $(9,521,198) 

Sell FOB/Buy Track $2,335,716 $3,255,609 0.72 $(2,325,481) $(1,370,956) 

 



 

 

 

1
1
4
 

 
      Figure 22. Non-Integrated to Vertically Integrated with Ocean Shipping. 
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 From Table 9, it is easy to see that, when becoming more vertically integrated, the 

portfolio’s profits increase significantly.  The Selling FOB/Buying Track or CIF NOLA 

sensitivity has the smallest portfolio profits because it only capitalizes on the spatial arbitrage at 

the port.  For every dollar increase in the Sell FOB/Buy Track, the standard deviation, or risk, 

increases by 72%.  There is greater risk trying to arbitrage the FOB margin or the PNW track 

with the PNW FOB compared to the other sensitivities.  The VAR is much smaller for this 

sensitivity because Selling FOB/Buy Track deals with smaller quantities and the potential profits 

are much smaller, hence the maximum at risk is $2,325,481, with 99% confidence under normal 

market conditions. 

 Table 9 shows that ocean shipping has become more risky (Wilson and Dahl, 2011).  

Both sensitivities that include ocean shipping have the worst 1/CV (coefficient of variation) ratio 

and VAR.  The base case and vertically integrated without ocean shipping sensitivities have the 

greatest return for the risk.  The portfolio theory suggests that an investor would prefer to 

participate in a portfolio of assets that earns higher profits with the least amount of risk.  Table 9 

shows results that are very important for a company trying to discover whether a firm would be 

willing to invest capital to become more vertically integrated and how vertically integrated the 

firm wants to be in the supply chain. 

 Comparing Figure 23, 24 and 25 illustrates that the probability of earning higher profits 

for a portfolio is much higher the more vertically integrated a firm.  Each stage in the supply 

chain has a lognormal distribution.  Because these sensitivities are a simulation optimization 

model, there is never a portfolio profit that is less than zero.   

 Becoming more vertically integrated increases the portfolio’s profits as seen in Table 9, 

but the sensitivity that seems to have the most reward for the risk is the base case which is non- 
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     Figure 23. Copula Base-Case Portfolio’s Profit/Week Distribution. 

 

 
     Figure 24. Copula Buy Track or CIF NOLA/Sell FOB Portfolio Profit/Week Distribution. 
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Figure 25. Copula Vertical Integration W/O Ocean Ship Port Profit/Week Distribution. 

 

 
    Figure 26. Copula Vertical Integration W/Ocean Ship. Port Profit/Week Distribution. 
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integrated.  From the 1/CV ratio, the base case is the most rewarding for the amount of risk, but 

the base case is not vertically integrated and is only trading locations that deliver spatial arbitrage 

simultaneously. 

Summary  

 This chapter presents results from the Copula Risk Constrained Optimization models that 

were developed for each sensitivity in Chapter 4.  From the sensitivity results discussed in this 

chapter, there is a better understanding about the spatial-arbitrage profit opportunities and risks 

for each sensitivity.  The base case, adaptive to changes in risk, risk loving, shuttle-loading 

efficiency, vertically integrated without ocean shipping, vertically integrated with ocean 

shipping, and sell FOB/buy track or CIF NOLA sensitivities are reviewed using copula as the 

dependence measure and an empirical distribution.  Results for the Normal Risk Constrained 

Optimization models are quite similar and are located in the appendix. 

 The base case is the most normal sensitivity, and it proves to provide the greatest reward 

for the risk presented in Table 9.  The base case represents a non-vertically integrated company.  

Vertically integrated without ocean shipping is deemed to be the second-best outcome for the 

average spatial-arbitrage profits for the risk.  Once a company adds ocean shipping to its 

portfolio, the profits for the amount of risk decrease.  The sensitivity involved with selling FOB 

and buying track or CIF NOLA is indicated as the worst portfolio of assets. 

 The sensitivities regarding changes in risk, along with whether a company is more risk 

adverse or risk loving, are presented in Chapter 5.  These results indicate that, as a company 

becomes more risk loving, it purchases fewer soybeans from the least risky locations and more 

soybeans from the more risky, but more profitable, origins.  The risk-loving sensitivity results 

allow this research to discover locations that are close to market boundaries. 
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 Similar to the risk-loving sensitivity, the sensitivity concerned with becoming adaptive to 

changes in risk shows how the market boundaries have shifted to alternate locations.  These 

sensitivities provide useful information for companies interested in spatial-arbitrage soybeans.  

Companies can decide from what origins they would benefit the greatest for the investment of 

their working capital.  The result also provides information about whether a company wants to 

become more vertically integrated.  
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CHAPTER 6. CONCLUSION 

Problem 

 Commodity-trading firms traditionally traded soybeans via barge to the USG, and there 

was little volatility in transportation and soybean basis.  The agriculture industry has seen many 

changes, including increased volatility for the futures price, basis, and transportation costs.  

Commodity traders have to analyze many variables to develop a profitable trading strategies.  

Risk is important to assess the profitability of trading strategies.  Where to buy, through what 

port to sell, and by what mode of transportation are decisions that reduce the portfolio’s risk.  

Transportation, grain inventory, etc. should be planned in advance to effectively arbitrage.  

“Arbitrage” is a term that refers to the ability to profit from mispriced assets.  The profitability 

that comes from the trading strategy is called spatial arbitrage. 

 Spatial arbitrage can arise from many of the changes seen in the agriculture industry, 

such as the increased volatility in ocean shipping, railroad, barge transportation, and soybean 

basis.  This added risk makes it more difficult for the soybean market to be integrated, allowing 

short-term spatial arbitrage opportunities.  There has been a greater demand for soybeans from 

China, which influences the market’s boundary lines.  Other factors influencing the boundary 

lines are the capacity limits at the Panama Canal, which is similar to the export pipeline that is at 

capacity at Cushing, Oklahoma.  As a result, there are short-term spatial-arbitrage opportunities 

in the marketplace, and soybean trading firms could be interested in capitalizing on these 

profitable opportunities.   

 Traditionally, the companies involved with soybean trading relied on many different facts 

when discovering where to invest working capital for a country elevator.  The ability to capture 

some of the spatial-arbitrage profits on the table is a new factor to consider when investing 
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working capital in country elevators.  Other alternatives are making improvements to existing 

facilities to make them more efficient by increasing the shuttle-train loading capacities.  

Becoming more vertically integrated may allow a country elevator to capture spatial arbitrage 

throughout the entire supply chain.  Some stages in the supply chain may offer more spatial-

arbitrage profits while other stages may offer a greater amount of risk. 

 The increased volatility in ocean shipping, railroad, barge transportation, and soybean 

basis causes market boundaries to shift more often.  There has been much controversy about the 

law of one price, which was reviewed in Chapter 2.  Competitive intermarket prices are due to 

the theory about the law of one price.  This theory states that markets should efficiently function 

so that any potential profits through arbitrage trade are eliminated.  The soybean-basis volatility 

has increased from $.10/bu to $.30 a bushel (Wilson and Dahl, 2011).  Since 1980, China's 

soybean demand increased fourfold to 34.4 million metric tons (Tuan, et al., 2004).  Ocean 

shipping, railroad, and barge rates have not only become more volatile, but they have also seen 

an increasing trend in price.  However, the railroad industry has become more competitive with 

the barge industry.  This transportation change has a huge influence on the market boundaries.  

Origins that, before, would always ship via barge have more choices. Because the railroad has a 

more competitive rate, some origins are more likely to be indifferent about the port to which they 

are going to sell.  

Objectives 

 The boundaries have shifted for the soybean market, and there has been an increased flow 

towards the PNW.  Spatial-arbitrage opportunities exist due to the market-boundary shifts.  Key 

contributors were discussed in great detail in Chapter 1.  The main objective is to capture spatial 

arbitrage so that a trading strategy can be developed with a limited amount of risk.  The 
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empirical model repetitively develops a portfolio that maximizes profits with a limited amount of 

risk.  From the repetitive optimization, the results show which origins have the potential for the 

greatest spatial-arbitrage profits and how often, on average, that spatial-arbitrage opportunity 

arises. 

 From the empirical models developed in this thesis, the origins that offer the greatest 

spatial-arbitrage opportunities in the soybean markets are located.  This time frame is when bio-

fuels and ethanol became a major player in the domestic demand for soybeans.  This added 

demand created an increase in production for soybeans.  China’s demand for soybeans 

overwhelmed the expected demand for 2004 to 2009.  From the sensitivities’ empirical models 

about being risk loving and adaptive to changes in risk, the research is able to discover shifts in 

the market boundaries.  An empirical model is created to analyze the benefits from upgrading an 

origin’s shuttle-train loading capacity by choosing an origin that gains average spatial-arbitrage 

profits from the base case. 

 The other empirical models hope to discover the profitability from spatial arbitrage as a 

non-vertically integrated grain-trading firm compared to a vertically integrated firm.  From this 

empirical model, the research seeks to quantify if the added profits from becoming more 

vertically integrated are worth the added risk to which a company is exposed.  The empirical 

models tests whether becoming more vertically integrated is worth the added arbitrage profit.  

The stages go from non-vertically integrated to integrated by owning origin facilities and port 

facilities.  Next, the stage of just arbitraging the difference between FOB basis and tack basis or 

CIF NOLA basis is analyzed.  The final vertically integrated stages test a firm that owns origin 

facilities, port facilities, and ocean freight. 
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Empirical Methodology  

 Price discovery is an important concept to understand intermarket relationships.  A 

perfectly competitive market assumes that all buyer and sellers have perfect market knowledge, 

that each buyer and seller act economically, and that there are zero barriers of entry in all 

directions.  In theory, the price-discovery process would locate the true market-equilibrium price.  

Perfectly competitive markets always shift commodities to the trade deficit market, but these 

markets are rare.  Most markets operate less than perfectly because they are lacking one 

assumption of a perfectly competing market.  When a market operates in a less-than-perfect 

manner, there are trade deficits, and that market may never satisfy the consumers’ demand until 

arbitragers discover the mispriced basis bids.  At some point in time, a demand surplus does 

occur in all markets.  Price discoveries, the theory of competitive spatial market price, and the 

theory about the law of one price are all highly related concepts for market integration and 

spatial arbitrage. 

 Spatial price relationships are determined by two main factors.  Supply and demand 

determine the equilibrium basis.  As the basis at each region changes, it can alter the flow of 

commodities between regions.  Similar to the changes in basis, changes for the transfer costs 

between regions can alter the flow of commodities between regions.  Each supplier can sell to 

either market, but the market offering the largest basis will receive the supplier’s produce, 

eliminating any trade deficit. 

A model of spatial arbitrage is where profits from buying origin soybeans, shipping, and 

selling at export locations are positive.  The random variables are the soybean basis at each 

origin, transportation costs, and destination basis.  Basis data for 37 origins in the Upper 

Midwest and along the Mississippi River from 2004-2009 are used for this research.  The Pacific 
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Northwest and United States Gulf are the two ports, or destinations, to which each origin is 

shipping when spatial-arbitrage opportunities arise. 

The extensive data set used for this research was collected and used in Wilson and Dahl  

(2011).  The soybean basis was weekly data from 2004-2009.  Some of the data used in Wilson 

and Dahl (2011) were collected in O'Neil (2010). 

 A simulation optimization model was specified in Chapter 4 and was subject to 

constraints that limit the decision variables or bushels.  The model also forced an equal number 

of bushels to be purchased from the origin, sold at the port, and with the appropriate amount of 

space by some mode of transportation.  Monte Carlo simulation was used to capture the 

randomness for these variables.  The random variables in the simulation optimization model 

were highly correlated, and that correlation needed to be captured.  

Distributions for the underlying data were assessed to determine the appropriate marginal 

distribution and correlation that would suffice, overall, as the best dependency measure.  In most 

cases, the resulting distributions were non-normal.  Because the distributions were non-normal, 

copula was selected as the most appropriate way to replicate the relationship between the random 

variables in the simulated optimization model.  Copula is a much more complex dependency 

measure, but the importance of measuring non-normal distributions in the data set with the 

appropriate dependence measure cannot be stressed enough.  Copula was introduced by A. Sklar 

in 1959 when he was answering a question about the multidimensional probability function and 

its lower dimensional margins by M. Frechet and G. Dall' Aglio.  M. Frechet and G. Dall' Aglio 

asked Sklar the question about their work on bivariate and trivariate distribution functions with 

given univariate margins. 
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Copula methods were used to determine the most appropriate copula.  The Gaussian 

copula was selected as the most appropriate dependence relationship because there were 87 

variables for this research.  A Student t copula would probably be more significant, however, if 

the degrees of freedom are greater than 30 the Student t converges to a Gaussian copula.  The 

scatter plots for the original data set are represented very well by the Gaussian copula, which is 

displayed in Chapter 5.  Instead of using a normal distribution such as the Normal Risk 

Constrained Optimization models, the Copula Risk Constrained Optimization models use an 

empirical distribution which takes the exact form of the original data set. 

 The Copula Risk Constrained Optimization model was evaluated as the base case, and 

these results were compared to the Normal Risk Constrained Optimization model for illustration.  

Normal Risk Constrained Optimization was not an appropriate method to represent the base case 

because a majority of the variables had a non-normal distribution and had a non-linear 

relationship.  Finally, a number of interesting sensitivities were evaluated, such as being adaptive 

to changes in risk, risk loving, buy track or CIF NOLA/sell FOB, vertically integrated without 

ocean shipping, vertically integrated with ocean shipping, and an increase in shuttle-train loading 

efficiency. 

Summary of Results 

 The objective of this research was to develop a portfolio of origins that can maximize 

profit from spatial arbitraging to the PNW or USG.  There were 37 origins located throughout 

the Upper Midwest and along the Mississippi River.  The two destination locations were the 

Pacific Northwest and the U.S. Gulf ports.  Railroad, barge, and ocean shipping were the modes 

of transportation used in this research.  The repeated optimization was accomplished through 

Monte Carlo simulation, which allows the simulated optimization model to pull random draws 
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from distributions created by the original observations.  The new random variables were placed 

into the seven models specified to capture the thesis objectives.  The seven empirical models 

were the base case, risk loving, adaptive to changes in risk, increase in shuttle-train loading 

efficiency, vertically integrated without ocean shipping, vertically integrated with ocean 

shipping, and sell FOB/buy track or CIF NOLA.  These empirical models are all very similar and 

are very similar to a profit function.  Revenue is the destination basis, and the costs are origin 

basis and transportation rates. 

 The base case is designed to represent the simplest scenario and is easily compared to the 

other sensitivities.  From the base case, it is not possible to recognize past boundary lines, but 

existing boundary lines are easily seen by the origins representing the greatest weekly average 

spatial-arbitrage profits.  The average spatial-arbitrage profit across all locations is about 

$.12/bu, with a standard deviation of about $.09/bu for the base case.  Gurley, NE, has the 

greatest weekly average spatial-arbitrage profits, indicating that this origin is the closest to the 

market boundary line between the PNW and USG.  Gurley, NE, has the greatest spatial-arbitrage 

profits of all locations at $.35/bu and is selected 82% of the time.  Gurley, NE, shipped to the 

USG 82% of the time.  Dorchester, NE, has average arbitrage profits of $.20/bu, shipping to the 

PNW  39% of the time and to the USG 27% of the time.  The results have a lognormal 

distribution with large right-hand tails for each origin and as a portfolio.  Comparing Normal 

Risk Constrained Optimization with Copula Risk Constrained Optimization, both models have 

lognormal distributions.  Normal Risk Constrained Optimization output has a greater probability 

of $100,000 than Copula Risk Constrained Optimization, which has a greater probability of $0, 

for Ayr, ND. 
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 The risk-loving sensitivity is used to compare the base case whether allowing a company 

to accommodate more risk for a greater spatial-arbitrage profits for the portfolio.  Adjusting σ, 

which is the portfolio’s variance transformed to the standard deviation, will allow the researcher 

to discover origins with greater amounts of risk.  Locations with the greatest amount of risk also 

provide more spatial-arbitrage opportunities.  Hence, the less risky location’s basis does not 

change very often, creating fewer chances for spatial-arbitrage opportunities.  These origins are 

much more risky because they are located on the market boundary between the PNW and USG.  

Origins in the Upper Midwest have the greatest increase in profits as the risk constraint, σ, is 

increased from .1 to .2 and .3 standard deviations.  Gurley, NE is also a location that has 

increased profits as σ increased; however, its average weekly profits per bushel did not increase 

the most of the 37 origins.  These results are an indicator that Gurley, NE, is already shipping at 

capacity.  To allow the portfolio to accommodate more risk, the model selects the next locations 

that could maximize the portfolio’s spatial-arbitrage profits.  These locations are relatively close 

to the market boundaries. 

 As explained in Chapter 4, this sensitivity uses model specifications that are similar to the 

vertical integration without ocean shipping model.  The difference between these two 

sensitivities is that the empirical model for being adaptive to changes in risk sensitivity uses the 

exponential weight moving average (EWMA) to aid in calculating the portfolio’s variance.  The 

EWMA is used to forecast volatility by weighting the historical data set differently through time 

by adjusting λ.  Most commonly, λ is set at .94 for forecasting volatility, but for this sensitivity, 

the objective is to determine how the empirical model selects alternate origins as λ is adjusted 

from .8 to .9 and 1.  If λ is .8, the firm is more adaptive to changes in volatility because it places 

more weight on the most recent observations.  The results from this sensitivity reveal origins that 
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used to be relatively close to market boundaries, but as changes in the agriculture industry 

continue, these boundary lines shift to new locations.  Alton, ND, has become more risky in 

recent years, but placing more of an equal weight across observations, this origin was less risky 

in the past.  The greater variability in Alton, ND, is because of agriculture changes in recent 

years that were explained in Chapter 1.  Alton, ND, could be closer to the market boundary in 

recent years.  Being located close to the market boundary, an origin basis would adjust 

constantly while outside influences shift the destination market and where Alton, ND, will sell its 

soybeans. 

 An increase in the shuttle-loading efficiency sensitivity is regarding the increase in the 

loading capacity for a shuttle loader.  The ability to increase an origin's loading capacity with 

average profits greatly increases its chance for capturing a greater amount of spatial arbitrage.  

The port facilities are only able to unload about 8,740,032 bu a week.  The loading capacity 

constraints for Ayr, ND increase from one to five trains and all of the competitors are only able 

to load two trains in a week.  By only selecting one location (Ayr, ND), this sensitivity is able to 

determine the ability of this one location to capitalize on the maximum spatial-arbitrage 

opportunity available. 

 The vertical-integration sensitivities are the most interesting of the empirical models that 

were estimated.  These results are used to determine how the profits and risk increase as a 

company becomes more vertically integrated from the base case to vertically integration that 

includes ocean shipping.  These sensitivities also show how the difference in the ocean shipping 

rates from PNW or USG affects the decision about what port to use when selling soybeans.  

These sensitivity results allow a firm to see how vertically integrated the company should be to 

capture more spatial-arbitrage profits.  A firm that owns a facility at Gurley, NE, is non-
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integrated, or base case, at $35/bu and is vertically integrated at $.86/bu.  Hence, the greatest 

returns are from origins that are able to load as many trains in a week as possible because the 

ports can only unload 8,740,032 bu a week.  If a firm is concerned with the earnings/risk ratio, 

nonintegrated  is less risky for the amount of profit.  As a portfolio, a non-integrated firm has the 

best profit for the amount of risk with a ratio of 1.58, meaning that the profit is 1.58 times the 

risk. 

Contributions and Implications 

 This thesis’ contribution is to the research about market integration, market efficiency, 

the law of one price, and spatial arbitrage.  Researchers that use Parametric and nonparametric 

modeling have been debating the law of one price for many years.  

 The study done by (Borenstein and Kellogg, 2012) about the increasing spread between 

the West Texas Intermediate (WTI) oil price and Brent crude oil is highly related to the thesis 

objectives.  Oil has different grades, but in reality, they should have similar prices through 

arbitrage.  Before oil fracking in North Dakota and Canada, the WTI and Brent crude oil had 

similar prices (Borenstein and Kellogg, 2012).  This study used a basic parametric model, such 

as an OLS model, to regress price changes for crude oil and Midwest fuel prices. 

 China has gone through a great economic transition since 1988.  China is interested in 

how integrated its commodity marketplace is compared to historical market integration across a 

time period of great policy changes (Park, et al., 2002).  China is interested in how well 

merchandisers are able to detect spatial arbitrage.  In the research for this paper, researchers use a 

parametric model, such as a parity-bounds model, that follows Baulch (1997) and Sexton et al. 

(1991).  Next, the conventional innovation-accounting procedures, such as the Granger causality, 

impulse functions, and impact multipliers are used to generate insights about the nature of 



 

130 

 

adjustment between the U.S. and Canadian livestock markets.  These tests are just to show how 

quickly the country responds to shocks in other countries.  Researchers use a parametric model, 

such as the vector autoregressive (VAR) model, because it is not necessary to transform non-

stationary data to stationary data.  Copula is used to test market integration through time in 

oriented strand board in the United States (Goodwin, et al., 2011).  Copula is just an input for a 

vector autoregressive model is combined, into a non-parametric model. 

In this thesis, a model of spatial arbitrage is where profits from buying origin soybeans, 

shipping them, and selling them at export locations are positive.  The random variables are 

soybean basis at each origin, transportation costs, and destination basis.  Basis data for 37 origins 

in the Upper Midwest and along the Mississippi River from 2004-2009 are used in this research.  

The Pacific Northwest and United States Gulf are the two ports, or destinations, to which each 

origin is shipping when spatial-arbitrage opportunities arise.  The model also forces an equal 

number of bushels to be bought from the origin, transported, and sold at port.  Monte Carlo 

simulation is used to capture this randomness for these variables.  The random variables in the 

simulated optimization model are highly correlated, and that correlation needs to be captured.  

Distributions for the underlying data were assessed to determine the appropriate 

distribution and correlation that would suffice, overall, as the best dependency measure.  In most 

cases, the resulting distributions were non-normal.  Because the distribution was non-normal, 

copula was selected as the most appropriate way to replicate the relationship between the random 

variables in the simulated optimization model. 

This thesis is different than previous literature because multiple origins and destinations 

are analyzed for potential spatial-arbitrage opportunities.  The profits from spatial arbitrage at 

these origins are included in the results, and the literature reviewed in this thesis is only 
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concerned with how well the market is related or integrated.  The results in this research can be 

used to determine, on average, how often each origin has an arbitrage opportunity.  The thesis 

research can be utilized to determine if the markets are integrated the same way as the literature 

review.  A parametric model, such as a quadratic programming model, is used in this research.  

Because copula is used, it allows the quadratic programming model to become more of a non-

parametric model.  The empirical model in this thesis creates a portfolio and considers risk as a 

constraint on spatial-arbitrage profit. 

 This research used the soybean basis market to establish short-run arbitrage opportunities, 

which coincides with the most recent research on market integration and the law of one price.  

The nonparametric model used in this research also obtains the percentage of time that each 

origin has spatial-arbitrage profits.  With this research, a firm is better able to select strategies for 

where it would like to make improvements to existing country elevators or where it would like to 

purchase and build new country elevators to capture spatial-arbitrage profits. 

 Research conducted for this thesis supports the changes in agriculture that were 

exemplified in previous research, such as (Wilson and Dahl, 2011).  There has been a change in 

the agriculture industry since 2004; the boundary lines have noticeably shifted.  The shift in the 

boundary lines is what caused the spatial-arbitrage opportunity. 

 The research from this thesis also suggests there are very high similarities between the 

U.S. soybean market and the WTI oil market in (Borenstein and Kellogg, 2012), because both 

have spatial-arbitrage opportunities and barriers aiding in the spatial arbitrage.  The Panama 

Canal is at capacity, restricting any further flow of soybeans through the USG to China, and the 

WTI export pipeline has reached capacity, limiting the amount of oil shipped for export.  It has 

been noted in (Wilson and Dahl, 2011) that there are soybean-quality differences from 
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production in northern states to southern states.  The southern states have a much higher protein 

and oil content than northern-producing states.  China would much rather receive its soybeans 

from the USG than the PNW. 

 Some major implications from this research are the size of spatial-arbitrage opportunities, 

such as $.35/bu at Gurley, NE.  These spatial-arbitrage opportunities very geographically, such 

as Iowa and Minnesota locations having very few spatial-arbitrage opportunities.  North Dakota, 

South Dakota, and Nebraska all have average or above average spatial-arbitrage profits.  The 

vertical-integration sensitivity suggests that the greatest return for the risk is a non-integrated 

firm.  A fully integrated firm has the greatest spatial-arbitrage profits but has a larger amount of 

risk.   

 The transportation costs do not make up all the costs of transferring goods from point A 

to point B. An assumption is made that all locations should have very few differences between 

the remaining transfer costs.  This assumption may bias the results upwards slightly, but origins 

with the greatest spatial arbitrage would still be considered the most profitable for spatial 

arbitraging soybeans. 

Further Research 

 Future research could expand on the empirical models developed in this research to 

include a data set to analyze international spatial arbitrage, such as Brazil and Ukraine.  The data 

set used in this research was only concerned with domestic spatial arbitrage but was expanded to 

see how market boundaries change when soybeans were shipped to Japan.  Data could also be 

gathered to examine alternate commodity markets to see how those markets compare with the 

soybean market.  It would be interesting to see how the quality difference in the soybean market 
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compares to the wheat market.  The wheat market considers quality differences, offering 

premiums and discounts to accommodate various quality characteristics. 

 The empirical model created for this thesis could also be expanded to specialty crops that 

are commonly imported from Canada or Mexico to see how they influence domestic price 

relationships.  These results could aid in policy decisions and, potentially, barriers created by 

current policies. 

 The data used in this thesis are from 2004-2009, so the origin and destination basis, as 

well as the transportation costs, could be updated.  Also, a greater number of origins within the 

United States could be added to the data set to better analyze market boundaries.  To complicate 

the model, further quality characteristics could be included to determine how quality differential 

affects spatial arbitrage and the flow of soybeans from the central United States.  As markets 

become more volatile, there is greater difficulty abiding by the law of one price.  There will 

always be some short-run spatial arbitrage profits for commodities until technology is developed 

to streamline the supply chain. 
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APPENDIX 

Table A1.Copula Base Case and Vertical Integration Average Profit.  

 
Base Case VI w/o Ocean VI w/Ocean 

Origins Mean Stdev 1/CV Mean Stdev 1/CV Mean Stdev 1/CV 

Albany,IL $71,807 $111,127 0.646 $188,089 $285,969 0.658 $311,186 $599,442 0.519 

Alden, IA $40,126 $112,374 0.357 $78,112 $261,156 0.299 $69,884 $365,381 0.191 

Alton, ND $109,230 $145,193 0.752 $240,221 $315,532 0.761 $387,323 $617,556 0.627 

Aurora, IN $179,530 $203,673 0.881 $259,292 $369,195 0.702 $560,512 $767,597 0.730 

Ayr, ND $118,740 $196,425 0.605 $208,679 $264,352 0.789 $382,284 $613,936 0.623 

Bayard, IA $32,374 $102,569 0.316 $71,970 $233,216 0.309 $85,940 $354,128 0.243 

Beatrice, NE $98,996 $150,808 0.656 $194,275 $298,159 0.652 $308,520 $589,550 0.523 

Bradshaw, NE $72,917 $148,449 0.491 $123,347 $319,166 0.386 $226,711 $586,862 0.386 

Breckenridge, MN $15,244 $68,851 0.221 $61,561 $258,509 0.238 $74,636 $430,228 0.173 

Cairo, IL $133,260 $191,373 0.696 $214,388 $336,234 0.638 $268,211 $551,104 0.487 

Cin Bunge, OH $96,397 $165,007 0.584 $184,872 $337,471 0.548 $161,654 $333,917 0.484 

Cin Cargill, OH $57,061 $113,636 0.502 $113,961 $231,951 0.491 $148,841 $452,583 0.329 

Creston, IA $19,767 $86,302 0.229 $45,777 $208,118 0.220 $25,306 $155,016 0.163 

Dorchester, NE $165,014 $209,113 0.789 $268,495 $344,424 0.780 $325,350 $601,772 0.541 

Dubuque, IA $186,078 $232,074 0.802 $317,666 $398,226 0.798 $509,841 $689,076 0.740 

Edison, NE $99,102 $160,207 0.619 $190,838 $289,371 0.659 $315,806 $591,100 0.534 

Evansville, IN $211,696 $246,336 0.859 $303,856 $465,454 0.653 $286,851 $620,731 0.462 

Finley, ND $96,279 $171,304 0.562 $192,499 $322,714 0.596 $295,294 $588,293 0.502 

Fremont, NE $16,663 $67,942 0.245 $171,747 $819,964 0.209 $276,409 $700,764 0.394 

Gurley, NE $292,758 $242,373 1.208 $388,093 $405,615 0.957 $711,885 $764,968 0.931 

Hinton, IA $11,251 $64,860 0.173 $37,283 $157,902 0.236 $62,985 $368,224 0.171 

Jamestown, ND $99,512 $148,816 0.669 $230,529 $363,847 0.634 $356,000 $618,110 0.576 

Jasper, MN $0 $0 0.000 $13,341 $97,872 0.136 $27,152 $167,449 0.162 
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Table A1. Copula Base Case and Vertical Integration Average Profit (continued). 

 
Base Case VI w/o Ocean VI w/Ocean 

Origins Mean Stdev 1/CV Mean Stdev 1/CV Mean Stdev 1/CV 

Jeffersonville, IN $168,912 $205,971 0.820 $248,239 $311,587 0.797 $522,124 $730,936 0.714 

Madison, SD $12,117 $59,290 0.204 $64,497 $289,180 0.223 $42,578 $203,569 0.209 

Marion, SD $11,590 $61,950 0.187 $51,023 $188,193 0.271 $56,206 $231,011 0.243 

Maywood, NE $165,037 $189,551 0.871 $303,173 $408,623 0.742 $540,332 $659,831 0.819 

Mellett, SD $181,553 $205,064 0.885 $246,964 $333,719 0.740 $92,541 $296,491 0.312 

Mitchell, SD $24,686 $94,228 0.262 $58,161 $252,682 0.230 $36,551 $218,412 0.167 

Mound City, IL $158,425 $191,039 0.829 $243,100 $351,064 0.692 $534,753 $776,153 0.689 

Mount Vernon, IN $197,068 $262,528 0.751 $272,219 $428,368 0.635 $157,820 $452,090 0.349 

Muscatine, IA $100,143 $162,758 0.615 $196,046 $299,319 0.655 $341,288 $699,757 0.488 

Nauvoo, IL $191,177 $214,441 0.892 $287,980 $374,217 0.770 $503,898 $767,959 0.656 

Pekin, IL $178,627 $194,729 0.917 $285,123 $355,933 0.801 $550,022 $732,000 0.751 

Pleasant Hill, IA $12,629 $57,159 0.221 $41,432 $162,382 0.255 $35,198 $174,792 0.201 

Red Oak, IA $6,100 $33,533 0.182 $59,742 $247,474 0.241 $59,943 $336,069 0.178 

Wolsey, SD $53,682 $154,293 0.348 $122,279 $317,084 0.386 $87,412 $314,765 0.278 
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Table A2. Copula Buy Track/CIF NOLA/Sell FOB/Adaptive/Risk Average Profit. 

 

 
Buy Track & CIF/Sell FOB Adaptive 80% Adaptive 90% Adaptive 100% 

Origins Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

Port PNW $878,006 $1,322,699 
      

Port USG $1,457,711 $2,441,300 
      

Albany,IL 
  

$178,171 $253,306 $176,692 $252,972 $184,798 $252,592 

Alden, IA 
  

$142,773 $343,384 $142,434 $343,604 $140,902 $344,717 

Alton, ND 
  

$321,541 $388,541 $322,635 $388,701 $329,449 $386,719 

Aurora, IN 
  

$243,389 $331,269 $244,958 $335,110 $256,927 $340,494 

Ayr, ND 
  

$235,111 $294,444 $229,562 $293,581 $241,721 $291,746 

Bayard, IA 
  

$94,572 $294,008 $103,557 $300,970 $96,332 $295,664 

Beatrice, NE 
  

$217,990 $347,201 $218,306 $347,741 $227,711 $341,826 

Bradshaw, NE 
  

$144,224 $406,819 $148,366 $408,077 $149,999 $408,992 

Breckenridge, MN 
  

$99,671 $308,391 $99,671 $308,391 $99,746 $308,426 

Cairo, IL 
  

$240,613 $353,614 $237,468 $354,379 $256,082 $354,621 

Cin Bunge, OH 
  

$187,554 $276,492 $188,318 $273,890 $202,330 $292,492 

Cin Cargill, OH 
  

$100,659 $222,368 $101,762 $223,652 $110,839 $234,203 

Creston, IA 
  

$63,235 $350,726 $64,786 $351,426 $62,229 $350,943 

Dorchester, NE 
  

$315,678 $423,718 $314,468 $422,907 $325,346 $417,423 

Dubuque, IA 
  

$356,150 $400,635 $353,644 $399,031 $379,064 $407,696 

Edison, NE 
  

$219,832 $315,261 $219,627 $315,263 $229,194 $314,395 

Evansville, IN 
  

$281,568 $354,096 $277,618 $351,731 $290,764 $357,436 

Finley, ND 
  

$218,823 $369,386 $216,309 $369,160 $225,089 $369,604 

Fremont, NE 
  

$294,845 $1,243,868 $295,466 $1,243,581 $303,448 $1,246,347 

Gurley, NE 
  

$437,367 $467,432 $437,761 $465,917 $439,005 $466,964 

Hinton, IA 
  

$24,605 $101,411 $25,881 $104,305 $26,328 $107,375 

Jamestown, ND 
  

$209,111 $303,014 $213,609 $303,571 $221,810 $301,564 

Jasper, MN 
  

$3,291 $28,347 $2,947 $25,201 $3,345 $28,445 

Jeffersonville, IN 
  

$258,459 $305,577 $252,877 $302,197 $263,763 $307,391 
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Table A2. Copula Buy Track/CIF NOLA/Sell FOB/Adaptive/ Risk Average Profit (continued). 

 

 
Buy Track & CIF/Sell FOB Adaptive 80% Adaptive 90% Adaptive 100% 

Origins Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

Madison, SD 
  

$65,656 $293,824 $65,454 $293,722 $65,770 $293,877 

Marion, SD 
  

$64,025 $205,831 $64,913 $208,891 $58,680 $200,204 

Maywood, NE 
  

$350,365 $376,758 $349,705 $376,050 $356,055 $375,830 

Mellett, SD 
  

$329,585 $393,228 $327,970 $394,719 $332,147 $397,704 

Mitchell, SD 
  

$37,774 $145,882 $36,522 $143,978 $37,970 $146,599 

Mound City, IL 
  

$259,764 $359,178 $263,517 $359,684 $272,252 $365,884 

Mount Vernon, IN 
  

$266,519 $327,912 $264,920 $326,215 $268,287 $325,535 

Muscatine, IA 
  

$218,030 $311,610 $219,898 $314,836 $230,514 $326,434 

Nauvoo, IL 
  

$361,071 $415,077 $366,348 $411,627 $368,589 $419,589 

Pekin, IL 
  

$277,762 $363,913 $281,079 $362,365 $285,402 $368,312 

Pleasant Hill, IA 
  

$49,832 $183,370 $51,986 $188,107 $52,638 $192,808 

Red Oak, IA 
  

$45,341 $149,494 $45,341 $149,494 $51,324 $156,813 

Wolsey, SD 
  

$202,442 $435,039 $205,162 $439,033 $207,672 $443,277 
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Table A3. Copula Risk Loving Average Profit. 

 
Risk Measure 10% Risk Measure 20% Risk Measure 30% 

Origins Mean Stdev Mean Stdev Mean Stdev 

Albany,IL $167,990 $249,594 $175,393 $249,818 $171,125 $253,464 

Alden, IA $128,845 $333,938 $134,856 $336,266 $135,624 $336,917 

Alton, ND $295,531 $390,880 $310,511 $396,536 $314,402 $394,300 

Aurora, IN $214,773 $327,409 $223,774 $329,465 $236,765 $330,672 

Ayr, ND $200,786 $282,444 $217,353 $292,721 $220,499 $291,469 

Bayard, IA $87,381 $285,427 $93,222 $291,181 $91,606 $291,570 

Beatrice, NE $200,301 $332,119 $218,671 $342,861 $219,389 $344,178 

Bradshaw, NE $135,865 $401,315 $142,066 $404,436 $139,948 $403,660 

Breckenridge, MN $95,572 $291,148 $96,359 $292,678 $97,097 $292,264 

Cairo, IL $241,514 $358,633 $253,071 $359,173 $255,986 $357,009 

Cin Bunge, OH $161,541 $253,065 $159,921 $253,089 $169,611 $262,659 

Cin Cargill, OH $95,409 $207,163 $93,868 $208,639 $96,129 $213,500 

Creston, IA $61,893 $347,640 $61,186 $348,302 $63,698 $349,217 

Dorchester, NE $283,929 $397,483 $293,216 $407,555 $307,143 $410,594 

Dubuque, IA $313,030 $389,433 $317,008 $391,580 $339,142 $402,331 

Edison, NE $190,286 $306,274 $199,796 $312,288 $205,784 $315,360 

Evansville, IN $212,418 $257,606 $257,637 $347,290 $266,839 $350,331 

Finley, ND $186,765 $350,057 $201,789 $366,721 $209,854 $368,518 

Fremont, NE $278,037 $1,240,766 $282,762 $1,240,562 $289,439 $1,243,622 

Gurley, NE $414,670 $446,333 $423,146 $449,380 $428,070 $454,213 

Hinton, IA $27,259 $103,074 $29,671 $104,568 $25,596 $100,231 

Jamestown, ND $197,609 $301,288 $199,999 $302,142 $206,339 $302,990 

Jasper, MN $2,665 $22,456 $2,665 $22,456 $3,256 $28,289 

Jeffersonville, IN $262,850 $353,812 $249,178 $299,232 $257,988 $298,758 

Madison, SD $62,730 $289,085 $62,723 $289,184 $62,978 $289,209 

Marion, SD $60,546 $198,816 $58,865 $197,945 $58,307 $195,956 

Maywood, NE $302,001 $361,441 $313,427 $364,342 $322,626 $369,962 

Mellett, SD $262,888 $383,287 $272,715 $386,437 $309,646 $391,900 

Mitchell, SD $27,834 $132,850 $27,983 $132,960 $28,195 $133,150 

Mound City, IL $240,691 $353,444 $259,647 $357,488 $261,728 $359,159 

Mount Vernon, IN $238,172 $367,445 $233,172 $314,512 $245,524 $316,493 

Muscatine, IA $213,306 $305,329 $216,134 $303,706 $215,198 $307,278 

Nauvoo, IL $314,645 $423,203 $329,018 $419,337 $334,218 $417,951 

Pekin, IL $241,029 $296,428 $259,847 $357,018 $264,672 $357,952 

Pleasant Hill, IA $46,781 $166,871 $52,365 $182,494 $50,265 $177,418 

Red Oak, IA $39,373 $146,540 $39,194 $138,399 $42,966 $142,417 

Wolsey, SD $187,949 $423,260 $195,933 $425,922 $194,215 $425,921 
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Table A4. Copula Increase in Shuttle Train Loading Efficiency Average Profit. 

 
1 Shutlle Train 2 Shuttle Train 3 Shuttle Train 4 Shuttle Train 5 Shuttle Train 

Origins Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

Albany,IL $167,739 $248,676 $171,125 $253,464 $169,442 $252,677 $171,927 $253,514 $171,101 $253,528 

Alden, IA $136,024 $337,350 $135,624 $336,917 $134,385 $335,946 $136,134 $337,383 $134,859 $336,152 

Alton, ND $315,943 $394,655 $314,402 $394,300 $311,455 $394,232 $314,432 $395,325 $314,078 $395,122 

Aurora, IN $238,070 $331,399 $236,765 $330,672 $235,885 $330,392 $236,876 $330,305 $233,976 $329,402 

Ayr, ND $101,360 $140,678 $220,499 $291,469 $351,369 $439,807 $470,089 $585,446 $596,726 $731,447 

Bayard, IA $93,413 $293,195 $91,606 $291,570 $93,145 $293,109 $93,902 $293,718 $93,539 $293,238 

Beatrice, NE $219,760 $346,958 $219,389 $344,178 $220,167 $344,028 $219,669 $344,389 $220,070 $344,227 

Bradshaw, NE $140,285 $405,644 $139,948 $403,660 $140,059 $405,409 $141,327 $405,604 $141,428 $405,650 

Breckenridge, MN $99,393 $303,040 $97,097 $292,264 $95,662 $291,523 $95,836 $291,555 $98,307 $302,405 

Cairo, IL $255,610 $356,678 $255,986 $357,009 $255,493 $357,684 $255,515 $358,146 $253,284 $358,809 

Cin Bunge, OH $167,598 $260,724 $169,611 $262,659 $169,590 $264,066 $170,282 $263,548 $168,781 $261,214 

Cin Cargill, OH $97,497 $215,145 $96,129 $213,500 $96,006 $214,263 $96,006 $214,263 $95,341 $214,135 

Creston, IA $63,663 $349,195 $63,698 $349,217 $63,698 $349,217 $63,698 $349,217 $62,550 $348,572 

Dorchester, NE $311,150 $414,113 $307,143 $410,594 $307,245 $411,295 $305,671 $412,195 $306,356 $409,642 

Dubuque, IA $342,109 $400,438 $339,142 $402,331 $336,871 $400,762 $337,196 $402,154 $336,500 $400,484 

Edison, NE $205,579 $314,024 $205,784 $315,360 $201,176 $313,135 $206,288 $314,218 $200,641 $313,226 

Evansville, IN $268,013 $350,515 $266,839 $350,331 $264,605 $350,054 $264,392 $350,457 $262,169 $350,132 

Finley, ND $210,404 $368,585 $209,854 $368,518 $208,445 $367,937 $209,448 $368,037 $205,515 $366,661 

Fremont, NE $294,154 $1,242,452 $289,439 $1,243,622 $289,780 $1,241,540 $286,972 $1,242,307 $288,508 $1,242,973 

Gurley, NE $423,801 $454,071 $428,070 $454,213 $427,316 $452,245 $426,619 $452,722 $428,826 $454,174 

Hinton, IA $26,517 $103,054 $25,596 $100,231 $27,190 $103,701 $25,537 $100,155 $24,638 $99,039 

Jamestown, ND $207,788 $302,716 $206,339 $302,990 $204,094 $303,129 $204,159 $303,190 $207,852 $304,935 

Jasper, MN $3,256 $28,289 $3,256 $28,289 $3,256 $28,289 $3,256 $28,289 $3,345 $28,445 

Jeffersonville, IN $258,120 $298,787 $257,988 $298,758 $253,615 $297,719 $253,361 $298,367 $254,495 $298,111 

Madison, SD $63,259 $289,293 $62,978 $289,209 $65,274 $293,672 $63,079 $289,283 $62,978 $289,209 
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Table A4. Increase in Shuttle Train Loading Efficiency Average Profit (continued). 

 

 
1 Shutlle Train 2 Shuttle Train 3 Shuttle Train 4Shutlle Train 5 Shuttle Train 

Origins Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

Marion, SD $58,093 $195,909 $58,307 $195,956 $58,307 $195,956 $58,011 $195,897 $58,011 $195,897 

Maywood, NE $325,688 $370,013 $322,626 $369,962 $330,243 $372,955 $326,689 $370,782 $325,303 $369,941 

Mellett, SD $306,519 $381,975 $309,646 $391,900 $300,657 $380,528 $303,323 $384,740 $299,762 $385,424 

Mitchell, SD $28,095 $133,052 $28,195 $133,150 $28,095 $133,052 $28,095 $133,052 $28,195 $133,150 

Mound City, IL $260,483 $359,489 $261,728 $359,159 $266,949 $360,686 $264,781 $360,216 $260,483 $359,489 

Mount Vernon, IN $246,757 $318,822 $245,524 $316,493 $240,685 $317,687 $239,249 $314,672 $239,809 $312,885 

Muscatine, IA $215,223 $307,305 $215,198 $307,278 $217,329 $310,303 $216,185 $306,754 $215,748 $308,912 

Nauvoo, IL $335,154 $419,520 $334,218 $417,951 $335,909 $418,048 $334,143 $418,024 $337,586 $418,950 

Pekin, IL $265,700 $357,632 $264,672 $357,952 $265,257 $358,063 $267,680 $357,359 $268,737 $357,133 

Pleasant Hill, IA $48,005 $167,445 $50,265 $177,418 $50,265 $177,418 $48,005 $167,445 $48,612 $167,755 

Red Oak, IA $44,927 $148,155 $42,966 $142,417 $42,966 $142,416 $42,966 $142,416 $44,927 $148,155 

Wolsey, SD $195,452 $425,711 $194,215 $425,921 $193,022 $423,558 $190,291 $415,500 $195,103 $427,354 
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Table A5. Copula Base Case and Vertical Integration Average Profit/bu. 

 
Base Case VI w/o Ocean VI w/Ocean Sell CIF/Buy FOB 

Origins Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

Port PNW 
      

$0.05 $0.08 

Port USG 
      

$0.09 $0.15 

Albany,IL $0.09 $0.14 $0.23 $0.34 $0.39 $0.73 
  

Alden, IA $0.05 $0.14 $0.10 $0.32 $0.10 $0.47 
  

Alton, ND $0.13 $0.17 $0.29 $0.38 $0.47 $0.74 
  

Aurora, IN $0.22 $0.25 $0.32 $0.45 $0.69 $0.93 
  

Ayr, ND $0.15 $0.25 $0.25 $0.32 $0.47 $0.74 
  

Bayard, IA $0.04 $0.13 $0.09 $0.28 $0.11 $0.43 
  

Beatrice, NE $0.12 $0.18 $0.24 $0.36 $0.37 $0.71 
  

Bradshaw, NE $0.09 $0.18 $0.15 $0.39 $0.30 $0.79 
  

Breckenridge, MN $0.02 $0.09 $0.08 $0.31 $0.09 $0.52 
  

Cairo, IL $0.16 $0.23 $0.26 $0.41 $0.34 $0.67 
  

Cin Bunge, OH $0.12 $0.20 $0.23 $0.41 $0.21 $0.43 
  

Cin Cargill, OH $0.07 $0.14 $0.14 $0.28 $0.19 $0.57 
  

Creston, IA $0.03 $0.11 $0.06 $0.30 $0.03 $0.20 
  

Dorchester, NE $0.20 $0.25 $0.32 $0.41 $0.39 $0.72 
  

Dubuque, IA $0.23 $0.28 $0.39 $0.48 $0.65 $0.87 
  

Edison, NE $0.12 $0.19 $0.23 $0.35 $0.38 $0.71 
  

Evansville, IN $0.26 $0.30 $0.37 $0.56 $0.39 $0.79 
  

Finley, ND $0.12 $0.21 $0.23 $0.39 $0.36 $0.71 
  

Fremont, NE $0.02 $0.08 $0.21 $0.99 $0.33 $0.84 
  

Gurley, NE $0.35 $0.29 $0.47 $0.49 $0.86 $0.92 
  

Hinton, IA $0.02 $0.08 $0.05 $0.19 $0.08 $0.44 
  

Jamestown, ND $0.12 $0.18 $0.28 $0.44 $0.43 $0.74 
  

Jasper, MN $0.00 $0.00 $0.02 $0.12 $0.03 $0.20 
  

Jeffersonville, IN $0.21 $0.25 $0.31 $0.38 $0.66 $0.94 
  

Madison, SD $0.02 $0.08 $0.08 $0.35 $0.05 $0.24 
  

Marion, SD $0.02 $0.08 $0.07 $0.25 $0.07 $0.28 
  

Maywood, NE $0.20 $0.23 $0.37 $0.49 $0.65 $0.79 
  

Mellett, SD $0.22 $0.25 $0.31 $0.41 $0.11 $0.36 
  

Mitchell, SD $0.03 $0.11 $0.07 $0.31 $0.05 $0.27 
  

Mound City, IL $0.19 $0.23 $0.30 $0.42 $0.65 $0.93 
  

Mount Vernon, IN $0.24 $0.32 $0.34 $0.53 $0.22 $0.59 
  

Muscatine, IA $0.13 $0.20 $0.24 $0.36 $0.43 $0.85 
  

Nauvoo, IL $0.23 $0.26 $0.35 $0.45 $0.62 $0.93 
  

Pekin, IL $0.22 $0.23 $0.35 $0.43 $0.68 $0.90 
  

Pleasant Hill, IA $0.02 $0.08 $0.05 $0.20 $0.04 $0.21 
  

Red Oak, IA $0.01 $0.04 $0.07 $0.30 $0.08 $0.46 
  

Wolsey, SD $0.07 $0.19 $0.15 $0.38 $0.11 $0.38 
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Table A6. Copula Risk Loving and Adaptive to Changes in Risk Average Profit/bu. 

 
Risk Measure 10% Risk Measure 20% Risk Measure 30% Adaptive 80% Adaptive 90% Adaptive 100% 

Origins Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

Albany,IL $0.21 $0.30 $0.22 $0.31 $0.21 $0.31 $0.22 $0.31 $0.22 $0.30 $0.23 $0.30 

Alden, IA $0.16 $0.40 $0.17 $0.41 $0.17 $0.41 $0.18 $0.42 $0.18 $0.42 $0.18 $0.42 

Alton, ND $0.36 $0.47 $0.37 $0.48 $0.38 $0.47 $0.39 $0.47 $0.39 $0.47 $0.40 $0.46 

Aurora, IN $0.27 $0.40 $0.28 $0.40 $0.29 $0.40 $0.31 $0.40 $0.30 $0.40 $0.32 $0.41 

Ayr, ND $0.24 $0.34 $0.26 $0.35 $0.27 $0.35 $0.28 $0.35 $0.28 $0.35 $0.29 $0.35 

Bayard, IA $0.11 $0.35 $0.12 $0.35 $0.11 $0.35 $0.12 $0.36 $0.13 $0.36 $0.12 $0.36 

Beatrice, NE $0.24 $0.40 $0.27 $0.41 $0.27 $0.41 $0.27 $0.42 $0.27 $0.42 $0.28 $0.41 

Bradshaw, NE $0.17 $0.48 $0.17 $0.49 $0.18 $0.49 $0.18 $0.49 $0.18 $0.49 $0.18 $0.49 

Breckenridge, MN $0.11 $0.35 $0.12 $0.35 $0.12 $0.35 $0.12 $0.37 $0.12 $0.37 $0.12 $0.37 

Cairo, IL $0.31 $0.43 $0.31 $0.43 $0.32 $0.43 $0.30 $0.43 $0.30 $0.43 $0.32 $0.43 

Cin Bunge, OH $0.21 $0.31 $0.21 $0.32 $0.21 $0.32 $0.23 $0.34 $0.23 $0.33 $0.27 $0.43 

Cin Cargill, OH $0.13 $0.27 $0.13 $0.27 $0.12 $0.26 $0.12 $0.27 $0.13 $0.27 $0.14 $0.28 

Creston, IA $0.08 $0.42 $0.07 $0.42 $0.08 $0.42 $0.08 $0.42 $0.08 $0.42 $0.07 $0.42 

Dorchester, NE $0.34 $0.48 $0.35 $0.49 $0.37 $0.49 $0.38 $0.51 $0.38 $0.51 $0.39 $0.50 

Dubuque, IA $0.38 $0.47 $0.38 $0.47 $0.41 $0.48 $0.43 $0.48 $0.42 $0.48 $0.46 $0.49 

Edison, NE $0.23 $0.37 $0.24 $0.37 $0.25 $0.38 $0.27 $0.38 $0.27 $0.38 $0.28 $0.38 

Evansville, IN $0.28 $0.32 $0.32 $0.42 $0.33 $0.42 $0.34 $0.42 $0.34 $0.42 $0.36 $0.43 

Finley, ND $0.22 $0.42 $0.24 $0.44 $0.25 $0.44 $0.26 $0.44 $0.26 $0.44 $0.27 $0.44 

Fremont, NE $0.34 $1.49 $0.34 $1.49 $0.35 $1.49 $0.36 $1.49 $0.36 $1.49 $0.36 $1.50 

Gurley, NE $0.50 $0.54 $0.51 $0.54 $0.52 $0.54 $0.53 $0.56 $0.53 $0.56 $0.54 $0.56 

Hinton, IA $0.03 $0.13 $0.04 $0.14 $0.03 $0.13 $0.03 $0.12 $0.03 $0.13 $0.03 $0.13 

Jamestown, ND $0.24 $0.36 $0.24 $0.36 $0.25 $0.36 $0.25 $0.36 $0.26 $0.36 $0.27 $0.36 

Jasper, MN $0.00 $0.03 $0.00 $0.03 $0.00 $0.03 $0.00 $0.03 $0.00 $0.03 $0.00 $0.03 

Jeffersonville, IN $0.33 $0.42 $0.31 $0.36 $0.32 $0.36 $0.31 $0.37 $0.31 $0.36 $0.32 $0.37 

Madison, SD $0.08 $0.35 $0.08 $0.35 $0.08 $0.35 $0.08 $0.35 $0.08 $0.35 $0.08 $0.35 

Marion, SD $0.08 $0.24 $0.07 $0.24 $0.07 $0.24 $0.08 $0.26 $0.09 $0.26 $0.08 $0.25 
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Table A6. Copula Risk Loving and Adaptive to Changes in Risk Average Profit/bu (continued). 

 
Risk Measure 10% Risk Measure 20% Risk Measure 30% Adaptive 80% Adaptive 90% Adaptive 100% 

Origins Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

Maywood, NE $0.37 $0.43 $0.38 $0.44 $0.39 $0.44 $0.42 $0.45 $0.42 $0.45 $0.43 $0.45 

Mellett, SD $0.32 $0.46 $0.33 $0.46 $0.40 $0.48 $0.41 $0.48 $0.41 $0.48 $0.42 $0.48 

Mitchell, SD $0.03 $0.16 $0.03 $0.16 $0.03 $0.16 $0.05 $0.18 $0.04 $0.17 $0.05 $0.18 

Mound City, IL $0.30 $0.43 $0.33 $0.43 $0.33 $0.43 $0.32 $0.43 $0.33 $0.43 $0.34 $0.44 

Mount Vernon, IN $0.29 $0.44 $0.30 $0.44 $0.31 $0.45 $0.34 $0.45 $0.34 $0.45 $0.33 $0.39 

Muscatine, IA $0.26 $0.37 $0.27 $0.36 $0.27 $0.37 $0.27 $0.37 $0.27 $0.38 $0.28 $0.39 

Nauvoo, IL $0.39 $0.51 $0.40 $0.50 $0.41 $0.50 $0.44 $0.50 $0.46 $0.49 $0.45 $0.50 

Pekin, IL $0.31 $0.43 $0.32 $0.43 $0.32 $0.43 $0.34 $0.44 $0.35 $0.43 $0.35 $0.44 

Pleasant Hill, IA $0.06 $0.20 $0.06 $0.22 $0.06 $0.21 $0.06 $0.22 $0.07 $0.23 $0.07 $0.23 

Red Oak, IA $0.05 $0.18 $0.05 $0.17 $0.05 $0.18 $0.06 $0.19 $0.06 $0.19 $0.07 $0.20 

Wolsey, SD $0.23 $0.51 $0.24 $0.51 $0.24 $0.51 $0.25 $0.53 $0.25 $0.53 $0.26 $0.54 
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Table A7. Copula Increase in Shuttle Train Loading Efficiency Average Profit/bu. 

 
1 Shuttle Train 2 Shuttle Train 3 Shuttle Train 4 Shuttle Train 5 Shuttle Train 

Origins Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

Albany,IL $0.21 $0.30 $0.21 $0.31 $0.21 $0.30 $0.21 $0.31 $0.21 $0.31 

Alden, IA $0.17 $0.41 $0.17 $0.41 $0.17 $0.41 $0.17 $0.41 $0.17 $0.41 

Alton, ND $0.38 $0.47 $0.38 $0.47 $0.37 $0.47 $0.38 $0.47 $0.38 $0.47 

Aurora, IN $0.30 $0.40 $0.29 $0.40 $0.29 $0.40 $0.30 $0.40 $0.29 $0.40 

Ayr, ND $0.24 $0.34 $0.27 $0.35 $0.28 $0.35 $0.28 $0.35 $0.29 $0.35 

Bayard, IA $0.11 $0.35 $0.11 $0.35 $0.11 $0.35 $0.11 $0.35 $0.11 $0.35 

Beatrice, NE $0.27 $0.42 $0.27 $0.41 $0.27 $0.41 $0.27 $0.41 $0.27 $0.41 

Bradshaw, NE $0.18 $0.49 $0.18 $0.49 $0.17 $0.49 $0.18 $0.49 $0.18 $0.49 

Breckenridge, MN $0.12 $0.37 $0.12 $0.35 $0.12 $0.35 $0.12 $0.35 $0.12 $0.37 

Cairo, IL $0.32 $0.43 $0.32 $0.43 $0.32 $0.43 $0.32 $0.43 $0.32 $0.43 

Cin Bunge, OH $0.21 $0.32 $0.21 $0.32 $0.21 $0.32 $0.21 $0.32 $0.21 $0.32 

Cin Cargill, OH $0.12 $0.26 $0.12 $0.26 $0.12 $0.26 $0.12 $0.26 $0.12 $0.26 

Creston, IA $0.08 $0.42 $0.08 $0.42 $0.08 $0.42 $0.08 $0.42 $0.08 $0.42 

Dorchester, NE $0.37 $0.50 $0.37 $0.49 $0.37 $0.49 $0.37 $0.49 $0.37 $0.49 

Dubuque, IA $0.42 $0.48 $0.41 $0.48 $0.41 $0.48 $0.41 $0.48 $0.41 $0.48 

Edison, NE $0.25 $0.38 $0.25 $0.38 $0.24 $0.38 $0.25 $0.38 $0.24 $0.38 

Evansville, IN $0.33 $0.42 $0.33 $0.42 $0.32 $0.42 $0.32 $0.42 $0.32 $0.42 

Finley, ND $0.25 $0.44 $0.25 $0.44 $0.25 $0.44 $0.25 $0.44 $0.25 $0.44 

Fremont, NE $0.36 $1.49 $0.35 $1.49 $0.35 $1.49 $0.35 $1.49 $0.35 $1.49 

Gurley, NE $0.51 $0.55 $0.52 $0.54 $0.52 $0.54 $0.52 $0.54 $0.52 $0.54 

Hinton, IA $0.03 $0.13 $0.03 $0.13 $0.04 $0.13 $0.03 $0.13 $0.03 $0.12 

Jamestown, ND $0.25 $0.36 $0.25 $0.36 $0.25 $0.36 $0.25 $0.36 $0.25 $0.37 

Jasper, MN $0.00 $0.03 $0.00 $0.03 $0.00 $0.03 $0.00 $0.03 $0.00 $0.03 

Jeffersonville, IN $0.32 $0.36 $0.32 $0.36 $0.31 $0.36 $0.31 $0.36 $0.31 $0.36 

Madison, SD $0.08 $0.35 $0.08 $0.35 $0.08 $0.35 $0.08 $0.35 $0.08 $0.35 

Marion, SD $0.07 $0.24 $0.07 $0.24 $0.07 $0.24 $0.07 $0.24 $0.07 $0.24 
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Table A7. Copula Increase in Shuttle Train Loading Efficiency Average Profit/bu (continued). 

 
1 Shuttle Train 2 Shuttle Train 3 Shuttle Train 4 Shuttle Train 5 Shuttle Train 

Origins Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

Maywood, NE $0.39 $0.44 $0.39 $0.44 $0.40 $0.45 $0.39 $0.45 $0.39 $0.44 

Mellett, SD $0.40 $0.47 $0.40 $0.48 $0.39 $0.47 $0.39 $0.47 $0.39 $0.47 

Mitchell, SD $0.03 $0.16 $0.03 $0.16 $0.03 $0.16 $0.03 $0.16 $0.03 $0.16 

Mound City, IL $0.32 $0.43 $0.33 $0.43 $0.33 $0.44 $0.33 $0.43 $0.32 $0.43 

Mount Vernon, IN $0.32 $0.45 $0.31 $0.45 $0.31 $0.45 $0.31 $0.44 $0.31 $0.44 

Muscatine, IA $0.27 $0.37 $0.27 $0.37 $0.27 $0.37 $0.27 $0.37 $0.27 $0.37 

Nauvoo, IL $0.41 $0.50 $0.41 $0.50 $0.41 $0.50 $0.41 $0.50 $0.42 $0.50 

Pekin, IL $0.32 $0.43 $0.32 $0.43 $0.32 $0.43 $0.33 $0.43 $0.33 $0.43 

Pleasant Hill, IA $0.06 $0.20 $0.06 $0.21 $0.06 $0.21 $0.06 $0.20 $0.06 $0.20 

Red Oak, IA $0.06 $0.19 $0.05 $0.18 $0.05 $0.18 $0.05 $0.18 $0.06 $0.19 

Wolsey, SD $0.24 $0.51 $0.24 $0.51 $0.24 $0.51 $0.23 $0.50 $0.24 $0.52 
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Table A8. Copula Base Case/Vertical Integration/Adaptive/Probability of Profit.  

 
Base Case VI w/o Ocean VI w/Ocean Sell CIF/Buy FOB Adaptive 80% Adaptive 90% Adaptive 100% 

Origins PNW USG PNW USG PNW USG PNW USG PNW USG PNW USG PNW USG 

Port PNW 
      

100% 
       

Port USG 
       

100% 
      

Albany,IL 
 

40% 
 

46% 
 

48% 
   

49% 
 

48% 
 

50% 

Alden, IA 
 

19% 
 

18% 
 

10% 
   

30% 
 

30% 
 

29% 

Alton, ND 56% 4% 66% 4% 66% 2% 
  

78% 6% 77% 4% 80% 5% 

Aurora, IN 
 

61% 
 

55% 
 

81% 
   

56% 
 

56% 
 

59% 

Ayr, ND 60% 3% 68% 3% 69% 3% 
  

75% 1% 74% 1% 80% 1% 

Bayard, IA 
 

16% 
 

16% 
 

12% 
   

20% 
 

22% 
 

20% 

Beatrice, NE 36% 21% 47% 14% 47% 9% 
  

57% 8% 52% 10% 59% 8% 

Bradshaw, NE 
 

30% 
 

27% 
 

30% 
   

26% 
 

28% 
 

28% 

Breckenridge, MN 
 

6% 
 

11% 
 

8% 
   

14% 
 

14% 
 

14% 

Cairo, IL 
 

47% 
 

48% 
 

41% 
   

50% 
 

47% 
 

50% 

Cin Bunge, OH 
 

41% 
 

45% 
 

32% 
   

44% 
 

47% 
 

49% 

Cin Cargill, OH 
 

33% 
 

34% 
 

23% 
   

30% 
 

29% 
 

31% 

Creston, IA 
 

9% 
 

11% 
 

3% 
   

10% 
 

11% 
 

10% 

Dorchester, NE 39% 27% 50% 18% 46% 9% 
  

57% 11% 57% 11% 63% 11% 

Dubuque, IA 
 

57% 
 

60% 
 

73% 
   

64% 
 

64% 
 

68% 

Edison, NE 34% 18% 46% 11% 48% 6% 
  

53% 10% 53% 13% 56% 12% 

Evansville, IN 
 

61% 
 

55% 
 

42% 
   

55% 
 

60% 
 

60% 

Finley, ND 40% 4% 49% 1% 50% 1% 
  

48% 2% 50% 3% 54% 2% 

Fremont, NE 10% 2% 26% 4% 31% 4% 
  

32% 4% 30% 5% 34% 4% 

Gurley, NE 
 

82% 
 

77% 
 

95% 
   

78% 
 

78% 
 

78% 

Hinton, IA 
 

6% 
 

9% 
 

9% 
   

8% 
 

8% 
 

8% 

Jamestown, ND 53% 4% 65% 3% 60% 0% 
  

69% 2% 70% 2% 73% 2% 

Jasper, MN 
 

0% 
 

2% 
 

4% 
   

2% 
 

2% 
 

2% 

Jeffersonville, IN 
 

57% 
 

57% 
 

74% 
   

53% 
 

54% 
 

55% 

Madison, SD 
 

6% 
 

10% 
 

5% 
   

11% 
 

11% 
 

11% 

Marion, SD 
 

6% 
 

12% 
 

8% 
   

13% 
 

13% 
 

12% 
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Table A8. Copula Base Case/Vertical Integration/Adaptive/Probability of Profit (continued). 

 
Base Case VI w/o Ocean VI w/Ocean Sell CIF/Buy FOB Adaptive 80% Adaptive 90% Adaptive 100% 

Origins PNW USG PNW USG PNW USG PNW USG PNW USG PNW USG PNW USG 

Maywood, NE 65% 4% 70% 2% 64% 31% 
  

79% 3% 79% 0% 80% 0% 

Mellett, SD 
 

62% 
 

56% 
 

14% 
   

70% 
 

70% 
 

69% 

Mitchell, SD 
 

10% 
 

11% 
 

4% 
   

9% 
 

9% 
 

9% 

Mound City, IL 
 

60% 
 

57% 
 

77% 
   

54% 
 

56% 
 

55% 

Mount Vernon, IN 
 

51% 
 

50% 
 

25% 
   

51% 
 

52% 
 

51% 

Muscatine, IA 
 

41% 
 

47% 
 

45% 
   

48% 
 

48% 
 

48% 

Nauvoo, IL 
 

64% 
 

61% 
 

72% 
   

72% 
 

76% 
 

74% 

Pekin, IL 
 

64% 
 

64% 
 

79% 
   

60% 
 

61% 
 

59% 

Pleasant Hill, IA 
 

8% 
 

13% 
 

7% 
   

11% 
 

12% 
 

11% 

Red Oak, IA 
 

4% 
 

10% 
 

6% 
   

11% 
 

11% 
 

13% 

Wolsey, SD 
 

15% 
 

20% 
 

11% 
   

24% 
 

25% 
 

26% 
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Table A9. Copula Risk Loving/Increase Loading Efficiency Probability of Profit. 

 

Risk Measure 

10% 

Risk Measure 

20% 

Risk Measure 

30% 

1 Shuttle 

Train 

2 Shuttle 

Train 

3 Shuttle 

Train 

4 Shuttle 

Train 

5 Shuttle 

Train 

Origins PNW USG PNW USG PNW USG PNW USG PNW USG PNW USG PNW USG PNW USG 

Albany ,IL 
 

45% 
 

45% 
 

44% 
 

45% 
 

44% 
 

44% 
 

44% 
 

44% 

Alden, IA 
 

27% 
 

28% 
 

28% 
 

28% 
 

28% 
 

28% 
 

28% 
 

28% 

Alton, ND 68% 6% 70% 4% 71% 4% 71% 4% 71% 4% 71% 5% 71% 5% 71% 5% 

Aurora, IN 
 

52% 
 

52% 
 

54% 
 

54% 
 

54% 
 

54% 
 

54% 
 

54% 

Ayr, ND 68% 2% 70% 2% 71% 2% 71% 4% 71% 2% 72% 3% 72% 3% 72% 3% 

Bayard, IA 
 

19% 
 

20% 
 

19% 
 

19% 
 

19% 
 

19% 
 

19% 
 

19% 

Beatrice, NE 49% 12% 50% 17% 51% 13% 51% 12% 51% 13% 51% 14% 51% 14% 51% 14% 

Bradshaw, NE 
 

26% 
 

26% 
 

27% 
 

26% 
 

27% 
 

27% 
 

27% 
 

27% 

Breckenridge, 

MN  
14% 

 
15% 

 
15% 

 
15% 

 
15% 

 
15% 

 
15% 

 
15% 

Cairo, IL 
 

48% 
 

49% 
 

50% 
 

50% 
 

50% 
 

50% 
 

50% 
 

50% 

Cin Bunge, OH 
 

46% 
 

46% 
 

45% 
 

45% 
 

45% 
 

45% 
 

45% 
 

45% 

Cin Cargill, OH 
 

31% 
 

29% 
 

28% 
 

28% 
 

28% 
 

28% 
 

28% 
 

28% 

Creston, IA 
 

12% 
 

11% 
 

11% 
 

11% 
 

11% 
 

11% 
 

11% 
 

11% 

Dorchester, NE 49% 16% 52% 17% 54% 15% 55% 15% 54% 15% 54% 16% 54% 16% 54% 16% 

Dubuque, IA 
 

60% 
 

59% 
 

61% 
 

62% 
 

61% 
 

61% 
 

61% 
 

61% 

Edison, NE 47% 11% 48% 11% 48% 10% 48% 10% 48% 10% 48% 10% 48% 10% 48% 10% 

Evansville, IN 
 

56% 
 

57% 
 

56% 
 

56% 
 

56% 
 

56% 
 

56% 
 

56% 

Finley, ND 46% 3% 47% 5% 47% 2% 47% 4% 47% 2% 47% 2% 47% 2% 47% 2% 

Fremont, NE 25% 5% 27% 4% 28% 4% 27% 4% 28% 4% 27% 4% 27% 4% 27% 4% 

Gurley, NE 
 

79% 
 

79% 
 

79% 
 

79% 
 

79% 
 

79% 
 

79% 
 

79% 

Hinton, IA 
 

9% 
 

11% 
 

9% 
 

9% 
 

9% 
 

9% 
 

9% 
 

9% 

Jamestown, ND 64% 6% 67% 6% 70% 3% 70% 3% 70% 3% 70% 4% 70% 4% 70% 4% 

Jasper, MN 
 

2% 
 

2% 
 

2% 
 

2% 
 

2% 
 

2% 
 

2% 
 

2% 

Jeffersonville, 

IN  
57% 

 
56% 

 
57% 

 
57% 

 
57% 

 
57% 

 
57% 

 
57% 

Madison, SD 
 

12% 
 

11% 
 

11% 
 

11% 
 

11% 
 

11% 
 

11% 
 

11% 
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Table A9. Copula Risk Loving/Increase Loading Efficiency Probability of Profit (continued). 

 

Risk Measure 

10% 

Risk Measure 

20% 

Risk Measure 

30% 

1 Shuttle 

Train 

2 Shuttle 

Train 

3 Shuttle 

Train 

4 Shuttle 

Train 

5 Shuttle 

Train 

Origins PNW USG PNW USG PNW USG PNW USG PNW USG PNW USG PNW USG PNW USG 

Marion, SD 
 

12% 
 

11% 
 

12% 
 

12% 
 

12% 
 

12% 
 

12% 
 

12% 

Maywood, NE 73% 0% 75% 1% 76% 0% 76% 0% 76% 0% 76% 0% 76% 0% 76% 0% 

Mellett, SD 
 

60% 
 

61% 
 

69% 
 

69% 
 

69% 
 

69% 
 

69% 
 

69% 

Mitchell, SD 
 

7% 
 

7% 
 

7% 
 

7% 
 

7% 
 

7% 
 

7% 
 

7% 

Mound City, IL 
 

53% 
 

57% 
 

57% 
 

57% 
 

57% 
 

57% 
 

57% 
 

57% 

Mount Vernon, 

IN  
46% 

 
48% 

 
50% 

 
50% 

 
50% 

 
50% 

 
50% 

 
50% 

Muscatine, IA 
 

48% 
 

51% 
 

50% 
 

50% 
 

50% 
 

50% 
 

50% 
 

50% 

Nauvoo, IL 
 

64% 
 

69% 
 

71% 
 

71% 
 

71% 
 

71% 
 

71% 
 

71% 

Pekin, IL 
 

57% 
 

58% 
 

59% 
 

59% 
 

59% 
 

59% 
 

59% 
 

59% 

Pleasant Hill, IA 
 

12% 
 

13% 
 

13% 
 

13% 
 

13% 
 

13% 
 

13% 
 

13% 

Red Oak, IA 
 

9% 
 

10% 
 

11% 
 

11% 
 

11% 
 

11% 
 

11% 
 

11% 

Wolsey, SD 
 

23% 
 

24% 
 

24% 
 

24% 
 

24% 
 

24% 
 

24% 
 

24% 



 

 

 

1
5
4
 

Table A10. Normal Base Case and Vertical Integration Average Profit. 

 
Base Case VI w/o Ocean VI w/Ocean 

Origins Mean Stdev 1/CV Mean Stdev 1/CV Mean Stdev 1/CV 

Albany,IL $139,935 $256,634 0.545 $184,121 $259,224 0.710 $315,319 $458,747 0.687 

Alden, IA $109,975 $226,864 0.485 $121,646 $235,300 0.517 $222,474 $435,419 0.511 

Alton, ND $178,439 $258,001 0.692 $237,932 $263,325 0.904 $526,203 $609,151 0.864 

Aurora, IN $207,871 $321,367 0.647 $265,479 $321,412 0.826 $460,895 $562,007 0.820 

Ayr, ND $229,619 $345,453 0.665 $244,591 $261,203 0.936 $539,766 $604,194 0.893 

Bayard, IA $67,853 $184,137 0.368 $71,195 $178,977 0.398 $141,965 $358,356 0.396 

Beatrice, NE $156,860 $252,781 0.621 $186,468 $253,695 0.735 $474,179 $618,944 0.766 

Bradshaw, NE $117,073 $226,052 0.518 $140,311 $227,035 0.618 $251,385 $447,071 0.562 

Breckenridge, MN $71,184 $198,839 0.358 $82,404 $205,809 0.400 $155,672 $398,723 0.390 

Cairo, IL $143,755 $237,516 0.605 $158,264 $236,144 0.670 $320,630 $473,724 0.677 

Cin Bunge, OH $111,705 $219,375 0.509 $127,938 $248,587 0.515 $246,654 $432,743 0.570 

Cin Cargill, OH $108,620 $209,412 0.519 $128,836 $209,718 0.614 $254,616 $410,189 0.621 

Creston, IA $46,041 $148,346 0.310 $45,558 $158,786 0.287 $80,827 $273,294 0.296 

Dorchester, NE $177,341 $287,416 0.617 $221,456 $301,213 0.735 $500,849 $646,645 0.775 

Dubuque, IA $213,652 $339,756 0.629 $276,571 $395,456 0.699 $433,491 $603,180 0.719 

Edison, NE $209,687 $311,457 0.673 $250,598 $314,925 0.796 $514,347 $595,776 0.863 

Evansville, IN $150,120 $291,741 0.515 $177,485 $308,154 0.576 $369,325 $579,023 0.638 

Finley, ND $162,928 $286,813 0.568 $207,484 $294,517 0.704 $463,159 $577,105 0.803 

Fremont, NE $226,906 $418,450 0.542 $260,562 $495,321 0.526 $472,787 $693,303 0.682 

Gurley, NE $305,550 $347,546 0.879 $408,770 $348,140 1.174 $662,205 $592,510 1.118 

Hinton, IA $38,703 $148,516 0.261 $43,398 $161,760 0.268 $81,425 $308,841 0.264 

Jamestown, ND $188,962 $294,137 0.642 $246,088 $287,742 0.855 $516,804 $585,548 0.883 

Jasper, MN $21,834 $100,856 0.216 $13,663 $99,105 0.138 $26,133 $161,816 0.161 

Jeffersonville, IN $193,764 $303,330 0.639 $239,481 $308,878 0.775 $433,712 $554,806 0.782 

Madison, SD $54,823 $170,587 0.321 $47,981 $155,847 0.308 $74,344 $250,205 0.297 

Marion, SD $36,941 $131,924 0.280 $39,535 $142,098 0.278 $88,956 $324,148 0.274 

Maywood, NE $375,517 $484,348 0.775 $461,613 $460,882 1.002 $753,263 $735,779 1.024 

Mellett, SD $91,928 $225,462 0.408 $97,131 $255,359 0.380 $175,647 $476,721 0.368 
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Table A10. Normal Base Case and Vertical Integration Average Profit (continued). 

 
Base Case VI w/o Ocean VI w/Ocean 

Origins Mean Stdev 1/CV Mean Stdev 1/CV Mean Stdev 1/CV 

Mitchell, SD $55,177 $176,446 0.313 $73,798 $194,002 0.380 $111,405 $303,774 0.367 

Mound City, IL $181,442 $257,926 0.703 $223,997 $273,836 0.818 $445,482 $548,314 0.812 

Mount Vernon, IN $155,000 $305,357 0.508 $167,239 $317,647 0.526 $321,239 $588,514 0.546 

Muscatine, IA $154,226 $272,627 0.566 $186,301 $316,412 0.589 $308,446 $513,450 0.601 

Nauvoo, IL $176,346 $286,463 0.616 $227,266 $345,371 0.658 $425,666 $601,109 0.708 

Pekin, IL $227,474 $312,222 0.729 $298,776 $356,750 0.837 $475,668 $570,997 0.833 

Pleasant Hill, IA $31,231 $114,716 0.272 $30,701 $103,828 0.296 $75,330 $247,684 0.304 

Red Oak, IA $121,659 $303,870 0.400 $116,403 $294,274 0.396 $200,612 $497,534 0.403 

Wolsey, SD $97,615 $236,110 0.413 $127,002 $283,511 0.448 $220,952 $525,354 0.421 
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Table A11. Normal Buy Track/CIF NOLA/Sell FOB/Adaptive/Average Profit. 

 
Sell CIF/Buy FOB Adaptive 80% Adaptive 90% Adaptive 100% 

Origins Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

Port PNW $2,431,571 $2,263,124 
      

Port USG $4,182,257 $3,680,641 
      

Albany,IL 
  

$208,066 $310,033 $191,574 $285,625 $159,224 $219,205 

Alden, IA 
  

$120,488 $246,675 $104,890 $219,548 $57,616 $141,265 

Alton, ND 
  

$296,863 $344,509 $276,390 $318,612 $212,820 $233,471 

Aurora, IN 
  

$275,194 $298,192 $289,397 $303,294 $315,870 $334,932 

Ayr, ND 
  

$309,594 $331,604 $284,639 $305,342 $205,031 $208,901 

Bayard, IA 
  

$99,936 $212,774 $75,698 $181,857 $43,868 $142,728 

Beatrice, NE 
  

$266,006 $337,677 $244,147 $311,429 $172,041 $222,629 

Bradshaw, NE 
  

$199,316 $309,284 $174,302 $273,600 $124,336 $232,295 

Breckenridge, MN 
  

$140,326 $305,741 $113,394 $260,606 $21,773 $112,844 

Cairo, IL 
  

$110,599 $190,602 $112,932 $191,846 $131,302 $212,745 

Cin Bunge, OH 
  

$152,927 $285,887 $148,021 $269,153 $142,325 $233,349 

Cin Cargill, OH 
  

$172,602 $260,720 $157,147 $242,358 $145,019 $223,870 

Creston, IA 
  

$43,801 $171,980 $42,815 $169,065 $44,004 $170,489 

Dorchester, NE 
  

$287,684 $338,318 $274,235 $314,194 $219,224 $256,142 

Dubuque, IA 
  

$302,891 $429,155 $291,511 $398,750 $257,072 $302,641 

Edison, NE 
  

$328,958 $404,076 $301,840 $369,970 $198,882 $238,954 

Evansville, IN 
  

$177,523 $301,997 $175,884 $300,252 $188,491 $295,401 

Finley, ND 
  

$257,220 $348,507 $237,170 $323,045 $185,443 $248,643 

Fremont, NE 
  

$440,451 $632,550 $321,771 $475,071 $74,944 $134,982 

Gurley, NE 
  

$428,837 $392,699 $404,911 $350,979 $336,411 $282,681 

Hinton, IA 
  

$59,243 $192,975 $48,482 $168,589 $52,157 $161,286 

Jamestown, ND 
  

$350,070 $409,037 $306,172 $349,943 $181,473 $198,539 

Jasper, MN 
  

$19,517 $86,630 $15,152 $75,642 $18,796 $88,581 

Jeffersonville, IN 
  

$275,847 $363,197 $276,066 $353,299 $297,446 $369,509 

Madison, SD 
  

$48,472 $146,060 $47,417 $143,217 $67,376 $183,311 

Marion, SD 
  

$29,393 $100,849 $24,892 $94,342 $26,888 $103,144 

Maywood, NE 
  

$590,836 $590,128 $545,662 $523,292 $305,738 $261,688 
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Table A11. Normal Buy Track/CIF NOLA/Sell FOB/Adaptive/Average Profit (continued). 

 
Sell CIF/Buy FOB Adaptive 80% Adaptive 90% Adaptive 100% 

Origins Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

Mellett, SD 
  

$124,724 $263,321 $119,177 $253,984 $70,776 $175,869 

Mitchell, SD 
  

$52,226 $160,744 $56,433 $166,820 $69,715 $194,033 

Mound City, IL 
  

$223,863 $275,841 $229,541 $271,807 $240,868 $290,014 

Mount Vernon, IN 
  

$198,697 $341,333 $196,060 $335,776 $183,598 $323,478 

Muscatine, IA 
  

$177,767 $346,336 $174,782 $320,775 $159,494 $253,167 

Nauvoo, IL 
  

$237,034 $328,505 $230,757 $312,839 $213,912 $289,471 

Pekin, IL 
  

$320,955 $388,499 $318,635 $364,260 $269,613 $273,225 

Pleasant Hill, IA 
  

$47,206 $125,852 $39,189 $108,832 $13,131 $47,164 

Red Oak, IA 
  

$74,340 $175,017 $76,627 $179,986 $84,951 $200,586 

Wolsey, SD 
  

$111,719 $234,633 $117,565 $238,406 $132,275 $258,297 



 

158 

 

Table A12. Normal Risk Loving Average Profit.  

 
Risk Measures 10% Risk Measures 20% Risk Measures 30% 

Origins Mean Stdev Mean Stdev Mean Stdev 

Albany,IL $173,518 $261,457 $180,196 $271,212 $181,842 $271,332 

Alden, IA $75,362 $158,853 $84,766 $180,783 $96,215 $202,791 

Alton, ND $237,531 $290,305 $248,718 $290,414 $258,494 $286,360 

Aurora, IN $248,553 $297,482 $266,836 $302,149 $289,052 $309,853 

Ayr, ND $250,943 $273,719 $258,539 $276,935 $263,056 $271,282 

Bayard, IA $49,980 $140,551 $61,085 $158,832 $61,260 $161,514 

Beatrice, NE $203,413 $271,505 $214,547 $273,646 $222,908 $275,995 

Bradshaw, NE $143,659 $257,171 $153,997 $261,503 $163,807 $268,768 

Breckenridge, MN $91,347 $235,665 $90,600 $236,898 $80,352 $220,431 

Cairo, IL $124,620 $199,000 $125,781 $198,124 $123,775 $196,629 

Cin Bunge, OH $132,242 $240,381 $135,454 $246,211 $143,704 $257,906 

Cin Cargill, OH $132,502 $215,328 $136,501 $228,706 $147,615 $233,709 

Creston, IA $36,800 $151,175 $35,463 $153,015 $37,972 $162,631 

Dorchester, NE $235,965 $291,234 $248,217 $297,888 $259,007 $293,226 

Dubuque, IA $271,265 $367,029 $277,233 $370,732 $282,040 $376,324 

Edison, NE $246,246 $323,381 $267,593 $334,586 $273,854 $338,571 

Evansville, IN $169,895 $292,487 $176,656 $297,834 $188,305 $310,147 

Finley, ND $217,669 $305,052 $220,513 $300,784 $221,311 $297,786 

Fremont, NE $254,704 $391,902 $256,074 $387,834 $259,585 $388,004 

Gurley, NE $359,959 $326,052 $387,921 $325,017 $406,706 $323,988 

Hinton, IA $42,288 $148,919 $47,482 $159,278 $48,200 $159,946 

Jamestown, ND $231,483 $302,349 $263,063 $309,015 $273,741 $308,903 

Jasper, MN $12,793 $73,585 $12,476 $73,571 $13,436 $74,032 

Jeffersonville, IN $253,603 $321,775 $287,344 $335,177 $291,984 $337,199 

Madison, SD $55,103 $153,668 $58,733 $166,724 $55,867 $154,672 

Marion, SD $23,735 $100,783 $24,054 $101,318 $23,152 $94,282 

Maywood, NE $459,280 $478,781 $488,134 $471,411 $498,922 $460,665 

Mellett, SD $115,581 $238,677 $115,565 $239,967 $110,224 $242,807 

Mitchell, SD $47,307 $160,768 $55,101 $169,074 $59,604 $174,438 

Mound City, IL $203,336 $263,272 $221,170 $267,503 $234,856 $279,218 

Mount Vernon, IN $175,167 $300,467 $180,410 $305,850 $192,216 $323,213 

Muscatine, IA $139,360 $257,095 $149,852 $263,967 $158,723 $277,069 

Nauvoo, IL $191,205 $304,209 $214,106 $318,655 $228,695 $325,832 

Pekin, IL $250,115 $321,284 $270,896 $328,846 $307,013 $334,479 

Pleasant Hill, IA $33,194 $99,006 $31,569 $90,681 $35,175 $95,295 

Red Oak, IA $82,914 $197,842 $84,695 $201,333 $81,273 $184,355 

Wolsey, SD $114,234 $251,406 $117,106 $255,167 $117,386 $256,031 
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Table A13. Normal Increase in Shuttle Train Loading Efficiency Average Profit. 

 
1 Shuttle Train 2 Shuttle Train 3 Shuttle Train 4 Shuttle Train 5 Shuttle Train 

Origins Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

Albany,IL $182,243 $269,279 $182,224 $269,291 $182,206 $269,303 $182,187 $269,315 $182,168 $269,327 

Alden, IA $94,759 $200,767 $94,759 $200,767 $94,759 $200,767 $94,759 $200,767 $94,759 $200,767 

Alton, ND $261,505 $296,044 $260,757 $296,162 $259,953 $296,482 $258,034 $297,390 $256,268 $298,645 

Aurora, IN $290,955 $309,647 $289,522 $309,434 $289,080 $309,422 $289,080 $309,422 $288,609 $309,406 

Ayr, ND $132,703 $139,880 $264,493 $280,381 $396,347 $422,211 $526,960 $563,289 $656,708 $704,466 

Bayard, IA $62,604 $163,659 $64,276 $163,866 $62,632 $163,649 $64,170 $163,803 $62,709 $163,622 

Beatrice, NE $227,855 $287,357 $226,293 $288,113 $225,379 $287,202 $223,815 $285,897 $222,251 $285,445 

Bradshaw, NE $160,633 $259,038 $159,870 $259,174 $159,467 $258,747 $159,381 $258,664 $159,381 $258,664 

Breckenridge, MN $86,846 $217,129 $86,846 $217,129 $86,846 $217,129 $86,846 $217,129 $86,846 $217,129 

Cairo, IL $121,424 $199,428 $120,832 $199,254 $121,905 $199,937 $123,140 $201,236 $123,708 $201,903 

Cin Bunge, OH $142,520 $254,468 $143,022 $254,307 $142,308 $253,916 $141,095 $253,711 $139,882 $254,085 

Cin Cargill, OH $150,458 $235,258 $150,456 $235,259 $149,812 $235,500 $149,381 $235,501 $148,949 $235,582 

Creston, IA $40,408 $163,684 $37,646 $161,987 $37,646 $161,987 $37,646 $161,987 $37,646 $161,987 

Dorchester, NE $257,849 $296,776 $257,279 $296,793 $257,062 $296,884 $257,119 $296,899 $256,700 $297,042 

Dubuque, IA $281,246 $386,519 $280,808 $386,545 $280,531 $386,583 $280,524 $386,575 $280,223 $386,409 

Edison, NE $277,900 $340,491 $276,758 $341,061 $276,272 $341,273 $275,905 $341,345 $275,328 $341,418 

Evansville, IN $182,574 $301,011 $181,958 $300,183 $182,682 $300,674 $182,901 $300,878 $182,398 $300,056 

Finley, ND $224,124 $302,825 $222,784 $302,758 $220,660 $302,851 $218,782 $303,516 $218,160 $303,906 

Fremont, NE $257,954 $380,559 $256,437 $379,608 $255,654 $379,336 $255,570 $379,329 $255,486 $379,322 

Gurley, NE $393,526 $322,547 $392,995 $322,455 $392,149 $322,489 $390,602 $322,589 $388,170 $323,271 

Hinton, IA $46,341 $161,271 $46,341 $161,271 $46,341 $161,271 $46,341 $161,271 $46,341 $161,271 

Jamestown, ND $276,024 $307,437 $275,090 $307,551 $274,292 $307,638 $273,495 $307,821 $272,856 $307,980 

Jasper, MN $13,347 $73,158 $13,347 $73,158 $13,347 $73,158 $13,347 $73,158 $13,347 $73,158 

Jeffersonville, IN $282,140 $353,603 $284,000 $352,592 $283,425 $352,390 $283,425 $352,390 $283,887 $352,465 

Madison, SD $62,657 $164,383 $62,657 $164,383 $62,657 $164,383 $62,657 $164,383 $62,657 $164,383 

Marion, SD $24,390 $96,998 $24,390 $96,998 $24,390 $96,998 $24,390 $96,998 $24,390 $96,998 
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Table A13. Normal Increase in Shuttle Train Loading Efficiency Average Profit (continued). 

 
1 Shuttle Train 2 Shuttle Train 3 Shuttle Train 4 Shuttle Train 5 Shuttle Train 

Origins Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

Maywood, NE $501,930 $465,229 $503,725 $464,535 $505,201 $464,425 $505,091 $464,621 $504,621 $464,912 

Mellett, SD $108,273 $239,645 $108,648 $239,950 $108,920 $240,209 $108,911 $240,193 $109,480 $239,982 

Mitchell, SD $59,287 $173,350 $59,287 $173,350 $59,287 $173,350 $59,287 $173,350 $59,287 $173,350 

Mound City, IL $227,264 $273,140 $227,195 $273,115 $227,069 $273,019 $226,840 $272,962 $226,484 $273,018 

Mount Vernon, IN $196,942 $336,102 $196,677 $334,269 $196,681 $334,269 $196,002 $333,307 $195,313 $332,470 

Muscatine, IA $167,013 $299,929 $167,013 $299,929 $165,732 $299,156 $164,966 $298,955 $164,966 $298,955 

Nauvoo, IL $227,313 $306,001 $227,273 $306,003 $224,920 $304,640 $222,522 $305,342 $223,427 $305,351 

Pekin, IL $311,766 $338,857 $308,425 $339,914 $306,425 $339,864 $304,513 $340,111 $303,095 $340,400 

Pleasant Hill, IA $32,318 $91,616 $32,318 $91,616 $32,318 $91,616 $32,318 $91,616 $32,318 $91,616 

Red Oak, IA $81,099 $185,465 $81,094 $185,457 $81,094 $185,457 $81,094 $185,457 $81,094 $185,457 

Wolsey, SD $118,901 $252,435 $118,465 $252,598 $118,455 $252,595 $118,097 $251,818 $118,072 $251,459 
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Table A14. Normal Base Case and Vertical Integration Average Profit/bu. 

 
Base Case VI w/o Ocean VI w/Ocean Sell CIF/Buy FOB 

Origins Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

Port PNW 
      

$0.15 $0.14 

Port USG 
      

$0.25 $0.21 

Albany,IL $0.17 $0.31 $0.23 $0.32 $0.39 $0.56 
  

Alden, IA $0.13 $0.27 $0.16 $0.29 $0.28 $0.54 
  

Alton, ND $0.21 $0.31 $0.29 $0.32 $0.64 $0.73 
  

Aurora, IN $0.26 $0.39 $0.33 $0.39 $0.58 $0.70 
  

Ayr, ND $0.28 $0.42 $0.30 $0.31 $0.66 $0.73 
  

Bayard, IA $0.08 $0.22 $0.09 $0.22 $0.18 $0.43 
  

Beatrice, NE $0.19 $0.30 $0.23 $0.31 $0.58 $0.74 
  

Bradshaw, NE $0.15 $0.28 $0.18 $0.28 $0.33 $0.56 
  

Breckenridge, MN $0.09 $0.24 $0.10 $0.25 $0.20 $0.50 
  

Cairo, IL $0.18 $0.29 $0.20 $0.29 $0.40 $0.58 
  

Cin Bunge, OH $0.14 $0.27 $0.16 $0.30 $0.30 $0.53 
  

Cin Cargill, OH $0.13 $0.25 $0.16 $0.26 $0.32 $0.51 
  

Creston, IA $0.06 $0.18 $0.06 $0.19 $0.11 $0.35 
  

Dorchester, NE $0.22 $0.35 $0.27 $0.36 $0.61 $0.78 
  

Dubuque, IA $0.26 $0.41 $0.34 $0.48 $0.54 $0.73 
  

Edison, NE $0.25 $0.37 $0.30 $0.38 $0.63 $0.72 
  

Evansville, IN $0.19 $0.35 $0.22 $0.37 $0.47 $0.71 
  

Finley, ND $0.20 $0.34 $0.25 $0.35 $0.56 $0.69 
  

Fremont, NE $0.27 $0.50 $0.32 $0.60 $0.57 $0.83 
  

Gurley, NE $0.37 $0.42 $0.50 $0.42 $0.82 $0.72 
  

Hinton, IA $0.05 $0.19 $0.06 $0.20 $0.11 $0.39 
  

Jamestown, ND $0.23 $0.35 $0.30 $0.35 $0.62 $0.70 
  

Jasper, MN $0.03 $0.13 $0.02 $0.12 $0.03 $0.20 
  

Jeffersonville, IN $0.24 $0.37 $0.30 $0.38 $0.54 $0.67 
  

Madison, SD $0.07 $0.21 $0.06 $0.19 $0.09 $0.30 
  

Marion, SD $0.05 $0.17 $0.05 $0.17 $0.11 $0.40 
  

Maywood, NE $0.45 $0.58 $0.56 $0.55 $0.92 $0.89 
  

Mellett, SD $0.12 $0.28 $0.12 $0.31 $0.22 $0.58 
  

Mitchell, SD $0.07 $0.21 $0.09 $0.23 $0.14 $0.37 
  

Mound City, IL $0.22 $0.31 $0.27 $0.33 $0.54 $0.66 
  

Mount Vernon, IN $0.19 $0.37 $0.21 $0.38 $0.40 $0.71 
  

Muscatine, IA $0.19 $0.33 $0.23 $0.38 $0.39 $0.62 
  

Nauvoo, IL $0.22 $0.35 $0.28 $0.42 $0.53 $0.73 
  

Pekin, IL $0.28 $0.38 $0.36 $0.43 $0.59 $0.70 
  

Pleasant Hill, IA $0.04 $0.14 $0.04 $0.14 $0.11 $0.35 
  

Red Oak, IA $0.15 $0.37 $0.15 $0.36 $0.26 $0.61 
  

Wolsey, SD $0.12 $0.29 $0.15 $0.34 $0.27 $0.63 
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Table A15. Normal Risk Loving and Adaptive to Changes in Risk Average Profit/bu. 

 
Risk Measure 10% Risk Measure 20% Risk Measure 30% Adaptive  80% Adaptive 90% Adaptive 100% 

Origins Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

Albany,IL $0.21 $0.31 $0.22 $0.33 $0.22 $0.33 $0.25 $0.37 $0.23 $0.34 $0.20 $0.26 

Alden, IA $0.10 $0.20 $0.10 $0.22 $0.12 $0.24 $0.15 $0.30 $0.13 $0.27 $0.07 $0.18 

Alton, ND $0.29 $0.35 $0.30 $0.35 $0.31 $0.34 $0.36 $0.41 $0.33 $0.38 $0.26 $0.28 

Aurora, IN $0.31 $0.37 $0.34 $0.38 $0.36 $0.39 $0.34 $0.37 $0.36 $0.38 $0.38 $0.40 

Ayr, ND $0.30 $0.33 $0.31 $0.33 $0.33 $0.33 $0.37 $0.40 $0.35 $0.36 $0.25 $0.25 

Bayard, IA $0.07 $0.17 $0.08 $0.20 $0.08 $0.20 $0.14 $0.29 $0.09 $0.22 $0.07 $0.22 

Beatrice, NE $0.25 $0.33 $0.26 $0.33 $0.27 $0.33 $0.32 $0.41 $0.30 $0.38 $0.21 $0.27 

Bradshaw, NE $0.17 $0.31 $0.19 $0.31 $0.20 $0.32 $0.24 $0.37 $0.21 $0.33 $0.16 $0.29 

Breckenridge, MN $0.11 $0.29 $0.11 $0.29 $0.10 $0.26 $0.17 $0.37 $0.14 $0.32 $0.03 $0.14 

Cairo, IL $0.16 $0.24 $0.18 $0.28 $0.16 $0.25 $0.14 $0.23 $0.14 $0.24 $0.16 $0.26 

Cin Bunge, OH $0.17 $0.29 $0.17 $0.30 $0.17 $0.31 $0.19 $0.34 $0.18 $0.32 $0.18 $0.29 

Cin Cargill, OH $0.16 $0.26 $0.17 $0.28 $0.18 $0.29 $0.22 $0.32 $0.20 $0.30 $0.18 $0.27 

Creston, IA $0.05 $0.18 $0.04 $0.18 $0.05 $0.20 $0.05 $0.21 $0.05 $0.20 $0.06 $0.21 

Dorchester, NE $0.29 $0.35 $0.30 $0.36 $0.32 $0.36 $0.36 $0.41 $0.34 $0.38 $0.26 $0.31 

Dubuque, IA $0.33 $0.44 $0.34 $0.44 $0.34 $0.45 $0.37 $0.52 $0.36 $0.48 $0.32 $0.37 

Edison, NE $0.30 $0.39 $0.32 $0.40 $0.33 $0.41 $0.40 $0.49 $0.36 $0.44 $0.24 $0.29 

Evansville, IN $0.21 $0.35 $0.22 $0.36 $0.23 $0.37 $0.22 $0.36 $0.22 $0.36 $0.23 $0.36 

Finley, ND $0.26 $0.37 $0.26 $0.36 $0.27 $0.36 $0.32 $0.43 $0.31 $0.40 $0.22 $0.30 

Fremont, NE $0.31 $0.47 $0.31 $0.47 $0.32 $0.47 $0.53 $0.76 $0.39 $0.57 $0.09 $0.16 

Gurley, NE $0.44 $0.39 $0.48 $0.39 $0.49 $0.39 $0.52 $0.47 $0.49 $0.42 $0.40 $0.34 

Hinton, IA $0.05 $0.18 $0.06 $0.19 $0.06 $0.19 $0.07 $0.23 $0.06 $0.20 $0.07 $0.20 

Jamestown, ND $0.28 $0.36 $0.32 $0.37 $0.33 $0.37 $0.42 $0.49 $0.38 $0.42 $0.22 $0.24 

Jasper, MN $0.02 $0.11 $0.01 $0.09 $0.02 $0.09 $0.03 $0.12 $0.02 $0.11 $0.02 $0.11 

Jeffersonville, IN $0.31 $0.39 $0.35 $0.40 $0.36 $0.40 $0.34 $0.44 $0.34 $0.43 $0.37 $0.44 

Madison, SD $0.07 $0.20 $0.07 $0.20 $0.07 $0.20 $0.06 $0.19 $0.06 $0.19 $0.08 $0.22 

Marion, SD $0.03 $0.13 $0.03 $0.13 $0.04 $0.14 $0.04 $0.13 $0.03 $0.12 $0.04 $0.13 
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Table A15. Normal Risk Loving and Adaptive to Changes in Risk Average Profit/bu (continued). 

 
Risk Measure 10% Risk Measure 20% Risk Measure 30% Adaptive 80% Adaptive 90% Adaptive 100% 

Origins Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

Maywood, NE $0.58 $0.57 $0.59 $0.56 $0.61 $0.55 $0.72 $0.70 $0.67 $0.62 $0.37 $0.31 

Mellett, SD $0.14 $0.29 $0.15 $0.29 $0.13 $0.29 $0.16 $0.32 $0.15 $0.31 $0.09 $0.23 

Mitchell, SD $0.06 $0.19 $0.07 $0.20 $0.07 $0.21 $0.06 $0.20 $0.07 $0.20 $0.09 $0.23 

Mound City, IL $0.25 $0.32 $0.28 $0.32 $0.29 $0.34 $0.28 $0.33 $0.29 $0.33 $0.29 $0.35 

Mount Vernon, IN $0.22 $0.37 $0.23 $0.38 $0.24 $0.39 $0.25 $0.41 $0.24 $0.41 $0.23 $0.39 

Muscatine, IA $0.17 $0.31 $0.18 $0.32 $0.20 $0.34 $0.22 $0.42 $0.21 $0.39 $0.20 $0.31 

Nauvoo, IL $0.24 $0.37 $0.27 $0.39 $0.28 $0.39 $0.30 $0.40 $0.29 $0.38 $0.26 $0.35 

Pekin, IL $0.31 $0.39 $0.34 $0.39 $0.38 $0.40 $0.41 $0.47 $0.40 $0.44 $0.34 $0.33 

Pleasant Hill, IA $0.04 $0.12 $0.04 $0.12 $0.05 $0.14 $0.06 $0.15 $0.05 $0.14 $0.02 $0.06 

Red Oak, IA $0.10 $0.24 $0.10 $0.24 $0.11 $0.24 $0.09 $0.21 $0.09 $0.22 $0.11 $0.24 

Wolsey, SD $0.14 $0.30 $0.14 $0.31 $0.14 $0.31 $0.14 $0.28 $0.15 $0.30 $0.17 $0.32 
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Table A16. Normal Increase in Shuttle Train Loading Efficiency Average Profit/bu. 

 
1 Shuttle Train 2 Shuttle Train 3 Shuttle Train 4 Shuttle Train 5 Shuttle Train 

Origins Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

Albany,IL $0.22 $0.32 $0.22 $0.32 $0.22 $0.32 $0.22 $0.32 $0.22 $0.32 

Alden, IA $0.12 $0.24 $0.12 $0.24 $0.12 $0.24 $0.12 $0.24 $0.12 $0.24 

Alton, ND $0.32 $0.36 $0.32 $0.36 $0.32 $0.36 $0.32 $0.36 $0.31 $0.36 

Aurora, IN $0.36 $0.38 $0.36 $0.38 $0.36 $0.38 $0.36 $0.38 $0.36 $0.38 

Ayr, ND $0.32 $0.34 $0.32 $0.34 $0.32 $0.34 $0.32 $0.34 $0.32 $0.34 

Bayard, IA $0.08 $0.20 $0.08 $0.20 $0.08 $0.20 $0.08 $0.20 $0.08 $0.20 

Beatrice, NE $0.28 $0.35 $0.29 $0.35 $0.28 $0.35 $0.27 $0.34 $0.27 $0.34 

Bradshaw, NE $0.19 $0.31 $0.19 $0.31 $0.19 $0.31 $0.19 $0.31 $0.19 $0.31 

Breckenridge, MN $0.11 $0.26 $0.11 $0.26 $0.11 $0.26 $0.11 $0.26 $0.11 $0.26 

Cairo, IL $0.16 $0.25 $0.15 $0.25 $0.15 $0.25 $0.15 $0.25 $0.18 $0.33 

Cin Bunge, OH $0.17 $0.31 $0.17 $0.31 $0.17 $0.31 $0.17 $0.31 $0.17 $0.31 

Cin Cargill, OH $0.19 $0.29 $0.19 $0.29 $0.19 $0.29 $0.19 $0.28 $0.19 $0.28 

Creston, IA $0.05 $0.20 $0.05 $0.19 $0.05 $0.19 $0.05 $0.19 $0.05 $0.19 

Dorchester, NE $0.32 $0.36 $0.32 $0.36 $0.32 $0.36 $0.32 $0.36 $0.32 $0.36 

Dubuque, IA $0.34 $0.46 $0.34 $0.46 $0.34 $0.46 $0.34 $0.46 $0.34 $0.46 

Edison, NE $0.35 $0.42 $0.34 $0.41 $0.33 $0.41 $0.34 $0.41 $0.34 $0.41 

Evansville, IN $0.22 $0.36 $0.23 $0.36 $0.22 $0.36 $0.23 $0.36 $0.22 $0.36 

Finley, ND $0.27 $0.36 $0.27 $0.36 $0.27 $0.36 $0.27 $0.36 $0.26 $0.37 

Fremont, NE $0.32 $0.46 $0.32 $0.46 $0.31 $0.46 $0.31 $0.46 $0.31 $0.46 

Gurley, NE $0.48 $0.39 $0.48 $0.39 $0.48 $0.39 $0.48 $0.39 $0.48 $0.39 

Hinton, IA $0.06 $0.19 $0.06 $0.19 $0.06 $0.19 $0.06 $0.19 $0.06 $0.19 

Jamestown, ND $0.34 $0.37 $0.33 $0.37 $0.33 $0.37 $0.33 $0.37 $0.33 $0.37 

Jasper, MN $0.02 $0.09 $0.02 $0.09 $0.02 $0.09 $0.02 $0.09 $0.02 $0.09 

Jeffersonville, IN $0.35 $0.43 $0.35 $0.42 $0.35 $0.42 $0.35 $0.42 $0.35 $0.42 

Madison, SD $0.08 $0.21 $0.08 $0.21 $0.08 $0.21 $0.08 $0.21 $0.08 $0.21 

Marion, SD $0.03 $0.12 $0.03 $0.12 $0.03 $0.12 $0.03 $0.12 $0.03 $0.12 
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Table A16. Normal Increase in Shuttle Train Loading Efficiency Average Profit/bu (continued). 

 
1 Shuttle Train 2 Shuttle Train 3 Shuttle Train 4 Shuttle Train 5 Shuttle Train 

Origins Mean Stdev Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

Maywood, NE $0.61 $0.56 $0.62 $0.55 $0.62 $0.55 $0.62 $0.55 $0.62 $0.55 

Mellett, SD $0.14 $0.29 $0.14 $0.29 $0.14 $0.29 $0.14 $0.29 $0.14 $0.29 

Mitchell, SD $0.07 $0.21 $0.07 $0.21 $0.07 $0.21 $0.07 $0.21 $0.07 $0.21 

Mound City, IL $0.28 $0.33 $0.28 $0.33 $0.29 $0.33 $0.28 $0.33 $0.28 $0.33 

Mount Vernon, IN $0.24 $0.40 $0.24 $0.40 $0.24 $0.40 $0.24 $0.40 $0.24 $0.40 

Muscatine, IA $0.20 $0.36 $0.20 $0.36 $0.20 $0.36 $0.21 $0.36 $0.20 $0.36 

Nauvoo, IL $0.28 $0.37 $0.28 $0.37 $0.28 $0.37 $0.27 $0.37 $0.27 $0.37 

Pekin, IL $0.40 $0.41 $0.38 $0.41 $0.38 $0.41 $0.38 $0.41 $0.38 $0.41 

Pleasant Hill, IA $0.04 $0.12 $0.04 $0.12 $0.04 $0.12 $0.04 $0.12 $0.04 $0.12 

Red Oak, IA $0.11 $0.24 $0.11 $0.24 $0.11 $0.24 $0.11 $0.24 $0.11 $0.24 

Wolsey, SD $0.15 $0.31 $0.15 $0.30 $0.15 $0.30 $0.15 $0.30 $0.15 $0.30 
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Table A17. Base Case/Vertical Integration/Adaptive/Probability of Profit. 

 
Base Case VI w/o Ocean VI w/Ocean Sell CIF/Buy FOB Adaptive 80% Adaptive 90% Adaptive 100% 

Origins PNW USG PNW USG PNW USG PNW USG PNW USG PNW USG PNW USG 

Port PNW 
      

100% 
       

Port USG 
       

100% 
      

Albany,IL 
 

40% 
 

47% 
 

46% 
   

42% 
 

41% 
 

47% 

Alden, IA 
 

29% 
 

32% 
 

31% 
   

25% 
 

25% 
 

18% 

Alton, ND 50% 7% 65% 4% 69% 3% 
  

63% 1% 63% 2% 65% 2% 

Aurora, IN 
 

48% 
 

60% 
 

59% 
   

60% 
 

62% 
 

62% 

Ayr, ND 52% 7% 71% 5% 76% 5% 
  

70% 4% 71% 3% 69% 2% 

Bayard, IA 
 

20% 
 

19% 
 

21% 
   

24% 
 

19% 
 

13% 

Beatrice, NE 38% 13% 47% 11% 56% 10% 
  

48% 12% 48% 16% 47% 11% 

Bradshaw, NE 
 

32% 
 

38% 
 

37% 
   

38% 
 

37% 
 

34% 

Breckenridge, MN 
 

18% 
 

21% 
 

22% 
   

24% 
 

21% 
 

7% 

Cairo, IL 
 

43% 
 

44% 
 

45% 
   

34% 
 

35% 
 

37% 

Cin Bunge, OH 
 

36% 
 

35% 
 

37% 
   

38% 
 

37% 
 

40% 

Cin Cargill, OH 
 

35% 
 

37% 
 

40% 
   

42% 
 

40% 
 

39% 

Creston, IA 
 

13% 
 

12% 
 

12% 
   

10% 
 

9% 
 

10% 

Dorchester, NE 36% 14% 46% 13% 54% 12% 
  

48% 20% 48% 21% 46% 20% 

Dubuque, IA 
 

45% 
 

54% 
 

52% 
   

53% 
 

53% 
 

56% 

Edison, NE 37% 17% 47% 12% 56% 13% 
  

55% 11% 50% 11% 51% 13% 

Evansville, IN 
 

39% 
 

43% 
 

45% 
   

42% 
 

42% 
 

42% 

Finley, ND 41% 6% 51% 3% 62% 3% 
  

51% 4% 52% 5% 49% 2% 

Fremont, NE 30% 13% 37% 10% 46% 9% 
  

42% 10% 43% 12% 28% 5% 

Gurley, NE 
 

64% 
 

79% 
 

78% 
   

71% 
 

73% 
 

74% 

Hinton, IA 
 

11% 
 

10% 
 

11% 
   

11% 
 

10% 
 

13% 

Jamestown, ND 47% 6% 61% 2% 67% 4% 
  

62% 1% 65% 2% 66% 1% 

Jasper, MN 
 

6% 
 

4% 
 

4% 
   

7% 
 

5% 
 

5% 

Jeffersonville, IN 
 

47% 
 

58% 
 

56% 
   

57% 
 

60% 
 

63% 

Madison, SD 
 

14% 
 

12% 
 

12% 
   

13% 
 

13% 
 

16% 
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Table A17. Base Case/Vertical Integration/Adaptive/Probability of Profit (continued). 

 
Base Case VI w/o Ocean VI w/Ocean Sell CIF/Buy FOB Adaptive 80% Adaptive 90% Adaptive 100% 

Origins PNW USG PNW USG PNW USG PNW USG PNW USG PNW USG PNW USG 

Marion, SD 
 

10% 
 

10% 
 

12% 
   

13% 
 

13% 
 

13% 

Maywood, NE 46% 22% 67% 17% 69% 13% 
  

64% 22% 67% 22% 64% 18% 

Mellett, SD 
 

20% 
 

18% 
 

19% 
   

26% 
 

24% 
 

19% 

Mitchell, SD 
 

15% 
 

17% 
 

17% 
   

14% 
 

15% 
 

17% 

Mound City, IL 
 

54% 
 

59% 
 

60% 
   

57% 
 

60% 
 

58% 

Mount Vernon, IN 
 

38% 
 

36% 
 

38% 
   

41% 
 

42% 
 

39% 

Muscatine, IA 
 

37% 
 

41% 
 

41% 
   

38% 
 

37% 
 

40% 

Nauvoo, IL 
 

43% 
 

51% 
 

52% 
   

50% 
 

52% 
 

51% 

Pekin, IL 
 

52% 
 

60% 
 

60% 
   

61% 
 

62% 
 

64% 

Pleasant Hill, IA 
 

11% 
 

11% 
 

13% 
   

15% 
 

15% 
 

8% 

Red Oak, IA 
 

21% 
 

20% 
 

21% 
   

20% 
 

20% 
 

20% 

Wolsey, SD 
 

21% 
 

24% 
 

23% 
   

26% 
 

27% 
 

31% 
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Table A18. Risk Loving/Increase in Loading Efficiency Probability of Profit. 

 
Risk Measure 10% Risk Measure 20% Risk Measure 30% 1 Shuttle Train 2 Shuttle Train 3 Shuttle Train 4 Shuttle Train 5 Shuttle Train 

Origins PNW USG PNW USG PNW USG PNW USG PNW USG PNW USG PNW USG PNW USG 

Albany,IL 
 

40% 
 

40% 
 

42% 
 

42% 
 

42% 
 

42% 
 

42% 
 

42% 

Alden, IA 
 

23% 
 

24% 
 

25% 
 

25% 
 

25% 
 

25% 
 

25% 
 

25% 

Alton, ND 57% 4% 61% 3% 64% 2% 64% 1% 64% 1% 64% 2% 64% 2% 63% 2% 

Aurora, IN 
 

57% 
 

58% 
 

61% 
 

60% 
 

60% 
 

60% 
 

60% 
 

60% 

Ayr, ND 63% 5% 65% 3% 69% 3% 69% 4% 70% 3% 69% 3% 69% 3% 69% 4% 

Bayard, IA 
 

17% 
 

17% 
 

17% 
 

17% 
 

18% 
 

18% 
 

18% 
 

18% 

Beatrice, NE 44% 13% 46% 13% 47% 13% 50% 13% 49% 16% 50% 15% 49% 13% 49% 13% 

Bradshaw, NE 
 

34% 
 

37% 
 

37% 
 

36% 
 

36% 
 

36% 
 

36% 
 

36% 

Breckenridge, MN 
 

19% 
 

19% 
 

17% 
 

19% 
 

19% 
 

19% 
 

19% 
 

19% 

Cairo, IL 
 

37% 
 

38% 
 

38% 
 

36% 
 

35% 
 

35% 
 

35% 
 

36% 

Cin Bunge, OH 
 

40% 
 

39% 
 

38% 
 

37% 
 

37% 
 

37% 
 

37% 
 

37% 

Cin Cargill, OH 
 

37% 
 

34% 
 

37% 
 

39% 
 

39% 
 

38% 
 

38% 
 

38% 

Creston, IA 
 

10% 
 

8% 
 

8% 
 

9% 
 

8% 
 

8% 
 

8% 
 

8% 

Dorchester, NE 42% 20% 42% 18% 48% 20% 48% 20% 48% 20% 49% 21% 47% 20% 48% 22% 

Dubuque, IA 
 

51% 
 

52% 
 

52% 
 

52% 
 

52% 
 

52% 
 

52% 
 

52% 

Edison, NE 44% 12% 46% 16% 50% 14% 49% 14% 49% 15% 48% 14% 49% 13% 50% 14% 

Evansville, IN 
 

40% 
 

40% 
 

42% 
 

42% 
 

43% 
 

42% 
 

43% 
 

42% 

Finley, ND 44% 5% 47% 6% 49% 6% 51% 6% 50% 3% 50% 4% 50% 5% 48% 4% 

Fremont, NE 39% 11% 38% 10% 40% 11% 39% 11% 39% 13% 39% 10% 39% 11% 39% 11% 

Gurley, NE 
 

71% 
 

75% 
 

77% 
 

75% 
 

75% 
 

75% 
 

75% 
 

75% 

Hinton, IA 
 

11% 
 

11% 
 

11% 
 

10% 
 

10% 
 

10% 
 

10% 
 

10% 

Jamestown, ND 53% 2% 61% 1% 67% 1% 67% 3% 66% 3% 66% 1% 66% 1% 65% 1% 

Jasper, MN 
 

4% 
 

3% 
 

4% 
 

4% 
 

4% 
 

4% 
 

4% 
 

4% 

Jeffersonville, IN 
 

62% 
 

65% 
 

64% 
 

62% 
 

63% 
 

63% 
 

63% 
 

63% 

Madison, SD 
 

16% 
 

15% 
 

15% 
 

16% 
 

16% 
 

16% 
 

16% 
 

16% 

Marion, SD 
 

10% 
 

10% 
 

11% 
 

11% 
 

11% 
 

11% 
 

11% 
 

11% 

Maywood, NE 56% 19% 60% 18% 65% 18% 66% 18% 66% 20% 65% 19% 65% 20% 64% 19% 
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Table A18. Risk Loving/Increase in Loading Efficiency Probability of Profit (continued). 

 
Risk Measure 10% Risk Measure 20% Risk Measure 30% 1 Shuttle Train 2 Shuttle Train 3 Shuttle Train 4 Shuttle Train 5 Shuttle Train 

Origins PNW USG PNW USG PNW USG PNW USG PNW USG PNW USG PNW USG PNW USG 

Mellett, SD 
 

26% 
 

27% 
 

22% 
 

23% 
 

23% 
 

23% 
 

23% 
 

24% 

Mitchell, SD 
 

12% 
 

14% 
 

16% 
 

15% 
 

15% 
 

15% 
 

15% 
 

15% 

Mound City, IL 
 

58% 
 

63% 
 

61% 
 

59% 
 

59% 
 

59% 
 

59% 
 

59% 

Mount Vernon, IN 
 

42% 
 

40% 
 

39% 
 

39% 
 

39% 
 

39% 
 

39% 
 

39% 

Muscatine, IA 
 

33% 
 

33% 
 

37% 
 

37% 
 

37% 
 

37% 
 

37% 
 

37% 

Nauvoo, IL 
 

45% 
 

49% 
 

50% 
 

51% 
 

51% 
 

51% 
 

50% 
 

50% 

Pekin, IL 
 

54% 
 

60% 
 

63% 
 

66% 
 

64% 
 

64% 
 

64% 
 

64% 

Pleasant Hill, IA 
 

13% 
 

13% 
 

14% 
 

13% 
 

13% 
 

13% 
 

13% 
 

13% 

Red Oak, IA 
 

20% 
 

20% 
 

21% 
 

21% 
 

21% 
 

21% 
 

21% 
 

21% 

Wolsey, SD 
 

26% 
 

26% 
 

26% 
 

28% 
 

27% 
 

27% 
 

27% 
 

28% 

 


