
A COMPARISON OF FILTERING AND NORMALIZATION METHODS IN THE 

STATISTICAL ANALYSIS OF GENE EXPRESSION EXPERIMENTS 

A Thesis 

Submitted to the Graduate Faculty 

of the 

North Dakota State University 

of Agriculture and Applied Science 

By 

Mackenzie Rosa Marie Speicher 

In Partial Fulfillment of the Requirements 

for the Degree of 

MASTER OF SCIENCE 

Major Department:  

Statistics 

 

 

 

April 2020 

Fargo, North Dakota 

  



North Dakota State University 

Graduate School 
 

Title 
 A COMPARISON OF FILTERING AND NORMALIZATION 

METHODS IN THE STATISTICAL ANALYSIS OF GENE 

EXPRESSION EXPERIMENTS 

  

  

  By   

  
Mackenzie Rosa Marie Speicher 

  

     

    

  The Supervisory Committee certifies that this disquisition complies with North Dakota 

State University’s regulations and meets the accepted standards for the degree of 

 

  MASTER OF SCIENCE  

    

    

  SUPERVISORY COMMITTEE:  

    

  
Dr. Megan Orr 

 

  Chair  

  
Dr. Rhonda Magel 

 

  
Dr. Anne Denton 

 

  
 

 

    

    

  Approved:  

   

 April 6, 2020   Dr. Rhonda Magel   

 Date  Department Chair  

    

 



 

iii 

ABSTRACT 

Both microarray and RNA-seq technologies are powerful tools which are commonly used 

in differential expression (DE) analysis. Gene expression levels are compared across treatment 

groups to determine which genes are differentially expressed. With both technologies, filtering 

and normalization are important steps in data analysis. In this thesis, real datasets are used to 

compare current analysis methods of two-color microarray and RNA-seq experiments. A variety 

of filtering, normalization and statistical approaches are evaluated. The results of this study show 

that although there is still no widely accepted method for the analysis of these types of 

experiments, the method chosen can largely impact the number of genes that are declared to be 

differentially expressed. 
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1. INTRODUCTION 

1.1. Background 

1.1.1. Differential Expression Analysis 

DNA microarray technologies, developed in the 1990’s, are used to provide the gene 

expression levels of thousands of genes from various organisms (Marioni et al., 2008). By 

comparing the expression levels of genes in healthy and diseased tissues, these technologies have 

helped to advance medical and biological research. RNA-seq is a new advancement in gene 

expression analysis which results in a more direct sequencing of transcripts. A common use of 

microarray and RNA-seq technology is differential expression (DE) analysis. That is the process 

of testing for quantitative changes in expression levels between various treatment groups. This is 

done gene by gene, and the goal is to determine which genes are differentially expressed. RNA-

seq and microarray analyses have different processes and advantages that are discussed in greater 

detail below. 

1.1.2. Two Color Microarrays 

In two color microarray experiments, DNA sequences are deposited onto a surface that is 

often referred to as a slide or chip. The sequences are typically arrayed in spots which serve as 

probes. Messenger RNA is extracted from an organism, dyed with fluorescent dye, and 

hybridized to the slide. Two color microarrays are hybridized with two samples which are 

labelled with different colored dyes (Hoen et al., 2004). The most commonly used dyes are Cy3 

(green) and Cy5 (red). The expectation is that the mRNA will bind to complementary sequences 

that are already present on the slide. A laser is used to excite the dye, and the fluorescent 

intensities are recorded and compared (Kaliyappan et al., 2012). The ratio of the red/green 

intensity is often used as a relative measure of gene expression. 
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The linear model for two color microarray experiments is as follows: 

𝑌𝑖𝑗𝑘  =  μ +  τ𝑖  +  δ𝑗  +  𝑠𝑘  +  𝑒𝑖𝑗𝑘 

In this formula, 𝑌𝑖𝑗𝑘   represents the normalized signal intensity (NSI) of the experimental unit in 

the ith treatment group, hybridized with the jth dye, on kth slide. μ represents overall mean NSI,  

τ𝑖 represents the effect of the ith treatment. δ𝑗  represents the effect of the jth  dye (𝑗 = 1,2). 𝑠𝑘 

represents the random effect of the kth slide, and 𝒆𝒊𝒋𝒌 represents the random error for 𝑌𝑖𝑗𝑘. 

Microarray technologies are relatively inexpensive and readily available for use, 

however, there are several limitations. For example, background hybridization may limit the 

accuracy of measurements. Additionally, microarrays can only be used on known genomes, and 

have poor quantification of lowly and highly expressed genes (Zhao et al., 2014). Although they 

are still being used today, in many cases microarrays are being replaced with newer 

advancements. 

1.1.3. RNA-seq 

A new development in gene expression technologies is RNA-seq, which is the direct 

sequencing of transcripts by high-throughput sequencing technologies. This is done through the 

use of next generation sequencing. Messenger RNA is extracted from an organism and converted 

to a library of cDNA fragments. The fragments are then sequenced and mapped to a genome, and 

the level of expression is recorded (Wang et al., 2009). RNA-seq is advantageous because it 

offers a wide measurable range of expression levels and does not depend on a known genome 

(Wang et al., 2009). The data from RNA-seq experiments is in counts, unlike microarray data 

which is in the form of fluorescent intensities and considered continuous. Therefore, the data 

analysis must be conducted differently. These technologies are relatively new, so there is still no 

widely accepted method for data analysis.  
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Since the data from RNA-seq experiments is in counts, it must follow a discrete 

distribution. A negative binomial model is most commonly used to model the data, as it allows 

for over dispersion. This means that the variability of the response is greater than expected based 

on the mean. The model is as follows: 

𝑌𝑔𝑖~𝑁𝐵(𝑀𝑖𝑃𝑔𝑖, φ𝑔) 

Where Mi is the library size, Pgi is the relative abundance of the gth gene from the ith sample and 

φ𝑔 is the dispersion parameter. This model will be discussed in greater detail in chapter 2.3. 

1.2. Research Objectives 

1. To use a real data set to compare the various methods of DE analysis in two-color microarray 

experiments. Lowess, location, scale and quantile normalization methods are compared, as well 

as different filtering methods. Analysis is conducted in R using the Limma package, SAM-seq 

and t-tests. 

2. To use a real data set to compare the various methods of DE analysis in RNA-seq 

experiments. Normalization methods implemented by the edgeR, DESeq, DESeq2 and Limma 

packages are compared, as well as different filtering methods. 

1.3. Organization 

The rest of this thesis is organized as follows. In chapter 2, false discovery rate and 

current filtering/normalization methods for microarray and RNA-seq experiments are reviewed. 

Chapter 3 describes the methods used for the analysis of real datasets for both two-color 

microarray and RNA-seq experiments. Chapter 4 presents the results and discussion of the 

comparison of normalization methods for the two-color microarray and RNA-seq datasets. 

Lastly, overall conclusions and future research are given in chapter 5. 
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2. LITERATURE REVIEW 

2.1. False Discovery Rate 

In both microarray and RNA-seq experiments, we are interested in performing a 

hypothesis test for each gene in order to test for differential expression. This means that 

thousands of hypothesis tests are conducted simultaneously. Therefore, it is important to 

implement some form of multiple testing correction. Controlling FWER (family wise error rate), 

is a traditional multiple testing strategy. FWER is the probability of one or more false positive, 

where a false positive is rejecting the null hypothesis when it is actually true. The Bonferroni 

method is a standard way to control FWER, in which the significance level alpha is divided by 

the number of tests conducted. This isn’t the best method to use in gene expression experiments 

because of the high dimensionality of the data. The number of genes is often times in the tens of 

thousands, so the p-value would have to be extremely small in order to reject the null hypothesis. 

This can result in very low power for detecting differentially expressed genes. For this reason, 

researchers have proposed controlling FDR (false discovery rate), rather than FWER as the 

multiple testing correction. The FDR was proposed by Benjamini and Hochberg in 1995. 

Referring to table 1, FDR can be defined as E(Q) where Q=V/R if R>0, and Q=0 otherwise. In 

words, FDR is the expected portion of false rejections among all rejections. When compared to 

FWER, controlling for FDR results in higher power and may also allow for more type 1 errors. 

However, this is acceptable as long as the number of false rejections is being controlled. For 

example, if controlling FDR results in a list of DDE (declared to be differentially expressed) 

genes in which 95% of the genes truly are differentially expressed, this is useful from a scientific 

standpoint. For this reason, controlling FDR is more appropriate for gene expression 

experiments. The procedure for controlling FDR is as follows: 
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• Order the m p-values from smallest to largest, and denote them as 𝑝(1), 𝑝(2), … , 𝑝(𝑚) 

• Find the largest integer k such that 

𝑝(𝑘) ≤
𝑘𝛼

𝑚
 

• Reject the null hypotheses corresponding to the smallest k p-values. This procedure 

controls the FDR at α. 

Table 1 

Outcomes for hypothesis testing in gene expression experiments 

 Fail to reject H0 Reject H0 Total 

H0 true (Gene EE) U V m0 

H0 false (Gene DE) T S m1 

Total W R m 

Note. m is the total number of genes. The values W, R and m are observable quantities. The rest 

of the values are unobservable quantities. 

2.2. Microarray Analysis 

2.2.1. Background Correction 

Background correction is necessary in two color microarray experiments. The goal is to 

obtain the target sample intensity without any background noise. Some potential sources of 

background signal include non-specific binding of sample to the slide, contamination from other 

particles, or noise from the scanner. There are many different proposed methods of background 

correction, with the most common being background subtraction. This is where you subtract the 
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estimated background intensity from the overall signal intensity to obtain the estimated target 

sample intensity (Ritchie et al., 2007). This process could result in a negative target sample 

intensity. One solution to correct for this would be to replace any negative values with zero, and 

add one to all of the values. 

 Although subtraction is the most common method of background correction, it is not 

necessarily the best method. Other methods that have been proposed are designed to result in 

strictly positive target sample intensities. One example is the Edwards method, in which the 

background is only subtracted from the overall signal intensity if the difference is larger than a 

certain threshold. If the difference is smaller than that threshold, a monotonic function is used 

instead of subtraction (Edwards, 2003). Some other methods, such as “half”, “minimum”, and 

“normexp” are options in the limma package in R. As previously mentioned, the goal of each of 

these methods is to correct for background while resulting in positive target sample intensities. 

2.2.2. Transformation 

Two-color microarray intensities are typically transformed from their original scale to a 

log base 2 scale. Intensity data are generally skewed right, complicating analysis. Performing a 

log2 transformation can make the data follow an approximate normal distribution, making 

analysis more straight forward. This can be done without losing any information. The log2 scale 

is particularly useful because up and downregulated genes are treated similarly (Quackenbush, 

2002). Upregulated genes are genes that are more highly expressed in one condition compared to 

the second condition, whereas downregulated genes have a lower degree of expression in one 

condition compared to the second condition. For example, when the fold change (the ratio of 

R/G) has a value of 2, the log2(ratio) has a value of 1. When the fold change is equal to 0.5, the 
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log2(ratio) has a value of -1. Clearly, log2 transformation is a convenient tool for the analysis of 

microarray data. 

2.2.3. Filtering 

In two-color microarray experiments, multiple hypothesis tests are performed 

simultaneously. The number of tests being performed is very large, and the proportion of genes 

that are differentially expressed is typically low. Multiple testing corrections must be 

implemented, but this results in low power for detecting differentially expressed genes. One way 

to ameliorate this issue is with filtering. By filtering the data to get rid of unreliable spots, the 

dimensionality can be reduced, thereby increasing the power for detecting differentially 

expressed genes. 

The appropriate method of filtering can vary from experiment to experiment. One general 

recommendation is to get rid of spots that are below the detection limit, as well as spots that are 

above the detection limit (saturated signal). Scanners have a maximum value for which they can 

detect signal intensities (Quackenbush, 2002). The true signal intensity might actually be much 

higher than the value that is displayed, therefore these measurements are meaningless. Another 

filtering method is keeping only spots for which the intensity is significantly different from the 

corresponding background intensity (Quackenbush, 2002). This can help to increase the 

reliability of the intensities. 

2.2.4. Lowess Normalization 

The goal of normalization in gene expression experiments is to eliminate non-biological 

variation so true biological variation can be observed. One example of non-biological variation 

that we want to account for is dye-bias. In two color microarray experiments, red dye (Cy5) and 

green dye (Cy3) are both used on one slide. Differences in the properties of the dyes can result in 
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a dye effect that needs to be accounted for. Possible reasons for these dye effects may include 

differences in heat and light sensitivity, efficiency of dye incorporation and scan settings. 

Self-self experiments have been conducted in which the same sample is dyed both red 

and green and hybridized to a slide. In this scenario we would expect the red and green 

intensities to be the same, since there is no biological variation. However, from experiments like 

this, we know that red intensities tend to be lower than green intensities. This difference between 

intensities is not constant across all spots. One proposed method to account for this difference is 

a type of within-slide normalization called lowess normalization. 

Lowess stands for LOcally Weighted polynomial regreSSion. It is used to smooth the 

MA scatter plot of two-color microarray data. An MA plot is a plot of the intensity log ratio 

(M=log2R - log2G) vs. the mean log intensity (A=[ log2R + log2G]/2). MA plots are often used in 

favor of log2R vs. log2G plots because they do a better job of revealing interesting features of the 

data (Yang, 2002). In lowess normalization, a tricube weight function is used to calculate 

regression weights for each data point. Neighboring data points within a specific span have 

weight and are influential on the fitted value (Cleveland, 1979). It is also possible to use robust 

weights, which are resistant to outliers. A lowess normalized M value for each spot is calculated 

using the equation 𝑀𝑗
∗ = 𝑀𝑗 − �̂�𝑗. In this equation, �̂�𝑗 is the fitted M-value from LOWESS for 

the jth spot. This process smooths the MA plot and corrects for red-green differences. 

2.2.5. Median Normalization 

In addition to lowess, median normalization is another type of location normalization 

used in two-color microarray experiments (Yang et al., 2002). The purpose is to align the centers 

for each channel to make them more comparable. One potential choice of median in this process 

is zero, however the value chosen is not important.  
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2.2.6. Scale Normalization 

Scale normalization is another proposed type of normalization for two-color microarray 

experiments. It was first suggested by Yang et al. in 2002 and is typically performed after 

location normalization. It follows the assumption that all log-ratios for a particular channel 

follow a 𝑁(0, 𝑎𝑗
2𝜎2) distribution. The purpose of scale normalization is to estimate the constant 

𝑎𝑗 in order to make the variance of each channel comparable. The formula used to estimate �̂�𝑗 is 

�̂�𝑗 =
𝑀𝐴𝐷𝑗

𝐶
 . MADj is the median absolute deviation, and is calculated by the formula  

𝑀𝐴𝐷𝑗 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑀𝑖𝑗 − 𝑚𝑒𝑑𝑖𝑎𝑛𝑗(𝑀𝑖𝑗)|). C is the geometric mean, calculated by the formula  

𝐶 = (Π𝑗=1
𝐽 )1/𝐽. Following scale normalization, each channel should follow a normal distribution 

with variance 𝜎2. 

2.2.7. Quantile Normalization 

Quantile normalization was originally proposed for affymetrix experiments by Bolstad et 

al. in 2003. The idea was extended to two-color microarray data by Yang and Thorne in 2003. 

Quantile normalization is a form of between slide normalization in which all quantiles 

(percentiles) across channels must be equivalent (Yang and Thorne, 2003). This results in each 

channel sharing a similar distribution. The limma package in Bioconductor allows for different 

types of quantile normalization. The different options in the package are “quantile”, “Aquantile”, 

“Tquantile”, “Gquantile”, and “Rquantile”. The “quantile” option results in the intensities 

following the same distribution across channels. The “Aquantile” option performs quantile 

normalization on the A-values (average intensities). The “Gquantile” and “Rquantile” options are 

useful in experiments in which the green channel or red channel is used as a common reference 

throughout the experiment, respectively. For example, if the “Gquantile” option is used, the 

distribution of intensities is ensured to be the same for the green channel on all arrays. 
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2.2.8. Limma 

Limma (Linear models for microarray) is a package in R that is used for differential 

expression analysis of microarray and RNA-seq experiments. Using the Limma package, two-

color microarray data can be pre-processed using the background correction and normalization 

methods discussed above. A linear model is then fit to the data for each gene and an empirical 

Bayes approach is used to borrow information between genes to better estimate gene-wise 

variances (Ritchie et al., 2015). When testing for differential expression, a moderated t-statistic 

or F-statistic is used in which the variances are moderated across genes. That is, information 

from all genes is taken into account when estimating the variance of each individual gene. This 

increases the degrees of freedom, making inference more reliable even when sample sizes are 

small. Limma can be used for a wide variety of experimental designs, making it a common 

choice for DE analysis. 

2.2.9. SAM-seq 

Significant analysis of microarrays (SAM) is a method for analyzing microarray data that 

was proposed in 2001 (Tusher et al., 2001). First, a test statistic is calculated for each of the m 

genes. These statistics are then ordered from smallest to largest. This process is repeated for all B 

possible permutations of the data. For each gene, the expected relative difference is found by 

averaging the statistics across all B permutations. Genes are declared to be differentially 

expressed (DDE) when the absolute value of the difference between the statistic and the expected 

relative difference is greater than some value delta. Delta is chosen by the user based on the 

desired cutoff for controlling the FDR. The SAM method has since been extended to be used for 

RNA-seq data in addition to microarray data. 
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2.2.10. Comparison of Methods 

Research has been done to determine appropriate methods for the analysis of two-color 

microarray experiments. In 2004, Smyth simulated data in order to compare various methods of 

DE analysis. He found that the moderated t-statistic implemented by the limma package 

outperformed the simple two-sample t test (Smyth, 2004). Similarly, a study conducted in 2010 

used simulated data to compare methods of analysis (Jeanmougin et al., 2010). It was discovered 

that limma was superior to the t-test because it consistently had higher power and lower FDR. 

SAM had weak performance compared to limma. Although SAM effectively controlled FDR, it 

had low power when the sample size was small. Based on this research, there is some consensus 

that limma performs reasonably well when it comes to DE analysis. This is particularly true 

when sample sizes are small. As sample sizes increase, other methods may also perform 

adequately. 

2.3. RNA-seq Analysis 

2.3.1. Filtering 

As previously mentioned, filtering is important in the data analysis of gene expression 

experiments. It can help to reduce the dimensionality of the data, thereby increasing the power to 

detect differentially expressed genes. Various methods of filtering RNA-seq data sets have been 

proposed. The DESeq2 package automatically filters the data prior to analysis. It removes genes 

with mean normalized count below a certain threshold. The default chooses a threshold that 

maximizes the number of genes that are DDE (Love et al., 2014). The edgeR package filters with 

the function filterByExpr, which utilizes the method proposed by Chen and Smyth (2016). Genes 

must have a certain degree of expression before they are likely to be translated into a protein. 

Therefore, genes that are minimally expressed across treatments can be removed, as they are 
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unlikely to display significant differential expression. Chen and Smyth recommend that genes 

with a count of less than 10-15 across all treatments be removed before subsequent analysis. 

However, it is best to filter based on counts per million in order to account for differences in 

library size. Another consideration is whether filtering should be done before or after 

normalization. Some research has indicated that filtering after normalization yields more 

accurate results (Lin et al., 2016). The parameters in certain normalization methods are estimated 

based on read count. If filtering is done prior to this estimation, the results can be changed. 

Research is still being done to determine which filtering methods are best, and whether filtering 

should be performed before or after normalization. 

2.3.2. EdgeR 

EdgeR is a bioconductor package that was initially developed for SAGE (serial analysis 

of gene expression). However, it is used to analyze count data, and therefore has applications to 

RNA-seq data analysis (Robinson et al., 2009). The edgeR package assumes that data are 

modeled with a negative binomial distribution, which is appropriate for experiments with 

biological replication. This is because biological replication tends to result in overdispersion, 

meaning that the variability of the response is greater than expected based on the mean. The 

negative binomial distribution accounts for this overdispersion. The model is as follows: 

 

𝑌𝑔𝑖~𝑁𝐵(𝑀𝑖𝑃𝑔𝑖, φ𝑔) 

 

Where Mi is the library size, Pgi is the relative abundance of the gth gene from the ith sample and 

φ𝑔 is the dispersion parameter. This reduces to a Poisson distribution when the dispersion 

parameter is equal to zero (Robinson et al., 2009). Dispersions are estimated using a conditional 
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maximum likelihood and are shrunken to a common value using an empirical Bayes approach. 

An exact test similar to Fisher’s exact test is used to determine differential expression.  

One normalization method that is used by the edgeR package is the Trimmed mean of M-

values (TMM) method, proposed by Robinson and Oshlack in 2010. This method accounts for 

the library size variation between samples. Both M-values and A-values are trimmed, and then a 

weighted average is found using precision weights (Robinson and Oshlack, 2010). This has 

shown to be an effective normalization method for RNA-seq experiments. Other options in the 

edgeR package include TMMwsp, RLE, and UQ. TMMwsp (TMM with singleton pairing) is a 

modification of the TMM method, which is useful for data that contain a large number of zeros. 

In the RLE (relative log expression) method, a scaling factor is calculated by taking the median 

ratio of each sample to the median library. In the upper quartile (UQ) method, reads with no 

counts are removed, and the 75th percentile of remaining counts are used to calculate the scale 

factors. 

2.3.3. DESeq 

DESeq was originally proposed by Anders and Huber in 2010. It is another method for 

testing for differentially expressed genes between treatment groups and is available for use in the 

R bioconductor package. Similar to edgeR, it assumes that the data are modeled by a negative 

binomial distribution in order to account for the overdispersion. However, the method by which 

the normalization factors are estimated differs from edgeR. DESeq uses the median of ratios 

method, which utilizes the following formula:  

�̂�𝑗 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑖

𝑘𝑖𝑗

(Π𝜈=1
𝑚 𝑘𝑖𝜈)

1
𝑚⁄

 

In the above formula, kij stands for the read count from the ith gene in the jth treatment 

group. The read count for each gene is divided by the geometric mean of all read counts from 
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that gene. Once that ratio is found, the median is calculated and used as the normalization factor. 

Expression strength and variance are also estimated. Data from genes with similar expression 

strength are pooled to obtain a better estimate of the variance. When testing for differential 

expression, DESeq uses an exact test that is similar to the method used in edgeR. 

2.3.4. DESeq2 

DESeq2 was proposed as an improvement from DESeq in 2014. It uses the same median 

of ratios normalization method as DESeq. One key difference is that DESeq2 is meant to test for 

the strength of, rather than just the presence of, differential expression. This is done by using 

shrinkage estimation for dispersion and fold changes. Accurate dispersion estimation is very 

important, however it can be difficult due to the small number of replicates used in gene 

expression experiments. When estimating dispersions, the initial estimates are calculated, as well 

as the sample means of normalized counts. A smooth curve is fit, which provides an estimate of 

expected dispersion values (Love et al., 2014). The gene-wise dispersion estimates are then 

shrunk toward the predicted values, giving a final dispersion estimate. DESeq2 also shrinks log 

fold changes toward zero, with shrinkage being stronger for genes with lower read counts. This 

is because ratios can be noisier for weakly expressed genes. When testing for differential 

expression, DESeq2 uses a Wald test, which uses the LFC estimates. This differs from the exact 

tests which are used by DESeq and edgeR. 

2.3.5. Limma-trend 

The limma package (linear models for microarray) was originally proposed for analyzing 

microarray data. However, its methods have been extended, and limma can now be used for the 

analysis of RNA-seq data. This is done by converting count data into log counts per million and 

proceeding with analysis as if it were microarray data. With the limma-trend method, the mean-
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variance relationship is estimated using an empirical Bayes approach (Ritchie et al., 2015). A 

trendline is fit through a scatterplot of the square root of the standard deviation vs. average 

logCPM. This is used to estimate the prior variance for each gene. Prior degrees of freedom are 

also calculated, and a moderated t-test is used to determine differential expression.  

2.3.6. Limma-voom 

Like limma-trend, limma voom converts count data into logCPMs and proceeds with 

analysis as if it were microarray data. However, unlike limma-trend, precision weights are used 

to model the mean-variance relationship. Voom models the mean-variance trend of the logCPM 

values at the individual observation level, rather than at the gene level. This can be beneficial, 

because count sizes may vary significantly for the same gene across samples (Law et al., 2014). 

The mean-variance trend is first estimated at the gene level, and then is interpolated to predict 

variances at the individual observation level. The inverse squared predicted standard deviation is 

used as the precision weight for each observation (Law et al., 2014). Limma voom and limma-

trend have both shown to effectively control for type one error rate. Voom is more powerful 

when library sizes vary significantly between samples. LogCPM values are normalized for 

sequencing depth, but other normalization methods can also be performed. The bioconductor 

package recommends using scale normalization, as well as the TMM normalization method 

implemented by edgeR (Bioconductor, also Law et al). 

2.3.7. Comparison of Methods 

Research has been done to determine which methods are best for differential expression 

analysis in RNA-seq experiments. Performances are evaluated based on factors such as power 

for determining DE genes, as well as false discovery rate. One study conducted in 2014 used a 

simulated dataset to compare the methods of edgeR, voom, DESeq and DESeq2. They found that 
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all methods performed adequately, but edgeR performed best (Williams et al., 2014). Another 

study conducted in 2017 compared the methods of limma, edgeR and DESeq2. A dataset was 

used in which 1001 genes were known to be DE. They determined that DESeq2 was best at 

discovering DE genes, but edgeR and limma both performed adequately (Sahraeian et al., 2017). 

A third study used “gold standard” analysis, in which all experimental units were first used to 

determine DE genes. They then resampled using smaller samples of various sizes to compare 

various methods for determining differential expression. The researchers found that edgeR, 

limma, DESeq and DESeq2 all performed excellently (Schurch et al., 2016). There is some 

consenses that edgeR and DESeq2 perform reasonably well. However, based on current research, 

there is still no “best” method for the analysis of RNA-seq experiments. Many factors can affect 

which method is most appropriate, such as the design of the experiment, the number of replicates 

per treatment group, the amount of biological variation present, etc. When determining sample 

size, it is best to use as many biological replicates as possible. Gene expression experiments 

usually do not have a large number of replicates, due to the high expense and the lack of 

resources and funding. Schurch et al. recommend having at least 6 replicates per treatment 

group, whereas Williams et al. recommend using a sample size of at least 3 per treatment group. 
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3. METHODS 

3.1. Two-Color Microarray 

Data was used from a study that involved 28 privately owned dogs of ages ranging from 

1 to 8 years old. Eight of the dogs served as healthy controls, and twenty of the dogs were 

diagnosed with atopic dermatitis.  Blood samples were collected, and microarray sequencing was 

performed. (Majewska et al., 2016). A two-color reference design was used for this experiment, 

with the common reference sample consisting of a pool of RNA from 13 healthy dogs. The 

common reference sample was dyed with cy3, and the samples from the 28 dogs in the study 

were dyed with cy5. Twenty-eight two-color microarrays were performed. Prior to analysis, 

lowess normalization was performed and the data was filtered. Genes without expression were 

removed. For the twenty slides from the investigative samples, the combined median signal 

intensity (across all channels) was calculated. Similarly, for the eight slides with samples from 

healthy dogs, the combined median signal intensity (across all channels) was calculated. Genes 

were removed if both of these medians were less than 100. The limma package in R was used to 

test for differential expression. The linear model for this experiment is as follows: 

𝑌𝑖𝑗𝑘  =  μ +  τ𝑖  +  δ𝑗  +  𝑠𝑘  +  𝑒𝑖𝑗𝑘 

In this formula, 𝑌𝑖𝑗𝑘  represents the normalized signal intensity (NSI) of the dog in the ith 

treatment group, hybridized with the jth dye on kth slide. μ represents overall mean NSI, τ𝑖 

represents the effect of the ith treatment (𝑖 = 1,2), δ𝑗  represents the effect of the jth dye (𝑗 = 1,2),  

𝑠𝑘 represents the random effect of the kth slide (𝑘 = 1,2, … , 28) and 𝑒𝑖𝑗𝑘 represents the random 

error for 𝑌𝑖𝑗𝑘. 
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We would like to test the following set of hypotheses for each gene: 

H0: μ1 =  μ2 

Ha: μ1 ≠  μ2 

Where μ𝑖 = μ + τ𝑖 from the model above. μ𝑖 represents the population mean expression value 

from the ith treatment group. 

Data was accessed on the Gene Expression Omnibus data repository under the number 

GSE76119 (Edgar et al., 2002). Analysis was performed in R using the limma package. The data 

was analyzed multiple times with different normalization and filtering methods, and the number 

of DDE genes were compared. An FDR of 0.085 was used, as that was the significance level 

chosen by the researchers in the original paper. Various combinations of the following 

normalization methods were used: lowess, scale, median and Gquantile. The different filtering 

methods include the method discussed above (Method 1), and an additional filtering method in 

which genes with median signal intensity less than or equal to the background intensity were 

removed (Method 2). This method was chosen because it was implemented in a similar 

experiment in which dogs were under observation (Thomson et al., 2005). The analysis was 

repeated with filtering performed both before and after normalization, and comparisons were 

made. In addition to the limma method, the analysis was also repeated with a standard t-test and 

SAM-seq. 

3.2. RNA-seq 

RNA-seq data was used from a study that compared sex differences in rats after nerve 

injury (Stephens et al., 2017). Data was accessed on the Gene Expression Omnibus data 

repository under the number GSE100122 (Edgar et al., 2002). A total of eight rats were used in 

the experiment. There were four female rats and four male rats, and the rats of each sex were 
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randomly assigned to two treatment groups: injured and naive. The rats in the injured group 

received CCI surgery to the sciatic nerve, while the naive group served as a control. All surgeries 

were conducted by the same individual as to avoid variations in technique. All animals were 

euthanized 14 days post-op, and RNA was extracted for next generation sequencing. This is a 

two-factor factorial experiment, with the two factors being gender and status. Data was analyzed 

in R using various bioconductor packages, including edgeR, DESeq, DESeq2 and Limma. There 

were four comparisons of interest: female injured (FI) vs female naïve (FN), male injured (MI) 

vs. male naïve (MN), female naïve vs. male naive, and the interaction term. The interaction 

corresponds to the difference between female and male rats in terms of their response to injury. 

The analysis was repeated with a variety of different filtering methods. For filtering method A, 

the filterbyexpr function was used in R. This method was chosen because it is commonly used in 

RNA-seq experiments. As previously discussed, this function implements the filtering method 

recommended by Chen in 2016. The number of genes was reduced from 32,623 to 16,988 after 

filtering. For filtering method B, genes that did not have counts per million (CPM) greater than 

or equal to 2 in at least 2 samples were removed. This method was chosen because it was 

implemented in an experiment with a similar design that was conducted in mice (Li et al., 2019). 

The number of genes remaining after filtering was 13,583. The analysis was repeated with 

filtering performed both before and after normalization, and comparisons were made. An FDR of 

0.05 was used, as that was the significance level chosen by the researchers in the original paper. 

Different methods will be compared by looking at the number of genes that are DDE in 

each case. This will give an idea as to which techniques are more conservative/liberal. 

Additionally, the lists of DDE genes resulting from the application of each method will be 
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compared. Venn diagrams were created to visually assess the overlap in DDE genes among the 

various methods. 
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4. RESULTS AND DISCUSSION 

4.1. Two-Color Microarray 

From figures 1 and 2, we can see MA plots before and after lowess normalization. Before 

lowess normalization, we can see that the vast majority of the points lie above the M=0 line. This 

indicates that in most cases, the red signal intensities were higher than the green. Following 

lowess, there is random scatter around the M=0 line. This demonstrates that lowess 

normalization corrected for the red-green differences in signal intensities. 

Figure 1. MA plot before lowess normalization. 

 

 

 
Figure 2. MA plot after lowess normalization. 
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The data analyzed in this study is from a real experiment, and therefore the number of 

genes that are truly differentially expressed is not known. For this reason, it can’t be determined 

which normalization method performed best. However, we can see that the method of 

normalization used did impact the number of genes that were declared differentially expressed. 

Table 2 shows the number of DDE genes for the various filtering and normalization methods. 

When no filtering or normalization was performed, an extremely large number of genes were 

DDE. This could be partially due to the fact that no lowess normalization was performed. 

Without lowess normalization, there is no correction for the red-green differences. The genes 

may be DDE because of non-biological variation rather than true biological differences. 

Referring to Figure 3, we can see that when the same filtering method was used, there 

was overlap in the DDE genes among the different methods. The results were more conservative 

when more normalization methods were used. For example, when no lowess normalization was 

performed, 9,178 genes were DDE. When only lowess and scale normalization were performed, 

this number was reduced to 110 genes. When lowess, median, scale and Gquantile normalization 

were all performed, 59 genes were DDE. For comparison, following lowess normalization with 

the limma package, SAM-seq was used to test for differential expression and 338 genes were 

DDE. The Venn diagram shows that these same 338 genes were DDE in at least one other 

method, indicating that there is some consistency between SAM-seq and limma. A t-test was also 

performed gene by gene, which result in 0 DDE genes.  

Using the q-value function in R, an estimate of the proportion of equivalently expressed 

genes was obtained. This was determined to be approximately 0.897, meaning that roughly 10% 

of the genes remaining after filtering were expected to be differentially expressed. With the 

variety of methods used for analysis, most resulted in 0 DDE genes. This is because there is not a 
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very high degree of differential expression present in this dataset. Even genes that truly are 

differentially expressed may have small differences that are difficult to be noticed in analysis. 

Additionally, there is relatively low power for detecting differentially expressed genes due to the 

large number of hypothesis tests being conducted. If this process was repeated for a dataset with 

a larger degree of differential expression, more meaningful inferences could be made. 

Although the “ground truth” is not known, there were three methods of analysis that 

yielded potentially trustworthy results; SAM-seq, limma with loess and scale normalization, and 

limma with loess, median, scale and Gquantile normalization. These techniques resulted in 338, 

110 and 59 DDE genes, respectively. We believe that there is some amount of differential 

expression present in this dataset, so any methods that resulted in 0 DDE genes are likely too 

conservative and are not scientifically useful. Additionally, methods that resulted in a very large 

number of DDE genes may be unreliable, because there are likely a lot of false discoveries. 

Therefore, filtering method 1 along with any of the three approaches mentioned above may all be 

appropriate methods of analysis for this particular dataset. 

Table 2 

Number of genes DDE for different normalization and filtering methods with an alpha value of 

.085 

Normalization methods used No 

Filter 

(45,210 

genes) 

Filter 

Method 

1 

(20852 

genes 

remain) 

Filter Method 

1 after 

normalization 

(20852 genes 

remain) 

Filter 

Method 

2 

(40,244 

genes 

remain)  

Filter Method 

2 after 

normalization 

(40,244 genes 

remain)   

None 30588 9178 9178 28196 28196 

Loess 0 0 0 0 0 

Loess and Scale 0 110 0 0 0 

Median and Scale 0 0 0 0 0 

Loess,Median,Scale,Gquantile 0 59 0 0 0 
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Figure 3. Venn diagram of the number of DDE genes for different normalization methods 

applied after filtering with filter method 1. LS stands for loess and scale, LMSQ stands for loess, 

median, scale and Gquantile. An alpha value of .085 was used to determine significance. 

 

4.2. RNA-seq 

As before, the data analyzed in this study is from a real experiment, and therefore the 

number of genes that are truly differentially expressed is not known. However, we can see that 

the method of normalization used did impact the number of genes that were declared 

differentially expressed. Results for each comparison of interest can be found below. 

4.2.1. FI vs FN 

For the comparison of the female injured versus female naive groups, approximately 

2000 genes were declared differentially expressed (Table 3). As previously discussed, three 

different methods of filtering were performed; no filtering, method A, and method B. With these 

three methods, there were 32623, 16988, and 13583 genes remaining, respectively. Across all 
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normalization methods, no filtering resulted in the smallest number of genes that were DDE. 

This is as expected, because fewer genes remaining means fewer hypothesis tests are conducted. 

This results in higher power for detecting differential expression. When the same filtering 

method was used after normalization, fewer genes were DDE. DESeq2 resulted in the highest 

number of DDE genes, regardless of which filtering method was used. This could be due to 

asymmetric distribution of effect sizes, which will be discussed in greater detail later on. From 

figure 4, we can see that most DDE genes are shared between all methods. Specifically, there are 

1267 genes that were DDE regardless of which method was used. Therefore, we can be 

reasonably confident that these 1267 genes truly are differentially expressed. DESeq2 differed 

the most, as there were 503 genes that were not DDE with any other method. From figure 5, we 

can see that there was a lot of overlap between the various edgeR normalization methods. 

Although there were differences among the various methods of analysis, it is reassuring to see 

that there is some overlap in the lists of DDE genes. This demonstrates that it may be useful for 

researchers to use multiple methods of analysis and look for consistency among the results. 
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Table 3 

Number of genes DDE for the FI vs FN comparison of interest 

FI vs FN No Filtering 

(32,623 genes 

remain) 

Filter method 

A 

(16,988 genes 

remain) 

Filter method 

B 

(13,583 genes 

remain) 

Filter method A after 

normalization 

(16,988 genes remain) 

DESeq2 2619  2624 2752  - 

edgeR w/TMM 1522 2107 2114 1970 

edgeR 

w/TMMwsp 

1510 2109 2116 1926 

edgeR w/RLE 1545 2098 2099 1966 

edgeR 

w/upperquartile 

1547 2113 2131 2009 

edgeR w/none 1602 2231 2240 2107 

Limma trend 633 1917 2111 1891 

Limma voom 1187 1598 1767 1552 

DESeq  1511 1547 1628 1700 

Note. Various normalization and filtering methods were applied, and differential expression was 

determined at the 0.05 significance level. 
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Figure 4. Venn diagram of DDE genes for FI vs FN comparison. 

 

 

Figure 5. Venn diagram of the number of genes DDE for the FI vs FN comparison of interest. 

Includes various normalization methods of the edgeR packge; TMM, TMMwsp, upperquartile, 

RLE and none. 
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4.2.2. MI vs MN 

From table 4, we can see that for the comparison of the male injured versus male naive 

groups, approximately 6000 genes were declared differentially expressed. Unlike the other 

comparisons of interest, voom seemed to result in the highest number of DDE genes when 

compared with the other methods. No filtering resulted in the fewest number of DDE genes, as 

expected. However, filtering method A resulted in more DDE genes than filtering method B. 

This is unexpected because there are more genes remaining after filtering with method A. 

Therefore, we would expect fewer genes to be declared differentially expressed. Upon further 

investigation, it was determined that 503 of the genes that were filtered out with method B were 

DDE in method A. This could be one potential explanation for why more genes were DDE with 

filtering method A. From figure 6, we can see that the majority of DDE genes are shared 

between all methods. Specifically, there are 5264 genes that were DDE regardless of which 

method was used. Therefore, we can be reasonably confident that these 5264 genes truly are 

differentially expressed. Voom differed the most, as there were 204 genes that were not DDE 

with any other method. From figure 7 we can see that there was a lot of overlap between the 

various edgeR normalization methods. 
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Table 4 

Number of genes DDE for the MI vs MN comparison of interest 

MI vs MN No Filtering 

(32,623 

genes) 

Filter 

method A 

(16,988 

genes) 

Filter 

method B 

(13,583 

genes) 

Filter method A after 

normalization 

(16,988 genes) 

DESeq2 6181  6230 6170 - 

edgeR w/TMM 5210 6066  5707 5894 

edgeR w/TMMwsp 5255 6061 5706 5845 

edgeR w/RLE 5183 6088 5695 5858 

edgeR 

w/upperquartile 

5271 6078 5634 5908 

edgeR w/none 5135 6020 5608 5815 

Limma trend 4631 6661 6374 6703 

Limma voom 6291 6933 6545 6983 

DESeq  5380 5441 5345 5758 

Note. Various normalization and filtering methods were applied, and differential expression was 

determined at the 0.05 significance level. 
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Figure 6. Venn Diagram of DDE genes for MI vs MN. 

 

 

 

Figure 7. Venn diagram of the number of genes DDE for the MI vs MN comparison of interest. 

This diagram includes the various normalization methods of the edgeR packge; TMM, 

TMMwsp, upperquartile, RLE and none. 
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4.2.3. FN vs MN 

For the comparison of the female naive versus male naive groups, approximately 2000 

genes were declared differentially expressed (table 5). As expected, the fewest number of genes 

were DDE when no filtering was performed, followed by method A. Filtering method B resulted 

in the largest number of DDE genes. Again, fewer genes were found DDE when filtering was 

performed after normalization. Of all the methods, DESeq2 resulted in the highest number of 

DDE genes. From figure 8, we can see that there was a lot of overlap in the DDE genes from the 

various methods. Specifically, there are 1249 genes that were DDE regardless of which method 

was used. Therefore, we can be reasonably confident that these 1249 genes truly are 

differentially expressed. DESeq2 differed the most, as there were 566 genes that were not DDE 

with any other method. Referring to figure 9, we can see that the majority of DDE genes were 

shared between all edgeR normalization methods. 
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Table 5 

Number of genes DDE for the FN vs MN comparison of interest 

FN vs MN No Filtering 

(32,623 

genes 

remain) 

Filter 

method A 

(16,988 

genes 

remain) 

Filter 

method B 

(13,583 

genes 

remain) 

Filter method A after 

normalization 

(16,988 genes remain) 

DESeq2 2653 2680 2813 - 

edgeR w/TMM 1405 2023 2089 1902 

edgeR 

w/TMMwsp 

1398 2024 2089 1885 

edgeR w/RLE 1453 2060 2104 1943 

edgeR 

w/upperquartile 

1473 2076 2092 1974 

edgeR w/none 1467 2089 2106 1959 

Limma trend 97 1654 1995 1620 

Limma voom 574 1860 2147 1820 

DESeq  1449 1534 1698 1669 

Note. Various normalization and filtering methods were applied, and differential expression was 

determined at the 0.05 significance level. 
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Figure 8. Venn Diagram of DDE genes for FN vs MN. 

 

 

Figure 9. Venn diagram of the number of genes DDE for the FN vs MN comparison of interest. 

This diagram includes the various normalization methods of the edgeR packge; TMM, 

TMMwsp, upperquartile, RLE and none. 
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4.2.4. Interaction 

The researchers were interested in comparing the differential expression between male 

and female rats in terms of their response to injury. This is equivalent to testing the interaction 

term. Table 6 shows the number of DDE genes for this comparison for various filtering and 

normalization methods. There is a lot more variation in the results than there was for the 

previous comparisons of interest. This is likely due to the fact that this is a more complex 

comparison. DESeq2 by far resulted in the most DDE genes when compared to the other 

methods. Figure 10 shows that there were 821 genes unique to DESeq2 that were not significant 

in any other method. Specifically, there are 101 genes that were DDE regardless of which 

method was used. Therefore, we can be reasonably confident that these 101 genes truly are 

differentially expressed. For the most part, more genes were DDE when there were fewer genes 

remaining after filtering. One exception to this is when edgeR was used, more genes were DDE 

when no filtering was performed. One potential explanation for this is that the quasi-likelihood 

test was used instead of the exact test that was used for the other comparisons of interest. The 

quasi-likelihood test is more appropriate in this case, because there are two factors involved. 

From figure 11 we can see that there was a lot of overlap between the various edgeR 

normalization methods. 
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Table 6 

Number of genes DDE for the interaction term 

Interaction No Filtering 

(32,623 genes 

remain) 

Filter method 

A 

(16,988 genes 

remain) 

Filter method 

B 

(13,583 genes 

remain) 

Filter method A after 

normalization 

(16,988 genes remain) 

DESeq2 1573  1588 1659 - 

edgeR w/TMM 962 669 906 663 

edgeR 

w/TMMwsp 

1037 665 906 642 

edgeR w/RLE 1024 662 878 662 

edgeR 

w/upperquartile 

1040 726 1035 730 

edgeR w/none 1063 813 1078 822 

Limma trend 117 280 550 272 

Limma voom 0 104 463 106 

DESeq  557 683 801 732 

Note. Various normalization and filtering methods were applied, and differential expression was 

determined at the 0.05 significance level. 
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Figure 10. Venn diagram of DDE genes for the interaction term. 

 

 

 

Figure 11. Venn diagram of the number of DDE genes for the interaction term. This diagram 

includes the various normalization methods of the edgeR package; TMM, TMMwsp, 

upperquartile, RLE and none. 



 

37 

4.2.5. Asymmetry in the Distribution of Effect Sizes 

Using the q-value function in R, the proportion of equivalently expressed genes was 

estimated for each comparison of interest. As seen in table 7, these proportions are estimated to 

be approximately 0.3 for the MI vs MN comparison, and approximately 0.5 for all other 

comparisons of interest. These proportions were used to estimate the proportion of upregulated 

genes among all DE genes. This was estimated under the assumption that observed effect sizes of 

EE genes have a symmetric distribution around zero, meaning that half should be positive, and 

half should be negative. Using the formulas 

 

Where  �̂�0is the estimated number of EE genes, UR is the estimated number of upregulated 

genes, DR is the estimated number of downregulated genes, P is the number of genes with a 

positive observed effect size, and N is the number of genes with a negative observed effect size. 

Figures 12-15 show histograms of the difference in average logCPM for all comparisons 

of interest. Although these histograms do not clearly demonstrate asymmetry, there are more 

negative than positive differences in all cases. For example, for the FI vs. FN comparison, there 

are 10,240 positive differences and 6,748 negative differences, indicating asymmetry. 

Additionally, the proportions of upregulated genes among DE genes was found to be 0.700 for FI 

vs. FN, 0.302 for MI vs. MN, 0.334 for FN vs. MN and 0.657 for the interaction term. Since 

these values differ from 0.5, the distribution of effect sizes is asymmetric for all comparisons of 
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interest. The results of a previous study indicate that when the distribution of effect sizes is 

asymmetric, the FDR is elevated when DESeq2 is used. When the FDR was supposed to be 

controlled at 5%, in many cases the actual FDR was elevated above 20% (Kotoka and Orr, 

2017). This is a potential explanation as to why DESeq2 generally had a much higher number of 

DDE genes when compared to other methods. 

Table 7 

The estimated proportion of equivalently expressed genes, as well as the proportion of 

upregulated among differentially expressed genes for each comparison of interest 

Comparison Estimated proportion of EE genes Proportion of upregulated among DE genes 

FI vs FN 0.487 0.700 

MI vs MN 0.374 0.302 

FN vs MN 0.498 0.334 

Interaction 0.494  0.657 

 

 

 



 

39 

 

Figure 12. Histogram showing the difference between the mean log counts per million for 

female injured vs female naïve. 

 

 

Figure 13. Histogram showing the difference between the mean log counts per million for the 

male injured vs male naïve groups. 
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Figure 14. Histogram showing the difference between the mean log counts per million for the 

male naïve vs female naïve groups. 

 

 

Figure 15. Histogram of the mean log counts per million of MI-MN vs the mean log counts per 

million of FI-FN. 
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5. CONCLUSION AND FUTURE RESEARCH 

5.1. Conclusion 

There is not a widely accepted method for the analysis of microarray and RNA-seq 

experiments, and it is clear to see why. The small number of replicates in these experiments, 

along with the very large number of genes make these datasets difficult to analyze. It is 

considered common practice for the data to be filtered and normalized, but the most appropriate 

method for doing so may vary from experiment to experiment. Factors such as the complexity of 

the experimental design, the organism on which the experiment is performed, as well as the 

number of replicates should all be considered before choosing a normalization method. The 

results of this study show that which normalization and filtering methods are used can largely 

impact the number of genes that are declared differentially expressed in gene expression 

experiments. A wise approach may be to use multiple methods for analysis and look for 

consistency among the results. 

5.2. Future Research 

In continuing research on this topic, I would consider using simulated data to compare 

normalization methods. That way the actual performance of the methods could be determined 

and compared. The true power for detecting differentially expressed genes, as well as the type 

one error rate could be observed. I would also consider repeating the two-color microarray 

experiment on a dataset that has a larger degree of differential expression. It would be interesting 

to see how the normalization methods differ when there is a larger expected proportion of 

differentially expressed genes between treatment groups. 
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