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ABSTRACT 

Using U.S. airport data from 2009 through 2016, this thesis examines the determinants of 

aeronautical charges of large and medium hub airports and accounts for the spatial dependence 

of neighboring airports in a spatial panel regression model. The major finding of this thesis are 

(1) U.S. airports’ aeronautical charges are spatially dependent, and neighboring airport charges 

are spatially and positively correlated; (2) there is evidence of airport cost recovery through non-

aeronautical revenues; (3) airports sharing non-aeronautical revenues with airlines charge lower 

aeronautical fees than their peers that do not share revenues; (4) aeronautical charges increase 

with higher delays.  
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1. INTRODUCTION 

In recent years, U.S. airports are increasingly expected to reduce their reliance on 

government financial support. Due to limited government financial resources, airports must 

strive to balance its budget through revenues in aeronautical and non-aeronautical operations. 

Since aeronautical and non-aeronautical operations are interdependent, and airports provide 

services to both airlines and passengers, they are essentially a two-sided1 market platform 

through which the passenger demand for airports is a derived demand from airline services 

(Ivaldi, Sokullu, & Toru, 2015). Accordingly, as the airport’s non-aeronautical revenue depends 

on passengers’ flow in airports, there is a positive externality between air travel demand and the 

demand for airport non-aeronautical services (D’Alfonso & Nastasi, 2014). Zhang and Czerny 

(2012) briefly explained this relationship: an increase in aeronautical charges could cause a 

decrease in passenger flow which is the main source of non-aeronautical revenues for the airport. 

Starkie (2002) emphasized that motivated airport management maximizes its profit by focusing 

on increasing passenger throughput. To achieve this goal, airports must spark airlines’ 

enthusiasm to bring in more passengers. Thus, the aeronautical charges that airlines pay could 

have implications on both aeronautical and non-aeronautical operations. Empirically, Van 

Dender (2007), Bel and Fageda (2009), Bilotkach et al. (2012) and Choo (2014) have examined 

airport pricing and the effect of airport competition on aeronautical charges using a control 

variable such as the number of airports within a prespecified cluster or distance. However, the 

                                                 

 

1 A two-sided market is a market that has two interdependent product (or service) platforms through which the end-

users of the products (or services) interact, and the platform provider must determine the appropriate charges for one 

side by considering the impact of that on the other side (Rochet & Tirole, 2006).  An airport is essentially a two-

sided market because its aeronautical and non-aeronautical operations depend on interactions between airport end 

users like airlines and travelers, so the charges it imposes on the two sides must be appropriate in order for the two 

sides to participate effectively. 
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implicit assumptions are that, regardless of the distance between them, airports are independent 

of each other even for airports in the same region, and any competition effect on airport charges 

is the same. But there is no reason to assume that the strategies, operations and characteristics of 

neighboring airports are independent of each other especially when their catchment areas are 

close and likely to be overlapped. Moreover, if a sample observation has location components, 

the spatial dependence cannot be ignored.     

 In light of this, this thesis attempts to examine three empirical research questions:  

(1) Are airport aeronautical charges spatially interdependent? 

(2) What are the determinants of aeronautical charges? 

 (3) What is the relationship between aeronautical and non-aeronautical charges? 

For these objectives, we employ a combined spatial random effects model based on Cliff 

and Ord (1975) to control for both spatial interaction and bias resulting from the spatial data 

structure. The model includes a spatial autoregressive model with spatial autoregressive 

disturbance term of order (1,1), namely, SARAR(1,1). We used the data of 30 large hubs and 29 

medium hub airports in the U.S. between the years 2009 and 2016.  

The results show that U.S. airports’ aeronautical pricing decisions are spatially 

dependent. This implies that, when an airport determines the aeronautical charges, it considers 

neighbor airports’ pricing strategies as well. Thus, if neighboring airports’ aeronautical charges 

increased, the airport would increase its charges as well. Furthermore, non-aeronautical revenues 

are a determinant of aeronautical charges. An increase in non-aeronautical charges leads to a 

decrease in aeronautical charges. This may suggest some degree of cross-subsidization. Revenue 

sharing also negatively impacts aeronautical charges, i.e., airports sharing non-aeronautical 
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revenues with airlines charge lower fees than their peers that do not share revenues. Besides this, 

aeronautical charges increase with higher delays.  

To the best of our knowledge, this is the first study that accounts for the spatial 

interdependence of airport’s aeronautical pricing decisions. The results will shed light on the 

airport pricing strategies and the spatial impact of neighboring airports on an airport’s 

aeronautical charges.  

The thesis is organized as follows. The literature review is presented in Chapter 2. 

Following that, I provide details on the economic and statistical aspects of the model in Chapter 

3. I describe the data in Chapter 4. In Chapter 5, we discuss the results. In the last chapter, we 

conclude the thesis with our findings and discuss the implications.    

 

 

 

 

 

 

 

 



 

4 

2. LITERATURE REVIEW 

Other than government resources, the largest income source of U.S. airports is user 

charges which come from aeronautical and non-aeronautical activities. Non-aeronautical 

revenues have been a vital income source for airports in current years (D’Alfonso, Jiang, & Wan, 

2013; D’Alfonso & Nastasi, 2014; Zhang, Fu, & Gavin, 2010) especially given the increased 

pressure on government-run airports to be financially independent (Zhang & Zhang, 1997). 

Zhang and Zhang (1997) suggested a cross-subsidization solution to reduce the aeronautical 

charges to achieve optimum social welfare other than Ramsey pricing. Ramsey pricing is seen as 

the second-best solution for social welfare if marginal cost pricing cannot be applied due to high 

fixed costs. According to Zhang and Zhang (1997), airports shift some non-aeronautical revenues 

to relax the budget constraints on aeronautical operations. Thus, airports can reduce aeronautical 

charges under the assumption that the welfare gains in aeronautical operations outweigh the 

welfare loss in non-aeronautical operations.  Czerny (2006) and Lu and Pagliari (2004) analyzed 

the single- and dual-till approaches of aeronautical charges in Europe airport systems. With the 

single-till setting, aeronautical charges are determined according to aeronautical and non-

aeronautical revenues in the period before. Under dual-till pricing,  aeronautical charges are 

based only on its aeronautical revenues (Smyth & Pearce, 2007). Both studies favored the single-

till approach since they found that it enhances social welfare.  

 Ivaldi, Sokullu and Toru (2015) stressed the importance of considering the 

interdependence of aeronautical and non-aeronautical operations. They found that U.S. airports 

follow a profit-maximizing strategy in non-aeronautical operations while they apply Ramsey 

pricing in aeronautical operations implying that airports do not internalize positive externalities. 

U.S. airports are controlled by governments, hence the financial goal is not to maximize profits 
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but to seek full cost recovery (or to break even). However, they suggested that two-sided profit-

maximizing prices can be welfare-enhancing for some airports. Overall, airports can relax the 

budget constraint on aeronautical operations via cross-subsidization. Therefore, the presence of 

cross-subsidization may be an important factor for aeronautical charges.    

On the other hand, the airport’s vertical relationships with their tenant airlines may also 

be another important factor affecting aeronautical charges (Van Dender, 2007). One of the 

incentives that airports offer to their tenant airlines is revenue sharing. The goal of airport’s 

revenue sharing is to attract, retain and expand airline clientele base for airports, which through 

revenue sharing with airlines, may experience higher passenger throughput and as a result 

experience increased non-aeronautical revenues (Saraswati & Hanaoka, 2014).  Zhang et al. 

(2010) pointed out that airports facing higher competition tend to share non-aeronautical 

revenues more, and Fu and Zhang (2010) found that airports adopting revenue sharing also tend 

to apply higher aeronautical charges. Thus, conventional demand theory would predict 

competition with other airports may lead to lower aeronautical charges, a larger degree of 

revenue sharing, however, may lead to higher aeronautical charges even in the face of airport 

competition.  

In addition to cross-subsidization and revenue sharing, spatial dependence between 

neighboring airports may impact airport aeronautical charges as well. Although large and 

medium hub airports are often perceived as local monopolies, the proximity effect of 

neighboring airports could stifle these airports' monopoly power. Starkie (2002) points out that 

the market power of an airport depends on the availability of proximate airports that can provide 

substitute goods and services. In fact, according to an International Air Transport Association 

(IATA) report by Wiltshire (2013), for every 1% increase in distance between two neighboring 
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airports the likelihood of passengers flying from the closest airport declines on average by 4%. In 

the same report, in terms of price, on average, for every 1% increase in distance between two 

neighboring airports, a 1% change in relative prices at a nearby airport would persuade 

passengers to travel to the more distant airport. Dmitry (2012) remarks that spatial competition 

among airports is usually based on the concept of catchment areas. A catchment area’s size can 

usually be defined by geographical distance, by travel time, and by travel cost (Dmitry, 2012). 

Drawing concentric circles of travel distances around the airport are the most common way to 

define an airport’s catchment area. Bel and Fageda (2009) and Choo (2014) have considered the 

number of airports in the catchment area to measure the impact of neighboring airports on 

aeronautical charges. However, the lack of consideration of spatial interaction among 

neighboring airports may lead to biased and inconsistent estimates.   

Using the data on 55 large US airports between 1998 and 2002, Van Dender (2007) found 

that airports in competition tend to charge lower aeronautical fees. In addition, he found that hub 

airports charge higher aeronautical fees. Furthermore, Van Dender (2007) found a negative 

relationship between the number of passengers and airfares, a decrease in average aeronautical 

charges at airports serving more flights, and a decrease in average non-aeronautical charges at 

airports serving more passengers. The average aeronautical charge is the aeronautical revenues 

divided by the number of departing flights, and the average non-aeronautical charge is measured 

by concession revenues per passenger. Lastly, Van Dender (2007) also found that concession 

revenues were attributed more to international passengers than to domestic passengers.  

 Bel and Fageda (2009) also analyzed the determinants of airport prices with a cross-

sectional analysis of 100 European airports in 2007. The authors analyzed the effects of airports’ 

market power and regulation/ownership on aeronautical charges. In order to control for airports’ 
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market power, the percentage of national air traffic,  the number of nearby airports in 100 km, 

airlines’ Herfindahl-Hirschman Index (HHI) and airport’s island location were used in the 

model. Additionally, they used private/non-regulated and public/regulated dummy variables to 

control for airport regulation and ownership. Regulation refers to price regulations for public 

airports: rate of return and price cap. They found that neither the rate regulation mechanisms 

(rate of return or price cap) nor the scope of the regulation (single-till/dual-till) affects airport 

charges. They, however, found that airports having higher traffic charge more, and charges on 

domestic flights tend to be less because of competition from other modes. Bel and Fageda (2010) 

found the aeronautical charges of a mainland airport that is not under a centralized pricing 

system are lower, particularly when it faces a higher number of airports within a distance of 100 

km. Some countries, like Greece (except Athens) and Norway, apply a centralized price system 

in which airports charge identical prices (Bel & Fageda, 2010).  Bel and Fageda (2010) also 

pointed out that mainland airports that are not under price regulations charge lower fees if the 

downstream market is more concentrated.  

Following Bel and Fageda (2009), Bilotkach, Clougherty, Mueller and Zhang (2012) 

analyzed airport charges in terms of privatization and economic regulations using the data of 61 

European airports between 1990 and 2007. Considering the autocorrelation problem, they used a 

dynamic panel data model, i.e., the lagged value of aeronautical charges was added to the right-

hand side of the regression. Bilotkach et al. (2012) found that a single-till approach leads to 

lower aeronautical charges, and they concluded that privatized airports and airports adopting ex-

post regulation tend to charge lower fees. In an ex-post regulation regime, the regulator does not 

regulate the airports unless the latter violates the price, profit, and service quality thresholds. In 

addition, hub airports charge higher rates. Unlike Van Dender (2007) and Bel and Fageda 
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(2009), Bilotkach et al. (2012) did not detect a significant effect of nearby airports on 

aeronautical charges.  

Choo (2014) examined the determinants of aeronautical charges of 59 U.S. airports 

between 2002 and 2010. She examined the effects of operating costs, cross-subsidization, hub 

status, governance types, percentage of international and connecting traffic, and competitive 

forces. Choo (2014) found a negative relationship between the ratio of non-aeronautical revenues 

to total revenues and aeronautical charges. Thus, the study concluded that there was cross-

subsidization at U.S. airports. In addition, Choo (2014) found a substitution effect between 

terminal and landing fees, and higher aeronautical fees at hub airports. She concluded that the 

number of airports in 100 km, governance structure, connecting traffic, the share of dominant 

airlines all has no significant effect on aeronautical charges. 
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3.  METHOD 

3.1. Economic Aspects 

We model aeronautical charges of U.S. airports as a function of the ratio of non-

aeronautical revenues to operating costs, average cost, delays, downstream market structure, 

airport revenue sharing status, and airport governance. In this function, aeronautical charges are 

defined as the aeronautical revenues per aircraft movement (Bilotkach et al., 2012; Choo, 2014; 

Van Dender, 2007). To control for the possibility of airport’s cross-subsidization, we use the 

ratio of non-aeronautical revenues to total cost which is the sum of operating cost and debt 

service cost less passenger facility charges (PFC). PFC is used to pay for some of the airport’s 

debt service costs, and it is collected by airlines in the ticket prices on behalf of airports. The 

remaining debt service cost and airport operating costs are covered by aeronautical and non-

aeronautical revenues. Thus, PFC is deducted from the total cost to reflect the extent of the actual 

cost covered by non-aeronautical revenues. Therefore, the ratio of non-aeronautical revenues to 

total cost may be an indicator of cross-subsidization. A negative relationship between the ratio 

and aeronautical charges may indicate some degree of cross-subsidization that leads to lower 

aeronautical charges. Nevertheless, the insight into the extent of cross-subsidization is limited by 

this ratio. The ratio of  non-aeronautical revenue share to non-aerenautical cost share would 

provide a better insight into cross-subsidization. However, the inseparability of aeronautical and 

non-aeronautical operating costs in the airport financial data precludes us from calculating the 

non-aeronautical cost share. Besides this ratio variable, we also consider two close alternatives in 

our regression models: (1) non-aeronautical revenues per passenger (Nrevp) as in Bilotkach et al. 

(2012),  and (2) the ratio of non-aeronautical revenues to total revenues (Choo’s ratio) proposed 

by Choo (2014) as a measure of cross-subsidization.     
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In addition, aeronautical charges should reflect airport marginal costs. However, because 

of the difficulty of obtaining and measuring marginal cost, we use airport average cost, which is 

measured by total cost per passenger, to capture the additional cost to the airport as output rises. 

Next, we consider delays as a proxy for airport congestion since it would not be rational for a 

congested airport to reduce aeronautical fees. Brueckner (2001) and Daniel (1995) showed that 

airports should apply higher aeronautical charges or congestion pricing as a remedy for delays.  

On the other hand, D’Alfonso et al. (2013) suggested that since there is a positive correlation 

between non-aeronautical revenues and dwell time, aeronautical charges should be kept at a 

lower level to increase passenger throughput. In order to understand the congestion effect on 

aeronautical charges, my model also accounts for congestion using the total number of delays.  

Downstream competition may influence the airport’s decision on aeronautical charges. 

Airports facing a more concentrated downstream market charge lower fees due to the greater 

negotiating power of the dominant airlines (Bel & Fageda, 2010). Market structure in the 

downstream is controlled by the airlines’ HHI at the airport. The vertical relationship between 

airports and airlines may be another significant factor for aeronautical charges (Van Dender, 

2007). To control for the vertical relationships between airports and airlines, I consider the 

airport’s revenue-sharing strategy. Revenue sharing, a common business practice of U.S. 

airports, is used to incentivize airlines to increase their operations and business at the airport. 

With a revenue-sharing strategy, airports share their non-aeronautical revenues with airlines. 

However, airports adopting revenue sharing may tend to apply higher aeronautical charges (Fu & 

Zhang, 2010). The sampled airports’ revenue-sharing strategies in this study are reported in the 

appendix. In addition to HHI and airport-airline vertical relationships, airports’ governance can 

be considered an important determinant of aeronautical charges. Airports’ pricing strategy may 
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differ across governance types due to the differences in funding formulae and managerial 

practices. Therefore, we consider four categories of airport governance commonly seen in the 

U.S. 

Spatial competition among airports is another factor that needs to be considered (Fröhlich 

& Niemeier, 2011). Tobler (1970, page 236) pointed out that “everything is related to everything 

else, but near things are more related to each other further”. Choo (2014) and Bel and Fegada 

(2009) used the number of airports in 100 km to analyze the proximity effects on airport charges; 

Van Dender (2007) clustered airports according to the possibility of competition to examine the 

proximity effects; Bilotkach et al. (2012) considered the presence of nearby airports to identify 

potential airport competition effects. These models are explicitly associated with airport 

competition, but implicitly the airports are assumed to be independent of each other, and the 

competition effect on aeronautical charges of airports within a predetermined distance, cluster or 

catchment area is assumed to be the same relative to other airports. However, besides 

competition, spatial dependence could also arise in economic network space (Anselin, Gallo, & 

Jayet, 2008). Airports interact with one another in such an economic network. For instance, an 

airport benchmarks neighboring airports’ revenue-sharing strategy when they make a decision 

about it. If the common strategy in an area is sharing revenue with airlines, then an airport in the 

area cannot independently go against the norm. Therefore, spatial dependence is inevitable in the 

airport industry. Ignoring the spatial dependence of airports may lead to biased and inconsistent 

estimation.  

3.2. Statistical Models 

 Van Dender (2007), Bel and  Fageda (2010), Bilotkach et al. (2012) and Choo (2014) 

have applied different methods to explain the determinants of aeronautical charges. Van Dender 
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(2007) employed a three-stage least squares method to address the endogeneity problems in a 

system of equations. Bel and Fageda (2009) analyzed the determinants of airport prices using a 

two-stage least squares method. This method was chosen by considering the possibility of 

endogeneity between price and demand (total airport traffic) variables. To address the possible 

endogeneity problems, Bilotkach et al. (2012) replaced all independent variables with their 

lagged values in the model. Following this, Bilotkach et al. (2012) used twice lagged output 

variables to instrument lagged output variables. Moreover, Bilotkach et al. (2012) employed a 

system GMM model to address the endogeneity problem between aeronautical charges and the 

lagged values of aeronautical charges. Choo (2014) employed the Hausman-Taylor model and 

the error component two-stage least squares method along with conventional fixed and random 

effects models.  

In this study, the base model of the relationship between aeronautical charges and the 

economic factors can be described by a random-effects (RE) regression (1): 

ln𝑅𝑖𝑡 = 𝛽0 + 𝛽1𝑅𝑎𝑡𝑖𝑜𝑖𝑡 + 𝛽2ln𝐴𝐶𝑖𝑡 + 𝛽3ln𝐷𝑒𝑙𝑎𝑦𝑖𝑡 + 𝛽4ln𝐻𝐻𝐼𝑖𝑡 + 𝛽5𝑍 + ∑ 𝛽𝑗𝑋𝑗𝑖𝑡 +𝑗 𝑒𝑖𝑡,  (1) 

 

where 𝑅𝑖𝑡 is the aeronautical charges of airport i in year t, 𝑅𝑎𝑡𝑖𝑜𝑖𝑡 is the ratio of non-

aeronautical revenues to total operating costs, 𝐴𝐶𝑖𝑡 is the average costs, 𝐷𝑒𝑙𝑎𝑦𝑖𝑡 is the delays of 

the airport, 𝐻𝐻𝐼𝑖𝑡 is airlines’ HHI at the airport i, 𝑍 is a time trend, and 𝑋𝑗𝑖𝑡 is a set of other 

control variables, including the airport’s revenue-sharing status, and airport’s  governance 

types, 𝑒𝑖𝑡 is the composite error term including time-invariant unobserved effects and time-

variant disturbance term. The model assumes that any unobserved airport-specific effect is not 

correlated with the control variables in equation (1).  Since the model contains time-invariant 
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variables such as airport’s revenue-sharing status and airport governance variables, a fixed-

effects (FE) model is not feasible.  

There are, however, two potential endogeneity problems in equation (1). First, there is 

potential reverse causality between aeronautical charges and Ratio as well as AC since a decrease 

in aeronautical charges could lead to an increase in outputs like the number of passengers which 

is the determinant of non-aeronautical revenues and average cost. Thus, Ratio and AC may be 

endogenous. A second potential endogeneity problem may arise from the bi-directional causal 

relationship between delays and aeronautical charges. While delays are determinants of 

aeronautical charges, aeronautical charges are also determinants of the delays. As discussed in 

Brueckner (2001) and Daniel (1995),  a congested airport could raise aeronautical charges to 

alleviate congestion and thereby decrease delays. To address the endogeneity problems, the 

variables Ratio, AC and Delays were instrumented by their respective time-lagged values. 

Instrumenting endogenous variables with lagged values is seen also in Bilotkach et al. (2012). 

This type of estimation is consistent and unbiased as long as the lagged variable does not belong 

to the model and is strongly correlated to the endogenous variable (Reed, 2015).   

The next issue concerning Model (1) is the spatial dependence of rivaling airports. That is 

aeronautical charges may be spatially correlated when airports closer to each other may set 

charges similar to those of their regional rivals, and Model (1) does not consider this effect. 

Classical panel data models, like Model (1), assume that observations are spatially independent 

(LeSage, 2008). If a sampled unit has a location component, the model should consider two 

important factors: (i) spatial dependence between the observations, and (ii) spatial heterogeneity 

in the relationships. Ignoring these two factors leads to biased and inconsistent estimates 

(LeSage, 2008).  
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Spatial dependence can be explained by spatially lagged dependent variables or spatial 

autoregressive disturbances. Spatial lag models are preferred when the research interest is spatial 

interactions (Anselin, 2003). Spatial disturbance models are appropriate when the concern is to 

correct any potential bias arising from using the spatial data structure. We employed a combined 

spatial random effects model based on Cliff and Ord (1975) to control for both spatial interaction 

and bias resulting from the spatial data structure. The model includes a spatial autoregressive 

model with spatial autoregressive disturbance term of order (1,1), SARAR(1,1), and is 

represented by equation (2):  

ln𝑅𝑁𝑡 = 𝛽0 + 𝜆(𝐼𝑇 ⊗ 𝑊𝑁)ln𝑅𝑁𝑡 + 𝛽1ln𝑅𝑎𝑡𝑖𝑜𝑁𝑡 + 𝛽2ln𝐴𝐶𝑁𝑡 + 𝛽3ln𝐷𝑒𝑙𝑎𝑦𝑁𝑡 + 𝛽4ln𝐻𝐻𝐼𝑁𝑡 +

𝛽5𝑍 + ∑ 𝛽𝑗𝑋𝑗𝑁𝑡 +𝑗 𝑢𝑁𝑡                                                                                                                              (2) 

where 𝑅𝑁𝑡 is an 𝑁𝑡 × 1 vector representing aeronautical charges of the sampled airports,  𝐼𝑇 is an 

identity matrix with dimension T, 𝑊𝑁 is 𝑁 × 𝑁 weight matrix, and 𝜆 is the spatial autoregressive 

parameter (|𝜆| < 1). The weight matrix is a symmetric matrix which has zero diagonal 

elements (𝑤𝑖𝑖 = 0). Diagonal elements are set to zero to avoid predicting airports’ own effects. 

The rows of weight matrix were normalized so that each row-normalized 𝑤𝑖𝑗, where 𝑖 ≠ 𝑗, can 

be referred to as the portion of the spatial influence of airport 𝑗 on airport 𝑖.  The error term (𝑢𝑁𝑡) 

is the spatially lagged regression disturbance vector that follows a spatial autoregressive process 

(Kapoor, Kelejian, & Prucha, 2007), 

𝑢𝑁𝑡 = 𝜌(𝐼𝑇 ⊗ 𝑊𝑁)𝑢𝑁𝑡 + 𝜀𝑁𝑡,                                                       (3)  



 

15 

where 𝜌 is a spatial autoregressive coefficient (|𝜌| < 1), and 𝜀𝑁𝑡 = (𝜄𝑇 ⊗ 𝐼𝑁)𝜇𝑁 + 𝜐𝑁𝑡 is the 

innovation vector where 𝜄𝑇 is a vector of ones, 𝐼𝑁 is an 𝑁 × 𝑁 identity matrix, 𝜇𝑁 is a vector of 

airport-specific effects, and 𝜐𝑁𝑡 a vector of innovations that vary across airports and over time.  

First of all, based on the necessity of the diagnosis of the presence of spatial error 

correlation (𝜌) and random effects (𝜇𝑁𝑡), a Lagrange multiplier (LM) test by Baltagi et al. 

(2003) for spatial panel data analysis was used. In Baltagi et al. (2003)’s one-sided joint LM test, 

the null hypothesis is 𝐻0: 𝜌 = 𝜎𝜇
2 = 0. With this test, we could determine if the model has a 

spatial error correlation component and random effects.  Following this, we added spatially 

lagged aeronautical charges into the model. However, the spatially lagged dependent variable is 

endogenous due to simultaneity with the dependent variable (Anselin, 2003). The endogeneity 

problem was addressed by instrumenting spatially lagged aeronautical charges with spatially 

lagged explanatory variables except for the time-invariant variables (Kelejian & Prucha, 1998). 

Since we normalized the spatial weight by its row, time-invariant variables (revenue sharing 

status and governance types) are excluded for this process (Mutl & Pfaffermayr, 2011). Three 

steps were conducted in the estimation process. In the first step, we eliminate spatial 

autocorrelation by Cochrane-Orcutt transformation. In the second step, since 𝜌 is unknown, we 

estimated �̂� with a spatial generalized method of moments (GMM) method by following Kapoor 

et al. (2007). In the final step, using �̂�, we estimated model parameters via the feasible 

generalized least squares (FGLS) method. 
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4. DATA 

We examined a balanced panel data of 30 large hub airports and 29 medium hub airports 

classified by the Federal Aviation Administration (FAA). The distributions of the sampled 

airports are demonstrated in Figure.1. The data cover the years between 2009 and 2016. The 

primary source of the data is the Certification Activity Tracking System (CATS) Database. 

Under the FAA Authorization Act of 1994, all commercial service airports are required to report 

their annual financial data to the FAA. The information submitted by airports under the Airport 

Financial Reporting Program is then available to the public through the CATS. From the CATS 

system, we obtained the data on airport operating expenditures, debt service costs, aeronautical 

revenues, non-aeronautical revenues, and the number of passengers. All these variables were 

adjusted for inflation using the U.S. gross domestic product deflator with the base year 2009. 

 

Figure 1. Sampled Hub Airports in the Contiguous U.S. 
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The sum of airport operating expenditures and debt services costs are recovered by 

airport user charges from aeronautical and non-aeronautical operations (FAA, 1999). 

Accordingly, we developed the ratio of non-aeronautical revenues to the total cost to control for 

any potential cross-subsidization effects on aeronautical charges. Besides this ratio, following 

Bilotkach et al. (2012), we calculated non-aeronautical revenue per passenger, and following 

Choo (2014), the ratio of non-aeronautical revenues to total revenues as alternative measures of 

cross-subsidization. Aeronautical charges are calculated by dividing total aeronautical revenues 

by aircraft movements. Aircraft movements were obtained from the aircraft activity system of 

the FAA2. Aircraft movements include all takeoffs and landings. The number of delays was 

obtained from the Bureau of Transportation Statistics3. Delays are measured by the number of 

flights that arrive or depart 15 minutes or more than their scheduled times. We used revenue 

sharing to control the vertical relationship between airlines and airports. The information on 

revenue sharing was obtained from LeighFisher (2016). Airports that do not share revenues with 

airlines are in the control group. That is, revenue sharing takes the value 1 for airports that share 

revenues, and 0 otherwise. The model also controls for airport governance types, and the 

information was obtained from the National Academies of Sciences, Engineering and Medicine 

(2009). Since the governance classifications are not straight forward, we followed the four 

classifications in Kutlu and McCarthy (2016), and the types of governance include port/airport 

authority, county, city and state governments. The governance types of the sampled airports are 

reported in the appendix. Airports governed by either a port/airport authority are in the control 

group. Airline’s HHI at the sampled airports was calculated with the information obtained from 

                                                 

 

2 https://aspm.faa.gov/opsnet/sys/Main.asp?force=atads 
3 https://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236 
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the Bureau of Transportation Statistics4 (𝐻𝐻𝐼 = ∑ 𝜏𝑖
2   𝑖 , where 𝜏𝑖

2 is the market share of 

airline 𝑖). HHI varies between 0 and 10,000. The HHI closer to 10,000 implies a concentrated 

market of airline at the sample airport.  The descriptive statistics of the data is reported in Table 

1. 

Table 1. Descriptive Statistics of the Data 

Years  
Aircraft 

Movements 

(x103) 

Aeronautical 

Revenues 

(x106) 

Aeronautical 

Charges 

Non-

aeronautical 

Revenues 

(x106) 

Average 

Cost  
Ratio Delay HHI 

2009 Mean 288.766 124.133 383.387 95.402 26.490 0.421 14253 2734 

 SD 184.710 139.777 281.46 72.927 11.396 0.143 12106 1626 

2010 Mean 288.683 128.228 398.067 96.478 27.454 0.399 14008 2766 

 SD 190.212 145.771 295.915 74.255 10.757 0.124 12194 1579 

2011 Mean 288.841 129.909 400.308 101.557 27.098 0.408 13227 2774 

 SD 190.538 146.996 291.906 80.447 10.386 0.120 11536 1574 

2012 Mean 284.352 131.533 414.001 103.702 27.384 0.410 13329 2786 

 SD 191.678 151.819 307.109 82.629 10.211 0.122 12009 1554 

2013 Mean 282.816 137.429 430.649 107.831 27.452 0.419 12924 2796 

 SD 191.720 154.188 307.019 86.667 10.120 0.119 12232 1565 

2014 Mean 280.170 142.238 443.403 111.610 28.781 0.420 12417 2853 

 SD 189.733 164.463 318.978 91.789 14.723 0.134 11158 1578 

2015 Mean 282.099 145.928 447.637 115.827 26.307 0.436 12868 2850 

 SD 190.391 166.463 308.542 95.071 9.539 0.127 11627 1583 

2016 Mean 287.200 149.635 448.199 121.985 25.737 0.440 12381 2772 

 SD 192.352 177.937 313.251 100.205 8.927 0.117 10802 1573 

 

                                                 

 

4
 https://www.transtats.bts.gov/airports.asp 

https://www.transtats.bts.gov/airports.asp
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As Table 1 shows, average real aeronautical charges increased over the years. For 

instance, the mean aeronautical charge was $383 in 2009 compared to $448 in 2016, an increase 

of 17%. In addition, the increase in aeronautical revenues was less than the increase in non-

aeronautical revenues. The mean non-aeronautical revenues between 2009 and 2016 rose by 

about 28%, while the mean aeronautical revenues between the same years increased by about 

20%. Besides, the ratio of non-aeronautical revenues to total cost increased by only 4.5%, and 

the average cost was almost the same in the same years. These facts imply the presence of cross-

subsidization between non-aeronautical revenues and aeronautical operations in the U.S. airport 

industry. Meanwhile, the data depicts the number of delays gradually decreased by 13% and 

there is no large change in HHI over the years.  
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5.  RESULTS 

As discussed in Chapter 3, due to possible reverse causality, a potential endogeneity 

problem may arise between aeronautical charges and Delay, aeronautical charges and Ratio, and 

aeronautical charges and AC. Firstly, we performed a Hausman test to assess the endogeneity of 

Ratio, AC and Delay following Wooldridge (2015). The test is performed with the null 

hypothesis that Delay, AC or Ratio can be treated as exogenous. The 𝛸2statistic in the Hausman 

test is 37.87 (p-value=0.000), implying there is sufficient evidence to reject the null hypothesis 

of exogeneity. After this, we assessed if the instruments (time-lagged values of the endogenous 

variables) are strongly correlated to the endogenous variables. If the instruments are weak, the 

resulting estimates would be biased and inconsistent (Wooldridge, 2015). Under the null 

hypothesis, the instruments are poorly correlated to the endogenous variable. The 𝛸2statistic for 

Delay is 13832.47 (p-value=0.0000), thus we conclude that the instrument is strongly correlated 

with Delay. The same test procedure was repeated for Ratio and AC. Based on the 𝛸2statistic of 

Ratio, 743.00 (p-value=0.0000), and the 𝛸2statistic of AC, 1354.65 (p-value=0.0000), there is 

sufficient evidence of the relevance of the instruments.  On the other hand, the Hausman test 

results show that both ln(Nrevp) (𝛸2=36.15, p-value=0.0000) and Choo’s ratio (𝛸2=27.15, p-

value=0.0000) are also endogenous. Accordingly, we instrumented them with their time-lagged 

values as well. The 𝜒2 statistic for Nrevp is 2334.22 (p-value=0.0000), and 𝜒2 statistic for 

Choo’s ratio is 3917.57 (p-value=0.0000). 

Following the endogeneity and weak instrument tests, we estimated a pooled OLS, a 

conventional random effects (RE) model without IVs, and a conventional random-effects model 

with IVs (REIV). The estimates of these models are reported in Table 2.  In all three models, AC, 

Delay and the time trend are significant and positive. Airports with higher average cost and 
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higher delays charge higher fees, and aeronautical charges increased over the years. The Ratio 

and city governance variables are significant and negative only in the pooled OLS model. 

However, the pooled OLS model fails to account for the panel structure and disregards the 

endogeneity problems, and as a result, the estimates are biased and inconsistent. The RE model 

accounts for the panel data structure but disregards the endogeneity issues discussed earlier.  

Table 2. The Estimates of Pooled OLS, RE and REIV Models 

 POOLED 

OLS 

RE                   REIV 

 Estimate Std. 

Error 

Estimate Std. 

Error 

Estimate Std. 

Error 

Intercept 0.366 0.528 3.685*** 0.662 -1.304 1.553 

ln(AC) 0.676*** 0.064 0.459*** 0.072 1.171*** 0.205 

Ratio -1.259*** 0.189 0.205 0.179 -0.133 0.551 

ln(HHI) -0.009 0.040 -0.055 0.041 -0.048 0.057 

State 0.109 0.083 0.008 0.233 0.229 0.245 

County 0.095 0.054 0.104 0.154 0.075 0.158 

City -0.167*** 0.055 -0.036 0.157 -0.044 0.162 

ln(Delay) 0.389*** 0.027 0.097** 0.041 0.391*** 0.089 

Rev. Sharing  0.007 0.038 -0.008 0.013 0.000 0.019 

Time Trend 0.040*** 0.007 0.027*** 0.003 0.041*** 0.005 

𝑹𝟐 0.6187  0.3594  0.5555  

***, ** and * denote 1%, 5% and 10% significance levels, respectively. 

The cross-subsidization variable, Ratio, is insignificant for aeronautical charges in the 

REIV model in Table 2. In addition to Ratio, we also considered two alternatives, ln(Nrevp) and 

Choo’s ratio, in the REIV model. The results are reported in Table 3. Choo’s Ratio has a 

significant and negative effect on aeronautical charges, while ln(Nrevp) does not have an impact 

on aeronautical charges. None of the models in Tables 2 and 3 accounts for the spatial 
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relationship of airports. However, the disturbances may be spatially autocorrelated. Therefore, 

the estimates in Tables 2 and 3 may be biased and inconsistent.   

Table 3. The Estimates of REIV with ln(Nrevp) and Choo's Ratio 

 REIV with Choo’s Ratio                 REIV with ln(Nrevp) 

 Estimate Std. Error Estimate Std. Error 

Intercept 2.311** 1.133 -0.802 1.220 

ln(AC) 0.839*** 0.150 1.318*** 0.221 

Choo’s Ratio -2.321*** 0.398   

ln(Nrevp)   -0.273 0.233 

ln(HHI) -0.146* 0.194 -0.061 0.059 

State 0.025 0.118 0.153 0.258 

County -0.118 0.122 0.065 0.163 

City -0.146 0.194 -0.068 0.167 

ln(Delay) 0.257 0.065 0.359 0.089 

Rev. Sharing:  0.000 0.012 -0.002 0.019 

Time Trend 0.043*** 0.003 0.043*** 0.005 

𝑹𝟐 0.7711  0.5685  

***, ** and * denote 1%, 5% and 10% significance levels, respectively. 

 

Next, we performed a one-sided joint LM test of Baltagi, Song, and Koh (2003) to test 

for random effects and spatial error autocorrelation. According to the test results (LM =86.486, 

p-value=0.000), there is sufficient evidence to reject the null hypothesis: 𝜌 = 𝜎𝜇
2 = 0. 

Accordingly, our model is specified as a random-effects model with a spatially lagged dependent 

variable and a spatial autoregressive error term of order 1, namely SARAR(1,1). In addition, to 

account for the endogeneity problems discussed earlier, we also estimate a SARAR model with 

IVs, SARARIV(1,1). The results are reported in Table 4.  
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Table 4. The Estimates of SARAR(1.1) with and without IVs 

              SARAR(1,1)         

with Ratio 

SARARIV(1,1) with 

ln(Nrevp) 

   SARARIV(1,1)  

  with Choo’s 

Ratio 

SARARIV (1,1) 

with Ratio  
       (1) (2) (3) (4) 

 Estimate Std. 

Error 

Estimate Std. 

Error 

Estimate Std. 

Error 

Estimate Std. 

Error 

𝝀 0.415*** 0.050 0.534*** 0.057 0.236*** 0.054 0.507*** 0.058 

Intercept -0.621 0.505 -2.240*** 0.534 0.662 0.556 -0.635 0.784 

ln(AC) 0.623*** 0.057 1.138*** 0.070 0.731*** 0.060 0.622*** 0.100 

Ratio -1.283*** 0.169     -1.544*** 0.280 

Choo’s Ratio     -2.203*** 0.160   

ln(Nrevp)   -0.474*** 0.083     

ln(HHI) -0.031 0.036 -0.006 0.037 -0.067** 0.029 -0.030 0.038 

State 0.139** 0.065 0.065 0.074 -0.073 0.058 0.147** 0.069 

County -0.027 0.048 -0.034 0.048 -0.042 0.040 -0.007 0.050 

City -0.187*** 0.038 -0.158*** 0.040 -0.196*** 0.032 -0.149*** 0.040 

ln(Delay) 0.305*** 0.025 0.263*** 0.046 0.329*** 0.033 0.258*** 0.044 

Revenue Sharing -0.111*** 0.034 -0.108*** 0.035 -0.079*** 0.028 -0.110*** 0.035 

Time Trend 0.036*** 0.007 0.035*** 0.007 0.039*** 0.005 0.036*** 0.006 

𝝆 0.0116  -0.1741  0.1831  -0.0278  

***, ** and * denote 1%, 5% and 10% significance levels, respectively. 

In looking at Table 4 in more detail, we observed some similarities between 

SARARIV(1,1) and SARAR(1,1) models. However, the estimates of SARAR(1,1) are 

inconsistent due to the endogeneity problems. In all models in Table 4, the parameter for 

spatially lagged aeronautical charges, 𝜆, has a positive and significant effect on aeronautical 

charges, implying unambiguously that an increase in aeronautical charges of neighboring airports 

would lead to an increase in aeronautical charges of the airport. According to the results in 

Column (4), a 1% increase in neighboring airport charges leads to a 0.507% increase in the 

airport charges. In a similar way,  a 1% increase in neighboring airports’ charges  is estimated to 
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increase an airport’s charges by 0.534% in Column (2) and by 0.236% in Column (3). These 

results suggest that airports in close proximity may be competing with each other in pricing their 

services to airlines. In addition, we find that airports with higher average costs would charge 

higher aeronautical fees, and this is largely consistent with economic theory. Furthermore, in all 

four models in Table 4, we observe a negative relationship between aeronautical changes and the 

variables representing cross-subsidization. For instance, in Column (2) a 10% increase in non-

aeronautical revenue per passenger leads to a 4.7% decrease in aeronautical charges, ceteris 

paribus. In Column (3), a 10% increase in the revenue share of non-aeronautical operations is 

estimated to decrease aeronautical charges by 19.8%.5 Similarly, in Column (4), a 10% increase 

in non-aeronautical revenue relative to the total cost, would lead to a 14.3%6 decrease in 

aeronautical charges. These results might be indicative of cross-subsidization, i.e., U.S. airports 

subsidize aeronautical operations with non-aeronautical revenues. In addition, holding 

everything else constant, we found that the effects of delays on aeronautical charges are 

significant and positive. In other words, congested airports charge higher fees. For example, a 

10% increase in delays leads to between 2.6% and 3.3% increases in aeronautical charges.  

Airlines’ HHI is negative and significant only in Column (3). City governance is significant in all 

four models, implying that airports governed by a city charge lower aeronautical fees than the 

ones governed by a port/airport authority. Looking at the effects of revenue sharing strategy on 

aeronautical charges,  the revenue sharing strategy is significant in all SARAR models whereas it 

is insignificant in conventional REIV models. Airports adopting a revenue-sharing strategy 

charge 8-11% lower aeronautical fees than the airports preferring not to share revenues. Lastly, 

                                                 

 

5 [exp(-2.203 * 0.1) – 1] *100 ≈ -19.7722. 
6 [exp(-1.544 * 0.1) – 1] * 100 ≈ -14.3071 or -14.3%. 
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as in the case of the conventional REIV models in Tables 1 and 3, the time trend variables is 

significant and positive in all spatial models in Table 4.   

Aside from these models, horizontal ties between airports in an administrative cluster are 

a potentially important factor in explaining aeronautical charges (Van Dender, 2007). In our data, 

there are 3 clusters of airports that fall into this category. O’Hare International Airport and 

Midway International Airport in Chicago are governed by the Chicago Department of Aviation, 

and geographically they are closer to each other than to other hub airports. The other two clusters 

include JFK, LaGuardia, and Newark, which are governed by the Port Authority of New York 

and New Jersey, and Dulles and Reagan International Airports which are governed by the 

Metropolitan Washington Airport Authority. Since airports governed by the same owner may 

have similar pricing strategies, the geographical proximity between them does not necessarily 

reflect the spatial dependence of their charges but the decision of their governing body or a 

central decision-maker. Failure to control for the horizontal ties of the sister airports would lead 

to biased spatial regression results. As a precaution, we re-estimate the spatial regression model 

(2) by dropping sister airports from the data. In the new sample, we kept New York JFK, 

Chicago O’Hare and Washington Dulles which are the largest airports in each group. Firstly, we 

re-tested the existence of spatial autocorrelation in disturbances with the LM test of Baltagi, 

Song and Koh (2003). According to the test results (LM =50.006, p-value=0.000), spatial 

autocorrelation in disturbance exists in the new sample. The estimates of SARARIV(1,1) without 

sister airports are also reported in Table 5. As Table 5 shows, the estimates of SARARIV (1,1) 

without sister airports are similar to the estimates of SARARIV(1,1) in Table 4. Spatially lagged 

aeronautical charges are significant in all SARARIV (1,1) models without sister airports, 

suggesting evidence of spatial dependence among neighboring airports. Specifically, the positive 
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estimate of 𝜆 implies that airports react positively to any changes in aeronautical charges of other 

airports nearby. When one airport raises the fee, rival airports are likely to follow suit.   

Table 5. Estimations of SARARIV(1,1) without Sister Airports. 

 SARARIV (1,1) with 

Ratio 

SARARIV (1,1) with 

ln(Nrevp) 

SARARIV (1,1) with Choo’s ratio 

 (1) (2) (3) 

 Estimate Std. Error Estimate Std. Error Estimate Std. Error 

𝝀 0.343*** 0.109 0.580*** 0.106 0.385*** 0.096 

Intercept -2.990*** 0.842 -2.795*** 0.602 0.613 0.661 

ln(AC) 0.980*** 0.126 1.133*** 0.072 0.607*** 0.083 

Ratio -0.626* 0.329     

Choo’s Ratio     -2.625*** 0.216 

ln(Nrevp)   -0.476*** 0.099   

ln(HHI) -0.044 0.039 -0.020 0.041 -0.058** 0.028 

State 0.253*** 0.073 0.090 0.081 -0.112 0.065 

County -0.081 0.050 -0.115** 0.051 -0.075** 0.036 

City -0.162*** 0.040 -0.162*** 0.043 -0.242*** 0.028 

ln(Delay) 0.454*** 0.055 0.302*** 0.057 0.303*** 0.046 

Revenue Sharing -0.034 0.038 -0.056 0.038 -0.106*** 0.027 

Time Trend 0.041*** 0.007 0.041*** 0.007 0.043*** 0.005 

𝝆 0.1345  -0.0368  0.4165  

***, ** and * denote 1%, 5% and 10% significance levels, respectively. 

Besides this, ln(Nrevp), Choo’s ratio, and Ratio remain negative and significant in 

SARARIV(1,1) in Table 5, further confirming the results in Table 4 that airports may be cross-

subsidizing aeronautical operations with revenues of non-aeronautical activities. Moreover, 

Delay is still positive and significant in the models without sister airports in Table 5.  
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6. CONCLUSION 

In recent years, airports have been considered as a business entity in addition to serving 

as critical public infrastructure. As a consequence, they face a dilemma. They are increasingly 

expected to be self-reliant while they are tasked with maximizing social welfare under a break-

even constraint. Thus, their decisions on aeronautical charges are critical for the airport’s long-

term sustainability. Higher aeronautical charges could lead to fewer airlines and reduced social 

welfare while lower aeronautical charges may lead to a financial loss. Thus, the determinants of 

aeronautical charges must be considered strategically by airport management. In light of this, we 

examined three important elements of airport pricing strategy:  the relationship between 

aeronautical and non-aeronautical charges, airport-airline relationships, and spatial dependence 

between airports. 

This thesis is the first study that considers spatial dependence between airports in terms 

of aeronautical charges. We examined airports’ pricing decisions with two spatial dependence 

components: spatial autocorrelation and spatially lagged aeronautical charges. The results show 

the presence of spatial dependence between neighboring airports, i.e., the airport’s pricing 

decision is positively influenced by its neighboring airports’ decision. Another major finding is 

the complementary relationship between aeronautical and non-aeronautical revenues in U.S. 

airport operations. Using a ratio of non-aeronautical revenues to the total cost, non-aeronautical 

revenues per passenger (or ln(Nrevp) as in by following Bilotkach et al. (2012)),  and the ratio of 

non-aeronautical revenues to total revenues as in Choo (2014), we found evidence of a 

complementary relationship between non-aeronautical operations and aeronautical charges. This 

result is similar to Choo’s (2014) which first documented some results on cross-subsidization at 

U.S. airports. In addition, to the best of our best knowledge, this study is the first to consider the 
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implication of airport revenue sharing strategy on aeronautical charges. We found the 

aeronautical charges of an airport adopting revenue sharing are lower than those that do not share 

revenues. We also found that more congested airports charge higher aeronautical fees. Lastly, 

airports governed by a city government charge lower fees than the ones governed by a 

port/airport authority.  

In conclusion, the spatial regression results suggest that U.S. airports benchmark 

neighboring aeronautical charges when they make a decision about pricing, implying that they 

are in price competition with each other even though they are government-owned infrastructure. 

Thus airport competition may not be just a phenomenon among privately owned and operated 

airports. In the case of the U.S., airports also seek to increase aeronautical outputs through lower 

aeronautical fees, and they then cross-subsidize aeronautical operations or recoup the cost of 

operations through non-aeronautical services. This practice incentivizes airlines to bring in more 

air travelers, but the captive air travelers who pay for the non-aeronautical services they consume 

are also indirectly subsidizing aeronautical operations at the airport. Future studies should 

examine whether such cross-subsidization produces desirable economic outcomes, that is 

whether the welfare gains in aeronautical operations outweigh the welfare loss in non-

aeronautical operations as a result of cross-subsidization.    
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APPENDIX A. AIRPORT CLASSIFICATION 

ID AIRPORTS CITY GOVERNANCE 

FORMS† 

REVENUE 

SHARING†† 

ABQ Albuquerque 

International Sunport 

Albuquerque, New 

Mexico 

City Yes 

ANC Ted Stevens 

Anchorage 

International Airport 

Anchorage, Alaska State Yes 

ATL Hartsfield–Jackson 

Atlanta International 

Airport 

Atlanta, Georgia City Yes 

AUS Austin-Bergstrom 

International Airport 

Austin, Texas City No 

BDL Bradley International 

Airport 

Hartford, Connecticut Port/Airport 

Authority 

Yes 

BNA Nashville 

International Airport  

Nashville, Tennessee Port/Airport 

Authority 

Yes 

BOS Gen. Edward 

Lawrence Logan 

International Airport 

Boston, Massachusetts Port/Airport 

Authority 

No 

BUF Buffalo Niagara 

International Airport 

Buffalo, New York Port/Airport 

Authority 

No 

BWI Baltimore/Washington 

International 

Thurgood Marshall 

Airport 

Baltimore, Maryland  State No 

CLE Cleveland-Hopkins 

International Airport 

Cleveland, Ohio City Yes 

CLT Charlotte/Douglas 

International Airport 

Charlotte, North 

Carolina 

City Yes 

CMH John Glenn Columbus 

International Airport 

Columbus, Ohio Port/Airport 

Authority 

Yes 

CVG Cincinnati/Northern 

Kentucky 

International Airport 

Hebron, Kentucky Port/Airport 

Authority 

Yes 

DCA Ronald Reagan 

Washington National 

Airport 

Arlington, Virginia Port/Airport 

Authority 

Yes 

DEN Denver International 

Airport 

Denver, Colorado City Yes 

DFW Dallas/Fort Worth 

International Airport 

Dallas-Fort Worth, 

Texas 

City Yes 

DTW Detroit Metropolitan 

Wayne County 

Airport 

Detroit, Michigan County Yes 
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ID AIRPORTS CITY GOVERNANCE 

FORMS† 

REVENUE 

SHARING†† 

EWR Newark Liberty 

International Airport 

Newark, New Jersey Port/Airport 

Authority 

No 

FLL Fort Lauderdale–

Hollywood 

International Airport 

Fort Lauderdale, 

Florida 

County Yes 

HNL Daniel K. Inouye 

International Airport 

Honolulu, Hawaii State Yes 

HOU William P. Hobby 

Airport 

Houston, Texas City Yes 

IAD Washington Dulles 

International Airport 

Dulles, Virginia Port/Airport 

Authority 

Yes 

IAH George Bush 

Intercontinental 

Airport 

Houston, Texas City No 

IND Indianapolis 

International Airport 

Indianapolis, Indiana  Port/Airport 

Authority 

Yes 

JAX Jacksonville 

International Airport 

Jacksonville, Florida Port/Airport 

Authority 

Yes 

JFK John F. Kennedy 

International Airport  

New York, New York Port/Airport 

Authority 

No 

LAS McCarran 

International Airport 

Las Vegas, Nevada County Yes 

LAX Los Angeles 

International Airport 

Los Angeles, 

California 

City Yes 

LGA LaGuardia 

Airport (and Marine 

Air Terminal) 

Queens, New York Port/Airport 

Authority 

No 

MCI Kansas City 

International Airport  

Kansas City, Missouri City No 

MCO Orlando International 

Airport 

Orlando, Florida Port/Airport 

Authority 

Yes 

MDW Chicago Midway 

International Airport 

Chicago, Illinois City Yes 

MIA Miami International 

Airport 

Miami, Florida County Yes 

MKE General Mitchell 

International Airport 

Milwaukee, Wisconsin County Yes 

MSP Minneapolis–St. Paul 

International Airport  

Minneapolis, 

Minnesota 

Port/Airport 

Authority 

Yes 

MSY Louis Armstrong New 

Orleans International 

Airport 

New Orleans, 

Louisiana  

City Yes 

OAK Oakland International 

Airport 

Oakland, California Port/Airport 

Authority 

Yes 
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ID AIRPORTS CITY GOVERNANCE 

FORMS† 

REVENUE 

SHARING†† 

OGG Kahului Airport Kahului, Hawaii State Yes 

OKC Will Rogers World 

Airport 

Oklahoma City, 

Oklahoma 

City No 

OMA Eppley Airfield Omaha, Nebraska Port/Airport 

Authority 

No 

ONT Ontario International 

Airport 

Ontario, California Port/Airport 

Authority 

Yes 

ORD Chicago O'Hare 

International Airport 

Chicago, Illinois City Yes 

PBI Palm Beach 

International Airport 

West Palm Beach, 

Florida 

County Yes 

PDX Portland International 

Airport 

Portland, Oregon Port/Airport 

Authority 

Yes 

PHL Philadelphia 

International Airport 

Philadelphia, 

Pennsylvania 

City Yes 

PHX Phoenix Sky Harbor 

International Airport 

Phoenix, Arizona City No 

PIT Pittsburgh 

International Airport 

Pittsburgh, 

Pennsylvania 

Port/Airport 

Authority 

Yes 

RDU Raleigh-Durham 

International Airport 

Raleigh, North 

Carolina 

Port/Airport 

Authority 

No 

RSW Southwest Florida 

International Airport 

Fort Myers, Florida Port/Airport 

Authority 

Yes 

SAN San Diego 

International Airport  

San Diego, California Port/Airport 

Authority 

No 

SAT San Antonio 

International Airport 

San Antonio, Texas City Yes 

SEA Seattle–Tacoma 

International Airport 

Seattle / Tacoma (Sea

Tac), Washington 

Port/Airport 

Authority 

Yes 

SFO San Francisco 

International Airport 

San Francisco, 

California 

City Yes 

SJC Norman Y. Mineta 

San José International 

Airport 

San Jose, California City Yes 

SLC Salt Lake City 

International Airport 

Salt Lake City, Utah City Yes 

SMF Sacramento 

International Airport 

Sacramento, 

California 

County No 

SNA John Wayne Airport  Santa Ana, California County No 

STL St. Louis Lambert 

International Airport 

St. Louis. Missouri City Yes 
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ID AIRPORTS CITY GOVERNANCE 

FORMS† 

REVENUE 

SHARING†† 

TPA Tampa International 

Airport 

Tampa, Florida Port/Airport 

Authority 

Yes 
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APPENDIX B. R CODE 

# Creating spatial weight matrix  

library(spfrontier) 

w=constructW(cbind(aport$Lon,aport$Lat),aport$ID) 

w=rowStdrt(w) 

w.lw=mat2listw(w, style="W") 

z=constructW(cbind(aports$lon,aports$lat),aports$ID) 

z=rowStdrt(z) 

z.lw=mat2listw(z, style="W") 

#Creating variables 

airports$lareva=log(airports$arevpd/airports$atm) 

airports$lnrev=log(airports$nrevpd/airports$pas) 

airports$del=log(airports$totaldelay) 

airports$lhhi=log(airports$hhi) 

library(fastDummies) 

airports=dummy_cols(airports, select_columns="ownership") 

airports=dummy_cols(airports, select_columns="rs") 

airports$lexp=log(airports$tcpd/airports$pas) 

airports$ratio=(airports$nrevpd/airports$tcpd) 

airports$cratio=airports$nrevpd/(airports$arevpd+airports$nrevpd) 

airport1$lareva=log(airport1$arevpd/airport1$atm) 

airport1$lnrev=log(airport1$nrevpd/airport1$pas) 

airport1$del=log(airport1$totaldelay) 
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airport1$lhhi=log(airport1$hhi) 

library(fastDummies) 

airport1=dummy_cols(airport1, select_columns="ownership") 

airport1=dummy_cols(airport1, select_columns="rs") 

airport1$lexp=log(airport1$tcpd/airport1$pas) 

airport1$ratio=(airport1$nrevpd/airport1$tcpd) 

airport1$cratio=airport1$nrevpd/(airport1$arevpd+airport1$nrevpd) 

#GM-IV Spatial Panel Analysis  

fm=(lareva~lhhi+ownership_state+ownership_county+ownership_city+rs_Yes+time) 

#LM Tests 

bsktest(fm,data=airports,index=c("ID","year"),listw=w.lw,test="LMH") 

bsktest(fm,data=airport1,index=c("ID","year"),listw=z.lw,test="LMH") 

#SARARIV(1,1)  

ssa1=spgm(fm,airports,w.lw,index=c("ID","year"),model="random",lag=TRUE,spatial.error=TR

UE, endog=~del+lexp+ratio,instruments=~lldel+llexpp+lratio, moment="fullweight") 

summary(ssa1) 

#SARARIV(1,1) without Sister Airports 

spgm(fm,airport1,z.lw,index=c("ID","year"),model="random",lag=TRUE,spatial.error=TRUE, 

endog=~del+lexp+ratio,instruments=~lldel+llexpp+lratio, moment="fullweight") 

summary(ssa2) 


