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ABSTRACT 

 Double-crested cormorants (Phalacrocorax auritus) are a common species of altricial 

waterbird found across much of North America.  As a piscivorous colonial waterbird, cormorants 

are often persecuted due to perceived impacts on fisheries.  In this study I examined the diet of 

cormorant nestlings at five cormorant colonies in central North America to answer two 

questions: 1) Is nestling diet reflective of opportunistic feeding behavior, thus diminishing the 

likelihood of negative impacts to the fishery? and 2) How do diet and  environmental stressors 

effect the development of cormorant nestlings?  By analyzing the caloric content of nestling diet 

and quantifying environmental stressors such as endoparasite and ectoparasite loads, I found diet 

was a significant contributor to structural long bone growth in both the wing and tarsus.  Diet 

analysis also corroborated the long held belief that cormorants have highly variable diets 

reflective of local fish communities and may vary annually as fish assemblages change. 
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CHAPTER 1: A REVIEW OF THE DIET AND IMPACTS OF ENVIRONMENTAL 

STRESSORS ON THE ALTRICIAL NESTLINGS OF DOUBLE-CRESTED CORMORANTS 

(PHALACROCORAX AURITUS) 

Introduction 

All species endure a great variety of environmental, ecological, and psychological 

stressors including, but not limited to: inter- and conspecific competition, harassment (including 

both human and interspecific sources), weather, poor diet, disease, parasites, pollution, degraded 

habitat, and predation.  As biologists, we strive to better understand the effects of these stressors 

and the implications they have on population dynamics and species persistence.  A complete 

understanding of the effects of stressors requires a broad diversity of research; from behavior to 

physiology and endocrinology to developmental biology.  Double-crested cormorants 

(Phalacrocorax auritus; herein referred to as cormorants) are common, altricial waterbirds which 

present an opportunity to expand our understanding of the ecological factors that act as stressors 

on successful growth and reproduction in altricial species. 

Stress Response 

Stress is defined as an individual’s perception to threats, which initiates a focus of energy 

on coping with these short-term threats to survival, and curtails long-term investments in 

functions such as courtship, territorial defense, reproduction, growth and/or immune defense 

(Busch and Hayward, 2009).  Unavoidable as stress is, animals have evolved stress response 

mechanisms, and recently, scientists have been examining the actions and effects of 

glucocorticoids (GCs) on reproductive success (McEwen and Wingfield, 2003).  Glucorticoids 

(e.g., cortisol and corticosterone), although commonly referred to as stress hormones, are 
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essential for basic life functions and embryonic development, in addition to aiding in the stress 

response.     

At adult basal levels, GCs primary roles are energy regulation and maintaining salt 

regulation (acquisition, mobilization, and deposition) in response and in conjunction with 

mineralocorticoids  (McEwen and Wingfield, 2003).  When a threat is perceived, GC levels 

increase via the control of the hypothalamic-pituitary-adrenal (HPA) axis, consisting of three 

endocrine tissues: the adrenal gland, hypothalamus, and pituitary gland.  The increase of GCs 

enables the animal to increase functioning in the short term (i.e., “fight or flight”).  Both 

behavior and physiology are affected by GCs.  Noted changes include: an increase in cardiac 

tone, the creation of glucose from energy stores, increased cerebral blood flow and glucose 

utilization, increased regulation of the immune system, enhanced cognition and memory, and 

increased restfulness by lowering basal metabolic rate (Wingfield and Ramenofsky, 1997; 

Wingfield et al., 1998; Sapolsky et al., 2000). One hypothesis is that more energy required for 

the stress response results in lower energy stores for other functions, which provides the nexus 

between conservation and the effects of GCs.   

If animals are chronically stressed (e.g., through injury, illness, poor diet, etc.), GCs 

possess the potential for negative additive effects on health and fitness (McEwen and Wingfield, 

2003).  When additional stressors arise during a period of extended stress, supplementary GCs 

will be released, which can compound existing issues.  Persistent elevation of GCs has numerous 

deleterious effects, which are documented in a number of species (Blas et al., 2006; Bortolotti et 

al., 2008; Cyr et al., 2007; Rich and Romero, 2005).  Documented negative effects due to 

chronically elevate levels of GCs include: suppressed immune function, decreased growth, 

protein loss, hypertension, neuronal cell death, inhibition of reproductive behavior, decreased 

http://www.sciencedirect.com.proxy.library.ndsu.edu/science?_ob=ArticleURL&_udi=B6V5X-4X5HY76-2&_user=513528&_coverDate=12%2F31%2F2009&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000025359&_version=1&_urlVersion=0&_userid=513528&md5=d381f1db06f71ff9b37af829fafa7f11&searchtype=a#bib117
http://www.sciencedirect.com.proxy.library.ndsu.edu/science?_ob=ArticleURL&_udi=B6V5X-4X5HY76-2&_user=513528&_coverDate=12%2F31%2F2009&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000025359&_version=1&_urlVersion=0&_userid=513528&md5=d381f1db06f71ff9b37af829fafa7f11&searchtype=a#bib123
http://www.sciencedirect.com.proxy.library.ndsu.edu/science?_ob=ArticleURL&_udi=B6V5X-4X5HY76-2&_user=513528&_coverDate=12%2F31%2F2009&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_acct=C000025359&_version=1&_urlVersion=0&_userid=513528&md5=d381f1db06f71ff9b37af829fafa7f11&searchtype=a#bib85
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performance at memory-related skills, and depression (Wingfield and Ramenofsky, 1997; 

Wingfield et al., 1998; Sapolsky et al., 2000; and McEwen and Wingfield, 2003). 

In birds, corticosterone (CORT), the primary glucocorticoid, has been implicated in 

decreasing fitness, increasing mortality, and suppressing immune function.  Furthermore, 

maternal glucocorticoids can be transmitted through the yolk of their eggs and negatively affect 

offspring (Bonier et al., 2007; Rubolini et al., 2005).  Recent research has also indicated the 

possibility of high maternal stress creating uneven brood hierarchies (Bonier et al., 2007; 

Kozlowski and Ricklefs, 2010) and an increase in stress response as adults (Hayward and 

Wingfield, 2003). 

Diet as a Stressor 

Diet is often examined as a potential source of environmental stress.  Many migratory 

birds return to their breeding grounds when little food is available, or the food that is available is 

difficult to access.  When combined with the energy expenditure required to complete migration, 

this often results in an overly stressed adult (high levels of CORT) (Schwabl et al., 1991).  These 

elevated CORT levels are passed to offspring increasing the possibility of compounding stress 

effects on the nestlings (Bonier et al., 2007).  Even in the absence of any preexisting 

physiological stressors, poor diet can negatively impact nestling growth rates through reduced 

calories or nutrition (Costantini, 2010; Boag, 1987; Johnson 1971).  Independent of these direct 

impacts of diet on growth, an increase of baseline CORT levels in circulation has also been 

found in response to low quality diets (Honarmand et al., 2010) raising the likelihood of 

correlations among diet, CORT, and growth.  Slowed development during the nestling phase can 

result in catch-up growth, which is linked to long-term changes in phenotype as an adult, such as 

lower fecundity and shorter lifespan (Metcalfe and Monaghan, 2001; Criscuolo et al., 2008). 
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Measuring Stress 

Researchers have used CORT levels circulating in plasma to estimate stress levels in 

birds, but there are inherent difficulties with this approach (Wingfield and Ramenofsky, 1997).  

Both acclimation and sensitization to stressors can result in blurred variation between maximum 

and baseline CORT levels that may prevent researchers from accurately depicting the presence 

or absence of stressors.  Corticosterone is biologically inactive when bound to carrier proteins 

(Breuner and Orchinik, 2002).  This can be problematic as typical measurement of CORT using 

radioimmunoassays measures only the unbound fraction of CORT, thus the inability to account 

for bound and unbound CORT levels can result in an incomplete understanding of stress.  

Furthermore, even seasonal changes can result in CORT fluctuations largely unrelated to major 

stress events (Romero et al., 1997; Romero et al., 2000; Romero et al., 2005).   

One of the largest challenges of using circulating CORT levels to assess stress is when 

conducting field studies.  Circulating CORT levels increase rapidly in response to a stressor, thus 

the act of capturing and handling, or even the simple appearance of a researcher/predator 

approaching can cause CORT levels to begin rising (Cockrem and Silverin, 2002a, b).  Because 

this increase is both intense and unpredictable (Romero and Romero, 2002), measuring 

circulating CORT levels in colonial species is difficult at best, where target individuals may be 

alerted to the presence of researchers well before the researcher is even visible.   

One method researchers have discovered to bypass the issues of using CORT in field 

studies of animals is to instead use a blood smear and examine the ratio between heterophils and 

lymphocytes (HL ratio), two common leukocytes.  Heterophils, the primary phagocytic 

leukocyte, proliferate in response to infection, inflammation, and stress (Jain 1993; Campbell 

1995; Rupley 1997; Harmon 1998), whereas lymphocytes are involved in a number of 
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immunological functions, including immunoglobulin production and modulation of immune 

defense (Campbell 1996).  A comparison of the relative abundance of these two leukocytes is 

correlated with the level of CORT circulating in the blood (McFarlane and Curtis, 1989; Gross 

and Siegel, 1983).  Increasing CORT levels can stimulate an influx of heterophils from the bone 

marrow (Bishop et. al 1968) into circulation, while concomitantly promoting the redistribution of 

lymphocytes into other compartments such as the lymph nodes, spleen, bone marrow, or skin 

(Dhabhar 2002), ultimately resulting in a higher HL ratio (McFarlane and Curtis, 1989).  This 

technique has particular advantages when used in the field , as the speed at which these cellular 

changes happen are much slower than the hormonal (i.e., CORT) changes which limits the 

accuracy of basal measurements.  Slower cellular changes allow researchers to handle birds, 

especially colonial species, without concern of skewing data.   

Altricial Development 

Poultry scientists have long concerned themselves with the impacts of environmental 

stressors in captive settings.  Now, as we begin to understand these negative effects, researchers 

have begun to evaluate the impact of ecological stressors under field conditions in wild 

populations of birds.  To date, this research has covered a range of species and developmental 

modes, but has greatly neglected colonial species with altricial young.  Altricial species exhibit a 

unique developmental strategy by being seemingly underdeveloped at hatch.  Altricial bird 

species are typically born without down, have closed eyes, are immobile, and are completely 

reliant on parental care for food, heat, and protection (Starck and Ricklefs, 1998).   

The impact of stressors on offspring development may be influenced by the mode of 

development. Ricklefs and Starck (1998) describe three hypotheses for developmental plans that 

result in altricial and precocial states at hatching.  The first states that precocial bird species 
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simply remain in the egg longer than their altricial counterparts, thus resulting in a longer 

maturation period and a higher degree of development at hatch (Portmann, 1955).  The second 

hypothesis proposes the existence of different rates of maturation throughout embryonic 

development, resulting in precocial species developing faster.  The third hypothesis involves 

divergent developmental rates just prior to hatch, when precocial species undergo a more rapid 

phase of maturation than altricial species (Starck and Ricklefs, 1998).  Ricklefs and Starck 

(1998) found little support for the first hypothesis because the lengths of incubation periods (i.e., 

developmental time) among species are not associated with developmental modes.  In regards to 

the second and third hypotheses, a similar embryonic growth curve was found throughout much 

of the developmental periods in both precocial and altricial species.  This finding indicates that 

differentiation between the altricial and precocial modes of development must occur shortly 

before hatching, after much of the embryonic growth has been completed (Starck and Ricklefs, 

1998).  

The timing of developmental events (i.e. HPA development and stimulation) could have a 

large impact on the ability of offspring to handle stressors.  If an altricial hatchling has a fully 

developed HPA axis, it will physiologically respond to stressors by releasing CORT, but will be 

incapable of a physical response (e.g., increased begging in response to malnutrition, competitive 

behavior with siblings, escape from predators and harsh conditions, etc.).  Lacking a physical 

response, the bird is not only experiencing the original stressor, but the additional negative 

effects of elevated CORT levels.  At the nestling stage, the effects of CORT are likely displayed 

in slower growth and increased disease and parasite loads due to a depressed immune response.  

Fluctuating CORT levels may also interrupt normal feather growth, which is critical for survival 

(Romero et al., 2005).  There are simultaneous advantages of a fully developed HPA axis at 
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hatch, which can also be very important for nestling survival.  Corticosterone does initiate 

physiological and endocrine changes, possibly helping even a nest-bound bird overcome 

stressors.  Although protection from adverse conditions may be provided by parents, nestlings 

yet face variation in food availability, sibling competition, parasites, illness, and predators (Blas 

et al., 2005). Corticosterone is responsible for promoting begging (Kitaysky et al., 2001a; 

Kitaysky et al., 2001b) and aggressive behaviors (Kitaysky et al., 2003), both of which are 

important survival tools.   

At the other end of the developmental spectrum, birds with precocial young hatch with 

down, eyes open, and are often self-sufficient soon after hatch (Starck and Ricklefs, 1998).  This 

mode of development provides an obvious advantage over the altricial mode in regards to 

environmental stressors; precocial young are not nest bound, allowing them to escape 

detrimental or hazardous conditions.  In these circumstances, the “fight or flight” reaction 

initiated through hormonal changes is indeed beneficial.  Although not reliant on parental 

resources and protection, most precocial species still receive parental care, save very select 

species (e.g., moundbuilders; (Starck and Ricklefs, 1998)).  It is in this sense the altricial-

precocial spectrum becomes obvious.   The super-precocial moundbuilders, fully developed at 

hatch, have high survival rates, but low hatching rates due to the difficulty in laying and 

incubating such an egg.  The majority of precocial species bridge the gap between the super-

precocial moundbuilders and the typical altricial species, with young capable of a stress response 

but still moderately reliant on parental care. 

The questions to be asked at this point are: 1) how does altricial development benefit 

birds in terms of stress response, and 2) if this bird, as a young nestling, is initially incapable of 

responding to environmental stressors (i.e., not physically capable of fight or flight response), 
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would the suppression of the HPA axis/stress response pathway be beneficial during this initial 

period?  With the second question paying special consideration to the deleterious effects of 

chronically elevated levels of CORT.  

Analyzing the Stress Response 

To thoroughly examine the stress response in natural settings, one must be able to 

evaluate the effects across multiple levels, from the individual, to the brood, to the population.  

Blas et al. (2005) utilized a four-tier approach to study altricial White Storks (Ciconia ciconia): 

at the individual level, within brood, among broods of different sizes, and individuals in different 

local environments.  By using this technique, the researchers were able to tease apart individual 

and overarching factors that may lead to stress responses.  The findings of this study showed an 

effect of age and location on CORT levels, indicating a shift in HPA activity as birds mature, but 

it did not examine the initial development of HPA activity by investigating birds in their first 

three weeks of development.  Researchers were therefore unable to attribute age differences in 

HPA activity to either a period of HPA inactivity or suppression.  The location effect also 

indicated the presence of other environmental stressors having additive effects on CORT levels, 

but markedly different habitat types were noted in the study.   

Cormorants as a Study Species 

Double-crested cormorants present an excellent opportunity for studying the effects of 

environmental stressors.  Cormorants are a common piscivorous waterbird with altricial young 

whose populations have increased dramatically since the 1970’s (Johnsgard, 1993; Wires et al., 

2001).  In the years preceding the 1970s, populations were at very low levels due to reproductive 

failure associated with toxic contaminant exposure (PCBs, DDE and DDT) and human 

persecution (Wires et al., 2001).  Since the 1970’s, population numbers have risen to colonies 
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that include 1000’s of breeding pairs (Hatch and Weseloh, 1999a).  In the Great Lakes alone, 

cormorant numbers doubled from 1991 to 1997 (Tyson et al., 1997), and the Breeding Bird 

Survey indicates a 7.1% annual mean increase in the United States and a 12% annual mean 

increase in Canada from 1999-2009 (Sauer et al.2011).  With these large populations, and 

Minnesota hosting a 2004 population of 16,000 pairs in 38 colonies (Wires et al., 2005), it is 

easy for researchers to access multiple colonies with a variety of potential environmental 

stressors, including but not limited to: diet, weather, competition, harassment, and parasite loads.   

Cormorants are opportunistic feeders and prey on a wide variety of fish, invertebrate, and 

amphibian species (Hatch and Weseloh, 1999b).  Although the general public often faults these 

birds for sport fish declines, a large body of scientific research exists demonstrating the positive 

correlation between prey species availability and the abundance of those species in cormorant 

diets (i.e., a wetland with an abundant minnow population will result in a large minnow 

component of the cormorants’ diet).  This issue (feeding on what is available), and the fact 

cormorants make only short feeding flights (often less than two kilometers [Custer and Bunck, 

1992]), during the breeding season, results in highly varied diets between colonies on adjacent 

bodies of water, or even the same body of water.   The limited feeding range of cormorants 

allows researchers to study colonies close to one another, with minimal concern of diet and 

resource overlap. 

Because diet composition varies so widely among colonies, diet quality may vary greatly 

as well.  Fish and energetic research has shown great differences in caloric value, percent fat, and 

percent protein among different species of prey.  For example, a cormorant consuming 100 

grams of frog receives 73 calories (0.3% fat and 16.4% protein), while a cormorant consuming 

100 grams of American eel receives 233 calories (18.3% fat and 15.9% protein) (University of 
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Wisconsin Sea Grant Institute, 2001).  Given the high potential for variation in prey quality and 

the influence of diet and stress, diet quality and composition may play a large role in the 

development of cormorant nestlings.   

Cormorant Diet 

In addition to the effects of environmental stressors on altricial nestlings, there is a great 

deal of interest in cormorant diet.  This is due to the growing concern from various user groups 

indicating the negative impacts of cormorants on recreational fisheries.  The possible effects on 

sport and commercial fisheries have created a large body of cormorant diet research (Dalton et 

al., 2009; Mortensen et al., 2007; Rudstam et al., 2004; Stickley et al., 2002; Glahn and Brugger, 

1995; Custer and Bunck, 1992; Hobson et al., 1989; Craven and Lev, 1985).  Most studies 

suggest little or no impact on commercial or sport fisheries but the highly varied nature of 

cormorant diet still influences concerned groups to inquire about the diet of local colonies.    

Although rare, one of the few examples of notable impact on a fishery was observed at 

Oneida Lake, New York, where it was estimated that 57-77% of the cormorant diet consisted of 

walleye (Sander vitreus)( Rudstam et al., 2004).  Cormorant foraging appears to have a greater 

impact on commercial fishing than sport fishing. A study in Wisconsin’s Apostle Islands in the 

early 1980’s found a weak correlation between increasing cormorant numbers and a decrease in 

commercial lake whitefish (Coregonus clupeaformis) catch (Craven and Lev, 1985). 

 Perhaps the most conclusive evidence of cormorant impact was seen in the American 

southeast, where cormorants were found to consume between 5 and 28 catfish per cormorant-

hour in closed-system catfish rearing ponds, resulting in significant losses to some aquaculture 

facilities (Stickley et al., 1992).  These losses increased social awareness and distrust in 

cormorants, as cormorant consumption ultimately cost the industry 4% of its total stocks and an 
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estimated two million dollars per year (Glahn and Brugger, 1995, Glahn and Stickley, 1995).  

These losses induced legal actions in 1998 resulting in depredation orders allowing the legal 

harassment of cormorants at roosting sites and the culling of cormorants doing damage to private 

or public resources in 24 states, Minnesota included (Trapp, 1998).   

Although impacts of cormorant foraging to sport fisheries are rarely found in well-

performed studies, there can be significant local pressure to blame or remove cormorants when 

fisheries start to decline. At Leech Lake, MN the number of nesting cormorants increased 35-

fold between 1998 and 2004. Diet studies performed in 2005-2006 on Leech Lake did not 

support the hypothesis that cormorants were directly responsible for the decline in walleye 

abundance and recruitment that started in 2001(Mortensen et al., 2007), yet an aggressive culling 

program was adopted by managers to reduce cormorant numbers due to pressure from local 

fishermen and businesses.  In an analogous case, the anadromous alewife (Alosa 

pseudoharengus) was also seeing population declines in Connecticut, and cormorants were 

believed to play a key role in the decline.  However research indicated that cormorants played no 

role in the alewife decrease and were not an immediate threat to the existing population of 

alewife (Dalton et al., 2009).  A 1987 study on Lake Winnipegosis, Manitoba, revealed a diet 

consisting primarily of white sucker (Catostomus commersoni), which made up nearly half of the 

biomass, where walleye and sauger (Stizostedion canadense), sought commercially, made up 

only 0.1% and 0.2% of the prey biomass respectively (Hobson et al., 1989).  The researchers of 

this study hypothesized the dramatic increases in cormorant populations seen in the surrounding 

areas in the 1980’s was a result of overfishing the predatory game fish.  This allowed smaller bait 

fish (e.g. sucker, perch, minnow spp.) populations to increase, in fact creating more suitable 

forage for cormorants and their nestlings. 
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Cormorants in Central North America 

As the cormorant populations continue to recover, areas are re-colonized and/or 

colonized.  Voyageurs National Park, located on the border of Minnesota and Ontario, saw the 

colonization of Northeast Pine Island in 1999 on Lake Kabetogama, a popular recreational 

fishing destination.  Several colonies exist on Rainy Lake in southern Ontario, where there is 

concern over the potential impact on that fishery as well, in great part due to the local economy’s 

dependence on fishing and ecotourism. The existence of a cormorant colony on Lake Mille Lacs, 

in central Minnesota, has also raised the interest of fishermen and local officials who are 

concerned about the potential impact on the well-known walleye fishery.  The movement of the 

cormorant westward into the prairie pothole regions of western Minnesota and North Dakota has 

also raised questions regarding the potential impact to these areas (Wires et al., 2001). 

Conclusions 

Environmental stressors present challenges to all living organisms, and developmental 

mode (e.g., altricial or precocial) likely affects how organisms cope with these stressors.  Young 

altricial nestlings, though seemingly underdeveloped, must react to stressors with either a 

physiological response (i.e. CORT) and perhaps cope with the negative ramifications of this 

action, or conversely, mount no response (i.e. HPA inactivity or suppression) and undergo the 

stressor directly but continue to develop without CORT interference.  The nexus of avian 

physiology and wildlife management therefore requires an examination of ecological processes 

as well as environmental stressors and their impact on growth, development and ultimately 

fitness. 

Although cormorant diet continues to be of great interest to wildlife managers and the 

public, we have an opportunity to advance our understanding of developmental physiology and 
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ecology by looking beyond diet alone. Cormorants offer an opportunity to explore the link 

between larger ecological processes (i.e., both real and perceived impacts to fisheries) while 

simultaneously informing us about the effects of environmental stressors on the development of 

altricial nestlings.  By examining cormorant diet alone in hopes of assessing the effects on a 

particular fishery, we fail to draw conclusions regarding an array of topics including: energetic 

requirements, prey selection, parasite and disease transmission, environmental stress, and growth 

and developmental factors.  If we use this information in conjunction with hematology and stress 

tests, diet may also reveal important conclusions regarding altricial ontogeny, which may prove 

useful for developing management strategies concerning cormorants and other altricial species.  

Finally, by studying the effects of environmental stressors we may reveal ways to mitigate 

environmental and anthropogenic issues (e.g., pollutants, harassment, disease, predation, etc.) 

facing native wildlife populations.   
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CHAPTER 2: ENVIRONMENTAL STRESSORS AND THEIR EFFECTS ON THE 

ALTRICIAL NESTLINGS OF DOUBLE-CRESTED CORMORANTS                   

(PHALACROCORAX AURITUS) 

Abstract 

Environmental and ecological stressors are ever present in natural settings.  Poor diet, 

competition, disease, parasites and weather are just several on the long list of stressors animals 

experience daily.  Past research examining the effect of these stressors has largely neglected wild 

populations of colonial and altricial species. In this study I examine the effect of ectoparasite 

load, endoparasite load, and diet quality on three specific growth rate metrics (mass, wing digit, 

and tarsus) in the altricial nestlings of double-crested cormorants (Phalacrocorax auritus) at five 

natural colonies in the upper Midwest.  I also examined the utility of a correlative approach for 

measuring stress in colonial birds.   I identified a change in growth rates in response to 

environmental stressors in altricial nestlings. Endoparasites and diet quality were significantly 

correlated to growth and development of double-crested cormorant nestlings.  This study 

illustrates the possible additive effects of multiple environmental stressors and the potential for 

mitigation of these stressors when management is required. 

Introduction 

In recent years there has been a growing interest regarding the effects of stress on avian 

species in natural settings.  However, it has been questioned whether altricial nestlings, in 

particular, perceive and respond to ecological stressors (Blas et al., 2005).  A period of 

physiological hypo-responsiveness in altricial nestlings is believed to assist in avoiding any 

negative effects of the stress response (Kitaysky et al., 2003).  Environmental stressors, labeled 

as biological, chemical, or physical (Jobling, 1994), can include: weather, competition (inter- and 
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conspecific), harassment, parasites (ecto- and endoparasites), contaminants, and poor diet.  Of 

these, only competition with siblings and ectoparasite loads may be regulated by nest-bound 

birds, and any adrenocortical response may impair the bird’s ability to overcome the immediate 

stressor (Sims and Holberton, 2000).  The existing hypothesis states that nest-bound birds are 

unable to overcome many environmental stressors and develop their stress response later in 

development to avoid difficulties associated with stress during early development.   

Stressors elicit a suite of physiological and behavioral changes and it is generally 

assumed when animals respond to a stressor there is an energetic trade-off (Wingfield and 

Ramenofsky, 1997).  In short, at a critical point the ability of an animal to respond to stress 

becomes maladaptive.  The energy used to overcome the stressor surpasses the amount of energy 

needed for other functions (e.g., growth, reproduction, immune response, etc.), which results in 

negative effects on fitness.   

Birds respond to adverse stimuli (stressors) by releasing corticosterone (CORT), a 

glucocorticoid, from the adrenal gland.  The adrenal gland is centrally controlled by the 

hypothalamus and pituitary glands in the brain and the three endocrine tissues form the 

hypothalamic-pituitary-adrenal (HPA) axis.  Changes in weather, diet, drought, or risk of 

depredation activates the HPA axis, releasing CORT ( Blas et al., 2005, Romero et al., 2000; 

Astheimer et al., 1995,), which triggers behavioral and physiological changes to suspend 

activities not necessary for immediate survival (Silverin, 1998). This facultative response allows 

birds to deal with the immediate presence of a stressor (Wingfield and Ramenofsky, 

1997;Wingfield et al., 1998;Sapolsky et al., 2000), which is highly beneficial in younger 

nestlings, as it may increase activity and begging behavior in subordinate chicks and increase 

nestling survival (Vallarino et al., 2006).   
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In this study I used a two-tiered approach to identify environmental variables associated 

with stress in the altricial nestlings of double-crested cormorants: (1) within individuals, and (2) 

among different colonies. Over a three-week period in 2009, during early nestling development, I 

examined the effects of environmental stressors on growth and development by taking weekly 

measurements of mass and long bone growth.  Stress was evaluated using heterophil to 

lymphocyte ratios (HL ratio), as this has been found to directly relate to the level of circulating 

CORT in avian species, but with slower fluctuations than CORT in response to an immediate 

stressor like handling  (Gross and Siegel, 1983).  Under normal circumstances, this leukocyte 

ratio will increase (i.e., heterophils will increase) as CORT levels increase.  HL ratios have been 

used in a number of studies examining avian stress along the developmental and age spectrum.  

One study examining the altricial nestlings of pied flycatchers (Ficedula hypoleuca) revealed an 

inverse relationship between tarsus length and HL ratios, indicating increased HL ratios are 

likely correlated with decreased growth rates (Moreno 2002).  Yet another study on nestling pied 

flycatchers documented increased HL ratios in artificially enlarged broods, perhaps linking 

nutritional stress and increased HL ratios (Ilmonen et al. 2003).  

Methods 

Study Species and Study Area 

Double-crested cormorants are a common, moderately-sized (1.2-2.5 kg), colonial 

waterbird that feeds on fish, amphibians and crustaceans.  Heavily persecuted in North America 

since European settlement, double-crested cormorants were facing potential extirpation as 

recently as the 1970’s.  Following litigation restricting the use of DDT and the rise in popularity 

of aquaculture, populations of cormorants rebounded rapidly, and are now found across much of 

North America.  There is substantial regional variation in size, with birds becoming larger to the 
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north and west.  Islands and cliffs are the most common habitat in the northern ranges found to 

support active colonies.  Cormorant chicks hatch after approximately 30 days of incubation and 

remain in the nest for three to four weeks.  At this point, they form crèches and roam the ground, 

and if accessible, will take to water if threatened.  At six to seven weeks young are able to begin 

making short flights and are nearly independent (Mendall, 1936; Hatch and Weseloh, 1999). 

I examined five cormorant colonies, three of which are found in the border-lakes region 

of Minnesota and Ontario, and the other two are found in central Minnesota and north-central 

North Dakota.  The border-lakes region of Minnesota and Ontario is strewn with lakes of various 

depth, size, and productivity.  Lake Kabetogama, fully contained within Voyageurs National 

Park, is a roughly 9,700 hectare lake, with most of the acreage under 11 meters deep.  It is a 

highly productive lake and is well known for its walleye (Sander vitreus) fishery.  A cormorant 

colony was established on Northeast Pine Island (NEP) in 1999, after which the population 

quickly grew.  To the north, Rainy Lake, much larger at upwards of 220,000 acres is also 

considered to be a quality sport fishery.  Rainy supports several different sport fish species than 

Kabetogama, including ciscoes, muskellunge (Esox masquinongy), and rainbow smelt (Osmerus 

mordax).  The lake is separated into two arms, the north arm and south arm.  The south arm, also 

partially contained within Voyageurs National Park, is home to the Seven Sisters Islands (7SIS), 

an archipelago with a number of islands hosting nesting cormorants.  The north arm, stretching 

well into Ontario, has seen the colonization and rapid expansion of a cormorant colony on an 

island near the Noden Causeway (NOD).   

In central Minnesota, Minnesota’s second largest inland lake, Lake Mille Lacs (ML), has 

gained national fame for its sport fishery, particularly walleye and muskellunge.  This relatively 

shallow, 128,224 acre lake possesses two boulder islands near its southeastern and southwestern 
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shores.  These two islands, Spirit and Hennepin, compose the Mille Lacs National Wildlife 

Refuge (NWR), at just over 1/2 acre, it is the country’s smallest NWR.  Spirit Island, the larger 

island of the two, remains unmanaged save yearly cormorant nest counts.  The cormorant 

population at Spirit Island has remained relatively steady for many years, yet there is local 

concern surrounding its existence.   

In contrast to the previous lacustrine colonies, North Dakota’s J. Clark Salyer National 

Wildlife Refuge (JCS) is found on the northern end of the Souris River in the north-central part 

of the state.  Although not a popular fishing destination, this federally protected land is 

dominated by river, shallow backwaters, and impoundments, all with greatly fluctuating seasonal 

water levels.  This cormorant colony, completely surrounded by nesting gulls (mostly Franklin’s 

gulls (Leucophaeus pipixcan)), is unlike the aforementioned colonies in other respects as well.  

Boat traffic is nearly nonexistent, whereas the habitats with developed sport fisheries experience 

significant activity from recreational boats near cormorant colonies. The riparian habitat found 

surrounding this colony likely supports excellent spawning grounds for common river game fish, 

such as northern pike.  Other common river species are likely present as well (e.g. cyprinids, 

catostomids,  hiodontids, and ictalurids).  Bullheads (Ameiurus spp.) and channel catfish 

(Ictalurus punctatus) round out the list of species most likely to be found in this habitat. 

Field Procedures 

We visited each colony three times at approximately one week intervals.    Sampling was 

not initiated until there was a population of approximately 30 hatchlings one week of age or less, 

as this was the target sample number.  The initial sampling dates varied from June 19 to July 29, 

as initiation of egg laying is highly variable even among adjacent colonies (older colonies are 

generally two or three weeks ahead of younger colonies) and even within colonies (Hatch and 
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Weseloh, 1999).  All colonies sampled were found on islands, and access was only possible with 

watercraft.  We attempted to visit colonies in the morning (7-11a.m.) to avoid diel effects and 

overheating young hatchlings, as cormorant nestlings are unable to thermoregulate for 14-15 

days (Dunn, 1976).  We actively monitored nestling condition during sampling visits and left the 

colony if daytime temperatures exceeded 27°C.   

Upon reaching the colony, a processing area was located in an area to minimize stress on 

nestlings (out of sight, if possible).  We then formed two working groups, with one group 

consisting of three people to process birds while the alternate group protected the remaining 

colony from predators (e.g., gulls: Larus spp. and Leucophaeus spp.) and collected diet samples.  

Before removing chicks from a nest, a numbered biodegradable tag was attached to the nest to 

assure the chick was returned to the correct nest.  Chicks were then weighed to the nearest 1.0 

gram using either a 30 or 100 g spring balance (Pesola®) and measured (tarsus and wing digit) to 

the nearest 0.1 mm with digital calipers (Tool Shop®).  The chick received an individually 

identifiable color coded nape tag during the first capture.  This nape tag allowed weekly 

recapture and consecutive measurements of the same individual over the three week period.  A 

15-second search for ectoparasites (i.e., Order Phthiraptera) was performed, focusing on the 

warm areas created in the junctions between the wings and body, and legs and body.  The tally of 

ectoparasites was ultimately used to categorize colonies into groups of high, medium, and low 

levels of ectoparasitism.  Finally, using a 25-gauge hypodermic needle, I elicited a drop of blood 

from the ulnar vein and created a blood smear on a 75×25mm glass microscope slide.  The slide 

was labeled with the bird’s identification, date, and colony then placed in a hard-sided slide box 

for later laboratory analysis of HL ratio. 
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We collected regurgitated boluses from nestlings and preserved them in formalin 

following the procedures set in Fish Collection Methods and Standards Version 4.0 (1997) by 

the Canadian Resources Information Standards Committee.  Boluses are easy and inexpensive to 

analyze as well as do no harm to the birds (Wires et al. 2001).  Cormorants will often regurgitate 

food (i.e., fish) when they are threatened (Duffy and Jackson, 1986).  By visiting colonies in the 

morning, we maximized the likelihood of chicks having full stomachs and minimized the level of 

digestion of the boluses, making prey identification possible.  Boluses are often found in or 

around the nest, and single boluses often consist of multiple fish.  When boluses consisted of 

multiple fish, they were all placed in a single specimen jar or bag.  As soon as possible, the 

specimens were placed in a 10% formalin solution for fixation.  The specimens were placed in a 

refrigerator at 1 °C to minimize decomposition before fixation was complete.  Large prey items 

(>20cm) were injected with formalin directly into the body cavity through the vent to reduce any 

tissue loss or decomposition. Endoparasites (e.g., phyla Platyhelminthes and Nematoda) are also 

commonly present in regurgitated boluses.  The parasites, dislodged from the digestive tract 

during regurgitation, can be used to assess parasitism loads at the colony level.  Individual 

endoparasite loads cannot be assumed unless specific boluses can be attributed to a given 

nestling, which was not possible in this study.  Endoparasites were counted during laboratory 

analyses of boluses.  

Laboratory Procedures 

Diet specimens were fixed in a 10% formalin solution for two weeks.  Specimens were 

then rinsed and soaked in water for a 24 hour period.  When possible, prey items were identified 

to species, standard lengths were measured, and mass was recorded.  Endoparasites were also 

enumerated at this time, establishing an endoparasite per bolus value for each colony. A standard 
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length was estimated for partial prey items using like-sized representative samples trapped or 

seined from local waters.  Standard lengths were used to calculate biomass using regressions 

found in published literature (Table 2.1).  I estimated energy content as a measure of diet quality 

by calculating caloric content of fish from published regressions relating fish body mass to 

caloric content (Table 2.2).  Closely related species (e.g., cyprinids) were grouped during 

calculations due to their similar caloric content.   

Blood smears were stained in the laboratory using Hemacolor® Hematology Stain.  This 

product uses a methanol fixative with eosin and methylene blue stains for differential staining of 

peripheral blood cells.  Slides were then randomized by colony, and heterophil and lymphocytes 

were counted using oil immersion microscopy by two examiners to assure accuracy and 

minimize observer bias.  Using Avian Hematology and Cytology (Campbell, 1988) and Atlas to 

Avian Hematology  (Lucas and Jamroz, 1961) as references, the first 100 leukocytes identified as 

either heterophils or lymphocytes were recorded and a ratio extrapolated.  When 100 leukocytes 

could not be found across the entire smear, which was rare (< 1%), the ratio was still 

extrapolated as long as the total number of leukocytes exceeded 50.   

Age class was assigned to nestlings based on published tarsus length to age ratios.  I used 

the tarsus length from the initial capture and assigned an age at capture.  The length between 

successive captures was then added to determine age at recapture.  Age classes were then 

assigned to each nestling at each capture as: Age Class 0 (0-6 days), Age Class 1 (7-13 days), 

Age Class 2 (14-20 days), Age Class 3 (21-27 days), Age Class 4 (28+ days). 

Statistical Analyses 

Statistical analyses were performed in either JMP 9 by SAS or program R v 2.12.1.  SAS 

for Mixed Models was used as a reference for modeling design (Littell et al., 2006).  Boluses 
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(containing fish and endoparasites) were not uniformly attributable to particular nestlings, thus 

diet samples and endoparasite loads were analyzed at a colony level.  Boluses were deemed 

statistical outliers and removed from follow up analyses if their total mass exceeded three 

standard deviations above the mean.  To establish colony level patterns, an assessment of diet 

quality (calories • bolus
-1

) and endoparasite load (endoparasites • bolus
-1

) were conducted using 

an ANOVA and student’s t-test to determine mean values and disparities among colonies.  Mean 

colony values were then assigned to all individual birds originating in that colony.  

Growth, HL ratio, and ectoparasite parameters were attributable to individual nestlings 

and did not require colony level averaging.  Mass and length specific growth rates (SGR) were 

determined for all growth parameters.  Specific growth rates, a measure of growth per unit time, 

were calculated by [ln(final condition)-ln(initial condition)*100]/time.  Long bone growth (i.e., 

wing digit and tarsus) was measured and calculated in mm/mm/day, and mass growth calculated 

in g/g/day.  Nestlings observed in each of the three observation periods received two SGR’s; the 

first from week one through week two, and the second from week two through week three.  

When both SGR’s were available for an individual, they were ultimately averaged for a mean 

SGR for that particular nestling.   Stress levels, using HL, were similarly averaged for each 

nestling while modeling stress effects on SGR’s.   Because cormorants are altricial birds and 

hatch with no down, they support very few ectoparasites at early ages.  As down becomes 

present, ectoparasites become more numerous and are easily counted.  As plumage continues to 

grow, however, ectoparasites become much harder to see, though they are present.  This limited 

window of accurate evaluation necessitated the use of maximum ectoparasite load as the 

modeling parameter.   
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To model the effects of environmental stressors on HL, maximum ectoparasite load, 

endoparasite load, age class, and diet quality were chosen as independent fixed variables.  To 

assess population level effects, colony and individual nestling identification were added as 

random effects due to repeated measures. These parameters were applied to a linear mixed 

model, which used a restricted/residual maximum likelihood (REML) methodology.    This 

method computes marginal likelihoods based on error contrasts and is useful in estimating 

variance and covariance functions. The REML method estimates are less biased than maximum 

likelihood estimates, and are useful for smaller datasets (Proust, 2010).  This model allowed us to 

test the hypothesis of hypo-responsiveness among altricial nestlings, as well as testing for 

physiological changes as a result of environmental stressors.   

When modeling effects on SGR’s, the effect parameters included in the analyses were: 

maximum ectoparasite load, endoparasite load, diet quality, average H:L (stress), and all effect 

crosses with H:L due to the assumed effect of stressors on H:L.   Colony was held as a random 

effect to test stress effects on the total population of double-crested cormorants. These 

parameters were similarly used in a linear mixed model utilizing a restricted/residual maximum 

likelihood methodology.      

Results 

Diet and Endoparasites 

In total, 213 boluses were examined for diet quality (n=3 at 7SIS, 8 at JCS, 96 at ML, 86 

at NEP, 20 at NOD).  An analysis of variance (ANOVA) rejected the Ho, revealing differing diet 

quality among colonies (F4,208 = 2.5901 P<0.05).  A post hoc power test revealed a low power 

(0.227) to detect differences among the three colonies with the lowest sample sizes, and 

approximately 55 more samples would be required to detect significant differences.   Therefore, 
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we excluded these colonies and compared diet quality between ML and NEP using a student’s t-

test.  ML significantly differed (  = 82.86 calories•bolus
-1

, SD=68.56) from NEP ( =57.15 

calories•bolus
-1

, SD=50.57; t208=1.971, P = <0.05).  Large numbers of gulls were present at the 

three remaining colonies and may have consumed cormorant boluses opportunistically, greatly 

reducing our ability to collect samples.  Mean diet quality calculated for these colonies were 

88.54 calories•bolus
-1 

(SD= 49.54) at 7SIS, 49.74 calories•bolus
-1

 (SD=66.38) at JCS, and 77.50 

calories•bolus
-1

 (SD=38.89) at NOD. 

An examination of endoparasite loads (n=3 at 7SIS, 8 at JCS, 96 at ML, 86 at NEP, 20 at 

NOD) by colony using an ANOVA exposed differences at significant levels (F4, 208 = 11.51, P < 

0.05; Figure 2.4).  Noden Causeway (  = 4.85 endoparasites•bolus
-1

, SD=7.12) was found to 

deviate significantly from NEP (  = 0.50 endoparasites•bolus
-1

, SD=1.30; t208=6.48, P <0.05), 

ML ( =0.67 endoparasites•bolus
-1

, SD=1.75; t208=6.29, P<0.05) and JCS (  = 1.88 

endoparasites•bolus
-1

, SD=3.83; t208=2.63, P <0.05) by means of a student’s t-test.  NOD was not 

significantly different from 7SIS colony (  = 2.00 endoparasites•bolus
-1

, SD= 3.46).   

Ectoparasites 

 In total, we examined 210 nestlings for ectoparasites (n=30 at 7SIS, 61 at ML, 61 at NEP, 

and 58 at NOD).  An examination of ectoparasites using an ANOVA rejected the Ho, exposing 

significant differences in ectoparasite loads among colonies (F3,206=19.72, P <0.05).  An analysis 

of the number of ectoparasites, using a student’s t-test, revealed several significant differences 

among colonies.  The Noden Causeway (NOD) colony was found to have a much higher level of 

ectoparasitism (  =39.48 ectoparasites) than 7SIS ( = 16.567 ectoparasites, t206=3.26, P<0.05), 

NEP ( = 1.705 ectoparasites, t206=6.59, P<0.05, and ML ( = 0.705 ectoparasites, t206=6.76, 

x x

x

x

x x

x

x x

x x
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P<0.05 ).  Mean ectoparasite load  at 7SIS colony was significantly higher than both NEP and 

ML (t206=-2.13, P<0.05; t206=-2.27, P <0.05 respectively; Figure 2.5).  

Stress Levels 

In total, 173 blood smears were analyzed using a fit model to assess the effect of 

environmental factors on HL ratios. The model explained 19% of the variation in stress levels 

(HL ratios) with P<0.05.  The fixed effect parameters used in the model include: diet quality, 

maximum ectoparasites, endoparasites, and age class.  Colony and individual nestling 

identification were added to the model as random effects due to repeated measures and to allow 

us to extrapolate findings to the total cormorant population.  All modeling parameters were 

found to have P-values >0.05, with age class being the only factor approaching a moderately 

significant level (P=0.107; Table 2.3).   

An ANOVA revealed significant differences in HL among the varying age classes (n=14 

age class 0, 76 age class 1, 47 age class 2, 31 age class 3, 5 age class 4; F4,168=4.36, P<0.05).  

Age effect was then analyzed using a student’s t-test.  It was found stress levels were highest in 

the two youngest age classes, age 0 and 1 ( =1.098, 1.271 respectively) and lowest at age class 

4 ( = 0.649).   HL at age class 1 was found to be significantly higher than age classes 2 ( = 

0.961, t168=-3.231, P<0.05), 3 ( = 0.971, t168=-2.73, P<0.05), and 4 ( = 0.6493, t168=-2.607, 

P<0.05), but lacked significance over age class 0 (t168=1.153, P = 0.25).  A post hoc linear fit model 

was run to test how much variation in HL could be accounted for by age alone (14.2%, 

RMSE=0.499, P<0.05).  

 In the examination of stress (HL) variation among colonies, an ANOVA revealed 

significant differences among the colonies (n=28 at 7SIS, 13 at JCS, 25 at ML, 24 at NEP, and 

12 at NOD; F4,97=6.997, P<0.05).  Using average HL, a comparison of each colony pair using a 

x

x x

x x
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student’s t-test revealed ML nestlings to have a significantly lower H:L ( = 0.817)  than 7SIS (

=1.445, t97=-5.269, P<0.05), JCS ( =1.185, t97=-2.653, P=0.01), NOD ( =1.195, t97=2.254, 

P=0.03), and NEP ( =1.127, t97=2.658, P=0.01) nestlings (Figure 2.5).  7SIS (  = 1.445) was 

found to differ from NEP at a significant level as well (  = 1.146, t97=-2.481, P=0.01), although 

this significance is questionable, as the effects were biased high due to only age classes 0 and 1 

being analyzed.  The model indicates younger birds should be expected to have higher stress 

levels. 

Growth 

Mass and length specific growth rate modeling exposed similarities across all three 

metrics (i.e., mass, wing digit, and tarsus).  All three models found diet quality to produce 

consistently lower P-values, although not significant in the mass SGR model (F1,41=2.205, 

P=0.145).   The fit model examining mass SGR (Table 2.4) resulted in a significant model 

explaining 14.2% of the variation (n=42, RMSE=0.042, P<0.05), yet no individual modeling 

effects were found to be statistically significant.  Continuing on, diet quality was found to be a 

significant parameter for both wing digit (F1,41=6.142, P=0.02; Table 2.5) and tarsus SGR’s 

(F1,41=7.358, P=0.01; Table 2.6).  The modeling of wing digit SGR resulted in a significant 

model explaining 31.3% of the variation detected with both diet quality and endoparasite load 

(F1,41=6.846, P=0.01) being significant modeling parameters. (n = 46, RMSE=0.023, P<0.05; 

Table 2.5).  The tarsus SGR model was also found to explain a significant amount of the 

variation, at 23.4% (n= 46, RMSE=0.017, P < 0.05; Table 2.6). 

Discussion 

While trying to determine how environmental stressors affect the stress response, I 

additionally tested for age effects to examine the emergence of the stress response in altricial 

x

x x x

x x

x
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nestlings.  The fit model results provided several interesting insights.  I found the environmental 

stressors that were tested had little impact on HL levels, with none producing significant values.  

The age class of the nestling was the only parameter found to approach a significant P-value 

(P=0.145).  This effect of age, if it does exist, may diminish the credence to the theory of delayed 

development and hypo-responsiveness of the HPA axis during the nestling phase.  It was 

believed stress levels would be diminished in the first two sampling periods if nestlings were 

unresponsive to stressors.  Müllner and colleagues (2003) found stress levels to be lower in 

juvenile hoatzins while early in the nestling stage; while just prior to fledging, stress levels 

increased resulting in higher mortality rates.  Sims and Holberton (2000) also document 

suppressed stress levels in nestling mockingbirds, but concurrently demonstrated the ability of 

adrenocortical tissues to manage a hormonal response to stressors. In effect, the HPA axis of 

nestling mockingbirds was developed and functional, but the activity of the stress response 

developed in concert with the developing ability to mitigate potential stressors.  Interestingly, the 

opposite was observed in this study.  Stress levels in double-crested cormorant nestlings, as 

measured by HL ratios, were highest during the first two weeks after hatch, and the lowest at age 

class 4 (i.e. 3-4 week old chicks). These findings corroborate those observed in the European 

White Stork (Ciconia ciconia) (Blas et al. 2005), which suggests that altricial nestlings are not 

completely reliant on parental mitigation of environmental stressors, but do have the 

physiological ability to mount a stress response.  

Changes in sensitivity of the HPA axis during the nestling phase is one hypothesis to 

explain the trend found in this study.  Measurements of HL ratios are not a direct measure of 

HPA activity, and alternative hypotheses for elevated HL levels in the early nestling stage 

include maternal effects transmitted through eggs, as well as changes in the developing immune 
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system as both heterophils and lymphocytes are integral parts of the immune system.  If these 

hypotheses hold true, it is still possible for these birds to be in a hypo-responsive period early in 

development, albeit with elevated stress levels.  It is also possible that high initial stress levels 

may be the result of, or in preparation for, the stress associated with the process of hatching.   

Environmental stressors appear to affect growth in structural size similarly, with diet 

quality affecting both wing digit and tarsus SGR’s.  This finding indicates increased diet quality 

is positively correlated with increased structural specific growth rates.  Wing growth was also 

found to be affected by endoparasite load, with increased endoparaisite loads correlated to a 

reduced SGR.  This finding is interesting due to the ability of cormorants to “self-medicate” for 

digestive endoparasites by consuming small rocks that dislodge the parasites from the digestive 

lining, leaving the bird theoretically unaffected by the presence of the parasite (Robinson et al. 

2008).  The indicator of this behavior is the presence of numerous small rocks in and around the 

nest, which was witnessed at the colonies involved in this study, but the findings of this study 

may indicate nestling cormorants do not partake in this behavior (Randa, personal observation).   

Diet, again a significant modeling parameter, was found to marginally account for 

variation in HL, and concomitantly growth rates.  This finding agrees with, and confirms, 

previous studies documenting a negative correlation between stress and diet quality, as well as a 

positive correlation between diet quality and growth rates (Costantini, 2010; Boag, 1987; 

Johnson 1971).  Also noteworthy is the lack of significance of HL as a fit model parameter for 

SGR’s, as well as the crosses between environmental stressors and HL.  It appears that if HL is a 

suitable method for testing CORT and stress levels in nestlings, our samples were not stressed 

enough to see significant changes in SGR’s.  It is also possible, as noted before, that lack of 

significant findings in regards to HL ratios, may be due to the inactivity or changes in HPA 
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sensitivity, as well as a developing immune function.    Furthermore, the presence of 

endoparasites as significant SGR modeling parameters corroborates with the theory correlating 

environmental stressors and differing developmental rates.   

Regarding the use of HL as a correlative approach to estimating CORT and stress levels, 

the lack of significant correlations between environmental stressors and HL may invalidate this 

methodology as a determinant of stress in field research.  This technique ultimately proved to be 

only marginally valuable.  This being stated, this technique did reveal significant variation in HL 

at various age classes, at least indicating changes in immune response.   

 In conclusion, it was found that HL analyses are likely an uacceptable method for 

assessing stress levels in nest-bound birds, but may prove to be a preferred methodology for 

examining age effects on the development of the immune response.   It was also discovered that 

environmental stressors, such as diet and endoparasites do impact the growth and development of 

nest-bound altricial species.  Linear fit models examining SGR’s only described 14-31% of the 

variation, leading one to believe in the likelihood of other significant environmental “ghost” 

factors effecting nestling development.  As ANOVA tests demonstrated, these “ghost” factors 

may be attributable to specific colony-level factors such as: harassment, predation, weather, 

exposure, nest density, age of colony, etc.  Perhaps future research should utilize the inclusion of 

these other qualitative stress factors as well as a maternal stress evaluation.  The discovery of an 

age effect on stress levels successfully demonstrates a change in immune response, but does not 

conclusively indicate a period of HPA inactivity or hypo-responsiveness.  An examination of 

hormonal titers in the first two weeks post-hatch, as well as a prolonged sampling period 

examining birds post-fledge would be required to completely capture the physiological changes 

occurring within these birds to ready them for short and long-term environmental perturbations. 
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Table 2.1.  Length-weight regressions used to calculate biomass from bolus specimens  

(Carlander, 1969, 1977, 1997, Hundt, 2009, Robinson et al., 2010) 

Species Equation Base 

base(W) = a + b Base 

SL 

a b 

Amblopites rupestris logW=-4.574+3.057 log SL log -4.574 3.057 

Ameiurus melas logW=-4.049+2.801 log SL log -4.049 2.801 

Centrarchid sp. logW=-4.770+3.152 log SL log -4.77 3.152 

Coregonus sp. logW=-5.056+3.168 log SL log -5.056 3.168 

Culaea inconstans  lnW=-11.873+3.248 ln SL ln -11.873 3.248 

Etheostoma sp. logW=-4.6576+2.8983 log SL log -4.6576 2.8983 

Esox lucius logW=-5.622+3.223 log SL log -5.622 3.223 

Lepomis sp. logW=-4.770+3.152 log SL log -4.77 3.152 

Lota lota logW=-5.203+3.065 log SL log -5.203 3.065 

Luxilus sp. lnW=-11.873+3.248 ln SL ln -11.873 3.248 

Micropterus salmoides logW=-4.777+3.058 log SL log -4.777 3.058 

Notropis sp. lnW=-11.873+3.248 ln SL ln -11.873 3.248 

Perca flavescens lnW=-11.038+3.062 ln SL ln -11.038 3.062 

Percina sp. logW=-4.6576+2.8983 log SL log -4.6576 2.8983 

Phoxinus sp. lnW=-11.873+3.248 ln SL ln -11.873 3.248 

Pimephales sp. lnW=-11.873+3.248 ln SL ln -11.873 3.248 

Pungitius pungitius lnW=-11.873+3.248 ln SL ln -11.873 3.248 

Sander canadensis lnW=-12.251+3.182 ln SL ln -12.251 3.182 

Sander vitreus lnW=-12.251+3.182 ln SL ln -12.251 3.182 

Umbra limi lnW=-10.238+2.829 ln SL ln -10.238 2.829 

          

     

Table 2.2.  Mean caloric content of one gram (wet mass) of fish for each of eight taxa 

Species Mean cal/g 

Clupeids 1964.78 

Ictalurids 1332.76 

Gasterosteids 1272.83 

Sander vitreus 1247.50 

Esocids 1189.45 

Cyprinids* 1119.82 

Percids** 1111.67 

Centrarchids 976.62 

*Includes Umbra limi 

**Excludes Sander vitreus 

         (Brugger, 1992, 1993, Bryan, 1995, Jobling, 1994, Meakins, 1976, Schreckenbach et al., 2001). 
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Table 2.3.  Linear fit model evaluating the effect of environmental stressors on stress (H:L) 

levels with colony and individual nestling ID  held as random variables   

H:L Model: R² = .190 p = < 0.0001  

RMSE = 0.5007  n = 151 

   Parameter  Estimate Std Error DF F - Value P 

Intercept 1.1580 1.2153 1 0.9500
a
 0.5164

a
 

Endoparasites 0.0434 0.01158 1, 1.193 0.1403 0.7637 

Diet Quality 1.592E-5 0.0162 1, 0.982 0.0000 0.9994 

Ectoparasites  0.0009 0.0018 1, 89.15 0.2318 0.6314 

Age Class -0.0781 0.0481 1, 145.4 2.6379 0.1065 

ª = t-test 

      

      

Table 2.4.  Linear fit model evaluating the effect of environmental stressors and their H:L 

crosses on mass SGR (g/g/day) with colony held as a random variable  

Mass SGR Model: R² = 0.142  p = < 0.0001                  

RMSE = 0.042  n= 49 

  Parameter  Estimate Std Error DF F - Value P 

Intercept 0.0494 0.0542 1, 41 0.9100ª 0.3673ª 

Ectoparasites -0.0002 0.0002 1, 41 0.9705 0.3303 

Diet Quality 0.0009 0.0006 1, 41 2.2051 0.1452 

H:L -0.0016 0.0204 1, 41 0.0060 0.9387 

Ectoparasites × H:L 5.271E-5 0.0006 1, 41 0.0072 0.9330 

Endoparasites × H:L  -0.0033 0.0115 1, 41 0.0842 0.7732 

Diet Quality × H:L  -0.0004 0.0019 1, 41 0.0373 0.8478 

Endoparasites  -0.0028  0.0054 1, 41 0.2572 0.6148 

ª = t-test 
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Table 2.5.  Linear fit model evaluating the effect of environmental stressors and their H:L 

crosses on wing SGR (mm/mm/day) with colony held as a random variable 

Wing SGR Model: R² = 0.313 p = < 0.0001  

RMSE = 0.0234 df = 49 

  Parameter Estimate Std Error DF F-Value P 

Intercept 0.0175 0.0303 1,41 0.5800ª 0.5682
a
 

Ectoparasites 3.06E-05 0.0001 1,41 0.0595 0.8085 

Diet Quality 0.0008 0.0003 1,41 6.1416 0.0174 

H:L -0.0012 0.0114 1,41 0.0113 0.9158 

Ectoparasites × H:L 0.0004 0.0003 1,41 1.3485 0.2523 

Endoparasites × H:L -0.0058  0.0065 1,41 0.8113 0.3730 

Diet × H:L -0.0003  0.0011 1,41 0.0628 0.8034 

Endoparasites  -0.0079 0.0030 1,41 6.8459 0.0124 

ª = t-test 

 

 

 

 

 

 

   Table 2.6.  Linear fit model evaluating the effect of environmental stressors and their H:L 

crosses on tarsus SGR (mm/mm/day) with colony held as a random variable.  

Tarsus SGR Model: R² = 0.2342  p = < 0.0001  

RMSE = 0.0172  df = 49 

  Parameter  Estimate Std Error DF F - Value P 

Intercept -0.0085 0.0223 1, 41 -0.3800ª 0.7062
a 
 

Ectoparasites -6.075E-5 9.227E-5 1, 41 0.4335 0.5140 

Diet Quality  0.0007 0.0002 1, 41 7.3576 0.0097 

H:L 0.0035 0.0084 1, 41 0.1740 0.6787 

Ectoparasites × H:L 9.541E-5 0.0003 1, 41 0.1383 0.7119 

Endoparasites × H:L -0.0026  0.0047 1, 41 0.3049 0.5838 

Diet × H:L -0.0002  0.0008 1, 41 0.0377 0.8470 

Endoparasites  -0.0029 0.0022 1, 41 1.6285 0.2091 

ª = t-test 

     

            

 



44 
 

                             
Figure 2.1.  Locations of study sites 

(1-North East Pine Island, Lake Kabetogama (NEP), 2- Seven Sisters Islands, Rainy Lake 

(7SIS), 3- Noden Causeway, Rainy Lake (NOD), 4- Mille Lacs NWR (ML), 5- J. Clark Salyer 

NWR (JCS)) 
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Figure 2.2.  Fish per bolus by colony, 2009 (SE) 
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Figure 2.3.  Diet (calories) by colony, 2009 (SE) 
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Figure 2.4.  Endoparasites by colony, 2009 (SE) 
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Figure 2.5.  Ectoparasites by colony, 2009 (SE)  
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Figure 2.6.  Stress levels (H:L) by colony, 2009 (SE) 
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CHAPTER 3: THE DIET OF NESTLING DOUBLE-CRESTED CORMORANTS 

(PHALACROCORAX AURITUS) AT FIVE CENTRAL NORTH AMERICAN COLONIES 

Abstract 

The rise in double-crested cormorant (Phalacrocorax auritus) populations beginning in 

the 1970’s has spurred interest among user groups concerned with the impact of cormorant diet 

on sport fisheries.  Community reliance on these fisheries has prompted an examination of 

cormorant diet composition across North America, but few studies have examined the energetic 

content of cormorant diet.   In the summers of 2008 and 2009 I examined five separate cormorant 

colonies, four colonies being found at popular lacustrine sport fisheries in Minnesota and 

Ontario: Lake Kabetogama, Rainy Lake, and Lake Mille Lacs.  The fifth colony, found at North 

Dakota’s J. Clark Salyer National Wildlife refuge (NWR), is on the Souris River and does not 

support a large sport fishery.  In this study, diet was determined using a nestling bolus analysis, 

and length-weight regressions were used to determine prey biomass and caloric contents were 

calculated for nestling cormorant diets.   Diets were highly varied among colonies on the same 

lake (i.e., Rainy Lake) as well as among sites. Overall lacustrine diets consisted primarily of non-

game fish, with yellow perch (Perca flavescens), shiners (Notropis spp.), central mudminnows 

(Umbra limi), sticklebacks (family Gasterosteidae), and ciscoes (Coregonus artedi) comprising 

the majority.  In contrast, the riparian J. Clark Salyer NWR colony diet was dominated by young 

Northern Pike (Esox lucius) and ictalurids, common riverine species. 

Introduction 

Double-crested cormorants (hereafter referred to as cormorants), have a long history of 

human persecution (Hatch and Weseloh, 1999).  Champlain in 1604 noted vast numbers of 

cormorants in North America (Grant and Jameson, 1907) and by 1634 the first written 
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implication of negative impacts as a result of cormorants was found in Wood’s publication 

regarding New England.  Here, Wood stated cormorant populations are capable of “destroying 

abundant small fish populations” (Wood, 1634).  For this reason, there is a long history of 

cormorant colony destruction in North America (Duffy, 1995).  Although nest destruction and 

harassment may be responsible for the initial decrease in cormorant populations in the last 

several hundred years, the most dramatic decline followed World War II.  This population 

decline has been documented and studied and the commonly accepted explanation is the 

detrimental effects of dichlorodiphenyltrichloroethane (DDT) on breeding populations (Bishop et 

al., 1992; Elliott et al., 1989).  The use of DDT, a pesticide, interfered with nesting success by 

ultimately thinning egg shells and raising the likelihood of broken eggs during incubation 

(Anderson and Hickey, 1972, Postupalsky, 1978).  Increases in adult (Greichus and Hannon, 

1973) and embryonic mortality (Weseloh et al., 1983), as well as increases in embryonic 

malformations were seen as a result of increased DDT and DDE levels in eggs (Ludwig et al., 

1996).    

In 1972, DDT was banned and concurrently cormorants were added to the United States 

Migratory Bird Treaty Act and to the Audubon Society’s Blue List (Wires et al. 2001).  Along 

with these regulatory changes, significant changes in the birds wintering grounds were occurring.  

Aquaculture facilities became more prevalent features on the landscape, and more than doubled 

fish production between 1990 and 2001 (Naylor et al. 2001).  Catfish farms in the southeastern 

United States, which provided a large volume of easily accessible prey for cormorants proved to 

be particularly important (Glahn et al., 1995; Glahn and Stickley, 1995; Schramm et al., 1984; 

Stickley et al., 1992).  The rise of fish stocking in the north and the growing popularity of fish 

farming provided the environmental factors needed to allow a rapid population expansion of 
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cormorants.  One unforeseen shortcoming of this rapid expansion was a renewed interest in 

regulating and extirpating cormorant populations as well as interest in the impact of their 

foraging and diets on sport and commercial fisheries.  

In 1998, after years of concern, legislation was undertaken to pass a federal aquaculture 

depredation order.  This order allowed the harassment of cormorants while on their winter roosts 

and lethal control of cormorants doing damage to private resources in 13 states (50 CFR, RIN 

1018-AE11).  In 2003, a public resource depredation order was enacted in twenty-four states 

allowing harassment, and even lethal control of cormorants damaging either public or private 

resources.  This depredation order has again reinforced the need for research pertaining to the 

diet of cormorants and the possible negative effects they may have on sport fisheries.  

Three methods of determining cormorant diet exist: from pellets, boluses, and gut or 

stomach contents (Wires et al., 2001).  Pellet analyses allows researchers to examine the diet of 

adult and sub-adult cormorants non-lethally.  Cormorants cast a pellet of indigestible materials, 

often the otoliths of consumed fishes.  These otoliths can be paired, often identified to species, 

and estimates of prey length can be obtained.  This method is labor intensive and the least 

accurate approach, because the level of digestion in pellets can vary greatly among specimens 

and the possibility of secondary consumption also exists (Blackwell and Sinclair, 1995; Craven 

and Lev, 1987; Duffy and Laurenson, 1983; Johnson et al., 1997; Johnstone et al., 1990).  The 

second method, a gut analysis, can be done either lethally or non-lethally.  The non-lethal 

technique involves a stomach pump or emetics, which will likely remove all material from the 

upper digestive tract, including the proventriculus.  This can be done on any age bird, but capture 

of adult and sub-adult birds can be difficult.  In addition to difficulty catching birds, flushing the 

stomach of cormorants is particularly stressful and may cause irreversible damage, thus is no 
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longer recommended (Duffy and Jackson, 1986; Harris and Wanless, 1993; Wires et al., 2001).  

A lethal gut analysis most often includes shooting of birds and surgically removing prey from all 

parts of the digestive tract (including gizzard).  This is the most accurate method of diet analysis, 

as it can be done on birds of any age, and if removed promptly, or preserved rapidly, results in 

the least digested specimens (Wires et al., 2001).  The third method, the most favored due to its 

low impact and relatively high level of accuracy is a bolus/regurgitant analysis.  Drawbacks of 

this method include a bias towards chick diet because of the higher affinity of chicks to 

regurgitate when confronted, along with the inability to be certain of a singular source for each 

bolus (Hatch and Weseloh, 1999; Wires et al., 2001).  There is also a wider range of digestive 

states when examining boluses due to the contents being both partially digested by the adult and 

nestling, but often boluses are minimally digested.   

The effect of cormorants on a fishery cannot be calculated from diet composition alone 

(Lewis, 1929; Mendall, 1936; Wires et al., 2001), but it is an essential first step.  By examining 

prey composition and biomass, we begin to suggest how many prey items (i.e., fishes) must be 

consumed to support the existing cormorant colony on a given body of water.  Thus to fully 

comprehend cormorant effects, a thorough assessment of the current state of the fishery is 

required at all trophic levels, which is rarely available.  The objectives of this study were to: (1) 

Determine the species present in nestling cormorant diet at five different breeding colonies, (2) 

calculate the percent biomass composition of each species represented, and (3) determine 

average bolus biomass at each colony (i.e. mass of prey per feeding).  For this study a non-lethal 

method of diet analysis (regurgitants) was required, because three of the five colonies were on 

federally protected lands (Voyageurs National Park, Mille Lacs NWR, and J. Clark Salyer 
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NWR). These data can be used in the future when specific fishery data becomes available to 

assess potential cormorant effects on the fishery.  

Methods 

Study Species and Study Areas 

Double-crested cormorants (Phalacrocorax auritus) are a common, moderately-sized 

(1.2-2.5 kg), colonial water bird that feeds on fish, amphibians and crustaceans.  Heavily 

persecuted in North America since European settlement, double-crested cormorants were facing 

potential extirpation as recently as the 1970’s.  Following litigation restricting the use of DDT 

and the rise in popularity of aquaculture, populations of cormorants rebounded rapidly, and are 

now found across much of North America.  There is substantial regional variation in size, with 

birds becoming larger to the north and west.  Islands and cliffs are the most common habitat in 

the northern ranges found to support active colonies.  Cormorant chicks hatch after 

approximately 30 days of incubation and remain in the nest for three to four weeks.  At this 

point, they form crèches and roam the ground, and if accessible, will take to water if threatened.  

At six to seven weeks young are able to begin making short flights and are nearly independent 

(Mendall, 1936; Hatch and Weseloh, 1999). 

I examined five cormorant colonies, three of which are found in the border-lakes region 

of Minnesota and Ontario, and the other two are found in central Minnesota and north-central 

North Dakota.  The border-lakes region of Minnesota and Ontario is strewn with lakes of various 

depth, size, and productivity.  Lake Kabetogama, fully contained within Voyageurs National 

Park, is a roughly 9,700 hectare lake, with most of the acreage under 11 meters deep.  It is a 

highly productive lake and is well known for its walleye (Sander vitreus) fishery.  A cormorant 

colony was established on Northeast Pine Island (NEP) in 1999, after which the population 
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quickly grew.  To the north, Rainy Lake, much larger at upwards of 220,000 acres is also 

considered to be a quality sport fishery.  Rainy supports several different sport fish species than 

Kabetogama, including ciscoes, muskellunge (Esox masquinongy), and rainbow smelt (Osmerus 

mordax).  The lake is separated into two arms, the north arm and south arm.  The south arm, also 

partially contained within Voyageurs National Park, is home to the Seven Sisters Islands (7SIS), 

an archipelago with a number of islands hosting nesting cormorants.  The north arm, stretching 

well into Ontario, has seen the colonization and rapid expansion of a cormorant colony on an 

island near the Noden Causeway (NOD).   

In central Minnesota, Minnesota’s second largest inland lake, Lake Mille Lacs (ML), has 

gained national fame for its sport fishery, particularly walleye and muskellunge.  This relatively 

shallow, 128,224 acre lake possesses two boulder islands near its southeastern and southwestern 

shores.  These two islands, Spirit and Hennepin, compose the Mille Lacs National Wildlife 

Refuge (NWR), at just over 1/2 acre, it is the country’s smallest NWR.  Spirit Island, the larger 

island of the two, remains unmanaged save yearly cormorant nest counts.  The cormorant 

population at Spirit Island has remained relatively steady for many years, yet there is local 

concern surrounding its existence.   

In contrast to the previous lacustrine colonies, North Dakota’s J. Clark Salyer National 

Wildlife Refuge (JCS) is found on the northern end of the Souris River in the north-central part 

of the state.  Although not a popular fishing destination, this federally protected land is 

dominated by river, shallow backwaters, and impoundments, all with greatly fluctuating seasonal 

water levels.  This cormorant colony, completely surrounded by nesting gulls (mostly Franklin’s 

gulls (Leucophaeus pipixcan)), is unlike the aforementioned colonies in other respects as well.  

Boat traffic is nearly nonexistent, whereas the habitats with developed sport fisheries experience 
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significant activity from recreational boats near cormorant colonies. The riparian habitat found 

surrounding this colony likely supports excellent spawning grounds for common river game fish, 

such as northern pike.  Other common river species are likely present as well (e.g. cyprinids, 

catostomids,  hiodontids, and ictalurids).  Bullheads (Ameiurus spp.) and channel catfish 

(Ictalurus punctatus) round out the list of species most likely to be found in this habitat. 

Field Procedures 

Regurgitants were collected using methods adapted from Blackwell et al. (1995).  A 

minimum of one weekly visit during the nesting season was conducted at the Northeast Pine 

Island colony and the Seven Sisters colony during the summers of 2008 and 2009.  Samples were 

collected weekly at the Mille Lacs, Noden Causeway, and J. Clark Salyer colonies for three 

weeks during the summer of 2009 exclusively.  Samples were collected during colony visits on 

fair weather days, occurring between 07:00 and 11:00.  This timing ensured sufficient time for 

parents to have returned from a feeding flight to feed their young.  Attempting to collect boluses 

later than this time often resulted with samples in a much greater digestive state, creating 

problems with prey identification.  Collection was done rapidly, as young cormorants are unable 

to thermoregulate for nearly two weeks (Dunn 1976), and are easily preyed upon by gulls.   

The samples collected in 2008 from the Northeast Pine Island and Seven Sisters Islands 

colonies were placed in a freezer after collection.  Freezing rapidly stopped any decomposition, 

but resulted in difficulties during later analyses.  Specimens remained frozen until the fall, where 

they were examined in a laboratory setting. Difficulties arose when thawing specimens.  

Freezing and thawing fish, which have week intramuscular connection, causes myomeres and 

myosepta to easily break apart (denature proteins) (Wisconsin Seagrant Institute, 2001), which 

makes identification of specimens difficult.  Analyses were limited to separating each species 
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within a bolus, counting individuals, and weighing a total (raw) mass of prey species (mostly 

fish) within each bolus.   

During the 2009 field season boluses were preserved in a 10% formalin solution to avoid 

the difficulties with measurement and identification associated with freezing.  Single boluses 

were placed in either sealable plastic bags or directly into plastic specimen jars for fixation and 

preservation.  The collection goal was 30 specimens per colony visit, but this was often difficult 

to achieve at all colonies, save Mille Lacs.  Possible reasons for this include: high numbers of 

resident gulls consuming regurgitants, colony size, and uneven distribution of cormorant nestling 

ages. 

Laboratory Procedures (2009 Only) 

 Immediately following sample collection, the individually packaged boluses were placed 

in specimen jars and fixed with a 10% formalin solution.  Prey items over 20 cm were injected 

through the vent with the formalin solution directly into their body cavity to promote rapid 

fixation and prevent tissue loss.  Specimens were then placed in a refrigerator at 4 C for two 

weeks.  Refrigeration ensured minimal decomposition before fixation occurred.  After two 

weeks, the formalin was removed from the jars and the specimens were rinsed and allowed to 

soak in water for 24 hours, removing the majority of formalin.  Boluses were then examined for 

content.  

 Prey items, dominated by fish species, were identified to species, except for minnows 

(Cyprinidae), which were identified to genus.  I measured standard length of whole fish to the 

nearest 0.1 mm using a digital caliper (Tool Shop®) and weighed to the nearest 0.01 g using a 

digital scale (Ohaus®).  Partial fish were compared to like-size specimens of the same species 

captured in minnow traps or by seining in local bodies of water in the same time frame as diet 
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sampling occurred.  I compared the partial fish with whole specimens and used the standard 

length of the like-sized sample, to the nearest millimeter, as a replacement value.  The part of the 

fish that was present was also recorded as either: head (H), body (B), tail (T), or whole (W). This 

was used to ensure the same fish was not counted multiple times (e.g. if a head and body were 

separated, they may be counted as two separate fish).  An estimation of digestive state was also 

recorded on a scale of 0% to 100%.  After diet samples were analyzed, all samples were archived 

by preserving in 70% ethanol. 

Statistical Analyses 

Diet composition analyses were performed for each of the five colonies examined.  Prey 

biomass was calculated using species specific length-weight regressions that were chosen from 

gray and published literature in which the region and lake-type matched the habitats found in the 

present study (Carlander, 1969, 1977, 1997; Hundt, 2009; Robinson et al., 2010) (Table 3.1).  

These length-weight regressions were applied to all specimens with an associated standard 

length, producing a biomass in grams to remove digestion induced variability.  Biomass for each 

species was then summed for a total biomass at the colony level.  Species biomass was then 

divided by total biomass to determine the percent composition of that species within the diet.  

The total number of individual specimens was also summed for each species at the colony level.  

To determine the composition of diet by the number of individual prey items, the number or 

individuals within a species was divided by the total number of specimens.  Samples collected in 

2008 could not be analyzed using length-weight regressions, thus analyses utilized a raw bolus 

mass rather than biomass.  Diet composition by species mass was performed by dividing raw 

species mass by raw total mass. 
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Results 

Eighty-two (82) samples were collected at Northeast Pine Island (NEP) in the summer of 

2008, and ninety-eight (98) collected in 2009.  Twenty-one fish species and one invertebrate 

species were identified.  In 2008, of identifiable remains, yellow perch (36%), lake whitefish 

(10%), and central mudminnows (10%) were the most prominent diet components by mass 

(Figure 3.1, Table 3.2). By individuals, central mudminnow (27%), walleye (22%), brook 

stickleback (12%), fathead minnow (11%) and yellow perch (10%) made up the majority of diet 

(Table 3.2).  Unknown or unidentifiable fish remains made up 12% of the samples by mass, but 

just over 1% by individuals, indicating these to be remains of larger fish.  One bolus contained 

the remains of a herring gull (Larus smithsonianus) chick.  In 2009, lake whitefish (23%), walleye 

(20%), and central mudminnows (17%) represented the largest portions of diet by biomass 

(Figure 3.2, Table 3.3).  By individuals, central mudminnow (38%), brook stickleback (23%), 

and walleye (11%) represented the largest portions of diet (Figure 3.3). Mean bolus biomass 

could not be assessed for the first year of the study, but changes in procedure allowed for 

corrections in response to digestive state of prey items (i.e. length-weight regressions) in the 

second year of the study, resulting in a 2009 mean bolus biomass of 70.9 grams. 

In 2008, 54 boluses were collected from the Seven Sisters Islands colony (7SIS).  From 

these samples, 12 species of fish were detected.  By raw mass, 66% of cormorant diet consisted 

of cisco.  Central mudminnow (7%), walleye (6%), and yellow perch (3%) made up the next 

highest proportions of diet (Figure 3.4, Table 3.4).  During the 2009 field season the 7SIS colony 

was a total loss due to bald eagle (Haliaeetus leucocephalus) predation before most chicks 

reached 3 weeks of age.  Only 4 boluses were collected in 2009, containing only 10 individual 

fish.  Of these 10 specimens, one was a northern pike which represented 59% of the total 
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biomass.  Five unknown whitefish, likely ciscoes, were summed to represent 24% of total 

biomass and 2 confirmed ciscoes equaled 11%, resulting in 35% of total biomass from 

Coregonid species.  An individual central mudminnow and walleye were also present, 

collectively representing the remaining 6% of biomass (Figure 3.5, 3.6, Table 3.5).  

Twenty-two boluses were used from the Noden Causeway colony (NOD) for analysis in 

2009.  Eleven fish species, one invertebrate species, and one vegetative species were detected.  

With 548 individual fish specimens collected, the mean number of fish per bolus, just over 25, 

was much higher than other colonies.  Ninespine and brook stickleback made up 36% and 26% 

of the biomass consumed, respectively.  Burbot (16%), central mudminnow (8%), and rock bass 

(7%) followed as the next largest proportions of diet by biomass (Figure 3.7, Table 3.6). The 

percent of diet by individuals was topped by ninespine stickleback at 51% and brook stickleback 

at 38%. Central mudminnow, at 8%, was the only other species to represent over 1% of the total 

number of individual fish consumed (Figure 3.8, Table 3.6).  Two separate boluses, collected on 

the same day, were found to contain kernels of corn (Zea mays), 18 kernels in total.  The source 

of this corn is unknown, but corn is a popular fishing bait commonly used for panfish and is also 

commonly found in wildlife feeding stations near the lake.  

During the 2009 season 97 boluses were collected at the Lake Mille Lacs (ML) colony 

and contained 320 individual fish.  Only five species of fish, in addition to two unidentifiable 

remains, were identified: cisco, yellow perch, walleye, rock bass, and one shiner species.  Cisco 

(41%), yellow perch (26%), shiners (17%), and walleye (14%) were the largest contributors to 

biomass consumed (Figure 3.9, Table 3.7).  Diet composition by number of individuals, resulted 

in shiners (44%), yellow perch (29%), cisco (18%), and walleye (8%) being the largest 

contributors.  One rock bass was identified, resulting in a biomass component of just over 1% 
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and an individual component of around 0.3%.  As stated, two unidentifiable fish were found, but 

represented only 0.26% of the total biomass (Figure 3.10, Table 3.7).  

During the 2009 season 8 boluses were collected from the J. Clark Salyer NWR colony 

(JCS) and contained 61 individual fish.  Of the 61 fish, 54 were found to be northern pike, 

representing 88% of the individual composition and 51% of the biomass composition.  Six 

ictalurids represented nearly all the remaining biomass (49%), save one unidentified specimen, 

which was likely a cyprinid based on its small size (.2% of biomass) (Figure 3.11, 3.12, Table 

3.8). 

Discussion 

  This study revealed a great deal of spatial heterogeneity in regards to diet.  Considerable 

variation exists among cormorant colonies, both those in close proximity to one another, and 

colonies separated by great distances.  As opportunistic feeders, spatial heterogeneity is to be 

expected and has been documented in a number of studies in North America (Neuman et al 

1997; Blackwell et al 1995).  An examination of previous studies of cormorant diet have 

revealed a wide range of taxa including over 250 different species of fish in over 60 families 

(Hatch and Weseloh, 1999).  This study in discovered over 23 species of fish, one species of 

invertebrate (Orconectes sp.), one vegetative species (corn), and one incident of gull chick 

consumption.   The finding of the corn and gull chick is, at the time of this writing, the only 

record of this behavior.   

With regards to the presence of popular sport fish (e.g., northern pike, walleye, and 

smallmouth bass) in the cormorant diet, the relative insignificance of these fish in the diet 

samples, with the exception of the JCS colony, indicates sport fish are not a major prey item for 

the cormorant.  At the riverine site, 88.5% of the individual prey items were found to be northern 
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pike.  This resulted in northern pike representing approximately 51% of the biomass consumed at 

this colony.  These findings, though limited, likely represent the prevalence of northern pike in 

this riverine ecosystem.  The presence of YOY walleye at NEP, NOD, 7SIS, and ML, though 

never above 20% of cormorant diet (by biomass), requires further examination to determine long 

term effects on the sport fishery.  Although a regional comparison can be made using Hundt’s 

2009 assessment of cormorant diet at Leech Lake, MN, where 2-8% of the total biomass 

consumed consisted of walleye.  With the exception of 2009 at NEP (19.6%) and ML (13.7%), 

levels of walleye consumption fell within or below Hundt’s 2-8% range 

 The diets of cormorants at the lacustrine colonies revealed a trend towards slow 

swimming and schooling species.  Central mudminnows, yellow perch, sticklebacks, shiners, 

cisco, and young-of-the-year (YOY) walleye were all common prey items.  In 2009 at NEP, 

central mudminnow increased to 38% of the total diet composition up from 27% in 2008 (by 

individuals).  At ML, the 2009 diet consisted of cisco representing 41% of the biomass 

consumed and Notropis species representing 44% of the total number of fish consumed.  At 

NOD in 2009, it was found that 88% of the individual fish consumed were sticklebacks, 

ultimately representing 62% of the total biomass consumed.  Panfish (e.g., yellow perch, 

bluegill, and rockbass) did contribute 43% of the diet by biomass in 2008 at NEP, with yellow 

perch making up nearly 36% of the total diet.    This large proportion of yellow perch is in line 

with studies done at Little Galloo Island in Lake Ontario, where 37% of the cormorant diet 

consisted of this species (Johnson et al. 2002), and well below Hundt’s highest level of 78% at 

Leech Lake (2009).  In contrast to the 2008 season however, yellow perch contributed to only 

7% of the NEP diet in 2009.   Differences in diet are typically consistent with changes in fish 

behavior during the breeding season, thus temporal heterogeneity in cormorant diet is to be 
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expected annually as well as seasonally (Neuman et al. 1997).  The presence of cisco in the 

NOD, 7SIS, and ML colony diets and absence at NEP (Lake Kabetogama contains no cisco), 

again reinforces the concept of cormorants as short ranged opportunistic feeders. 

 In conclusion, cormorant diets are spatially variable, which is reflective of the local fish 

communities.  To determine the effect of these diets on a fishery, a complete assessment of fish 

assemblages and fish diet is needed to evaluate the impact of cormorant diets on trophic level 

dynamics.  Without these data, all findings between increasing cormorant populations and fish 

declines are only correlative and lead to unnecessary culling and harassment programs.   A well-

documented study at Lake Oneida, one of the few studies to find cormorants to have a 

detrimental effect on sport fish, saw walleye and yellow perch comprise 40-82% of cormorant 

diet from 1995-2000 (Rudstam et al., 2004).  We did not see consumption of game fish approach 

these levels at the lacustrine colonies, but cormorant diet is far from the only determining factor 

of fish populations.  Natural fish reproduction, fish stocking actions, sport fishermen catch, 

seasonal variation, and commercial fishing are just a few possible factors that can affect fish 

populations from year to year.  It is perhaps in our fishery’s best interest to continue to monitor 

the cormorant population and its diet as an indicator of fishery health, rather than as a potential 

threat to it, as changes in cormorant diet were found to correlate to changes in the assemblages of 

benthic fishes in Penobscot Bay, Maine (Blackwell et al. 1995).  It is in this light that cormorant 

diets studies should be regarded, as a monitoring tool to be used by fishery managers as a method 

for assessing change while still considering the contribution of cormorant diet to fish population 

fluctuations.           
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Table 3.1  Length-weight regressions used to calculate biomass from bolus specimens 

(Carlander, 1969, 1977, 1997, Hundt, 2009, Robinson et al., 2010) 

Species Equation Base 

base(W) = a + b Base 

SL 

a b 

Amblopites rupestris logW=-4.574+3.057 log SL log -4.574 3.057 

Ameiurus melas logW=-4.049+2.801 log SL log -4.049 2.801 

Centrarchid sp. logW=-4.770+3.152 log SL log -4.77 3.152 

Coregonus sp. logW=-5.056+3.168 log SL log -5.056 3.168 

Culaea inconstans  lnW=-11.873+3.248 ln SL Ln -11.873 3.248 

Etheostoma sp. logW=-4.6576+2.8983 log SL log -4.6576 2.8983 

Esox lucius logW=-5.622+3.223 log SL log -5.622 3.223 

Lepomis sp. logW=-4.770+3.152 log SL log -4.77 3.152 

Lota lota logW=-5.203+3.065 log SL log -5.203 3.065 

Luxilus sp. lnW=-11.873+3.248 ln SL Ln -11.873 3.248 

Micropterus salmoides logW=-4.777+3.058 log SL log -4.777 3.058 

Notropis sp. lnW=-11.873+3.248 ln SL Ln -11.873 3.248 

Perca flavescens lnW=-11.038+3.062 ln SL Ln -11.038 3.062 

Percina sp. logW=-4.6576+2.8983 log SL log -4.6576 2.8983 

Phoxinus sp. lnW=-11.873+3.248 ln SL Ln -11.873 3.248 

Pimephales sp. lnW=-11.873+3.248 ln SL Ln -11.873 3.248 

Pungitius pungitius lnW=-11.873+3.248 ln SL Ln -11.873 3.248 

Sander canadensis lnW=-12.251+3.182 ln SL Ln -12.251 3.182 

Sander vitreus lnW=-12.251+3.182 ln SL Ln -12.251 3.182 

Umbra limi lnW=-10.238+2.829 ln SL Ln -10.238 2.829 
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 Table 3.2.  2008 diet of nestling double-crested cormorants at the NEP colony   

 

 

 

 

 

 

 

 

 

NEP 2008 

Species Scientific Name Individ. 
% by Diet 

Individuals 

Raw 

Mass 

% Diet 

by Mass 

Bluegill Lepomis macrochirus 2 0.1815 83.560 0.877 

Brook Stickleback Culea inconstans 130 11.797 154.42 1.621 

Burbot Lota lota 14 1.270 618.62 6.494 

Central Mudminnow Umbra limi 298 27.042 920.28 9.661 

Crayfish Orconectes sp. 20 1.815 135.24 1.420 

Dace sp. Phoxinus sp. 8 0.726 17.000 0.178 

Darter spp. Etheostoma spp. 6 0.5445 5.000 0.052 

Fathead Minnow Pimepahales promelas 126 11.434 242.340 2.544 

Lake Whitefish Coregones clupeaformis 18 1.633 907.580 9.527 

Northern Pike Esox lucius 6 0.545 276.900 2.907 

Rock Bass Ambloplites rupestris 8 0.726 593.100 6.226 

Sauger Sander canadensis 2 0.181 105.700 1.110 

Shiner sp. Luxilus sp. 6 0.5445 72.460 0.761 

Shiner sp. Notropis sp. 14 1.270 98.340 1.032 

Unknown Unknown Dace sp. 14 1.270 1146.400 12.034 

Unknown Centrarchid Centrarchidae 2 0.181 44.200 0.464 

Unknown Cyprinid Cyprinidae 16 1.452 24.960 0.262 

Unknown Dace sp. Cyprinidae 46 4.174 196.120 2.059 

Walleye Sander vitreus 252 22.868 468.800 4.921 

Yellow Perch Perca flavescens 114 10.3445 3414.980 35.849 

Totals   1102   9526   
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Table 3.3.  2009 diet of double-crested cormorants at the NEP colony  

NEP 2009 

Species Scientific Name Individ 
% Diet by 

Individuals 
Biomass 

% Diet by 

Mass 

Brook Stickleback Culea inconstans 253 22.979 336.801 4.844 

Burbot Lota lota 1 0.091 391.353 5.629 

Central 

Mudminnow Umbra limi 423 
38.420 1192.988 17.159 

Crayfish sp. Orconectes sp. 5 0.454 NA NA 

Dace spp. 

Phoxinus spp. (eos, 

neogaeus) 131 
11.898 224.208 3.225 

Darter sp. Etheostoma sp. 1 0.091 1.641 0.024 

Darter sp. Percina sp. 1 0.091 0.750 0.011 

Hornyhead Chub Nocomis biguttatus 4 0.363 56.306 0.810 

Lake Whitefish Coregonus clupeaformis 7 0.636 1572.829 22.623 

Minnow sp. Pimephales sp. 9 0.817 32.343 0.465 

Ninespine 

Stickleback Pungitius pungitius 6 
0.545 9.303 0.134 

Northern Pike Esox lucius 1 0.091 161.261 2.319 

Pearl Dace Margariscus margarita 5 0.454 27.826 0.400 

Rock Bass Ambloplites rupestris 7 0.636 523.822 7.534 

Sauger Sander canadensis 1 0.091 2.806 0.040 

Shiner sp. Luxilus sp. 2 0.182 21.952 0.316 

Shiner sp. Notropis sp. 53 4.814 268.317 3.859 

Smallmouth Bass Micropterus dolomieu 1 0.091 100.065 1.439 

Sunfish sp. Lepomis sp. 6 0.545 161.448 2.322 

Unknown 

Minnow Unknown Cyprinidae 1 
0.091 3.726 0.054 

Walleye Sander vitreus 118 10.718 1361.560 19.584 

Yellow Perch Perca flavescens 65 5.904 493.657 7.101 

Totals   1101   6944.961   
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Table 3.4.  2008 diet of double-crested cormorants at the 7SIS colony 

7SIS 2008 

Species Scientific Name Individ 
% Diet by 

Individuals 

Raw 

Mass 

% Diet by 

Mass 

Black Bullhead Ameiurus melas 2 0.457 57.540 1.918 

Brook Stickleback Culea inconstans 14 3.196 11.110 0.370 

Central Mudminnow Umbra limi 178 40.639 195.930 6.531 

Ciscoe Coregonus artedi 168 38.356 1983.580 66.116 

Dace sp. Phoxinus sp. 6 1.370 11.940 0.398 

Minnow sp. Cyprinid sp. 1 0.228 3.570 0.119 

Ninespine Stickleback Pungitius pungitius 1 0.228 0.650 0.022 

Northern Pike Esox lucius 1 0.228 27.980 0.933 

Shiner sp. Notropis sp. 10 2.283 90.210 3.007 

Smallmouth Bass Micropterus dolomieu 1 0.228 35.730 1.191 

Unknown Unknown 5 1.142 296.010 9.867 

Walleye Sander vitreus 23 5.251 188.340 6.278 

Yellow Perch Perca flavescens 28 6.393 97.560 3.252 

Totals   438   3000.150   

 

 

Table 3.5.  2009 diet of double-crested cormorants at the 7SIS colony 

7SIS 2009 

Species Scientific Name Individ 
% Diet by 

Individuals 
Biomass 

% Diet by 

Mass 

Central 

Mudminnow Umbra limi 1 
10.000 9.942 5.451 

Ciscoe Coregonus artedi 2 20.000 20.417 11.195 

Northern Pike Esox lucius 1 10.000 107.600 58.999 

Unknown 

Whitefish Unknown* (Coregonus sp.) 5 
50.000 43.200 23.687 

Walleye Sander vitreus 1 10.000 1.218 0.668 

Totals   10   182.377   
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Table 3.6. 2009 diet of double-crested cormorants at the NOD colony 

NOD 2009 

Species Scientific Name Individ 
% Diet by 

Individuals 
Biomass 

% Diet by 

Mass 

Brook Stickleback Culea inconstans 198 37.288 337.610 25.959 

Burbot Lota lota 2 0.377 207.823 15.980 

Central Mudminnow Umbra limi 44 8.286 97.841 7.523 

Corn (Kernels) Zea mays 18 NA 1.390 0.107 

Crayfish Orconectes sp. 3 0.565 NA NA 

Dace spp. Phoxinus spp.  5 0.942 49.120 3.777 

Darter sp. Percina sp. 1 0.188 0.300 0.023 

Ninespine 

Stickleback Pungitius pungitius 270 
50.847 469.652 36.112 

Rock Bass Ambloplites rupestris 2 0.377 87.836 6.754 

Smallmouth Bass 

Micropterus 

dolomieu 1 
0.188 45.372 3.489 

Unknown Minnow 

Unknown Cyprinid 

sp. 1 
0.188 1.882 0.145 

Walleye Sander vitreus 1 0.188 0.871 0.067 

Yellow Perch Perca flavescens 2 0.377 0.863 0.066 

Totals   548   1300.560   

 

 

Table 3.7.  2009 diet of double-crested cormorants at the ML colony 

ML 2009 

Species Scientific Name Individ 
% Diet by 

Individuals 
Biomass 

% Diet by 

Mass 

Ciscoe Coregonus artedi 58 18.069 2338.050 41.407 

Rock Bass Ambloplites rupestris 1 0.312 68.589 1.215 

Shiner sp. Notropis sp. 140 43.614 967.255 17.130 

Walleye Sander vitreus 25 7.788 774.671 13.719 

Yellow Perch Perca flavescens 94 29.283 1482.985 26.264 

Unknown Unknown 2 0.623 14.985 0.265 

Totals   320   5646.535   
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Table 3.8.  2009 diet of double-crested cormorants at the JCS colony 

JCS 2009 

Species 
Scientific 

Name 
Individ 

% Diet by 

Individuals 
Biomass % Diet by Mass 

Catfishes Ictalurid spp. 6 9.836 159.816 49.186 

Northern Pike Esox lucius 54 88.525 165.108 50.814 

Unknown Unknown 1 1.639 0.597 0.184 

Totals   61   325.520   

 

 

Fig 3.1.  NEP diet by raw mass, 2008 

 (* Species making up < 1% of raw mass) 
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Fig 3.2.  NEP diet by biomass, 2009 

 (* Species making up < 1% of total biomass) 

 

 

Fig 3.3.  NEP diet composition by individual prey item, 2009  

(* Species making up < 1% of total diet by number of individuals) 
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Fig 3.4.  7SIS diet by raw mass, 2008 

(* Species making up < 1% of raw mass) 
 

 

Fig 3.5.  7SIS diet by biomass, 2009 
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Fig 3.6.  7SIS diet composition by individual prey item, 2009   

 

Fig 3.7.  NOD diet by biomass, 2009 

(* Species making up < 1% of total biomass) 

Coregonus artedi 

20% 

Esox lucius 

10% 

Unknown 

(Coregonus sp.) 

50% 

Umbra 

limi 

10% 

Sander vitreus 

10% 

7SIS Diet Composition by Individual Prey Item (2009) 

Ambloplites     

rupestris 

Zea mays (corn 

kernels)* 

Culea inconstans 

26% 

Lota lota 

16% 

Micropterus 

dolomieu 

3% 

Orconectes sp.* 

Perca flavescens* 

Percina sp.* 

Phoxinus spp.  

4% 

Pungitius pungitius 

36% 

Sander vitreus* 

Umbra limi 

8% 

Unknown Cyprinid* 

 

0% 

NOD Diet by Biomass (2009) 



77 
 

 

Fig 3.8.  NOD diet composition by individual prey item, 2009  

(* Species making up < 1% of total diet by number of individuals) 
 

 

Fig 3.9.  ML diet by biomass, 2009 

(* Species making up < 1% of total biomass) 
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Fig 3.10.  ML diet composition by individual prey item, 2009  

(* Species making up < 1% of total diet by number of individuals) 
 

 

Fig 3.11.  JCS diet by biomass, 2009  

(* Species making up < 1% of total biomass) 
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Fig 3.12.  JCS diet composition by individual prey item, 2009 

(* Species making up < 1% of total diet by number of individuals) 
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CHAPTER 4: CONCLUSIONS 

 Double-Crested Cormorants (Phalacrocorax auritus), a largely reviled species by some 

natural resource user groups, has long been condemned due to its perceived impacts to both sport 

and commercial fisheries.  This study was able to reinforce the numerous existing studies 

demonstrating the highly opportunistic nature of cormorant foraging behavior, and hopefully 

alleviates some concern among resource user groups, notably sport fishermen, commercial 

fishermen and aquaculturists.  This study also provided an opportunity to expand our 

understanding of the development of the immune and stress responses, as well as the impact of 

ecological factors on the growth of altricial nestlings.   

 Cormorants have been persecuted in North America for centuries, and it was not until 

their near extirpation in the 1970’s did this species gain a modicum of legal protection.  Largely 

due to congressional protection and the banning of the pesticide DDT, cormorant populations 

were able to recover and perhaps expand their range beyond pre-World War II levels. With this 

rapid population and range expansion came renewed interest and condemnation of this species.  

In 1999, Northeast Pine Island on Lake Kabetogama, MN saw the establishment of a cormorant 

colony.  Lake Kabetogama, a popular sport fishery fully contained within Voyageurs National 

Park sees a large contingent of sport fishermen each year.  As the cormorant colony continued to 

grow, concern from returning fishermen was voiced, explaining beliefs that growing cormorant 

numbers within the national park were resulting in lower catch rates among fishermen.  This 

belief is far from rare, and is often the genesis for studies examining cormorant diet, this study 

being among them. 

 This study examined three facets of cormorant diet: species composition, biomass 

composition, and caloric content using a non-invasive bolus examination.  Through this diet 
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analysis, I was able to accomplish two goals.  Firstly, I was able to demonstrate a large degree of 

spatial and temporal heterogeneity in cormorant diet, and secondly I was able to indicate the 

importance of caloric content to developing nestlings.  Spatial heterogeneity was evident, as 

colonies found in the boarder waters region of Minnesota and Ontario (Northeast Pine Island, 

Seven Sisters, and Noden Causeway) were found to possess unique diets in regards to both 

species composition and caloric content.  These colonies, although in close proximity to one 

another, demonstrated diet compositions reflective of their own microhabitat, with the Noden 

Causeway colony showing a large proportion of gasterosteids, Seven Sisters showing a large 

proportion of coregonids (2008), and Northeast Pine Island showing a large diversity of prey 

species dominated by lake whitefish (Coregonus clupeaformis), walleye (Sander vitreus), and 

central mudminnows (Umbra limi).  The lack of cisco (Coregonus artedi) as a diet component at 

Northeast Pine Island is notable, as this species is not commonly found in Lake Kabetogama, 

indicating adult birds were foraging primarily on this body of water.  This assessment was also 

validated with a concurrent radio telemetry project.  If this degree of diet diversity among 

colonies in close proximity to one another was seen, it is quite logical to expect to see this in the 

two remaining colonies separated by a greater distance (Mille Lacs and J. Clarke Salyer).  This 

logic was confirmed, as again the diet of these two colonies greatly reflected their microhabitats, 

with the riverine J. Clarke Salyer colony providing diet samples consisting of nearly 100% 

ictalurids and northern pike (Esox lucius) and the Mille Lacs colony showing a diet consisting of 

a large number of individuals within the genus notropis, as well as a large biomass component of 

coregonids, yellow perch (Perca flavescens), and walleye.         

 Temporal heterogeneity in diet was most obvious when comparing the consecutive years 

of sampling at the Northeast Pine Island colony, with the stark discrepancies in yellow perch 
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consumption being immediately evident.  A reduction of 29% in the total mass of yellow perch 

consumed in a single year likely denotes a change in fish community, possibly due to a low 

recruitment level of a particular age class, or a host of other biotic and abiotic factors limiting the 

cormorant’s ability to prey on this species in the second year of the study. 

 Ultimately, one must be watchful when drawing conclusions from diet data alone.  

Without a thorough assessment (i.e. including all trophic levels) of the current status of the 

fishery in question, we are unable to directly test the impact of cormorant diet on said fishery.  

Conclusions we can draw however, based on the highly varied nature of the findings in this 

study, include the existence of short range feeding flights and opportunistic feeding behavior.  If 

this was not the case we would expect to see similar diets among all colonies as the birds would 

be sharing from the same pool of resources.  In a separate examination of sportfish predation, 

although cormorants were found to prey on a number of sportfish species, the rates of predation 

were not found to be comparable to those studies in which impacts to the fishery were the result 

of cormorant diet.  So although this study was unable to directly test for deleterious effects on 

fishery health, I believe the combination of findings should help assuage concerns regarding the 

impact of this species and their associated colonies.  I also believe cormorant diet assessments 

can be an effective way for fishery managers to monitor the health of their fishery, as sudden 

changes in diet composition may indicate important changes in the local ecosystem.  

 The second aspect of this study was two-fold.  First, I examined the effect of 

environmental stressors on growth, and second I tested for delayed development and 

hyporesponsiveness in the stress response.  The examination of growth and the effects of 

environmental stressors used three specific growth rates: wing digit, tarsus, and mass.  I used a 

correlative approach to estimate stress levels by using a heterophil to lymphocyte ratio (HL), as 
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corticosterone measures possess inherent difficulties when used in field studies, especially 

among colonial species.  Heterophil to lymphocyte ratios were then examined with a fit model 

using three environmental stressors as explanatory variables: endoparasite load, ectoparasite 

load, and diet quality (Calories•bolus
-1

).  These environmental factors were then combined with 

HL as modeling parameters to test their effects on the aforementioned growth metrics. 

 The fit model examining the effects of environmental stressors on HL resulted in a model 

explaining a significant amount of variation (P<0.05).  Although no single modeling parameter 

was found to be statistically significant, it appears the interaction and combination of 

environmental stressors does affect the HL ratio.  A subsequent evaluation of HL looked at the 

effect of age to test for delayed development of the stress response pathway.  This test being 

important as it raises the issue of the development of the stress response pathway and immune 

response in regards to the differentiation between altricial and precocial species. This is 

significant, as it has been postulated that altricial species may delay the development of the stress 

response to help mitigate the negative effects associated with elevated levels of corticosterone, as 

they are unable to physically ameliorate their condition when stressed.  An ANOVA did reveal 

significant variation in HL among different age classes, with the first two weeks showing the 

highest HL ratio.  This is contrary to what I expected to find, if there is in fact a period of 

delayed development.  Although contrary, it does not negate the possibility of a period of 

hyporesponsiveness or delayed development because heterophils and lymphocytes are ultimately 

important components of the immune system, and the HL levels witnessed may be the result of a 

developing immune system rather than a developing stress response pathway.  There is also a 

possibility of maternal effects, passed through the egg, skewing early HL levels.  These factors 
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being stated, I question the utility and accuracy of this method to assess stress levels in young 

altricial nestlings.  

In modeling the effects of environmental stressors and HL on growth, it was revealed that 

a significant amount of variation was explained across all three growth metrics.   Specifically, 

diet quality in conjunction with endoparasite load (endoparasite•bolus
-1

) were found to be 

statistically significant modeling parameters when testing the correlation to wing digit growth, 

and diet quality alone was found to be a significant modeling parameter when examining the 

specific growth rate of the tarsus.  Again it should be noted that the lack of significance from HL 

as a modeling parameter may be an indication of this methodologies shortcomings in terms of 

truly representing stress levels.   

 At the end of this study, I have accomplished several goals.  I determined the diet 

composition of double-crested cormorant nestlings at five distinct colonies and concluded that 

diet is highly variable across both temporal and spatial scales.  I have determined that Caloric 

content is important to developing nestlings and is positively correlated with both wing digit and 

tarsus growth rates.  Caloric content in conjunction with other environmental stressors (e.g. 

endoparasite load) are also correlated to growth rates, with endoparasites in particular 

demonstrating an inverse correlation to wing digit SGR.  I was able to detect significant changes 

in HL at various age classes (0-4 weeks of age), but I was unable to detect a delay in the 

development of the stress response pathway. 

In conclusion, I believe it is important to question and examine the importance of these 

findings in terms of potential scientific and management implications.  At a broad scale, I believe 

diet quality is of ultimate importance when it comes to the growth and development of young 

birds.  This may be valuable information especially when it pertains to imperiled altricial species 
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dealing with short windows of time to mature.  Low quality diets may not allow for sufficient 

growth necessary to be an effective self-sustaining adult, ultimately resulting in a lower level of 

fitness for the individual, and possibly the species.  Also in terms of diet as an environmental 

stressor, we can conclude that ecological factors are indeed correlated to the development of 

nestlings.  This information may allow managers to assist populations by mitigating 

environmental stressors, or may diminish nuisance populations by contributing stressors to the 

system.  At a narrower scale, in reference to cormorants in particular, the examination of diet 

composition should diminish concerns among both sport and commercial fishermen.  The 

predation of sportfish was consistently low at the popular fishing lakes, and it appears that adults 

in general forage in close proximity to their colony.  I believe these findings should help prevent, 

or at least deter, aggressive culling programs that remove cormorants to help restore or maintain 

a fishery.  The existence of cormorants at a fishery may in fact be beneficial for two reasons.  

Firstly, fishery biologists can analyze cormorant diet to monitor for abrupt changes in fish 

assemblages, and secondly cormorants may provide biological controls by diminishing rapid 

population expansions of certain fish species (e.g. exotic fishes).  Due to the highly opportunistic 

nature of cormorant foraging behavior, any prey species that becomes more abundant will 

become proportionally more abundant in cormorant diet.  Finally, it is in this light I believe we 

need to view this species.  Not as a potential nuisance, but as a species with great potential to 

help monitor natural systems, maintain healthy fisheries, and further our understanding of 

ecological effects and the stresses they induce on wild populations of altricial birds.   

 

 


