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ABSTRACT 

 Maternally-derived hormones are known to influence the growth and development of 

offspring.  The differential deposition of these maternally-derived hormones into egg yolk is one 

way by which females can alter and impact their chicks’ survival.  Yolk constituents, especially 

testosterone, have been described for a wide variety of species.  However, few studies have 

focused on multiple maternally-derived hormones regulated by independent axis in the endocrine 

system, these of which have mainly focused on corticosterone and testosterone.  We determined 

within and among female variation in testosterone and triiodothyronine concentrations in egg 

yolks of two free-living Franklin’s gull (Leucophaeus pipixcan) populations.  We found that 

testosterone, not triiodothyronine, concentrations increased within the clutch with the third laid 

egg having significantly higher concentrations than the first laid egg.  We also found that both 

testosterone and triiodothyronine concentrations increase within the breeding season with late 

season clutches having significantly higher hormone concentrations than early season clutches. 
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TESTOSTERONE AND TRIIODOTHYRONINE IN FRANKLIN’S GULL EGGS
1
 

Introduction 

Changes in resource allocation to eggs are one way female birds can alter and influence 

their young during development in the egg, and after hatching.  For example, maternal androgens 

can increase the rate of growth and development of embryos as well as hatchlings (Eising et al. 

2001).  Variation in maternally-derived constituents of eggs is manifested both within and among 

females.  If egg constituents affect offspring performance, this implies that offspring survival 

may differ relative to same-clutch siblings, as well as unrelated individuals in the same cohort. 

The patterns of within-female variation of maternally-derived hormones in avian yolks 

have been studied in a variety of species; however, no consistent pattern is evident.  Most of the 

research on, and understanding of, maternally-derived hormones in egg yolks is based on 

patterns of yolk testosterone.  Testosterone concentrations increase across the laying sequence in 

Canary (Serinus canaria) (Schwabl 1993; Schwabl 1996), Black Headed Gull (Larus ridibundus) 

(Groothius and Schwabl 2002; Müller et al. 2004), European Starling (Sturnus vulgaris) (Pilz et 

al. 2003), Yellow-legged Gulls (Larus michahellis) (Rubolini et al. 2011), and Black Tailed 

Gulls (Larus crassirostris) (Tomita et al. 2011).  Testosterone concentrations decrease across the 

laying sequence in Zebra Finch (Poephila guttata) (Schwabl 1993; Gil et al. 1999), Cattle Egret 

(Bubulcus ibis) (Schwabl et al. 1997), Pied Flycatcher (Ficedula hypoleuca) (Tobler et al. 2007), 

Spotless Starling (Sturnus unicolor) (Lopez-Rull et al. 2010), and Screech Owl (Megascops asio) 

(Hahn 2011).  Concentrations increase then decrease across the sequence in American Coot 

(Fulica americana) (Reed and Vleck 2001) and Canada Goose (Branta canadensis maxima) 

                                                 
1
 The material in this chapter was co-authored by Ethan Boertje, Wendy Reed, Mark Clark, and Jeff Kittilson.  Ethan 

Boertje conducted the research and the writing of the initial draft of this manuscript.  Wendy Reed and Mark Clark 

provided substantial revisions of this manuscript.  Jeff Kittilson provided help with troubleshooting ELISA work as 

well as discussion throughout the research. 
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(Boonstra et al. 2009).  There is no trend in Tree Swallow (Tachycineta bicolor) (Wittingham 

and Schwabl 2002).  There are two hypotheses to explain the adaptive consequences of these 

changes in testosterone across the laying sequence: 1) the hatching asynchrony adjustment 

hypothesis (Groothuis et al. 2005b), and 2) the brood reduction hypothesis (Lack 1947).  The 

hatching asynchrony adjustment hypothesis proposes that females increase testosterone levels in 

the last-laid egg to mitigate competitive disadvantages faced by later-hatching chicks due to 

hatching asynchrony (Groothuis et al. 2005b), while the brood reduction hypothesis proposes 

that, under stressful environmental conditions, some species decrease the testosterone level 

across the laying sequence, which increases the likelihood of siblicide against chicks from later-

laid eggs (Schwabl et al. 1997). 

Testosterone is an anabolic steroid hormone that is known to increase growth rates and 

development of hatchlings.  Higher concentrations of testosterone in the later-laid eggs of a 

clutch are a potential mechanism by which a female can accelerate growth and development of 

the corresponding later-hatching chicks to mitigate the effects of hatching asynchrony.  Higher 

levels of testosterone have been shown to increase begging behavior, feeding bouts, pecking 

rates and growth of the hatching muscle (musculus complexus), resulting in larger chicks (Eising 

and Groothius 2003; Noguera et al. 2013; Lipar and Ketterson 2000).  Higher levels of 

testosterone can also have negative consequences for offspring.  For example, Black-Headed gull 

eggs with experimentally increased testosterone concentrations produced chicks with decreased 

immune system function at hatching (Groothius et al. 2005a).  This suggests that there may be a 

trade-off between enhanced growth versus diminished immune function associated with 

testosterone concentration in the yolk.   
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Females may also pay costs of egg yolk hormones, which can play a role in determining 

among-female differences in yolk hormones.  Female Canaries on a low quality diet tend to have 

less testosterone in their eggs compared to females on a high quality diet, suggesting costs for 

females to deposit testosterone into the yolk of her eggs (Vergauwen et al. 2012).  In some 

species, females nesting in higher densities have higher levels of yolk hormones in their eggs 

(Schwabl 1997; Reed and Vleck 2001).  Furthermore, yolk testosterone levels can be heritable 

from mother to daughter (Ruuskanen et al. 2016b), suggesting that both current environmental 

conditions and genetic factors affect maternal hormone deposition, and the quality of the chicks 

produced from the eggs. 

While our understanding of maternally-derived hormones has largely developed from 

studies of androgens such as testosterone, recent studies have focused on effects of thyroid 

hormones.  Two thyroid hormones, triiodothyronine (T3) and thyroxine (T4), vary with 

photoperiod and regulate migratory behavior in birds (Pant and Chandola-Saklani 1993; 

Wingfield et al. 1996; Perez et al. 2016).  Because these hormones vary seasonally, and influence 

migratory behavior, the levels of these hormones may differ in eggs laid during different periods 

of the breeding season.  When full clutches of Great Tits (Parus major) were experimentally 

manipulated using a thyroid injection into the egg yolk, prior to the initiation of incubation, the 

thyroid treatment increased growth rates in males but decreased growth rates in females, and 

there were no treatment effects on motor coordination, stress handling, or metabolic rates of the 

nestlings (Ruuskanen et al. 2016a).  Hence, maternally-derived thyroid hormones in eggs may 

have similar growth effects as maternally-derived androgens, but are produced through a 

different hormone axis (hypothalamus-pituitary-thyroid axis as opposed to the hypothalamus-

pituitary-gonad axis) in the mother. 
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Seasonal differences in the timing of egg production impact offspring fitness.  Within-

season differences in chick growth, development and survival have been ascribed to changing 

environments (e.g., food availability, temperature, predator exposure) (reviewed in Sockman et 

al. 2006).  However, Franklin’s gull (Leucophaeus pipixcan) chicks from early and late season 

eggs reared in a common garden experiment, exhibited differential growth and development 

depending on when during the season the egg was produced (with chicks from late-season eggs 

gained mass and grew wing feathers faster than chicks from early season eggs) (Reed and Clark 

2016).  These results suggest that seasonal differences in offspring performance can be 

programmed at the egg stage, either through maternal investments in egg components or possibly 

genetic differences associated with season.  

To explore how maternally derived hormones may contribute to seasonal differences in 

offspring growth and development in Franklin’s gulls we describe patterns of within and among 

female variation in maternally-derived yolk testosterone and triiodothyronine levels in their eggs.  

We explore this variation as a consequence of variation in laying date and laying sequence for 

two free-living gull populations. 

Methods 

Egg Collection 

 We collected freshly-laid eggs in 2015 and 2016 from three Franklin’s gull colonies 

located in North Dakota to characterize variation within and among clutches.  In 2015 we located 

nests with a single egg, used a floatation method (Nol and Blokpoel 1983; Ackerman and Eagles-

Smith 2010) to determine whether the egg was laid that day and if it was, we removed the egg 

from the nest and replaced it with a marked egg from another female.  We returned to the nest 

after 24 hours to check for an additional egg, which was similarly removed and replaced with 
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another marked egg from a different female.  We continued visiting the nest daily until the 

female stopped producing eggs.  Following this protocol, we collected 24 eggs from three-egg 

clutches of eight females nesting at a large wetland (48
o
09’N, 98

o
25’W) in Nelson County, North 

Dakota from May 19, 2015 to May 22, 2015 (when nest initiation in the colony was at the peak).  

In 2016 we collected freshly-laid (verified by flotation), first eggs from nests at the beginning of 

the nest initiation period (i.e. early season, within the first week of nest initiation in the colony) 

and nearing the end of the nest initiation period (i.e. late season, approximately in the last week 

of nest initiation in the colony) at two nesting colonies in North Dakota.  We collected 12 eggs 

on May 20, 2016 and 15 eggs on May 27, 2016 at a colony located on J. Clark Salyer National 

Wildlife Refuge (NWR) (48
o
61’N, 100

o
71’W) in McHenry County, North Dakota.  We collected 

10 eggs on May 21, 2016 and 11 eggs on May 28, 2016 at a colony located on a large wetland 

(48
o
98’N, 102

o
68’W) in Burke County, North Dakota.  We measured mass (±0.01 g), length 

(±0.1 mm) and breadth (±0.1 mm) of all eggs within 12 hours of collection, separated the yolk 

from the albumen using a separation spoon, and stored the yolk at -20 C until hormone analyses 

were conducted. 

Testosterone Analysis 

 We determined testosterone concentrations in yolk using enzyme-linked immunosorbent 

assay (ELISA).  Yolk samples that were serially diluted resulted in a displacement curve that was 

parallel to the given testosterone standard.  Testosterone (T) was extracted from the yolk 

following the protocol used by Schwabl (1993), but modified for use with Franklin’s gull yolk 

and an ELISA.  In brief, we mixed approximately 17 mg of yolk with 1 ml of double distilled 

water, and placed the sample in the fridge overnight.  On the second day of extraction, the 

sample was extracted three times in 4.0 ml of petroleum ether and diethyl ether (30:70, vol/vol), 
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the sample was snap frozen, and the ether phase was decanted and dried down under a stream of 

N2.  The precipitate was suspended in 1.0 ml of 90% ethanol and stored overnight at -4º C. On 

the third day of extraction we added 2.0 ml of hexane to the ethanol phase and collected the 

lower phase (this step was repeated twice more for a total of three washes) then centrifuged at 

900 rcf for 5 minutes, decanted into a new tube, and dried down under N2.  We suspended the 

precipitate in 550 µl of assay buffer supplied with the ELISA kit (Enzo Life Sciences, 

Farmingdale, NY), then stored the suspension at 4º C overnight.  Testosterone levels in the 

suspension were then measured following the ELISA manufacturer’s protocol (Enzo Life 

Sciences, Farmingdale, NY).  We converted T levels to concentrations per mg wet yolk based on 

the amount of yolk used in the extraction. 

Triiodothyronine Analysis 

We determined triiodothyronine concentrations in yolk using ELISA.  Yolk samples that 

were serially diluted resulted in a displacement curve that was parallel to the given 

triiodothyronine standards.  Triiodothyronine (T3) was extracted from the yolk following the 

protocol used by Ho and colleagues (Ho et al. 2011) with modifications for use with Franklin’s 

gull eggs and an ELISA.  Briefly, we placed approximately 500 mg of yolk into a 15 ml glass 

conical tube, added 2.0 ml of methanol, centrifuged at 1200 rcf for 10 min, and decanted the 

supernatant.  The yolk was suspended in 1.0 ml of methanol, centrifuged at 1200 rcf for 10 min, 

and decanted into a separate tube.  We added 5.0 ml of chloroform and 0.5 ml of 2 mol 

ammonium hydroxide to each tube, collected the upper phase (combining both upper phases, 

from the same samples, into the same tube) and dried the sample in a vacuum concentrator 

(Savant model SVC100H).  We suspended the precipitate in 1.0 ml of 2 mol ammonium 

hydroxide, centrifuged at 1200 rcf for 10 min, and decanted into a new tube to which we added 
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1.0 ml of chloroform, then centrifuged at 1200 rcf for 10 min, collected the upper phase and 

dried the sample in a vacuum concentrator.  We suspended the precipitate in 170 µl of phosphate 

buffer solution and stored the sample at 4º C overnight.  Triiodothyronine levels in the suspended 

precipitate were then measured using an ELISA kit (Monobind Inc, Lake Forest, CA) in which 

we modified the manufacturer’s protocol by lowering the concentration of Working Reagent A 

T3 enzyme conjugate solution from 100 µl per well to 75 µl per well and lengthening the 

incubation period from 1 hour to 2 hours.  We converted T3 levels to concentrations per mg wet 

yolk based on the amount of yolk used in the extraction. 

Statistical Analysis 

We analyzed within-clutch and among-clutch variation in T and T3 concentrations in 

yolk using general linear models.  Concentrations of T and T3 followed a log-Normal 

distribution, so we log-transformed concentrations for statistical analysis.  For within-clutch 

variation, we modeled (log-transformed) T (and T3) concentrations using a model with a fixed 

effect of position (as a categorical variable) in the laying sequence and a random effect for 

female, a model with a fixed effect of days since the start of laying and a random effect for 

female.  Within-clutch differences in T and T3 concentrations among positions in the laying 

sequence were compared by a post-hoc Tukey’s HSD test.  For among-clutch variation, we 

modeled T (and T3) concentration using a model with a fixed effect of season (i.e., early- versus 

late-season), location and the interaction between season and location.  However, effects of 

location and the interaction of season and location were not significant, so we present results 

from a reduced model in which only the effect of season is included.  We also examined 

correlation between T and T3 concentrations in the among-clutch analysis using the Pearson 
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correlation coefficient.  We assumed statistical significance at α=0.05.  All statistical analyses 

were conducted using JMP 13 for Windows (SAS Institute Inc., Cary, NC, USA). 

Results 

 We extracted and successfully quantified T and T3 concentrations in the yolks from 72 

eggs.  In the 2015 collection, we successfully determined T and T3 concentrations in all 24 eggs 

(from eight clutches containing three eggs each) for analyses of within-clutch variation.  The 

coefficient of variation between sample duplicates was < 12% for all the samples.  In the 2016 

collection, we successfully determined T concentrations in 48 of the first-laid eggs (12 from J. 

Clark Salyer NWR on May 20, 10 from the Burke County site on May 21, 15 from J. Clark 

Salyer NWR on May 27, and 11 from the Burke County site on May 28).  However, we only 

obtained T3 concentrations for 46 of these eggs because the coefficient of variation between 

duplicates in one of the May 28 samples from Burke County exceeded 15% and we were unable 

to perform the T3 extraction on one of the May 27 samples from J. Clark Salyer.  The 

coefficients of variation between duplicates for all other samples were < 13%.  Further, Inter-

assay variation in T and T3 levels were 5.1 and 5.9 respectively.  Intra-assay variation in T and 

T3 ranged from 3.7 to 3.3 and 8.3 to 6.1 respectively. 

 Concentrations of T in yolk increased with position in the laying sequence, but 

concentrations of T3 did not differ with position.  Position in the laying sequence and female 

explained over 45% of the variation in log-transformed T concentrations (F2,14= 4.61, P= 0.029, 

r
2
= 0.47), with less than 17% of the variance due to the female random effect.  The Tukey HSD 

test indicated log concentration of T in the first egg of the clutch (least-square mean ± SE of 1.97 

± 0.26) was not different from log concentration of the second egg (2.36 ± 0.26), but was 

significantly less than log concentration of T in the third-laid egg (2.98 ± 0.26) (Figure 1A).  
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Position in the laying sequence and female did not explain a significant amount of variation in 

log-transformed T3 concentrations (F2,14= 3.23, P= 0.070, r
2
= 0.45), with less than 19% of the 

variation due to the female random effect (Figure 1B).  Testosterone levels increase in the egg 

from the start of laying (F1,22= 8.43, P= 0.008, r
2
= 0.27; Figure 2) and also increase significantly 

since the previous egg was laid (F1,22= 6.84, P= 0.016, r
2
= 0.24). 

 

Figure 1. Within clutch concentrations of A) testosterone and B) triiodothyronine (filled circles 

represent observed values, open circles represent means, and bars are SE). 
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Figure 2. Within clutch concentrations of testosterone by days elapsed from the start of laying 

(filled circles represent observed values and line represents line of best fit). 

 

Maternally derived yolk T and T3 concentrations increased across the laying season.  

Log-transformed concentrations of T ranged from 0.84 to 3.61 pg/mg yolk, with concentrations 

from eggs laid early (mean ± standard error of 1.95±0.12 pg/mg yolk) significantly lower than 

concentrations from eggs laid late in the season (2.37±0.11 pg/mg yolk) (F= 6.46, P= 0.0145, r
2
= 

0.12; Figure 3A).  Log-transformed concentrations of T3 ranged from -0.50 to 0.37 pg/mg yolk 

with concentrations from eggs laid early (mean ± standard error of -0.166±0.04 pg/mg yolk) 

significantly lower than concentrations from eggs laid late in the season (-0.029±0.04 pg/mg 

yolk) (F= 5.19, P= 0.028, r
2
= 0.11; Figure 3B).  Although concentrations of both T and T3 

increased significantly across the season, there was no significant correlation between 

concentrations of T and T3 (F1,44= 0.505, P=0.481, r
2
= 0.011). 

Log T per mg yolk= 1.96+0.307*Days 

Elapsed from Start of Laying 
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Figure 3. Among clutch concentrations of A) testosterone and B) triiodothyronine (filled circles 

represent observed values, open circles represent means, and bars are SE). 

 

Discussion 

In Franklin’s gull eggs, we found different patterns of within-clutch variation in T and 

T3, but similar patterns of within-season variation in maternally-derived T and T3 hormone 



 

12 

 

levels.  Theses hormones are regulated by separate hormone axes, yet both hormones affect 

growth and development.  Yolk T levels increase across the laying sequence in Franklin’s gull, 

but yolk T3 levels showed no pattern across the laying sequence.  Moreover, T concentrations in 

yolk increased from the start of laying as well as from the time the previous egg was laid.  Both 

T and T3 concentrations in egg yolks increased as the breeding season progressed, but the 

concentrations were not correlated with each other.  That is, females depositing high 

concentrations of T in an egg do not necessarily deposit high concentrations of T3 in the egg.  

These results suggest that both T and T3 may act as independent mechanisms, regulated along 

separate hormone axes in the mother, to facilitate increased growth and development rates of 

Franklin’s gull chicks produced later in the breeding season (Reed and Clark 2016). 

The pattern of increasing T concentrations across the laying sequence supports the 

hatching asynchrony adjustment hypothesis in Franklin’s gull.  Franklin’s gull chicks hatch over 

a period of 2-3 days, with the last chick experiencing greater competition for food and nest space 

than the older siblings (Burger and Gochfeld 2009).  In other gull species, higher levels of yolk T 

increase chick aggression, begging behaviors, and feeding rates (Eising and Groothius 2003).  

Increased aggression may be especially critical for survival of the youngest chick when 

competing with their older, larger siblings. 

Yolk T concentrations were not only highest in the last-laid eggs, but also increased as 

the days elapsed between egg laying increased.  For example, when 48 hours elapsed between 

eggs one and two for a female, T concentrations present in her second egg were relatively higher 

than concentrations in the second egg of a female for which 24 hours elapsed between eggs one 

and two.  The mechanism by which yolk T is deposited in eggs is unclear, although passive 

diffusion from the gonadal tissues and blood vessels surrounding the developing yolk is one of 
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the most parsimonious explanations (reviewed in Groothius and Schwabl 2008).  The pattern of 

yolk T in gull eggs suggests that yolks of females who skipped a day may have been exposed to 

T in the gonad for a longer period of time, allowing more time for diffusion of T from the blood 

to the yolk to reach equilibrium, or that by skipping a day these females have higher 

concentrations of T in circulation driving the diffusion of T into yolks.  It is thought that the 

surge of luteinizing hormone (LH) associated with ovulation and T secretion creates a positive 

feedback loop and may ultimately determine the amount of T that diffuses into the yolk 

(Okuliarova et al. 2017).  While plasma T concentrations are changing on both longer (seasonal) 

and shorter (ovulation) time scales, plasma T3 concentrations have been shown to increase a 

month before the beginning of laying and are higher in early breeding birds than in late breeding 

birds during this time, suggesting that T3 concentrations in egg yolks may only change across 

longer time scales (Chastel et al. 2003). 

The patterns of T and T3 in egg yolks are likely reflection the seasonal and short term 

dynamics of the different hormone axes represented.  The hypothalamus-pituitary-gonad axis 

initiates activity through gonadotropin releasing hormones (GnRH) from the hypothalamus 

stimulating follicle stimulating hormone (FSH) and LH from the pituitary to affect hormone 

secretion from the gonad and resulting changes in behaviors and physiology associated with 

reproduction, in addition to short-term hormone changes associated with ovulation.  The 

hypothalamus-pituitary-thyroid axis acts through thyrotropin releasing hormone (TRH) from the 

hypothalamus stimulating thyroid stimulating hormone (TSH) from the pituitary and T3 from the 

thyroid gland.  This axis is also sensitive to seasonal changes associated with molting and 

migration (Perez et al. 2018), however there is little evidence that the T3 axis exhibits shorter 

term changes associated with ovulation or egg production.  Thyroid hormone secretion has been 
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associated with differences in early and late nesting house sparrows (Chastel et al. 2003).  In 

house sparrows, pre-breeding plasma T3 levels were higher in birds that ended up breeding early 

in the season than in birds that ended up breeding late in the season (Chastel et al. 2003).  These 

data suggest that there could be differences at the time of egg production.  The T axis seems to 

be working on both a short-term time scale associated with ovulation as well as a long-term scale 

associated with the length of the breeding season, whereas the T3 axis only seems to change on 

the longer time scale of season.  In our study, all eggs were collected prior to the summer 

solstice, during the period of increasing day length, but may reflect changes in adult physiology 

as birds transition from breeding to migration. 

The longer-term changes in T and T3 drive seasonal transitions of adult behavior and 

physiology with consequences for offspring development.  Although less studied than T, T3 

appears to have similar positive effects for growth and development.  Triiodothyronine is 

important for molt regulation and migration processes and has also been shown to decrease 

incubation time in turtles (McGlashan et al. 2017).  Triiodothyronine is also critical for 

embryonic growth and differentiation of several tissues associated with the muscular, skeletal, 

and nervous system (Yamaguchi et al. 2017). 

Higher levels of T3 in late season eggs may be one mechanism by which these embryos 

program faster growth and development.  Later hatching chicks have less time to mature and 

grow before having to initiate migration.  Therefore, shorter incubation periods combined with 

higher T3 and T levels may help these chicks mitigate the effects of hatching late in the season.  

The seasonal increase in both T3 and T in Franklin’s gull egg yolks and the general growth 

enhancing effects of these hormones are consistent with patterns of increased growth rate and 

development in chicks hatching from eggs laid later in the season (Clark and Reed 2012; Reed 
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and Clark 2016).  For example, Franklin’s gull chicks hatched later in the season have shorter 

incubation times (less by ~ 24 hours) (Clark and Reed 2012).  This is consistent with higher T3 

levels we observed in later-laid eggs.  When gull chicks from early and late-season eggs were 

raised under common garden conditions, late season chicks exhibited faster growth in both body 

mass and wing area (Reed and Clark 2016).  Given the influence of T3 on molt in adults, 

increased T3 levels in late season eggs could play a role in this faster rate of development. 

There have been a limited number of studies focusing on multiple maternally-derived 

hormones regulated by independent axes in the endocrine system and these have largely focused 

on corticosterone and testosterone.  There is also very little information in the field on 

triiodothyronine with regards to seasonal trends of concentration in eggs and the impact T3 plays 

on the growth and development of embryos and chicks.  We observed similar seasonal patterns 

of testosterone and triiodothyronine, even though concentrations of the two hormones were not 

correlated.  We also observed an increase of testosterone within the clutch.  These patterns are 

consistent with selection for fast offspring growth later in the season for species with a distinct 

breeding period.  Within and among clutch differences in hormones needs to continue to be 

studied and should expand to look at new hormones with possible links to growth and 

development in both embryos and chicks. 
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