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ABSTRACT 
 

This paper presents a bracketing method for all the 63 games in NCAA Division I 

Women’s basketball tournament. Least squares models and logistic regression models for Round 

1, Round 2 and Rounds 3-6 were developed, to predict winners of basketball games in each of 

those rounds for the NCAA Women’s Basketball tournament. For the first round, three-point 

goals, free throws, blocks and seed were found to be significant; For the second round, field 

goals and average points were found to be significant; For the third and higher rounds, assists, 

steals and seed were found to be significant. A complete bracket was filled out in 2014 before 

any game was played.  When the differences of the seasonal averages for both teams for all 

previously mentioned variables were considered for entry in the least squares models, the models 

had approximately a 76% chance of correctly predicting the winner of a basketball game. 



iv 

ACKNOWLEDGMENTS 
 

I express my deepest appreciation and thanks to my major adviser, Dr. Rhonda Magel, 

for her guidance, encouragement, support, and assistance in this study and the suggestions she 

made in reviewing the original manuscript. 

My appreciation and thanks are also expressed to my graduate committee, Dr. Gang Shen 

and Dr. Frank Manthey, for their assistance and review of this manuscript. 

I express my thanks and appreciation to all the committee members in Department of 

Statistics for providing the opportunity to study in the Department of Statistics at North Dakota 

State University. 

I am grateful to my father and mother and my father-in-law and mother-in-law and my 

husband for their support and encouragement. 



v 

TABLE OF CONTENTS 
 

ABSTRACT……………………………………………………………………………………...iii 

ACKNOWLEDGMENTS …………………………………………………………………….....iv 

LIST OF TABLES ……………………………………………………………………………....vii 

LIST OF FIGURES ……………………………………………………………………………...ix 

CHAPTER 1. INTRODUCTION………………………………………………………………....1 

1.1. The History of NCAA Women’s Division I Basketball Tournament………..……1 

1.2. The Playing Rule and Structure…………………………………...………………2 

CHAPTER 2. REVIEW OF PAST STUDIES …………………………………....……………...5 

CHAPTER 3. DESCRIPTION OF STUDY ……………………………………………...….…...8 

3.1. Research Objectives……..………………………………………………....……...8 

3.2. Develop Models for the First Round Using 2011 and 2012 Data………….....…...9 

3.2.1. Develop Least Squares Regression Models………………………......…...9 

3.2.2. Development of Logistic Regression Models………………………...…...9 

3.3. Develop Models for the Second Round Using 2011 and 2012 Data………….....10 

3.3.1. Develop Least Squares Regression Models…….………………………..10 

3.3.2. Development of Logistic Regression Models…….………………….…..11 

3.4. Develop Models for the Third and Higher Rounds Using 2011 and 2012 Data....11 

3.4.1. Develop Least Squares Regression Models……………………………...11 

3.4.2. Development of Logistic Regression Models…….………………….…..12 

3.5. Verification of the Models…………………………………………………….....12 

CHAPTER 4. RESULTS………………………………………………………………………...14 

4.1. Development Models………………………………………………………….....14



vi 

4.1.1. Development of Least Squares Regression Model for the First Round….14 

4.1.2. Development of Logistic Regression Model for the First Round…….….15 

4.1.3. Development of Least Squares Regression Model for the Second            
Round……………………………………………………………….........16 

4.1.4. Development of Logistic Regression Model for the Second Round….....17 

4.1.5. Development of Least Squares Regression Model for the Third and  

Higher Rounds……...……………………………………………………18 

4.1.6. Development of Logistic Regression Model for the Third and Higher 
Rounds……..…………………………………………………………….19 

4.2. Prediction Round by Round Using Models Developed…………………...……..20 

4.3. Bracketing the 2014 Tournament Before Tournament Begins…………………..23 

4.4. Examples for Each Round of 2014 Tournament……………………………...….23 

4.4.1. Least Squares Regression Model for First Round………………….……23 

4.4.2. Least Squares Regression Model for Second Round…………………….27 

4.4.3. Least Squares Regression Model for Third Round…………………........29 

4.4.4. Least Squares Regression Model for Fourth Round…………………......30 

4.4.5. Least Squares Regression Model for Fifth Round…………………...…..31 

4.4.6. Least Squares Regression Model for Sixth Round………………..……..33 

CHAPTER 5. CONCLUSION ……………………………………………………………..…...37 

REFERENCES……………………………………..……………………………………………38 

APPENDIX. SAS CODE ……………………………………………………………………….39 



vii 

LIST OF TABLES  

 

Table                 Page 

 

4.1. Point Spread Model Parameter Estimates ………………………………………..........14 

4.2. Summary of Stepwise Selection for Point Spread Model ………………...…..........….14 

4.3. Summary of Stepwise Selection for Logistic Regression Model ………………..........15 

4.4. Logistic Regression Model Parameter Estimates …………………………….….........15 

4.5. Hosmer and Lemeshow Goodness-of-Fit Test ………………………………..............16 

4.6. Point Spread Model Parameter Estimates …………………………………..........…....16 

4.7. Summary of Stepwise Selection for Point Spread Model ………….………….............16 

4.8. Summary of Stepwise Selection for Logistic Regression Model …………….........….17 

4.9. Logistic Regression Model Parameter Estimates …………………………….........….17 

4.10. Hosmer and Lemeshow Goodness-of-Fit Test ……………………………..........……18 

4.11. Point Spread Model Parameter Estimates ………….…………………….…..........…..18 

4.12. Summary of Stepwise Selection for Point Spread Model ….…………….…...........….19 

4.13. Summary of Stepwise Selection for Logistic Regression Model …………..…............20 

4.14. Logistic Regression Model Parameter Estimates …………………………...…...........20 

4.15. Hosmer and Lemeshow Goodness-of-Fit Test.………………….…….……........……20 

4.16. Accuracy of Least Squares Regression Model When Predicting First Round of 
2013…………………………………………………………………………………….21 

 
4.17. Accuracy of Least Squares Regression Model When Predicting Second Round of 

2013……...……………………………………………………………………………..21 
 
4.18. Accuracy of Least Squares Regression Model When Predicting Third and Higher 

Rounds of 2013……….....…….....…………….....…….....…….....…….....……….....21 
 
4.19. Accuracy of Logistic Regression Model When Predicting First Round of 2013……...22 



viii 

4.20. Accuracy of Logistic Regression Model When Predicting Second Round of 2013.......22 

4.21. Accuracy of Logistic Regression Model When Predicting Third and Higher Rounds 
  of 2013…..………….....…….………..…………..…………..…………………......…22 
 
4.22. Michigan St. and Hampton Statistics ……………..……………………….....…..........23 

4.23. South Carolina and Cal St. Northridge Statistics………………..………....……..........24 

4.24. Middle Tenn. and Oregon St. Statistics…………………..……………..….............….24 

4.25. North Carolina and UT Martin Statistics………………..……………..……...........….25 

4.26. Western Ky. and Baylor Statistics……………………………..…..…………..............25 

4.27. Chattanooga and Syracuse Statistics………………..…………..………..……........…26 

4.28. Robert Morris and Notre Dame Statistics……………..…………..………….…..........26 

4.29. Albany (NY) and West Virginia Statistics………………..…………..……….........….26 

4.30. South Carolina and Oregon St. Statistics…………………..……………..…...........….27 

4.31. DePaul and Duke Statistics…………………..…………..………………..…..........….28 

4.32. Maryland and Texas Statistics…………..…………..…………..…………….........….28 

4.33. Kentucky and Syracuse Statistics………………..…………..…………..…….........…28 

4.34. South Carolina and North Carolina Statistics…………..…………..………….........…29 

4.35. Baylor and Kentucky Statistics……………………..…………..……………..….........30 

4.36. North Carolina and Stanford Statistics…………..…………..……………….…..........30 

4.37. Baylor and Notre Dame Statistics………………..…………..…………..…….........…31 

4.38. UConn and Stanford Statistics……………………..…………..……………...........….32 

4.39. Maryland and Notre Dame Statistics……………..…………..…………..…............…32 

4.40. UConn and Notre Dame Statistics…………..…………..…………..………...….........33 

4.41. Prediction Results of Each Round for 2013: (Least Squares Regression Model)……..34 
 
4.42. Prediction Results of Each Round for 2014: (Least Squares Regression Model)……..34 



ix 

LIST OF FIGURES  

 

Figure                 Page 

 

1. The NCAA women’s basketball tournament bracket for the 2013 – 2014 season…….....3 

2. Structure of NCAA women’s division I basketball tournament……….….….….….…...4 

3. Prediction of the NCAA women’s basketball tournament bracket for 2013 season........35 

4. Prediction of the NCAA women’s basketball tournament bracket for 2014 season........36 

 

  



1 

CHAPTER 1. INTRODUCTION 

 

1.1. The History of NCAA Women’s Division I Basketball Tournament 

Women’s basketball is becoming more and more popular, spreading from the east coast 

of the United States to the west coast, in large part among women’s colleges.  The National 

Collegiate Athletic Association (NCAA) Women’s Division I basketball Tournament is an 

annual college basketball tournament for women. The Tournament is held each spring from 

March to April in all neutral venues. The Women’s Championship was inaugurated in the 1981-

1982 season. The NCAA tournament was preceded by the Association for Intercollegiate 

Athletics for Women’s basketball (AIAW), which was held every year from 1972 to 1982. In 

1982, both tournaments co-existed in a competitive way, rather than in parallel way. One year 

later, NCAA won the battle and AIAW disbanded. 

College basketball has such national popularity and interest in the Women's Division I 

Championship have grown over these years. In 2003, the final championship game was moved to 

the Tuesday following the Monday men’s championship game. Before 2003, the Women’s Final 

Four was usually played before the men’s Final Four. This means the women’s championship 

game is now the final overall game of the college basketball season. 

Unlike the men’s tournament, there is no play-in game for women’s tournament. There 

are a total of 64 qualified teams to play in March and April, 31 of which can earn automatic bids 

by winning their respective conference tournaments. The remaining teams are granted “at-large” 

bids, which are extended by the NCAA Selection Committee. The tournament is split into four 

regional tournaments- Midwest, West, East and South Regional, and each Regional has teams 

seeded from 1 to 16. The top-seeded team in each Regional plays with the 16th team, the second-
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ranked team plays with the 15th, etc. Figure 1 shows the 2014 NCAA Women’s basketball 

tournament bracket. 

1.2. The Playing Rule and Structure 

The women’s tournament, like the men’s tournament, is staged in a single elimination 

format which is also called an Olympic system. In other words, the loser of each game or bracket 

is immediately eliminated from winning the championship in the event. This format is part of the 

media and public frenzy known colloquially as March Madness or The Big Dance. 

There are six rounds of the tournament in each season so there will be 63 games in total. 

The six rounds are Round64, Round32, Sweet16, Elite8, Final4 and Championship, respectively. 

There are 64 teams to play 32 games in Round64; 32 teams to play 16 games in Round32; 16 

teams to play 8 games in Sweet16; 8 teams to play 4 games in Elite8; 4 teams play 2 games in 

Final4 and 2 teams battle the Championship. The current NCAA Women’s Division I Basketball 

tournament structure in recent seasons is illustrated in Figure 2. 
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Figure 1: The NCAA women’s basketball tournament bracket for the 2013 – 2014 season (This 
bracket is downloaded from: http://www.ncaa.com/interactive-bracket/basketball-women/d1) 
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Figure 2: Structure of NCAA women’s division I basketball tournament  
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CHAPTER 2. REVIEW OF PAST STUDIES 

It is hard to find the articles related to predicting NCAA women’s basketball game. 

Research has consistently shown that men’s sports draw dominantly more attention than 

women’s sports games, even though it is reportedly shown that there was a significant increase in 

the number of women or girls who actively participate or regularly play organized sports games 

by certain associations. (Kane, 1996; Duncan, 2006). 

Previous works regarding the topic of factors affecting men’s basketball games were 

reviewed, and some are mentioned here. 

Carlin (1996) used very basic regression models to predict probability of winning using 

seed positions and computer ranking. 

Schwertman, Schenk and Holbrook (1996) modified the approach to fit linear and logistic 

regression models for P(i,j) as a function of the difference in either team seeds or normal scores 

of the seeds on the basis of the data from 600 games (1985-1994). 

Smith and Schwertman (1999) conducted an interesting research from a different angle to 

accurately predict the actual margin of victory upon the development of more complex 

regression models with the use of the seed position information. They used PRESS, which 

directly measures the predictive quality of a model, to determine the subset of independent 

variables that comprise the best prediction model. They proposed the following model for 

predicting the point spread of a men’s basketball game in the NCAA tournament: 

�� = -2.148�� + 1.68�� - .179�� �� +.260��
� +.197��� 

Where �� is the predicted margin of victory, �� is the lower seed numbers, �� is the higher 

seed numbers, and ���is the linear yearly trend. 
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Caudill (2003) also used seed values and developed the maximum score estimator in the 

case of the NCAA men’s basketball tournament to predict winnings. It was found that use of the 

maximum score estimator yielded slightly better results than results obtained through use of the 

probit/maximum likelihood models. 

Kubatko, Oliver, Pelton and Rosenbaum (2007) proposed a good starting point for future 

basketball research. They analyzed the possession concept and found it to be connected with 

various statistics. Other important concepts have been included in their study, such as offensive 

and defensive ratings, plays, per-minute statistics, pace adjustments, true shooting percentage, 

effective field goal percentage and rebound rates. 

West (2006) used a rating method based on ordinal logistic regression and expectation 

(the OLRE method) to predict the probability of winning for a basketball team playing in the 

NCAA Men’s basketball tournament. West (2006) estimated the probabilities that a given team, i, 

would win 0 games, 1 games, 2 games, through 6 games. 

Zhang (2013) used data form the 2002 -2012 season of NCAA Men’s basketball 

tournament as the training data and then tested the accuracy for bracketing all 63 games in the 

2012-2013 season. This study focused on bracketing the NCAA Men’s basketball tournament by 

use of a conditional logistic probability model. This work is a modification of the work of West 

(2006). It was found that the conditional logistic probability model outperformed the restricted 

OLRE model proposed by West (2006) for 2013 March Madness. 

Magel and Unruh (2013) analyzed NCAA Men’s basketball games and found four 

common statistics were significant to determine winning, i.e. assists, free throw attempts, 

defensive rebounds and turnovers. Two models were developed by the use of a random sample 
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of 150 games chosen from 2009-2010 season and the 2010-2011 season. The models were used 

to bracket 2013 March Madness and correctly predicted 62% and 68% of the game results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 

CHAPTER 3. DESCRIPTION OF STUDY 

3.1. Research Objectives 

The research objectives for this study include the following: 

1) Develop least squares regression models for Round 1, Round 2 and Rounds 3-6, 

to predict winners of basketball games in each of those rounds for the NCAA 

Women’s Basketball tournament; and 

2) Develop Logistic regression models for Round 1, Round 2 and Rounds 3-6, to 

predict winners of basketball games in each of those rounds for the NCAA 

Women’s Basketball tournament. 

Data was collected for two seasons of the NCAA Women’s Basketball tournament. This 

included the 2011 and 2012 tournaments. Seasonal averages were collected for all the teams in 

the 2011 tournament on the following variables: Field Goal Percentage; 3-pt Goal Percentage; 

Free Throws Percentage; Number of Rebounds; Number of Assists; Number of Blocks; Number 

of Steals and Average number of points. Seasonal averages were also collected on the same 

variables for all teams playing in the 2012 tournament. The seed number that each team was 

given in either the 2011 or 2012 tournament was also noted. 

Two groups of models were developed by using the data collected from the two seasons. 

The first group of models used least squares regression with point spread as a response, and the 

second groups of models used a logistic regression approach with responses recorded as ‘1’ for 

win and ‘0’ for loss. 
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3.2. Develop Models for the First Round Using 2011 and 2012 Data  

3.2.1. Develop Least Squares Regression Models 

The response variable for the least squares regression model was point spread in the order 

of the team of interest minus the opposing team. A positive point spread indicates a win for the 

team of interest and a negative value indicates a loss for the team of interest. There were 128 

teams playing 64 games in first rounds of the tournaments in 2011 and 2012. For the 32 games of 

the first round in 2011, the point spread was obtained by using the scores of weaker teams 

(higher seed numbers) minus the scores of stronger teams (lower seed numbers). For the 32 

games of the first round of the tournaments in 2012, the point spread was acquired by using the 

scores of stronger teams (lower seed numbers) minus the scores of weaker teams (higher seed 

numbers). 

The intercept was excluded when developing the models because the models should give 

the same results regardless of the ordering of the teams in the model. Stepwise selection was 

used with an α value of 0.15 for both entry and exit to develop the models. The differences 

between the two teams of the seasonal averages for all the variables previously given were 

considered for entry in the model. The differences between seeds were also considered. 

The generalized least squares model will be y = xβ + ε, where y is the point spread, x is 

the matrix consisting of independent significant factors, β is the vector of coefficients 

corresponding to the independent factors, and  ε is the random error. 

3.2.2. Development of Logistic Regression Models 

The logistic regression model was also fit to the data with the dependent variable 

recorded as ‘1’ for win and ‘0’ for loss for the team of interest. The logistic regression model 
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will be π xi = 
	
�

�


�� 	

�

�

 where ��

�� = �1x1 + �2x2+…+ �pxp (Abraham & Ledolter, 2006) with π xi 

estimating the probability of a win for the team of interest. 

No intercept will be used during the development of the logistic model because the 

ordering of the teams in the model should not matter. Stepwise selection was used with an α 

value of 0.15 for both entry and exit when determining the significant variables in developing the 

logistic regression model. The differences of the seasonal averages for both teams for all 

previously mentioned variables were considered for entry in the model. The differences between 

seeds were also considered for entry into the model. 

3.3. Develop Models for the Second Round Using 2011 and 2012 Data 

3.3.1. Develop Least Squares Regression Models 

There were 64 teams playing 32 games in second rounds of the tournaments in 2011 and 

2012. For the 16 games of the second round in 2011, the point spread was obtained by using the 

scores of weaker teams (higher seed numbers) minus the scores of stronger teams (lower seed 

numbers). For the 16 games of the second round in 2012, the point spread was acquired by using 

the scores of stronger teams (lower seed numbers) minus the scores of weaker teams (higher seed 

numbers). The intercept was excluded when developing the models. Stepwise selection was used 

with an α value of 0.15 for both entry and exit to develop the models. The differences between 

the two teams of the seasonal averages of the previously mentioned variables were considered 

for entry in the model. The differences between seeds were also considered. 

The generalized least squares model will be y = xβ + ε, where y is the point spread, x is 

the matrix consisting of independent significant factors, β is the vector of coefficients 

corresponding to the independent factors, and  ε is the random error. 
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3.3.2. Development of Logistic Regression Models 

The logistic regression model was also fit for the data with responses recorded as‘1’ for 

win and ‘0’ for loss for the team of interest. The logistic regression model will be π xi = 
	
�

�


�� 	

�

�

 

where ��
�� = �1x1 + �2x2+…+ �pxp (Abraham & Ledolter, 2006) with π xi estimating the 

probability of a win for the team of interest. No intercept will be used during the development of 

the logistic model. Stepwise selection was used with an α value of 0.15 for both entry and exit 

when determine the significant variables in developing the logistic regression model. The 

differences between the two teams of the seasonal averages of all previously mentioned variables 

were considered for entry in the model. The differences between seeds were also considered. 

3.4. Develop Models for the Third and Higher Rounds Using 2011 and 2012 Data 

3.4.1. Develop Least Squares Regression Models 

There were 60 teams playing 30 games in third and higher rounds of the tournaments in 

2011 and 2012. For the 15 games of the third and higher rounds in 2011, the point spread was 

obtained by using the scores of weaker teams (higher seed numbers) minus the scores of stronger 

teams (lower seed numbers). 

For the 15 games of the third and higher rounds in 2012, the point spread was got by 

using the scores of stronger teams (lower seed numbers) minus the scores of weaker teams 

(higher seed numbers). The intercept was excluded when developing the models. Stepwise 

selection was used with an α value of 0.15 for both entry and exit to develop the models. The 

differences between the two teams of the seasonal averages of the previously mentioned 

variables were considered for entry in the model. The differences between seed values were also 

considered. 
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The generalized least squares model will be y = xβ + ε, where y is the point spread, x is 

the matrix consisting of independent significant factors, β is the vector of coefficients 

corresponding to the independent factors, and ε is the random error. 

3.4.2. Development of Logistic Regression Model 

The logistic regression model was also fit for the data with responses recorded as a ‘1’ for 

win and ‘0’ for a loss for the team of interest. The logistic regression model will be π xi = 
	
�

�


�� 	

�

�

 

where ��
�� = �1x1 + �2x2+…+ �pxp (Abraham & Ledolter, 2006) with π xi estimating the 

probability of a win for the team of interest. No intercept will be used when developing the 

logistic model. Stepwise selection was used with an α value of 0.15 for both entry and exit when 

determine the significant variables in developing the logistic regression model. The differences 

between the two teams of the seasonal averages of the previously mentioned variables were 

considered for entry in the model. Differences between seeds was also considered. 

3.5. Verification of the Models 

Using the least squares regression model developed for the first round, the point spread of 

16 games in the first round of the 2013 tournament was estimated based of the stronger perceived 

team (higher seed number). The point spread for the remaining 16 games of round 1 was 

estimated based on the team with higher seed number minus team with lower seed value. 

To verify the accuracy of prediction results for the least squares regression model, values of 

variables were placed in the model developed for the first round. The estimated response y� then 

observed. 

If y� > 0, a predicted win for the point spread model was coded. 

If y� < 0, a predicted loss for the point spread model was coded. 
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To verify the accuracy of prediction results for the logistic regression model for the first 

round, a similar process was conducted. For each round of the game, statistics for the significant 

factors were collected and the difference was taken and placed into the logistic models to find a 

predicted probability, π xi. 

If π xi > 0.5, a predicted win was coded. 

If π xi < 0.5, a predicted loss was coded. 

The second round and higher round models were verified in a similar way. Once the 

teams in the second round were determined, the second round models were used to predict the 

winners of the second round. This process continued for the third and higher rounds. 

In 2014, a continuous process was used in verifying the models instead of doing round by 

round predictions as in 2013. Namely, a complete bracket was filled out in 2014 before any game 

was played. Results are given in Chapter 4. 
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CHAPTER 4. RESULTS 

4.1. Development Models 

4.1.1. Development of Least Squares Regression Model for the First Round 

A least squares regression model to help predict the winning team for each game in the 

first round was developed and found to be: 

y�=1.12250(Diff. in 3-pt goals)-0.44657(Diff. in free throws) +2.29479(Diff. in blocks) 

 -1.68434(Diff. in Seeds) 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 4.1. Table 4.2 gives the steps associated with the stepwise selection 

technique and the associated R-square values as variables are added to the model. The model 

with all 4 variables explains an estimated 76% of the variation in point spread. 

 

Table 4.1. Point Spread Model Parameter Estimates 

Variable Parameter 
Estimate 

Standard 
Error  

Type II SS F Value Pr > F 

3-pt Goal 1.12250 0.38797 965.36546 8.37 0.0053 
Free Throws -0.44657 0.21710 487.94901 4.23 0.0440 
Blocks 2.29479 0.86548 810.75238 7.03 0.0102 
Seed -1.68434 0.17355 10863 94.19 <.0001 

 

Table 4.2. Summary of Stepwise Selection for Point Spread Model 

Step Variable 
Entered 

Variable 
Removed 

Number 
Vars In 

Partial  
R-Square 

Model 
R-Square 

F Value Pr > F 

1 Seed   1 0.6935 0.6935 142.58 <.0001 
2 Blocks   2 0.0307 0.7243 6.91 0.0108 
3 3-pt Goal   3 0.0208 0.7451 4.99 0.0292 
4 Free Throws   4 0.0168 0.7619 4.23 0.0440 
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4.1.2. Development of Logistic Regression Model for the First Round 

A logistic regression model to help predict the winning team for each game in the first 

round was developed and found to be: 

π (DIS, DFG) = 
	�.���������. !"��#$

�� 	�.���������. !"��#$
 

Where π (DIS, DFG) is the estimated probability that the team of interest will win the 

game with DIS and DFG in model. 

Table 4.3 shows the steps for the stepwise selection technique and Table 4.4 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 4.5 shows the Hosmer and Lemeshow test was done to test whether there was 

evidence the logistic model was not appropriate. The p-value was 0.907 indicating that there was 

no evidence to reject using the logistic model. 

 

Table 4.3. Summary of Stepwise Selection for Logistic Regression Model 

Step Effect DF Number 
In  

Score 
Chi-Square 

Wald 
Chi-

Square 

Pr > ChiSq 
Entered Removed 

1 DIS   1 1 39.1351   <.0001 
2 DFG   1 2 4.9125   0.0267 

 

Table 4.4. Logistic Regression Model Parameter Estimates 

Parameter DF Estimate Standard 
Error  

Wald 
Chi-Square 

Pr > ChiSq 

DFG 1 0.2790 0.1385 4.0616 0.0439 
DIS 1 -0.4180 0.1212 11.9038 0.0006 
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Table 4.5. Hosmer and Lemeshow Goodness-of-Fit Test 

Chi-Square DF Pr > ChiSq 
4.0662 9 0.9070 

 

4.1.3. Development of Least Squares Regression Model for the Second Round 

A least squares regression model to help predict the winning team for each game in the 

second round was developed and found to be: 

y� =1.34571(Diff. in Field Goals) + 0.54848(Diff. in Average Points) 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 4.6. Table 4.7 gives the steps associated with the stepwise selection 

technique and the associated R-square values as variables are added to the model. The model 

with all 2 variables explains an estimated 56% of the variation in point spread. 

 

Table 4.6. Point Spread Model Parameter Estimates 

Variable Parameter 
Estimate 

Standard 
Error  

Type II SS F Value Pr > F 

Field Goal 1.34571 0.75138 339.26527 3.21 0.0834 
Average Points 0.54848 0.35356 254.54023 2.41 0.1313 

 

Table 4.7. Summary of Stepwise Selection for Point Spread Model 

Step Variable 
Entered 

Variable 
Removed 

Number 
Vars In 

Partial  
R-

Square 

Model 
R-

Square 

C(p) F 
Value 

Pr > F 

1 Field Goal   1 0.5230 0.5230 -1.3703 33.99 <.0001 
2 Average Points   2 0.0354 0.5584 -1.4964 2.41 0.1313 
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4.1.4. Development of Logistic Regression Model for the Second Round 

A logistic regression model to help predict the winning team for each game in the second 

round was developed and found to be: 

π (DFG) = 
	�.%&%"����

�� 	�.%&%"����
 

Where π (DFG) is the estimated probability that the team of interest will win the game 

with DFG in model. 

Table 4.8 shows the steps for the stepwise selection technique and Table 4.9 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 4.10 shows the Hosmer and Lemeshow test was done to test whether there was 

evidence the logistic model was not appropriate. The p-value was 0.3354 indicating that there 

was no evidence to reject using the logistic model. 

 

Table 4.8. Summary of Stepwise Selection for Logistic Regression Model 

Step Effect DF Number 
In  

Score 
Chi-Square 

Wald 
Chi-Square 

Pr > ChiSq 
Entered Removed 

1 DFG   1 1 10.4074   0.0013 

 

Table 4.9. Logistic Regression Model Parameter Estimates 

Parameter DF Estimate Standard 
Error  

Wald 
Chi-Square 

Pr > ChiSq 

DFG 1 0.3538 0.1306 7.3374 0.0068 
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Table 4.10. Hosmer and Lemeshow Goodness-of-Fit Test 

Chi-Square DF Pr > ChiSq 
10.1889 9 0.3354 

 

4.1.5. Development of Least Squares Regression Model for the Third and Higher Rounds 

A least squares regression model to help predict the winning team for each game in the 

third and higher rounds was developed and found to be: 

y�= 2.52646(Diff. in Assists) +1.18735(Diff. in Steals)-2.89252(Diff. in Seeds) 

The standard errors and p-values associated with each of the parameter estimates for the 

model are given in Table 4.11. Table 4.12 gives the steps associated with the stepwise selection 

technique and the associated R-square values as variables are added to the model. The model 

with all 3 variables explains an estimated 68% of the variation in point spread. 

 

Table 4.11. Point Spread Model Parameter Estimates 

Variable Parameter 
Estimate 

Standard 
Error  

Type II SS F Value Pr > F 

assists 2.52646 0.60519 2309.17242 17.43 0.0003 
steals 1.18735 0.63843 458.29319 3.46 0.0738 
seed -2.89252 0.56332 3493.47910 26.37 <.0001 
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Table 4.12. Summary of Stepwise Selection for Point Spread Model 

Step Variable 
Entered 

Variable 
Removed 

Number 
Vars In  

Partial  
R-

Square 

Model 
R-

Square 

C(p) F 
Value 

Pr > F 

1 average 
points 

  1 0.3956 0.3956 20.518
5 

18.99 0.0002 

2 seed   2 0.1819 0.5776 7.9149 12.06 0.0017 
3 assists   3 0.0718 0.6493 4.1519 5.53 0.0263 
4   average 

points 
2 0.0136 0.6357 3.2441 1.05 0.3151 

5 steals   3 0.0414 0.6771 1.9232 3.46 0.0738 
 

4.1.6. Development of Logistic Regression Model for the Third and Higher Rounds 

A logistic regression model to help predict the winning team for each game in the third 

and higher rounds was developed and found to be 

π (DAP, DIS) = 
	�.%�����'(��.& � ��#$

�� 	�.%�����'(��.& � ��#$
 

Where π (DAP, DIS) is the estimated probability that the team of interest will win the 

game with DAP and DIS in model. 

Table 4.13 shows the steps for the stepwise selection technique and Table 4.14 gives the 

parameter estimates, their standard errors and associated p-values when all the variables are in 

the model. Table 4.15 shows the Hosmer and Lemeshow test was done to test whether there was 

evidence the logistic model was not appropriate. The p-value was 0.0811 indicating that there 

was no evidence to reject using the logistic model. 
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Table 4.13. Summary of Stepwise Selection for Logistic Regression Model 

Step Effect DF Number 
In  

Score 
Chi-Square 

Wald 
Chi-Square 

Pr > ChiSq 
Entered Removed 

1 DAP   1 1 10.1130   0.0015 
2 DIS   1 2 8.1841   0.0042 
3 DI3G   1 3 3.0999   0.0783 
4 DIAS   1 4 4.0119   0.0452 
5   DAP 1 3   1.7780 0.1824 
6   DI3G 1 2   0.8043 0.3698 
7   DIAS 1 1   1.3890 0.2386 
8 DAP   1 2 8.1760   0.0042 

 

Table 4.14. Logistic Regression Model Parameter Estimates 

Parameter DF Estimate Standard 
Error  

Wald 
Chi-Square 

Pr > ChiSq 

DAP 1 0.3222 0.1665 3.7472 0.0529 
DIS 1 -0.5494 0.3062 3.2182 0.0728 

 

Table 4.15. Hosmer and Lemeshow Goodness-of-Fit Test 

Chi-Square DF Pr > ChiSq 
14.0254 8 0.0811 

 
 

4.2. Prediction Round by Round Using Models Developed 

The three least squares regression models were used to predict the first round, second 

round and third round through final of 2013 season to check the prediction accuracy of the 

models.  It is noted that the 2013 season was not used in the development of the models. 

Tables 4.16 – 4.18 give the results as to how accurately the least squares regression 

models for each of the rounds of the NCAA 2013 women’s basketball tournament with the 

results of the third through the sixth rounds combined together. 
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Tables 4.19 – 4.21 give similar results for the logistic models. 

 

Table 4.16. Accuracy of Least Squares Regression Model When Predicting First Round        
of 2013 

Point Spread Predicted  
Win Loss Total 

Actual Win 13 3 16 
Loss 1 15 16 

 Total 14 18 32 
Overall Accuracy 87.5% 

 
 

Table 4.17. Accuracy of Least Squares Regression Model When Predicting Second 
Round of 2013 

Point Spread Predicted  
Win Loss Total 

Actual Win 7 1 8 
Loss 2 6 8 

 Total 9 7 16 
Overall Accuracy 81.3% 

 
 

Table 4.18. Accuracy of Least Squares Regression Model When Predicting Third and 
Higher Rounds of 2013 

Point Spread Predicted  
Win Loss Total 

Actual Win 3 2 5 
Loss 2 8 10 

 Total 5 10 15 
Overall Accuracy 73.3% 
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Table 4.19. Accuracy of Logistic Regression Model When Predicting First Round of 
2013 

Logistic Predicted  
Win Loss Total 

Actual Win 15 1 16 
Loss 2 14 16 

 Total 17 15 32 
Overall Accuracy 90.63% 

 

Table 4.20. Accuracy of Logistic Regression Model When Predicting Second Round of 
2013 

Logistic Predicted  
Win Loss Total 

Actual Win 7 1 8 
Loss 2 6 8 

 Total 9 7 16 
Overall Accuracy 81.25% 

 

 

Table 4.21. Accuracy of Logistic Regression Model When Predicting Third and Higher 
Rounds of 2013 

Logistic Predicted  
Win Loss Total 

Actual Win 3 2 5 
Loss 2 8 10 

 Total 5 10 15 
Overall Accuracy 73.33% 

 

It is noted that the percentage of accuracy for each round using the least squares models 

and using the logistic models are very close. 
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4.3. Bracketing the 2014 Tournament Before Tournament Begins 

The accuracy of the least squares regression models were checked against each rounds of 

the games from 2014 season. For each round of the game, statistics for the significant factors 

were collected and the difference was taken and placed into the predictive models to find a 

predicted point spread, y�. 

If y� > 0, a predicted win for the point spread model was coded. 

If y� )0, a predicted loss for the point spread model was coded. 

Results were predicted for every round before the tournament begin. Variables associated 

with teams predicted to win the first round were placed into the second round model. Variables 

associated with team predicted to win the second round were placed in the third round model to 

predict which teams would win this round. This process continued. 

These predicted results were then compared against the actual results for each round of 

the game for 2014. 

4.4. Examples for Each Round of 2014 Tournament 

4.4.1. Least Squares Regression Model for First Round 

The following gives the least squares model for the first round: 

y�=1.12250(Diff. in 3-pt goals)-0.44657(Diff. in free throws) +2.29479(Diff. in blocks)-

1.68434(Diff. in Seeds) 

 

Table 4.22. Michigan St. and Hampton Statistics 

Team Score 3-pt goals* Free throws* Blocks* Seed 
Michigan St. 91 34.276 71.164 4.613 5 

Hampton 61 30.213 61.93 4.733 12 
Difference 30 4.063 9.234 -0.12 -7 

* Average per game for season 
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Using the model above, Michigan St. had a predicted point spread of: 

y� = 1.12250*4.063 - 0.44657*9.234 + 2.29479*(-0.12) - 1.68434*(-7) = 11.95 

Since y� >0 this game was coded as a correctly predicted win for Michigan St., who won 

the game by a score of 91-61. 

 

Table 4.23. South Carolina and Cal St. Northridge Statistics 

Team Score 3-pt goals* Free throws* Blocks* Seed 
South Carolina 73 34.551 66.826 7.258 1 

Cal St. Northridge 58 32.725 68.859 4 16 
Difference 15 1.826 -2.033 3.258 -15 

* Average per game for season 
 

Using the model above, South Carolina had a predicted point spread of: 

y� = 1.12250*1.826 - 0.44657*(-2.033) + 2.29479*3.258 - 1.68434*(-15) = 35.70 

Since y� >0 this game was coded as a correctly predicted win for South Carolina, who 

won the game by a score of 73-58. 

 

Table 4.24. Middle Tenn. and Oregon St. Statistics 

Team Score 3-pt goals* Free throws* Blocks* Seed 
Middle Tenn. 36 28.135 64 1.839 8 
Oregon St. 55 37.068 65.802 6.182 9 
Difference -19 -8.933 -1.802 -4.343 -1 

* Average per game for season 
 

Using the model above, Middle Tenn. had a predicted point spread of: 

y� = 1.12250*(-8.933) - 0.44657*(-1.802) + 2.29479*(-4.343) - 1.68434*(-1) = -17.50 
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Since y� < 0 this game was coded as a correctly predicted loss for Middle Tenn., who lost 

the game by a score of 36-55. 

 

Table 4.25. North Carolina and UT Martin Statistics 

Team Score 3-pt goals* Free throws* Blocks* Seed 
North Carolina 60 32.573 66.709 4.758 4 

UT Martin 58 35.959 74.934 2.677 13 
Difference 2 -3.386 -8.225 2.081 -9 

* Average per game for season 
 

Using the model above, North Carolina had a predicted point spread of: 

y� = 1.12250*(-3.386) - 0.44657*(-8.225) + 2.29479*2.081 - 1.68434*(-9) = 19.81 

Since y� >0 this game was coded as a correctly predicted win for North Carolina, who 

won the game by a score of 60-58. 

 

Table 4.26. Western Ky. and Baylor Statistics 

Team Score 3-pt goals* Free throws* Blocks* Seed 
Western Ky. 74 32.981 72.904 3.467 15 

Baylor 87 33.458 72.761 4.212 2 
Difference -13 -0.477 0.143 -0.745 13 

* Average per game for season 
 

Using the model above, Western Ky. had a predicted point spread of: 

y� = 1.12250*(-0.477) - 0.44657*0.143 + 2.29479*(-0.745) - 1.68434*(13) = -24.21 

Since y� <0 this game was coded as a correctly predicted loss for Western Ky., who lost 

the game by a score of 74-87. 
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Table 4.27. Chattanooga and Syracuse Statistics 

Team Score 3-pt goals* Free throws* Blocks* Seed 
Chattanooga 53 31.81 72.727 4.813 11 

Syracuse 59 31.874 72.804 4.387 6 
Difference -6 -0.064 -0.077 0.426 5 

* Average per game for season 
 

Using the model above, Chattanooga had a predicted point spread of: 

y� = 1.12250*(-0.064) - 0.44657*(-0.077) + 2.29479*0.426 - 1.68434*(5) = -7.48 

Since y� <0 this game was coded as a correctly predicted loss for Chattanooga, who lost 

the game by a score of 53-59. 

 

Table 4.28. Robert Morris and Notre Dame Statistics 

Team Score 3-pt goals* Free throws* Blocks* Seed 
Robert Morris 42 33.929 68.829 3.387 16 
Notre Dame 93 40.648 75.217 4.094 1 
Difference -51 -6.719 -6.388 -0.707 15 

* Average per game for season 
 
 
Using the model above, Robert Morris had a predicted point spread of: 

y� = 1.12250*(-6.719) - 0.44657*(-6.388) + 2.29479*(-0.707) - 1.68434*(15) = -31.58 

Since y� <0 this game was coded as a correctly predicted loss for Robert Morris, who lost 

the game by a score of 42-93. 

 

Table 4.29. Albany (NY) and West Virginia Statistics 

Team Score 3-pt goals* Free throws* Blocks* Seed 
Albany (NY) 61 30.678 67.76 2.375 15 
West Virginia 76 33.109 69.415 4.455 2 

Difference -15 -2.431 -1.655 -2.08 13 
* Average per game for season 



27 

Using the model above, Albany (NY) had a predicted point spread of: 

y� = 1.12250*(-2.431) - 0.44657*(-1.655) + 2.29479*(-2.08) - 1.68434*(13) = -28.66 

Since y� < 0 this game was coded as a correctly predicted loss for Albany (NY), who lost 

the game by a score of 61-76. 

 

Round 1: 

Number correct: 26 

Number incorrect: 6 

Total: 32 

 

4.4.2. Least Squares Regression Model for Second Round: 

The following gives the least squares model for the second round: 

y� = 1.34571(Diff. in Field Goals) + 0.54848(Diff. in Average Points) 

 

Table 4.30. South Carolina and Oregon St. Statistics 

Team Score Field Goals* Average Points* 
South Carolina 78 48.238 73.1935484 

Oregon St. 69 43.987 70.969697 
Difference 9 4.251 2.2238514 

* Average per game for season 
 

Using the model above, South Carolina had a predicted point spread of: 

y� = 1.34571*4.251 + 0.54848*2.2238514= 6.94 

Since y� >0 this game was coded as a correctly predicted win for South Carolina, who 

won the game by a score of 78-69. 
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Table 4.31. DePaul and Duke Statistics 

Team Score Field Goals* Average Points* 
DePaul 65 45.045 83.7272727 
Duke 74 49.876 80.2424242 

Difference 9 -4.831 3.4848485 
* Average per game for season 

 

Using the model above, DePaul had a predicted point spread of: 

y� = 1.34571*(-4.831) + 0.54848*3.4848485 = -4.59 

Since y� < 0 this game was coded as an incorrectly predicted loss for DePaul, who won 

the game by a score of 74-65. 

 

Table 4.32. Maryland and Texas Statistics 

Team Score Field Goals* Average Points* 
Maryland 69 48.956 83.1666667 

Texas 64 43.499 69.5625 
Difference 5 5.457 13.6041667 

* Average per game for season 
 

Using the model above, Maryland had a predicted point spread of: 

y� = 1.34571*5.457 + 0.54848*13.6041667 = 14.81 

Since y� >0 this game was coded as a correctly predicted win for Maryland, who won the 

game by a score of 69-64. 

 

Table 4.33. Kentucky and Syracuse Statistics 

Team Score Field Goals* Average Points* 
Kentucky 64 43.478 81.34375 
Syracuse 59 39.832 73.483871 

Difference 5 3.646 7.859879 
* Average per game for season 
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Using the model above, Kentucky had a predicted point spread of: 

y� = 1.34571*3.646 + 0.54848*7.859879 = 9.22 

Since y� >0 this game was coded as a correctly predicted win for Kentucky, who won the 

game by a score of 64-59. 

 

Round 2: 

Number correct: 9 

Number incorrect: 7 

Total: 16 

 

4.4.3. Least Squares Regression Model for Third Round: 

The following gives the least squares model for the third and higher rounds: 

y� = 2.52646(Diff. in Assists) +1.18735(Diff. in Steals)-2.89252(Diff. in Seeds) 

Table 4.34. South Carolina and North Carolina Statistics 

Team Score Assists* Steals* Seed 
South Carolina 58 14.742 6.129 1 
North Carolina 65 15.727 11.636 4 

Difference -7 -0.985 -5.507 -3 
* Average per game for season 

 

Using the model above, South Carolina had a predicted point spread of: 

y� = 2.52646*(-0.985) +1.18735*(-5.507)-2.89252*(-3) = -0.35 

Since y� < 0 this game was coded as a correctly predicted loss for South Carolina, who 

lost the game by a score of 58-65. 
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Table 4.35. Baylor and Kentucky Statistics 

Team Score Assists* Steals* Seed 
Baylor 90 18.697 7.212 2 

Kentucky 72 14.219 9.969 3 
Difference 18 4.478 -2.757 -1 

* Average per game for season 
 

Using the model above, Baylor had a predicted point spread of: 

y� = 2.52646*4.478 +1.18735*(-2.757)-2.89252*(-1) = 10.93 

Since y� >0 this game was coded as a correctly predicted win for Baylor, who won the 

game by a score of 90-72. 

 

Round 3: 

Number correct: 6 

Number incorrect: 2 

Total: 8 

4.4.4. Least Squares Regression Model for Fourth Round: 

The following gives the least squares model for the third and higher rounds: 

y� = 2.52646(Diff. in Assists) +1.18735(Diff. in Steals)-2.89252(Diff. in Seeds) 

 

Table 4.36. North Carolina and Stanford Statistics 

Team Score Assists* Steals* Seed 
North Carolina 65 15.727 11.636 4 

Stanford 74 17.813 5.781 2 
Difference -9 -2.086 5.855 2 

* Average per game for season 
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Using the model above, North Carolina had a predicted point spread of: 

y� = 2.52646(Diff. in Assists) +1.18735(Diff. in Steals)-2.89252(Diff. in Seeds) = -4.10 

Since y� < 0 this game was coded as a correctly predicted loss for North Carolina, who 

lost the game by a score of 65-74. 

 

Table 4.37. Baylor and Notre Dame Statistics 

Team Score Assists* Steals* Seed 
Baylor 69 18.697 7.212 2 

Notre Dame 88 20.688 9.625 1 
Difference -19 -1.991 -2.413 1 

* Average per game for season 
 

Using the model above, Baylor had a predicted point spread of: 

y� = 2.52646*(-1.991) +1.18735*(-2.413)-2.89252*1 = -10.79 

Since y� < 0 this game was coded as a correctly predicted loss for Baylor, who lost the 

game by a score of 69-88. 

 

Round 4: 

Number correct: 4 

Number incorrect: 0 

Total: 4 

 

4.4.5. Least Squares Regression Model for Fifth Round 

The following gives the least squares model for the third and higher rounds: 

y� = 2.52646(Diff. in Assists) +1.18735(Diff. in Steals)-2.89252(Diff. in Seeds) 
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Table 4.38. UConn and Stanford Statistics 

Team Score Assists* Steals* Seed 
UConn 75 21.559 9.765 1 

Stanford 56 17.813 5.781 2 
Difference 19 3.746 3.984 -1 

* Average per game for season 
 

Using the model above, UConn had a predicted point spread of: 

y� = 2.52646*3.746 +1.18735*3.984-2.89252*(-1) = 17.09 

Since y� > 0 this game was coded as a correctly predicted win for UConn, who won the 

game by a score of 75-56. 

 

Table 4.39. Maryland and Notre Dame Statistics 

Team Score Assists* Steals* Seed 
Maryland 61 19.6 8.3 4 

Notre Dame 87 20.688 9.625 1 
Difference -26 -1.088 -1.325 3 

* Average per game for season 
 

Using the model above, Maryland had a predicted point spread of: 

y� = 2.52646*(-1.088) +1.18735(-1.325)-2.89252*3 = -13.00 

Since y� < 0 this game was coded as a correctly predicted loss for Maryland, who lost the 

game by a score of 61-87. 

 

Round 5: 

Number correct: 2 
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Number incorrect: 0 

Total: 2 

 

4.4.6. Least Squares Regression Model for Sixth Round 

The following gives the least squares model for the third and higher rounds: 

y� = 2.52646(Diff. in Assists) +1.18735(Diff. in Steals)-2.89252(Diff. in Seeds) 

 

Table 4.40. UConn and Notre Dame Statistics 

Team Score Assists* Steals* Seed 
UConn 79 21.559 9.765 1 

Notre Dame 58 20.688 9.625 1 
Difference 21 0.871 0.14 0 

* Average per game for season 
 

 

Using the model above, UConn had a predicted point spread of: 

y� = 2.52646*0.871 +1.18735*0.14-2.89252*0 = 2.37 

Since y� > 0 this game was coded as a correctly predicted win for UConn, who won the 

game by a score of 79-58. 

 

Round 6: 

Number correct: 1 

Number incorrect: 0 

Total: 1 
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A summary of the number of correct and incorrect predictions for each round of the 2014 

tournament is given in Table 4.42. 

Least square regression models were used to predict each round of NCAA women’s 

basketball tournament of 2013 and 2014. 

 

Table 4.41. Prediction Results of Each Round for 2013: (Least Squares Regression Model) 

 Correct Incorrect  Total games 
First round 28 4 32 
Second round 13 3 16 
Third round 6 2 8 
Fourth round 2 2 4 
Fifth round 1 1 2 
Final round 0 1 1 
Overall Accuracy 79.37% 

 

Table 4.42. Prediction Results of Each Round for 2014: (Least Squares Regression Model) 

 Correct Incorrect  Total games 
First round 26 6 32 
Second round 9 7 16 
Third round 6 2 8 
Fourth round 4 0 4 
Fifth round 2 0 2 
Final round 1 0 1 
Overall Accuracy 76.19% 

 

Figure 3 and Figure 4 show the predicted results of 2013 tournament and 2014 

tournament when least squares regression models were used. The highlighted parts of both 

figures are the incorrectly predicted results.
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Figure 3: Prediction of the NCAA women’s basketball tournament bracket for 2013 season 
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Figure 4: Prediction of the NCAA women’s basketball tournament bracket for 2014 season 
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CHAPTER 5. CONCLUSION 

To verify the accuracy of prediction results for the least squares regression model, 

differences of the seasonal averages for both teams for all previously mentioned variables were 

placed in the model developed for Round 1, Round 2 and Rounds 3-6. The least squares 

regression model and the logistic regression model for the first round had approximately a 87.5% 

and 90.6% chance of correctly predicting the results, respectively. The least squares regression 

model and the logistic regression model for the second round had approximately a 81.3% and 

81.2% chance of correctly predicting the results, respectively. The least squares regression model 

and the logistic regression model for the third and higher round had approximately a 73.3% and 

73.3% chance of correctly predicting the results, respectively. 

In 2014, a continuous process was used in verifying the models instead of doing round by 

round predictions as in 2013. Namely, a complete bracket was filled out in 2014 before any game 

was played.  When the differences of the seasonal averages for both teams for all previously 

mentioned variables were considered for entry in the least squares models, the models had 

approximately a 76% chance of correctly predicting the winner of a basketball game. 
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APPENDIX. SAS CODE 

Code for least squares regression model for first round 

/* ------------------------------------------------------------------- 
   Code generated by SAS Task 
 
   Generated on: Sunday, April 27, 2014 at 2:17:32 PM 
   By task: Linear Regression2 
 
   Input Data: WORK.DATA 
   Server:  Local 
   ------------------------------------------------------------------- */ 
ODS GRAPHICS ON; 
 
%_eg_conditional_dropds(WORK.SORTTempTableSorted, 
  WORK.TMP1TempTableForPlots); 
/* ------------------------------------------------------------------- 
   Determine the data set's type attribute (if one is defined) 
   and prepare it for addition to the data set/view which is 
   generated in the following step. 
   ------------------------------------------------------------------- */ 
DATA  _NULL_; 
 dsid = OPEN("WORK.DATA", "I"); 
 dstype = ATTRC(DSID, "TYPE"); 
 IF TRIM(dstype) = " " THEN 
  DO; 
  CALL SYMPUT("_EG_DSTYPE_", ""); 
  CALL SYMPUT("_DSTYPE_VARS_", ""); 
  END; 
 ELSE 
  DO; 
  CALL SYMPUT("_EG_DSTYPE_", "(TYPE=""" || TRIM(dstype) || """)"); 
  IF VARNUM(dsid, "_NAME_") NE 0 AND VARNUM(dsid, "_TYPE_") NE 0 THEN 
   CALL SYMPUT("_DSTYPE_VARS_", "_TYPE_ _NAME_"); 
  ELSE IF VARNUM(dsid, "_TYPE_") NE 0 THEN 
   CALL SYMPUT("_DSTYPE_VARS_", "_TYPE_"); 
  ELSE IF VARNUM(dsid, "_NAME_") NE 0 THEN 
   CALL SYMPUT("_DSTYPE_VARS_", "_NAME_"); 
  ELSE 
   CALL SYMPUT("_DSTYPE_VARS_", ""); 
  END; 
 rc = CLOSE(dsid); 
 STOP; 
RUN; 
 
/* ------------------------------------------------------------------- 
   Data set WORK.DATA does not need to be sorted. 
   ------------------------------------------------------------------- */ 
DATA  WORK.SORTTempTableSorted &_EG_DSTYPE_ / VIEW=WORK.SORTTempTableSorted; 
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 SET WORK.DATA(KEEP=pointspread DIFG DI3G DIFT DIAR DIAA DIAB DIAS DIAP DIS 
&_DSTYPE_VARS_); 
RUN; 
TITLE; 
TITLE1 "Linear Regression Results"; 
FOOTNOTE; 
FOOTNOTE1 "Generated by the SAS System (&_SASSERVERNAME, &SYSSCPL) 
on %TRIM(%QSYSFUNC(DATE(), NLDATE20.)) at %TRIM(%SYSFUNC(TIME(), 
TIMEAMPM12.))"; 
PROC REG DATA=WORK.SORTTempTableSorted 
  PLOTS(ONLY)=ALL 
 ; 
 Linear_Regression_Model: MODEL pointspread = DIFG DI3G DIFT DIAR DIAA DIAB DIAS 
DIAP DIS 
  /  SELECTION=STEPWISE 
  SLE=0.15 
  SLS=0.15 
  INCLUDE=0 
  NOINT 
 ; 
RUN; 
QUIT ; 
 
/* ------------------------------------------------------------------- 
   End of task code. 
   ------------------------------------------------------------------- */ 
RUN; QUIT ; 
%_eg_conditional_dropds(WORK.SORTTempTableSorted, 
  WORK.TMP1TempTableForPlots); 
TITLE; FOOTNOTE; 

ODS GRAPHICS OFF; 

Code for least squares regression model for second round 

/* ------------------------------------------------------------------- 
   Code generated by SAS Task 
 
   Generated on: Sunday, April 27, 2014 at 2:23:00 PM 
   By task: Linear Regression3 
 
   Input Data: WORK.DATA 
   Server:  Local 
   ------------------------------------------------------------------- */ 
ODS GRAPHICS ON; 
 
%_eg_conditional_dropds(WORK.SORTTempTableSorted, 
  WORK.TMP1TempTableForPlots); 
/* ------------------------------------------------------------------- 
   Determine the data set's type attribute (if one is defined) 
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   and prepare it for addition to the data set/view which is 
   generated in the following step. 
   ------------------------------------------------------------------- */ 
DATA  _NULL_; 
 dsid = OPEN("WORK.DATA", "I"); 
 dstype = ATTRC(DSID, "TYPE"); 
 IF TRIM(dstype) = " " THEN 
  DO; 
  CALL SYMPUT("_EG_DSTYPE_", ""); 
  CALL SYMPUT("_DSTYPE_VARS_", ""); 
  END; 
 ELSE 
  DO; 
  CALL SYMPUT("_EG_DSTYPE_", "(TYPE=""" || TRIM(dstype) || """)"); 
  IF VARNUM(dsid, "_NAME_") NE 0 AND VARNUM(dsid, "_TYPE_") NE 0 THEN 
   CALL SYMPUT("_DSTYPE_VARS_", "_TYPE_ _NAME_"); 
  ELSE IF VARNUM(dsid, "_TYPE_") NE 0 THEN 
   CALL SYMPUT("_DSTYPE_VARS_", "_TYPE_"); 
  ELSE IF VARNUM(dsid, "_NAME_") NE 0 THEN 
   CALL SYMPUT("_DSTYPE_VARS_", "_NAME_"); 
  ELSE 
   CALL SYMPUT("_DSTYPE_VARS_", ""); 
  END; 
 rc = CLOSE(dsid); 
 STOP; 
RUN; 
 
/* ------------------------------------------------------------------- 
   Data set WORK.DATA does not need to be sorted. 
   ------------------------------------------------------------------- */ 
DATA  WORK.SORTTempTableSorted &_EG_DSTYPE_ / VIEW=WORK.SORTTempTableSorted; 
 SET WORK.DATA(KEEP=pointspread DIFG DI3G DIFT DIAR DIAA DIAB DIAS DIAP DIS 
&_DSTYPE_VARS_); 
RUN; 
TITLE; 
TITLE1 "Linear Regression Results"; 
FOOTNOTE; 
FOOTNOTE1 "Generated by the SAS System (&_SASSERVERNAME, &SYSSCPL) 
on %TRIM(%QSYSFUNC(DATE(), NLDATE20.)) at %TRIM(%SYSFUNC(TIME(), 
TIMEAMPM12.))"; 
PROC REG DATA=WORK.SORTTempTableSorted 
  PLOTS(ONLY)=ALL 
 ; 
 Linear_Regression_Model: MODEL pointspread = DIFG DI3G DIFT DIAR DIAA DIAB DIAS 
DIAP DIS 
  /  SELECTION=STEPWISE 
  SLE=0.15 
  SLS=0.15 
  INCLUDE=0 
  NOINT 
 ; 
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RUN; 
QUIT ; 
 
/* ------------------------------------------------------------------- 
   End of task code. 
   ------------------------------------------------------------------- */ 
RUN; QUIT ; 
%_eg_conditional_dropds(WORK.SORTTempTableSorted, 
  WORK.TMP1TempTableForPlots); 
TITLE; FOOTNOTE; 

ODS GRAPHICS OFF; 

Code for least squares regression model for third and higher rounds 

/* ------------------------------------------------------------------- 
   Code generated by SAS Task 
 
   Generated on: Sunday, April 27, 2014 at 2:26:40 PM 
   By task: Linear Regression4 
 
   Input Data: WORK.DATA 
   Server:  Local 
   ------------------------------------------------------------------- */ 
ODS GRAPHICS ON; 
 
%_eg_conditional_dropds(WORK.SORTTempTableSorted, 
  WORK.TMP1TempTableForPlots); 
/* ------------------------------------------------------------------- 
   Determine the data set's type attribute (if one is defined) 
   and prepare it for addition to the data set/view which is 
   generated in the following step. 
   ------------------------------------------------------------------- */ 
DATA  _NULL_; 
 dsid = OPEN("WORK.DATA", "I"); 
 dstype = ATTRC(DSID, "TYPE"); 
 IF TRIM(dstype) = " " THEN 
  DO; 
  CALL SYMPUT("_EG_DSTYPE_", ""); 
  CALL SYMPUT("_DSTYPE_VARS_", ""); 
  END; 
 ELSE 
  DO; 
  CALL SYMPUT("_EG_DSTYPE_", "(TYPE=""" || TRIM(dstype) || """)"); 
  IF VARNUM(dsid, "_NAME_") NE 0 AND VARNUM(dsid, "_TYPE_") NE 0 THEN 
   CALL SYMPUT("_DSTYPE_VARS_", "_TYPE_ _NAME_"); 
  ELSE IF VARNUM(dsid, "_TYPE_") NE 0 THEN 
   CALL SYMPUT("_DSTYPE_VARS_", "_TYPE_"); 
  ELSE IF VARNUM(dsid, "_NAME_") NE 0 THEN 
   CALL SYMPUT("_DSTYPE_VARS_", "_NAME_"); 
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  ELSE 
   CALL SYMPUT("_DSTYPE_VARS_", ""); 
  END; 
 rc = CLOSE(dsid); 
 STOP; 
RUN; 
 
/* ------------------------------------------------------------------- 
   Data set WORK.DATA does not need to be sorted. 
   ------------------------------------------------------------------- */ 
DATA  WORK.SORTTempTableSorted &_EG_DSTYPE_ / VIEW=WORK.SORTTempTableSorted; 
 SET WORK.DATA(KEEP=pointspread DIFG DI3G DIFT DIAR DIAA DIAB DIAS DIAP DIS 
&_DSTYPE_VARS_); 
RUN; 
TITLE; 
TITLE1 "Linear Regression Results"; 
FOOTNOTE; 
FOOTNOTE1 "Generated by the SAS System (&_SASSERVERNAME, &SYSSCPL) 
on %TRIM(%QSYSFUNC(DATE(), NLDATE20.)) at %TRIM(%SYSFUNC(TIME(), 
TIMEAMPM12.))"; 
PROC REG DATA=WORK.SORTTempTableSorted 
  PLOTS(ONLY)=ALL 
 ; 
 Linear_Regression_Model: MODEL pointspread = DIFG DI3G DIFT DIAR DIAA DIAB DIAS 
DIAP DIS 
  /  SELECTION=STEPWISE 
  SLE=0.15 
  SLS=0.15 
  INCLUDE=0 
  NOINT 
 ; 
RUN; 
QUIT ; 
 
/* ------------------------------------------------------------------- 
   End of task code. 
   ------------------------------------------------------------------- */ 
RUN; QUIT ; 
%_eg_conditional_dropds(WORK.SORTTempTableSorted, 
  WORK.TMP1TempTableForPlots); 
TITLE; FOOTNOTE; 
ODS GRAPHICS OFF; 

 

Code for logistic regression model for first round 

/* ------------------------------------------------------------------- 
   Code generated by SAS Task 
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   Generated on: Sunday, April 27, 2014 at 2:31:45 PM 
   By task: Logistic Regression  
 
   Input Data: WORK.DATA 
   Server:  Local 
   ------------------------------------------------------------------- */ 
ODS GRAPHICS ON; 
 
%_eg_conditional_dropds(WORK.SORTTempTableSorted); 
/* ------------------------------------------------------------------- 
   Sort data set WORK.DATA 
   ------------------------------------------------------------------- */ 
 
PROC SQL; 
 CREATE VIEW WORK.SORTTempTableSorted AS 
  SELECT T.pointspread, T.DIFG, T.DI3G, T.DIFT, T.DIAR, T.DIAA, T.DIAB, T.DIAS, 
T.DIAP, T.DIS 
 FROM WORK.DATA as T 
; 
QUIT ; 
TITLE; 
TITLE1 "Logistic Regression Results for first round"; 
FOOTNOTE; 
FOOTNOTE1 "Generated by the SAS System (&_SASSERVERNAME, &SYSSCPL) 
on %TRIM(%QSYSFUNC(DATE(), NLDATE20.)) at %TRIM(%SYSFUNC(TIME(), 
TIMEAMPM12.))"; 
PROC LOGISTIC  DATA=WORK.SORTTempTableSorted 
  PLOTS(ONLY)=ALL 
 ; 
 MODEL pointspread (Event = '1')=DIFG DI3G DIFT DIAR DIAA DIAB DIAS DIAP DIS 
 / 
  SELECTION=STEPWISE 
  SLE=0.15 
  SLS=0.15 
  INCLUDE=0 
  NOINT 
  LACKFIT 
  LINK=LOGIT 
 ; 
RUN; 
QUIT ; 
 
/* ------------------------------------------------------------------- 
   End of task code. 
   ------------------------------------------------------------------- */ 
RUN; QUIT ; 
%_eg_conditional_dropds(WORK.SORTTempTableSorted); 
TITLE; FOOTNOTE; 

ODS GRAPHICS OFF; 
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Code for logistic regression model for second round 

/* ------------------------------------------------------------------- 
   Code generated by SAS Task 
 
   Generated on: Sunday, April 27, 2014 at 2:37:00 PM 
   By task: Logistic Regression 2 
 
   Input Data: WORK.DATA 
   Server:  Local 
   ------------------------------------------------------------------- */ 
ODS GRAPHICS ON; 
 
%_eg_conditional_dropds(WORK.SORTTempTableSorted); 
/* ------------------------------------------------------------------- 
   Sort data set WORK.DATA 
   ------------------------------------------------------------------- */ 
 
PROC SQL; 
 CREATE VIEW WORK.SORTTempTableSorted AS 
  SELECT T.pointspread, T.DIFG, T.DI3G, T.DIFT, T.DIAR, T.DIAA, T.DIAB, T.DIAS, 
T.DIAP, T.DIS 
 FROM WORK.DATA as T 
; 
QUIT ; 
TITLE; 
TITLE1 "Logistic Regression Results for second round"; 
FOOTNOTE; 
FOOTNOTE1 "Generated by the SAS System (&_SASSERVERNAME, &SYSSCPL) 
on %TRIM(%QSYSFUNC(DATE(), NLDATE20.)) at %TRIM(%SYSFUNC(TIME(), 
TIMEAMPM12.))"; 
PROC LOGISTIC  DATA=WORK.SORTTempTableSorted 
  PLOTS(ONLY)=ALL 
 ; 
 MODEL pointspread (Event = '1')=DIFG DI3G DIFT DIAR DIAA DIAB DIAS DIAP DIS 
 / 
  SELECTION=STEPWISE 
  SLE=0.15 
  SLS=0.15 
  INCLUDE=0 
  NOINT 
  LACKFIT 
  LINK=LOGIT 
 ; 
RUN; 
QUIT ; 
 
/* ------------------------------------------------------------------- 
   End of task code. 
   ------------------------------------------------------------------- */ 
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RUN; QUIT ; 
%_eg_conditional_dropds(WORK.SORTTempTableSorted); 
TITLE; FOOTNOTE; 
ODS GRAPHICS OFF; 

 

Code for logistic regression model for third and higher rounds 

/* ------------------------------------------------------------------- 
   Code generated by SAS Task 
 
   Generated on: Sunday, April 27, 2014 at 2:44:33 PM 
   By task: Logistic Regression 4 
 
   Input Data: WORK.DATA 
   Server:  Local 
   ------------------------------------------------------------------- */ 
ODS GRAPHICS ON; 
 
%_eg_conditional_dropds(WORK.SORTTempTableSorted); 
/* ------------------------------------------------------------------- 
   Sort data set WORK.DATA 
   ------------------------------------------------------------------- */ 
 
PROC SQL; 
 CREATE VIEW WORK.SORTTempTableSorted AS 
  SELECT T.pointspread, T.DIFG, T.DI3G, T.DIFT, T.DIAR, T.DIAA, T.DIAB, T.DIAS, 
T.DIAP, T.DIS 
 FROM WORK.DATA as T 
; 
QUIT ; 
TITLE; 
TITLE1 "Logistic Regression Results for third and higher rounds"; 
FOOTNOTE; 
FOOTNOTE1 "Generated by the SAS System (&_SASSERVERNAME, &SYSSCPL) 
on %TRIM(%QSYSFUNC(DATE(), NLDATE20.)) at %TRIM(%SYSFUNC(TIME(), 
TIMEAMPM12.))"; 
PROC LOGISTIC  DATA=WORK.SORTTempTableSorted 
  PLOTS(ONLY)=ALL 
 ; 
 MODEL pointspread (Event = '1')=DIFG DI3G DIFT DIAR DIAA DIAB DIAS DIAP DIS 
 / 
  SELECTION=STEPWISE 
  SLE=0.15 
  SLS=0.15 
  INCLUDE=0 
  NOINT 
  LACKFIT 
  LINK=LOGIT 
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 ; 
RUN; 
QUIT ; 
 
/* ------------------------------------------------------------------- 
   End of task code. 
   ------------------------------------------------------------------- */ 
RUN; QUIT ; 
%_eg_conditional_dropds(WORK.SORTTempTableSorted); 
TITLE; FOOTNOTE; 
ODS GRAPHICS OFF; 

 


