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ABSTRACT

This paper presents a bracketing method for al68igames in NCAA Division |
Women'’s basketball tournament. Least squares madelsogistic regression models for Round
1, Round 2 and Rounds 3-6 were developed, to greginers of basketball games in each of
those rounds for the NCAA Women’s Basketball toaneat. For the first round, three-point
goals, free throws, blocks and seed were foune teignificant; For the second round, field
goals and average points were found to be signifideor the third and higher rounds, assists,
steals and seed were found to be significant. Apteta bracket was filled out in 2014 before
any game was played. When the differences oféheanal averages for both teams for all
previously mentioned variables were considereckfary in the least squares models, the models

had approximately a 76% chance of correctly predidihe winner of a basketball game.
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CHAPTER 1. INTRODUCTION

1.1. The History of NCAA Women'’s Division | Basketlall Tournament

Women'’s basketball is becoming more and more popsigeading from the east coast
of the United States to the west coast, in largegraong women'’s colleges. The National
Collegiate Athletic Association (NCAA) Women’s Dsion | basketball Tournament is an
annual college basketball tournament for women. Titne@nament is held each spring from
March to April in all neutral venues. The Womenlsapionship was inaugurated in the 1981-
1982 season. The NCAA tournament was precedededuxghociation for Intercollegiate
Athletics for Women'’s basketball (AIAW), which wasld every year from 1972 to 1982. In
1982, both tournaments co-existed in a competitisg, rather than in parallel way. One year
later, NCAA won the battle and AIAW disbanded.

College basketball has such national popularityiatetest in the Women's Division |
Championship have grown over these years. In 20@3%jnal championship game was moved to
the Tuesday following the Monday men’s championgfame. Before 2003, the Women'’s Final
Four was usually played before the men’s Final Fbhis means the women’s championship
game is now the final overall game of the collegsketball season.

Unlike the men’s tournament, there is no play-imgdor women’s tournament. There
are a total of 64 qualified teams to play in Maacid April, 31 of which can earn automatic bids
by winning their respective conference tournamen® remaining teams are granted “at-large”
bids, which are extended by the NCAA Selection Cate@. The tournament is split into four
regional tournaments- Midwest, West, East and SBetifional, and each Regional has teams

seeded from 1 to 16. The top-seeded team in eagioi plays with the 16th team, the second-



ranked team plays with the 158t¢. Figure 1 shows the 2014 NCAA Women'’s basketball
tournament bracket.
1.2. The Playing Rule and Structure

The women’s tournament, like the men’s tournamisrgtaged in a single elimination
format which is also called an Olympic system. tineo words, the loser of each game or bracket
is immediately eliminated from winning the chamship in the event. This format is part of the
media and public frenzy known colloquially lelsrch Madness or The Big Dance.

There are six rounds of the tournament in eachosess there will be 63 games in total.
The six rounds are Round64, Round32, Sweetl6 8 kimal4 and Championship, respectively.
There are 64 teams to play 32 games in Round6&a32s to play 16 games in Round32; 16
teams to play 8 games in Sweetl6; 8 teams to pigan¥es in Elite8; 4 teams play 2 games in
Final4 and 2 teams battle the Championship. TheeosttNCAA Women’s Division | Basketball

tournament structure in recent seasons is illuedrat Figure 2.
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Figure 2: Structure of NCAA women’s division | batizall tournament



CHAPTER 2. REVIEW OF PAST STUDIES

It is hard to find the articles related to predigtNCAA women’s basketball game.
Research has consistently shown that men’s sp@ts dominantly more attention than
women’s sports games, even though it is reportglbyvn that there was a significant increase in
the number of women or girls who actively parti¢goar regularly play organized sports games
by certain associations. (Kane, 1996; Duncan, 2006)

Previous works regarding the topic of factors affecmen’s basketball games were
reviewed, and some are mentioned here.

Carlin (1996) used very basic regression modepsedict probability of winning using
seed positions and computer ranking.

Schwertman, Schenk and Holbrook (1996) modifiedaihygroach to fit linear and logistic
regression models for P(i,j) as a function of tifeecence in either team seeds or normal scores
of the seeds on the basis of the data from 600 gah®85-1994).

Smith and Schwertman (1999) conducted an integestisearch from a different angle to
accurately predict the actual margin of victory mploe development of more complex
regression models with the use of the seed positionmation. They used PRESS, which
directly measures the predictive quality of a motiebdetermine the subset of independent
variables that comprise the best prediction mobety proposed the following model for
predicting the point spread of a men’s basketkathg in the NCAA tournament:

9 =-2.148, + 1.68(, - 17K, X, +.260¢% +.197X,
Wherey is the predicted margin of victor¥, is the lower seed numbeps, is the higher

seed numbers, arif] ;is the linear yearly trend.



Caudill (2003) also used seed values and develttfechaximum score estimator in the
case of the NCAA men’s basketball tournament taliptevinnings. It was found that use of the
maximum score estimator yielded slightly betteuhssthan results obtained through use of the
probit/maximum likelihood models.

Kubatko, Oliver, Pelton and Rosenbaum (2007) prep@sgood starting point for future
basketball research. They analyzed the possessimept and found it to be connected with
various statistics. Other important concepts haanhbncluded in their study, such as offensive
and defensive ratings, plays, per-minute statispiase adjustments, true shooting percentage,
effective field goal percentage and rebound rates.

West (2006) used a rating method based on ordigadtic regression and expectation
(the OLRE method) to predict the probability of wimg for a basketball team playing in the
NCAA Men’s basketball tournament. West (2006) eated the probabilities that a given team, i,
would win 0 games, 1 games, 2 games, through 6 game

Zhang (2013) used data form the 2002 -2012 seddd@AA Men'’s basketball
tournament as the training data and then testeddtigracy for bracketing all 63 games in the
2012-2013 season. This study focused on bracka#ten) CAA Men’s basketball tournament by
use of a conditional logistic probability model.iork is a modification of the work of West
(2006). It was found that the conditional logigirobability model outperformed the restricted
OLRE model proposed by West (2006) for 2013 Marcdhess.

Magel and Unruh (2013) analyzed NCAA Men’s baskiétiemes and found four
common statistics were significant to determinenang, i.e. assists, free throw attempts,

defensive rebounds and turnovers. Two models wereldped by the use of a random sample



of 150 games chosen from 2009-2010 season andflteZD11 season. The models were used

to bracket 2013 March Madness and correctly predié2% and 68% of the game results.



CHAPTER 3. DESCRIPTION OF STUDY

3.1. Research Objectives

The research objectives for this study includeftiewing:

1) Develop least squares regression models for &auRound 2 and Rounds 3-6,
to predict winners of basketball games in eaclho$é¢ rounds for the NCAA
Women'’s Basketball tournament; and

2) Develop Logistic regression models for Roun&adynd 2 and Rounds 3-6, to
predict winners of basketball games in each ofé¢hrosinds for the NCAA

Women’'s Basketball tournament.

Data was collected for two seasons of the NCAA WiomBasketball tournament. This
included the 2011 and 2012 tournaments. Seasoaed@as were collected for all the teams in
the 2011 tournament on the following variablesid~oal Percentage; 3-pt Goal Percentage;
Free Throws Percentage; Number of Rebounds; Nuofb&ssists; Number of Blocks; Number
of Steals and Average number of points. Seasomrahges were also collected on the same
variables for all teams playing in the 2012 toureatnThe seed number that each team was
given in either the 2011 or 2012 tournament was atged.

Two groups of models were developed by using the dallected from the two seasons.
The first group of models used least squares regmesvith point spread as a response, and the
second groups of models used a logistic regresgproach with responses recorded as ‘1’ for

win and ‘O’ for loss.



3.2.  Develop Models for the First Round Using 2014nd 2012 Data
3.2.1. Develop Least Squares Regression Models

The response variable for the least squares regnesedel was point spread in the order
of the team of interest minus the opposing tearpositive point spread indicates a win for the
team of interest and a negative value indicatessfor the team of interest. There were 128
teams playing 64 games in first rounds of the tagrents in 2011 and 2012. For the 32 games of
the first round in 2011, the point spread was olatdhiby using the scores of weaker teams
(higher seed numbers) minus the scores of straegers (lower seed numbers). For the 32
games of the first round of the tournaments in 2@ point spread was acquired by using the
scores of stronger teams (lower seed numbers) nineuscores of weaker teams (higher seed
numbers).

The intercept was excluded when developing the msdzbcause the models should give
the same results regardless of the ordering ofetli@s in the model. Stepwise selection was
used with aru value of 0.15 for both entry and exit to develog models. The differences
between the two teams of the seasonal averaged the variables previously given were
considered for entry in the model. The differenoesveen seeds were also considered.

The generalized least squares model will be $ = X, where y is the point spread, x is
the matrix consisting of independent significardtdas,f is the vector of coefficients
corresponding to the independent factors, amslthe random error.

3.2.2. Development of Logistic Regression Models
The logistic regression model was also fit to tagadvith the dependent variable

recorded as ‘1’ for win and ‘O’ for loss for theata of interestThe logistic regression model



!

will be 1t x; = 1%’23 wherex; B = B1X1 + f2Xot...+ BpXp (Abraham & Ledolter, 2006) with x;
estimating the probability of a win for the teamimtierest.

No intercept will be used during the developmentheflogistic model because the
ordering of the teams in the model should not maBtepwise selection was used withoan
value of 0.15 for both entry and exit when deteingrthe significant variables in developing the
logistic regression model. The differences of thasenal averages for both teams for all
previously mentioned variables were considerecefary in the model. The differences between
seeds were also considered for entry into the model
3.3. Develop Models for the Second Round Using 20&athd 2012 Data
3.3.1. Develop Least Squares Regression Models

There were 64 teams playing 32 games in secondisoointhe tournaments in 2011 and
2012. For the 16 games of the second round in 20&Ipoint spread was obtained by using the
scores of weaker teams (higher seed numbers) rthieuscores of stronger teams (lower seed
numbers). For the 16 games of the second roun@18,2he point spread was acquired by using
the scores of stronger teams (lower seed numbensisrthe scores of weaker teams (higher seed
numbers). The intercept was excluded when deveajai@ models. Stepwise selection was used
with ana value of 0.15 for both entry and exit to develbe models. The differences between
the two teams of the seasonal averages of thequgyimentioned variables were considered
for entry in the model. The differences betweerseeere also considered.

The generalized least squares model will be $ = X, where y is the point spread, x is

the matrix consisting of independent significardtdas,f is the vector of coefficients

corresponding to the independent factors, amslthe random error.

10



3.3.2. Development of Logistic Regression Models

The logistic regression model was also fit for da¢a with responses recorded as‘1’ for

x{B
win and ‘O’ for loss for the team of intere$te logistic regression model will bex; = — LX,B
1+e”i

wherex; 8 = f1X1 + BaXot...+ BpXp (Abraham & Ledolter, 2006) with x; estimating the
probability of a win for the team of intereblo intercept will be used during the development of
the logistic model. Stepwise selection was uset wiiio. value of 0.15 for both entry and exit
when determine the significant variables in devilghe logistic regression model. The
differences between the two teams of the seasoreh@es of all previously mentioned variables
were considered for entry in the model. The diffiees between seeds were also considered.
3.4. Develop Models for the Third and Higher Round4#Jsing 2011 and 2012 Data

3.4.1. Develop Least Squares Regression Models

There were 60 teams playing 30 games in third agiteh rounds of the tournaments in
2011 and 2012. For the 15 games of the third agldeinirounds in 2011, the point spread was
obtained by using the scores of weaker teams (hggedd numbers) minus the scores of stronger
teams (lower seed numbers).

For the 15 games of the third and higher roundit2, the point spread was got by
using the scores of stronger teams (lower seed etgnminus the scores of weaker teams
(higher seed numbers). The intercept was excludezhwleveloping the models. Stepwise
selection was used with anvalue of 0.15 for both entry and exit to develbe imodels. The
differences between the two teams of the seasorehges of the previously mentioned
variables were considered for entry in the modbke differences between seed values were also

considered.
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The generalized least squares model will be $ = X, where y is the point spread, x is
the matrix consisting of independent significardtéas,f is the vector of coefficients
corresponding to the independent factors, aisdthe random error.

3.4.2. Development of Logistic Regression Model

The logistic regression model was also fit for da¢a with responses recorded as a ‘1’ for

x{B
win and ‘O’ for a loss for the team of intereBhe logistic regression model will bex; = — Lx,ﬁ
1+e”i

wherex; 8 = f1X1 + BaXot...+ BpXp (Abraham & Ledolter, 2006) with x; estimating the
probability of a win for the team of interest. Naarcept will be used when developing the
logistic model. Stepwise selection was used with &alue of 0.15 for both entry and exit when
determine the significant variables in developing lbgistic regression model. The differences
between the two teams of the seasonal averaghs pféviously mentioned variables were
considered for entry in the model. Differences lestwseeds was also considered.
3.5.  Verification of the Models

Using the least squares regression model developéle first round, the point spread of
16 games in the first round of the 2013 tournamead estimated based of the stronger perceived
team (higher seed number). The point spread fordimaining 16 games of round 1 was
estimated based on the team with higher seed numipeis team with lower seed value.
To verify the accuracy of prediction results foe feast squares regression model, values of
variables were placed in the model developed fefitist round. The estimated respofizaen
observed.

If § > 0, a predicted win for the point spread model a@ded.

If § <0, a predicted loss for the point spread moded voded.
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To verify the accuracy of prediction results foe fbgistic regression model for the first
round, a similar process was conducted. For eagidrof the game, statistics for the significant
factors were collected and the difference was tatehplaced into the logistic models to find a
predicted probability Xx;.

If Txi> 0.5, a predicted win was coded.

If Txi <0.5, a predicted loss was coded.

The second round and higher round models wereiegiii a similar way. Once the
teams in the second round were determined, thendeooind models were used to predict the
winners of the second round. This process contiiiethe third and higher rounds.

In 2014, a continuous process was used in verifiiegnodels instead of doing round by
round predictions as in 2013. Namely, a compleseket was filled out in 2014 before any game

was played. Results are given in Chapter 4.
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CHAPTER 4. RESULTS

4.1. Development Models
4.1.1. Development of Least Squares Regression Mbd& the First Round

A least squares regression model to help predicivinning team for each game in the
first round was developed and found to be:

$=1.12250(Diff. in 3-pt goals)-0.44657(Diff. in freélbrows) +2.29479(Diff. in blocks)
-1.68434(Diff. in Seeds)

The standard errors and p-values associated with afahe parameter estimates for the
model are given in Table 4.1. Table 4.2 gives thpsassociated with the stepwise selection
technique and the associated R-square valuesiabiegrare added to the model. The model

with all 4 variables explains an estimated 76%hef\ariation in point spread.

Table 4.1. Point Spread Model Parameter Estimates

Variable Parameter Standard Typell SS F Value Pr>F

Estimate Error
3-pt Goal 1.12250 0.38797 965.36546 8.37 0.0053
Free Throws -0.44657 0.21710 487.94901 4.23 0.0440
Blocks 2.29479 0.86548 810.75238 7.03 0.0102
Seed -1.68434 0.17355 10863 94.19 <.0001

Table 4.2. Summary of Stepwise Selection for PSpread Model

Step Variable Variable Number Partial Model FValue Pr>F

Entered Removed VarsIn R-Square R-Square
1 Seed 1 0.6935 0.6935 142.58 <.0001
2 Blocks 2 0.0307 0.7243 6.91 0.0108
3 3-pt Goal 3 0.0208 0.7451 4.99 0.0292
4 Free Throws 4 0.0168 0.7619 4.23 0.0440
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4.1.2. Development of Logistic Regression Model fdne First Round
A logistic regression model to help predict the mmng team for each game in the first
round was developed and found to be:

e0:2 79*DFG—0.418+DIS

1+ 0-279*DFG—0.418+DIS

n (DIS, DFG) =

Wherer (DIS, DFG) is the estimated probability that tharh of interest will win the
game with DIS and DFG in model.

Table 4.3 shows the steps for the stepwise sefetdithnique and Table 4.4 gives the
parameter estimates, their standard errors andiassw p-values when all the variables are in
the model. Table 4.5 shows the Hosmer and Lemesgéstwas done to test whether there was
evidence the logistic model was not appropriate gtvalue was 0.907 indicating that there was

no evidence to reject using the logistic model.

Table 4.3. Summary of Stepwise Selection for LagiRegression Model

Step Effect DF Number Score Wald Pr > ChiSq
Entered Removed In  Chi-Square Chi-
Square

1 DIS 1 1 39.1351 <.0001

2 DFG 1 2 4.9125 0.0267

Table 4.4. Logistic Regression Model Parametemizgies

Parameter DF Estimate Standard Wald Pr> ChiSq
Error Chi-Square

DFG 1 0.2790  0.1385 4.0616 0.0439

DIS 1 -0.4180 0.1212 11.9038 0.0006
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Table 4.5. Hosmer and Lemeshow Goodness-of-Fit Test

Chi-Square DF Pr > ChiSq
4.0662 9 0.9070

4.1.3. Development of Least Squares Regression Moftar the Second Round

A least squares regression model to help predéctvihning team for each game in the
second round was developed and found to be:

§ =1.34571(Diff. in Field Goals) + 0.54848(Diff. Awverage Points)

The standard errors and p-values associated with &ahe parameter estimates for the
model are given in Table 4.6. Table 4.7 gives tepsassociated with the stepwise selection
technique and the associated R-square valuesiablearare added to the model. The model

with all 2 variables explains an estimated 56%hef\variation in point spread.

Table 4.6. Point Spread Model Parameter Estimates

Variable Parameter Standard Typell SS FValue Pr>F
Estimate Error

Field Goal 1.34571 0.75138 339.26527 3.21 0.0834

Average Points  0.54848 0.35356 254.54023 2.41 0.1313

Table 4.7. Summary of Stepwise Selection for PSpread Model
Step Variable

Variable  Number

Partial  Model C(p) F Pr>F
Entered Removed VarsIn R- R- Value
Square Square
1 Field Goal 1 0.5230 0.5230 -1.3703 33.99 <.0001
2 Average Points 2 0.0354 0.5584 -1.4964 2.41 0.1313
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4.1.4. Development of Logistic Regression Model féhe Second Round
A logistic regression model to help predict the ming team for each game in the second

round was developed and found to be:

eO.3538*DFG

m (DFG) =

17 003538:DFC

Wheren (DFG) is the estimated probability that the tednmterest will win the game
with DFG in model.

Table 4.8 shows the steps for the stepwise sefetdithnique and Table 4.9 gives the
parameter estimates, their standard errors andiasw p-values when all the variables are in
the model. Table 4.10 shows the Hosmer and Lemegtsiwas done to test whether there was
evidence the logistic model was not appropriate gtvalue was 0.3354 indicating that there

was no evidence to reject using the logistic model.

Table 4.8. Summary of Stepwise Selection for LagiBegression Model

Step Effect DF Number Score Wald Pr> ChiSq
Entered Removed In Chi-Square Chi-Square
1 DFG 1 1 10.4074 0.0013

Table 4.9. Logistic Regression Model Parametemizgies

Parameter DF Estimate Standard Wald Pr > ChiSq
Error Chi-Square
DFG 1 0.3538 0.1306 7.3374 0.0068
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Table 4.10. Hosmer and Lemeshow Goodness-of-Fit Tes

Chi-Square DF Pr > ChiSq
10.1889 9 0.3354

4.1.5. Development of Least Squares Regression Modle the Third and Higher Rounds

A least squares regression model to help predecivinning team for each game in the
third and higher rounds was developed and fourizto

9= 2.52646(Diff. in Assists) +1.18735(Diff. in Ste}2.89252(Diff. in Seeds)

The standard errors and p-values associated with &ahe parameter estimates for the
model are given in Table 4.11. Table 4.12 givessteps associated with the stepwise selection
technique and the associated R-square valuesiablearare added to the model. The model

with all 3 variables explains an estimated 68%hef\ariation in point spread.

Table 4.11. Point Spread Model Parameter Estimates

Variable Parameter Standard TypellSS FValue Pr>F

Estimate Error
assists 2.52646 0.60519 2309.17242 17.43 0.0003
steals 1.18735 0.63843 458.29319 3.46 0.0738
seed -2.89252 0.56332 3493.47910 26.37 <.0001
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Table 4.12. Summary of Stepwise Selection for PSpread Model

Step Variable Variable Number Partial Model C(p) F Pr>F
Entered Removed VarsIn R- R- Value
Square Square
1 average 1 0.3956 0.3956 20.518 18.99 0.0002
points 5
2 seed 2 0.1819 0.5776 7.9149 12.06 0.0017
3 assists 3 0.0718 0.6493 4.1519 5.53 0.0263
4 average 2 0.0136 0.6357 3.2441 1.05 0.3151
points
5 steals 3 0.0414 0.6771 1.9232 3.46 0.0738

4.1.6. Development of Logistic Regression Model féhe Third and Higher Rounds

A logistic regression model to help predict the mig team for each game in the third

and higher rounds was developed and found to be

e0.3222*DAP—0.54-94-*DIS

m (DAP, DIS) =-

+ c03222:DAP—05494:DIS

Wherer (DAP, DIS) is the estimated probability that tearn of interest will win the
game with DAP and DIS in model.

Table 4.13 shows the steps for the stepwise sefetdchnique and Table 4.14 gives the
parameter estimates, their standard errors andiagsw p-values when all the variables are in
the model. Table 4.15 shows the Hosmer and Lemesgtgtwas done to test whether there was

evidence the logistic model was not appropriate gtvalue was 0.0811 indicating that there

was no evidence to reject using the logistic model.
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4.2.

Table 4.13. Summary of Stepwise Selection for LiongRegression Model

Step Effect DF Number Score Wald Pr> ChiSq
Entered Removed In Chi-Square Chi-Square
1 DAP 1 1 10.1130 0.0015
2 DIS 1 2 8.1841 0.0042
3 DI3G 1 3 3.0999 0.0783
4 DIAS 1 4 4.0119 0.0452
5 DAP 1 3 1.7780 0.1824
6 DI3G 1 2 0.8043 0.3698
7 DIAS 1 1 1.3890 0.2386
8 DAP 1 2 8.1760 0.0042

Table 4.14. Logistic Regression Model Parameteintases

Parameter DF Estimate Standard Wald Pr > ChiSq
Error Chi-Square

DAP 1 0.3222  0.1665 3.7472 0.0529

DIS 1 -0.5494  0.3062 3.2182 0.0728

Table 4.15. Hosmer and Lemeshow Goodness-of-Fit Tes

Chi-Square DF Pr > ChiSq
14.0254 8 0.0811

Prediction Round by Round Using Models Develeul

The three least squares regression models weragageedict the first round, second

round and third round through final of 2013 seatsocheck the prediction accuracy of the

models. It is noted that the 2013 season wasseit in the development of the models.

Tables 4.16 — 4.18 give the results as to how atelyrthe least squares regression

models for each of the rounds of the NCAA 2013 woimbasketball tournament with the

results of the third through the sixth rounds cameditogether.
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Tables 4.19 — 4.21 give similar results for thadig models.

Table 4.16. Accuracy of Least Squares RegressioteM&hen Predicting First Round
of 2013
Point Spread Predicted
Win Loss Total
Actual Win 13 3 16
Loss 1 15 16
Total 14 18 32
Overall Accuracy 87.5%

Table 4.17. Accuracy of Least Squares RegressioteM&hen Predicting Second
Round of 2013
Point Spread Predicted
Win Loss Total
Actual Win 7 1 8
Loss 2 6 8
Total 9 7 16
Overall Accuracy 81.3%

Table 4.18. Accuracy of Least Squares RegressiodeM@hen Predicting Third and
Higher Rounds of 2013
Point Spread Predicted
Win Loss Total
Actual Win 3 2 5
Loss 2 8 10
Total 5 10 15
Overall Accuracy 73.3%
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Table 4.19. Accuracy of Logistic Regression Modéiai Predicting First Round of
2013
Logistic Predicted
Win Loss Total
Actual Win 15 1 16
Loss 2 14 16
Total 17 15 32
Overall Accuracy 90.63%

Table 4.20. Accuracy of Logistic Regression Moddiai Predicting Second Round of
2013
Logistic Predicted
Win Loss Total

Actual Win 7 1 8
Loss 2 6 8
Total 9 7 16

Overall Accuracy 81.25%

Table 4.21. Accuracy of Logistic Regression Modéiai' Predicting Third and Higher
Rounds of 2013
Logistic Predicted
Win Loss Total
Actual Win 3 2 5
Loss 2 8 10
Total 5 10 15
Overall Accuracy 73.33%

It is noted that the percentage of accuracy foheauand using the least squares models

and using the logistic models are very close.
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4.3. Bracketing the 2014 Tournament Before Tournamd Begins

The accuracy of the least squares regression mageéschecked against each rounds of
the games from 2014 season. For each round ofatine gstatistics for the significant factors
were collected and the difference was taken ancedlanto the predictive models to find a
predicted point spreaft,

If § > 0, a predicted win for the point spread model a@ded.

If § <0, a predicted loss for the point spread model coaed.

Results were predicted for every round before dlientament begin. Variables associated
with teams predicted to win the first round werageld into the second round model. Variables
associated with team predicted to win the seconddavere placed in the third round model to
predict which teams would win this round. This @es continued.

These predicted results were then compared aghmsictual results for each round of
the game for 2014.

4.4. Examples for Each Round of 2014 Tournament
4.4.1. Least Squares Regression Model for First Rad
The following gives the least squares model forfitse round:
$=1.12250(Diff. in 3-pt goals)-0.44657(Diff. in frelbrows) +2.29479(Diff. in blocks)-

1.68434(Diff. in Seeds)

Table 4.22. Michigan St. and Hampton Statistics

Team Score  3-pt goals* Free throws* Blocks* Seed
Michigan St. 91 34.276 71.164 4.613 5
Hampton 61 30.213 61.93 4,733 12
Difference 30 4.063 9.234 -0.12 -7

* Average per game for season
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Using the model above, Michigan St. had a prediptadt spread of:
§ =1.12250%4.063 - 0.44657*9.234 + 2.29479*(-0.12)68434*(-7) = 11.95
Sincey >0 this game was coded as a correctly predicteadaviMichigan St., who won

the game by a score of 91-61.

Table 4.23. South Carolina and Cal St. NorthridgiSics

Team Score 3-pt goals* Free throws* Blocks* Seed
South Carolina 73 34.551 66.826 7.258 1
Cal St. Northridge 58 32.725 68.859 4 16

Difference 15 1.826 -2.033 3.258 -15

* Average per game for season

Using the model above, South Carolina had a predlipgbint spread of:

§ =1.12250%1.826 - 0.44657*(-2.033) + 2.29479*3.25868434*(-15) = 35.70

Sincey >0 this game was coded as a correctly predictedaviSouth Carolina, who

won the game by a score of 73-58.

Table 4.24. Middle Tenn. and Oregon St. Statistics

Team Score 3-pt goals* Free throws* Blocks* Seed
Middle Tenn. 36 28.135 64 1.839 8
Oregon St. 55 37.068 65.802 6.182 9
Difference -19 -8.933 -1.802 -4.343 -1

* Average per game for season

Using the model above, Middle Tenn. had a prediptadt spread of:

§ = 1.12250%(-8.933) - 0.44657%(-1.802) + 2.2947%43) - 1.68434*(-1) = -17.50
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Sincey < 0 this game was coded as a correctly predictesifor Middle Tenn., who lost

the game by a score of 36-55.

Table 4.25. North Carolina and UT Martin Statistics

Team Score 3-pt goals* Free throws* Blocks* Seed
North Carolina 60 32.573 66.709 4.758 4
UT Martin 58 35.959 74.934 2.677 13
Difference 2 -3.386 -8.225 2081 -9

* Average per game for season

Using the model above, North Carolina had a predigbint spread of:
§ = 1.12250%(-3.386) - 0.44657*(-8.225) + 2.2947D21 - 1.68434*(-9) = 19.81
Sincey >0 this game was coded as a correctly predictedaviNorth Carolina, who

won the game by a score of 60-58.

Table 4.26. Western Ky. and Baylor Statistics

Team Score 3-pt goals* Free throws* Blocks* Seed
Western Ky. 74 32.981 72.904 3.467 15

Baylor 87 33.458 72.761 4.212 2
Difference -13 -0.477 0.143 -0.745 13

* Average per game for season

Using the model above, Western Ky. had a prediptedt spread of:
§ =1.12250%(-0.477) - 0.44657*0.143 + 2.29479*(4bY - 1.68434*(13) = -24.21
Sincey <0 this game was coded as a correctly predictesifr Western Ky., who lost

the game by a score of 74-87.
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Table 4.27. Chattanooga and Syracuse Statistics

Team Score 3-pt goals* Free throws* Blocks* Seed
Chattanooga 53 31.81 72.727 4813 11
Syracuse 59 31.874 72.804 4.387 6
Difference -6 -0.064 -0.077 0.426 5

* Average per game for season

Using the model above, Chattanooga had a predicied spread of:
§ = 1.12250%(-0.064) - 0.44657*(-0.077) + 2.2947%D6 - 1.68434*(5) = -7.48

Sincey <0 this game was coded as a correctly predictesifar Chattanooga, who lost

the game by a score of 53-59.

Table 4.28. Robert Morris and Notre Dame Statistics

Team Score 3-pt goals* Free throws* Blocks* Seed
Robert Morris 42 33.929 68.829 3.387 16
Notre Dame 93 40.648 75.217 4.094 1
Difference -51 -6.719 -6.388 -0.707 15

* Average per game for season

Using the model above, Robert Morris had a predipt@nt spread of:
§ = 1.12250*(-6.719) - 0.44657*(-6.388) + 2.29479"07) - 1.68434*(15) = -31.58

Sincey <0 this game was coded as a correctly predictesifr Robert Morris, who lost

the game by a score of 42-93.

Table 4.29. Albany (NY) and West Virginia Statistic

Team Score 3-pt goals* Free throws* Blocks* Seed
Albany (NY) 61 30.678 67.76 2375 15
West Virginia 76 33.109 69.415 4.455 2

Difference -15 -2.431 -1.655 -2.08 13

* Average per game for season
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Using the model above, Albany (NY) had a predigietht spread of:
§ =1.12250*%(-2.431) - 0.44657*(-1.655) + 2.29472%08) - 1.68434*(13) = -28.66
Sincey < 0 this game was coded as a correctly predicssifor Albany (NY), who lost

the game by a score of 61-76.

Round 1:
Number correct: 26
Number incorrect; 6

Total: 32

4.4.2. Least Squares Regression Model for SecondrRal:

The following gives the least squares model forgeond round:

§ = 1.34571(Diff. in Field Goals) + 0.54848(Diff. Awerage Points)

Table 4.30. South Carolina and Oregon St. Stagistic

Team Score Field Goals* Average Points*
South Carolina 78 48.238 73.1935484
Oregon St. 69 43.987 70.969697
Difference 9 4,251 2.2238514

* Average per game for season

Using the model above, South Carolina had a predlipgbint spread of:
§ =1.34571*4.251 + 0.54848*2.2238514=6.94
Sincey >0 this game was coded as a correctly predictedaviSouth Carolina, who

won the game by a score of 78-69.
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Table 4.31. DePaul and Duke Statistics

Team Score Field Goals* Average Points*
DePaul 65 45.045 83.7272727
Duke 74 49.876 80.2424242
Difference 9 -4.831 3.4848485

* Average per game for season

Using the model above, DePaul had a predicted gpir@ad of:
§ = 1.34571*(-4.831) + 0.54848*3.4848485 = -4.59
Sincey < 0 this game was coded as an incorrectly pratlicss for DePaul, who won

the game by a score of 74-65.

Table 4.32. Maryland and Texas Statistics

Team Score Field Goals* Average Points*
Maryland 69 48.956 83.1666667

Texas 64 43.499 69.5625
Difference 5 5.457 13.6041667

* Average per game for season

Using the model above, Maryland had a predictedtmpread of:
§ =1.34571*5.457 + 0.54848*13.6041667 = 14.81
Sincey >0 this game was coded as a correctly predictedaviMaryland, who won the

game by a score of 69-64.

Table 4.33. Kentucky and Syracuse Statistics

Team Score Field Goals* Average Points*
Kentucky 64 43.478 81.34375
Syracuse 59 39.832 73.483871

Difference 5 3.646 7.859879

* Average per game for season
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Using the model above, Kentucky had a predictedtspread of:
§ = 1.34571*3.646 + 0.54848*7.859879 = 9.22
Sincey >0 this game was coded as a correctly predictedaviKentucky, who won the

game by a score of 64-59.

Round 2:
Number correct: 9
Number incorrect: 7

Total: 16

4.4.3. Least Squares Regression Model for Third Row:
The following gives the least squares model fortttiel and higher rounds:

¢ = 2.52646(Diff. in Assists) +1.18735(Diff. in Ste2.89252(Diff. in Seeds)

Table 4.34. South Carolina and North Carolina Stias

Team Score Assists* Steals* Seed
South Carolina 58 14.742 6.129 1
North Carolina 65 15.727 11.636 4

Difference -7 -0.985 -5.507 -3

* Average per game for season

Using the model above, South Carolina had a predlipgbint spread of:
§ = 2.52646*(-0.985) +1.18735*(-5.507)-2.89252*(=3)0.35
Sincey < 0 this game was coded as a correctly predicssifor South Carolina, who

lost the game by a score of 58-65.
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Table 4.35. Baylor and Kentucky Statistics

Team Score Assists* Steals* Seed

Baylor 90 18.697 7.212 2
Kentucky 72 14.219 9.969 3
Difference 18 4.478 -2.757 -1

* Average per game for season

Using the model above, Baylor had a predicted pgpnéad of:

9 = 2.52646*4.478 +1.18735%(-2.757)-2.89252*(-1) &:93

Sincey >0 this game was coded as a correctly predictedaviBaylor, who won the

game by a score of 90-72.

4.4.4.

Round 3:

Number correct: 6
Number incorrect: 2
Total: 8

Least Squares Regression Model for Fourth Rad:

The following gives the least squares model fortttiel and higher rounds:

¢ = 2.52646(Diff. in Assists) +1.18735(Diff. in Ste2.89252(Diff. in Seeds)

Table 4.36. North Carolina and Stanford Statistics

Team Score Assists* Steals* Seed
North Carolina 65 15.727 11.636 4
Stanford 74 17.813 5.781 2
Difference -9 -2.086 5.855 2

* Average per game for season
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Using the model above, North Carolina had a predigbint spread of:
§ = 2.52646(Diff. in Assists) +1.18735(Diff. in Step2.89252(Diff. in Seeds) = -4.10

Sincey < 0 this game was coded as a correctly predicssifor North Carolina, who

lost the game by a score of 65-74.

Table 4.37. Baylor and Notre Dame Statistics

Team Score Assists* Steals* Seed
Baylor 69 18.697 7.212 2
Notre Dame 88 20.688 9.625 1
Difference -19 -1.991 -2.413 1

* Average per game for season

Using the model above, Baylor had a predicted pspnead of:
§ = 2.52646*(-1.991) +1.18735%(-2.413)-2.89252*119-79

Sincey < 0 this game was coded as a correctly predictssifor Baylor, who lost the

game by a score of 69-88.

4.4.5.

Round 4:
Number correct: 4
Number incorrect: O

Total: 4

Least Squares Regression Model for Fifth Rod

The following gives the least squares model forttive and higher rounds:

§ = 2.52646(Diff. in Assists) +1.18735(Diff. in Step2.89252(Diff. in Seeds)
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Table 4.38. UConn and Stanford Statistics

Team Score Assists* Steals* Seed
UConn 75 21.559 9.765 1
Stanford 56 17.813 5.781 2
Difference 19 3.746 3.984 -1

* Average per game for season

Using the model above, UConn had a predicted spirgad of:

§ = 2.52646*3.746 +1.18735*3.984-2.89252*(-1) = B/.0

Sincey > 0 this game was coded as a correctly predictedaw UConn, who won the

game by a score of 75-56.

Table 4.39. Maryland and Notre Dame Statistics

Team Score Assists* Steals* Seed
Maryland 61 19.6 8.3 4
Notre Dame 87 20.688 9.625 1
Difference -26 -1.088 -1.325 3

* Average per game for season

Using the model above, Maryland had a predictedtspread of:
§ = 2.52646*(-1.088) +1.18735(-1.325)-2.89252*3 3.4D
Sincey < 0 this game was coded as a correctly predicssifor Maryland, who lost the

game by a score of 61-87.

Round 5:

Number correct: 2
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Number incorrect: O

Total: 2

4.4.6. Least Squares Regression Model for Sixth Rod

The following gives the least squares model forttive and higher rounds:

9 = 2.52646(Diff. in Assists) +1.18735(Diff. in Step2.89252(Diff. in Seeds)

Table 4.40. UConn and Notre Dame Statistics

Team Score Assists* Steals* Seed

UConn 79 21.559 9.765 1
Notre Dame 58 20.688 9.625 1
Difference 21 0.871 0.14 0

* Average per game for season

Using the model above, UConn had a predicted spirgad of:
§ = 2.52646*0.871 +1.18735*0.14-2.89252*0 = 2.37
Sincey > 0 this game was coded as a correctly predictedaw UConn, who won the

game by a score of 79-58.

Round 6:
Number correct: 1
Number incorrect: O

Total: 1
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A summary of the number of correct and incorreetptions for each round of the 2014
tournament is given in Table 4.42.
Least square regression models were used to pesibtround of NCAA women’s

basketball tournament of 2013 and 2014.

Table 4.41. Prediction Results of Each Round fdr2@Least Squares Regression Model)

Correct Incorrect Total games

First round 28 4 32
Second round 13 3 16
Third round 6 2 8
Fourth round 2 2 4
Fifth round 1 1 2

Final round 0 1 1
Overall Accuracy 79.37%

Table 4.42. Prediction Results of Each Round fdrd2@Least Squares Regression Model)

Correct Incorrect Total games

Firstround 26 6 32
Second round 9 7 16
Third round 6 2 8
Fourthround 4 0 4
Fifthround 2 0 2

Final round 1 0 1
Overall Accuracy 76.19%

Figure 3 and Figure 4 show the predicted resulZ0af3 tournament and 2014
tournament when least squares regression modeésuged. The highlighted parts of both

figures are the incorrectly predicted results.
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CHAPTER 5. CONCLUSION

To verify the accuracy of prediction results foe feast squares regression model,
differences of the seasonal averages for both téanadl previously mentioned variables were
placed in the model developed for Round 1, Rouad@®Rounds 3-6. The least squares
regression model and the logistic regression mimiehe first round had approximately a 87.5%
and 90.6% chance of correctly predicting the resudispectively. The least squares regression
model and the logistic regression model for th@sdaound had approximately a 81.3% and
81.2% chance of correctly predicting the resutispectively. The least squares regression model
and the logistic regression model for the third higher round had approximately a 73.3% and

73.3% chance of correctly predicting the resultspectively.

In 2014, a continuous process was used in veriffnegnodels instead of doing round by
round predictions as in 2013. Namely, a compleaekeat was filled out in 2014 before any game
was played. When the differences of the seasaeahges for both teams for all previously
mentioned variables were considered for entry enlélast squares models, the models had

approximately a 76% chance of correctly predictimgwinner of a basketball game.
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APPENDIX. SAS CODE

Code for least squares regression model for fnshd

Code generated by SAS Task

Generated on: Sunday, April 27, 2014 at 2:1PBP
By task: Linear Regression2

Input Data: WORK.DATA
Server: Local

ODS GRAPHICS ON;

%_eg_conditional_dropds(WORK.SORTTempTableSorted,
WORK.TMP1TempTableForPlots);

Determine the data set's type attribute (if isrdefined)
and prepare it for addition to the data set/wehich is
generated in the following step.

DATA NULL_;
dsid = OPEN("WORK.DATA", "I");
dstype = ATTRC(DSID, "TYPE");
IF TRIM(dstype) =" " THEN
DO;
CALL SYMPUT("_EG_DSTYPE_","™);
CALL SYMPUT("_DSTYPE_VARS ", ");
END;
ELSE
DO;
CALL SYMPUT("_EG_DSTYPE_ ", "(TYPE=""" || TRIM(dgpe) || ")");
IF VARNUM(dsid, "_NAME_") NEO AND VARNUM(dsid, "_TYPE_") NEO THEN
CALL SYMPUT("_DSTYPE_VARS "," TYPE_ _NAME_");
ELSE IF VARNUM(dsid, " TYPE_") NB® THEN
CALL SYMPUT("_DSTYPE_VARS "," TYPE_");
ELSE IF VARNUM(dsid, " NAME_") NED THEN
CALL SYMPUT("_DSTYPE_VARS "," NAME_");

ELSE
CALL SYMPUT("_DSTYPE_VARS_", "),
END;
rc = CLOSE(dsid);
STOP;
RUN;
L e e e

DATA WORK.SORTTempTableSorted & EG_DSTYPE_ / VIEW=WORRRTTempTableSorted;
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SET WORK.DATA(KEEP=pointspread DIFG DI3G DIFT DIABIAA DIAB DIAS DIAP DIS
& DSTYPE_VARS );
RUN;
TITLE;
TITLEL "Linear Regression Results";
FOOTNOTE;
FOOTNOTEL "Generated by the SAS System (& SASSERNERE, &SYSSCPL)
on %TRIM(%QSYSFUNC(DATE(), NLDATE?20.)) at % TRIM(%SSFUNC(TIME(),
TIMEAMPM12.))";
PROC REG DATA=WORK.SORTTempTableSorted

PLOTS(ONLY)=ALL

Linear_Regression_Model: MODEL pointspread = DIBI3G DIFT DIAR DIAA DIAB DIAS
DIAP DIS

/ SELECTION=STEPWISE
SLE=0.15
SLS=0.15
INCLUDE=0
NOINT
RUN;
QUIT;
/* ___________________________________________________________________

End of task code.

RUN; QUIT;
% _eg_conditional_dropds(WORK.SORTTempTableSorted,
WORK.TMP1TempTableForPlots);
TITLE; FOOTNOTE;
ODS GRAPHICS OFF,;

Code for least squares regression model for sexndl

Code generated by SAS Task

Generated on: Sunday, April 27, 2014 at 2:22BD
By task: Linear Regression3

Input Data: WORK.DATA
Server: Local

ODS GRAPHICS ON;

%_eg_conditional_dropds(WORK.SORTTempTableSorted,
WORK.TMP1TempTableForPlots);

Determine the data set's type attribute (if isrgefined)
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and prepare it for addition to the data set/wvich is
generated in the following step.

DATA _NULL_;
dsid = OPEN("WORK.DATA", "I");
dstype = ATTRC(DSID, "TYPE");
IF TRIM(dstype) =" " THEN
DO;
CALL SYMPUT("_EG_DSTYPE_",";
CALL SYMPUT("_DSTYPE_VARS_","™);
END;
ELSE
DO;
CALL SYMPUT("_EG_DSTYPE_", "(TYPE="""|| TRIM(dgpe) || "™)");
IF VARNUM(dsid, "_NAME_") NEO AND VARNUM(dsid, "_TYPE_") NEO THEN
CALL SYMPUT("_DSTYPE_VARS "," TYPE_ _NAME_");
ELSE IF VARNUM(dsid, " _TYPE_") NB® THEN
CALL SYMPUT("_DSTYPE_VARS_"," TYPE_");
ELSE IF VARNUM(dsid, "_NAME_") NED THEN
CALL SYMPUT("_DSTYPE_VARS _"," NAME_");
ELSE
CALL SYMPUT("_DSTYPE_VARS_","™);
END;
rc = CLOSE(dsid);
STOP;
RUN;

DATA WORK.SORTTempTableSorted & EG_DSTYPE_ / VIEW=WORRRTTempTableSorted;
SET WORK.DATA(KEEP=pointspread DIFG DI3G DIFT DIABIAA DIAB DIAS DIAP DIS
& DSTYPE_VARS );
RUN;
TITLE;
TITLEL "Linear Regression Results";
FOOTNOTE;
FOOTNOTEL "Generated by the SAS System (& SASSERNERE, &SYSSCPL)
on % TRIM(%QSYSFUNC(DATE(), NLDATEZ20.)) at % TRIM(%SSFUNC(TIME(),
TIMEAMPM12.))";
PROC REG DATA=WORK.SORTTempTableSorted
PLOTS(ONLY)=ALL

Linear_Regression_Model: MODEL pointspread = DIBI3G DIFT DIAR DIAA DIAB DIAS
DIAP DIS
/ SELECTION=STEPWISE
SLE=0.15
SLS=0.15
INCLUDE=0
NOINT
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RUN;
QUIT;

End of task code.

RUN; QUIT;
% _eg_conditional_dropds(WORK.SORTTempTableSorted,
WORK.TMP1TempTableForPlots);
TITLE; FOOTNOTE;
ODS GRAPHICS OFF,;

Code for least squares regression model for tmddhagher rounds

Code generated by SAS Task

Generated on: Sunday, April 27, 2014 at 2:2&KND
By task: Linear Regression4

Input Data: WORK.DATA
Server: Local

ODS GRAPHICS ON;

% _eg_conditional_dropds(WORK.SORTTempTableSorted,
WORK.TMP1TempTableForPlots);

Determine the data set's type attribute (if isrgefined)
and prepare it for addition to the data set/wehich is
generated in the following step.

DATA NULL_;
dsid = OPEN("WORK.DATA", "I');
dstype = ATTRC(DSID, "TYPE");
IF TRIM(dstype) =" " THEN
DO;
CALL SYMPUT("_EG_DSTYPE_","™);
CALL SYMPUT("_DSTYPE_VARS_", ™),
END;
ELSE
DO;
CALL SYMPUT("_EG_DSTYPE_ ", "(TYPE="""|| TRIM(dgpe) || ")");
IF VARNUM(dsid, "_NAME_") NEO AND VARNUM(dsid, "_TYPE_") NEO THEN
CALL SYMPUT("_DSTYPE_VARS "," TYPE_ _NAME_");
ELSE IF VARNUM(dsid, "_TYPE_") NB THEN
CALL SYMPUT("_DSTYPE_VARS "," TYPE_");
ELSE IF VARNUM(dsid, " NAME_") NED THEN
CALL SYMPUT("_DSTYPE_VARS_"," NAME_");
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ELSE
CALL SYMPUT("_DSTYPE_VARS_","™);
END;
rc = CLOSE(dsid);
STOP;
RUN;

DATA WORK.SORTTempTableSorted & EG_DSTYPE_ / VIEW=WORRRTTempTableSorted;
SET WORK.DATA(KEEP=pointspread DIFG DI3G DIFT DIABRIAA DIAB DIAS DIAP DIS
& DSTYPE_VARS );
RUN;
TITLE;
TITLEL "Linear Regression Results";
FOOTNOTE;
FOOTNOTEL "Generated by the SAS System (& SASSERNERE, &SYSSCPL)
on % TRIM(%QSYSFUNC(DATE(), NLDATEZ20.)) at % TRIM(%SSFUNC(TIME(),
TIMEAMPM12.))";
PROC REG DATA=WORK.SORTTempTableSorted
PLOTS(ONLY)=ALL

Linear_Regression_Model: MODEL pointspread = DIBI3G DIFT DIAR DIAA DIAB DIAS
DIAP DIS

/ SELECTION=STEPWISE
SLE=0.15
SLS=0.15
INCLUDE=0
NOINT
RUN;
QUIT;
[ e e

End of task code.

RUN; QUIT;

%_eg_conditional_dropds(WORK.SORTTempTableSorted,
WORK.TMP1TempTableForPlots);

TITLE; FOOTNOTE;

ODS GRAPHICS OFF,;

Code for logistic regression model for first round

Code generated by SAS Task

43



Generated on: Sunday, April 27, 2014 at 2:3PNb
By task: Logistic Regression

Input Data: WORK.DATA
Server: Local

ODS GRAPHICS ON;

%_eg_conditional_dropds(WORK.SORTTempTableSorted);
L e e
Sort data set WORK.DATA

PROC SQL;
CREATE VIEW WORK.SORTTempTableSorted AS
SELECT T.pointspread, T.DIFG, T.DI3G, T.DIFT, TAR, T.DIAA, T.DIAB, T.DIAS,
T.DIAP, T.DIS
FROM WORK.DATAas T

QUIT;

TITLE;

TITLEL "Logistic Regression Results for first round

FOOTNOTE;

FOOTNOTEL "Generated by the SAS System (& SASSERNERE, &SYSSCPL)

on %TRIM(%QSYSFUNC(DATE(), NLDATE?20.)) at % TRIM(%SSFUNC(TIME(),

TIMEAMPM12.))";

PROC LOGISTIC DATA=WORK.SORTTempTableSorted
PLOTS(ONLY)=ALL

MODEL pointspread (Event = '1")=DIFG DI3G DIFT DRADIAA DIAB DIAS DIAP DIS
/

SELECTION=STEPWISE

SLE=0.15

SLS.15

INCLUDE=0

NOINT

LACKFIT

LINK=LOGIT

RUN:
QUIT;

End of task code.

RUN; QUIT;
%_eg_conditional_dropds(WORK.SORTTempTableSorted);
TITLE; FOOTNOTE;

ODS GRAPHICS OFF,;
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Code for logistic regression model for second round

Code generated by SAS Task

Generated on: Sunday, April 27, 2014 at 2:3PBD
By task: Logistic Regression 2

Input Data: WORK.DATA
Server: Local

ODS GRAPHICS ON;
% _eg_conditional_dropds(WORK.SORTTempTableSorted);

Sort data set WORK.DATA

PROC SQL:
CREATE VIEW WORK.SORTTempTableSorted AS
SELECT T.pointspread, T.DIFG, T.DI3G, T.DIFT, TAR, T.DIAA, T.DIAB, T.DIAS,
T.DIAP, T.DIS
FROM WORK.DATA as T

QUIT;

TITLE;

TITLEL "Logistic Regression Results for second mtin

FOOTNOTE;

FOOTNOTEL "Generated by the SAS System (& SASSERNERE, &SYSSCPL)

on %TRIM(%QSYSFUNC(DATE(), NLDATE20.)) at % TRIM(%SSFUNC(TIME(),

TIMEAMPM12.))";

PROC LOGISTIC DATA=WORK.SORTTempTableSorted
PLOTS(ONLY)=ALL

MODEL pointspread (Event = '1")=DIFG DI3G DIFT DRADIAA DIAB DIAS DIAP DIS
/
SELECTION=STEPWISE

SLE=0.15
SLS=0.15
INCLUDE=0
NOINT
LACKFIT
LINK=LOGIT
RUN;
QUIT;
/* ___________________________________________________________________

End of task code.
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RUN; QUIT;
%_eg_conditional_dropds(WORK.SORTTempTableSorted);
TITLE; FOOTNOTE;

ODS GRAPHICS OFF,;

Code for logistic regression model for third anghar rounds

Code generated by SAS Task

Generated on: Sunday, April 27, 2014 at 2:448B
By task: Logistic Regression 4

Input Data: WORK.DATA
Server: Local

ODS GRAPHICS ON;
% _eg_conditional_dropds(WORK.SORTTempTableSorted);

Sort data set WORK.DATA

PROC SQL;
CREATE VIEW WORK.SORTTempTableSorted AS
SELECT T.pointspread, T.DIFG, T.DI3G, T.DIFT, TAR, T.DIAA, T.DIAB, T.DIAS,
T.DIAP, T.DIS
FROM WORK.DATAas T

QUIT;

TITLE;

TITLEL "Logistic Regression Results for third arigher rounds";

FOOTNOTE;

FOOTNOTEL "Generated by the SAS System (& SASSERVERE, &SYSSCPL)

on %TRIM(%QSYSFUNC(DATE(), NLDATE?20.)) at % TRIM(%SSFUNC(TIME(),

TIMEAMPM12.))";

PROC LOGISTIC DATA=WORK.SORTTempTableSorted
PLOTS(ONLY)=ALL

MODEL pointspread (Event = '1")=DIFG DI3G DIFT DRADIAA DIAB DIAS DIAP DIS
/

SELECTION=STEPWISE

SLE=0.15

SLS0.15

INCLUDE=0

NOINT

LACKFIT

LINK=LOGIT
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RUN;
QUIT;

End of task code.

RUN; QUIT;

% _eg_conditional_dropds(WORK.SORTTempTableSorted);
TITLE; FOOTNOTE;

ODS GRAPHICS OFF,;

47



