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ABSTRACT

Imputed microRNA regulation based on weighted ranked expression and putative
microRNA targets (IMRE) is a method to predict microRNA regulation from genome-wide gene
expression. A false discovery rate (FDR) for each microRNA is calculated using the expression
of the microRNA putative targets to analyze the regulation between different conditions. FDR is
calculated to identify the differences of gene expression. The dataset used in this research is the
microarray gene expression of 596 patients with prostate cancer. This dataset includes three
different phenotypes: PSA (Prostate-Specific Antigen recurrence), Systemic (Systemic Disease
Progression) and NED (No Evidence of Disease). We used the IMRE and ANOVA methods to
analyze the dataset and identified several microRNA candidates that can be used to predict PSA

recurrence and systemic disease progression in prostate cancer patients.
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CHAPTER 1. INTRODUCTION

A microRNA (abbreviated miRNA) is a small non-protein-coding RNA molecule
(containing about 22 nucleotides) found in plants, animals, and some viruses, which functions in
transcriptional and post-transcriptional regulation of gene expression (Chen & Rajewsky, 2007).
In animals, about 1-5% of the predicted genes encode miRNAs, and these miRNAs can regulate
about 60% of the protein-coding genes (Kusenda et al, 2006). So far, there are 24,521 miRNAs
in the miRBase database, which is a searchable database of published miRNA sequences and
annotation (Griffiths-Jones, 2004). Each of the miRNA is believed to regulate multiple genes by
specific inhibition of translation or induction of mRNA cleavage. Thus it is important to study
miRNAs and their predicted targets to have a better understanding in developmental and
physiological processes, such as cell differentiation, metabolic pathway, and genetic regulations.

Recent research of miRNAs and their targets indicated that they might play an important
role in several human diseases. For instance, changes in expression levels of specific miRNAs in
diseased human hearts might evoke cardiac hypertrophy and heart failure (van Rooij et al, 2011).
Recent studies show that miR—204 can work as the tumor suppressor to suppress head and neck
tumor metastasis (Lee et al, 2011). Therefore, miRNA analysis is a good method to understand
the mechanism of some diseases and it is possible to find some effective cures for these diseases.

The study of prostate cancer has become one of the hottest fields in recent years. Prostate

cancer is the most common non-skin cancer among men worldwide (Parkin et al, 2001) and it is



also the second leading cause of death due to cancer after lung cancer among men in the United
States (Jemal et al, 2010). Currently prostate specific antigen (PSA) is the key diagnostic
standard to detect prostate cancer. However, PSA has two properties: variability and limited
specificity to cancer, which lead to limited utility in prostate cancer screening and
characterization (Martin et al, 2012). Hence, it is necessary to search for new biomarkers to
allow for the prediction of prostate cancer and its recurrence.

In this study, the IMRE method and the Analysis of variance (ANOVA) method will be used
to analyze the gene expression data set of prostate cancer and predict the possible miRNA
candidates which might regulate PSA recurrence and systemic disease progression in prostate
cancer patients. The false discovery rate (FDR) will be controlled at the nominal 0.05 level to
adjust for multiple comparisons (Benjamini, 1995). The results from both methods will be
combined and analyzed to find the possible miRNA(s) that may be responsible for prostate

canccer.



CHAPTER 2. METHOLOGY

In this study, two methods are used to predict miRNA regulation based on microarray data:
Imputed microRNA regulation based on weighted ranked expression and putative microRNA
targets (IMRE) and analysis of variance (ANOVA). A p-value is calculated in each method and

the false discovery rate (FDR) analysis is conducted to control multiple comparisons.

2.1. IMRE

IMRE is a method to predict miRNA regulation using genome—wide gene expression
information and miRNA putative targets predicted by the miRNome database (Lee et al, 2011). A
weighted ranked exponential score is calculated for each miRNA of each sample. The student’s
t—test is conducted to check the difference among conditions. The false discovery rate (FDR) was
estimated based on the p-values from the t—test to adjust for multiple comparisons (Benjamini,
1995). It is used to control the proportion of the false discoveries, which are the incorrectly
rejected null hypotheses in the studies where the null-hypotheses are rejected. The false
discovery rate is a less stringent condition than the family-wise error rate, so these methods are

more powerful than the others.

2.1.1. Expression processing

Assume a data set, generated from a microarray experiment, contains X samples with

expression from G genes in each sample. The samples are devided into a groups/phenotypes.
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The first step for the IMRE method is to process the expression data and calculate the
exponential weighted score for each gene with respect to each sample. The exponential weighted
score (Sy,;) for gene x with respect to sample ; is calculated using the formula below:

Txj
Sy = (o) x ()
where 1y j is the rank of the expression level of XM gene among all genes in sample j, which

1y € {1,2...G}. G is the total number of genes in the ™ sample.
2.1.2. Prediction of miRNA target regulation

The second step is to predict the miRNA target regulation based on the exponential
weighted scores calculated in the previous step. For the i™ miRNA m;, the differences of the
mean scores between the targets of miRNA (m;) and non—targets of miRNA (m;), referred as to
A Cyrg,;, 1s used to determine the expression level difference between the targets and non—targets
of miRNA (m;), which is calculated based on the following formula:

CTU = ﬁerri_j(Sx,j),

CNi_j = @erNi_j(Sx,j):

A Cygg; = CTL-J- - CNL-J-,
where |Ti' j| is the cardinality (count of genes) of the target gene set of microRNA (m;) and
|Nl-' j| is the cardinality (count of genes) of the non-target gene set of microRNA (m;); CTi.j is the

mean score of the targets of microRNA (m;) and C N is the mean score of the non—targets of

microRNA (m;). Prediction of microRNAs deregulated in cancer from enrichment analysis of
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inheritable cancer genes is performed on the miRNA—target relationships found in the Online
Mendelian Inheritance in Man (OMIM). OMIM is a comprehensive database of human genes
and genetic phenotypes, which provides references and supports for human genetics research and
disease study (Hamosh et al, 1995). It includes 610 inheritance cancer genes and 586 (96%) of
these genes are predicted targets of 527 miRNAs in the miRNome database, which can be used
to calculate the significantly enriched miRNAs (Lee et al, 2011).

The cumulative hypergeometric distribution was applied to calculate the p-values from the
t-test to identify significantly enriched microRNAs. The formula is as follow:
- (DG

PG = mIN,M,n,m) = »°

& O

where N is the number of genes in both OMIM and miRNome (3232 for anatomy, 2181 for

disease), M is the number of genes associated with a specific cancer in OMIM as well as any
predicted target of miRNA in miRNome, # is the number of genes targeted by any miRNA in
miRNome and also associated to a specific cancer in OMIM, m is the number of genes
associated to both specific cancer in OMIM and certain miRNA in miRNome (Lee et al, 2011).
Here, m = MNn.

The false discovery rate (FDR) is calculated for multiple comparisons using the formula
below:

p=1-(1-p"

where n is the number of comparisons.



2.2. ANOVA

ANOVA is a statistical method used to analyze the differences between group means, which
was developed by Ronald A. Fisher. It tests if the means of several groups are equal. Several
assumptions should be held:

a). The observations should be independent with each other;

b). The observations should follow normal distributions;

c). The variances of observations in groups should be the same;

d). The error terms are independently, identically, and normally distributed.

For each gene, a p-value is calculated using the ANOVA method. The same FDR is used to
control the p-values for multiple testings.

The normality assumption is checked using the quantile—quantile plots (Q—Q plot) and
normal probably plots. Levene’s test is conducted to check the homoscedasticity or homogeneity

of variances (Levene, 1960).



CHAPTER 3. CASE STUDY

The dataset we used in this study is downloaded from the Gene Expression Omnibus (GEO)
website (Edgar et al, 2002), which is a part of National Center for Biotechnology Information
(NCBI). GEO is a public website containing functional genomics data. Array-based and
sequenced-based data are available.

GES10645 was used in this study. It is the microarray gene expression of 596 patients with
prostate cancer using RNA form archival FFPE tissue. In this dataset, there are 201 cases in the
PSA recurrence group, 200 cases in the systemic disease progression group, and 195 cases in the
NED group. For each patient, the microarray experiments were conducted on two platforms.
Totally there are 1028 genes tested. Since there were 4 genes commonly observed in both
platforms, the expression level of 1024 unique genes were measured in this study. Part of the
gene expression data is shown in Table 1. The first column of Table 1 is the gene ID reference on
the microarray platform. The first row of Table 1 is the patient ID. The raw data of the gene
expression was then collected and normalized using cyclic loess (fastlo) (Ballman et al, 2004).
The normalized value for the probes was averaged to determine the expression level for the gene.
The normalized signal intensities of the genes are used to represent the gene expression levels,

which are showed in Table 1.



Table 1. Part of Gene Expression of 596 Patients

41 58 67 77 480
EDNRA-YU-S 2590.818 4475.477 3287.619 3831.178 4084.458
G1_10938013-S 14639.54 16789.44 18280.68 14863.04 19507.24
G1_33457353-S 2249.066 1383.935 2169.257 2045.081 1951.291
G1_4507456-S 3391.451 4358.472 3947.84 4221.654 3643.739
G1_5174574-S 5230.762 14062.15 14035.67 12447.23 13644.07
sarroybu-S 3248.594 1939.159 1291.842 1954.245 2272.991
1557685_at-S 960.0993 710.8403 825.847 701.7497 906.67
1560225_at-S 744.0607 766.0117 688.359 843.965 961.933
1561073_at-S 6091.16 5066.524 5225.532 4069.596 6373.923
213310_at-S 2547.28 2538.185 2095.833 2544.193 2622.949
214174 _s_at-S 558.846 545.351 598.894 589.931 623.628
214384 _s_at-S 2161.969 2171.385 2066.483 1155.433 2858.972
216584 _at-S 3210.32 3485.927 2680.764 2829.81 3527.332
225311_at-S 5116.13 7626.476 7339.999 4772.586 9625.634
228178_s_at-S 777.836 670.6263 690.8893 708.566 823.2963
GI_9945438-S | 3715.169333 | 4123.131 5191.891333 | 3933.700333 3007.212




The phenotypes of patients are shown partly in Table 2. The first column of Table 2 is the
patient ID. The second column is the phenotypes corresponding to the patient.

Table 2. Part of Phenotypes of Each Patient

PatientID | Phenotype

41 PSA
58 Systemic
67 PSA
77 NED
85 NED
17 PSA
24 PSA

480 PSA

The platforms of the microarray are shown in Table 3. The first column of Table 3 is the
gene ID reference, which is the same with the first column in Table 1. The second column is the
GenBank or RefSeq identifier in NCBI. The last column is the gene symbol/name corresponding

to the first two columns.



Table 3. Part of the Comparison Table for Microarray Platforms

ID GB_ACC Symbol
G1_10092618-S | NM_020529.1 | NFKBIA
Gl_10337586-S | NM_020996.1 | FGF6
Gl_10834981-S | NM_000599.1 | IGFBP5
G1_10834983-S | NM_000600.1 IL6
GI_10835001-S | NM_001175.1 | ARHGDIB
Gl_10835048-S | NM_001664.1 | RHOA
Gl_10835156-S | NM_000597.1 | IGFBP2
GI 9945438-S | NM_002688.2 | 5-Sep

The other file used in this research is for the miRNA—target relationships, shown in Table 4,
which was built by merging five miRNA target datasets: TargetScan (Lewis et al, 2003),
PciTardway (Krek et al, 2005), miRBase (Griffiths-Jones et al, 2006), miRanda (John et al,
2004), and TarBase (Sethupathy et al, 2006). It contains 534 human miRNAs targeting to
444,558 genes. The first column of Table 4 is the name of miRNAs. The other column is the

gene symbol/name, which can be matched with the third column in Table 3.
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Table 4. Part of miRNA—targets Relationships

miRNA Name | Gene Symbol
miRNA-1 CLULI1
miRNA-1 EPB41L3
miRNA-1 TNFSF5IP1

miRNA-1 CEP192
miRNA-1 ABHD3
miRNA-1 NPClI
miRNA-1 ANKRD29
miRNA-1 RIT2

miR-let-71 MECP2

11



CHAPTER 4. RESULTS

4.1. IMRE

By using IMRE method, the following ten miRNAs are showed to be the most differently
expressed miRNAs with a 0.05 FDR threshold:

Table 5. Results from IMRE Method

miR-1/206 | miR-132/2 | miR-376 | miR-431 | miR-487b
miR-507 | miR-595 | miR-636 | miR-656 | miR-659

The IMRE method is using the ranks of the gene expression, not the actual expression of the
genes, as the inputs to find the gene expression difference between targets and non—targets of

miRNAs. It helps to eliminate the extreme cases in the gene expression data.

4.2. ANOVA

With all the assumptions satisfied, the ANOVA analysis is used to analyze the data set
GES10645. Ninety—five miRNAs were declared to be differently expressed with a 0.05 FDR

threshold:

12



Table 6. Results from ANOVA Method

miR-128 miR-124.1 | miR-34a miR-154 miR-454-3p
miR-125/351 miR-155 miR-191 miR-130b | miR-380-3p
miR-124.2/506 | miR-101 miR-137 miR-342 miR-135
miR-139 miR-142 3p | miR-146b | miR-103/107 | miR-18a
miR-1/206 miR-144 miR-184 | miR-17 3p | miR-129-5p
miR-10 miR-135a miR-24 miR-33b miR-182*
miR-204 miR-1 miR-186 miR-20b miR-224
miR-153 miR-10b miR-329 miR-200b miR-146a
miR-122a miR-188 miR-132 miR-193b | miR-425-5p
miR-105 miR-10a | miR-128a miR-25 miR-185
miR-181 miR-125a | miR-146 miR-145 miR-367
miR-103 miR-30e-3p | miR-126* miR-151 miR-148a
miR-106b miR-136 miR-141 miR-208 miR-203
miR-129 miR-147 miR-183 miR-193a miR-210
miR-127 miR-133a | miR-106a | miR-130/301 | miR-182
miR-142 5p miR-134 miR-133 miR-624 miR-196b
miR-100 miR-19a miR-107 miR-143 miR-30b
miR-130a miR-124a | miR-197 miR-138 miR-181a*
miR-140 miR-500 miR-15a miR-190 miR-150

ANONA is using the actual expression data, but it is difficult to say that one particular
miRNA did express differently among conditions. All we know is the targets of the miRNA had

different expression levels in different conditions. Therefore, there might be some false positive

13



cases in the result, which might be part of the reason that we got more miRNAs than the IMRE
method.
miR-1/206 is the only miRNA detected by both methods. It is very possible that miR-1/206

plays a role in prostate cancer recurrence.
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CHAPTER 5. CONCLUSION AND DISCUSSION

Since the IMRE method is using the differences of the mean scores, which are calculated
based on the ranks of the gene expression level, between the targets and non-targets of one
particular miRNA is good at predicting expression differences with/ without this miRNA and
how it is important in the PSA recurrence in prostate cancer. It might have some biases due to
using ranks, not actual expression data. On the other hand, the ANOVA method is using the
actual data, but it doesn’t divide the genes into targets and non-targets gene sets of the miRNAs.
So it is difficult to determine the expression level difference of one particular miRNA between its
targets and non—targets. Each method has its own advantages and disadvantages and these two
methods are complementary. According to the results from IMRE and ANOVA methods, miR-
1/206 was detected by both methods. It is likely that miR-1/206 is important in PSA recurrence
in prostate cancer. As miR-1 and miR-206 share identical seed sequences, they are commonly
speculated to target the same gene.

Further research would be to figure out the gene targets of miRNA — 1/206 as well as some
other miRNAs and their function in the body to try to find the possible tumor suppressor for the

prostate cancer.
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APPENDIX A. IMRE

source("http://bioconductor.org/biocLite.R")
biocLite("Biobase")

biocLite("twilight")

library("Biobase")

library("twilight")

Arraylnput = "GSE10645.RData" # mRNA-expression input file name.

ArrayOutput = "Proritized microRNAs" # Proritized microRNA profile output

miRNAtargets= "miRNome.txt"

FDR.T =0.05 ## Threshold to call a microRNA as significant

miRNA profile = "IMRE res GSE10645.rdata" # Predicted microRNA profiling generated by
the "runIMRE"

IMRE <- function(sampleExp, targets, na.last=TRUE)
{
if (is.na(names(sampleExp))) stop("Please input sampleExp with probe IDs")
allGenes <- names(sampleExp)
N <- length(allGenes)
nontargets <- allGenes|[-which(allGenes %in% targets)]

# Step 1 (Supporting Figure 2 in the Text S1): Calculation of weighted rank of gene
expression -----

## Ranked by score, the lowest to highest. Therefore, the up-regulated genes get the
higher weighted score

rankedExp <- rank(sampleExp)

rankscore <- rankedExp*exp(rankedExp/N)

# Step 2 (Supporting Figure2 in the Text 2): Estimation of regulation for each individual
microRNAs per a sample using mRNA expression of their putative targets and non putative
targets -----

ST <- sum(rankscore[targets])/length(targets)

SN <- sum(rankscore[nontargets])/length(nontargets)

y <- ST - SN

return(y)

miRTs <- read.delim(miRNAtargets, sep="\t", header=FALSE, comment.char="")
18



load(ArrayInput)

cli2 <- pheno

dat <- Expression

all<-platform[,3]

seeds <- unique(miRTs[,1])

length(seeds) # old: 534

res <- matrix(nrow=length(seeds), ncol=ncol(dat))
rownames(res) <- seeds

colnames(res) <- colnames(dat)

for(i in 1:length(seeds))

{
targets <- miRTs[which(miRTs[,1]==seeds[i]),2]
targetP <- all[which(all %in% targets)]
for (x in targetP) {
ID<-platform[which(platform[,3]==x),1]
}
[D<-as.character(ID)
for (j in 1:ncol(dat))
{
res[i,j] <- IMRE(dat[,j], targets=ID)
§
§

length(which(is.na(res[,1])))
save(res, file=miRNA _profile)

load(miRNA_profile)

# NED V.S. PSA

index<-which(cli2[,2]!="Systemic")

phenotype<-cli2[index, ]
yin <-as.numeric(as.factor(phenotype[,2]))

expr<-res[,index]
res.S <- twilight.pval(expr, yin, method="t",paired=F, B=1000, filtering=TRUE)
save(res.S, file="miRNA _test result(NEDvsPSA)")

# NED V.S. Systemic
index<-which(cli2[,2]!="PSA")
phenotype<-cli2[index,]

19



yin <-as.numeric(as.factor(phenotype[,2]))

expr<-res[,index]

res.S <- twilight.pval(expr, yin, method="t",paired=F, B=1000, filtering=TRUE)
save(res.S, file="miRNA test result(NEDvsSystemic)")

# PSA V.S. Systemic

index<-which(cli2[,2]!="NED")

phenotype<-cli2[index,

yin <-as.numeric(as.factor(phenotype[,2]))

expr<-res[,index]

res.S <- twilight.pval(expr, yin, method="t",paired=F, B=1000, filtering=TRUE)
save(res.S, file="miRNA test result(PSAvsSystemic)")

myReport2 <- function(res.S, FDR.T = 0.05, dir="up")

library("stats")

resRowLab = rownames(res.S$result)

res.T = res.S$result$observed

res.P = res.SS$result$pval

names(res.T) <- names(res.P) <- resRowLab
FDR <- p.adjust(res.P, method="fdr")
sigFDR <- FDR[which(FDR < FDR.T)]
length(sigFDR) # 73

if (lis.null(dir)) {
if (dir == "up") dT <- res.T[which(res.T > 0)] else
dT <- res.T[which(res.T < 0)]

sigFDR <- sigFDR[intersect(names(sigFDR),names(dT))]

length(sigFDR) # 44

§

sigFDR <- sort(sigFDR)

tb<-cbind("Symbol"=names(sigFDR), "target.t"=round(res.T[names(sigFDR)],3), "p-
value"=round(res.P[names(sigFDR)],3),"FDR"=round(FDR[names(sigFDR)],3))

return(list(FDR=FDR, tb=tb,tscore=res.T, pvalue=res.P))

load("miRNA _test result(NEDvsPSA)")
finalTable <- myReport2(res.S, FDR.T, "up")
write.csv(finalTable$tb, file=paste(ArrayOutput,"(NEDvsPSA).csv",sep=""))
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load("miRNA test result(NEDvsSystemic)")
finalTable <- myReport2(res.S, FDR.T, "up")
write.csv(finalTable$tb, file=paste(ArrayOutput,"(NEDvsSystemic).csv",sep=""))

load("miRNA test result(PSAvsSystemic)")
finalTable <- myReport2(res.S, FDR.T, "up")
write.csv(finalTable$tb, file=paste(ArrayOutput,"(PSAvsSystemic).csv",sep=""))

load("miRNA test result(NEDvsPSA)")
finalTable <- myReport2(res.S, FDR.T, "down")
write.csv(finalTable$tb, file=paste(ArrayOutput,"(NEDvsPSA)down.csv",sep=""))

load("miRNA _test result(NEDvsSystemic)")
finalTable <- myReport2(res.S, FDR.T, "down")
write.csv(final Table$tb, file=paste(ArrayOutput,"(NEDvsSystemic)down.csv",sep=""))

load("miRNA _test result(PSAvsSystemic)")

finalTable <- myReport2(res.S, FDR.T, "down")
write.csv(final Table$tb, file=paste(ArrayOutput,"(PSAvsSystemic)down.csv",sep=""))
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APPENDIX B. ANOVA

load("Expression.RData")

# FDT.T=0.05

fit<-vector()

pval<-vector()

for (i in 1:nrow(Expression)) {
fit[[1]]<-lIm(Expression[i,]~phenotype)
pval[i]<-anova(fit[[i]])$"Pr(>F)"[1]

h

FDR<-p.adjust(pval,method="fdr")

names(FDR)<-names(pval)<-row.names(Expression)

sigFDR<-FDR[which(FDR<FDR.T)] #499

report<-cbind("Symbol"=names(sigFDR),"p-

value"=round(pval[names(sigFDR)],3),"FDR"=round(sigFDR,3))

difG<-platform[match(row.names(report),platform[,1]),] # 499
miRTs<-read.delim("miRNome.txt",sep="\t",header=F,comment.char="")
difMR<-miRTs[match(difG[,3],miRTs[,2]),] # 499
diftMR<-difMR[complete.cases(difMR),] # 424
ungMR<-difMR[!duplicated(difMR[,1]),] # 95
write.table(ungMR[,1],file="micorRNA(ANOVA).txt" , row.names=F,col.names=F,quote=F)

# Dataset preparation

pat=268273

1d=12120
samplel.ad<-"http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM"
datal.ad<-"http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?view=data&acc=GSM"

raw<-rep(list(list()),1192)
i<-1

while (i <=1192) {

id<-id+1
pat<-pat+1

if(pat==268403) pat<-pat+1
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if(id==12251) id<-id+1
raw[[i]]$ID<'paSte("GSM",pat,sepZ"”)

sample.ad<-paste(samplel.ad,pat,sep="")
source<-readLines(sample.ad)

r<-regexec("Case-Control Group: (.*?)<br>",source[286])
raw[[i]]$Phenotype<-regmatches(source[286], r)[[1]][2]

s<-regexec("Patient (.*?) Core Set",source[271])
raw[[i]]$Patient<-regmatches(source[271],s)[[ 1]][2]

data.ad<-paste(datal.ad,pat,"&id=",id,"&db=GeoDb blob22",sep="")
x<-read.table(data.ad,header=F,skip=22,sep=""\t",nrows=526,blank.lines.skip=F)
x<-subset(x,x[,2]!'="NA")

names(x)<-c("ID_REF","Value")

raw[[i]]$Expression<-x

1<-i+1

}

# Phenotype: PSA, NED, Systemic
# Separate files of GEO ID, phenotype and Patient ID
ID<-vector()
Pheno<-vector()
PatID<-vector()
for(iin 1:1192) {
ID[i]<-raw[[i]]$ID
Pheno[i]<-raw[[i]]$Phenotype
PatID[i]<-raw[[i]]$Patient

}

# Combine platforms of the same patient
join<-list(1192)
for(iin 1:1191) {
join[[i]]<-raw][[i]]$Expression
for(j in (i+1):1192){
if (PatID[i]==PatID[j]) join[[i]]<-rbind(join[[i]],raw[[j]]$Expression)
b
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b
c=1
expr<-list()
index<-vector()
for (1in 1:1191) {
if (nrow(join[[i]])==1028) {
expr{[c]]<-join([[i]]
index[c]<-i
c<-c+1
}
}

# Phenotype
phenotype<-Pheno[index]

# Patient ID
PatientID<-PatID[index]

# rename column names of expression data
for (iin 1:596) {

colnames(expr[[i]])[2] <- PatientID[i]
§

# Check to see if platforms are in the same order
for (iin 1:596) {

if (expr[[i]][1,1]'="EDNRA-Yu-S") print(i)
}

for (11in 1:596) {
if (expr[[i]][1028,1]!="GI_9945438-S") print(i)
}

# match merge Expression data

Expression<-expr[[1]]

Expression<-as.matrix(Expression)

for (i1n 2:596) {
Expression<-cbind(Expression,expr[[i]][,2])

}
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# convert Expression from data frame to matrix
gene<-Expression[,1]

Expression<-Expression[,-1]
Expression<-as.matrix(Expression)
rownames(Expression)<-gene
save(Expression,Patient]D,phenotype,file="Expression.RData")

pheno<-cbind(PatientID,phenotype)
write.table(pheno,file="Phenotype.txt",quote=F,row.names=F,col.names=F)

# platforms

GPL5858.ad<-
"http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?view=data&acc=GPL5858&1d=7883 &db=Geo
Db blob19"

x<-read.table(GPL5858.ad,header=F,skip=23,sep="\t",nrows=502)
x[,3]<-substr(x[,3],start=51,stop=61)

GPL5858<-x[,-2,]

names(GPL5858)<-c("ID","GB_ACC")

GPL5873.ad<-
"http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?view=data&acc=GPL5873 &1d=7986&db=Geo
Db _blob19"
x<-read.table(GPL5873.ad,header=F,skip=24,sep="\t",nrows=526)
r<-vector()
y<-vector()
r<-regexec(">(.*?)</a>",x[,3])
for (1in 1:526){

yli]<-regmatches(x[1,3], r[i]D[[1]][2]
}
X[,3]<y
GPL5873<-x[,-¢(2,4)]
names(GPL5873)<-c("ID","GB_ACC")

# convert NCBI RefSeq ID to Gene Symbol name
source<-read.table("MatchMinerResult951354746.txt" header=T,skip=20,fill=T)
source<-source[,c(3,4,5,7)]

names(source)<-c("Order","Input","Symbol","GBA") #1032 (4 IDs have mached to two genes)
source<-source[order(source$Order), ]
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write.table(source,file="mapping.txt",quote=F,row.names=F)
length(which(source$Symbol=="line"|source$Symbol=="-")) #115
y<-source[,3]

y<-as.vector(y)

y<-y[-which(y=="line"|y=="-")] #917
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