
i 

 

DT-OPTIMAL DESIGNS FOR PROBIT MODELS IN CLINICAL TRIALS 

  

 

 

 

 

A Thesis 

Submitted to the Graduate Faculty 

of the 

North Dakota State University 

of Agriculture and Applied Science 

 

 

 

 

 

By 

 

Andrew Michael Lexvold 

 

 

 

 

In Partial Fulfillment of the Requirements 

for the Degree of 

MASTER OF SCIENCE 

 

 

 

 

Major Department:  

Statistics 

 

 

 

 

 

May 2015 

 

 

 

 

Fargo, North Dakota 

 



ii 

 

North Dakota State University 

Graduate School 
 

Title 
 

DT-Optimal Designs for Probit Models in Clinical Trials 

  

  

  By   

  

Andrew Michael Lexvold 

  

     

    

  The Supervisory Committee certifies that this disquisition complies with North Dakota 

State University’s regulations and meets the accepted standards for the degree of 

 

  MASTER OF SCIENCE  

    

    

  SUPERVISORY COMMITTEE:  

    

  
 Dr. Seung Won Hyun 

 

  Chair  

  
Dr. Wonwoo Byun 

 

  
Dr. Gang Shen 

 

  
  

 

    

    

  Approved:  

   

 08/06/2015   Dr. Rhonda Magel   

 Date  Department Chair  

    

 

 

 

 

 
 



iii 

 

ABSTRACT 

The Optimal designs used in a clinical trial depends on the goals of the study. Common 

goals are estimating model parameters and choosing between models. D-optimal designs are used 

when the goal is to estimate the model parameters. This is achieved by maximizing the determinant 

of the information matrix. When the goal is model discrimination, T-optimal designs are used. The 

design is optimal when the minimum difference between the models is maximized. Generally, D-

optimal designs are not efficient when the goal is model discrimination and T-optimal designs 

perform poorly when the goal is parameter estimation. However, because D-optimal and T-optimal 

designs have a common criterion structure, they can be combined into a new design called a DT-

optimal design. DT-optimal designs provide a balance between parameter estimation and model 

discrimination. The efficiency of DT-optimal designs relative to D and T-optimal designs shows 

that they work for parameter estimation and model discrimination. 

 

Keywords: Experimental design; Dose-response; Dual objective optimal design, 

efficiency. 
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CHAPTER 1. INTRODUCTION 

Dose response studies are a common type of clinical trial used to determine the appropriate 

dose of a drug to give to patients. Patients are given a range of dose levels that help explain possible 

reactions to the drug in question.  Nonmonotone dose-response functions are common and three 

types will be considered: strong-downturn, slight-downturn, and no-downturn. The functions will 

be discussed in more detail in Chapter 2.  For drugs that exhibit a downturn in the dose-response, 

a common question among researches is whether this downturn is significant or not.  To assess 

this significance two competing models can be estimated.  One model describing the full dose-

response function with a downturn, and one that only describes the increasing component of the 

function. 

In order to describe these functions, parameters must be estimated.  This is done using an 

experimental design.  Designs consist of design points (dose levels) and weights (subject 

allocations).  In order for the experiment to be efficient, the optimal design must be used.  Because 

there are many different objectives possible when conducting clinical trials, there are also many 

types of optimal designs.  Here we consider T-optimal designs, D-optimal designs, and their 

combination, DT-optimal designs.   

Welshons et al. (2003) gives motivation for studying dose-response functions with a 

downturn and contains useful information on obtaining optimal designs, such as nominal 

parameter values and the dose range.  A Probit model will be used to describe the dose-response 

functions because it can easily describe the downturn by adding a quadratic term and it provides a 

good fit to Welshons’ data, see Hyun (2013).  We use T-optimal designs for discrimination 

between the rival two and three parameter models.  In other words, we can use T-optimal designs 

to choose the most appropriate model.  Atkinson and Fedorov (1975a,b) show that T-optimality 
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criterion maximizes the minimum difference between the two competing models,  which in turn 

gives more power to an F-test of lack of fit, assuming the first model is true.  More information 

about and uses of T-optimal designs can be found in Ucinski and Bogacka (2005), Wiens (2009), 

Tommasi and L´opez-Fidalgo (2010), Atkinson, Bogacka and Bogachi (1998), and Foo and 

Duffull (2011).  D-optimal designs are used when the goal of the study is accurate parameter 

estimation.  Box and Lucas (1959) show that D-optimal designs maximize the determinant of the 

Fisher Information Matrix.  In some sense, this can be thought of as minimizing the variance of 

the parameter estimates.   

There have been many attempts at seeking a balance between model discrimination and 

parameter estimation. Hill et al. (1968) gives motivation for why researches might be interested in 

a single design for both goals.  Instead of having a design for one stage of the experiment where 

the goal is to find a good model, and a completely separate design for the next stage where model 

parameters are to be estimated, they suggest that a design to do both at the same time would allow 

researchers to combine the two stages.  This would save both time and precious resources.  Most 

importantly the overall number of subjects for the study would be decreased. Waterhouse et al. 

(2005) has a practical situation where researchers might actually need to discriminate between 

models and estimate parameters.  They are researching optimal sampling times for subjects with 

cystic fibrosis.  In their study, they need not only to discriminate between two linear and two 

nonlinear models, but also estimate the model parameters in order to determine the optimal 

sampling times.   

DT-optimal designs, introduced by Atkinson (2008) as a way to balance model 

discrimination and parameter estimation, are found by simply maximizing a weighted product of 

T-efficiency and D-efficiency.  This represents relative importance of the two objectives.  More 
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details will be given in Chapter 3.  A design is considered to be an optimal design when it satisfies 

a certain optimality criterion, and it is verified by the General Equivalence Theorem in Kiefer 

(1974).  The paper also has background on equivalency theorems in general if more information 

is desired. 

In Chapter 2, more information about dose-response functions is given, as well as 

background on D-optimal and T-optimal designs. DT-optimal designs and the DT-optimal 

equivalence theorem are discussed in detail in Chapter 3. Efficiency calculations are shown in 

Chapter 4 for D-optimal, T-optimal, and DT-optimal designs. Chapter 5 contains concluding 

remarks as well as potential further research. 
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CHAPTER 2. BACKGROUND 

2.1. Dose-response Studies  

Plotting the logarithm of dose on the X-axis and the drug response on the Y-axis can result 

in a variety of shapes.  Three of those shapes are under consideration here.  The first is called a 

“strong-downturn” function.  This function resembles a concave parabola.  The second is called a 

“slight-downturn” function.  Also resembling a concave parabola, this function is “flatter” than a 

strong-downturn dose-response function.  The third is called a “no-downturn” function and 

resembles a Sigmoid “S” curve.  

 

Figure 2.1. Strong-downturn dose response 



5 

 

 

Figure 2.2. Slight-downturn dose response 

 

Figure 2.3. No-downturn dose response 
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2.2. T-optimal Designs 

In some studies, researches may have a hard time deciding between competing plausible 

models.  In these cases, designs that are efficient at model discrimination are useful because they 

can help select the most appropriate model using the least effort and resources.  Atkinson and 

Fedorov (1975) consider designs for discrimination between two rival regression models 𝜂1(𝑥, 𝛩1) 

and 𝜂2(𝑥, 𝛩2), whose forms are given in Section 4.1.  The model parameters are estimated by least 

squares.  If it is assumed that the first model is true, then  

                   𝑦𝑖𝑗 = 𝜂1(𝑥𝑖, 𝛩1) + 𝜀𝑖𝑗,         𝜀𝑖𝑗 ~ 𝑁(0, 𝜎2),                                     (2.1) 

where 𝑦𝑖𝑗 is continuous and represents a dose response, 𝑗 =  1, 2, 3, . . . , 𝑛𝑖, 𝑖 =  1, 2, 3, . . . , 𝑘,  𝑛𝑖  

is the number of subjects allocated to 𝑥𝑖, and 𝛩1 = {𝜃11, 𝜃12, … , 𝜃1𝑝}is the vector of model 

parameters.  The values of 𝑥𝑖 are selected for a dose range 𝑋.  Finally, the sample size, 𝑁 =

∑ 𝑛𝑖
𝑘
𝑖=1 .   

Let 𝜉 = {𝑥𝑖, 𝑤𝑖}
𝑘 denote 𝑘 design points (dose levels), where 𝑥𝑖 is the 𝑖𝑡ℎ log dose and 𝑤𝑖 

is the corresponding weight at 𝑥𝑖.  Here 𝑥𝑖𝜖𝑋 and the nearest positive inter of 𝑁 ∗ 𝑤𝑖 is the number 

of subjects assigned to 𝑥𝑖.  The lack of fit sum of squares for model 𝜂2(𝑥, 𝛩2) is made as large as 

possible by maximizing  

                                         ∆1(𝜉) = ∑ 𝑤𝑖{𝜂1(𝑥𝑖, 𝛩1) − 𝜂2(𝑥𝑖 , �̂�2)}
2𝑘

𝑖=1 ,     (2.2) 

where 𝛩2̂ are the calculated parameters of 𝜂2  that minimize its distance from 𝜂1 and  ∆1(𝜉) is called 

the objective function of a design 𝜉.  Note that the values of 𝑥𝑖 and 𝑤𝑖 are found using the algorithm 

in Section 3.2.  The values of 𝛩1 come from previous research and can be seen below in Table 4.1.  

The design maximizing (2.2) is called T-optimal design, it is denoted as 𝜉𝑇
∗ . 
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Atkinson and Fedorov (1975) give the Equivalence Theorem for T-optimal designs as the 

following, 

                                                         𝛹1(𝑥, 𝜉𝑇
∗)  ≤  ∆1(𝜉𝑇

∗),                                     (2.3) 

where  

𝛹1(𝑥, 𝜉𝑇
∗) = {𝜂1(𝑥𝑖, 𝛩1) − 𝜂2(𝑥𝑖 , �̂�2)}

2
. 

Equality in (2.3) holds at the design points of the T-optimal design. 

2.3. D-optimal Designs 

When the goal of the study is parameter estimation, D-optimal designs are most commonly 

used.  As mention earlier, D-optimal designs maximize the determinant of the Fisher Information 

Matrix.  Under (2.1), the Fisher Information matrix can be written as  

                                                            𝑀1(𝜉) = 𝐹1
𝑇𝑊𝐹1,                                                         (2.4) 

 

where 𝑊 = 𝑑𝑖𝑎𝑔{𝑤𝑖} and 

                                    𝐹1(𝑥, 𝛩1) = {
𝛿𝜂1(𝑥1,𝛩1)

𝛿𝛩1
,
𝛿𝜂1(𝑥2,𝛩1)

𝛿𝛩1
, … ,

𝛿𝜂1(𝑥𝑘,𝛩1)

𝛿𝛩1
} 𝑝×𝑘,                       (2.5) 

𝛿𝜂1(𝑥𝑖,𝛩1)

𝛿𝛩1
= {

𝛿𝜂1(𝑥𝑖,𝛩1)

𝛿𝜃11
,
𝛿𝜂1(𝑥𝑖,𝛩1)

𝛿𝜃12
, … ,

𝛿𝜂1(𝑥𝑖,𝛩1)

𝛿𝜃1𝑝
}
𝑇

. 

The D-optimal design 𝜉𝐷
∗  maximizes |𝑀1(𝜉)|.  Kiefer and Wolfowitz (1960) give the equivalence 

theorem for D-optimal designs as  

                                                             𝛹2(𝑥, 𝜉𝐷
∗ ) ≤ 𝑝,                                                            (2.7) 

where 𝑝 is the number of parameters in the first model and 

𝛹2(𝑥, 𝜉𝐷
∗ ) =  𝑓1

𝑇(𝑥)𝑀1
−1(𝜉𝐷

∗ )𝑓1(𝑥), 

𝑓1(𝑥, 𝛩1) =
𝛿𝜂1(𝑥1,𝛩1)

𝛿𝛩1
. 

Similarly to T-optimality, equality in (2.7) holds at the design points of the D-optimal design. 
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CHAPTER 3. DT-OPTIMAL DESIGNS 

3.1. DT-optimality 

 The DT-optimal optimality criterion is a weighted product of the efficiencies of T-optimal 

and D-optimal designs.  The DT-optimal design maximizes the efficiencies for model 

discrimination (T-optimal design) and parameter estimation (D-optimal design).  According to 

Atkinson (2008), the efficiency of any design 𝜉 relative to the T-optimal design 𝜉𝑇
∗  is called T-

efficiency: 

                                                            𝐸𝑇 = ∆1(𝜉)/∆1(𝜉𝑇
∗).                                                  (3.1) 

In other words, it is the ratio of the objective function for the design in question to the optimal 

design.  D-efficiency is  

                                                   𝐸𝐷 = {|𝑀1(𝜉)|/|𝑀1(𝜉𝐷
∗ )|}(1/𝑝).                                         (3.2) 

If we denote the efficiency of a design 𝜉 as 𝐸(𝜉), we can calculate how many more subjects 

a researcher would need to have the same accuracy as the optimal design using the formula 

                                                      𝜋 = 100 × (
1

𝐸(𝜉)
− 1)%.                                                (3.3) 

For example, 𝐸(𝜉) = 0.5 implies a study would 100% or twice as many subjects to be just as 

accurate as the optimal design. 

To find a DT-optimal design we maximize the weighted product of (3.1) and (3.2).              

{𝐸𝑓
𝑇}

(1−𝜆)
{𝐸𝑓

𝐷}
𝜆

= {∆1(𝜉)/∆1(𝜉𝑇
∗)}(1−𝜆){|𝑀1(𝜉)|/|𝑀1(𝜉𝐷

∗ )|}𝜆/𝑝,     (0 ≤ 𝜆 ≤ 1).                 (3.4) 

If 𝜆 = 0 (3.4) becomes T-efficiency and if 𝜆 = 1 (3.4) becomes D-efficiency.  We can simplify 

(3.4) by first taking the log, 

(1 − 𝜆)𝑙𝑜𝑔∆1(𝜉) + (𝜆/𝑝)𝑙𝑜𝑔|𝑀1(𝜉)| − (1 − 𝜆)𝑙𝑜𝑔∆1(𝜉𝑇
∗) − (𝜆/𝑝)𝑙𝑜𝑔|𝑀1(𝜉𝐷

∗ )|            (3.5) 
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then removing the terms involving the optimal designs 𝜉𝐷
∗  and 𝜉𝑇

∗  because they are constant when 

we maximize (3.4) over 𝜉, to find 

                                     𝛷1
𝐷𝑇(𝜉) = (1 − 𝜆)𝑙𝑜𝑔∆1(𝜉) + (𝜆/𝑝)𝑙𝑜𝑔|𝑀1(𝜉)|.                       (3.6) 

The design maximizing (3.5) is called DT-optimal and is denoted 𝜉𝐷𝑇
∗ .  Here 𝜆 is the relative 

importance of the D-optimality criterion compared to the T-optimality criterion.  When 𝜆 = 1 the 

design maximizing (3.5) is the D-optimal design, and when 𝜆 = 0 the design maximizing (3.5) is 

the T-optimal design. 

 The equivalence theorem for DT-optimality design (Atkinson 2008) states that  

                                                         𝛹𝐷𝑇(𝑥, 𝜉𝐷𝑇
∗ ) ≤ 1,                                                      (3.7) 

where  

𝛹𝐷𝑇(𝑥, 𝜉𝐷𝑇
∗ ) = (1 − 𝜆)𝛹1(𝑥, 𝜉𝐷𝑇

∗ )/∆1(𝜉𝐷𝑇
∗ ) + (𝜆/𝑝)𝛹2(𝑥, 𝜉𝐷𝑇

∗ )   

           = (1 − 𝜆){𝜂1(𝑥𝑖, 𝛩1) − 𝜂2(𝑥𝑖, �̂�2)}
2
/∆1(𝜉𝐷𝑇

∗ ) + (𝜆/𝑝)𝑓1
𝑇(𝑥)𝑀1

−1(𝜉𝐷𝑇
∗ )𝑓1(𝑥). 

Similarly to both the T-optimal and D-optimal equivalence theorems equality in (3.6) holds at the 

design points of the DT-optimal design. 

3.2. Algorithm to Find Optimal Design 

 We can find the DT-optimal design numerically using the well-known V-algorithm 

(Fedorov 1972). 

Step 0: Set an initial design 𝜉0 with design points 𝑥1,0, 𝑥2,0, … , 𝑥𝑘,0 and uniform weights 

𝑤1,0, 𝑤2,0, … , 𝑤𝑘,0 = 1/𝑘 

Step 1: Obtain �̂�2,𝑠: 

                         �̂�2,𝑠 = arg min
𝛩2,𝑠∈𝛩𝑆

∑ 𝑤𝑖,𝑠 (𝜂1(𝑥𝑖,𝑠, 𝛩1,𝑠) − 𝜂2(𝑥𝑖,𝑠, �̂�2,𝑠))
2

𝑘
𝑖=1 .                     
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Step 2: Find the design point 

𝑥𝑠
∗ = argmax

𝑥𝑠
∗∈𝑋

(1 − 𝜆)𝑙𝑜𝑔∑ 𝑤𝑖,𝑠 (𝜂1(𝑥𝑖,𝑠, 𝛩1,𝑠) − 𝜂2(𝑥𝑖,𝑠, �̂�2,𝑠))
2

𝑘
𝑖=1     

+(𝜆/𝑝)𝑙𝑜𝑔|𝑓1
𝑇(𝑥𝑖,𝑠)𝑀1

−1(𝜉𝑠)𝑓1(𝑥𝑖,𝑠)|. 

Step 3: Stop the algorithm if |𝛹𝐷𝑇(𝑥𝑠
∗, 𝜉𝐷𝑇

∗ ) − 1| ≤ 𝜀, 10−8 ≤ 𝜀 ≤ 10−3.  When the algorithm 

stops 𝜉𝑠 is the DT-optimal design. 

Step 4: Otherwise, update the design  

𝜉𝑠+1 = (1 −
1

𝑠+1
) ∗ 𝜉𝑠 + 𝜉𝑛𝑒𝑤, 

 𝜉𝑛𝑒𝑤 = {
𝑥𝑠

∗

1

𝑠+1

}. 

Step 5: Set 𝑠 = 𝑠 + 1 and repeat Steps 1 – 5.  
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CHAPTER 4. DESIGN RESULTS 

4.1. Competing Models 

Two probit models are considered.  The first has three parameters and includes a quadratic 

term.  The second model only has two parameters and does not include a quadratic term.  The two 

models are  

                                          𝜂1(𝑥, 𝛩1) =  𝛷(−(𝜃11 + 𝜃12𝑥𝑖 + 𝜃13𝑥𝑖
2)),                                    (4.1) 

                                                 𝜂2(𝑥, 𝛩2) =  𝛷(−(𝜃21 + 𝜃22𝑥𝑖)).                                            (4.2) 

𝛷 is the cumulative standard normal distribution.  The Fisher Information matrix for 𝜂1(𝑥, 𝛩1) is  

[
 
 
 
 
 
 
 
 

∑𝑤𝑖

𝑘

𝑖=1

𝑒
(−(𝜃11+𝑥𝑖𝜃12+𝑥𝑖

2𝜃12)
2
)

∑𝑥𝑖𝑤𝑖

𝑘

𝑖=1

𝑒
(−(𝜃11+𝑥𝑖𝜃12+𝑥𝑖

2𝜃12)
2
)

∑𝑥𝑖
2𝑤𝑖

𝑘

𝑖=1

𝑒
(−(𝜃11+𝑥𝑖𝜃12+𝑥𝑖

2𝜃12)
2
)

∑𝑥𝑖𝑤𝑖

𝑘

𝑖=1

𝑒
(−(𝜃11+𝑥𝑖𝜃12+𝑥𝑖

2𝜃12)
2
)

∑𝑥𝑖
2𝑤𝑖

𝑘

𝑖=1

𝑒
(−(𝜃11+𝑥𝑖𝜃12+𝑥𝑖

2𝜃12)
2
)

∑𝑥𝑖
3𝑤𝑖

𝑘

𝑖=1

𝑒
(−(𝜃11+𝑥𝑖𝜃12+𝑥𝑖

2𝜃12)
2
)

∑𝑥𝑖
2𝑤𝑖

𝑘

𝑖=1

𝑒
(−(𝜃11+𝑥𝑖𝜃12+𝑥𝑖

2𝜃12)
2
)

∑𝑥𝑖
3𝑤𝑖

𝑘

𝑖=1

𝑒
(−(𝜃11+𝑥𝑖𝜃12+𝑥𝑖

2𝜃12)
2
)

∑𝑥𝑖
4𝑤𝑖

𝑘

𝑖=1

𝑒
(−(𝜃11+𝑥𝑖𝜃12+𝑥𝑖

2𝜃12)
2
)

]
 
 
 
 
 
 
 
 

 

                (4.3) 

4.2. Nominal Parameter Values and Dose Range 

In order to illustrate the 3 types of response functions, three sets of nominal parameter 

values and the log dose range were adopted from Ming (2014).  Estimates for the two parameter 

model provide a minimum distance from 𝜂1(𝑥, 𝛩1).  They are the values last used to find the 

minimum distance when the algorithm detailed above stops.  Welshons et al. (2003) gives 

motivation for using the design space [−14, −4] and the initial parameter values for the probit 

model for the strong-downturn dose response function.  
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Table 4.1. Parameter sets for 𝜂1 and estimates for 𝜂2 

 𝜃11 𝜃12 𝜃13 𝜃21 𝜃22 

Strong-downturn 4.630 1.230 0.070 0.03125 -0.0125 

Slight-downturn 0.175 0.277 0.024 -1.453125 -0.1515625 

No-downturn -6.690 -0.600 0.010 -5.734375 -0.5984375 

 

The following plots show the two competing models for each dose-response function.  

 

Figure 4.1. The two competing models for the strong-downturn dose response 
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Figure 4.2. The two competing models for the slight-downturn dose response 

 

Figure 4.3. The two competing models for the no-downturn dose response 
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4.3. T-optimal designs 

 Recall T-optimal designs maximizing the minimum difference between the competing 

models.  The T-optimal designs are: 

For the Strong-downturn dose response function 

                                                      𝜉𝑇
∗ = {

−14 −9 −4
0.25 0.50 0.25

},                                                 (4.4) 

For the Slight-downturn dose response function 

                                                     𝜉𝑇
∗ = {

−14 −9.2 −4
0.27 0.43 0.30

},                                                 (4.5) 

For the No-downturn dose response function 

                                                     𝜉𝑇
∗ = {

−11.1 −8.2
0.43 0.57

},                                                          (4.6) 

Consider a drug with a strong-downturn dose response.  In this scenario we would assign 

25% of the subjects to each log dose boundary and 50% of the subjects to the log dose level -9.  

This would allow us to most accurately maximize the distance between the two models.  Also 

notice the similarity between (4.4) and (4.5).  The design points are essentially identical, and the 

subjects for the slight-downturn dose response are just a little more evenly distributed with 

different weights.  The T-optimal design for the no-downturn dose response is substantially 

different.  There are only two design points.  This will be a problem when trying to estimate model 

parameters because we need at least as many design points as there are model parameters in order 

to find estimates.  The magnitude of the problem will be quantified when we calculate this design’s 

D-efficiency.   

4.4. D-optimal designs 

Recall D-optimal designs maximizing the determinant of the Fisher Information matrix.  

The D-optimal designs are: 
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For the Strong-downturn dose response function 

                                                𝜉𝐷
∗ = {

−13.2 −10.3 −7.2
0.32 0.17 0.18

    
−4.3
0.33

},                                     (4.7) 

For the Slight-downturn dose response function 

                                                    𝜉𝐷
∗ = {

−13 −9.5 −4
0.33 0.34 0.33

},                                                   (4.8) 

For the No-downturn dose response function 

                                                    𝜉𝐷
∗ = {

−11.1 −9.6 −8
0.34 0.33 0.33

},                                                (4.9) 

 All three dose response functions have unique D-optimal designs.  There are still 

similarities however.  In (4.7) there are four design point while in (4.8) there are only three. 

However notice that the boundaries are similar and that (4.7)’s middle two design points are 

basically a split in both log dose and weight of the middle design point of (4.8).  It is also worth 

noticing that both (4.8) and (4.9) have essentially uniform weights.  This is a typical trait of D-

optimal designs when the number of model parameters is equal to the number of design points.  

To understand how to use a D-optimal design consider (4.9).  If our drug exhibits a no-downturn 

dose response we would allocate and equal amount of subjects to the log dose levels -11.1, -9.6, 

and -8.  This would allow researchers to most accurately estimate the models parameters. 

4.5. DT-optimal designs 

Recall DT-optimal designs maximizing the weighted product of D-efficiency and T-

efficiency.  The DT-optimal designs are: 

For the Strong-downturn dose response function 

                                                    𝜉𝐷𝑇
∗ = {

−13.9 −9 −4
0.28 0.45 0.27

},                                             (4.10) 
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Figure 4.4. Optimality check for parameter set 1 

For the Slight-downturn dose response function 

                                                     𝜉𝐷𝑇
∗ = {

−14 −9.3 −4
0.30 0.40 0.30

},                                              (4.11) 

 

Figure 4.5. Optimality check for parameter set 2 
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For the No-downturn dose response function 

                                                   𝜉𝐷𝑇
∗ = {

−11.1 −9.5 −8.1
0.41 0.18 0.41

},                                            (4.12) 

 

Figure 4.6. Optimality check for parameter set 3 

 This time consider a drug with a slight-downturn dose response.  (4.11) tells us that 

approximately 30% of the subjects should go to the boundary log dose values, and that 40% of the 

subjects should be given a log dose value of -9.3.  With this we could provide a good balance 

between model discrimination and parameter estimation.  The figure following each designs is a 

visual way to check if the design is really optimal.  According to (3.7), at the design points of the 

DT-optimal design, 𝛹𝐷𝑇(𝑥, 𝜉𝐷𝑇
∗ ) = 1.  Sticking with the slight downturn dose response example, 

we can see that this is the case.  𝛹𝐷𝑇(𝑥, 𝜉𝐷𝑇
∗ ) = 1 at 𝑥 = −14,−9.3, 𝑎𝑛𝑑 − 4.  It is also worth 

noting that the DT-optimal designs for strong-downturn and slight-downturn dose response 

functions are very similar to the T-optimal designs.  However for a no-downturn dose response 

function the DT-optimal design is more similar to the D-optimal design.   
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CHAPTER 5. EFFICIENCY 

Efficiency is used to compare a given design to the optimal design.  Recall (3.1) and (3.2) 

for calculating T-efficiency and D-efficiency.  Using these we can calculate the efficiency of the 

DT-optimal design relative to the T-optimal and D-optimal designs for each parameter set.   

For the strong-downturn dose-response function:  

Table 5.1. Efficiency for parameter set 1 

 𝐸𝑇(𝜉) 𝐸𝐷(𝜉) 

𝜉𝑇
∗  1.00 0.79 

𝜉𝐷
∗  0.50 1.00 

𝜉𝐷𝑇
∗  0.95 0.85 

 

 Here we can see that the T-optimal design is only about 80% efficient at parameter 

estimation.  This means the about 25% more subjects would be required to reach the same accuracy 

as the D-optimal designs, according to (3.3).  However the D-optimal design preforms even worse 

at model discrimination.  As stated before, an efficiency of 50% means that twice as many subjects 

would be needed to be as accurate as the T-optimal design.  The DT-optimal design preforms much 

better in both cases.  With a T-efficiency of 95% only about 6% more subjects would be needed 

to reach the same accuracy as the T-optimal design.  Also a D-efficiency of 85% means about 18% 

more subjects would be required to be just as accurate as the D-optimal design at parameter 

estimation.     
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Table 5.2. Efficiency for parameter set 2 

 𝐸𝑇(𝜉) 𝐸𝐷(𝜉) 

𝜉𝑇
∗  1.00 0.97 

𝜉𝐷
∗  0.85 1.00 

𝜉𝐷𝑇
∗  0.98 0.98 

 

 For the slight-downturn dose response we can see that all three optimal designs are fairly 

efficient.  Looking back at (4.5), (4.8), and (4.11), we can see that all three designs are pretty 

similar, so the high efficiencies aren’t surprising. However DT-optimal designs are still slightly 

better if both parameter estimation and model discrimination are important. 

Table 5.3. Efficiency for parameter set 3 

 𝐸𝑇(𝜉) 𝐸𝐷(𝜉) 

𝜉𝑇
∗  1.00 0.14 

𝜉𝐷
∗  0.65 1.00 

𝜉𝐷𝑇
∗  0.83 0.92 

 

 When we consider the no-downturn dose response function T-optimal designs are very 

inefficient at parameter estimation.  At 14% D-efficiency, about 615% more subjects would be 

needed to accurately estimate model parameters.  The reason this design is so bad at parameter 

estimation is because there are only two design points, while the model has three parameters.  The 

T-efficiency of the D-optimal design is 65%.  About 54% more subjects would be needed to be as 

accurate at model discrimination as the T-optimal design.  The DT-optimal design has a T-

efficiency of 83% and a D-efficiency of 92%.  21% and 9% more subjects would be needed to 

reach the same accuracy as the T-optimal and D-optimal designs, respectively.    
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CHAPTER 6. CONCLUSIONS 

 The DT-optimal design for the strong-downturn dose response function was very similar 

to the T-optimal design.  For the slight-downturn dose response function all three designs were 

similar, only the weights for the D-optimal design were different.  The DT-optimal and D-optimal 

designs were nearly the same for the no-downturn dose response. Overall DT-optimal designs 

perform well for both model discrimination and parameter estimation for all three dose response 

functions.  For the strong-downturn and no-downturn dose-response functions D-optimality 

performs poorly when the objective is model discrimination and T-optimality performs poorly for 

parameter estimation, as expected.   

 Despite some similarities in the designs, it is best to use the DT-optimal design in all cases 

if the study has goals to choose a model and estimate parameters.  DT-optimal designs will always 

be at least slightly more efficient at model discrimination than D-optimal designs, and more 

efficient at parameter estimation than T-optimal designs.    

 Future research in this area could include studying DT-optimal designs for different values 

of 𝜆 to see the relationship between 𝜆 and the efficiencies.  Also, because the DT-optimal design 

relies on the nominal parameter values, studying how DT-optimal designs change when the 

parameter values are specified incorrectly would be an interesting research question.  Finally 

another extension could be simulating actual data to use with these designs.  This would allow a 

better picture of how well DT-optimal designs preform at both tasks. 
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APPENDIX. R CODE 

#Estimated Model 2 parameters' range: 

#theta1 [-10,0] 

#theta2 [-0.01, -1] 

#True model with Theta1: 

#theta1 = 4.63 theta1 = 0.175 theta1 = -6.69 

#theta2 = 1.23 theta2 = 0.277 theta2 = -0.60 

#theta3 = 0.07 theta3 = 0.024 theta3 = 0.01 

#Initial value# 

x0 = c(-14, -10, -6, -4) 

n0 = length(x0) 

w = rep(1/n0, n0) 

(D = rbind(x0, w)) 

p = 1 

n = 1 

#define M 

#number of parameter 

k=3 

#value of parameter (change to one of sets above; also change values in the 

loop) 

alpha=-6.69 

beta=-.6 

gamma=.01 

 

 

 

 

 



24 

 

#define function 

f<-function(x) 

{matrix(c(exp((-1/2)*(gamma*(x^2)+beta*x+alpha)^2), 

          x*exp((-1/2)*(gamma*(x^2)+beta*x+alpha)^2), 

          (x^2)*exp((-

1/2)*(gamma*(x^2)+beta*x+alpha)^2)),nrow=3,ncol=1,byrow=F)} 

 

# define information matrix 

A1<-rep(0,n0) 

A2<-rep(0,n0) 

A3<-rep(0,n0) 

A4<-rep(0,n0) 

A5<-rep(0,n0) 

 

for (i in 1:n0) 

{ 

  A1[i]=w[i]*exp((-1)*(gamma*(x0[i]^2)+beta*x0[i]+alpha)^2) 

  A2[i]=x0[i]*A1[i] 

  A3[i]=x0[i]^2*A1[i] 

  A4[i]=x0[i]^3*A1[i] 

  A5[i]=x0[i]^4*A1[i] 

} 

M0=matrix(c(sum(A1),sum(A2),sum(A3),sum(A2),sum(A3), 

            sum(A4),sum(A3),sum(A4),sum(A5)),nrow=3,ncol=3,byrow=F) 
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while(p > .0001){ 

  Rt1 = c(-5, 5) 

  Rt2 = c(-1, 1) 

  s = c(1, .1) 

  while(max(s) > .01){ 

    theta1 = seq(Rt1[1], Rt1[2], s[1]) 

    theta2 = seq(Rt2[1], Rt2[2], s[2]) 

    eta1 = function(x) 

      {pnorm(-(-6.69 - .6*x + 0.01*x^2))} 

    mod2 = expand.grid(theta1, theta2) 

    diff = rep(NA, nrow(mod2)) 

    for (i in 1:nrow(mod2)){ 

      diff[i] = sum(w*(sapply(x0, eta1) - pnorm(-(mod2[i,1] 

                                                  + mod2[i,2]*x0)))^2) 

    } 

    (theta1hat = mod2[which.min(diff),1]); (theta2hat = mod2[ 

      which.min(diff),2]) 

    s = s/2 

    Rt1[1] = theta1hat - s[1] 

    Rt1[2] = theta1hat + s[1] 

    Rt2[1] = theta2hat - s[2] 

    Rt2[2] = theta2hat + s[2] 

  } 

  theta1hat 

  theta2hat 

  x = seq(-14, -4, .1) 

  a = rep(NA, length(x)) 

  diff2 = rep(NA, length(x)) 
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  for (j in 1:length(x)){ 

    diff2[j] = (.5/(sum(w*(sapply(x0, eta1) - pnorm(-(theta1hat + 

theta2hat*x0)))^2)))* 

               (sapply(x[j], eta1) - pnorm(-(theta1hat + theta2hat *x[j])))^2 

+  

               (.5/3)*(t(f(x[j]))%*%solve(M0)%*%f(x[j])) 

  } 

  (anew = x[which.max(diff2)]) 

  p = abs(max(diff2)-1) 

   

  x0 = c(x0,anew) 

  alpha2 = 1/(n + 1) 

  w = c((1 - alpha2) * w, alpha2) 

  n = n + 1 

  n0 = length(x0) 

  A1<-rep(0,n0) 

  A2<-rep(0,n0) 

  A3<-rep(0,n0) 

  A4<-rep(0,n0) 

  A5<-rep(0,n0) 
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  for (i in 1:n0) 

  { 

    A1[i]=w[i]*exp((-1)*(gamma*(x0[i]^2)+beta*x0[i]+alpha)^2) 

    A2[i]=x0[i]*A1[i] 

    A3[i]=x0[i]^2*A1[i] 

    A4[i]=x0[i]^3*A1[i] 

    A5[i]=x0[i]^4*A1[i] 

  } 

  M0=matrix(c(sum(A1),sum(A2),sum(A3),sum(A2),sum(A3), 

              sum(A4),sum(A3),sum(A4),sum(A5)),nrow=3,ncol=3,byrow=F) 

  print(p) 

  D = rbind(x0,w) 

} 

#Summarize the result 

DT_optimal = by(D[2,], D[1,], FUN = sum) 

DT_optimal 

#plot the two models 

theta1hat 

theta2hat 

y = pnorm(-(theta1hat + theta2hat*x)) 

y1 = eta1(x) 

plot(x, y, cex = 0.3, ylim = c(0, 1), col = "blue", 

     type="l",pch=1) 

lines(x, y1,type="l",pch=1) 

cont.txt=c(expression(eta1), 

           expression(eta2)) 

legend("bottomright", legend=cont.txt, 

       col=c(1,4), lwd=1, lty=c(1,1)) 
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#Verify DT-optimal 

X = D[1,] 

W = D[2,] 

x = seq(-14, -4, .1) 

ds = rep(0,length(x)) 

for (i in 1:length(x)) 

{ds[i] = (.5/(sum(w*(sapply(x0, eta1) - pnorm(-(theta1hat + 

theta2hat*x0)))^2)))* 

         (sapply(x[i], eta1) - pnorm(-(theta1hat + theta2hat *x[i])))^2 +  

         (.5/3)*(t(f(x[i]))%*%solve(M0)%*%f(x[i]))} 

 

cont.txt2 = (expression(psi)) 

plot(x, ds, cex = 0.3, type = "l", pch=1, ylab = cont.txt2, 

     ylim = c(-0.09400517,1)) 

abline(h = 1,pch =1, lty = 3) 

abline(v = c(-11.1, -9.5, -8.1), pch =1, lty = 3) 

 

 

#Calculating Efficiency 

#Obj function: 

sum(w*(sapply(x0, eta1) - pnorm(-(theta1hat + theta2hat*x0)))^2) 

 

#DetM0 

det(M0) 
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######### 

#THETA-1# 

######### 

# T-optimal 

# x0 = c(-14, -9, -4) 

# w = c(0.25, 0.50, 0.25) 

# Obj = 0.09395754 

# DetM0 = 151.6461 

 

# DT-optimal 

# x0 = c(-13.9, -9, -4) 

# w = c(0.28, 0.45, 0.27) 

# Obj = 0.08957937 

# DetM0 = 189.0502 

# theta1hat = 0.03125 

# theta2hat = -0.0125 

 

# D-optimal 

# x0 = c(-13.2, -10.3, -7.2, -4.3) 

# w = c(0.32, 0.17, 18, 0.33) 

# Obj = 0.04710415 

# DetM0 = 2.210567e-07 

 

(Eff.DT.T =  0.08957937/0.09395754) # 0.9534027 

(Eff.DT.D = (189.0502/308.7837)^(1/3)) # 0.8491301 

(Eff.T.D = (151.6461/308.7837)^(1/3)) # 0.7889672 

(Eff.D.T = 0.04710415/0.09395754) # 0.5013344 
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######### 

#THETA-2# 

######### 

# T-optimal 

# x0 = c(-14, -9.2, -4) 

# w = c(0.27, 0.43, 0.30) 

# Obj = 0.01029732 

# DetM0 = 524.7601 

 

# DT-optimal 

# x0 = c(-14, -9.3, -4) 

# w = c(0.30, 0.40, 0.30) 

# Obj = 0.01007072 

# DetM0 = 543.74 

# theta1hat = -1.453125 

# theta2hat = -0.1515625 

 

# D-optimal 

# x0 = c(-13.7, -9.5, -4) 

# w = c(0.33, 0.33, 0.33) 

# Obj = 0.008726613 

# DetM0 = 577.8466 

 

(Eff.DT.T =  0.01007072/0.01029732) # 0.9779943 

(Eff.DT.D = (543.74/577.8466)^(1/3)) # 0.9799252 

(Eff.T.D = (524.7601/577.8466)^(1/3)) # 0.968388 

(Eff.D.T = 0.008726613/0.01029732) # 0.8474645 
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######### 

#THETA-3# 

######### 

# T-optimal 

# x0 = c(-11.1, -8.2) 

# w = c(0.43, 0.57) 

# Obj = 0.004559819 

# DetM0 = 0.0002780678 

 

# DT-optimal 

# x0 = c(-11.1, -9.5, -8.1) 

# w = c(0.41, 0.18, 0.41) 

# Obj = 0.003777845 

# DetM0 = 0.07830435 

# theta1hat = -5.734375 

# theta2hat = -0.5984375 

 

# D-optimal 

# x0 = c(-11.1, -9.6, -8) 

# w = c(0.34, 0.33, 0.33) 

# Obj = 0.002985904 

# DetM0 = 0.1005924 

 

(Eff.DT.T =  0.003777845/0.004559819) # 0.8285077 

(Eff.DT.D = (0.07830435/0.1005924)^(1/3)) # 0.9198992 

(Eff.T.D = (0.0002780678/0.1005924)^(1/3)) # 0.1403444 

(Eff.D.T = 0.002985904/0.004559819) # 0.6548295 


