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ABSTRACT

Property and Casualty insurance companies set premium rates by evaluating both loss fre-

quency and loss severity data. Insurance companies often model severity using a well-known single

distribution such as Lognormal or Gamma etc. Alternatively, they may use a composite distri-

bution, such as a Gamma-Lognormal. Both approaches assume that the data are homogeneous.

Real data may exhibit some behavior such as multimodality or irregular shape suggesting that they

are heterogeneous. In that case, in order to appropriately model the dataset, a model that is a

composite of several distributions of the same family is needed. This thesis proposes fitting sever-

ity of losses using mixtures of Lognormal distributions via the Expectation Maximization (EM)

algorithm. The capability of this procedure is demonstrated through the use of a simulation study

before it is used on real data. For modeling the Danish Fire loss dataset a 4-component finite

mixture model of Lognormal distributions is proposed.
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1. INTRODUCTION

To price premiums competitively and hold adequate reserves for the following year, in-

surance companies must find models that can adequately predict future claims. Most skewed

distributions like Lognormal, Pareto, Gamma etc. produce fine models for the majority of the

losses. Actuaries in Property and Casualty fields have been using these distributions to model loss

severity for years. But these distributions do a poor job of modeling a small, but very important

subset of the losses: the very large tail losses. If an insurance company’s model doesn’t give enough

probability to losses above, say, 100 million dollars, then the company might be accepting the risk

of a loss that cannot be absorbed. If a loss dataset has many very large losses, then it requires a

distribution that has a large, or heavy, tail. To create a new distribution with a heavy enough tail

to deal with the large losses is the driving force behind creating distributions by way of splicing or

mixing them together.

Mixture models allow a modeler to create a desired distribution out of some constituent

family of distributions. For example, if a heavier tail is desired, more weight can be given to the

constituent distribution governing the region of high losses. This paper seeks to model the Danish

Fire Loss dataset with an appropriate number of Lognormal distributions arranged in such a way

as to adequately model even the high heavy-tailed losses. The Danish Fire Loss dataset was chosen

because it was easily accessible from the SMPracticals package in R [3]. Additionally, it has been

the subject of several modeling papers in recent years. To prove the utility of the EM algorithm, the

simulation study will focus on percentage overlap of the constituent distributions of the mixture.

The performance at two overlap levels, 0.77% and 10.6%, will be assessed. Then the EM algorithm

will be applied to the Danish Fire loss dataset and results will be presented to show that such an

approach can be applied to insurance severity data in general.
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2. LITERATURE REVIEW

There is a long tradition of trying to model the Danish Fire Loss dataset (Details in section,

”Data”) [1]. In 1996, Alexander J. McNeil used the Danish Loss dataset in his paper, ”Estimating

the Tails of Loss Severity Distributions using Extreme Value Theory” [10]. McNeil explored para-

metric curve-fitting methods for modeling extreme, or heavy-tailed historical losses. The methods

used utilized the generalized Pareto distribution, which is indeed a heavy-tailed distribution.

Then in 2005, Kahadawala Cooray and Malwane M.A. Ananda published ”Modeling ac-

tuarial data with a composite Lognormal-Pareto Model” [2]. As the title suggests, they used a

composite Lognormal-Pareto distribution to model the Danish Fire Loss dataset. They observed

that the Pareto distribution is ”hump-shaped” in such a way that it does not provide a reasonable fit

in many applications. The Lognormal, on the other hand, has the correct shape in its lower domain,

but it goes to zero too quickly in the upper domain and therefore provides insufficient coverage

for higher insurance payments, thus underestimating losses. Pareto goes to zero much more slowly

since it is a heavy-tailed distribution. Cooray and Ananda noticed that the Lognormal distribution

covers the behavior of small losses very well, while Pareto covers the behavior of large losses very

well. They decided to combine them by taking a Lognormal distribution and replacing its tail with

that of a Pareto. Differentiability and continuity requirements at some unknown threshold of the

two distributions yielded a smooth, and new, curve called a composite Lognormal-Pareto. There

are several other papers that take this general approach on various datasets [7] [12] [13].

In 2007 Cooray and Ananda’s work was elaborated upon by David P. Scollnik in his paper

”On composite Lognormal-Pareto Models” [16]. He designed a new composite Lognormal-Pareto

model as a truncated Lognormal and Pareto mixture with some known threshold value, θ, with

priori unrestricted mixing weights.

Another method of creating mixtures is the EM algorithm. It can mix together large

numbers of distributions from the same family as demonstrated by Simon C.K Lee and X. Sheldon

Lin in their paper ”Modeling and Evaluating Insurance Losses via Mixtures of Erlang Distributions”

[17]. This paper, as the name suggests, uses 12 Erlang distributions and to great effect. Using

Erlangs with common scale parameter, θ. They show that a mixture of Erlangs can be a good fit to

2



Gamma data, which isn’t that surprising since Erlang is a special case of Gamma, but also Pareto.

They even manage to achieve a good fit for data from a Uniform distribution by mixing seven

Erlangs together. They really demonstrated the power of mixtures: With enough of them they can

fit well to any data. To initialize the algorithm, Lee and Lin used the Tijms approximation where

the first M terms of a given density are used for the initial estimate.

The EM algorithm was also used by Volodymyr Melnykov and Igor Melnykov in their

paper ”Initializing the EM algorithm in Gaussian mixture models with an unknown number of

components” [11]. It sets forward a method of initializing the EM algorithm, which is of great

importance since the EM algorithm is sensitive to initial parameters. The choice of good initial

parameters also increases the efficiency of the algorithm, making it less computationally intensive.

Melnykov et al. proposed grouping data points based upon their proximity to other points, or in

other words, clustering.

An approach very similar to our paper’s was used by P. Sattayatham and T. Talangtam in

their paper entitled, ”Fitting of Finite Mixture Distributions to Motor Insurance Claims” [15]. The

dataset in use is different, but they also use a finite Lognormal mixture model to fit loss data. They

then proceed to test the goodness-of-fit of the model with the Kolmogorov-Smirnov test and the

Anderson–Darling (A-D) test. This paper used the Kolmogorov–Smirnov (KS) test and Bayesian

information criterion (BIC) for model selection.

A very different approach to modeling loss data was presented by Clive L. Keatinge in

”Modeling Losses with the Mixed Exponential Distribution” [5]. As its title would suggest, Keatinge

opted for a semi-parametric mixed distribution instead of a fully parametric distribution like the one

our paper uses. It used mixed exponential distributions and finds maximum likelihood estimates

as well. The paper then proceeds to compare variances of traditional methods to the new method

under consideration.

There are a few publications that were of great help with the EM algorithm, understanding

mixtures, and the way that their performance is evaluated. At the top of this list is the textbook

Loss Models - From Data to Decisions [6] by Stuart A. Klugman, Harry H. Panjer, and Gordon

E. Willmot was very helpful in countless ways for this paper. But in particular, it was helpful by

being the primary book for definitions on Value at Risk (VaR), BIC and the KS test.

3



The primary refernce book on the EM algorithm was Geoffrey McLachlan’s and Thriyam-

bakam Krishnan’s textbook, The EM Algorithm and Extensions [9]. The use of the EM Algorithm

in general is based on the procedures and methodologies outlined in that book.

The R function mclust() [4] was built to perform model-based clustering, classification and

density estimation based on finite normal mixture modeling. It includes hierarchical clustering

as well as EM algorithm approach talked about in the next section. It was very helpful and was

used for checking purposes. Chris Fraley, Adrian E. Raftery, Thomas Brendan Murphy and Luca

Scrucca developed the documentation for mclust() version 4.

4



3. AGGREGATE LOSSES

Insurance companies are interested in how much they will have to pay out in losses, so that

is what they ultimately want to model. This quantity is called aggregate losses, denoted here by S,

and is defined as the total loss amount paid out by an insurance company for a designated set of

insureds over a period of time. It is the quantity that is used to set premiums after other business

expenses are incorporated in. Aggregate losses can be modeled from first principles in two different

ways. First, there is the Individual Risk Model, which is based on the number of insureds. Under

the Individual Risk Model, Aggregate Loss, S, is defined as

S =
n∑

i=1

Xi

where n is the number of individual insureds and X is a random variable describing the

aggregate claims of each individual insured. Each Xi is assumed to be independent of the others,

but they are not assumed to be identically distributed random variables. So different insureds could

have different distributions.

The other model is the Collective Model, which is based on total claims. Under this model,

Aggregate Loss, S, is defined as

S =
N∑

n=1

Xn

where X is the severity random variable, N is the number of claims and each X is independent

and identically distributed. In a situation where it can be assumed that each claim has the same

probability distribution and that it is independent of any other claim, then the Collective Model

may be used. Then the main relationships between S, X and N are

E (S) = E (N)E (X)

and

V ar (S) = E (N)V arE (X) + V ar (N)E (X)2 .

5



This thesis is concerned with finding a method for modeling loss severity only. Frequency

modeling, rate setting, etc. will not be covered further here. Next, the methodology used to model

severity will be laid out.

6



4. METHODOLOGY

4.1. How the EM Algorithm Works

The Expectation-Maximization (EM) algorithm is an iterative way of computing the maxi-

mum likelihood estimates (MLEs) in situations where data is incomplete or missing. It was named

by Dempster, Laird and Rubin in their 1977 paper. The steps, from which it got its name, are

the Expectation step, or E-step, and the Maximization step, or M-step. The ideas behind the EM

algorithm were being used prior to that paper, but that paper formally defined the EM algorithm,

investigated its properties and indicated many other possible uses for the algorithm.

Examples of incomplete data can include situations where actual observations are missing or

incomplete such as in truncated distributions or censored or grouped distributions. But sometimes

the missing information is not so obvious. The EM algorithm is also useful for statistical models such

as random effects, mixtures, convolutions, log linear models, and latent class and latent variable

structures.

The basic idea behind the EM algorithm is to associate the given incomplete-data problem

with a complete-data problem since traditional methods to obtain MLEs work on complete-data

problems. This is where the M-step comes in. Once the data is assumed complete, it is easy to

find the MLEs, or maximize the likelihood function. We do this in an iterative manner.

In order to assume complete data, we need to somehow create some data to replace the

missing data. This is where the E-step comes in. We create a ”complete” loglikelihood function

for the data in the E-step and then use that completed likelihood function to compute the MLE of

each parameter in the M-step.

Then the likelihood function defined by the new parameter estimates is plugged back into the

beginning of the algorithm and the mixing proportions are recalculated, The parameter estimates

are then recalculated and so on and so fourth. This process iteratively continues until convergence

is achieved at which time it stops. Hopefully, this process results in a model with a very good fit.

7



4.2. Proposed Model

Consider the following model as a mixture of K Lognormal distributions

fMix(xi, πk, µk, σk) =
K∑
k=1

πkφlog(xi, µk, σk) =
K∑
k=1

πk
1

xiσk
√

2π
e

[ln(xi)−µk]
2

2σ2
k

where K is the number of components in our model and i refers to the ith observation from

the dataset. And πk is the mixing proportion for the kth component of the mixture. The parameters

µk and σk are the location and scale parameters respectively of the kth Lognormal distribution.

The goal is to obtain the values of the set of parameters

ψ = (π1, π2, ... , πk, ... , πK , µ1, µ2, ... , µk, ... , µK , σ1, σ2, ... , σk, ... , σK)

Next, explicit estimates are found for each parameter.

4.3. Parameter Estimates

The complete likelihood function, Lc, is defined as

Lc =
n∏

i=1

K∏
k=1

(
πk

1

xiσk
√

2π
e

[ln(xi)−µk]
2

2σ2
k

)I(zi=k)

where I(zi = k) is a latent indicator function that tracks the origin of the ith observation. Let zi

represent the origin of the ith observation. Given a logical statement, θ, let

I(θ) =

 1, if θ is true.

0, if θ is false.

Then, after taking the natural logarithm of both sides, it follows that the complete loglike-

lihood function, lc, is

lc = ln(Lc) =
n∑

i=1

K∑
k=1

I(zi = k)[ln(πk) + ln(φlog(xi, µk, σk))].

8



The conditional expectation of lc, given the observed data and parameter vector is defined

as the function, Q, given by

Q = E[lc|observed data] =
n∑

i=1

K∑
k=1

ln(πk) + ln(φlog(xi, µk, σk)).

The expected value of the indicator function is calculated using conditional probability as

follows:

πik = E[I(zi = k)|Xi = xi] = P (zi = k|Xi = xi) =
P (zi = k

⋂
Xi = xi)

P (Xi = xi)

=
P (zi = k)P (Xi = xi|zi = k)∑K

j=1 P (zj = k)P (Xj = xi|zj = k)
=

πkφlog(xi, µk, σk)∑K
j=1 πjφlog(xi, µj , σj)

.

This can be written down in an iterative fashion that is easily executed by a computer as

follows:

πik
(s) =

πk
(s)φlog(xi, µk

(s), σk
(s))∑K

j=1 πj
(s)φlog(xi, µj(s), σj(s))

.

This completes E-step. Then to find the MLE of a given parameter, the Q function is

differentiated with respect to that parameter and then set equal to zero. This will maximize the Q

function with respect to that parameter.

∂Q

∂πk
= 0,

∂Q

∂µk
= 0,

∂Q

∂σk
= 0.

The resulting equations are then solved for their respective parameters to obtain the pa-

rameter estimates.

π̂k =

∑n
i=1 πik
n

µ̂k =

∑n
i=1 πikln(xi)∑n

i=1 πik

σ̂2k =

∑n
i=1 πik[ln(xi)− µk]2∑n

i=1 πik

9



From these, iterative forms can be written out such that a computer can easily execute

them.

π̂
(s+1)
k =

∑n
i=1 πik

(s)

n

µ̂
(s+1)
k =

∑n
i=1 πik

(s)ln(xi)∑n
i=1 πik

(s)

(σ̂2k)
(s+1)

=

∑n
i=1 πik

(s)(ln(xi)− µk(s))(ln(xi)− µk(s))′∑n
i=1 πik

(s)

This completes M-step. But these steps are of little importance by themselves. Due to the

iterative nature of this process, initial values are needed to get the algorithm going.

4.4. Initialization Procedure

The starting values for the EM algorithm are of great importance and so steps are taken

to find good ones. In a manner similar to what Maitra described in 2009, a sample of size n = K

is drawn from the data [8]. Then the Euclidian distance between every data point and every

sample point is calculated and each data point is partitioned according to the minimum Euclidian

distance. From these partitions, starting values for π1, π2, ... , πk, ... , πK are calculated by finding

the proportion of observations in each partition. The arithmetic mean, m, and variance, v, are

calculated for each partition in the standard manner. Then values for µ1, µ2, ... , µk, ... , µK and

σ1, σ2, ... , σk, ... , σK are calculated using the following formulas:

µ = ln

(
m√

1 + v
m2

)
, σ =

√
ln
(
1 +

v

m2

)
.

The starting values are used to calculate a loglikelihood. This process is then repeated 25

times and the starting values that yielded the largest loglikelihood are used to start the algorithm.

4.5. Variability Assessment

Here, the Complete Information Matrix, Ic, for the 4-component case is derived. Each

element of Ic is calculated by evaluating

Ic (θ) = −E
(
∂2lc(θ)

∂θ∂θT

)

10



where θ is the parameter under consideration. Recall that lc for the 4-component case is

lc = ln(Lc) =
n∑

i=1

4∑
k=1

I(zi = k)[ln(πk) + ln(φlog(xi, µk, σk))].

Then

Ic =



A D D 0 0 0 0 0 0 0 0

D B D 0 0 0 0 0 0 0 0

D D C 0 0 0 0 0 0 0 0

0 0 0 E 0 0 0 M 0 0 0

0 0 0 0 F 0 0 0 N 0 0

0 0 0 0 0 G 0 0 0 O 0

0 0 0 0 0 0 H 0 0 0 P

0 0 0 M 0 0 0 I 0 0 0

0 0 0 0 N 0 0 0 J 0 0

0 0 0 0 0 O 0 0 0 K 0

0 0 0 0 0 0 P 0 0 0 L


.

Notice that the the matrix is symmetric about the diagonal as an information matrix should

be. Also notice that only the main diagonal π elements are unique; the rest of the entries concerning

the proportions are all equivalent to D. Later on, this matrix will be used to calculate confidence

intervals for each of the parameters.

4.6. Model Selection

4.6.1. BIC

The likelihood function alone could be used to determine K, but like R2 in regression, the

likelihood function increases monotonically as components are added. The Bayesian Information

Criterion (BIC) will be used instead to select a model with an optimal number of components. It

is defined as follows:

BIC = −2 ∗ loglik + (3k − 1) ∗ ln(n), k = 1, 2, ... ,K.

11



Notice that BIC involves the negative of the likelihood function and so as the likelihood

increases, the BIC decreases. Since a big loglikelihood value was desirable, a small BIC is also

desirable. The BIC applies a penalty that increases as each additional component is added, thus

causing it to not decrease monotonically as the likelihood function increases. It is expected to

decrease initially and then start increasing. The optimal K will be the model with the lowest BIC.

4.6.2. Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) Test is a test that compares the empirical distribution

defined by the data to the theoretical distribution defined by the model. If the two distributions

are graphed over each other, the KS test statistic is simply the largest vertical deviation between

the two distributions. The KS test statistic will be used as the goodness of fit test. More rigorously,

the test is defined as

H0 : The data came from a population with the stated model.

vs.

Ha : The data did not come from such a population.

The empirical distribution function, Fn (n) is defined as

Fn (n) =
1

n

n∑
i=1

I[−∞,x] (Xi)

where I[−∞,x] (Xi) is an indicator function which equals 1 when Xi ≤ x and 0 otherwise. Then the

Kolmogorov–Smirnov statistic is

Dn = max | Fn (x)− F (x) |

where F (x) is the hypothesized theoretical distribution and it is assumed to be continuous over

the relevant range. For our purposes, H0 is rejected if Dn is greater than 0.05.

4.6.3. Value at Risk

The reason that many of these models are tried is that they model the higher losses better

because they are ”heavy tailed”. This is important because extremely high losses are rare and hard
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to predict. Furthermore, a loss of 260 million Krones, as occurred in the Danish dataset, could

bankrupt an insurance company. For this reason, it is important that whatever model is chosen

accurately represents the total chance of these huge losses. To do that, Value at Risk (VaR) will

be used. Despite its name, VaR is just the upper percentile of a distribution. VaR(0.95), or the

95th percentile, will be used. To find it, the following equation is solved for x:

K∑
k=1

πkΦlog(x, µk, σk) = 0.95.

Note that Φlog(x, µk, σk) is the Lognormal CDF for the kth component. Since the Lognormal

CDF has no closed-form solution, a numeric solution must be found. This was done by finding the

root of

f(x) =
K∑
k=1

πkΦlog(x, µk, σk)− 0.95.

This was done in R using the function uniroot() in the base package ”stats” [14]. VaR(0.99)

will also be used and will be calculated in a similar fashion. Now the EM algorithm needs to be

put through its paces by way of a simulation study.
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5. SIMULATION

To show the effectiveness of the EM Algorithm, a simulation study of mixtures of Lognormal

data was performed. The EM algorithm’s performance was tested by determining how close the

parameter estimates are to the simulated estimates. The study consists of two simulations, each

with differing percentage overlap.

5.1. Percentage Overlap

If the two Lognormal distributions are

f1(x) = π1φlog(x, µ1, σ1) and f2(x) = π2φlog(x, µ2, σ2),where 0 ≤ x ≤ ∞,

then to find the percentage overlap between the two distributions the two curves, f1(x) and f2(x),

are set equal to each other. Then x is solved for to find the point at which the two distributions

are the same. Let it be denoted xsame Then F2(xsame) and 1− F1(xsame) are calculated such that

F2(x) + (1− F1(x)) = %overlap.

Alternatively, this can be done graphically by simply integrating under the minimum of the

two distributions. ∫ ∞
0

min(f1(x), f2(x))dx.

This thesis utilized the latter method by implementing the function integrate() from the

base R package ”stats” [14].

5.2. Bias and RMSE

For each simulation, Bias and Root Mean Square Error (RMSE) will be calculated for each

parameter. For some parameter, θ, Bias is defined as

Bias(θ) =

∑N
i=1(θ̂i − θ)

N

and RMSE is defined as

14



RMSE(θ) =

√∑N
i=1(θ̂i − θ)2

N

which indicates overall variability in the estimates while Bias indicates a tendency in a

particular direction. But smaller values are better for both of them.

5.3. Simulation 1

Simulation 1 data include 700 random observations from φlog(µ = 1, σ = 0.15) and 300

random observations from φlog(µ = 2, σ = 0.20). for a total of 1,000 observations per iteration.

This will then be repeated for 5,000 iterations. The percentage overlap for this simulation is 10.6%.

The whole model is

fSim1(xi) = 0.3
1

xi
√

2π0.15
e

(ln(xi)−1)2

2(0.15)2 + 0.7
1

xi
√

2π0.20
e

(ln(xi)−2)2

2(0.20)2

Figure 5.1 shows one of the Simulation 1 iterations plotted with the underlying distribution,

fSim1(xi) overlaid. Notice that at this overlap it is difficult distinguish the two underlying distri-

butions. Figure 5.2 illustrates what 10.6% overlap means for the lognormal distributions under

consideration.

The averages for the parameter estimates from simulation 1 can be found in Table 5.1.

Box plots for each parameter are found in Figure 5.3. Bias and RMSE for each parameter can be

found in Table 5.2. Notice that even at this high overlap percentage, the bias and RMSE for the

µ and σ parameters are small, indicating that the EM algorithm doesn’t have trouble figuring out

which distributions are ”in play”. Additionally, the bias and RMSE for the π parameters are also

small, indicating that the EM algorithm reliably determines which observations belongs to which

distribution. The box plots, however, show that the EM Algorithm’s estimates of the parameters

can be hit and miss sometimes. This indicates that while the Bias and RMSE are small, they could

be much smaller. A percentage overlap of 0.77% will be tried next to see in the Bias and RMSE

go down.

5.4. Simulation 2

Simulation 2 data includes 300 observations from φlog(µ = 1.0, σ =
√

0.15) and 700 from

φlog(µ = 3.0, σ =
√

0.20). Therefore, there are 1,000 observations in total. And again, the simula-
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Figure 5.1. Histogram of one of the Simulation 1 iterations. Model curve is overlaid.

Table 5.1. Average EM estimates of πk, µk and σ2k from Simulation 1

k π̄k µ̄k σ̄2k
1 0.38671 1.1203 0.16278
2 0.61328 2.0651 0.20806

tion consists of 5,000 iterations. The overlap percentage is 0.77%. The whole model is

fSim2(xi) = 0.3
1

xi
√

2π
√

0.15
e

(ln(xi)−1.0)2

2∗0.15 + 0.7
1

xi
√

2π
√

0.20
e

(ln(xi)−3.0)2

2∗0.20

The averages for the parameter estimates from the second simulation can be found in Table

5.3. Bias and RMSE for each parameter from the second simulation can be found in Table 5.4.

Figure 5.6 shows the boxplots for the parameters from Simulation 2. Figure 5.5 illustrates what

0.77% looks like for the Lognormal distributions under consideration. Figure 5.4 shows a histogram

of a single iteration from Simulation 2 with the underlying distribution overlaid. Notice that at

this overlap percentage, it is easy to distinguish the two peaks.
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Figure 5.2. Illustration of the overlap of the curves in Simulation 1.

Table 5.2. BIAS and RMSE of πk, µk and σ2k from Simulation 1

k Bias(πk) Bias(µk) Bias(σ2k) RMSE(πk) RMSE(µk) RMSE(σ2k)

1 -0.06478 -0.09679 -0.02946 0.09382 0.13540 0.03813
2 0.06478 -0.05611 0.02833 0.09382 0.08861 0.04838

5.5. Simulation Conclusions

When the percent overlap was large, it was definitely more difficult for the EM algorithm

to correctly identify parameters. This was shown in all of the measures that were considered.

Averages for Simulation 1 were off by a sizable margin, while they were very close for Simulation

2. Bias and RMSE were smaller across the board for Simulation 2 than they were for Simulation

1. And finally, the box plots for Simulation 1 showed that all of the parameters were not correctly

extracted some of the time. For Simulation 2, on the other hand, the middles of all of the box plots

were very close to the true parameter values.

Table 5.3. Average EM estimates of πk, µk and σ2k from Simulation 2

k π̄k µ̄k σ̄2k
1 0.30050 1.00201 0.15070
2 0.69949 3.00007 0.19992
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Table 5.4. Bias and RMSE of πk, µk and σ2k from Simulation 2

k Bias π Bias µ Bias σ RMSE π RMSE µ RMSE σ

1 0.000307 0.000914 0.000208 0.003540 0.02455 0.01470
2 -0.000307 0.000907 -0.000893 0.003540 0.01784 0.01191
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Figure 5.3. Box plots for each parameter from Simulation 1. True values are shown by dashed line.
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Figure 5.4. Histogram of Simulation 2 with model curve.
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Figure 5.5. Illustration of the overlap of the curves in Simulation 2.
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Figure 5.6. Box plots for each parameter from Simulation 2. True values are shown by dashed line.
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6. DANISH FIRE

6.1. The Data

The Danish Fire Loss dataset is a famous dataset that has been analyzed by many re-

searchers. The data were collected by Copenhagen Reinsurance and consist of 2492 fire loss obser-

vations over the period 1980-1990. The losses are in millions of Danish Krone. The Danish Fire

Loss dataset was obtained from the SMPracticals package in R [3].

Losses
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Figure 6.1. Histogram of entire Danish Fire dataset. Losses are in millions of Danish Krone.

6.2. Why We Care

The data under consideration is not censored or truncated, so this application of the EM

algorithm is different. Assuming a mixture of K Lognormal distributions, the missing information

is which data point belongs with which component distribution.

6.3. Results

Independent, standalone R code was developed to model the Lognormal mixtures. The EM

algorithm was run run for values of K ranging from one through six. Running the EM algorithm

on the Danish fire data yielded the likelihood, BIC and KS values in Table 6.1. The parameter
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estimates are in Table 6.2. All parameter estimates for all of the levels of K can be found in the

appendix. It can clearly be seen what the best value for K is 4. Figure 6.2 shows a histogram of

the data with values above 10 truncated for clarity and with the K=4 mixture overlaid. Figure

6.3 shows a histogram of Danish Fire Loss data with each individual constituent curve overlaid

separately. Dashed and dotted line corresponds to K = 3, solid line corresponds to K = 1, dotted

line corresponds to K = 4, and the dashed line corresponds to K = 2. Please refer to Table 6.2 for

parameter estimates for each level of K. Note that Danish data is far more skewed; the far right

tail was omitted from the histogram for clarity. Table 6.4 shows other attempts at modeling the

Danish Fire data. Notice that the Lognormal mixture under consideration has a much better fit

according to the BIC.

The empirical VaR(0.95) is 8.36749. The theoretical VaR(0.95) for the 4-component mixture

under consideration is 8.45374. Additionally, the empirical VaR(0.99) is 24.57853. The theoretical

VaR(0.99) for the 4-component mixture under consideration is 26.81556. The VaR(0.95) is of

course closer than the VaR(0.99), but they are both very close which indicates that the 4-component

mixture model is heavy-tailed enough to adequately model even the extremely high losses associated

with insurance.

The fully calculated complete information matrix for the K = 4 mixture is

Ic =



34524 20142 20142 0 0 0 0 0 0 0 0

20142 25360 20142 0 0 0 0 0 0 0 0

20142 20142 31201 0 0 0 0 0 0 0 0

0 0 0 48672 0 0 0 M 0 0 0

0 0 0 0 19066 0 0 0 N 0 0

0 0 0 0 0 3582 0 0 0 O 0

0 0 0 0 0 0 303 0 0 0 P

0 0 0 M 0 0 0 2743116 0 0 0

0 0 0 0 N 0 0 0 152698 0 0

0 0 0 0 0 O 0 0 0 11425 0

0 0 0 0 0 0 P 0 0 0 149


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where M = −6.189417e− 11, N = 1.633618e− 10, O = −1.390452e− 11 and P = 1.499981e− 13.

Then the confidence intervals for each parameter are found in Table 6.3. Notice that the intervals

are pretty reasonable. This indicates that the EM algorithm does not have a difficult time deciding

which observation belongs to which distribution. For the purposes of this paper, it means that the

results obtained are fairly stable.

In conclusion, the 4-component Lognormal mixture model is a good fit according to the

KS test, is a better fit than other competing models according to BIC, and can adequately model

extreme losses that are important in insurance. The confidence bounds obtained are reasonable as

well. The EM algorithm has proven itself to be an effective tool for finding models that provide

good fit to heterogeneous data that is common in insurance applications.

Table 6.1. Likelihood, BIC and KS values for K = 1, 2, 3, 4, 5, 6

K Likelihood BIC KS

1 -4433.891 8883.423 0.12714
2 -3955.932 7950.968 0.04169
3 -3856.430 7775.427 0.03329
4 -3794.154 7674.338 0.01473
5 -3788.340 7686.172 0.01109
6 -3790.517 7713.988 0.00838

Table 6.2. EM estimates of πk, µk and σ2k for Danish Fire data

k π̂k µ̂k σ̂2k
1 0.47754 0.39617 0.06238
2 0.12401 1.86928 1.01732
3 0.17307 -0.01891 0.00885
4 0.22536 1.12754 0.15665
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Table 6.3. Confidence intervals for K = 4

Parameter Lower Bound Upper Bound

π1 0.45805 0.49728
π2 0.07284 0.1746
π3 0.15841 0.18813
µ1 0.38229 0.41068
µ2 1.75820 1.98344
µ3 -0.02766 -0.00989
µ4 1.09560 1.16110
σ21 0.05742 0.06745
σ22 0.85718 1.17855
σ23 0.00769 0.01006
σ24 0.13843 0.17511

Table 6.4. Other fitted models.

Distribution Parameters Loglikelihood BIC

Lognormal-Pareto θ̂ = 1.385, α̂ = 1.436 -3877.844 7762.481

Lognormal-Pareto θ̂ = 1.402, α̂ = 1.419 -3878.673 7764.139
Lognormal µ̂ = 0.672, σ̂ = 0.732 -4433.891 8874.575

Pareto θ̂ = 0.313, α̂ = 0.546 -5675.094 11356.981
Inverse Gaussian µ̂ = 3.063, σ̂ = 3.417 -4516.307 9039.407

Gamma θ̂ = 2.435, α̂ = 1.258 -5243.027 10492.847

Weibull θ̂ = 2.953, τ̂ = 0.948 -5270.471 10547.735
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Figure 6.2. Histogram of loss data with composite curve overlaid.
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Figure 6.3. Histogram of loss data with each individual constituent curve overlaid separately.

25



7. CONCLUSION

The purpose of this thesis was to develop a model that would fit insurance data well. It

was determined that to do that, such a model would need to have reliable parameter estimates and

variability. Additionally, such a model must fit the data well in general and must model heavy tail

losses adequately. Finally, the model must be better than other competing models. This thesis has

demonstrated all of these things.

The simulation study showed that the EM algorithm can reliably find models that fit het-

erogeneous data well. The Bias and RMSE were small, showing that the EM algorithm is accurate.

The variability assessment presented the structure of the information matrix, which may be useful

in further analysis, and showed that the estimates are stable according to the confidence intervals

that were presented. Successfully fitting the 4-component Lognormal mixture to the Danish Fire

dataset demonstrated that the Lognormal mixture model resulted in a good fit and adequately

modeled the heavy tailed behavior that is common in many insurance datasets. Additionally, the

lognormal mixture performed better than all other competing models that were considered here.

This indicates that it should be used by insurance companies to model their severity data. Then

it could be used in conjunction with a frequency model to set premium rates.
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APPENDIX. DERIVATIONS AND PARAMETERS

Complete Information Matrix

A = −E
(

∂2lc
∂π1∂π1

)
=

n∑
i=1

(
πi1
π21

+
πi4

(1− π1 − π2 − π3)2

)

B = −E
(

∂2lc
∂π2∂π2

)
=

n∑
i=1

(
πi2
π22

+
πi4

(1− π1 − π2 − π3)2

)

C = −E
(

∂2lc
∂π3∂π3

)
=

n∑
i=1

(
πi3
π23

+
πi4

(1− π1 − π2 − π3)2

)

D = −E
(

∂2lc
∂π1∂π2

)
= −E

(
∂2lc

∂π1∂π3

)
= −E

(
∂2lc

∂π2∂π3

)
=

n∑
i=1

(
πi4

(1− π1 − π2 − π3)2

)

E = −E
(

∂2lc
∂µ1∂µ1

)
=

n∑
i=1

(
πi1
σ21

)

F = −E
(

∂2lc
∂µ2∂µ2

)
=

n∑
i=1

(
πi2
σ22

)

G = −E
(

∂2lc
∂µ3∂µ3

)
=

n∑
i=1

(
πi3
σ23

)

H = −E
(

∂2lc
∂µ4∂µ4

)
=

n∑
i=1

(
πi4
σ24

)

I = −E
(

∂2lc
∂σ21∂σ

2
1

)
=

n∑
i=1

(
πi1

(
(ln(xi)− µ1)2(

σ21
)3 − 1

2
(
σ21
)2
))

J = −E
(

∂2lc
∂σ22∂σ

2
2

)
=

n∑
i=1

(
πi2

(
(ln(xi)− µ2)2(

σ22
)3 − 1

2
(
σ22
)2
))
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K = −E
(

∂2lc
∂σ23∂σ

2
3

)
=

n∑
i=1

(
πi3

(
(ln(xi)− µ3)2(

σ23
)3 − 1

2
(
σ23
)2
))

L = −E
(

∂2lc
∂σ24∂σ

2
4

)
=

n∑
i=1

(
πi4

(
(ln(xi)− µ4)2(

σ24
)3 − 1

2
(
σ24
)2
))

M = −E
(

∂2lc
∂µ1∂σ21

)
= −E

(
∂2lc

∂σ21∂µ1

)
=

n∑
i=1

(
πi1(
σ21
)2 (ln(xi)− µ1)

)

N = −E
(

∂2lc
∂µ2∂σ22

)
= −E

(
∂2lc

∂σ22∂µ2

)
=

n∑
i=1

(
πi2(
σ22
)2 (ln(xi)− µ2)

)

O = −E
(

∂2lc
∂µ3∂σ23

)
= −E

(
∂2lc

∂σ23∂µ3

)
=

n∑
i=1

(
πi3(
σ23
)2 (ln(xi)− µ3)

)

P = −E
(

∂2lc
∂µ4∂σ24

)
= −E

(
∂2lc

∂σ24∂µ4

)
=

n∑
i=1

(
πi4(
σ24
)2 (ln(xi)− µ4)

)

For the following tables, Tables A.1, A.2, and A.3, K refers to the number of components

in the model while k refers to the kth component within that model.

Table A.1. All π estimates for K=1-6.

Num. of Dist K=1 K=2 K=3 K=4 K=5 K=6

k=1 1 0.66172 0.12998 0.47859 0.21261 0.16072
k=2 NA 0.33827 0.51726 0.17274 0.00765 0.12810
k=3 NA NA 0.35275 0.12401 0.17328 0.13811
k=4 NA NA NA 0.22464 0.47706 0.12618
k=5 NA NA NA NA 0.12938 0.05274
k=6 NA NA NA NA NA 0.39411
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Table A.2. All µ estimates for K=1-6.

Num. of Dist K=1 K=2 K=3 K=4 K=5 K=6

k=1 0.67185 0.32712 1.85888 0.39628 1.10235 -0.03399
k=2 NA 1.34620 0.21943 -0.01904 1.73049 1.85225
k=3 NA NA 0.89785 1.86950 -0.01938 1.06862
k=4 NA NA NA 1.12908 0.39379 0.68201
k=5 NA NA NA NA 1.85282 1.58412
k=6 NA NA NA NA NA 0.31163

Table A.3. All σ estimates for K=1-6.

Num. of Dist K=1 K=2 K=3 K=4 K=5 K=6

k=1 0.53628 0.10004 0.97264 0.06253 0.13264 0.00740
k=2 NA 0.70244 0.06095 0.00883 0.00143 1.01747
k=3 NA NA 0.20207 1.01706 0.00881 0.05860
k=4 NA NA NA 0.15606 0.06107 0.02485
k=5 NA NA NA NA 0.99929 0.04279
k=6 NA NA NA NA NA 0.04034

31


	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF APPENDIX TABLES
	introduction
	literature review
	aggregate losses
	methodology
	How the EM Algorithm Works
	Proposed Model
	Parameter Estimates
	Initialization Procedure
	Variability Assessment
	Model Selection
	BIC
	Kolmogorov-Smirnov Test
	Value at Risk


	simulation
	Percentage Overlap
	Bias and RMSE
	Simulation 1
	Simulation 2
	Simulation Conclusions

	danish fire
	The Data
	Why We Care
	Results

	conclusion
	REFERENCES
	APPENDIX. Derivations And Parameters

