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ABSTRACT 

 Gene expression technologies allow expression levels to be compared across treatments 

for thousands of genes simultaneously. Statistical methods exist for identifying differentially 

expressed (DE) genes and gene sets while controlling multiple testing error. Most methods do 

not take into account the distribution of effect sizes or the overrepresentation of observed 

patterns. This paper compares a recently proposed modified q-value method that takes into 

account such patterns to a traditional q-value method for experiments with three treatments. The 

results of simulation studies performed suggest that the proposed methods improve upon the 

traditional method in the identification of DE genes in certain settings, but are outperformed by 

the traditional method in other settings. Analysis of data sets from real microarray. 
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CHAPTER 1: INTRODUCTION 

 Background 

 Microarray, and other gene expression, technology is one of the fastest growing 

technologies used in the field of genetic, biological and medical research (Macgregor et al., 

2002; Petricoin et al., 2002). These technologies facilitate the simultaneous measure of 

thousands of genes to provide gene expression information at the genome level. In medical 

research, microarray experiments provide a better insight in identifying clinical markers used in 

the diagnosis and treatment of disease (Cojocaru et al., 2001). These techniques also aid in the 

identification of new genes, their functions and expression levels under different conditions. In 

studying the correlations between therapeutic responses to drugs and genetic profiles of subjects, 

analysis of genes from a diseased and a normal cell help in the identification of biomedical 

constitution of proteins synthesized by the diseased genes. These results can be used to 

synthesize drugs which fight these proteins and reduce their effect in a diseased cell (Petricoin et 

al., 2002). Several types of microarray technology have been proposed, including Spotted 

Microarrays (DeRisi, 1996) and Oligonucleotide Microarrays (Lockhart et al, 1996). 

 In many cases, researchers want to compare gene expressions of two or more treatments 

(or groups) to determine which genes are differentially expressed (DE), i.e., have different mean 

expression levels across treatments. However, the emphasis in many applications of gene 

expression data analysis has moved from single gene analysis to gene set testing. This change is 

due to the reason that many diseases are associated with a modest regulation in a set of related 

genes rather than a single gene (Subramanian et al., 2005). Gene set testing is expected to 

overcome some limitations of single gene testing in the areas of interpretation of multiple 

hypothesis testing and inconsistencies in lists of genes identified as DE across independent 
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studies (Liat Ein-Dor et al., 2006). Also, individual gene analysis may not be effective in 

measuring significant effects on pathways controlled by gene sets and not a single gene. For 

example, “an increase of 20% in all genes encoding members of a metabolic pathway may alter 

the flux through the pathway, which may be more important than a 20-fold increase in a single 

gene” (Subramanian et al., 2005). 

 Research Objective 

 This research is specific to gene expression data sets with more than two treatments 

where the treatments can be ranked. Examples include experiments where experimental units 

receive different doses of a drug or experiments where gene expression levels are measured at 

different points in time. 

The goals of this study are: 

(1) Determine if taking into account “overrepresented” gene expression patterns across 

treatments improves identification of differentially expressed genes. This will be 

accomplished by conducting a simulation study to determine under which 

experimental settings taking into account overrepresentation of these patterns 

improves identification of DE genes compared to a traditional method and by 

reanalyzing data generated by real gene expression experiments. 

(2) Determine a method for identifying differentially expressed gene sets that also takes 

into account this overrepresentation of gene expression patterns across treatments and 

evaluate this method. Similar to goal (1), data from real gene expression experiments 

will be analyzed to determine if taking into account overrepresented patterns in the 

data improves upon the traditional method. 
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 The rest of this thesis is organized as follows. Statistical methods used in single gene and 

gene sets analysis, multiple hypothesis testing with emphasis on false discovery rate are 

reviewed in Chapter 2. Methods and Materials used in the analysis are described in Chapter 3. 

Results of the simulation study and real data analysis are discussed in Chapter 4, while Chapter 5 

provides the overall conclusions and recommendations for future work. 
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CHAPTER 2: LITERATURE REVIEW 

 Introduction 

 This chapter gives a brief overview of common methods used in gene testing and gene set 

testing. Review of common multiple testing procedures, including methods that are used in the 

research paper, is also presented. The objectives of this research paper are also described. 

Finally, the summary of the thesis structure is stated at the end of the chapter. 

 Gene Testing 

 Gene testing (or gene selection) refers to the procedures used to identify or compare gene 

expression levels across different conditions and can aid in identifying diagnostic or prognostic 

biomarkers, classifying diseases, monitoring the response to treatments, and understanding the 

mechanisms involved in the genesis of disease developments (Adi L. Tarca et al, 2006). These 

methods can be grouped into two categories: parametric and nonparametric methods. 

 Parametric Methods 

 A commonly used parametric method for detecting DE genes is the two sample t-test and 

its variations. Thomas et al. (2001) suggested estimating the Z-score of each gene, that is, the 

mean difference between two conditions divided by the pooled standard error, after correcting 

the sample heterogeneity using a regression approach. The corresponding p-values are computed 

under asymptotic normality and all genes corresponding to p-values less than a chosen cut off 

point are declared to be DE. 

 Newton et al. (2001) proposed a hierarchical model for the gene expression levels based 

on the assumption that the distribution of the mRNA intensity levels is Gamma-distributed. The 

posterior odds of change are calculated, and a gene is considered as DE if the odds are too large 

or too small. Kerr et al. (2000) recommended the use of ANOVA (analysis of variance) by fitting 
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a single model to all of the data in the microarray experiment which includes gene effect, array 

effect, and their interaction effect, and also assumes equal variance among genes. As an 

alternative of fitting a single model for the entire experiment, Smyth (2004) proposed fitting a 

linear model to the expression levels for every gene. For a microarray experiment, the total 

number of genes analyzed is large enough that the information contained in other genes can be 

helpful in better estimating of the variance of individual genes. Hence, Smyth (2004) assumed a 

prior inverse gamma distribution for the variances of the genes in the data set. Because the 

parameters of this distribution are unknown, they are estimated from the expression values in the 

data set. 

 Nonparametric Methods 

 The fundamental idea of the nonparametric methods is based on the assumption that the 

data do not follow a normal distribution, a key assumption in most parametric procedures, which 

may result in invalid results if parametric methods are used.  

 A common and classical non-parametric procedure used to analyze each gene is the 

Wilcoxon sign-rank test or Wilcoxon rank sum test (also known as the Mann-Whitney test). This 

procedure first sorts and ranks the data. The ranks of different treatment groups are then 

compared by computing the Wilcoxon statistic and its associated p-value are obtained from the 

Wilcoxon rank sum distribution (Zhang, 2006). 

 Apart from the Wilcoxon test, other non-parametric procedures have also been 

recommended.  Ben-Dor et al (2000) proposed the use of a threshold number of misclassification 

(TNoM) score to select DE genes. They assumed that DE genes will exhibit significantly 

different values in different classes, and these differences can therefore be distinguished by a 

threshold number. 
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 Tusher et al (2001) proposed a permutation procedure, called Significance Analysis of 

Microarrays (SAM), by assigning a score to each gene on the basis of change in gene expression 

relative to the standard deviation of repeated measurements. Then, permutated scores are 

generated by calculating the score for every possible permutation of the observed data in order to 

create a null distribution of scores. Expected scores for each permutated data set are determined, 

and genes are declared to be DE if the absolute difference between the score of the original data 

and the expected null score exceed a specified threshold. 

 Gene Set Testing 

 Different methods for gene set testing have been developed. These procedures use 

biological knowledge about sets of related genes – gene sets – and can be classified into two 

groups: competitive analysis and self-contained analysis (Nam et al., 2008). The competitive 

approach compares a gene set with its complement (i.e., all genes not in the gene set) in terms of 

association with the phenotype. Two of the most common approaches include Gene Set 

Enrichment Analysis (GSEA) (Subramanian et al., 2005) and Significance Analysis of 

Functional Categories in Gene Expression (SAFE) (Barry et al., 2005). A simpler competitive 

approach includes Fisher’s exact test, which determines which gene sets are overexpressed, i.e., 

have a higher proportion of DE genes in the gene set of interest compared to the set of genes not 

in the gene set. The self-contained analysis takes into consideration the association between the 

phenotype and expression levels in the gene set of interest while ignoring genes that are not in 

the set. Examples of the self-contained gene set testing include Analysis of Covariance 

(ANCOVA) (Mansmann et al., 2005) and Global test (Goeman et al., 2005; Goeman et al., 

2004). The global and self-contained methods suggest different measures of association 
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(statistics), but all use the basis of multiple hypothesis testing to identify genes that are DE and 

the significance of the association of the gene set while controlling multiple testing error. 

 Multiple Testing 

 Among the many challenges raised by the analysis of large data sets is the problem of 

multiple testing. In microarray and other gene expression analysis, it is not unusual to test 

thousands of hypotheses simultaneously. Hypothesis tests are not free of error, however, and for 

every hypothesis test there is a risk of falsely rejecting a null hypothesis that is true, i.e. a Type I 

error, and of failing to reject a null hypothesis that is false, i.e. a Type II error. Traditionally, 

Type I errors are considered more problematic than Type II errors. The key goal of multiple 

testing methods is to control the rate at which Type I errors occur when many hypothesis tests 

are performed simultaneously. 

 The Family-Wise Error Rate (FWER) is often the preferred error rate to be controlled.  

Common procedures for identifying DE genes while controlling the FWER are the Bonferroni 

(SIMES, 1986) and Holm (Holm, 1979) methods. However, for high-dimensional data in which 

thousands of hypotheses are being tested simultaneously, the FWER generally results in 

extremely low statistical power for identifying DE genes. In efforts to improve the power of 

detecting DE genes while still controlling multiple testing error, the False Discovery Rate (FDR) 

was developed (Hochberg et al., 1995). 

 False Discovery Rate 

 Many methods have been developed to overcome the problems that arise from multiple 

testing, and they all attempt to assign an adjusted p-value to each hypothesis test, or reduce the p-

value threshold. Several traditional methods such as the Bonferroni correction are too 
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conservative, as it tries to reduce the number of false positives but also considerably reduces the 

number of true discoveries in many cases. 

 FDR methods also determine adjusted p-values for each hypothesis test. More 

specifically, the FDR controls the proportion of false discoveries among all tests that are 

significant and has a greater power to determine truly significant results. This approach was 

proposed by Benjamini and Hochberg (1995) as a multiple-hypothesis testing error measure to 

control the proportion of Type I errors among all rejected null hypotheses (Hochberg, 1995). 

Benjamini and Hochberg (BH) considered the case of testing m  null hypothesis, of which 0m  

are true. Table 2.1 provides notation for random variables associated with different scenarios in a 

multiple testing experiment. 

Table 2.1 

Random Variables Corresponding to the Number of Errors Committed when Testing m  
Hypothesis 

 Declared non – 

significant 

Declared 

Significant 

Total 

True null 

hypothesis 

U  V  0m  

Non – true null 

hypothesis 

T  S  0m m  

Total m R  R  m 
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 BH defined the FDR as the 

 max ,1

V
FDR E

R

 
   

 
      (2.1) 

Sequential p-value methods were provided to control the FDR. Let 1 2 ... mp p p    be the 

ordered p-values and let iH  be the null hypothesis of the ith gene with corresponding p-value ip . 

Now, let k  be the largest i  for which 

*
i

i
p q

m
      (2.2) 

If all iH , for 1, 2,...,i k  are rejected, then the above formula controls the FDR at *q  for any 

independent test statistics and any configuration of false null hypotheses. Also if the test 

statistics corresponding to true null hypotheses are statistically independent, equation (2.2) 

controls * *0m
FDR q q

m
   
 

. Figure 2.1 below shows the comparison between the controlling 

procedures used in FDR and FWER. 

 

Figure 2.1. Comparison of the controlling procedures of FDR and FWER (Lazar, 2012). 
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 Figure 2.1 above is a plot of the first 20 ordered p-values for a gene expression 

experiment, with the order indicator on the x-axis and p-values on the y-axis (Lazar, 2012). The 

horizontal solid line represents the Bonferroni correction method (controlling procedure for 

FWER) and the dashed line represents the FDR-controlling procedure. Points that fall below the 

line for a given method are considered to be significant by that method. From this plot, it is clear 

that using the FDR controlling procedures allows for more tests to be identified as significant 

compared to the Bonferroni correction method. Thus, although FDR-controlling methods allow 

for more type I errors or false discoveries than the FWER, it generally results in higher power in 

detecting genes with false null hypotheses. 

 Storey (2002) pointed out the weaknesses in controlling the FDR which was proposed by 

BH and suggested that the FDR should be calculated as  

0
V

pFDR E R
R

   
 

    (2.3) 

where pFDR  is the positive false discovery rate (Storey, 2002). He later developed the q-value, 

a natural pFDR analogue of the p-value, as a hypothesis testing error measure for each of the 

observed statistics with respect to pFDR (Storey, 2002). The q-value for an observed statistic T = 

t with it rejection region   was defined as 

 
  0ˆ

min : ,...,
r

j

p m
q r k m

r

    
  

    (2.4) 

where   0ˆ
rp m  is an estimate of the number of false discoveries and r  is the total number of genes 

declared to be DE if all genes with p-values less than or equal to rp  are declared DE. 0m̂  is the 

estimate of the number of EE genes in a data set, and calculated using a method proposed by 



 

11 
 

Storey et al (2003). This procedure involves first ordering all the p-values and estimating  0m̂   

for a range of   between 0 and 1, where 

 
 
 

1
0ˆ

1

m

j
j

p

m













      (2.5) 

Then, a natural cubic spline is fit to the points   0ˆ,m  . Finally, this function is evaluated at 

1   to obtain the final estimate of 0m  (John D. Storey, 2003). 

 Orr et al (2014) suggested that when asymmetry in the distribution of test statistics is 

observed in two-sample gene expression experiments, the estimation of FDR using the q-value 

method might be improved if this asymmetry is taken into consideration. Consider performing 

m  hypothesis tests in the two treatment case  1,2t  , with the null hypothesis for the jth gene 

being 1 2:j j jH    against a two-sided alternative, where tj  is the population treatment mean 

expression for gene 1,...,j m . For each gene, an appropriate t-test statistic jt  should be 

computed with its corresponding two-sided p-value obtained. The p-values should then be 

partitioned into two subsets based on the signs of the corresponding test statistics, 

  1
1: 1,...,kp k m  and   2

2: 1,...,kp k m , that represent the subsets of p-values corresponding to 

genes with negative and positive test statistics, respectively (Orr et al., 2014). Then the q-values 

for each subset are estimated separately as  

 
   

 1
01

1

ˆ 2
min : ,...,

r

k

p m
q r k m

r

    
  

   (2.6), 

and 
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 
   

 2
02

2

ˆ 2
min : ,...,

r

k

p m
q r k m

r

    
  

   (2.7). 

 The two-sample case was extended to experiments with three treatment groups in cases 

where the treatments can be ranked. Examples include experiments in which the treatments 

correspond to different points in time or different doses of a drug. This procedure is described in 

detail in Section 3.2.2. 
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CHAPTER 3: METHODS AND MATERIALS 

 Introduction 

 This chapter is devoted to the methodology of the study and the description of real data 

sets that will be analyzed. 

 Methods of Gene Testing 

 This research focuses on gene expression experiments with more than two treatment 

groups. Thus, for each gene, we are interested in testing the null hypothesis 

1 2: ...j j j ijH           (3.1) 

against the alternative that not all population treatment means are equal.  In the null hypothesis 

above, ij  represents the population mean expression value for the thj  gene in the thi  treatment. 

 If the null hypothesis jH  is true, then gene j is EE and if false, then gene j is said to be 

DE.  Moreover, if jH  is rejected, then gene j is DDE. 

 The moderated one-way analysis of variance F-test (Smyth, 2004) will be performed to 

obtain jp , the p-value corresponding to testing jH , for each gene. This test assumes the 

following model for each gene: 

ijk ij ijky     for 1,...,i t ; 1,...,j m ; and 1,..., ik n ,   (3.2) 

where ijky  and ijk  are the expression value and random error, respectively, for the thj  gene 

from the thk  experimental unit in the thi  treatment, and ij  is defined above. Additionally, ijk  is 

assumed to be normally distributed with mean 0 and variance 2
j . The moderated F-test assumes 

and inverse gamma distribution for the population variances of the genes expressions. More 

specifically, 
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2 2
0 00

2

1
~ , ,

2 2
j

j

ds d sd d
Gamma


 
  
 

    (3.3) 

where d is the degrees of freedom associated with estimating js , the sample pooled variance for 

the thj gene. The constants 0d and 0s  are unknown, so they are estimated using the data from the 

microarray experiment. Once this is done, the final estimate of variance for the thj  gene is 

estimated as 

2 2
0 02

0

j
j

ds d s
s

d d





      (3.4) 

This value replaces the sample pooled variance, 2
js  (or mean squared error), in the traditional F-

test statistic, and the associated p-values for each gene are calculated. 

 Traditional and Improved Methods for Computing q-values 

 Once the p-values are obtained after performing the moderated F-test on each gene, q-

values will be calculated using two methods. The first method will be referred to as the 

“traditional method”, and is the method proposed by Storey (2002). This method is described in 

section 2.4.1 and the improved method for estimating q-values which was proposed by Orr et al 

(2014, under review) will be used to identify DE genes. 

 Improved Method for Computing q-values 

 The second method that will be used to calculate q-values will be referred to as the 

“proposed methods” and is the method proposed by Orr et al. (2014). Recall from section 2.4.1 

that this method proposed calculating q-values separately for the subset of p-values 

corresponding to positive test statistics and the subset of p-values corresponding to negative test 

statistics. Extending this method to gene expression experiments with three treatments, in cases 

where the treatments can be ranked, is described here. 
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 The proposed methods begins by estimating m0 using the methods described in Storey 

(2003) and section 2.41. Thus, 
0

m̂  is the same for both the proposed and traditional methods. 

 There are 3! 6  possible observed orderings of the sample treatment means in gene 

expression experiments with three samples: 

1 2 3j j jy y y    (Monotone increasing in ranked treatments), (3.5) 

1 2 3j j jy y y    (Monotone decreasing in ranked treatments), (3.6) 

and 

1 3 2

2 3 1

2 1 3

3 1 2

j j j

j j j

j j j

j j j

y y y

y y y

y y y

y y y

  
  
  
  

 (Non-monotone in ranked treatments)  (3.7) 

The first two orderings are monotone in the ranked treatments while the last four are non-

monotone.  

 For an EE gene, any of the six observed orderings in the sample means are equally likely, 

therefore the probabilities of obtaining a non-monotone and monotone (either increasing or 

decreasing) ordering in the ranked treatments are 4
6  and 2

6 , respectively. Thus, the first 

partitioning rule includes partitioning the p-values into two subsets,   1
1: 1,...,kp k m  and 

  2
2: 1,...,kp k m , corresponding to genes which have ordered sample treatment means that are 

non-monotone and monotone (increasing or decreasing) in the ranked treatments, respectively. It 

follows that the q-values for each subsets can be estimated separately as 
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   1
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4ˆ
6min : ,...,
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q r k m
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 
   
  

   (3.8) 

and 

   
   2

02
2

2ˆ
6min : ,...,

r

k

p m
q r k m

r

 
   
  

.   (3.9) 

The second partitioning rule includes partitioning the set of p-values into three subsets, 

  1
1: 1,...,kp k m ,   2

2: 1,...,kp k m  and   3
3: 1,...,kp k m , corresponding to genes which 

have ordered sample treatment means that are non-monotone, monotone increasing and 

monotone decreasing in the ranked treatment, respectively. For an EE gene, the probabilities of 

obtaining a non-monotone, monotone increasing and monotone decreasing ordering in the ranked 

treatments are 4
6 , 6

1  and 6
1 , respectively. Therefore, the q-values for each subset can be 

estimated separately as 

   
   1

01
1

4ˆ
6min : ,...,

r

k

p m
q r k m

r

 
   
  

   (3.10) 

 

   
   2

02
2

1ˆ
6min : ,...,

r

k

p m
q r k m

r

 
   
  

,   (3.11) 

and 
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   
   3

03
3

1ˆ
6min : ,...,

r

k

p m
q r k m

r

 
   
  

.   (3.12) 

Both of these partitioning rules will be used to estimate q-values in the data sets analyzed in 

Chapter 4. Additionally, the proportion of EE genes for the set of all genes will be estimated as  

0
0

ˆ
ˆ

m

m
  ,      (3.13) 

and for each subset of p-values that will be created using the partitioning rules, the proportion of 

EE genes is estimated as 

  0
0

ˆ
ˆ i i

i

g m

m
  ,      (3.14) 

where ig  is the probability of observing the ith specified gene expression pattern in the sample 

means. 

 Method of Gene Set Testing 

 The database of gene sets used in this research was taken from the Molecular Signatures 

Database (MSigDB). This collection contained 1454 Gene Ontology (GO) sets consisting of 

genes annotated by the same GO terms (Subramanian et al., 2005; Vamsi K Mootha, 2003). 

Gene set testing will be performed on the real data sets, described in sections 3.5 and 3.6, using 

both the traditional and proposed q-value methods. For each method, q-values will be calculated, 

and the subset of genes with q-values less than a predetermined cutoff will be DDE. Then, for 

each gene set, a Fisher’s exact test will be performed to test for the “over-enrichment” of the 

gene set, i.e., if the proportion of genes in the gene set that are DDE is greater than the 

proportion of genes not in the gene set that are DDE. Storey’s q-value method will then be 

applied to the resulting p-values to determine a final set of over-enriched gene sets. 
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 Description of Data Set Simulation 

 In order to compare the performance of the proposed methods (Orr et al, 2014) to the 

traditional method (Storey, 2002) for estimating q-values, data sets with independent normally 

distributed data will be randomly generated. For each data set, gene expression values will be 

randomly drawn from a total of m = 10,000 genes, and expression values from a given gene is 

independent of expression values from all other genes. More specifically, 

 2,ijk ij jy N   ,     (3.15) 

and 

 2 ~ ,j Inv a b       (3.16) 

where ijky  is defined as in Section 2.2. The population variance for each gene will be drawn 

from an inverse gamma distribution because the empirical distribution of the sample variances 

has been shown to closely resemble such distribution in many microarray data sets (Smyth, 

2004). The parameters a and b of the inverse gamma distribution used to generate the variances 

will be estimated using the procedures proposed by Smyth (2004) from data described in 

Lattanzi et al (2007). Multiple simulation settings will be employed in order to evaluate the 

performances of the methods under different conditions. Two sample sizes,  4,10n   for the 

number of units in each treatment, and three different values for the number of EE genes,

 0 9000,7000,5000m   out of the total genes to be analyzed 10000m  , will be used. Three 

different vectors representing the proportion of DE genes (that is, genes whose ranked treatment 

means are non-monotone, monotone increasing and monotone decreasing, respectively) will be 

used and are as follows:       4 6,1 6,1 6 , 1 3,1 3,1 3 , 1 3,1 2,1 6  . This will result in 

eighteen different simulation settings. 
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 For each simulated data set, the moderated F-test will be performed to calculate a p-value 

for each gene. Q-values will then be calculated using the proposed and traditional methods. 

Finally, the number of DE genes DDE (S) and the “observed FDR” (V/R), or proportion of EE 

genes among all DDE genes, will be calculated for each data set. If no genes are DDE for a given 

data set, V/R will be recorded as 0. 

 Description of Real Data Set: TMT in Rats 

 The first data set that will be analyzed was generated from a gene expression experiment 

described by Lattanzi et al (2007). This experiment was performed to identify genes associated 

with the presence of trimethyltin (TMT) in rats. Nine samples made up of three treatment groups 

were obtained using Affymetrix Genechip microarrays. Three rats were assigned to each 

treatment group: control (0 μmol/L), 1 /mol L  and 5 /mol L  concentration of TMT, and m = 

12,159 gene expression values were measured in each rat. The data set is available at the Gene 

Expression Omnibus (GEO) with accession number GSE5073. 

 Description of Real Data Set: Deferasirox in Leukemia Patients 

 The second data set that will be reanalyzed was generated from a microarray experiment 

conducted by Junko et al. (2009) to evaluate the effect of deferasirox (ICL670) in human 

myeloid leukemia cells, and identify molecular pathways responsible for anti-proliferative 

effects on leukemia cells using gene expression profiling. A total of six samples consisting of 

three treatments, the control ( 0 M ), 110 M  and 50 M  of ICL670, were obtained using 

Affymerix GeneChips (U133 Plus 2.0). Gene expressions values on m = 42,440 genes were 

measured for each experimental unit. The data set is also available at the Gene Expression 

Omnibus (GEO) with accession number GSE11670. 
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 Data Preparation 

 Before data is used for further analysis, probe sets without a gene symbol will be 

removed. Also gene symbols that had “_Predicted”, “_Mapped” or “///” attached to then will be 

erased, leaving the actual gene symbol for the analysis. 

 Summary 

 Data from both the simulation studies and real gene expression experiments will be 

analyzed using the statistical software R. Moderated F-tests will be performed for each gene in 

the data set to obtain an associated p-value. Then, q-values for each gene will be calculated using 

the traditional and proposed methods. For each method, genes with q-values less than or equal to 

a desired significance level   will be identified as DE. For the real microarray data sets, gene 

sets that are over expressed will be determined using Fisher’s exact tests. 
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CHAPTER 4: RESULTS OF SIMULATION STUDIES AND REAL DATA ANALYSIS 

 Introduction 

 In this chapter, simulated gene expression data sets with independent normally distributed 

data will be analyzed to compare the performances of both the traditional and proposed methods 

for calculating q-values. Additionally, real gene expression data sets will be analyzed using both 

the traditional and proposed methods for identifying DE genes and gene sets 

 Results - Simulation Studies 

 For each of the 18 simulation settings, 100 gene expression data sets were randomly 

generated. Table 4.1 below presents the mean S and mean V/R for each simulation setting. The 

corresponding standard errors for the mean S and the mean V/R are reported in the parenthesis. 

Table 4.1 

The Mean S and Mean V/R for the Traditional and Proposed Q-value Methods with it Associated 
Standard Errors in Parenthesis for Each Simulation Setting using Independent Normally 
Distributed Data 

 Mean S Mean V/R 

Traditional Proposed Traditional Proposed 

n m0 π୧ I II I II 

4 9000 πଵ 2.69 
(0.33) 

5.46 
(0.49) 

7.43 
(0.51) 

0.031 
(0.007) 

0.055 
(0.009) 

0.071 
(0.010) 

πଶ 6.51 
(0.68) 

31.48 
(1.64) 

34.64 
(1.54) 

0.078 
(0.019) 

0.054 
(0.005) 

0.060 
(0.005) 

πଷ 5.38 
(0.54) 

29.62 
(1.54) 

50.07 
(1.93) 

0.050 
(0.012) 

0.049 
(0.004) 

0.052 
(0.003) 

7000 πଵ 163.93 
(3.90) 

219.93 
(3.78) 

222.60 
(3.72) 

0.050 
(0.002) 

0.049 
(0.001) 

0.050 
(0.001) 
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Table 4.1. The Mean S and Mean V/R for the Traditional and Proposed Q-value Methods with it 
Associated Standard Errors in Parenthesis for Each Simulation Setting using Independent 
Normally Distributed Data (continued). 

 Mean S Mean V/R 

Traditional Proposed Traditional Proposed 

n m0 π୧ I II I II 

 7000 πଶ 326.85 
(5.05) 

671.75 
(4.19) 

672.06 
(4.21) 

0.048 
(0.001) 

0.048 
(0.001) 

0.048 
(0.001) 

πଷ 317.86 
(4.97) 

668.11 
(4.56) 

753.51 
(4.29) 

0.050 
(0.001) 

0.049 
(0.001) 

0.049 
(0.001) 

5000 πଵ 980.15 
(7.51) 

1062.55 
(7.37) 

1063.43 
(7.37) 

0.044 
(0.001) 

0.045 
(0.001) 

0.045 
(0.001) 

πଶ 1551.85 
(8.14) 

2027.12 
(6.46) 

2027.48 
(6.59) 

0.047 
(0.001) 

0.047 
(0.001) 

0.047 
(0.001) 

πଷ 1561.720 
(9.30) 

2042.80 
(7.58) 

2113.74 
(6.92) 

0.047 
(0.001) 

0.048 
(0.000) 

0.048 
(0.001) 

10 9000 πଵ 542.14 
(1.67) 

546.36 
(1.59) 

546.46 
(1.58) 

0.050 
(0.001) 

0.050 
(0.001) 

0.050 
(0.001) 

πଶ 686.56 
(1.40) 

710.68 
(1.24) 

710.73 
(1.23) 

0.049 
(0.001) 

0.050 
(0.001) 

0.050 
(0.001) 

πଷ 689.26 
(1.59) 

712.19 
(1.45) 

714.65 
(1.53) 

0.051 
(0.001) 

0.050 
(0.001) 

0.050 
(0.001) 

7000 πଵ 2128.87 
(2.43) 

2123.87 
(2.29) 

2123.96 
(2.29) 

0.050 
(0.000) 

0.050 
(0.001) 

0.050 
(0.001) 

πଶ 2488.97 
(2.48) 

2479.63 
(2.18) 

2479.60 
(2.18) 

0.050 
(0.000) 

0.051 
(0.000) 

0.051 
(0.000) 

πଷ 2483.96 
(2.16) 

2471.88 
(1.86) 

2468.96 
(1.77) 

0.050 
(0.000) 

0.050 
(0.000) 

0.050 
(0.000) 

5000 πଵ 4006.12 
(3.39) 

3986.43 
(3.20) 

3986.67 
(3.22) 

0.049 
(0.000) 

0.049 
(0.000) 

0.049 
(0.000) 

πଶ 4461.38 
(2.08) 

4394.81 
(2.21) 

4394.87 
(2.20) 

0.050 
(0.000) 

0.050 
(0.000) 

0.050 
(0.000) 

πଷ 4459.18 
(2.23) 

4391.03 
(2.19) 

4382.05 
(2.28) 

0.050 
(0.000) 

0.050 
(0.000) 

0.050 
(0.000) 
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 In Table 4.1, higher values of mean S correspond to better performance in identification 

of differentially expressed genes. The proposed methods outperformed the traditional method in 

settings with 4n  . Additionally in the settings with n = 4 and π = π3, the second portioning rule 

was a better option to be used than the first partitioning rule, since it provided a higher mean S. 

For setting with 10n  , the traditional method either performs similarly or outperforms the 

proposed methods, except when, 0 9000m   in which cases the proposed methods outperformed 

the traditional method. 

Also in Table 4.1, mean V/R values close to α = 0.05 indicate adequate control of FDR at 

the 5% nominal level. Both the traditional and proposed methods appear to adequately control 

FDR. 

 Real Data Analysis I – Presence of Trimethyltin in Rat 

 The data from the gene expression experiment described in Lattanzi (2007) is reanalyzed 

using the traditional and the proposed methods. The description of the data set is given in section 

3.5. 

 For each gene, the null hypothesis 

1 2 3:j j j jH     ,      (4.1) 

for 1, 2,...,12159j   is tested using the moderated F-test. 

 From the p-values obtained in this analysis, the estimated number of EE genes is,

0ˆ 7867.592m   corresponding to an estimated proportion of EE genes of 0ˆ 0.647  . 

 Using the traditional method, the q-value for each gene is estimated as 
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 
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min : 1,...,12159
r
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p
q r

r

    
  

   (4.2) 

For the first partitioning rule (two subsets of p-values), the numbers of p-values associated with 

genes that have sample treatment means that are non-monotone and monotone in the ranked 

treatments are 1 7323m   and 2 4836m   with the estimated proportion of EE genes (1)
0ˆ 0.716   

and (2)
0ˆ 0.542  , respectively. Using (3.8) and (3.9), the q-values for the subset of p-values 

associated with non-monotone orderings of the sample means and p-values associated with 

monotone orderings of the sample means are calculated separately as: 

 
   

   1

1

47867.592 6min : 1,...,7323
r

k

p
q r

r
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 
 

  (4.3) 

and 

 
   

   2

2
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r

k
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q r

r

  
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 
 

  (4.4) 

 For the second partitioning rule, q-values are calculated separately for three subsets of p-

values. The numbers of p-values associated with genes that have sample treatment means with 

non-monotone orderings, monotone increasing orderings, and monotone decreasing orderings are 

1 7323m  , 2 1878m   and 3 2958m   with estimated proportions of EE genes (1)
0ˆ 0.716  , 

(2)
0ˆ 0.698   and (3)

0ˆ 0.443  , respectively. Using (3.10), (3.11) and (3.12), the q-values are 

calculated for each subset separately as: 
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,  (4.5) 
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,  (4.6) 

and 
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  (4.7) 

 The table 4.2 below shows the number of genes DDE controlling FDR at 0.05  ,

0.10   and 0.20   by both methods. 

Table 4.2 

Number of Genes DDE by the Traditional and Proposed Methods for Estimating Q-values at 
Three Significance Level (α = 0.05, α = 0.10, α = 0.20) 

 Number of genes DDE 

Significance Level Traditional Method 

 

Proposed Methods 

I II 

0.05 363 433 410 

0.10 742 853 851 

0.20 1647 1808 1824 

 

 From the table above it can be seen that the proposed methods identify more genes as DE 

than the traditional method, regardless of α. For the proposed methods, the different partitioning 

rules result in similar numbers. 
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 Figure 4.1 presents the histogram of observed p-values corresponding to analysis by the 

traditional q-value method in which no partitioning is used. Figures 4.2 and 4.3 present 

histograms corresponding to analysis by the proposed methods using the first and second 

partitioning rules, respectively. In each histogram, the estimated proportion of EE genes for each 

subset is plotted as a dashed horizontal line. 

 

Figure 4.1. Distribution of p-values when no partitioning is used. 
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Figure 4.2. Histogram of two subsets of p-values using the first partitioning rule. 

 In figure 4.2 and 4.3, the distributions of p-values corresponding to genes with sample 

treatment means that exhibit monotonicity in the ranked treatments are stochastically smaller 

than the distribution of p-values for genes that do not exhibit monotonicity. This indicates that a 

higher proportion of genes are DE among the genes that show monotonicity in the ranked 

treatment means than genes that do not exhibit monotonicity. This also indicates that the 

proposed methods might be preferred to the traditional method and is a possible reason why the 

proposed methods identify more genes as DE than the traditional method. 
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Figure 4.3. Histogram of the three subsets of p-values for the second partitioning rule. 

 Figure 4.4 and 4.5 present the scatter plots of the q-values corresponding to analysis by 

the traditional q-value method in which no partitioning is used versus the proposed methods, 

partitioning rule I and the traditional method versus proposed methods, partitioning rule II.  
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Figure 4.6 presents a scatter plot corresponding to analysis by the proposed methods, partitioning 

rule I versus portioning rule II. 

 

Figure 4.4. Traditional q-value versus Partitioning Rule I. 

 In the figure above, it can clearly be seen that the proposed method using partitioning rule 

I produces smaller q-values than the traditional method for genes that exhibit monotonicity in the 

rank treatment means and larger q-values than the traditional method for genes that exhibit non-

monotonicity in their ranked treatment means. The observed proportions of genes in the ordered 

sample treatment means that are non-monotone and monotone are 0.602 and 0.398, respectively. 

For EE genes, the expected proportion of genes that are non-monotone is 0.667, but the observed 

proportion of all genes exhibiting non-monotonicity is lower. Similarly the expected proportion 

of EE genes that are monotone are 0.333, which are lower than the observed proportion all genes 

exhibiting monotonicity. This indicates that genes with ordered sample means that are monotone 
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are overrepresented and result in lower q-values and, potentially, improved identification of DE 

genes. 

 

Figure 4.5. Traditional q-value versus Partitioning Rule II. 

 Figure 4.5 also shows that when partitioning rule II is used, genes which have ordered 

sample means that are monotone increasing or monotone decreasing produce lower q-values than 

the traditional method, but produce larger q-values than the traditional method for genes that 

have ordered sample treatment means that are non-monotone. The observed proportions of genes 

with ordered sample treatment means that are non-monotone, monotone increasing and 

monotone decreasing are 0.602, 0.154 and 0.243, respectively. These expected proportions for 

EE genes are 0.667, 0.167, and 0.167, respectively. This indicates that, genes with ordered 

sample means that are monotone decreasing are overrepresented, resulting in smaller q-values 

and improves identification of DE genes. Additionally, genes with ordered sample means that are 
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monotone increasing appear to be less “underrepresented”, resulting in lower q-values when 

compared to the traditional method. 

 

Figure 4.6. Partitioning Rule I versus Partitioning Rule II. 

 Figure 4.6 shows that, for small q-values, partitioning rule II produces smaller q-values 

for genes that have ordered sample means that are monotone decreasing in the ranked treatment 

means than partitioning rule I and larger q-values for genes that are monotone increasing in the 

ranked treatment means. The q-values for partitioning rule I and partitioning rule II are the same 

for genes that exhibit non-monotonicity. The smaller q-values observed in genes that exhibit 

monotone decreasing patterns can again be explained by the overrepresentation of genes in this 

group. 

 Based on the histogram of p-values, scatterplots of q-values and the observed proportions 

of genes exhibiting specific patterns, the second partitioning rule is to be used for this data. Since 
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the distribution of p-values was stochastically smaller than when first partitioning rule and no 

partitioning rule are used. Also, it was observed from the scatterplots of q-values for the second 

partitioning rule versus the traditional method, that where monotonicity is present resulted in 

smaller q-values and the observed proportion of genes that are monotone decreasing was higher 

than the expected proportion of EE genes that monotone decreasing. 

 Results – Over Expressed Gene Sets 

 A total of 1454 gene sets were analyzed to detect which gene set are overexpressed using 

the traditional and proposed methods, in conjunction with Fisher’s exact tests, while controlling 

FDR at significance levels of 0.05, 0.10 and 0.20. No gene sets were declared to be 

overexpressed at significance levels of 0.05 or 0.10 using any of the methods. Five gene sets 

were identified to be overexpressed by the proposed methods and eight gene sets were identified 

by the traditional method, both at significance level 0.20. 

 Real Data Analysis II – Effect of Deferasirox in Leukemia Patients 

 The data from the gene expression experiment described in Junko (2009) is reanalyzed 

using the traditional and the proposed methods. The description of the data set is given in section 

2.6. 

 For each gene, the null hypothesis 

1 2 3:j j j jH          (4.8) 

for j = 1, 2,…, 42440 is tested using the moderated F-test. 

 From the p-values obtained in this analysis, the estimated number of EE genes is 

0ˆ 22593.14m   corresponding to 0ˆ 0.532  . Using the traditional method, the q-value for each 

gene is estimated as; 
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  (4.9) 

Because this experiment, like the experiment described in Section 4.1, had three treatments, the 

same six observed orderings in equations (3.5), (3.6) and (3.7) of the sample treatment means are 

possible. 

 For the first partitioning rule (two subsets of p-values), the numbers of p-values 

associated with genes that have sample treatment means that are non-monotone and monotone in 

the ranked treatments are 1 24881m   and 2 17559m   with the estimated proportion of EE genes 

of (1)
0ˆ 0.605   and (2)

0ˆ 0.429   respectively. Using (3.8) and (3.9), the q-values for the subset 

of p-values associated with non-monotone orderings of the sample means and p-values 

associated with monotone orderings of the sample means are calculated separately as 
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and 
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  (4.11) 

 For the second partitioning rule, q-values are calculated separately for three subsets of p-

values. The numbers of p-values associated with genes that have sample treatment means with 

non-monotone orderings, monotone increasing orderings, and monotone decreasing orderings are 
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1 24881m  , 2 9259m   and 3 8300m   with estimated proportion of EE genes (1)
0ˆ 0.605  , 

(2)
0ˆ 0.407   and (3)

0ˆ 0.454  , respectively. Using (3.10), (3.11) and (3.12), the q-values are 

calculated for each subset separately as 
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,  (4.12) 
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and 
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  (4.14) 

Table 4.3 below shows the number of genes DDE controlling FDR at 0.05  , 0.10   and 

0.20   by both methods. 

Table 4.3 

Number of Genes DDE by the Traditional and Proposed Methods for Estimating Q-values at 
Three Significance Level (α = 0.05, α = 0.10, α = 0.20) 

 Number of DDE 

Significance Level Traditional Method 

 

Proposed Methods 

I II 

0.05 4442 5013 5025 

0.10 8482 8459 8463 

0.20 14540 14375 14432 
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 From the table above, it can be seen that the traditional method identified more DE genes 

for significance levels of 0.10 and 0.20 compared to the proposed methods, but the proposed 

methods identified more genes as DE compare to the traditional method at significance level 

0.05. An increase in the significance level was used to determine if it will results in lower 

likelihood of a false negative. 

 Figure 4.7 presents the histogram of observed p-values corresponding to analysis by the 

traditional q-value method in which no partitioning is used. Figures 4.8 and 4.9 present 

histograms corresponding to analysis by the proposed methods using the first and second 

partitioning rules, respectively. In each histogram, the estimated proportion of EE genes for each 

subset is plotted as a dashed horizontal line 

 

Figure 4.7. Distribution of p-values when no partitioning is used. 
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Figure 4.8. Histogram of two subsets of p-values using the first partitioning rule. 

 In figure 4.8 and 4.9, the distributions of p-values corresponding to genes with sample 

treatment means that exhibit monotonicity in the ranked treatments are stochastically smaller 

than the distribution of p-values for genes that do not exhibit monotonicity. Similar to data set 

analyzed in section 4.3, this indicates that a higher proportion of genes are DE among the genes 

that shows monotonicity in the ranked treatment means than the genes that do not exhibit 

monotonicity and that the proposed methods might be preferred to the traditional method and is a 

possible reason why the proposed methods identify more genes as DE than the traditional 

method. 
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Figure 4.9. Histogram of the three subsets of p-values for the second partitioning rule. 

 Figure 4.10 and 4.11 present the scatter plots of the q-values corresponding to analysis by 

the traditional q-value method in which no partitioning is used versus the proposed methods, 

partitioning rule I and the traditional method versus proposed methods, partitioning rule II. 
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Figure 4.12 presents a scatter plot corresponding to analysis by the proposed methods, 

partitioning rule I versus portioning rule II. 

 

Figure 4.10. Traditional q-value versus Partitioning Rule I. 
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Figure 4.11. Traditional q-value versus Partitioning Rule II. 

 In the figure 4.10 and 4.11 above, it can clearly be seen that partitioning rule I and II 

produces smaller q-values than the traditional method for genes that exhibit monotonicity in the 

rank treatment means and larger q-values than the traditional method for genes that exhibit non-

monotonicity in their ranked treatment means. The observed proportion of genes in the ordered 

sample treatment means that are non-monotone for both partitioning rules is 0.587. For EE 

genes, the expected proportion of genes that are non-monotone is 0.667, but the observed 

proportion of all genes exhibiting non-monotonicity is lower. For partitioning rule I the observed 

proportion of genes in the ordered sample treatment means that are monotone is 0.414. Likewise 

the expected proportion of EE genes that are monotone is 0.333, which is lower than the 

observed proportion of all genes exhibiting monotonicity. For partitioning rule II, the observed 
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proportion of genes in the ordered sample treatment means that are, monotone increasing and 

monotone decreasing were 0.218, and 0.196 respectively. Similarly, the expected proportion of 

EE genes that are monotone increasing and monotone decreasing is 0.167, which is lower than 

the observed proportion of all genes that are monotone increasing and monotone decreasing. This 

indicates that, for both partitioning rules genes with ordered sample means that exhibits 

monotonicity are overrepresented and result in lower q-values and, potentially, improved 

identification of DE genes. 

 

Figure 4.12. Partitioning Rule I versus Partitioning Rule II. 

 Figure 4.12 shows that, for small q-values, partitioning rule II produces smaller q-values 

for genes that have ordered sample means that are monotone decreasing in the ranked treatment 

means than partitioning rule I and larger q-values for genes that are monotone increasing in the 

ranked treatment means. The q-values for partitioning rule I and partitioning rule II are the same 
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for genes that exhibit non-monotonicity. The smaller q-values observed in genes that exhibit 

monotone increasing patterns can again be explained by the overrepresentation of genes in this 

group. 

 Based on the histogram of p-values, scatterplots of q-values and the observed proportions 

of genes exhibiting specific patterns, the second partitioning rule is to be used for this data. Since 

the distribution of p-values was stochastically smaller than when first partitioning rule and no 

partitioning rule are used. Also, it was observed from the scatterplots of q-values for the second 

partitioning rule versus the traditional method, that where monotonicity is present resulted in 

lower q-values and the observed proportion of genes that are monotone increasing was higher 

than the expected proportion of EE genes that monotone increasing. 

 Results – Over Expressed Gene Sets 

 Total of 1454 gene sets were analyzed to detect which gene set are overexpressed using 

the traditional and proposed methods, in conjunction with Fisher’s exact tests, while controlling 

FDR at significance levels of 0.05, 0.10 and 0.20.  Table 4.3 below gives a summary of the gene 

set analysis. 
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Table 4.4 

Number of Gene Sets Identified to be Overexpressed by both the Traditional and Proposed 
Methods 

 Number of Gene Sets 

Significance Level Traditional Method 

 

Proposed Methods 

I II 

0.05 40 37 36 

0.10 29 34 34 

0.20 5 11 13 

 

 From the table above, it can be seen that the proposed methods identified more gene sets 

that are overexpressed at significance level 0.10 and 0.20 than the traditional method. The 

traditional method only identified more overexpressed gene sets than the proposed methods at 

0.05 significance level. 
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CHAPTER 5: CONCLUSION RECOMMENDATION AND FUTURE WORK 

 Conclusion 

 In this research, existing and proposed methods were used to detect differentially 

expressed genes while controlling false discovery rate for microarray experiments in which the 

treatments can be ranked. The performances of these methods were evaluated using both 

simulated and real data. 

 The proposed methods for estimating the FDR by first partitioning the p-values into 

subsets based on observed patterns in the sample data, and then calculating q-values separately 

for each subset was shown to have advantages over the traditional q-value method in simulation 

settings with small sample size (n = 4). In the simulation settings, settings with 10n   and 

0 7000m   or 0 5000m  , the proposed methods was outperformed by the traditional q-value 

method. Both the proposed and traditional methods adequately controlled the FDR at 5% 

significance level. 

In the analysis of real gene expression data, the proposed methods generally declared 

more genes to be DE than the traditional q-value method, regardless of α. An exception for this 

include the data from the second gene expression experiment that was analyzed. For significance 

levels of 0.10 and 0.20, the traditional method declared more genes to be DE.   

Also, the scatter plots showed that if the overrepresentation of gene expression patterns 

across treatment is taken into account, this can lead to an improvement in the identification of 

DE genes. Thus, using the proposed methods over the traditional method is recommended in 

these cases. Additionally, when monotonicity is overrepresented in one direction but not another, 

it’s suggested that partitioning rule II be used over partitioning rule I. 
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 For gene set testing, the traditional method identified more gene sets to be over expressed 

than the proposed methods. As the significance level was increased from 0.05 to 0.20, the 

number of gene sets identified to be overexpressed decreased. 

 Recommendations 

 The following recommendations are offered for related research in identification of 

differentially expressed genes: 

(1) The proposed method is generally only recommended for analysis in gene expression 

experiments with small samples sizes. 

(2) If monotonicity in the ordered sample means is overrepresented in both directions 

(increasing and decreasing), the proposed method should be used using the first 

partitioning rule.  

(3) If monotonicity in the ordered sample means is overrepresented in only one direction 

(increasing or decreasing), the proposed method should be used using the first 

partitioning rule.  

 Future Work 

 It is noticeable that in this research, the proposed methods identified fewer overexpressed 

gene sets than the traditional method. Also, there was a significant decrease in the number of 

overexpressed gene sets identified as the significance level was increased. Therefore, it is 

desirable to develop a gene set testing method to identify overexpressed gene sets which does not 

depend on identifying genes using single gene testing. 
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APPENDIX 

A1. Simulation Code 

 library(limma) 
 library(qvalue) 
 library(pscl) 

 source("incr_decr_fn.R") 

 ni <- 4   ### number of samples per treatment 
 m0 <- 7000   ## number of EE genes 
 m <- 10000   ## total number of genes 
 m1 <- m - m0  ## number of DE genes 
 pi <- c(4/6,1/6,1/6)  ### proportion of monotone and non-monotone 
 Nm1 <- m1 * pi   ### proportion of DE genes for non-monotone and monotone (increase  
  & decrease) 
 

 ### Defining the variance 

 d0 <- 2.15 
 s20 <- 0.037 
 vars <- rigamma(n = m, alpha = d0/2, beta = d0*s20/2) 

 

### Simulating the data sets 

 sim <- function(x){ 

  dat <- matrix(NA, nrow = m0, ncol = 3*ni)  matrix of EE genes 

  for(i in 1 : m0) { 
   sdi <- sqrt(vars[i]) 
   dati <- rnorm(n = 3*ni, mean = 0, sd = sdi) 
   dat[i,] <- dati 
  } 

  for(i in 1 : m1) {         ### treatment means relationship matrix (user definition) 

   mat1 <- c(rep(c(0,0,1,0,0,1,0,1,0,0,1,0,1,0,0,1,0,0,0,2,1,1,0,2,2,0,1,1,2,0)) 
   mat2 <- c(rep(c(0,1,2),500)) 
   mat3 <- c(rep(c(0,-1,-2),500)) 
   means <- matrix(c(mat1, mat2, mat3), nrow = m1, ncol = 3, byrow =  
   TRUE) 
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  } 

  dat1 <- matrix(NA, nrow = m1, ncol = 3*ni)  ### matrix of DE genes 

  for(i in 1 : m1) { 

   DEms <- means[i,] 
   sdi <- sqrt(vars[i]) 
   dat1i <- rnorm(n = ni, mean = DEms[1]*sdi, sd = sdi) 
   dat2i <- rnorm(n = ni, mean = DEms[2]*sdi, sd = sdi) 
   dat3i <- rnorm(n = ni, mean = DEms(Petricoin et al.)*sdi, sd = sdi) 
   datai <- c(dat1i, dat2i, dat3i) 
   dat1[i,] <- datai 

  } 

  data <- rbind(dat,dat1) 

  } 

 

dataset <- lapply(1:50, sim)  ### Number of simulated data sets 

 

### Analzes using moderated F test, traditional q-value and the proposed methods 

 RVSVR <- data.frame() 
 RVSVR1 <- data.frame() 
 RVSVR2 <- data.frame() 

 for(i in 1 : length(dataset)) { 

  aa <- as.data.frame(dataset[i]) 
  grps <- as.factor(c(rep(1,4),rep(2,4),rep(3,4))) ### User define (depending  
  on the  number of treatments per group) 
 
 ##microarray analysis -- moderated F-test 

 design <- model.matrix(~grps+0)  ##design matrix 
 colnames(design)=c("t1","t2","t3") 
 contr.mat <- makeContrasts(t1-t2, t1-t3, t2-t3, levels=design) ##contrasts of interest 
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 ##Perform moderated F-test 

  fit1 <- lmFit(aa,design) 
  fit2 <- contrasts.fit(fit1,contr.mat) 
  fit3 <- eBayes(fit2) 
  pvs <- fit3$F.p.value  ##ANOVA p-values 

 

  qv <- qvalue(pvs) 
  pi0hat <- qv$pi0 ##estimate of proportion of EE genes 
  m0hat <- m*pi0hat ##estimate of the number of EE genes 
  qvals <- qv$qvalues ##q-values for traditional method 

 

  R<-sum(qvals <= 0.05)   ### Number of genes DDE using traditional method 
  V <- sum(qvals[0:m0] <= 0.05) ### Number of EE genes DDE  
  S <- sum(qvals[(m0 + 1) : m] <= 0.05)  ### Number of DE genes DDE  
  VR <- V / max(R,1) 

 

##analysis using partitions of two subsets of p-values 

  yb1 <- apply(aa[,grps==1], 1, mean) 
  yb2 <- apply(aa[,grps==2], 1, mean) 
  yb3 <- apply(aa[,grps==3], 1, mean) 
  ybars <- cbind(yb1, yb2, yb3) 

 

  ybind <- apply(ybars, 1, incr_decr_fn) 
  sum(ybind == 0) ##not monotone 
  sum(ybind == 1) ##increasing 
  sum(ybind == 2) ##decreasing 

 

##Analysis using partitions of two subsets of p-values 

  pv1 <- pvs[ybind == 0]  ##p-values with non-monotone means 
  pv2 <- pvs[ybind != 0]  ##p-values with monotome means (increasing or   
       decreasing) 
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  m1 <- length(pv1)  ##number of genes with non-monotone means 
  m2 <- length(pv2)  ##number of genes with monotone means 

 

  m0hat1 <- m0hat*4/6  ##estimate of number of EE genes with non-monotone  
     means 
  m0hat2 <- m0hat*2/6  ##estimate of number of EE genes with monotone means 

 

  pi0hat1 <- m0hat1/m1  ##estimate of proportion of EE genes among genes with  
       non-monotone means 
  pi0hat2 <- m0hat2/m2  ##estimate of proportion of EE genes among genes with  
       monotone means 
 

##calculate FDR for genes with non-monotone means 

  prank1 <- rank(pv1) 
  fdrh1 <- pv1*m0hat1/prank1 
  qval1 <- sapply(prank1, function(x) min(fdrh1[prank1 >= x])) 

 

##calculate FDR for genes with monotone means 

  prank2 <- rank(pv2) 
  fdrh2 <- pv2*m0hat2/prank2 
  qval2 <- sapply(prank2, function(x) min(fdrh2[prank2 >= x])) 

 

  qvals2 <- rep(NA, m) 
  qvals2[ybind == 0] <- qval1 
  qvals2[ybind != 0] <- qval2 

 

  R1 <- sum(qvals2 <= 0.05)   ### Number of genes DDE using traditional method 
  V1 <- sum(qvals2[0:m0] <= 0.05) ### Number of EE genes DDE  
  S1 <- sum(qvals2[(m0 + 1) : m] <= 0.05)  ### Number of DE genes DDE  
  VR1 <- V1 / max(R1,1) 
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##Analysis using partitions of three subsets of p-values 

  pv1 <- pvs[ybind == 0]  ##p-values with non-monotone means 
  pv2 <- pvs[ybind == 1]  ##p-values with monotone increasing means 
  pv3 <- pvs[ybind == 2]  ##p-values with monotone decreasing means 

 

  m1 <- length(pv1)  ##number of genes with non-monotone means 
  m2 <- length(pv2)  ##number of genes with monotone increasing means 
  m3 <- length(pv3)  ##number of genes with monotone decreasing means 

 

  m0hat1 <- m0hat*4/6  ##estimate of number of EE genes among genes with non- 
          monotone means 
  m0hat2 <- m0hat*1/6  ##estimate of number of EE genes among genes with  
          monotone increasing means 
  m0hat3 <- m0hat*1/6  ##estimate of number of EE genes among genes with  
          monotone decreasing means 
 

  pi0hat1 <- m0hat1/m1  ##estimate of proportion of EE genes among genes with  
       non-monotone means 
  pi0hat2 <- m0hat2/m2  ##estimate of proportion of EE genes among genes with  
       monotone increasing means 
  pi0hat3 <- m0hat3/m3  ##estimate of proportions of EE genes among genes with  
       monotone decreasing  means 
 

##calculate FDR 

##calculate FDR for genes with non-monotone means 

  prank1 <- rank(pv1) 
  fdrh1 <- pv1*m0hat1/prank1 
  qval1 <- sapply(prank1, function(x) min(fdrh1[prank1 >= x])) 

 

##calculate FDR for genes with monotone increasing means 

  prank2 <- rank(pv2) 
  fdrh2 <- pv2*m0hat2/prank2 
  qval2 <- sapply(prank2, function(x) min(fdrh2[prank2 >= x])) 
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##calculate FDR for genes with monotone decreasing means 

  prank3 <- rank(pv3) 
  fdrh3 <- pv3*m0hat3/prank3 
  qval3 <- sapply(prank3, function(x) min(fdrh3[prank3 >= x])) 

 

  qvals3 <- rep(NA, m) 
  qvals3[ybind == 0] <- qval1 
  qvals3[ybind == 1] <- qval2 
  qvals3[ybind == 2] <- qval3 

 

  R2 <-sum(qvals3 <= 0.05)   ###  Number of genes DDE using traditional method 
  V2 <- sum(qvals3[0:m0] <= 0.05) ### Number of EE genes DDE  
  S2 <- sum(qvals3[(m0 + 1) : m] <= 0.05)  ### Number of DE genes DDE  
  VR2 <- V2 / max(R2,1) 

 

  RVSVR <- rbind(RVSVR,c(S, VR))  ### S and VR using the traditional  
        method 
  colnames(RVSVR) <- c("S", "VR") 

 

  RVSVR1 <- rbind(RVSVR1,c(S1, VR1)) ### S and VR using the proposed  
        method (2 subsets of p-values) 
  colnames(RVSVR1) <- c("S", "VR") 

 

  RVSVR2 <- rbind(RVSVR2,c(S2, VR2)) ### S and VR using the proposed  
        method (3 subsets of p-values) 
  colnames(RVSVR2) <- c("S", "VR") 

 } 

 

## The mean and standard errors of S and V/R 
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MStd <- round(apply(RVSVR, 2, function(x) c(mean(x), sqrt(var(x) / length(x)))),digits = 3) 

MStd1 <- round(apply(RVSVR1, 2, function(x) c(mean(x), sqrt(var(x) / length(x)))),digits = 3) 

MStd2 <- round(apply(RVSVR2, 2, function(x) c(mean(x), sqrt(var(x) / length(x)))),digits = 3) 

 

A2. Gene Expression Analysis Code (Traditional and Proposed Methods) 

 library(qvalue) 
 source("incr_decr_fn.R") 

 

 aa<-read.csv("new_gse5073.csv",header=T)  ###read in data 

 data<-aa[,3:11]  ####data containing expression values only 

 m<- dim(aa)[1] 

 x<-as.factor(c(1,2,3,2,2,3,3,1,1))  ###treatment levels 

 

###Perform ANOVA 

 dd<-data.frame() 

 for(i in 1 : nrow(aa)) { 

  abc<-as.numeric(data[i,]) 
  model3<-summary(aov(lm(abc~x))) 
  fvalue<-model3[[1]]$'F value' 
  pvalue<-model3[[1]]$'Pr(>F)' 

 dd<-rbind(dd,c(fvalue,pvalue)) 

 colnames(dd) <- c("Fvalue", "NAA", "Pvalue", "NAAA") 

 } 

 

 data1<-dd[,c(1,3)]  ###data containing fvalues and pvalues 
 data2<-cbind(aa,data1) ####data containing the expression values, fvals & pvals 
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 pvalue<-data1[,2]   ###data containig only pvalues 
 qvalues<-qvalue(pvalue)  ### qvalues of the pvalues 

 

 pi0hat <- qvalues$pi0   ##estimate of proportion of EE genes 
 m0hat <- m*pi0hat   ##estimate of number of EE genes 
 qvals <- qvalues$qvalues 

 

 data3<-cbind(data2,qvals) 

 

 sig.genesT1 <- data3[which(qvals<=0.05),] ###genes DDE using traditional method 
 nrow(sig.genesT1) 

 sig.genesT2 <- data3[which(qvals<=0.10),] ###genes DDE using traditional method 
 nrow(sig.genesT2) 

 sig.genesT3 <- data3[which(qvals<=0.20),] ###genes DDE using traditional method 
 nrow(sig.genesT3) 

 

##Histogram of p-values with pi0hat line 

 hist(pvalue, probability=TRUE, col="gray", xlab="p-value", main="No partitioning",  

  cex.lab=1.2, cex.axis=1.2, cex.main=1) 

 abline(h=pi0hat, lty=2, lwd=3) 

 

##analysis using partitions of two subsets of p-values 

 yb1 <- apply(data[,x==1], 1, mean) 
 yb2 <- apply(data[,x==2], 1, mean) 
 yb3 <- apply(data[,x==3], 1, mean) 

 ybars <- cbind(yb1, yb2, yb3) 

 ybind <- apply(ybars, 1, incr_decr_fn) 
 sum(ybind == 0) ##not monotone 
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 sum(ybind == 1) ##increasing 
 sum(ybind == 2) ##decreasing 

 

##Analysis using partitions of two subsets of p-values 

 pv1 <- pvalue[ybind == 0]  ##p-values with non-monotone means 
 pv2 <- pvalue[ybind != 0]  ##p-values with monotome means (increasing or  
      decreasing) 
 

 m1 <- length(pv1)   ##number of genes with non-monotone means 
 m2 <- length(pv2)   ##number of genes with monotone means 

 

 m0hat1 <- m0hat*4/6   ##estimate of number of EE genes with non-  
      monotone means 
 m0hat2 <- m0hat*2/6   ##estimate of number of EE genes with monotone  
      means 
 

pi0hat1 <- m0hat1/m1    ##estimate of proportion of EE genes among genes  
      with non-monotone means 
pi0hat2 <- m0hat2/m2    ##estimate of proportion of EE genes among genes  
      with monotone means 
 

par(mfrow=c(1,2)) 

 

##Histogram of p-values corresponding to genes with non-monotone means (with pi0hat line) 

 hist(pv1, probability=TRUE, ylim=c(0,4), breaks=20, col="gray", main="Non-  

  monotone", xlab="p-value", cex.lab=1.2, cex.axis=1.2, cex.main=1.2) 

 abline(h=pi0hat1, lty=2, lwd=3) 

 

##Histogram of p-values corresponding to genes with monotone means (with pi0hat line) 
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 hist(pv2, probability=TRUE, ylim=c(0,4), breaks=20, col="gray", main="Monotone",  

  xlab="p-value", cex.lab=1.2, cex.axis=1.2, cex.main=1.2) 

 abline(h=pi0hat2, lty=2, lwd=3) 

 

##calculate FDR for genes with non-monotone means 

 prank1 <- rank(pv1) 
 fdrh1 <- pv1*m0hat1/prank1 
 qval1 <- sapply(prank1, function(x) min(fdrh1[prank1 >= x])) 

 

##calculate FDR for genes with monotone means 

 prank2 <- rank(pv2) 
 fdrh2 <- pv2*m0hat2/prank2 
 qval2 <- sapply(prank2, function(x) min(fdrh2[prank2 >= x])) 

 

 qvals2 <- rep(NA, m) 
 qvals2[ybind == 0] <- qval1 
 qvals2[ybind != 0] <- qval2 

 

###Scatter plots 
###Traditional vs Partitioning Rule I 

 colors <- rep("blue", m) 
 colors[ybind==0] <- "red" 

 plot(qvals2, qvals, pch=20, xlim=c(0,0.20), ylim=c(0,0.20), cex=0.5, col=colors, 
 xlab="Proposed q-value, Partitioning Rule I", ylab="Traditional q-value", cex.lab=1.2, 
 cex.axis=1.2) 
 abline(a=0, b=1, lty=2, lwd=2) 

 legend(x=0, y=0.65, xjust=0, yjust=1, legend=c("non-monotone", "monotone"), pch=20,  
  col=c("red", "blue"), cex=1.2) 
 

 data4<-cbind(data2,qvals2) 
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 sig.genesI1 <- data4[which(qvals2<=0.05),]  ###genes DDE when p-values  
        partitioned into two subsets 
 nrow(sig.genesI1) 

 sig.genesI2 <- data4[which(qvals2<=0.10),]  ###genes DDE when p-values  
        partitioned into two subsets 
 nrow(sig.genesI2) 

 

 sig.genesI3 <- data4[which(qvals2<=0.20),]  ###genes DDE when p-values  
        partitioned into two subsets 
 nrow(sig.genesI3) 

 

##Analysis using partitions of three subsets of p-values 

 pv1 <- pvalue[ybind == 0]  ###p-values with non-monotone means 
 pv2 <- pvalue[ybind == 1]  ###p-values with monotone increasing means 
 pv3 <- pvalue[ybind == 2]  ###p-values with monotone decreasing means 

 

 m1 <- length(pv1)    ###number of genes with non-monotone means 
 m2 <- length(pv2)    ###number of genes with monotone increasing means 
 m3 <- length(pv3)  ###number of genes with monotone decreasing means 

 

 m0hat1 <- m0hat*4/6  ###estimate of number of EE genes among genes with non- 
     monotone means 
 m0hat2 <- m0hat*1/6    ###estimate of number of EE genes among genes with  
     monotone increasing means 
 m0hat3 <- m0hat*1/6    ###estimate of number of EE genes among genes with  
     monotone decreasing means 
 

 pi0hat1 <- m0hat1/m1   ###estimate of proportion of EE genes among genes with  
     non-monotone means 
 pi0hat2 <- m0hat2/m2  ###estimate of proportion of EE genes among genes with  
     monotone increasing means 
 pi0hat3 <- m0hat3/m3   ###estimate of proportions of EE genes among genes with  
     monotone decreasing means 
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par(mfrow=c(1,3)) 

 

##Histogram of p-values corresponding to genes with non-monotone means (with pi0hat line) 

 hist(pv1, probability=TRUE, ylim=c(0,4), breaks=20, col="gray", main="Non-  

  monotone", xlab="p-value", cex.lab=1.2, cex.axis=1.2, cex.main=1.2) 

 abline(h=pi0hat1, lty=2, lwd=3) 

 

##Histogram of p-values corresponding to genes with monotone increasing means (with pi0hat 

line) 

 hist(pv2, probability=TRUE, ylim=c(0,4), breaks=20, col="gray", main="Monotone  

  increasing", xlab="p-value", cex.lab=1.2, cex.axis=1.2, cex.main=1.2) 

 abline(h=pi0hat2, lty=2, lwd=3) 

 

##Histogram of p-values corresponding to genes with monotone decreasing means (with pi0hat 

line) 

 hist(pv3, probability=TRUE, ylim=c(0,4), breaks=20, col="gray", main="Monotone  

  decreasing", xlab="p-value", cex.lab=1.2, cex.axis=1.2, cex.main=1.2) 

 abline(h=pi0hat3, lty=2, lwd=3) 

 

##calculate FDR 

##calculate FDR for genes with non-monotone means 

 prank1 <- rank(pv1) 
 fdrh1 <- pv1*m0hat1/prank1 
 qval1 <- sapply(prank1, function(x) min(fdrh1[prank1 >= x])) 
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##calculate FDR for genes with monotone increasing means 

 prank2 <- rank(pv2) 
 fdrh2 <- pv2*m0hat2/prank2 
 qval2 <- sapply(prank2, function(x) min(fdrh2[prank2 >= x])) 

 

##calculate FDR for genes with monotone decreasing means 

 prank3 <- rank(pv3) 
 fdrh3 <- pv3*m0hat3/prank3 
 qval3 <- sapply(prank3, function(x) min(fdrh3[prank3 >= x])) 

 

 qvals3 <- rep(NA, m) 
 qvals3[ybind == 0] <- qval1 
 qvals3[ybind == 1] <- qval2 
 qvals3[ybind == 2] <- qval3 

 

 

###Scatter plots 
###Traditional vs Partitioning Rule II 

 colors <- rep("blue", m) 
 colors[ybind==0] <- "red" 
 colors[ybind==1] <- "green" 

 

 plot(qvals3, qvals, pch=20, xlim=c(0,0.20), ylim=c(0,0.20), cex=0.5, col=colors, 
 xlab="Proposed q-value, Partitioning Rule II",ylab="Traditional q-value", cex.lab=1.2, 
 cex.axis=1.2) 
 abline(a=0, b=1, lty=2, lwd=2) 

 legend(x=0, y=0.65, xjust=0, yjust=1, legend=c("non-monotone", "monotone increasing", 
  "monotone decreasing"), pch=20, col=c("red", "green","blue"), cex=0.9) 
 

###Partitioning Rule I vs Partitioning Rule II 
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 plot(qvals2, qvals3, pch=20, xlim=c(0,0.20), ylim=c(0,0.20), cex=0.5, col=colors, 
 xlab="Proposed q-value, Partitioning Rule II", ylab="Proposed q-value, Partitioning Rule 
 I", cex.lab=1.2, cex.axis=1.2) 
 abline(a=0, b=1, lty=2, lwd=2) 

 legend(x=0, y=0.72, xjust=0, yjust=1, legend=c("non-monotone", "monotone increasing", 
  "monotone decreasing"), pch=20, col=c("red", "green","blue"), cex=1) 
 

 data5<-cbind(data2,qvals3) 

 sig.genesII1 <- data5[which(qvals3<=0.05),]  ###genes DDE when p-values  
        partitioned into three subsets 
 nrow(sig.genesII1) 

 sig.genesII2 <- data5[which(qvals3<=0.10),]  ###genes DDE when p-values  
        partitioned into three subsets 
 nrow(sig.genesII2) 

 sig.genesII3 <- data5[which(qvals3<=0.20),]  ###genes DDE when p-values  
        partitioned into three subsets 
 nrow(sig.genesII3) 

 

### Data containing probe sets, gene symbol and qvals(traditional and proposed) 

 new_data<-cbind(data3[,c(1:2,14)],data4[,14],data5[,14]) 
 colnames(new_data)<-c("Name","Symbol","Traditional","Proposed I","Proposed II") 

 

A3. Gene Set Code 

 library(qvalue) 

 setgene<-read.csv("setgene.csv",header=F)   ###gene sets data 

 data <-read.csv(“data.csv”)  ### data containing probe set, gene symbols, trad.qvals and 
     improved qvals 
 

 m<-length(unique(Symbol))  ###Number of gene symbols 

 n_set<-as.data.frame(setgene[,1]) ###gene sets names 
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 trad.DDE1<-unique(Symbol[Traditional <= 0.05]) ###Number of unique symbol using  

       a specific method and significance level 

 

###Counts data 

 ds<-data.frame() 

  for(i in 1 : nrow(setgene)){ 
   s<-setgene[i,-(1)] 
   ss<-s[!s == ""] 
   n1<-length(ss) 
   set<-ss[which(ss %in% trad.DDE1)] 
   x1<-length(set) 
   n<-length(trad.DDE1) 
   x2<-n-x1 
   n2<-m-n1  
   ds<-rbind(ds,c(x1,x2,n1,n2)) 
   colnames(ds) <- c("X1", "X2", "N1", "N2")} 

 

###Fisher Exact Test 

 df<-data.frame() 

  for(i in 1 : nrow(ds)){ 
   mat <- as.numeric(ds[i,]) 
   mata <- fisher.test(matrix(mat,nrow=2),alternative="two.sided") 
   pv <- mata$p.value 
   odds <- mata$estimate 
   df <- rbind(df,c(pv,odds)) 
   colnames(df) <- c("pvalue", "oddsR")} 

 

 data1<-cbind(ds,df)   ###Data containing the counts, p-value and odds ratio 

 dat<-data1[,5]    ###p-values 

 qval<-qvalue(dat)    ###q-values of the p-values 
 qvals <- qval$qvalues 
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 trad1<-cbind(n_set,data1,qvals)  ###data containing gene sets names, counts, p- 
      values and q-values 
 

 sig.genesetT1<-trad1[trad1$qvals<=0.05 & trad1$oddsR>1,] ###over expressed  
          gene sets 
 nrow(sig.genesetT1) 

 

A4. Increasing and Decreasing Function 

 incr_decr_fn <- function(ybs){ 
  ##0: non monotonic 
  ##1: increasing 
  ##2: decreasing 
  lybs <- length(ybs) 
  ret <- 0 
    if(sum(order(ybs) == (1:lybs)) == lybs) { ret <- 1 } 
  if(sum(order(ybs, decreasing=TRUE) == (1:lybs)) == lybs) { ret <- 2 } 
  if(length(unique(ybs))==1) { ret <- 0 } 

 return(ret)} 


