
LOSS RESERVING CHAIN LADDER METHODS APPLIED TO A SMALL MIDWESTERN

INSURANCE COMPANY

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Peter Raymond Martin

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Statistics

April 2015

Fargo, North Dakota



NORTH DAKOTA STATE UNIVERSITY

Graduate School

Title

LOSS RESERVING CHAIN LADDER METHODS APPLIED TO A SMALL

MIDWESTERN INSURANCE COMPANY

By

Peter Raymond Martin

The supervisory committee certifies that this thesis complies with North Dakota State University’s

regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Tatjana Miljkovic

Chair

Rhonda Magel

Co-Chair

Megan Orr

Indranil Sengupta

Approved:

14 April 2015

Date

Rhonda Magel

Department Chair



ABSTRACT

Estimating future losses is integral to setting aside appropriate reserves in the insurance

industry. This study analyzes different Chain Ladder reserving methods based on weighted-least

square regression that consider different function of weights. These methods are tested on 78

NAIC fully developed loss triangles. While the CRE Chain Ladder method is selected based on

its performance, this method does not work well for a small number of NAIC companies that may

have erratic changes in their loss trends. For these outliers, two other methods were explored for

the early development years; the nearest neighbor technique and mixture of linear regressions. A

recommendation is then made to a small Midwestern insurance company on the best methodology

to use for estimating the loss reserves based on the actual data provided. These results can be

useful to any other insurance company currently using Chain Ladder methods in loss reserving

practices.
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1. INTRODUCTION

Reserving is the cornerstone of the insurance industry. An insurance company must set aside

enough money to pay all claims, present and future, on the policies currently in force. Inadequate

reserves can lead to insolvency and over-adequate reserves can lead to premium rates that are

not competitive. Industry best practices attempt to mitigate or spread risk, and therefore new

techniques to accurately predict the necessary reserves must be tested repeatedly. Most insurance

companies are unwilling to risk changing their methods. The concern is that new techniques will not

account for all the nuances and intangible elements contributing to claims and thus fail to improve

the accuracy of the reserve predictions. In addiction, this concern discourages companies from

testing new techniques due to risk associated with overexposure. This leads to a large proportion

of insurance companies continuing to use conventional methods or using external consultants when

calculating ultimate losses for an accident year and total losses from a line of insurance.

A loss triangle is a table of claims for one line of insurance over a period of development

years. These claims naturally form an upper left triangle of actual incurred losses and a lower

right triangle of future losses. Each calendar year, another diagonal of actual losses is added to the

triangle and a new accident year is added to the bottom of the triangle. Many lines of insurance

take years for their claims to fully develop, such as personal injury or malpractice, while others,

such as homeowners liability, fully develop in a year or two. To collect adequate premiums each

year, the ultimate losses from that year’s policies must be estimated to avoid subsidizing previous

years’ losses with current year premiums.

Various deterministic and stochastic methods are used to predict these unknown lower tri-

angle losses, with little comparison to the advantages and disadvantages of each. In this thesis a

deterministic method of comparing development ratios will be introduced, as well as using weighted

least squares regression, the nearest neighbor technique and mixtures of regression. These tech-

niques are compared using a test data set of fully known losses reported by insurance companies

from across the country. The techniques discussed in this thesis all use a development factor to

estimate each subsequent year’s losses. Discussion of these techniques as well as comparison between

1



them using the test data set follows. Ultimately, the best of these techniques will be applied to a

single triangle from an actual insurance company, and the estimated losses are discussed.
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2. LITERATURE REVIEW

The most basic forms of predicting claim amounts are deterministic, requiring decisions by

a person based on experience or expert knowledge to apply the techniques to a triangle of loss data

[15, Werner and Modlin 2010]. The resulting prediction’s uncertainty cannot be quantified in these

cases however. Often, even when applying stochastic methods, adjustments are made, possibly

violating assumptions of the stochastic method or invalidating the prediction obtained from the

stochastic method [14, Verall 2004].

The most commonly used method in loss reserving is the chain ladder method. The chain

ladder method is a distribution-free method, relieving some of the usual assumptions common to

most modelling techniques. This method is used by formulating a common ratio of losses between

subsequent development years [7, Mack 1993]. The only assumption in the chain ladder method

is that subsequent claim years are independent [15, Wuthrich and Merz 2008]. Some variations

on the basic chain ladder method [9, Quarg and Mack 2004] can also be used to estimate other

values such as reserves and current excess reserves, as well as estimating the standard error of these

predictions [10, Schnieper 1991]. Calculating the standard error of the chain ladder method and

quantifying the uncertainty with these different variations in the chain ladder method is a helpful

way of evaluating the differences between the various methods [7, Mack 1993].

The distribution-free chain ladder method has underlying models that have been the subject

of more recent research. These newer models assume claim amounts follow a specific distribution

and can lead to the same estimates as the distribution-free chain ladder method. For example, a

Poisson model for claim counts can lead to the same expected number of claims as the distribution-

free chain ladder estimates [15, Wuthrich and Merz 2008]. Generalized linear models (GLM) have

been historically popular in the field of loss reserving, and the increased access to user-friendly

statistical software has further bolstered the popularity of methods using GLM [5, Haberman and

Renshaw 1996]. Extended Link Ratio techniques, including weighted least squares regression, have

been shown to be effective in handling various insurance lines of loss triangle data [1, Barnett and

Zehnwirth 2000].
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Some methods result in similar reserve estimates while having different theoretical basis.

The derived error of prediction of multiple methods is used for comparison [4, England and Verrall

2002], but little attention is paid to the actual future losses once they have developed, namely

because most papers use current data, and the true future losses are unknown.

Recent developments in the area of loss reserving have focused on how well the various

methods work on large volumes of data as well. Often different techniques work well on a single

triangle but are not adequate in large scale application. As a result, improving the model or

incorporating more information into the existing model has been proposed [8, Meyers 2012].

Incorporating the analysis of multiple methods and providing an estimate of future losses for

each accident year and thus incurred but not reported (IBNR) totals is often ignored in research of

new methods. Instead, current research focuses on the viability and theoretical basis of a single or

related methods while allowing that adjustments to the theoretical predictions will be made by an

actuary with expert knowledge of loss development and ultimate loss factors [4, England and Verrall

2002], rather than attempting to find a method that works well in a pre-determined insurance line.

This thesis focuses on using techniques based on fully known commercial auto liability loss data [3,

Casualty Actuarial Society] to compare the performance of the estimates, rather than allowing for

adjustments to be made post-prediction based on expert knowledge in the field of auto liability.

More recently, Bayesian inference has been used to fit a distribution to the data. These

techniques generate a conditional distribution on the known data, often through Markov Chain

Monte Carlo simulation, and attempt to explain the uncertainty of the future events. Bayesian

inference has been used in many types of actuarial problems, and is well suited in the model-based

predictions in this field [11, Scollnik 2001].

Other applications of Bayesian inference focus on the dependence between multiple lines

of insurance for a company. This multivariate approach analyzes not just corresponding cells in

different triangles, but also the year to year factors related to policy shifts [12, Shi, Basu, and

Meyers 2012].

Bayesian techniques can also be applied with general linear mixed models to model out-

standing claim counts and amounts. These techniques are applied to data of individual claims and

discard the triangular data frame when individual claim amounts are available. These models

4



require much more data concerning the losses from a line of insurance than more conventional

methods [6, Jemilohun, Lawl, and Adebara 2013].

While the theoretical derivation of newer and possibly improved techniques is necessary in

any field, the application of existing techniques in practice and analysis of the results will show

how current methods compare. Ultimately any technique used to forecast necessary reserves will

be judged on the accuracy of predictions once the losses are known. That is the aim of this thesis,

to apply these methods to a data set of known losses and assesses the accuracy of the resulting

estimates.
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3. LOSS TRIANGLES

Insurance claims are rarely settled immediately or totally. There is often a lag between a

claim and the ultimate development of the payment on the claim. This lag can arise from a number

of factors such as continued medical bills or salvage recouped from a car after any investigation

is completed. Furthermore, the lag can vary greatly for different lines of insurance. An actuary’s

job is to identify and estimate these developing claims and ensure enough reserves are available for

possible future losses from the current accident year’s premiums.

These developing losses naturally form an upper left hand triangle of cumulative incurred

claims. Table 3.1 is a simple triangle created to familiarize the reader with the format of the data

in this thesis. Each row has one less entry than the previous accident year because the claims have

had one less year to develop. The columns correspond to development periods, which in this thesis

are always years. However, these periods can vary, and are not always full years.

Table 3.1: A theoretical loss triangle

Development Year

Accident Year 1 2 3 4 5

1991 C1,1 C1,2 C1,3 C1,4 C1,5

1992 C2,1 C2,2 C2,3 C2,4

1993 C3,1 C3,2 C3,3

1994 C4,1 C4,2

1995 C5,1

Ci,j denotes cumulative losses from year i at development period j

As these claims develop, a new entry is added to all rows each calendar year. It is necessary

to keep claims from different accident years separate to avoid subsidizing from premiums other than

the year in which the accident occurred. The simplest method of estimating these future losses,

and through them the ultimate losses, uses some information on the ratios from year to year.

Equation 3.1 shows how each ratio, rij , is calculated from a triangle of known losses (Table 3.2).

Each rij is the cumulative losses in year i at development period j. An actuary will pick an

appropriate ratio, either one from the known data or some approximation he/she deems sufficient

6



to cover the current exposure from that line [15, Werner and Modlin 2010]. Table 3.3 contains the

development ratios by accident and development year for this simple triangle.

ri,j =
Ci,j+1

Ci,j
i = 1:4, j = 1:4 (3.1)

Here the actuary could pick the median ratio, the largest ratio, or any combination of these

ratios from each development period. This license with the ultimate reserve forecast is necessary, as

an actuary must identify years that do not fit a pattern and should therefore be handled carefully

when estimating these reserves. An actuary has expert knowledge of the way these losses can

develop as well as access to information surrounding these losses, such as policy or weather behavior

associated with an accident year. Shock losses can occur when an unfortunate set of circumstances

lead to an inflated number or size of claims. A hail storm can lead to a drastic spike in auto claims,

while a severe drought can lead to low yields in agriculture and result in large crop insurance claims.

The year to year factors vary heavily, but these shock losses can lead to over-cautious reserves if

an actuary does not identify the circumstances surrounding the spike in losses.

Table 3.2: A simple loss triangle

Development Year

Accident Year 1 2 3 4 5

1991 400 700 850 930 1000
1992 480 790 1000 1140
1993 500 950 1190
1994 570 1050
1995 600

Table 3.3: Ratios of losses of the simple example triangle

Development Period

Accident Year 1 2 3 4

1991 1.75 1.21 1.09 1.08
1992 1.65 1.27 1.14
1993 1.9 1.25
1994 1.84
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An estimation of future losses are represented in Table 3.4.

Table 3.4: Predicted future losses

Development Year

Accident Year 1 2 3 4 5

1991 400 700 850 930 1000
1992 480 790 1000 1140 1231
1993 500 950 1190 1356 1465
1994 570 1050 1313 1496 1616
1995 600 1104 1380 1573 1699

Predicted future losses (italics) using the second largest ratio for each of the first two development
periods and the largest ratio for the last two development periods.

It is easy to see that C5,2 = r5,2 ∗ C5,1 = 1.84 ∗ 600 = 1104. Similarly, the rest of the

future losses can be filled in, working from left to right across each row. These figures have little

theoretical basis however, and rely more on an actuary’s intuition and experience. In an effort to

reduce this subjective aspect and the unquantified variability therein, a chain ladder method was

proposed by Thomas Mack [7, Mack 1993]. A data set that will be used to demonstrate the various

methods is introduced in the following section.
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4. THE CHAIN LADDER METHOD AND LEAST SQUARES

REGRESSION

4.1. Mack’s Method

Mack proposed using a common ratio between development years to predict losses [7, Mack

1993]. In general this is referred to as the chain ladder method, with Mack’s Method also providing a

formula for the standard error of the predictions. There are three underlying assumptions of Mack’s

Method; 1) independence of accident years, 2) independence of development factors, and 3) the

variance of a prediction, Ci,k+1 is inversely proportional to the previous development period’s losses,

Ci,k. The Mack Method estimates a development factor for each development year. Similar to the

first method introduced, to obtain an estimate of the future losses, the most recently developed

year must simply be multiplied by a development factor to obtain the losses of the next year. This

can be extended to fill in all missing entries in a loss triangle. Equation 4.1 shows how we can

estimate a future loss, Ci,k+1, using known losses, Ci,k, and a development factor, fk.

Ci,k+1 = Ci,k ∗ fk (4.1)

To calculate these development factors using Mack’s Method, we sum the losses from sub-

sequent years and find the overall ratio (Equation 4.2). We use Equation 4.2 with the cumulative

triangle entries of Table 4.1 to calculate these development factors.

Table 4.1: A simple loss triangle

Development Year

Accident Year 1 2 3 4 5

1991 400 700 850 930 1000
1992 480 790 1000 1140
1993 500 950 1190
1994 570 1050
1995 600

9



fk =

∑n−k
i=1 Ci,k+1∑n−k
i=1 Ci,k

for k=1:4 and n=5 (4.2)

We see the first development factor, f1 = 700+790+950+1050
400+480+500+570 = 3490

1950 = 1.79. Continuing with

Equation 4.2, all four development factors for this triangle are calculated, with the final results

shown in Table 4.2.

Table 4.2: Development factors

f1 = 1.79 f2 = 1.25 f3 = 1.12 f4 = 1.08

All future losses can be estimated using these four development factors and Equation 4.1.

Table 4.3 shows all future losses estimated using Mack’s Method.

Table 4.3: Estimation of future losses with Mack’s Method

Development Year

Accident Year 1 2 3 4 5

1991
1992 1231.2
1993 1332.8 1439.4
1994 1312.5 1470 1587.6
1995 1074 1342.5 1503.6 1392.2

From these estimations, the ultimate losses can be estimated for each accident year, assum-

ing the losses fully develop over five years. The ultimate losses are the final cumulative entry from

development year 5 in the triangle. Most triangles take longer than 5 years to develop. Table 4.4

is a 10 by 10 triangle of losses that demonstrates a longer development of losses [13, R Core Team

2013] using Mack’s Method.

The losses might still not be fully developed, since the final development factor is still not

1.000. It is however much closer than with the smaller 5 by 5 triangle (Table 4.1). An actuary

could include a tail factor to account for any future losses past a triangle’s development years. Tail

factors are ignored in this thesis, and final year losses are considered ultimate losses.

10



Mack’s Method is but one way to predict these unknown future losses. In the following

section least squares regression is introduced to obtain predictions of future losses.

Table 4.4: A triangle from the Chain Ladder Package [13, R Core Team 2013]

Development Year

Accident Year 1 2 3 4 5 6 7 8 9 10

1991 5012 8296 10907 11805 13539 16181 18009 18608 18662 18834
1992 106 4285 5396 10666 13782 15599 15496 16169 16704 16858.0
1993 3410 8992 13873 16141 18735 22214 22863 22466 23863.4 24083.4
1994 5655 11555 15766 21266 23425 26803 27067 27967.3 28441.0 28703.1
1995 1092 9565 15836 22169 25955 26180 27277.9 28185.2 28662.6 28926.7
1996 1513 6445 11702 12935 15852 17649.4 18389.5 19001.2 19323.0 19501.1
1997 557 4020 10946 12314 14428.0 16063.9 16737.6 17294.3 17587.2 17749.3
1998 1351 6947 13112 16663.9 19524.7 21738.5 22650.1 23403.5 23799.8 24019.2
1999 3133 5395 8758.9 11131.6 13042.6 14521.4 15130.4 15633.7 15898.5 16045.0
2000 2063 6187.7 10045.8 12767.13 14958.9 16655.0 17353.5 17930.7 18234.4 18402.4

Estimated losses in italics.

4.2. Weighted Least Squares Regression

Least squares regression describes a relationship between a response and a predictor variable.

The simple case of a slope only model, where data is fit to the equation y = β1 ∗ x + ε will be

evaluated. Here y is the response or dependent variable, the next year’s claim amount. The

predictor or independent variable is x, the observed claim amount for the most recent year. The

slope of the line through the origin that best connects x and y is represented by β1 and is referred

to as the development factor. The error term is ε. An intercept can be included, β0, but is assumed

to be zero in the slope only model.

In theory, all accident years are independent, all development periods are independent, and

the error term, ε, is normally distributed with mean 0 and constant variance, σ2, that is ε∼N(0, σ2).

These assumptions are often violated in an applied setting however. The development years are

not independent, because we may be modeling claims that are developing over multiple years. The

accident years are also not necessarily independent, since roughly the same cohort of people are

insured from year to year, possibly having accidents and incurring claims in multiple years. There

is no simple fix for either of these violated assumptions.
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Heteroscedasticity is the increasing or decreasing variance of residuals as the fitted value or

independent variable increases. Heteroscedasticity thus violates the third underlying assumption

of constant variance of the error term in this model. The reason weighted least squares are used

in chain ladder modeling is to address the problem of heteroscedasticity. In a general case of a

least squares regression model, equal weights are assigned to all data points. Two other cases of

weights are considered and the results of the three techniques are compared when applied to a test

data set. To differentiate between the methods, equal weights will be called ordinary least squares

(denoted OLS). The other two cases will consider weights 1
xi

(called the classical ratio estimator

and denoted CRE (Knaub 2005)) and 1
xi2

(denoted Method 3) . It should be noted that in these

models, the β1 parameter can be referred to as the slope parameter or development factor. The

CRE method decreases the variance as the fitted values increase by decreasing the weight of the

larger observations, and Method 3 decreases the variance more drastically. Figure 4.1 shows an

example of this heteroscedasticity and the changing trends in residual variance as different weights

are used. These graphs show only one development period from one triangle from the data from the

National Association of Insurance Commissioners (NAIC), as this is a triangle-by-triangle problem

that varies for each triangle analyzed. Some triangles might not exhibit heteroscedasticity when

using the OLS method. The CRE method could adequately fix the heteroscedasticity, and method

3 might over-correct the problem, creating a decreasing trend in the variance of the residuals.

To obtain an estimate of β1 a function of the residuals, F =
∑
wi(yi − (β̂1xi))

2 is minimized

for i = 1, . . . , n. This function represents the deviance from the observations, yi and the value of

the line fit to the data, ŷi. Each wi represents the weight associated with the ith observation. To

minimize the function F and thus minimize the deviance, the derivative of F is taken with respect

to β1 to obtain an explicit equation for parameter estimates of F when the derivative is set equal

to zero, as follows:

δF

δβ1
=

∑
xiwi(yi − (β̂1xi)) = 0.

12



Figure 4.1: An example showing how heteroscedasticity can be addressed

Solving this equation for β̂1, the weighted least square estimate of the slope parameter is

obtained:

β̂1 =

∑
wixiyi∑
wix2

i

. (4.3)

Recall the three cases of weights introduced at the beginning of this section. For each

weight, a new estimate is obtained by inserting different values for wi into Equation 4.3, resulting

in three estimates of β̂1 as

OLS: β̂1 =

∑
xiyi∑
x2
i

CRE: β̂1 =

∑
yi∑
xi

Method 3: β̂1 =

∑ yi
xi

n
.

To obtain development factor β̂i, x will be the jth column, and y will be the (j + 1)th

column. The CRE formula for β̂1 corresponds to the development factor from Mack’s Method
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(Equation 4.2) where the notation C.,k = x and C.,k+1 = y. The three cases of weighted least

squares are used to reference the different methods in the rest of this thesis.
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5. NAIC DATA ANALYSIS

5.1. Data Introduction

Data used in this thesis are extracted from 78 triangles for Commercial Auto Liability,

provided by the National Association of Insurance Commissioners (NAIC) as being available on

Casualty Actuarial Society (CAS) webpage (www.casorg.com). The NAIC is the national regulatory

body system for the United State insurance market consisted of the chief insurance regulators from

the 50 states, the District of Columbia and five U.S territories. The members of NAIC, elected or

appointed state government officials along with their state insurance department and stuff, regulate

the conduct insurance companies and agents in their respective state. For example, in state of North

Dakota, the Department of Insurance is located in Bismarck and insurance companies operating in

the state must have their rate filings and underwriting policies reviewed and approved by the State

Department before the implementation.

The mission of NAIC is to assist state insurance regulators in supporting and improving

state regulation of insurance as well as to serve public interest in achieving the fundamental in-

surance regulatory goals such as protecting public interest, promote competitive markets, facilitate

fair and equitable treatment of insurance consumers, promote reliability, solvency of insurance

companies.

All insurance companies are required by law to file quarterly and annual financial statement

to NAIC. Annual statements are reported in spring of each calendar year and they include a book

full of different exhibits some with multiple parts from income statement, cash flow, underwriting

and investment exhibits, exhibits of premium and losses, reinsurance exhibits (Schedule F), analysis

of losses and loss expenses by line of business (Schedule P), exhibits on premium written (Schedule

T), investment exhibits (Schedule D), etc.

The NAIC loss triangles provided on CAS webpage were extracted from Schedule P of the

Annual Statement of 158 companies. Schedule P reports Analysis of Losses and Loss Expenses.

Glenn G. Meyer, PhD, FCAS and Peng Shi, PhD, ASA coordinated a project between CAS and

NAIC with a goal to make loss triangles data available to all interested researchers for purpose of

testing various methods for estimating the Incurred But Not Reported (IBNR) losses.
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The Schedule P data provided by NAIC include: name and group code of each NAIC insur-

ance company organized, accident year, development year, bulk loss, incurred paid loss, cumulative

incurred losses, cumulative paid losses, and posted reserves as of 1997.

The data used in this thesis include cumulative paid losses from Schedule P for 78 out of 158

companies in period 1988-1997 (ten development years) . The triangles showing negative or zero

losses are disregarded from the analysis. In addition to the upper triangles, this data also includes

the lower triangles. For example, the data from accident year 1989 was pulled from Schedule P of

year 1998, the data from accident year 1990 was pulled from Schedule P of year 1999, . . . .. . . ., the

data for accident year 1997 was pulled from Schedule P of year 2006. Hence the lower triangles can

be used for purpose of model validation. Extensive data validation and quality control measures

were performed by project coordinators to insure reliability and quality of the data.

As part of this thesis, several R functions are built to pull together a large volume of data

from Schedule P and construct individual loss triangles for 78 NAIC companies. The CAS website

provides some R code to summarize these triangles [3, Casualty Actuarial Society], subsidized with

my own code to manipulate the data into the triangle format used in this thesis. The code is

available per request.

5.2. Assessing Accuracy of IBNR Totals for NAIC Data

From the NAIC database, 78 triangles from different companies were selected from the

commercial auto liability line of insurance. The bottom right triangle of losses in these full matrixes

are censored to obtain upper left triangles of losses because all losses are known. Then the three

techniques are applied and the resulting estimates are compared against the true losses censored

from the original matrix. An example of one of these fully known loss triangles is found in Table 5.1.

In much of the analysis, ratios of observed to expected losses are used to account for the

different orders of magnitude of the different triangles. Some triangles have losses that range from

10-60, while others have losses in the order of 20,000. This could be the result of clerical policies,

reporting losses in the hundreds or thousands, or it could be a result of the companies being different

sizes and having different levels of exposure. Comparing the difference between the estimates and

the true values is not as meaningful as comparing the ratios because of this discrepancy.

16



Table 5.1: One NAIC triangle of fully known losses

Development Year

Accident Year 1 2 3 4 5 6 7 8 9 10

1988 952 1529 2813 3647 3724 3832 3899 3907 3911 3912
1989 849 1564 2202 2432 2468 2487 2513 2526 2531 2527
1990 983 2211 2830 3832 4039 4065 4102 4155 4268 4274
1991 1657 2685 3169 3600 3900 4320 4332 4338 4341 4341
1992 932 1940 2626 3332 3368 3491 3531 3540 3540 3583
1993 1162 2402 2799 2996 3034 3042 3230 3238 3241 3268
1994 1478 2980 3945 4714 5462 5680 5682 5683 5684 5684
1995 1240 2080 2607 3080 3678 4116 4117 4125 4128 4128
1996 1326 2412 3367 3843 3965 4127 4133 4141 4142 4144
1997 1413 2683 3173 3674 3805 4005 4020 4095 4132 4139

First, the three methods are applied to the NAIC upper left triangles, to ensure adequate

fits by analyzing the residuals. Standardized residuals were calculated on the upper left of all

NAIC triangles on the elements used in the weighted least squares regression. This means there are

nine residuals for the first development period, eight residuals for the second, and so on. Figure 5.1

shows the standardized residuals plotted by development period. Since these techniques are applied

to 78 triangles, and each triangle has 44 standardized residuals, we have a total of 78 ∗ 44 = 3432

residuals plotted on each graph. Almost all residuals have magnitude less than 2.

Investigation into the standardized residuals that were greater than 2 reveals where the ma-

jority of these outliers originate. Table 5.2 shows one NAIC triangle and Table 5.3 the standardized

residuals of the same triangle.

Before looking at these residuals, it is apparent that the first two accident years have losses

that are an order of magnitude larger than the subsequent eight years. If an actuary were trying

to estimate necessary reserves for this company, he/she would need to investigate why the losses

were so much higher in the first two years. There could have been a policy shift or the lines of

insurance could have been re-categorized and resulted in losses being reported through different

lines of insurance, or the company might have reduced their exposure to account for losses one

tenth or less in the last eight years of the loss triangle. In this case, the residuals were calculated

with the OLS method, using equal weights. This is just one example of a triangle with standardized
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residuals that could indicate outliers. The OLS method was used for this example because it

performs poorly and has the most residuals that require inspection with this data.

Figure 5.1: Residual plots of NAIC triangles using all three methods

The number of points to model decrease as we move left to right across these triangles.

With nine points, the first development period has the most residuals to study, and even these

nine do not reveal which method is the best to use in each case. The example from Figure 4.1,

page 13, only graphed the first two columns from one triangle, to illustrate a case where it was easy

to see the problem of heteroscedasticity and the improvement when different weights were used.

Analyzing the residuals has shown us that these methods all seem to be reasonable, while selecting

the method that yields homoscedastic residuals improves the validity of our model by satisfying an

underlying assumption.

It is important to analyze the predictions and compare them to the known values from the

lower right triangles with the NAIC data. Weighted least squares regression provides the equation

of a line that is the expected mean of the losses of the next development period. Because the full
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Table 5.2: An NAIC triangle with residuals of magnitude greater than 2

Development Year

Accident Year 1 2 3 4 5 6 7 8 9 10

1988 128 229 269 308 342 368 391 400 426 432
1989 170 285 323 355 368 396 406 420 420
1990 10 31 41 60 61 60 60 60
1991 11 12 13 26 26 26 26
1992 7 11 11 11 11 11
1993 11 16 17 17 17
1994 10 15 17 17
1995 15 35 40
1996 11 29
1997 26

Table 5.3: OLS standardized residuals from one NAIC triangle with residuals of magnitude greater
than 2

Development Year

Accident Year 1 2 3 4 5 6 7 8 9 10

1988 - 1.25 2.00 0.97 2.23 0.24 1.71 -1.17 1 -
1989 - -1.52 -2.14 -1.32 -2.08 0.29 -1.60 1.31 -1
1990 - 1.63 1.51 1.66 -0.39 -1.87 -0.42 -0.67
1991 - -0.82 -0.23 1.35 -0.22 -0.65 -0.18
1992 - -0.13 -0.47 -0.16 -0.09 -0.27
1993 - -0.35 -0.40 -0.24 -0.15
1994 - -0.26 -0.07 -0.24
1995 - 1.09 -0.07
1996 - 1.19
1997 -

losses from the NAIC data are available, it is possible to assess how these predictions are performing

by creating a ratio of the observed losses to the predicted losses. A ratio is used to standardize the

error of the predictions, as the order of magnitude of the NAIC triangles varies greatly. If the ratio

of observed over predicted losses is greater than one, the observed losses exceeded the predicted

losses and therefor the prediction was inadequate. If the ratio is less than one, the prediction was

conservative. The expectation is that these ratios will be evenly split, roughly half greater than

one and half less than one. However, it is important to note that in application, it wouldn’t be

prudent to only predict adequate reserves half of the time. At this point however the focus is only

with the accuracy of the predictions.
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Figure 5.2, Figure 5.3, and Figure 5.4 show ratios of observed over expected losses for all

three methods from the NAIC data, sorted by calendar year. The first calendar year, when x = 1

on the graph, represents the losses that will manifest next year. A lower right to upper left diagonal

is added each additional year’s losses are reported.

Figure 5.2: Ratios of observed over expected losses by calendar year of all NAIC data; CRE method

The losses corresponding to the first calendar year of losses are from cells [10,2], [9,3], [8,4],

. . . , [2,10]; one off the diagonal. The second development year corresponds to the next off-diagonal,

consisting of cells [10,3], [9,4], . . . , [3,10]. Table 5.4 shows a triangle of ratios with the first and the

fourth calendar year diagonals bold to illustrate how the calendar year losses are found.

From Figure 5.2, the variance of the ratios increases as the calendar year increases. This

follows because the second calendar year prediction is using a prediction from the first calendar

year as a basis for the second year estimation. Each calendar year adds another source of error,

therefore increasing the overall error with each subsequent prediction. These ratios are quite close

however, and the first three calendar years are quite well predicted in the vast majority of these

NAIC triangles.
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Figure 5.3: Ratios of observed over expected losses by calendar year of all NAIC data; OLS method

Comparing the ratios from the three methods, we see from Figure 5.2, Figure 5.3, and

Figure 5.4 that the CRE method seems to have the best ratios of these three methods because of

its smaller variance and predictions centered around one. The OLS method has the largest and

most frequently outlying ratios, implying the OLS method had the most under-predicted losses.

The difference between the CRE method and Method 3 is small, but the CRE method has shorter

intervals in the later calendar years, implying more stable predictions when comparing them to the

observed losses.

Ultimate losses are also important to gauge. It is important to estimate each yearly loss

from each accident year, but the accuracy of our predictions can be summarized by looking at

fully developed losses (development year 10). Figure 5.5 shows a boxplot of the ratio of ultimate

observed losses and ultimate predicted losses by accident year. Each accident year has one less year

of known losses and one more year of predictions which explains the increase in variance of the

observed/expected loss ratio. Figure 5.5, Figure 5.6, and Figure 5.7 show box plots of these ultimate

observed losses over ultimate predicted losses sorted by accident year for the three methods. The

OLS method is performing the worst, the CRE method is the most accurate, and Method 3 has
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more over-predictions, implying Method 3 has more conservative estimates of ultimate losses for

each accident year than the other two methods.

Figure 5.4: Ratios of observed over expected losses by calendar year of all NAIC data; Method 3

When looking at the ratios, the extremely large and small values merit a closer look. The

largest ratios, the ratios over 2, were only present in two of the 78 triangles. They were caused

by shock losses in the lower right triangle, in triangles that were almost fully developed after two

or three years. Since the triangle was almost fully developed, a shock loss means all subsequent

predictions will be low, because the triangles are cumulative. The ratios less than .5 were also

from a single accident and development year of losses that were surprisingly low (the opposite of a

shock loss, although there is no conventional term for that). Each subsequent loss is then affected,

creating a row of ratios that are low. The extreme ratios almost exclusively occur in the last two

accident years, where only one or two years of developed losses are known.
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Table 5.4: Ratios of observed over expected losses

Development Year

Accident Year 1 2 3 4 5 6 7 8 9 10

1988 1 1 1 1 1 1 1 1 1 1
1989 1 1 1 1 1 1 1 1 1 1.000
1990 1 1 1 1 1 1 1 1 1.000 1.000
1991 1 1 1 1 1 1 1 1.002 1.002 1.002
1992 1 1 1 1 1 1 1.000 1.002 1.002 1.002
1993 1 1 1 1 1 1.008 1.215 1.220 1.220 1.220
1994 1 1 1 1 0.948 0.948 0.948 0.953 0.953 0.953
1995 1 1 1 0.787 0.776 0.776 0.776 0.777 0.777 0.777
1996 1 1 1.227 1.011 1.024 1.024 1.024 1.035 1.035 1.035
1997 1 1.068 0.937 0.847 0.825 0.825 0.825 0.827 0.827 0.827

Calendar years 1 and 4 diagonals bold.

Figure 5.5: Ratios of observed over expected ultimate losses by accident year of all NAIC data;
CRE method
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Figure 5.6: Ratios of observed over expected ultimate losses by accident year of all NAIC data;
OLS method

Figure 5.7: Ratios of observed over expected ultimate losses by accident year of all NAIC data;
Method 3
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5.3. IBNR Totals

Estimating the incurred but not reported losses (IBNR) for each calendar year and the total

incurred but not reported outstanding claims for a particular line of insurance allows an actuary to

make recommendations for appropriate rates. Table 5.5 shows an example of how IBNR projections

are calculated. The last known loss from an accident year is subtracted from the projected ultimate

losses and the total is the IBNR losses from that accident year. The first accident year has zero

IBNR losses, since it is assumed the losses are fully developed after ten years. The second accident

year on the triangle, 1989, has 0.65 IBNR losses. Since the losses in the tenth development year

are unknown, they must be estimated. Using the CRE method, ultimate losses are predicted to

be 2531.65. Since the triangles are cumulative, subtraction yields the value 0.65 as the yet to

be reported losses in the tenth development year. As the accident year increases, more years are

unknown, resulting in higher IBNR values each year. The total IBNR from this triangle is found

by summing all ten individual accident year IBNR values. Summing the last column of Table 5.5,

the total IBNR for this line of insurance is 6576.44. Looking at the cumulative losses both known

and projected ultimate losses, 6576.44 is a large sum of future losses for this insurance company

to pay out. The IBNR total is larger than any single year’s ultimate losses. The importance of

accurate reserving is apparent when comparing this total IBNR to the losses of any accident year. A

company with inadequate reserves could unknowingly be subsidizing past years’ losses with current

premiums.

Table 5.5: An example of IBNR totals

Development Year

Accident Year 1 2 3 4 5 6 7 8 9 10 Projected Ultimate Losses IBNR

1988 952 152928133647372438323899390739113912 3912 0
1989 849 15642202243224682487251325262531 2531.65 0.65
1990 983 2211283038324039406541024155 4161.88 6.88
1991 1657268531693600390043204332 4369.71 37.71
1992 932 19402626333233683491 3555.40 64.40
1993 11622402279929963034 3212.87 178.87
1994 1478298039454714 5166.53 452.53
1995 124020802607 3441.64 834.64
1996 13262412 4209.55 1797.55
1997 1413 4616.22 3203.22

Calculated using the CRE method.
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Since the total losses are known, the projected IBNR total and the actual IBNR total

can be compared. From the corresponding full NAIC triangle, the total IBNR was actually 7399.

Subtracting the projected total from the known total, 7399−6576.44 = 822.56, the estimated IBNR

was 822.56 lower than the actual IBNR value, implying the total was underestimated. Figure 5.8

is a box plot of these differences on all 78 analyzed NAIC triangles.

Figure 5.8: Observed-Expected IBNR totals for all NAIC triangles; CRE method

Almost all these ratios fall within the 1.5 IQR whiskers in the box plot graph. Inspection

of the largest ratio, 5.84, revealed the triangle had three accident years that were an order of

magnitude larger than the other seven, and further, those accident years were all within the lower

half of the triangle. These losses were similar to the outliers described earlier in the analysis, and

again present a case where the actuary would need to take note of the erratic behavior of the losses

and investigate the cause before deciding how to handle them. As a company grows the volume

of losses would naturally increase as exposure increases, which is another possible cause of larger

values occurring in the latest accident years of this triangle and would also require special handling.
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6. OUTLIERS

Closer inspection of the largest and smallest of the IBNR total ratios in Figure 5.8 is war-

ranted. The five largest and five smallest IBNR ratios were analyzed, as well as five triangles with

ratios about the median. Visual inspection of graphs of development year one versus development

year two, two vs three, and three vs four yielded no clear trends or distinction between the lowest

five, the highest five, or the middle five. Two techniques were used to try to obtain better estimates

on the triangles of extreme ratios, the nearest neighbor method and mixtures of regression.

If it is possible to improve the earlier calendar year predictions, especially in the later

accident years, the compounding of the error will be reduced. The nearest-neighbor grouping

technique and a mixture of regression used in the first two to three development periods could

possibly improve predictions in the latest three accident years for the first three development years

(improving predictions from cells [10,2-4], [9,3-4], and [8,4]) and thus improve predictions all through

the last three accident years (the years in which the most predictions and thus the largest IBNR

contributions originate). Explanations and examples of each of these procedures follow.

6.1. Nearest Neighbor Method

The nearest neighbor grouping technique can be used to find the best weight to use with

weighted linear regression when modeling heteroscedastic small data sets [15, Wuthrich and Merz

2008]. It uses natural breaks in the independent variable to group observations. For the first

development period on a triangle, there are nine pairs of points to model. With the nearest

neighbor technique, the OLS method is used to calculate residuals for each fitted value. These

residuals are then plotted against the indepentend variable, and the observations are grouped.

The purpose is to find a weight that will make the variances of each neighborhood of residuals

approximately equal. The weight may differ and often does differ between development periods in

this technique. Since the number of points decreases, this technique is only applied to the first three

development periods on a triangle, hopefully improving the early predictions in the last accident

years, as described above. The following example explains the procedure.

Table 6.1 shows the values of x and residuals of the first development period of one NAIC

triangle, sorted by increasing x value. These are graphed in Figure 6.1. The residuals clearly
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exhibit increasing variance as the independent variable increases, implying weighted least squares

could possibly fix this heteroscedasticity.

Next, the independent variable must be separated into groups, ideally of similar sizes,

creating neighborhoods of x. Consider grouping the four smallest values and the five largest values

of x. Then, the mean of each group of x is calculated, as well as the variance of the residuals of each

group. Here x̄1 = 6428, x̄2 = 11700, s2
1 = 1339881, and s2

2 = 4764481. To identify the appropriate

weights to use, the quantities
s21

f(x̄1) and
s22

f(x̄2) must be equal for some function of the mean of each

group. The functions considered are the mean of each group raised to different exponents. In

this thesis, the different functions the mean considered are f(x̄) = x̄i for i = 0, 0.25, 0.5, 0.75, . . . 4.

Solving the equality
s21

f(x̄1) =
s22

f(x̄2) results in
s21f(x̄2)

s22f(x̄1)
= 1 or

s22f(x̄1)

s21f(x̄2)
= 1.

Table 6.1: The independent variable and corresponding residuals

x 4381 5456 7083 8793 9586 9800 11618 12402 15095

Residual 825 -919 1183 1773 -689 -1803 -717 3350 -2087

One of these quantities will have a positive slope and the other will have a negative slope.

Considering these reciprocals, max(
s21f(x̄2)

s22f(x̄1)
,
s22f(x̄1)

s21f(x̄2)
) will always be greater than or equal to one. The

minimum value will be one and that value of i is the appropriate weight to use. Figure 6.2 graphs

the ratio versus the values of i considered. This ratio will be 1 when they are equal and greater

than 1 when they are not equal. The graph clearly shows when the ratio approaches 1.

Weighted linear regression is then performed with weights equal to 1
xi

, for each development

period’s respective “best weight”. For this triangle the suggested weights correspond to 1
x2

in the

first development period, 1 in the second development period, and 1
x in the third development

period. After the third development period, the CRE method is applied, because it was shown to

have the most accurate predictions among the three methods considered. Total IBNR losses are

then obtained once the full triangle is predicted.

28



Figure 6.1: Residuals vs Independent Variable; Heteroscedastic

Figure 6.2: max(
s21f(x̄2)

s22f(x̄1)
,
s21f(x̄2)

s22f(x̄1)
) for different values of i
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6.2. Mixture of Regressions

The idea behind mixture of linear regressions is that the heterogeneity of data may be

associated with different sub-populations rather than a single population. For example, losses from

the same development year may be classified by small and large based on their policy structure and

size. Thus when analysing a trend in losses for two consecutive development years (by columns)

we may observe two distinct groups. In this case a k-component mixture of regression is tested to

determine if it provides a better model than a single component weighted-least square regression.

Suppose there are n independent pairs (xi, yi) of observations where yi is the response and

xi = (xi1, . . . , xip) is the vector of predictors for the ith observation for i = 1, . . . , n. Let X be the

matrix size n × p with rows corresponding vectors of predictors. Suppose that each observation

(xi, yi) belongs to one of k groups or components conditional on the membership of jth component

where j = 1, . . . , k. Now, the normal regression model can be used as

yi = xi
>βj + εi

where εi is normal random variable with mean zero and variance σ2 and βj is the p dimensional

vector of regression coefficients. Consider the mixture conditional distribution of yi|xi as

fθ(yi|xi) =
k∑
j=1

πjφ(yi|x>i βj , σ2
j )

where φ(.) is Gaussian density with mean x>i βj and variance σ2
j and θ = (π, (β1, σ

2
1), . . . , (βk, σ

2
k))

where π represents the vector of mixing probabilities. The goal is to estimate the parameter vector

θ̂. This is usually done using the expectation-maximization (EM) algorithm. In this study the

estimated parameters of the mixture model are obtained using R package ”mixtool” developed by

Benaglia et al. [13, R Core Team 2013] [2, Benaglia, Chauveau, Hunter, and Young 2009].

Once the mixture of regressions model is fit to the data, the BIC of the mixtures model

is then compared to the BIC from a single regression model. If the BIC is lower with the single

regression model, mixtures are disregarded as this is an indication that the single regression model

is a better fit for the data.
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It is important to note that due to limited number of observations in a loss triangle, the

mixture of regressions is used only for the early development periods. In this case a 2-component

model is tested. If a loss triangle contains 10 accident and development years, this model is

applicable only for the first 3 development years. Therefore, this methods may impact the first

two development factors. For larger size triangles, the mixture model can be applied up to a

development year that has minimum 8 accident years (observations).

When these techniques, the nearest neighbor method and mixtures of regression, were

performed on the triangles where the CRE method performed the worst as mentioned above,

there was no clear improvement of total IBNR estimation with either method. Table 6.2 includes

predictions for the worst ten triangles from the CRE predictions (the five highest and five lowest) as

well as the five median triangles, triangles with quite accurate predictions with the CRE method.

Predictions of total IBNR using all three weighted least squares methods, the nearest neighbor

method, as well as mixtures, are included for comparison. There was no distinction between the

different predictions on the extreme triangles, and since the considered triangles were already the

worst of the CRE predictions, this grouping technique offers no clear improvement on the considered

extreme triangles. However, it does show that the nearest neighbor method can improve the

predictions on triangles that the CRE method is already providing quite accurate predictions for.

Of the five median triangles where the CRE method was providing good predictions, the nearest

neighbor method improved four of the five predictions. The improvements were by 3%, 5%, 9%,

and 10%, all significant improvements since losses from a single accident year of a single line of

insurance can range well into the hundreds of thousands of dollars.

Inspection of the extreme triangles and the median triangles showed no clear patterns in

the data. Observing the full triangle of losses, it is quite apparent where the prediction and the

observed values differ. In most cases, one single cell within the lower three lines of the triangle

threw off the predictions for that entire accident year, resulting in one or two years of grossly under-

or over-predicted losses. Because these are future losses and are not known at the time of modeling,

they cannot be accounted for unless an actuary identifies conditions or circumstances that lead to

these unfavorable entries in the tables of losses. More detailed knowledge of where or how the losses

originate and thus develop would lead an actuary to possibly account for some of these shock losses

or unexpectedly low losses.
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Table 6.2: IBNR totals using five methods

IBNR Total

Triangle ID Actual OLS CRE Method 3 Nearest Neighbor Mixtures

72 291 960 1513 3105 1302
73 24 103 122 137 51 122
8 5269 14206 14676 15175 14143 11091
36 572 1232 1472 1935 1599 1412
49 309 636 676 710 619 940

51 1168 498 603 727 588 563
54 1946 918 1001 1109 946 1228
47 525 282 261 236 171 284
46 868 243 359 504 220 611
78 156 0 27 80 15

68 508 547 566 587 574
14 130681 143285 145287 147452 131129
3 89855 96194 99779 104225 94317
28 75433 83231 83577 83900 75111 84316
26 17432 19149 19304 19396 16348 18591

Most accurate prediction in each row bold.
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7. ESTIMATING AUTO LIABILITY IBNR LOSSES FOR A

SMALL INSURANCE COMPANY

The ultimate goal of this thesis is to provide predictions and recommendations for a line

of commercial auto liability insurance from a smaller Midwestern insurance company. Table 7.1

provides the triangle of cumulative losses obtained from this company. Of the five methods applied

to the 78 NAIC triangles, the CRE method was the most precise when predicting the unknown

values of losses as well as the total IBNR claims from the lower right triangle. The CRE is thus

applied to the real data, resulting in predictions of cumulative losses from each development year

and calendar year. Because the first year, 2003, has no losses, the ninth development factor cannot

be estimated, and thus the tenth column of losses cannot be projected. From Table 7.2, the seventh

and eighth development factors are 1, so the losses are assumed to be fully developed within this

triangle.

Table 7.1: Full triangle of a Midwestern insurance company’s losses

Development Year

Accident Year 1 2 3 4 5 6 7 8 9

2003 0 0 0 0 0 0 0 0 0
2004 5 16 16 16 16 16 16 16 16
2005 191 392 836 854 854 854 854 854 854
2006 157 192 192 197 202 204 212 212 212
2007 219 262 267 292 328 328 330 330 330
2008 167 219 723 935 1023 1024 1032 1032 1032
2009 209 779 770 770 813 814 821 821 821
2010 191 954 829 906 957 958 965 965 965
2011 90 94 121 133 140 140 141 141 141
2012 231 547 706 771 814 816 822 822 822

Predictions using the CRE method in italics.

Table 7.2: Development Factors for the Midwestern company’s losses

f1 = 2.366 f2 = 1.291 f3 = 1.093 f4 = 1.056 f5 = 1.001 f6 = 1.007 f7 = 1.000 f8 = 1.000

CRE method.
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The IBNR estimated total for the CRE method is 836.38. This is equivalent to a full

accident year of ultimate losses. The IBNR totals were also calculated with the OLS method

and Method 3, for comparison. The IBNR total from the OLS method was 678.39. Method 3

IBNR total was -3,159.62. This prediction from method three is quite different than the other

two, and indicates this triangle might need to be investigated by someone with expert knowledge.

Method 3 provided the least weight to large values and the most weight to relatively small values

in the triangle of the three methods, and with this triangle having quite varied entries, Method 3

might have inappropriate weights. After discussion of these results with experts from the company,

Method 3’s results would most likely be disregarded, and the CRE and OLS results would be taken

for further consideration.

Figure 7.1 displays standardized residual plots for all three methods. While the residuals do

not appear to have any extreme outliers, the residuals from Method 3 are skewed, as the positive

residuals are much larger than the negative residuals, likely because the larger losses were given

less weight in the model. This indicates again that Method 3 is probably not providing predictions

as accurate as the other two methods.

Now applied is the nearest neighbor method, which had better predictions than the CRE

method on triangles where the CRE method was providing good predictions already. There are no

apparent shock losses present in the upper triangle which is an indication that the CRE method

possibly would provide inaccurate predictions. This triangle of real data is therefore assumed to

have the “normal” structure that would result in reasonable CRE predictions, and these predictions

could possibly be improved with the nearest neighbor method.

Applying the nearest neighbor method to the first three development periods, the three

best weights for these development periods were 1
x4

, 1√
x
, and 1

x3.5
. Table 7.3 shows the predictions

using the nearest neighbor technique for the first three development periods and the CRE method

for the last five. The estimates are quite similar, and the total IBNR is 838.65, essentially the same

as with the CRE method.

Under the assumption that the CRE method is providing somewhat accurate predictions,

applying the nearest neighbor method resulted in almost the same predicted values. This suggests

the triangle seems to behave quite nicely. Inspection by an actuary would follow, as the Method 3

predictions were so different, before any final recommendations are made.
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Figure 7.1: Residual plots of the real losses using all three techniques

These results were presented to the company that provided the triangle of losses. In general,

this company uses Method 3 to calculate ultimate reserves and uses those ultimate reserves as a

starting point for further calculations. Method 3 provided the most conservative projections of the

methods used in this thesis. It is up to a company to decide if they want more conservative estimates

to prevent over-exposure or more aggressive estimates of reserves, enabling a better annual fiscal

report for the company. Regardless of company policy though, the ultimate losses developed in this

thesis would directly tie into the calculations for pricing, and are used in conjunction with triangles

of the number of claims from a line of insurance to determine the credibility of the triangle of

losses. If there are relatively few losses that result in large paid losses, the true ultimate losses

could be quite volatile. Again, this is where special handling of these losses and the projections

would especially come into play. The company consulted for this project prefers to over-project

losses so that losses are paid in full by the end of the year. Their goal is to avoid paying losses from

the previous year.

In 2003 the line of business was written through a partner company. Then in 2004 the

business was transferred. As the policies were renewed throughout 2004, the claims appeared in
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this line of losses. The experts from the company would either discount this year or modify their

estimates to reflect this transition period of these policies. Modeling this triangle without the year

2003 and 2004 losses would also be taken into account when doing further calculations and making

policy recommendations.

Table 7.3: Full triangle of a Midwestern insurance company’s losses

Development Year

Accident Year 1 2 3 4 5 6 7 8 9

2003 0 0 0 0 0 0 0 0 0
2004 5 16 16 16 16 16 16 16 16
2005 191 392 836 854 854 854 854 854 854
2006 157 192 192 197 202 204 212 212 212
2007 219 262 267 292 328 328 330 330 330
2008 167 219 723 935 1023 1024 1032 1032 1032
2009 209 779 770 770 813 814 821 821 821
2010 191 954 829 831 878 879 886 886 886
2011 90 94 111 111 117 117 118 118 118
2012 231 737 867 869 918 920 926 926 926

Predictions using the nearest neighbor method in italics.

Loss projections such as the ones developed in this thesis are submitted yearly to the

governing insurance agencies of every state. A certified actuary must sign off on this company’s

projections and provide a range of acceptable reserves for the company to hold each year. As this

actuary becomes more knowledgeable and comfortable with the company, the range may decrease,

but these acceptable reserves still are based on the development of triangles of losses similar to

the methods developed in this thesis. Tried and tested methods are preferred from both the

company’s and the external actuary’s standpoints, because the external actuary must sign off on

the projections. This results in the continued prevalence of older methods, while some of the more

recently developed Bayesian and distribution based methods are not utilized in practice.
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8. CONCLUSION

This thesis examined conventional methods and assessed their viability by testing them on

78 NAIC triangles of fully known losses available from the CAS website [3, Casualty Actuarial

Society]. Accurate predictions of ultimate losses as well as IBNR losses are important for insurance

companies to maintain competitive rates while avoiding over exposure. A deterministic method

was introduced as well as the chain ladder method, both of which are quite common in the insur-

ance industry as companies rely on an actuary’s expert knowledge to set appropriate reserves and

recognize patterns in the data. The company that provided the data for this thesis used ordinary

least squares regression to calculate predicted losses. Weighted least squares regression used a more

structured theoretical base for the prediction of losses, in an attempt to address concerns regarding

the underlying assumptions that are not always satisfied. For example, heteroscedasticity was a

common problem and using different weights was introduced as a way to satisfy the assumption

of constant variance of the residuals and possibly improve on the predictions when comparing the

estimations with the known losses in the NAIC data.

While weighted least squares worked well on many of the triangles, and the CRE method

was shown to be the most accurate of the three weighted least squares methods, none of the

techniques worked for all 78 triangles analyzed. Consequently, mixtures and the nearest neighbor

method were introduced to handle the IBNR predictions with the lowest accuracy. Mixtures were

used when comparison of BIC indicated that a mixture model fit the data better than a single

regression line, but the results were inconclusive. The nearest neighbor method utilized various

weights for each development period, rather than choose one weight for the entire triangle. Again,

the estimations for the extreme triangles were imprecise, and no improvement was noted. Of the

five median triangles, the most accurate estimates were obtained with the nearest neighbor method

in four of the five cases.

The CRE method and the nearest neighbor method were then applied to a triangle of

commercial auto liability losses from a smaller Midwestern insurance company. The resulting IBNR

predictions from the CRE method, the chosen best of the weighted least squares methods, and the

nearest neighbor method, a method that can refine already accurate predictions, were quite close,
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showing that the predicted future losses will total approximately an entire accident year’s worth

of losses. The ultimate losses and the subsequent IBNR prediction could provide a starting place

for an actuary from the company to set rates for future accident years. Experts from within the

company that provided the final triangle analyzed agreed that the predictions from the CRE and

nearest neighbor methods seemed reasonable and could be used with other factors when calculating

rates or influencing policy decisions.
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