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ABSTRACT 
Many real-world network data can be formulated as graphs, where a binary relation exists 

between nodes. One of the fundamental problems in network data analysis is community detection, 

clustering the nodes into different groups. Statistically, this problem can be formulated as 

hypothesis testing: under the null hypothesis, there is no community structure, while under the 

alternative hypothesis, community structure exists. One is of the method is to use the largest 

eigenvalues of the scaled adjacency matrix proposed by Bickel and Sarkar (2016), which works 

for dense graph. Another one is the subgraph counting method proposed by Gao and Lafferty 

(2017a), valid for sparse network. In this paper, firstly, we empirically study the BS or GL methods 

to see whether either of them works for moderately sparse network; secondly, we propose a 

subsampling method to reduce the computation of the BS method and run simulations to evaluate 

the performance. 
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1. INTRODUCTION 

Many real-world data can be formulated as graphs, where a binary relation (edge) exists 

between nodes. For example, in the Facebook, each user is a node and the friendship between two 

users form an edge; in the coauthored-ship data, each author of a paper is a node, and an edge 

exists between two authors if they coauthored one paper. These data are called network data and 

the analysis of these data is named the network data analysis. One of the fundamental questions is 

community detection, grouping the nodes into different clusters. In the literature, there are various 

algorithms that output the clusters given the network data as an input. However, one may wonder 

whether the output makes sense or not, that is, whether any community structure truly exists or 

not. Statistically, this is equivalent to testing the null hypothesis that there is no community 

structure against the alternative hypothesis that community structure exists. There are several 

statistical testing procedures proposed based on the sparsity of the network in the literatures 

(Bickel and Sarkar (2016); Gao and Lafferty (2017a); Zhao Levina and Zhu (2011)).  For example, 

the spectral method (BS) proposed by Bickel and Sarkar (2016) works for dense graph, while the 

subgraph-counting method (GL) proposed by Gao and Lafferty works for relatively sparse network 

(Gao and Lafferty (2017a), Gao and Lafferty (2017b)) and the likelihood-ratio type test proposed 

by Yuan, Feng and Shang (2019) is valid for the extremely sparse network. For moderately dense 

network, to our knowledge, there is no existing test procedures. In this paper, firstly, we 

empirically study the BS or GL methods to see whether either of them works for moderately dense 

network; secondly, we propose a subsampling method to reduce the computation of the BS method 

and run simulations to evaluate the performance.  
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The rest of the paper is organized as follows. In section 2, we briefly introduce the SBM 

models, the BS or GL methods, and present the subsampling method for BS test. In section 3, we 

present the simulation results, followed by a summary in section 4. 
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2. BACKGROUND 

The network data can be formulated as a graph. Let 𝐺𝑛 = (𝑉, 𝐸) be a graph with 𝑛 nodes, 

where 𝑉 is the vertex set and 𝐸 is the edge set. Let 𝐴 be the adjacency matrix, that is, 𝐴𝑖𝑗 = 1 if 

(ⅈ, 𝑗) is an edge, 𝐴𝑖𝑗 = 0, otherwise. In the research of network data, SBM is one of the most 

popular and tractable models, it plays an important role in providing a supporting ground to study 

many crucial problems, such as clustering and community detection (Amini, Chen and Bickel 

(2013); Amini and Levina (2018); Neeman and Netrapalli (2014); Sarkar and Bickel (2015); 

Bickel and Chen (2009); Zhao  Levina and Zhu (2012)) and the goodness-of-fit of SBMs (Bickel  

and Sarkar (2016); Lei (2016); Montanari and Sen (2016); Banerjee and Ma (2017); Banerjee 

(2018); Gao and Lafferty (2017a). Gao and Lafferty (2017b)) or various phase transition 

phenomena (Abbe (2017)). The SBM is defined as follows. Let 𝐺𝐾 (𝑛,
𝐵

𝑛
) be a SBM, where 𝐾 is 

the number of communities and 𝐵 is a 𝐾 × 𝐾 symmetric matrix with positive entries; let 𝑍 be a 

random uniform lable assignment taking value in {1,2, ⋯ , 𝐾}. given 𝑍,  the edge probability is 

defined as ℙ ( 𝐴𝑖𝑗= 1| Z) = 
𝐵𝑧𝑖𝑧𝑗

𝑛
 ; besides, 𝐴𝑖𝑗  are assumed to be conditionally independent. In this 

paper, we focus on the case where 𝐵11 =𝐵22  =𝑎 , 𝐵12 =𝐵21 =𝑏 . Here, 
𝑎

𝑛
 represents the within 

community probability and 
𝑏

𝑛
 is the between community probability.  And we assume 𝑎 > 𝑏, that 

is, edge density in intra-community is larger than inter-community. The 𝐸𝑟𝑑𝑜̈ − 𝑅é𝑛𝑦ⅈ model is 

a counterpart of SBM, where any two nodes are connected with probability 𝑝 . Note that 

the 𝐸𝑟𝑑𝑜̈ − 𝑅é𝑛𝑦ⅈ model only has one cluster. If the edge probability 𝑝 is a fixed constant, the 

network is said to be dense. If 𝑝 goes to zero at the order 
1

𝑛
, we say it is extremely sparse. When 

𝑝 =
𝑎𝑛

𝑛
 for some positive sequence 𝑎𝑛 of smaller order than 𝑛 but goes to infinity as 𝑛, we say the 

network is moderately sparse or dense.  
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In practice, the SBM may not be a good fit of the real data. For example, in the Facebook 

user data, each user may have different number of friends; in the coauthorship data, the number of 

coauthors a researcher may vary a lot. The degree-corrected SBM is one generalization of it. The 

advantage is that it allows for heterogeneity of degrees in the network. Let 𝑊𝑖(1 ≤ ⅈ ≤ 𝑛) be iid 

random variables with 𝐸𝑊2 = 1 and 𝑍𝑖~𝑈𝑛ⅈ𝑓𝑜𝑟𝑚([k]). In the degree-corrected stochastic block 

model, the adjacency matrix component  𝐴𝑖𝑗  | 𝜃𝑖𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙ⅈ(𝜃ⅈ𝑗) , where  𝜃𝑖𝑗 = 𝑊𝑖𝑊𝑗((𝑎 −

𝑏)𝐼[𝑧𝑖 = 𝑧𝑗] + 𝑏), where 𝑎 represents the within-cluster edge probability and 𝑏 is the between-

cluster edge probability. Conditional on 𝑊 and 𝑍 , 𝐴𝑖𝑗  are assumed to be independent. Note that if 

we take 𝑊𝑖 = 1, then the degree-corrected SBM is just the usual SBM. 

Whether community structure exists in a network can be formulated as the hypothesis 

problems: under the null hypothesis, the network is generated from the 𝐸𝑟𝑑𝑜̈ − 𝑅é𝑛𝑦ⅈ model, 

while under the alternative hypothesis, the network is generated from the corresponding SBM or 

degree-corrected SBM. There are several statistical testing procedures proposed based on the 

sparsity of the network in the literature. For dense network, Bickel and Sarkar (2016) proposed the 

spectral method (BS); for relatively sparse network, Gao and Lafferty(2017b) proposed the 

subgraph-counting method (GL). In the following, we introduce the two methods in detail. 

2.1. BS Test 

By using the largest eigenvalues of the scaled adjacency matrix, Bickel and Sarkar (2016) 

proposed a test statistic to test community structures. Let 𝐴 be the adjacency matrix of a network. 

Suppose that there are no self-loops, that is, 𝐴𝑖𝑖 = 0, ∀ⅈ. Under the 𝐸𝑟𝑑𝑜̈ − 𝑅é𝑛𝑦ⅈ model, define 

𝑃 as follows, 

𝑃 = 𝑛𝑝ⅇⅇ𝑇 – 𝑝𝐼, 
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where 𝑒  is a length 𝑛  vector with 𝑒𝑖 = 1/√𝑛  , ∀ⅈ , and 𝐼 is the 𝑛 × 𝑛  identity matrix. Then                            

we scale the 𝐴 as follows, 

𝐴̃′ =
𝐴−𝑃̂

√(𝑛−1)𝑝(1−𝑝)
 , 

where 𝑃̂ = 𝑛𝑝̂ⅇⅇ𝑇 − 𝑝̂𝐼,𝑝̂ =
𝛴𝐴𝑖𝑗

𝑛(𝑛−1)
. Let 

𝜃 = 𝑛
2
3(𝜆1(𝐴̃′) − 2) . 

Here, λ1 is the largest eigen-values of a matrix. Bickel and Sarkar get the following asymptotic 

distribution of 𝜃. 

2.1.1. Bickel and Sarkar (2016) 

Under the 𝐸𝑟𝑑𝑜̈ − 𝑅é𝑛𝑦ⅈ model, for fixed 𝑝 ,  𝜃 converges in distribution to the Tracy-

Widom law with index 1, 𝑇𝑊1. 

Based on Theorem 2.1.1, we reject the null hypothesis if 𝜃 > 𝑇𝑊1,1−𝛼,   where 𝑇𝑊1,1−𝛼 is 

the (1 − 𝛼)100% quantile. 

2.2. GL Test 

By using relations between the observed frequencies of small subgraphs, Gao and Lafferty 

proposed a subgraph counting method to test for the existence of communities (Gao and Lafferty 

(2017a)). Consider the population edge, vee, and triangle probabilities   

 𝐸 =  ℙ(𝐴12 = 1), 

𝑉 =  ℙ(𝐴12𝐴13 = 1), 

𝑇 =  ℙ(𝐴12𝐴13𝐴23 = 1). 

Under the degree-corrected SBM, direct computation yields 

𝑋𝑒𝑧 ≡ 𝑇 − (
𝑉

𝐸
)

3

=
(𝑘−1)(𝑎−𝑏)3

𝑘3  . 
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Clearly, a good property of this quantity is that it vanishes under the null hypothesis while 

it is not zero under the alternative hypothesis. Hence 𝑋𝑒𝑧  can be used to distinguish the null 

hypothesis and the alternative hypothesis and the empirical version of it is a reasonable test statistic. 

Denote           

𝐸̂ =
1

(𝑛
𝑛)

  ∑ 𝐴𝑖𝑗̇
1≤ⅈ≤𝑗≤𝑛

 , 

𝑉̂ =
1

(
𝑛
3)

 ∑
𝐴𝑖𝑗𝐴𝑖𝑙+𝐴𝑖𝑗𝐴𝑗𝑙+𝐴𝑖𝑙𝐴𝑗𝑙

31≤ⅈ<𝑗<𝑙≤𝑛
 , 

𝑇̂ =
1

(
𝑛
3)

  ∑ 𝐴𝑖𝑗𝐴𝑗𝑙𝐴𝑙𝑖
1≤ⅈ<𝑗<𝑙≤𝑛

 , 

𝐸̂, 𝑉̂, 𝑇̂ are estimates of 𝐸, 𝑉, 𝑇  respectively. Define 

𝑋̂𝑒𝑧 ≡  𝑇̂ − (𝑉̂ ∕ 𝐸̂)
3
 . 

The following theorem gives the asymptotic distribution of 𝑋̂𝑒𝑧 under the null hypothesis and then 

we can set threshold at the given significance level. 

2.2.1. Gao and Lafferty (2017a) 

Assume 𝐸𝑊4 = 𝑂(1) and 𝑛−1 ≪ 𝑎 , 𝑏 ≪ 𝑛−
2

3. Let  

𝛿 = 𝑙ⅈ𝑚
𝑛

(𝑘 − 1)(𝑎 − 𝑏)

√6
((

𝑛

𝑘(𝑎 + (𝑘 − 1)𝑏)
)

3
2

) . 

Then the following holds, 

 
√(

𝑛
3)𝑥̂𝑒𝑧

√𝑇̂
 →  𝑁(𝛿, 1), 

√(
𝑛
3)𝑥̂𝑒𝑧

√(𝑉∕𝐸̂)3
 →  𝑁(𝛿, 1), 

2√(
𝑛
3

)(√𝑇̂ − (𝑉̂ ∕ 𝐸̂)
3

2⁄
→  𝑁(𝛿, 1). 
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Theorem 2.2.1. (Gao and Lafferty (2017a)) shows that the asymptotic distribution of testing 

statistic is the standard normal distribution. We can get the rejection region based the asymptotic 

distribution. Note that the GL method works for relatively sparse networks, that is, 𝑛−1 ≪ 𝑎, 𝑏 ≪

𝑛−
2

3 . The power of the GL test can attain 1 if the sample size and 𝛿 go to infinity (Gao and Lafferty 

(2017a)).  
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3. SUBSAMPLING METHOD FOR BS

  Note that the BS method requires the eigenvalue of the adjacency matrix. For large 

network data, it’s impossible or at least time-consuming to calculate the eigenvalue. To reduce the 

computation time, we propose a subsampling method as follows. Firstly, we randomly and 

uniformly sample 𝑟 × 𝑛  indexes from [𝑛] = {1,2, . . . , 𝑛} without replacement. Here 𝑟 is a number 

between 0 and 1. If 𝑟 is equal to 1, then all the original nodes are sampled. When 𝑟 is close to zero, 

then only a small portion of the original nodes are sampled. Hence 𝑟 controls the proportion of 

nodes we want to sample. Denote by 𝑆 the index set, say, 𝑆={1,2, . . . , 𝑟𝑛}. Then we apply the BS 

method to the graph induced by 𝑆, that is, to the induced adjacency matrix 𝐴𝑠𝑠. For example, if  

𝑆={1,2, . . . , 𝑟𝑛}, then 𝐴𝑠𝑠 is just the first 𝑟𝑛 rows and columns of the original adjacency matrix 𝐴.

To make the test based on subsample useful, we need to derive the asymptotic distribution of 𝜃𝑠, 

the test statistic calculated based on 𝐴𝑠𝑠.  Actually, it’s easy to see that Theorem 2.1.1. (Bickel and 

Sarkar (2016)) still holds for 𝜃𝑠 .  The basic idea behind this is that if 𝐴 is generated from an 

𝐸𝑟𝑑𝑜̈ − 𝑅é𝑛𝑦ⅈ model, 𝐴𝑠𝑠  is also generated from an 𝐸𝑟𝑑𝑜̈ − 𝑅é𝑛𝑦ⅈ model. Suppose for 𝐴, the 

edge probability is 𝑝0, then the edge probability is still 𝑝0 for 𝐴𝑠𝑠.  The only difference is that there 

are 𝑛 nodes for 𝐴 but 𝑟𝑛 nodes for 𝐴𝑠𝑠. Hence 𝐴𝑠𝑠 is still a dense network as 𝐴.  Then Theorem 

2.1.1. (Bickel and Sarkar (2016)) still holds.  

For given significance level 𝛼, we can construct the rejection region. We reject the null 

hypothesis if 𝜃𝑠 > 𝑇𝑊1,1−𝛼,  where 𝑇𝑊1,1−𝛼 is the (1 − 𝛼)100% quantile of the Tracy-Widom

law with index 1. In terms of computation time, if 𝑟 is a constant, then the reduced time is moderate. 

However, if we allow 𝑟 to approach zero, in this case, the reduced time is significant. But there 

might be a trade-off between running time and power of the test. Larger 𝑟 implies larger power 
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but slower computation; smaller 𝑟 will save more time but sacrifices some power. In practice, we 

recommend to use the largest 𝑟 within the computation budget. 
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4. SIMULATION-BASED COMPARISON 

In this simulation, let =
𝑎𝑛

𝑛
 , 𝑏 =

𝑏𝑛

𝑛
, where  𝑎𝑛 and 𝑏𝑛 are given in the tables and they 

control the sparsity of the network. If 𝑎𝑛 = 𝑐1𝑛, 𝑏𝑛 = 𝑐2𝑛 for constants 𝑐1 and 𝑐2 between zero 

and one, then the network is dense. When (𝑎𝑛, 𝑏𝑛)=  (𝑐3𝑛λ ,   𝑐4𝑛μ) for some positive constants 

𝑐3, 𝑐4 and 0 < λ < 1, 0 < μ < 1,  we say the network is moderately sparse. For the subsample 

method, the subsample size is 𝑟𝑛, where 0 < 𝑟 < 1. In this simulation, we use 𝑟=0.05, 0.10, 0.15, 

0.20. We use the nominal significance level 𝑎 = 0.05  and generate the SBM with 𝑘 = 2 

communities with or without degree correction. Both size and power are calculated as proportions 

of rejections based on 500 independent experiments. To simulate the size, we generate the data 

from the 𝐸𝑟𝑑𝑜̈ − 𝑅é𝑛𝑦ⅈ model with probability 
𝑎𝑛+𝑏𝑛

2𝑛
.  To evaluate the tendency of the power, we 

increase 𝑎𝑛 with 𝑏𝑛 fixed.  This will make the gap between 𝑎𝑛 and 𝑏𝑛 enlarge and the power is 

expected to increase. 

4.1. Simulated size and power of GL Method 

 Table 1 summarizes the size and power of GL method with various 𝑎𝑛 and  𝑏𝑛. In the first 

column, 𝑘 means the number of community and in our simulation, we used 𝑘 = 2.  In the second 

column, we present the within-community and between-community probabilities 𝑎𝑛 , 𝑏𝑛 .  The 

sample size 𝑛 ranges from 200 to 500.  From the R output, almost all the simulated sizes are close 

to the nominal level 0.05, while the sizes in the last three rows are a little far away from 0.05. For 

the larger 𝑎𝑛 and  𝑏𝑛 , we find the size are not close to 0.05. We omit the result.  This is consistent 

with the theory that the test only works for relatively sparse network, that is, 1 <<𝑎𝑛,  𝑏𝑛 <<  𝑛−
1

3. 

For fixed 𝑎𝑛  and 𝑏𝑛 ,   when the sample size increases, the power also increases. For 

example, when (𝑎𝑛, 𝑏𝑛)=  (8𝑛0.2 ,   𝑛0.2), the power for 𝑛 = 200 is 0.714, which increases to 0.914 
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when 𝑛 = 500. For fixed 𝑛, the power increases as the differences of 𝑎𝑛  and 𝑏𝑛 increases.   For 

instance, 𝑛 = 500 , (𝑎𝑛, 𝑏𝑛)=  (2𝑛0.2 ,   𝑛0.2), the power is 0.018, when (𝑎𝑛, 𝑏𝑛)=  (8𝑛0.2 ,     𝑛0.2), 

the power is 0.914.  All these patterns are clearly presented in Figure 1 for (𝑎𝑛, 𝑏𝑛)=  (2𝑛0.2 ,   

𝑛0.2), (4𝑛0.2 ,  𝑛0.2), (8𝑛0.2 , 𝑛0.2). 

 

Figure 1. Simulated power of GL Method 
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Table 1. Simulated size and power of GL Method 
  

(an     ,     bn) 

n=200 

GL(size)power 

n=300 

GL(size)power 

n=400 

GL(size)power 

n=500 

GL(size)power 

    k=2 (2log(n), log(n)) 

(4log(n), log(n)) 

(8log(n), log(n)) 

(0.044) 0.038 

(0.024) 0.434 

(0.024) 1.000 

(0.036) 0.024 

(0.032) 0.482 

(0.024) 1.000 

(0.058) 0.036 

(0.034) 0.600 

(0.038) 1.000 

(0.048) 0.036 

(0.030) 0.594 

(0.040) 1.000 

k=2 (2n0.1 ,    n0.1) 

(4n0.1 ,    n0.1) 

(8n0.1 ,    n0.1) 

(0.072) 0.012 

(0.050) 0.036 

(0.042) 0.172 

(0.078) 0.012 

(0.028) 0.030 

(0.038) 0.204 

(0.062) 0.012 

(0.054) 0.034 

(0.048) 0.222 

(0.062) 0.004 

(0.058) 0.046 

(0.058) 0.242 

k=2 (2n0.2 ,     n0.2) 

(4n0.2 ,     n0.2) 

(8n0.2 ,     n0.2) 

(0.046) 0.024 

(0.034) 0.080 

(0.024) 0.714 

(0.052) 0.024 

(0.040) 0.110 

(0.044) 0.828 

(0.054) 0.022 

(0.038) 0.120 

(0.048) 0.858 

(0.044) 0.018 

(0.042) 0.148 

(0.036) 0.914 

k=2 (2n0.3 ,     n0.3) 

(4n0.3 ,     n0.3) 

(8n0.3 ,     n0.3) 

(0.030) 0.000 

(0.040) 0.310 

(0.010) 1.000 

(0.060) 0.020 

(0.030) 0.510 

(0.010) 1.000 

(0.080) 0.040 

(0.020) 0.540 

(0.030) 1.000 

(0.054) 0.050 

(0.030) 0.696 

(0.032) 1.000 

k=2 (2n0.4 ,      n0.4 ) 

(4n0.4 ,      n0.4) 

(8n0.4 ,      n0.4) 

(0.020) 0.030 

(0.010) 0.980 

(0.010) 1.000 

(0.030) 0.070 

(0.020) 0.980 

(0.030) 1.000 

(0.020) 0.070 

(0.060) 1.000 

(0.020) 1.000 

(0.034) 0.082 

(0.032) 1.000 

(0.016) 1.000 
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4.2. Simulated size and power of BS Method 

Table 2 shows the size and power of Bickel and Sarkar (BS) method with estimated 𝑎𝑛 and  

𝑏𝑛.  Firstly, when  𝑎𝑛 < 0.12𝑛 and 𝑏𝑛 < 0.10𝑛 ,we can see the simulated sizes are all significantly 

larger than 0.05, which implies the BS method doesn’t work for sparse network(small edge 

probability). In this case, it doesn’t make sense to run the power simulation, so we omit it (the star 

sign).  Secondly, when 𝑎𝑛 > 0.15𝑛   and  𝑏𝑛 > 0.10𝑛 all the sizes are close to 0.05, which implies 

the BS method is valid for dense network. Thirdly, for fixed 𝑎𝑛 and  𝑏𝑛,when sample size increases, 

the power also increases. For example, (𝑎𝑛, 𝑏𝑛) = (0.15𝑛, 0.10𝑛), the power increases from 0.220 

at 𝑛 = 200 to 0.998 at 𝑛 = 500. For fixed 𝑛, when the gap between 𝑎𝑛 and 𝑏𝑛 enlarges, the power 

increases.  
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Table 2. Simulated size and power BS Method SBM 
  

(an     ,     bn) 

n=200 

BS(size) power 

n=300 

BS(size) power 

n=400 

BS(size) power 

n=500 

BS(size) power 

K=2 (0.02n, 0.01n) 

(0.04n, 0.01n) 

(0.06n, 0.01n) 

(0.08n, 0.01n) 

(0.10n, 0.01n) 

(0.10n, 0.03n) 

(0.10n, 0.05n) 

(0.10n, 0.07n) 

(0.10n, 0.09n) 

(0.12n, 0.10n) 

(0.994) * 

(0.920) * 

(0.640) * 

(0.450) * 

(0.244) * 

(0.234) * 

(0.160) * 

(0.100) * 

(0.090) * 

(0.110) * 

(0.984) * 

(0.854) * 

(0.610) * 

(0.460) * 

(0.290) * 

(0.176) * 

(0.116) * 

(0.124) * 

(0.114) * 

(0.070)* 

(1.000) *  

(0.810) *  

(0.670) *  

(0.430) * 

(0.220) *  

(0.130) * 

(0.190) * 

(0.080) *  

(0.080) * 

(0.110) * 

(1.000) * 

(0.850) * 

(0.620) * 

(0.320) * 

(0.250) * 

(0.300) * 

(0.140) * 

(0.170) * 

(0.080) * 

(0.050) * 

K=2 (0.15n, 0.10n) 

(0.20n, 0.10n) 

(0.30n, 0.10n) 

(0.40n, 0.10n) 

(0.30n, 0.20n) 

(0.40n, 0.20n) 

(0.050) 0.220 

(0.040) 1.000 

(0.030) 1.000 

(0.000) 1.000 

(0.020) 0.840 

(0.030) 1.000 

(0.080) 0.600 

(0.070) 1.000 

(0.050) 1.000 

(0.040) 1.000 

(0.030) 1.000 

(0.040) 1.000 

(0.050) 0.960 

(0.050) 1.000 

(0.060) 1.000 

(0.000) 1.000 

(0.010) 1.000 

(0.010) 1.000 

(0.050) 0.998 

(0.050) 1.000 

(0.080) 1.000 

(0.030) 1.000 

(0.030) 1.000 

(0.020) 1.000 
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4.3. Simulated size and power: degree-corrected SBM 

The Table 3 summarize the size and power of BS method and GL method with the 𝑎𝑛  and  

𝑏𝑛 . It is significantly that all the simulated sizes are close to the nominal level 0.05 and the power 

has a similar tendency as that in Table 1 and Table 2.  The power increased when the 𝑛 increased.  

As the differences between  𝑎𝑛  and  𝑏𝑛 is increasing, the powers are increasing too. 

For fixed 𝑎𝑛  and 𝑏𝑛 ,   when the sample size increases, the power also increases. For 

example, when (𝑎𝑛, 𝑏𝑛)=  (8𝑛0.2 ,   𝑛0.2), the power for 𝑛 = 200 is 0.732, which increases to 0.900 

when 𝑛 = 500. For fixed 𝑛, the power increases as the differences of 𝑎𝑛  and 𝑏𝑛 increases.   For 

example, 𝑛 = 500, (𝑎𝑛, 𝑏𝑛)=  (2𝑛0.2 ,     𝑛0.2), the power is 0.014, when (𝑎𝑛, 𝑏𝑛)=  (8𝑛0.2 ,     𝑛0.2), 

the power is 0.900.  All these patterns are clearly presented in Figure 2 for (𝑎𝑛, 𝑏𝑛)=  (2𝑛0.2 ,   

𝑛0.2), (4𝑛0.2 ,  𝑛0.2), (8𝑛0.2 ,  𝑛0.2). 

 

Figure 2. Simulated size and power: degree-corrected SBM 
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Table 3. Simulated size and power: degree-corrected SBM 

 

 

 

 

 

 

 

  

(an     ,     bn) 

n=200 

GL(size) power 

n=300 

GL(size) power 

n=400 

GL(size) power 

n=500 

GL(size) power 

K=2 (log(n), log(n)) 

(2log(n), log(n)) 

(4log(n), log(n)) 

(8log(n), log(n)) 

(0.046) 0.012 

(0.026) 0.016 

(0.028) 0.402 

(0.014) 0.998 

(0.048) 0.014 

(0.042) 0.036 

(0.040) 0.454 

(0.048) 1.000 

(0.040) 0.024 

(0.056) 0.042 

(0.024) 0.560 

(0.038) 1.000 

(0.046) 0.024 

(0.036) 0.028 

(0.036) 0.610 

(0.034) 1.000 

K=2 (n0.1 ,    n0.1) 

(2n0.1 ,    n0.1) 

(4n0.1 ,    n0.1) 

(8n0.1 ,    n0.1) 

(0.104) 0.012 

(0.098) 0.012 

(0.040) 0.040 

(0.046) 0.164 

(0.134) 0.012 

(0.068) 0.020 

(0.038) 0.046 

(0.044) 0.210 

(0.168) 0.012 

(0.054) 0.012 

(0.036) 0.044 

(0.038) 0.240 

(0.198) 0.006 

(0.074) 0.012 

(0.050) 0.030 

(0.032) 0.228 

K=2 (n0.2 ,     n0.2) 

(2n0.2 ,     n0.2) 

(4n0.2 ,     n0.2) 

(8n0.2 ,     n0.2) 

(0.042) 0.014 

(0.054) 0.012 

(0.044) 0.082 

(0.022) 0.732 

(0.066) 0.010 

(0.046) 0.016 

(0.038) 0.104 

(0.034) 0.778 

(0.046) 0.018 

(0.066) 0.028 

(0.034) 0.114 

(0.036) 0.838 

(0.042) 0.014 

(0.038) 0.018 

(0.052) 0.158 

(0.028) 0.900 

K=2 (n0.3 ,     n0.3) 

(2n0.3 ,     n0.3) 

(4n0.3 ,     n0.3) 

(8n0.3 ,     n0.3) 

(0.036) 0.012 

(0.046) 0.026 

(0.022) 0.344 

(0.024) 0.996 

(0.340) 0.018 

(0.020) 0.026 

(0.022) 0.464 

(0.050) 0.998 

(0.040) 0.010 

(0.036) 0.024 

(0.044) 0.566 

(0.018) 1.000 

(0.054) 0.022 

(0.040) 0.038 

(0.044) 0.660 

(0.044) 1.000 

K=2 (n0.4,      n0.4 ) 

(2n0.4,      n0.4 ) 

(4n0.4 ,      n0.4) 

(8n0.4 ,      n0.4) 

(0.026) 0.022 

(0.040) 0.062 

(0.016) 0.904 

(0.034) 1.000 

(0.046) 0.018 

(0.030) 0.052 

(0.028) 0.986 

(0.042) 1.000 

(0.052) 0.010 

(0.030) 0.084 

(0.050) 0.998 

(0.042) 1.000 

(0.052) 0.036 

(0.032) 0.112 

(0.044) 0.998 

(0.052) 1.000 
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4.4. Simulated size and power for degree-corrected SBM 

Table 4 shows the size and power of Bickel and Sarkar (BS) method for degree-corrected 

SBM with estimated 𝑎𝑛 and  𝑏𝑛.  when 𝑎𝑛 > 0.15𝑛 and 𝑏𝑛 > 0.10𝑛, all the sizes are close to 0.05, 

which implies the BS method is valid for dense network. From the R output, almost all the 

simulated powers are close to the nominal level 1.00, while the sizes are a little far away from 0.05. 

Table 4. Simulated size and power: BS method for degree-corrected SBM 
  

(an     ,     bn) 

n=200 

BS(size) power 

n=300 

BS(size) power 

n=400 

BS(size) power 

n=500 

BS(size) power 

K=2 (0.15n, 0.10n) 

(0.20n, 0.10n) 

(0.30n, 0.10n) 

(0.020) 1.000 

(0.060) 1.000 

(0.034) 1.000 

(0.070) 1.000 

(0.070) 1.000 

(0.070) 1.000 

(0.040) 1.000 

(0.090) 1.000 

(0.040) 1.000 

(0.060) 1.000 

(0.070) 1.000 

(0.020) 1.000 

 

4.5. Simulated size and power of subsampling method for BS 

Table 5 shows the size and power of the subsampling method for BS. The subsample size 

ranges from 0.05𝑛 to 0.20𝑛.  We fix 𝑛 = 1200. Firstly, when 𝑎𝑛 < 4𝑛0.5 and  𝑏𝑛<  𝑛0.5, we can 

see the simulated sizes are all significantly larger than 0.05, which implies the subsample BS 

method doesn’t work for sparse network (small edge probability). In this case, it doesn’t make 

sense to run the power simulation, so we omit it (the star sign).  Secondly, when 𝑎𝑛>8𝑛0.5 and 

𝑏𝑛>𝑛0.5 all the sizes are close to 0.05, which implies the subsample BS method is valid for dense 

network. Thirdly, for fixed 𝑎𝑛 , 𝑏𝑛 when subsample size increases, the power also increases. For 

example, (𝑎𝑛, 𝑏𝑛) = (0.15𝑛, 0.10𝑛) the power increases from 0. 090 at 0.05𝑛 to 0.485 at 0.20𝑛. 

For fixed subsample size, when the gap between an and bn enlarges, the power increases. For 

example, for subsample size 0.10𝑛 , 𝑎𝑛 = 0.15𝑛  , 𝑏𝑛 = 0.10𝑛 the power is 0.165 , while the 

power is 0.995 for 𝑎𝑛 = 0.25𝑛,  𝑏𝑛 = 0.10𝑛. All these finding is plotted in Figure 3.  Comparing 

Table 5 with Table 2, the subsample BS method has relatively smaller power. But the power can 



 

18 
 

be improved by increasing the subsample size.  For example, the power for subsample size 0.20𝑛 

are almost 1.000.  Hence, subsampling BS method can have high power and save computation  

 

 

Figure 3. Simulated size and power subsampling method for BS 
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Table 5. Simulated size and power subsampling method for BS 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(an     ,     bn) 

0.05n 

(size) power 

0.10n 

(size) power 

0.15n 

(size) power 

0.20n 

(size) power 

K=2 (2n0.3 ,     n0.3) 

(4n0.3 ,     n0.3) 

(8n0.3 ,     n0.3) 

(0.972) * 

(0.896) * 

(0.642) * 

(1.000) * 

(0.968) * 

(0.748) * 

(1.000) * 

(0.978) * 

(0.732) * 

(1.000) * 

(0.982) * 

(0.746) * 

K=2 (2n0.5 ,     n0.5) 

(4n0.5 ,     n0.5) 

(8n0.5 ,     n0.5) 

(0.380) * 

(0.170) * 

(0.058) 1.000 

(0.452) * 

(0.210) * 

(0.048) 1.000 

(0.466) * 

(0.164) * 

(0.070) 1.000 

(0.488) * 

(0.190) * 

(0.054) 1.000 

K=2 (2n0.7 ,     n0.7) 

(4n0.7 ,     n0.7) 

(8n0.7 ,     n0.7) 

(0.030) 0.270 

(0.020) 1.000 

(0.010) 1.000 

(0.032) 1.000 

(0.024) 1.000 

(0.008) 1.000 

(0.030) 1.000 

(0.026) 1.000 

(0.014) 1.000 

(0.012) 1.000 

(0.012) 1.000 

(0.012) 1.000 

K=2 (0.15n, 0.10n) 

(0.20n, 0.10n) 

(0.25n, 0.10n) 

(0.30n, 0.20n) 

(0.40n, 0.20n) 

(0.038) 0.090 

(0.036) 0.195 

(0.026) 0.650 

(0.016) 0.055 

(0.018) 0.605 

(0.078) 0.165 

(0.030) 0.850 

(0.022) 0.995 

(0.016) 0.185 

(0.024) 1.000 

(0.076) 0.255 

(0.062) 1.000 

(0.046) 1.000 

(0.020) 0.685 

(0.014) 1.000 

(0.070) 0.485 

(0.036) 1.000 

(0.056) 1.000 

(0.016) 0.995 

(0.012) 1.000 
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5. SUMMARY 

In this paper, we empirically compare two statistical testing procedures for testing 

community structures in network data. The GL method is based on the frequencies of triangles, 

vees and edges, while the BS method is to use the eigen-values of the centered and scaled 

adjacency matrix.  Theoretically, the BS method works for dense network and the GL method is 

valid for moderately sparse network. By our simulation study, when the network is dense, that is, 

the edge probability is far away from zero (larger than 0.15 in our simulation), then the BS method 

works well, that is, simulated sizes of BS are close to the nominal level 0.05 and the power can 

approach 1.  But when the edge probability is closer to zero (less than 0.12 in our simulation), the 

simulated sizes are much larger than 0.05, implying the test is not working. For moderately sparse 

network work, that is, the edge probability is smaller than 4.5𝑛0.4/𝑛 (average of 8𝑛0.4/𝑛 and 

𝑛0.4/𝑛) in our simulation, the GL method has good performance, with the sizes close to the 

nominal and the largest power close to 1. For moderately dense network, that is, edge probability 

is between 4.5𝑛0.4/𝑛 and 0.15, both methods have simulated size much larger than 0.05. Hence, 

there is still a gap between GL and BS method to be filled. 

To reduce the computation time of the BS method, we proposed a subsampling method. 

The idea behind this is that there is no community structure in the network, neither does the 

subsampled network.  By our simulation, smaller sample size (0.1n) can achieve high power.   

Based on the result of our simulation, the future work might be: 1) develop a test statistic 

that fills the gap between the GL method and the BS method; 2) decide what’s the optimal choice 

of 𝑟 for the subsample BS method in terms of the running time and power of the test. 
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APPENDIX A. R CODE FOR SIMULATED GL METHOD  

install.packages("RMTstat") 

library(RMTstat) 

n=500 

### 300,  400, 500, 600,  800, 1000## 

an=8*log(n) 

bn=log(n) 

M=500 

t1=proc.time() 

size=NULL 

power=NULL 

for (k in 1:M){ 

          ## under H0: 

 A=matrix(0,n,n) 

 A 

 pn=(an+bn)/(2*n) 

 pn 

           for (i in 1:(n-1)){ 

  A[i,(i+1):n]=rbinom(n-i,1,pn) 

 } 

 A=A+t(A) 

        E.hat=sum(A)/(n*(n-1)) 

        V.hat=(sum(A%*%A)-sum(diag(A%*%A)))/(n*(n-1)*(n-2)) 

        T.hat=(sum(diag(A%*%A%*%A)))/(n*(n-1)*(n-2)) 

        X=2*sqrt((n*(n-1)*(n-2))/6)*((sqrt(T.hat))-((V.hat/E.hat)^(3/2))) 

        size[k]=X 

} 

        size.simulate=mean(abs(size)>1.96) 

        size.simulate 

 

 

for ( k in 1:M){ 
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 ## under H1: 

 A=matrix(0,n,n) 

        v=rbinom(n,1,1/2) 

 for(i in 1:(n-1)){ 

        for(j in (i+1):n){ 

  A[i,j]=rbinom(1,1,((an-bn)/n)*v[i]*v[j]+(bn/n)) 

 } 

       } 

        A=A+t(A) 

        EE.hat=sum(A)/(n*(n-1)) 

        VV.hat=(sum(A%*%A)-sum(diag(A%*%A)))/(n*(n-1)*(n-2)) 

        TT.hat=(sum(diag(A%*%A%*%A)))/(n*(n-1)*(n-2)) 

        XX=2*sqrt((n*(n-1)*(n-2))/6)*((sqrt(TT.hat))-((VV.hat/EE.hat)^(3/2))) 

        power[k]=XX 

} 

 power.simulate=mean(power>1.96) 

 power.simulate  

t2=proc.time() 

t2-t1 
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APPENDIX B. R CODE FOR SIMULATED BS METHOD  SBM 

install.packages("RMTstat") 

library(RMTstat) 

################################### 

#############  BS  Size    ######## 

################################### 

t1=proc.time() 

n=500 

an=0.2*(n) 

bn=0.1*(n) 

 

M=100 

t1=proc.time() 

size=NULL 

power=NULL 

for(k in 1:M){ 

      ## under H0: 

      A=matrix(0,n,n) 

      pn=(an+bn)/(2*n) 

      pn 

      for(i in 1:(n-1)){ 

         for(j in (i+1):n){ 

          A[i,j]=rbinom(1,1,pn) 

   } 

      } 

 A=A+t(A) 

 p.hat=sum(A)/(n*(n-1)) 

 J=matrix(1,n,n)/n 

 PP.hat=n*p.hat*J-p.hat*diag(n) 

 A.hat=(A-PP.hat)/(sqrt((n-1)*p.hat*(1-p.hat))) 

        eigen(A.hat)$values 

 lambda=max(eigen(A.hat)$values) 
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      theta=n^(2/3)*(lambda-2) 

 size[k]=theta 

}  

 a=qtw(0.95, beta=1, lower.tail = TRUE, log.p = FALSE) 

 a 

 

 size.simulate=mean(size>a) 

 size.simulate  

t2=proc.time() 

t2-t1 

 

################################### 

#############  BS  Power   ######## 

################################### 

t1=proc.time() 

n=500 

an=0.2*(n) 

bn=0.1*(n) 

M=50 

t1=proc.time() 

size=NULL 

power=NULL 

for(k in 1:M){ 

      ## under H0: 

 A=matrix(0,n,n) 

      v=rbinom(n,1,1/2) 

 for(i in 1:(n-1)){ 

        for(j in (i+1):n){ 

  A[i,j]=rbinom(1,1,((an-bn)/n)*v[i]*v[j]+bn/n) 

  } 

      } 

      A=A+t(A) 

 A 
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 p.hat=sum(A)/(n*(n-1)) 

 J=matrix(1,n,n)/n 

 PP.hat=n*p.hat*J-p.hat*diag(n) 

 A.hat=(A-PP.hat)/(sqrt((n-1)*p.hat*(1-p.hat))) 

        eigen(A.hat)$values 

 lambda=max(eigen(A.hat)$values) 

      theta=n^(2/3)*(lambda-2) 

 size[k]=theta 

}  

 a=qtw(0.95, beta=1, lower.tail = TRUE, log.p = FALSE) 

a 

power.simulate=mean(size>a) 

power.simulate  

t2=proc.time() 

t2-t1 
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APPENDIX C. R CODE FOR SIMULATED GL-W METHOD SIZE&POWER  

library(RMTstat) 

######  GL method 

### 200, 300, 400, 500#### 

n=300 

an=n*0.4 

bn=n*0.4 

M=500 

t1=proc.time() 

size=NULL 

power=NULL 

for(k in 1:M){ 

      ## under H0: 

      A=matrix(0,n,n) 

      pn=(an+bn)/(2*n) 

      pn 

      X=runif(n,0,1) 

      W=sqrt(3)*X 

 pn*max(W)*max(W) 

      for(i in 1:(n-1)){ 

         for(j in (i+1):n){ 

          A[i,j]=rbinom(1,1,pn*W[i]*W[j]) 

   } 

      } 

 A=A+t(A) 

  

        E.hat=sum(A)/(n*(n-1)) 

        V.hat=(sum(A%*%A)-sum(diag(A%*%A)))/(n*(n-1)*(n-2)) 

        T.hat=(sum(diag(A%*%A%*%A)))/(n*(n-1)*(n-2)) 

        Xe=2*sqrt((n*(n-1)*(n-2))/6)*((sqrt(T.hat))-((V.hat/E.hat)^(3/2))) 

        size[k]=Xe 

} 
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        size.simulate=mean(abs(size)>1.96) 

        size.simulate 

t2=proc.time() 

t2-t1 

        library(RMTstat) 

n=500 

## 300,  400, 500, 600,  800, 1000## 

an=4*n^0.3 

bn=n^0.3 

M=500 

t1=proc.time() 

power=NULL 

for ( k in 1:M){ 

 ## under H1: 

 A=matrix(0,n,n) 

      v=rbinom(n,1,1/2) 

      X=runif(n,0,1) 

      W=sqrt(3)*X  

 W  

 max(W)*max(W) 

 

 for(i in 1:(n-1)){ 

        for(j in (i+1):n){ 

  A[i,j]=rbinom(1,1,W[i]*W[j]*(((an-bn)/n)*v[i]*v[j]+bn/n)) 

  } 

      } 

      A=A+t(A) 

 A 

      EE.hat=sum(A)/(n*(n-1)) 

      VV.hat=(sum(A%*%A)-sum(diag(A%*%A)))/(n*(n-1)*(n-2)) 

      TT.hat=(sum(diag(A%*%A%*%A)))/(n*(n-1)*(n-2)) 

      XX=2*sqrt((n*(n-1)*(n-2))/6)*((sqrt(TT.hat))-((VV.hat/EE.hat)^(3/2))) 

      power[k]=XX 
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}      

 power.simulate=mean(power>1.96) 

 power.simulate  

t2=proc.time() 

t2-t1 
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APPENDIX D. CODE FOR BS-W METHOD SIZE&POWER OF SBM 

 

install.packages("RMTstat") 

library(RMTstat) 

################################### 

#############  BS  Size    ######## 

################################### 

t1=proc.time() 

n=200 

an=0.3*(n) 

bn=0.10*(n) 

M=100 

t1=proc.time() 

size=NULL 

power=NULL 

for(k in 1:M){ 

      ## under H0: 

      A=matrix(0,n,n) 

      pn=(an+bn)/(2*n) 

      pn 

      for(i in 1:(n-1)){ 

         for(j in (i+1):n){ 

          A[i,j]=rbinom(1,1,pn) 

   } 

      } 

 A=A+t(A) 

 p.hat=sum(A)/(n*(n-1)) 

 J=matrix(1,n,n)/n 

 PP.hat=n*p.hat*J-p.hat*diag(n) 

 A.hat=(A-PP.hat)/(sqrt((n-1)*p.hat*(1-p.hat))) 

        eigen(A.hat)$values 

 lambda=max(eigen(A.hat)$values) 
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      theta=n^(2/3)*(lambda-2) 

 size[k]=theta 

}  

 a=qtw(0.95, beta=1, lower.tail = TRUE, log.p = FALSE) 

 a 

 size.simulate=mean(size>a) 

 size.simulate  

t2=proc.time() 

t2-t1 

################################### 

#############  BS  Power   ######## 

################################### 

t1=proc.time() 

n=200 

an=0.3*(n) 

bn=0.10*(n) 

M=5 

t1=proc.time() 

size=NULL 

power=NULL 

for(k in 1:M){ 

      ## under H0: 

 A=matrix(0,n,n) 

      v=rbinom(n,1,1/2) 

      X=runif(n,0,1) 

      W=sqrt(3)*X  

 W  

 max(W)*max(W) 

 for(i in 1:(n-1)){ 

        for(j in (i+1):n){ 

  A[i,j]=rbinom(1,1,W[i]*W[j]*(((an-bn)/n)*v[i]*v[j]+bn/n)) 

  } 

      } 



 

34 
 

      A=A+t(A) 

 A 

 p.hat=sum(A)/(n*(n-1)) 

 J=matrix(1,n,n)/n 

 PP.hat=n*p.hat*J-p.hat*diag(n) 

 A.hat=(A-PP.hat)/(sqrt((n-1)*p.hat*(1-p.hat))) 

        eigen(A.hat)$values 

 lambda=max(eigen(A.hat)$values) 

      theta=n^(2/3)*(lambda-2) 

 size[k]=theta 

}  

 a=qtw(0.95, beta=1, lower.tail = TRUE, log.p = FALSE) 

 a 

 power.simulate=mean(size>a) 

 power.simulate  

t2=proc.time() 

t2-t1 
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APPENDIX E. CODE FOR SUBSAMPLING-BS METHOD 

############## size 

n0=1200 

n=n0 

r0=0.1 

N=r0*n 

### r0=0.05,  0.1,  0.15,   0.2   

### 

an=8*(n^(0.5)) 

bn=(n^(0.5)) 

M=500 

t1=proc.time() 

size=NULL 

power=NULL 

for(k in 1:M){ 

      ## under H0:  

 n=n0 

      A=matrix(0,n,n) 

      pn=(an+bn)/(2*n) 

      pn 

      X=runif(n,0,1) 

      for(i in 1:(n-1)){ 

         for(j in (i+1):n){ 

          A[i,j]=rbinom(1,1,pn) 

   } 

      } 

 ind=sample(1:n,N,replace=FALSE) 

 A=A[ind,ind] 

 n=nrow(A) 

 n 

 A=A+t(A) 

 p.hat=sum(A)/(n*(n-1)) 
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 J=matrix(1,n,n)/n 

 PP.hat=n*p.hat*J-p.hat*diag(n) 

 A.hat=(A-PP.hat)/(sqrt((n-1)*p.hat*(1-p.hat))) 

        eigen(A.hat)$values 

 lambda=max(eigen(A.hat)$values) 

      theta=n^(2/3)*(lambda-2) 

 size[k]=theta 

} 

 a=qtw(0.95, beta=1, lower.tail = TRUE, log.p = FALSE) 

 a 

 size.simulate=mean(size>a) 

 size.simulate  

################################### 

############## power ############## 

################################### 

n0=1200 

n=n0 

r0=0.2 

N=r0*n 

### r0=0.05, 0.1, 0.15 , 0.2,  

### 

an=0.8*n 

bn=0.1*n 

M=500 

t1=proc.time() 

size=NULL 

power=NULL 

for(k in 1:M){ 

      ## under H0:  

 n=n0 

      A=matrix(0,n,n) 

      pn=(an+bn)/(2*n) 

      pn 
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      X=runif(n,0,1) 

      for(i in 1:(n-1)){ 

         for(j in (i+1):n){ 

          A[i,j]=rbinom(1,1,pn) 

   } 

      }  

 ind=sample(1:n,N,replace=FALSE) 

 A=A[ind,ind] 

 n=nrow(A) 

 n 

 A=A+t(A) 

 p.hat=sum(A)/(n*(n-1)) 

 J=matrix(1,n,n)/n 

 PP.hat=n*p.hat*J-p.hat*diag(n) 

 A.hat=(A-PP.hat)/(sqrt((n-1)*p.hat*(1-p.hat))) 

        eigen(A.hat)$values 

 lambda=max(eigen(A.hat)$values) 

      theta=n^(2/3)*(lambda-2) 

 power[k]=theta 

} 

t2=proc.time()  

 a=qtw(0.95, beta=1, lower.tail = TRUE, log.p = FALSE) 

 a 

 power.simulate=mean(power>a) 

 power.simulate  

 

t2-t1 
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APPENDIX F. CODE FOR CURVES 

delta=c(200,300,400,500) 

alpha=c(0.024,0.080,0.714) 

power1=c(0.024,0.024,0.022,0.018) 

power2=c(0.080,0.110,0.120,0.148) 

power3=c(0.714,0.828,0.858,0.914) 

plot(delta,power1,type="b",pch=3,col='blue',ylim=c(0,1.1),xlab="sample size", 

main="Figure_1 of Table_1 Simulated Power",ylab="Power",xaxt='n',yaxt='n') 

lines(delta,power1,type="b",col='red',pch=20) 

lines(delta,power2,type="b",col='green',pch=8) 

lines(delta,power3,type="b",col='blue',pch=2) 

axis(1,delta) 

axis(2,alpha) 

legend(350, 0.55, legend=c(bquote('2n^(0.2),n^(0.2)'), 

expression(paste('4n^(0.2),n^(0.2)')),bquote('8n^(0.2),n^(0.2)')), 

       col=c("green", "red", "blue"), lty=c(2,2,2),pch=c(2,0,3), cex=1.2) 

delta=c(200,300,400,500) 

alpha=c(0.012,0.082,0.732) 

power1=c(0.012,0.016,0.028,0.018) 

power2=c(0.082,0.104,0.114,0.158) 

power3=c(0.732,0.778,0.838,0.900) 

plot(delta,power1,type="b",pch=3,col='blue',ylim=c(0,1.1),xlab="sample size", 

main="Figure_2 of Table_3 Simulated Power in degree-

corrected(W)",ylab="Power",xaxt='n',yaxt='n') 

lines(delta,power1,type="b",col='red',pch=20) 
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lines(delta,power2,type="b",col='green',pch=8) 

lines(delta,power3,type="b",col='blue',pch=2) 

axis(1,delta) 

axis(2,alpha) 

legend(350, 0.55, legend=c(bquote('2n^(0.2),n^(0.2)'), 

expression(paste('4n^(0.2),n^(0.2)')),bquote('8n^(0.2),n^(0.2)')), 

       col=c("green", "red", "blue"), lty=c(2,2,2),pch=c(2,0,3), cex=1.2) 

n=1200 

delta=c(0.05*n,0.10*n,0.15*n,0.20*n) 

alpha=c(0.055,0.090,0.195,0.605,0.650) 

power1=c(0.090,0.165,0.255,0.485) 

power2=c(0.195,0.850,1.000,1.000) 

power3=c(0.650,0.995,1.000,1.000) 

power4=c(0.055,0.185,0.685,0.995) 

power5=c(0.605,1.000,1.000,1.000) 

plot(delta,power1,type="b",pch=3,col='blue',ylim=c(0,1.1),xlab="Subsample size", 

main="Figure_3 of Table_5 Simulated Power in degree-

corrected(W)",ylab="Power",xaxt='n',yaxt='n') 

lines(delta,power1,type="b",col='red',pch=20) 

lines(delta,power2,type="b",col='green',pch=8) 

lines(delta,power3,type="b",col='blue',pch=2) 

lines(delta,power4,type="b",col='yellow',pch=4) 

lines(delta,power5,type="b",col='black',pch=0) 

axis(1,delta) 

axis(2,alpha) 
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legend(160, 0.55, legend=c(bquote('0.15n,0.10n'), 

expression(paste('0.20n,0.10n')),bquote('0.25n,0.10n'),bquote('0.40n,0.20n'),bquote('0.30n,0.20n'

)), 

     col=c("green", "red", "blue","yellow","black"), lty=c(2,2,2),pch=c(2,0,3), cex=1.2) 


