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ABSTRACT 

Optimal design provides the most efficient design to study dose-response functions. It is 

common to adopt the four-parameter logistic model to describe the dose-response relationships 

in many dose finding trials. Under the four-parameter logistic model, optimal design to estimate 

the ED𝑝𝑝 accurately is presented. The ED𝑝𝑝 is the dose achieving 100𝑝𝑝% of the maximum 

treatment effect. C-optimal design works the best to estimate the ED𝑝𝑝, but the value of 𝑝𝑝 must be 

predetermined in order to obtain the c-optimal design. Here we investigate the efficiency of c-

optimal design to estimate the ED𝑝𝑝 for different values of 𝑝𝑝 and present robust c-optimal design 

that works well for the changes in the value of 𝑝𝑝. Five different values of 𝑝𝑝 are considered in this 

study: ED10, ED30, ED50, ED70, and ED90. The performance of the robust c-optimal design is 

obtained and compared to the c-optimal designs and traditional uniform designs. 
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1. INTRODUCTION 

A dose-response study is a fundamental part in clinical trials. A common objective for the 

dose-response study is to study dose-response relationships or to study a target dose level (such 

as MED and ED𝑝𝑝). Optimal design helps to maximize the information of such a study objective. 

It identities dose levels to be tested and how to allocate the subjects to the selected doses in the 

most efficient manner (Bretz, Dette and Pinheiro, 2010; Dragalin, Hsuan and Padmanabhan, 

2007).  

Optimal design is a branch of experimental designs. It provides the best design to study 

an interesting objective accurately with limited resources. Different types of optimal designs are 

used for different purposes. For instance, D-optimal design enables researchers to estimate the 

shape of dose-response accurately, and c-optimal design allows researchers to precisely estimate 

an interesting target dose level. In this paper, we study c-optimal design for estimating the ED𝑝𝑝. 

Here, the ED𝑝𝑝 is the dose level that achieves 100𝑝𝑝% of the maximum treatment effect within the 

observed dose range and 𝑝𝑝 is given between 0 and 1 (Ting, 2006). For example, ED50 represents 

the dose level that generates 50% of the maximum response.  

C-optimal design for estimating the  ED𝑝𝑝 minimizes the variance for estimating the  ED𝑝𝑝. 

Here the value of 𝑝𝑝 is given at the beginning of the study and it represents the target dose  ED𝑝𝑝 to 

be estimated. One question we have here is the performance of c-optimal design for estimating 

the ED𝑝𝑝 for the changes in the value of 𝑝𝑝. For example, does the c-optimal design for estimating 

the ED50 perform well for estimating ED10, ED30 , ED70 or ED90? Bretz, Dette, and Pinheiro 

(2010) states that c-optimal design for estimating the ED𝑝𝑝 for one specific model (𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 model) 

does not depend on the value of 𝑝𝑝. However, it might not be true for different models. In this 

paper, we study the sensitivity of the c-optimal design for estimating the ED𝑝𝑝 on the value of 𝑝𝑝 
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under the four-parameter logistic model. Also, we present robust c-optimal design for estimating 

the ED𝑝𝑝 that works well for the changes in the value of 𝑝𝑝. 

We consider a flexible model to describe dose-response relationships. In this paper, the 

four-parameter logistic model is employed (Dragalin, Hsuan, and Padmanabhan, 2007). The 

four-parameter logistic model is a frequently used non-linear model in dose-response study to 

describe a sigmoid shaped curve. Under the four-parameter logistic model, c-optimal designs for 

estimating the ED𝑝𝑝 are studied. 

In Chapter 2, basic knowledge to study optimal design is described. The four-parameter 

logistic model and the Fisher information matrix under the model is presented in Chapter 3. In 

Chapter 4, c-optimal designs for estimating the ED𝑝𝑝 and the robust c-optimal design for 

estimating the  ED𝑝𝑝 for the changes in the values of 𝑝𝑝 are derived. Their performance are 

obtained and compared in Chapter 5. We discuss the conclusion in Chapter 6.  
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2. BACKGROUND 

2.1. Optimal Design 

When researchers conduct experimental designs, they are often interested in obtaining 

estimates of the parameters and using the fitted model for prediction. The variance of estimating 

parameters and predictions depend on the experimental designs, and an efficient experiment 

design can minimize the variance. The tool we use to minimize the variance is optimal design 

(Atkinson and Donev, 1992). 

Optimal design specifies how to distribute resources in the most efficient way. Given a 

response surface, optimal design also provides the best locations to take observations. In 

practical situations, optimal design provides accurate statistical inferences with reduced cost. 

Different optimal designs have different criteria based on the goal of the experiment. To obtain 

the optimal design, we find a design that minimizes the optimality criteria, denoted by Ψ.  

Under a given model, let Θ be the vector of model parameters, we use x𝑖𝑖  for the 𝑖𝑖𝑡𝑡ℎ dose 

level, n𝑖𝑖 represents the number of subjects allocated to the 𝑖𝑖𝑡𝑡ℎ dose level and N represents the 

total number of subjects, N=∑ n𝑖𝑖k
𝑖𝑖=1 . Let M(ξ ;  Θ) denote the Fisher information matrix for Θ. 

M(ξ ;  Θ) only depends on design ξ  = {(x𝑖𝑖,w𝑖𝑖), i=1, 2… k} and the parameters of Θ. Here,  w𝑖𝑖 = 

n𝑖𝑖/N represents the proportional allocation of subjects to x𝑖𝑖. Optimal design minimizes the 

optimality criteria Ψ for the given Θ. Several important optimality criteria are presented below: 

(1) A-optimality  

A-optimality minimizes the summation of asymptotic variances of the parameter 

estimates. The criterion is  

Ψ = tr(M(ξ ;  Θ)−1). 

(2) D-optimality 
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D-optimal design is used when we are interested in estimating parameters in the 

model.  It minimizes the determinant of the inverse of the Fisher information matrix 

for Θ. The criterion is  

Ψ = ⃓ M(ξ ;  Θ)−1⃓. 

(3) c-optimality 

When our goal is to estimate a function of model parameters, c-optimality criteria is 

commonly used. It minimizes the variance of estimating the function of the model 

parameters, g (𝜃𝜃). Then the criterion is 

Ψ = [g,(𝜃𝜃)]𝑇𝑇M(ξ ;  Θ)−1g,(𝜃𝜃), 

where g,(𝜃𝜃) is the first derivative of g (𝜃𝜃) with respect to Θ. 

2.2. The General Equivalence Theorem  

The General Equivalence Theorem (Kiefer, 1958; Pukelsheim, 2006) is a fundamental 

part to find and verify optimal designs.  The General Equivalence Theorem can be applied to any 

optimal design that uses the function of the Fisher information matrix for the criterion. Here we 

present the General Equivalence Theorem for the c-optimal design. Let 𝜉𝜉∗ denote the c-optimal 

design. When the interest is in estimating a function of the model parameters g (𝜃𝜃), the Fisher 

information matrix can be written as M (𝜉𝜉;Θ) = 1
σ2

 ∑ 𝜔𝜔if(𝑋𝑋𝑖𝑖,𝜃𝜃)f (𝑋𝑋𝑖𝑖,𝜃𝜃)𝑇𝑇𝑘𝑘
𝑖𝑖=1 , and the General 

Equivalence Theorem states that  

{ f𝑇𝑇(x) M−1(𝜉𝜉∗ ;  Θ)g,(𝜃𝜃) }2≤[g,(𝜃𝜃)]𝑇𝑇M−1(𝜉𝜉∗ ;  Θ)g,(𝜃𝜃).  

Here g,(𝜃𝜃) is the first derivative of g (𝜃𝜃) with respect to 𝜃𝜃, and the equality holds when x is one 

of the optimal design points in 𝜉𝜉∗. 

 It can be viewed as an application of the result that the derivative is zero at the minimum 

of the convex function. The above inequality equation is the directional derivative of the c-
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optimality criterion. The left side of the equation represents the standardized variance of the 

predicted response, and its maximum is always less than or equal to the variance of estimating g 

(𝜃𝜃) on the c-optimal design. The General Equivalence Theorem plays an important role in the V-

algorithm to search the c-optimal design. 

2.3. The V-algorithm 

The V-algorithm is an efficient algorithm to search for optimal design. This method is 

established by Fedorov and Hackl (1997).  

We set the values of model parameters first. In order to run the V-algorithm we need to 

set an initial design. Usually, a uniform design can be used for an initial design. One concern to 

set the initial design is that the number of initial design points must be greater than or equal to 

the number of model parameters. Otherwise, the information matrix based on the initial design 

becomes a singular matrix and the algorithm cannot be run. 

The V-algorithm for searching c-optimal deign is stated here. Assume that we start with 

one initial design ξ with the Fisher information matrix M (ξ; Θ). Then we calculate the sensitive 

function in the General Equivalence Theorem at 𝑛𝑛th iteration, which is denoted by d𝑛𝑛 

d𝑛𝑛 = { f𝑇𝑇(x) M𝑛𝑛
−1(𝜉𝜉  ;  Θ)g,(𝜃𝜃) }2 - [g,(𝜃𝜃)]𝑇𝑇M𝑛𝑛

−1(𝜉𝜉  ;  Θ)g,(𝜃𝜃) , 

where M𝑛𝑛 (𝜉𝜉  ;  Θ) is the information matrix evaluated at 𝑛𝑛th iteration. And the x∗ will be selected 

from the predetermined design space that maximizes d𝑛𝑛. Then the Fisher information matrix is 

updated as 

M𝑛𝑛+1 (𝜉𝜉  ;  Θ)= (1- 𝛼𝛼𝑛𝑛+1) M𝑛𝑛 (𝜉𝜉  ;  Θ)+𝛼𝛼𝑛𝑛+1f(x∗)(𝑛𝑛+1) f(x∗)T(𝑛𝑛+1) , 

where 𝛼𝛼𝑛𝑛+1 = 1
𝑛𝑛+1

 . 
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The stepwise process will continue until the sensitive function is very close to zero. The c-

optimal design is reached when the stepwise stops (Federov and Hackl, 1997).  

2.4. The Newton-Raphson Algorithm 

The V-algorithm works well for finding optimal design points. However, it does not 

perform effectively to find optimal weights for the optimal design points. Here we use the 

Newton-Raphson algorithm to search optimal weights (Quinn, 2001). 

For solving our problems, we rewrite this algorithm with respect to our optimality 

criterion Ψ and the design weights 𝑤𝑤, 𝑤𝑤 = (𝑤𝑤1,𝑤𝑤2 …𝑤𝑤k). The nonnegative solutions of 𝜕𝜕
𝜕𝜕𝜕𝜕

 Ψ = 

0 are the optimal weights for the given design points (Hyun, 2011).  By the Newton-Raphson 

algorithm, 𝑤𝑤 is update by  

 𝑤𝑤𝑛𝑛𝑛𝑛𝜕𝜕 = 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 -   [ 𝜕𝜕
𝜕𝜕𝜕𝜕

 Ψ]·�𝜕𝜕
2

𝜕𝜕𝑤𝑤
 Ψ� −1.  

When |  𝑤𝑤𝑛𝑛𝑛𝑛𝜕𝜕 - 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 | < ε, where ε is a very small number, say ε=10−6, the algorithm stops and 

 𝑤𝑤𝑛𝑛𝑛𝑛𝜕𝜕  are the optimal weights for the given design points.  

2.5. Carathéodory’s Theorem 

Carathéodory’s Theorem provides an upper bound on the number of design points. By the 

theorem, we have no more than p(p+1)/2 +1 design points, where p is the number of parameters 

in the model.  
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3. MODEL 

In this Chapter, we describe the four-parameter logistic model and present the Fisher 

information matrix, which plays an important role to obtain the c-optimal design. 

We often observe that dose-response relationships follow a sigmoid curve.  To describe 

such relationships, the four-parameter logistic model is frequently used. The mean response for 

the four-parameter logistic model at a given dose 𝑋𝑋𝑖𝑖 is 

𝜇𝜇(𝑋𝑋𝑖𝑖,Θ) = 𝜃𝜃1+(𝜃𝜃2-𝜃𝜃1) 𝑋𝑋𝑖𝑖𝜃𝜃4

𝑋𝑋𝑖𝑖𝜃𝜃4+𝜃𝜃3
𝜃𝜃4, 

 

where 𝑋𝑋𝑖𝑖 is the 𝑖𝑖th dose; 𝜃𝜃1is the mean response at the minimum dose; 𝜃𝜃2 is the mean response at 

the maximum dose; 𝜃𝜃3 is the dose corresponding to the mean response that is halfway between 

the minimum and the maximum effects (we also call it ED50), 𝜃𝜃4 is the slope parameter that 

controls the steepness of the curve. 

To perform our study, we assume that the dose effect Y is a continuous response, then the 

mean response at 𝑋𝑋𝑖𝑖 is 

Y𝑖𝑖𝑖𝑖= 𝜇𝜇 (𝑋𝑋𝑖𝑖,Θ) + 𝜀𝜀𝑖𝑖𝑖𝑖 , 𝜀𝜀𝑖𝑖𝑖𝑖 ~ N (0, 𝜎𝜎2).  

Here 𝜇𝜇 (𝑋𝑋𝑖𝑖,Θ) is the mean dose-response from (3), Θ = (𝜃𝜃1, 𝜃𝜃2,  𝜃𝜃3,  𝜃𝜃4), j = 1, 2, 3… ni , i= 1, 

2, …, k. We assume that the variance 𝜎𝜎2 is an unknown constant. Under this model setup, the 

normalized Fisher information matrix for Θ is obtained below 

M (𝜉𝜉;𝜃𝜃) = 1
σ2

 ∑ 𝜔𝜔if(𝑋𝑋𝑖𝑖,𝜃𝜃)f (𝑋𝑋𝑖𝑖,𝜃𝜃)𝑇𝑇k
𝑖𝑖=1 , 

where f (𝑋𝑋𝑖𝑖) = ( ∂𝜇𝜇 (𝑋𝑋𝑖𝑖,Θ)
∂θ1

, ∂𝜇𝜇 (𝑋𝑋𝑖𝑖,Θ)
∂θ2

 , ∂𝜇𝜇 (𝑋𝑋𝑖𝑖,Θ)
∂θ3

, ∂𝜇𝜇 (𝑋𝑋𝑖𝑖,Θ)
∂θ4

 )𝑇𝑇 =

� θ3
θ4

𝑋𝑋𝑖𝑖θ4+θ3
θ4 , 𝑋𝑋𝑖𝑖θ4

𝑋𝑋𝑖𝑖θ4+θ3
θ4 ,   θ4(θ1−θ2)θ3

(θ4−1)𝑋𝑋𝑖𝑖
θ4

�𝑋𝑋𝑖𝑖θ4+θ3
θ4�

2 ,
θ4(θ2−θ1)θ3

θ4𝑋𝑋𝑖𝑖
θ4𝑜𝑜𝑛𝑛 X

θ3

�𝑋𝑋𝑖𝑖θ4+θ3
θ4�

2   �

𝑇𝑇

. 

Then, we obtain the normalized Fisher information matrix as 
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M (𝜉𝜉;𝜃𝜃) = 1
σ2
∑ 𝜔𝜔i
k
𝑖𝑖=1  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

θ3
2θ4

(𝑋𝑋𝑖𝑖
θ4+θ3

θ4)2
θ3

θ4𝑋𝑋𝑖𝑖θ4

(𝑋𝑋𝑖𝑖
θ4+θ3

θ4)2

θ3
θ4𝑋𝑋𝑖𝑖θ4

(𝑋𝑋𝑖𝑖
θ4+θ3

θ4)2

 (θ1−θ2) θ4θ3
(2θ4−1)𝑋𝑋𝑖𝑖

θ4

�𝑋𝑋𝑖𝑖θ4+θ3
θ4�

3

𝑋𝑋𝑖𝑖2θ4

(𝑋𝑋𝑖𝑖
θ4+θ3

θ4)2

 (θ1−θ2) θ4θ3
(θ4−1)𝑋𝑋𝑖𝑖

2θ4

�𝑋𝑋𝑖𝑖θ4+θ3
θ4�

3

(θ2−θ1)θ3
2θ4𝑋𝑋𝑖𝑖

θ4
𝑜𝑜𝑛𝑛𝑋𝑋𝑖𝑖θ3

�𝑋𝑋𝑖𝑖θ4+θ3
θ4�

3

(θ2−θ1)θ3
2θ4𝑋𝑋𝑖𝑖

2θ4
𝑜𝑜𝑛𝑛𝑋𝑋𝑖𝑖θ3

�𝑋𝑋𝑖𝑖θ4+θ3
θ4�

3

   

 (θ1−θ2) θ4θ3
(2θ4−1)𝑋𝑋𝑖𝑖

θ4

�𝑋𝑋𝑖𝑖θ4+θ3
θ4�

3

(θ2−θ1)θ3
2θ4𝑋𝑋𝑖𝑖

θ4
𝑜𝑜𝑛𝑛𝑋𝑋𝑖𝑖θ3

�𝑋𝑋𝑖𝑖θ4+θ3
θ4�

3

 (θ1−θ2) θ4θ3
(θ4−1)𝑋𝑋𝑖𝑖

2θ4

�𝑋𝑋𝑖𝑖θ4+θ3
θ4�

3

 (θ1−θ2)2 θ4
2θ3

2(θ4−1)
𝑋𝑋𝑖𝑖

2θ4

�𝑋𝑋𝑖𝑖θ4+θ3
θ4�

4

(θ2−θ1)θ3
θ4𝑋𝑋𝑖𝑖

2θ4
𝑜𝑜𝑛𝑛𝑋𝑋𝑖𝑖θ3

�𝑋𝑋𝑖𝑖θ4+θ3
θ4�

3

−(θ1−θ2)2θ3
2θ4−1θ4𝑋𝑋𝑖𝑖

2θ4
𝑜𝑜𝑛𝑛𝑋𝑋𝑖𝑖θ3

�𝑋𝑋𝑖𝑖θ4+θ3
θ4�

4

−(θ1−θ2)2θ3
2θ4−1θ4𝑋𝑋𝑖𝑖

2θ4
𝑜𝑜𝑛𝑛𝑋𝑋𝑖𝑖θ3

�𝑋𝑋𝑖𝑖θ4+θ3
θ4�

4

2(θ2−θ1)2θ3
2θ4𝑋𝑋𝑖𝑖

2θ4
𝑜𝑜𝑛𝑛𝑋𝑋𝑖𝑖θ3

�𝑋𝑋𝑖𝑖θ4+θ3
θ4�

4
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

This information matrix is very important to search c-optimal designs for estimating the  ED𝑝𝑝 in 

the next Chapter.  
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4. DESIGNS 

In this Chapter, we discuss c-optimal designs for estimating the ED𝑝𝑝 under model (4). We 

employ the V-algorithm (Fedorov, 1972) to obtain the optimal design points and the Newton-

Raphon algorithm to obtain the optimal weights for the selected design points. Then we verify 

these optimal designs by the General Equivalence Theorem. To evaluate the c-optimal designs, 

we adopt the experimental setup in Padmanabhan and Dragalin (2010). Let the design space be 

[0, 8] and the values of the model parameters Θ = (0, -1.7, 4, 5). 

4.1. Uniform Design 

When there is no previous knowledge, it is very common to use a uniform design in dose-

response study. It allocates equal number of subjects to equally spaced dose levels. The number 

of design points should be greater than or equal to the number of parameters, which is 4 in our 

model. Also, based on the Carathéodory’s Theorem, we have no more than p(p+1)/2 +1 design 

points, which is 11. Then the possible number of design points are between [4,11]. For our paper, 

we consider three different uniform designs. 𝜉𝜉𝑈𝑈1 is a uniform design with 4 points 

𝜉𝜉𝑈𝑈1 = �
. 0001     2.67       5.33       8

   1
4

              1
4

              1
4

           1
4
 �. 

This uniform design allocates 25% of the subjects at each of the four design points. 𝜉𝜉𝑈𝑈2 is a 

uniform design with 8 points  

𝜉𝜉𝑈𝑈2= �
. 0001     1.14       2.29     3.43      4.57     5.71    6.86     8

      1
8

           1
8

            1
8

            1
8

           1
8

          1
8

           1
8

          1
8
  �. 

This one allocates 12.5% of the subjects at each of the eight design points. 𝜉𝜉𝑈𝑈3 is a uniform 

design with 11 points 

𝜉𝜉𝑈𝑈3= �
. 0001   .8     1.6     2.4     3.2    4.0    4.8    5.6    6.4    7.2    8

 1
11

          1
11

       1
11

      1
11

     1
11

      1
11

      1
11

     1
11

     1
11

    1
11

     1
11

 �. 
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This allocates around 9% of the subjects at each of the 11 design points. These three uniform 

designs will be compared to our c-optimal designs for estimating the ED𝑝𝑝 in chapter 5. 

4.2. c-Optimal Design for Estimating the 𝐄𝐄𝐄𝐄𝒑𝒑 

In general, c-optimal design estimates a function of model parameters with a minimum 

variance. The c-optimal design criterion is already shown in the background. For this paper, we 

are interested in c-optimal design for estimating the ED𝑝𝑝. Under model (4), ED𝑝𝑝 is expressed in 

explicit form. ED𝑝𝑝 is the solution of the following equation, 

𝑝𝑝 = μ (Xi,Θ) - θ1
θ2-θ1

, 

where 𝑝𝑝 represents 100𝑝𝑝%  of the maximum treatment effect, μ (Xi,Θ) is the mean response at 𝑋𝑋𝑖𝑖. 

Then the ED𝑝𝑝 is obtained as 

ED𝑝𝑝 =  θ3 ( 𝑝𝑝
1−𝑝𝑝

)
1
θ4. 

Let ED𝑝𝑝� denote the maximum likelihood estimate of ED𝑝𝑝, then the variance of estimating the 

ED𝑝𝑝 is 

Var(ED𝑝𝑝� ) =[ ED𝑝𝑝
′]𝑇𝑇M(ξ;Θ)−1ED𝑝𝑝

′, 

where [ ED𝑝𝑝
′]𝑇𝑇=�0,   0, ( 𝑝𝑝

1−𝑝𝑝
)
1
θ4 ,−[  𝜃𝜃3

 𝜃𝜃4
2 �

𝑝𝑝
1−𝑝𝑝

�
1
θ4 log( 𝑝𝑝

1−𝑝𝑝
) ] � . 

C-optimal design for estimating the ED𝑝𝑝 minimizes the variance of estimating the ED𝑝𝑝. 

We use the V-algorithm to find the c-optimal design points and the Newton-Raphson algorithm 

to find the optimal weights for the optimal design points. Then we use the General Equivalence 

Theorem to verify the design is indeed the c-optimal design.  According to the General 

Equivalence Theorem, the design 𝜉𝜉∗  is a c-optimal design if and only if 

 { f𝑇𝑇(x) M−1(𝜉𝜉∗ ;  Θ)g,(𝜃𝜃) }2 - [g,(𝜃𝜃)]𝑇𝑇M−1(𝜉𝜉∗ ;  Θ)g,(𝜃𝜃) ≤ 0. 
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Here the equality holds if the x is one of the c-optimal design points. To illustrate the c-optimal 

design for estimating the ED𝑝𝑝, we consider five different values of 𝑝𝑝 (10, 30, 50, 70, 90). 

We use the V-algorithm to find the c-optimal design points (Appendix A) and the 

Newton-Raphson algorithm to find the optimal weights (Appendix B). The c-optimal designs for 

estimating ED10, ED30, ED50, ED70, and ED90 are as follows: 

(1) c-optimal design for estimating ED10 is 

𝜉𝜉 ED10=� . 001          3.111         5.221
   .36             .50                .14 �. 

The c-optimal design for estimating  ED10 allocates 36% of the subjects to .001, 

50% of the subjects to 3.111 and 14% of the subjects to 5.221. The optimal design is 

verified by the General Equivalence Theorem (Figure 1). According to the General 

Equivalence Theorem, only when the design points are c-optimal design points, the 

sensitive function becomes very close to zero. Otherwise, it is always less than zero.  

 
Figure 1. Plot of the sensitive function for c-optimal design for estimating ED10. 

(2) c-optimal design for estimating ED30 is 

𝜉𝜉 ED30=� . 001           3.511           7.991
   .323            .500              .176 �. 
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The c-optimal design for estimating  ED30 allocates 32.3% of the subjects to .001, 

50% of the subjects to 3.511 and 17.6% of the subjects to 7.991. The optimal design 

is verified by the General Equivalence Theorem (Figure 2). 

 
Figure 2. Plot of the sensitive function for c-optimal design for estimating ED30. 

(3) c-optimal design for estimating ED50 is 

𝜉𝜉 ED50=�. 991             4.181            7.991
. 214             .500              .286 �. 

 The c-optimal design for estimating  ED50 allocates 21.4% of the subjects to .991, 

50% of the subjects to 4.181 and 28.6% of the subjects to 7.991. The optimal design 

is verified by the General Equivalence Theorem (Figure 3). 
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Figure 3.  Plot of the sensitive function for c-optimal design for estimating ED50. 

(4) c-optimal design for estimating ED70 is 

𝜉𝜉 ED70=�2.461             4.601            7.991
. 17                  .50                   .33 �. 

 The c-optimal design for estimating  ED70 allocates 17% of the subjects to 2.461, 

50% of the subjects to 4.601 and 33% of the subjects to 7.991. The optimal design is 

verified by the General Equivalence Theorem (Figure 4). 

 
Figure 4. Plot of the sensitive function for c-optimal design for estimating ED70. 
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(5) c-optimal design for estimating ED90 is 

𝜉𝜉 ED90=�. 001        3.021        4.901       7.991
. 051          .201          .449          .299 �. 

 The c-optimal design for estimating  ED90 allocates 5.1% of the subjects to .001, 

20.1% of the subjects to 3.021, 44.9% of the subjects to 4.901 and 29.9% of the 

subjects to 7.991. The optimal design is verified by the General Equivalence Theorem 

(Figure 5). 

 
Figure 5. Plot of the sensitive function for c-optimal design for estimating ED90. 

Clearly, we can see that the c-optimal design for estimating the  ED𝑝𝑝 is changed by 

different values of 𝑝𝑝.  

4.3. Robust c-Optimal Design 

From previous section, we can see that for the four-parameter logistic model, the c-

optimal designs for estimating the ED𝑝𝑝 is changed by different values of 𝑝𝑝. In real studies, the 

researcher may want to change the values of 𝑝𝑝  to study different ED𝑝𝑝𝑠𝑠 in the middle of the study. 

For example, they set the experiments to study the ED50. Then later, they change their goal to 

study the ED30 or ED90. Because c-optimal design for estimating the ED𝑝𝑝 is changed by different 

values of 𝑝𝑝, it cannot be guaranteed that the c-optimal design for estimating the ED𝑝𝑝 provides the 
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same performance when the values of 𝑝𝑝 are changed. Thus, we are interested in studying robust 

c-optimal design for estimating the ED𝑝𝑝 that works well for the changes in the values of 𝑝𝑝. For 

illustration, we consider the five values of 𝑝𝑝 to study the robust c-optimal design, but this could 

be extended to any values of 𝑝𝑝. The robust c-optimal design combines the five c-optimality 

criteria into one optimality criteria using the idea of compound design (Atkinson et al., 2007). 

The idea is that the robust c-optimal design maximizes the product of the five efficiencies for 

estimating the five different ED𝑝𝑝𝑠𝑠, so that the robust design maximizes the efficiency for 

estimating each ED𝑝𝑝. 

A design efficiency shows how a design performs with respect to some criteria. 

Eff ED𝑝𝑝(𝜉𝜉)  measures the efficiency of a design 𝜉𝜉 for estimating the  ED𝑝𝑝 against 𝜉𝜉 ED𝑝𝑝 and it is 

obtained as 

Eff ED𝑝𝑝(𝜉𝜉) = 
� ED𝑝𝑝′ �

𝑇𝑇
M�𝜉𝜉 ED𝑝𝑝  ; Θ�

−1
 ED𝑝𝑝′

� ED𝑝𝑝′ �
𝑇𝑇
M(𝜉𝜉 ; Θ)−1 ED𝑝𝑝′

. 

Since 𝜉𝜉 ED𝑝𝑝 provides the minimum variance of estimating the ED𝑝𝑝, the Eff ED𝑝𝑝(𝜉𝜉) is always 

between 0 and 1. We discuss the efficiency in the next chapter in detail. 

The robust c-optimal design for estimating the  ED𝑝𝑝 is 

𝜉𝜉𝑅𝑅𝑜𝑜𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 = 𝑀𝑀𝑀𝑀𝑀𝑀 �Eff ED10(𝜉𝜉). Eff ED30(𝜉𝜉). Eff ED50(𝜉𝜉). Eff ED70(𝜉𝜉). Eff ED90(𝜉𝜉)� =

𝑀𝑀𝑀𝑀𝑀𝑀 �
𝑉𝑉𝑚𝑚𝑉𝑉( ED10)𝜉𝜉 ED10
𝑉𝑉𝑚𝑚𝑉𝑉( ED10)𝜉𝜉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

∙
𝑉𝑉𝑚𝑚𝑉𝑉( ED30)𝜉𝜉 ED30
𝑉𝑉𝑚𝑚𝑉𝑉( ED30)𝜉𝜉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

∙
𝑉𝑉𝑚𝑚𝑉𝑉( ED50)𝜉𝜉 ED50
𝑉𝑉𝑚𝑚𝑉𝑉( ED50)𝜉𝜉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

∙
𝑉𝑉𝑚𝑚𝑉𝑉( ED70)𝜉𝜉 ED70
𝑉𝑉𝑚𝑚𝑉𝑉( ED70)𝜉𝜉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

∙
𝑉𝑉𝑚𝑚𝑉𝑉( ED90)𝜉𝜉 ED90
𝑉𝑉𝑚𝑚𝑉𝑉( ED90)𝜉𝜉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

�. 

The above equation can be rewritten as 

𝜉𝜉𝑅𝑅𝑜𝑜𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡= 𝑀𝑀𝑀𝑀𝑀𝑀(-log(𝑉𝑉𝑀𝑀𝑉𝑉( ED10)𝜉𝜉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)-log(𝑉𝑉𝑀𝑀𝑉𝑉( ED30)𝜉𝜉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)-log(𝑉𝑉𝑀𝑀𝑉𝑉( ED50)𝜉𝜉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) 

-log(𝑉𝑉𝑀𝑀𝑉𝑉( ED70)𝜉𝜉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)-log (𝑉𝑉𝑀𝑀𝑉𝑉( ED90)𝜉𝜉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)).   
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The General Equivalence Theorem states that 𝜉𝜉𝑅𝑅𝑜𝑜𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 is the robust c-optimal design if 

and only if 

∑ 𝜆𝜆𝑖𝑖
 (f(x) M(𝜉𝜉𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ; Θ)−1� ED𝑝𝑝′ �

𝑇𝑇
)2  

 ED𝑝𝑝′  M(𝜉𝜉𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ; Θ)−1[ ED𝑝𝑝′ ]𝑇𝑇  𝐴𝐴𝑜𝑜𝑜𝑜 𝑝𝑝    ≤ 1.  

where ∑ 𝜆𝜆𝑖𝑖 = 1𝐴𝐴𝑜𝑜𝑜𝑜 𝑝𝑝  and 𝜆𝜆𝑖𝑖 is a weight that represents the relative importance of 𝑖𝑖𝑡𝑡ℎ ED𝑝𝑝 in the 

list of interesting ED𝑝𝑝𝑠𝑠. Here we assume that the five different ED𝑝𝑝𝑠𝑠 are equally important and it 

provides that 𝜆𝜆𝑖𝑖  =1/5. To find the robust c-optimal design, we again apply the V-algorithm 

(Appendix C). The robust c-optimal design for estimating the five different ED𝑝𝑝𝑠𝑠 is 

 𝜉𝜉𝑅𝑅𝑜𝑜𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡=�
. 001        3.221        4.581       7.991
. 197          .269          .322          .212 �. 

The robust c-optimal design allocates 19.7% of the subjects to .001, 26.9% of the subjects to 

3.221, 32.2% of the subjects to 4.581 and 21.2% of the subjects to 7.991. The optimal design is 

also verified by the General Equivalence Theorem (Figure 6). 

 
Figure 6. Plot of the sensitive function for robust c-optimal design.  

Figure 6 shows that 𝜉𝜉𝑅𝑅𝑜𝑜𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 is indeed robust c-optimal design and it maximizes the 

efficiencies for estimating the five different ED𝑝𝑝𝑠𝑠.  
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5. EFFICIENCY 

In this Chapter, we compare the efficiencies of our optimal designs to see their 

performance. In this paper, we focus on efficiency with respect to c-optimality criterion. We 

compare the variance of estimating the ED𝑝𝑝 for a given design to the variance of estimating the 

same ED𝑝𝑝 under c-optimal design for the ED𝑝𝑝. The formula was given in the earlier chapter.  

In general,  if the efficiency of a design 𝜉𝜉 is q, it implies design 𝜉𝜉 needs 100(1/q-1)% 

more subjects to provide the same accuracy for estimating interesting features as the optimal 

design provides. So, Eff ED𝑝𝑝(𝜉𝜉) tells us how many more samples we still need for estimating the 

ED𝑝𝑝 to have the same accuracy as the c-optimal design does. If a design 𝜉𝜉 works very close to 

the c-optimal design for estimating the ED𝑝𝑝, then Eff ED𝑝𝑝(𝜉𝜉) ≈ 1. Otherwise, Eff ED𝑝𝑝(𝜉𝜉) becomes 

far from 1. For example, Eff𝜉𝜉 ED𝑝𝑝
 = .5 implies 100(1/.5-1)% =100% more subjects are needed for 

a design 𝜉𝜉 to estimate the  ED𝑝𝑝 with the same accuracy as the c-optimal design provides. 

We compare all the designs: the c-optimal designs for estimating the ED𝑝𝑝 , the uniform 

designs, and the robust c-optimal design for estimating five different ED𝑝𝑝𝑠𝑠. Again, we consider 

the five different values of 𝑝𝑝 to demonstrate the ED𝑝𝑝. Their relative efficiencies are shown in 

Table 1. We can see that the c-optimal design for the  ED𝑝𝑝 works really poorly for different 

values of 𝑝𝑝 and their changes are very dramatic. 

The uniform designs provide efficiencies for estimating the five different  ED𝑝𝑝𝑠𝑠 between 

25% and 60%, regardless of the number of design points they used. 

The robust c-optimal design does not provide very high efficiency for estimating the 

five ED𝑝𝑝𝑠𝑠. However, it outperforms compared to the other designs and provides at least 58% 

efficiency for estimating the five different ED𝑝𝑝𝑠𝑠 and the changes are not dramatic. 
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Table 1 

Efficiency matrix of designs for estimating the ED𝑝𝑝 

Design Eff𝜉𝜉 ED10
 Eff𝜉𝜉 ED30

 Eff𝜉𝜉 ED50
 Eff𝜉𝜉 ED70

 Eff𝜉𝜉 ED90
 

𝜉𝜉 ED10 1 0.0003042608 0.0001011274 0.000089 0.0001514567 

𝜉𝜉 ED30 0.001247212 1 0.0009560702 0.0004052225 0.0004448016 

𝜉𝜉 ED50 0.001347372 0.003143176 1 0.004628685 0.002447087 

𝜉𝜉 ED70 0.000195762 0.000218999 0.000767351 1 0.001818278 

𝜉𝜉 ED90 0.2247709 0.1990899 0.3369822 0.7059026 1 

𝜉𝜉𝑈𝑈1 0.3591172 0.2489504 0.2611956 0.3516158 0.6050842 

𝜉𝜉𝑈𝑈2 0.3888831 0.4560005 0.4627377 0.3724073 0.4291427 

𝜉𝜉𝑈𝑈3 0.3911447 0.4581159 0.4603254 0.369661 0.4270645 

𝜉𝜉𝑅𝑅𝑜𝑜𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 0.5757116 0.6056778 0.6771305 0.6325133 0.7589418 
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6. CONCLUSION 

Optimal design plays a key role in designing experiments efficiently. It specifies how to 

distribute our resources over treatments in the most efficient way. Different types of optimal 

designs have different goals. For our paper, we study c-optimal designs for estimating the ED𝑝𝑝. 

We found that the c-optimal design for estimating the ED𝑝𝑝 is changed by the value of  𝑝𝑝 under 

the four- parameter logistic model. We checked the efficiencies and observed that the c-optimal 

design performs poorly when the value of 𝑝𝑝 is changed.  In order to avoid this problem, we 

present the robust c-optimal design for estimating the ED𝑝𝑝 and it works fairly well when the 

values of 𝑝𝑝 are changed. 

The robust c-optimal design works well for the values of 𝑝𝑝 that we used to construct the 

robust c-optimal design. In future research, we want to investigate whether the robust c-optimal 

design also works well for the values of 𝑝𝑝 that are not used to build the robust design. For 

example, in our study we used ED10, ED30, ED50, ED70, and ED90 to construct the robust c-

optimal design. However, does the robust c-optimal design still work well for estimating 

ED20, ED40, ED60, and ED80? 

Bretz, Dette and Pinheiro (2010) states that c-optimal design for estimating the ED𝑝𝑝 is 

very sensitive on the model choice. Here we used the four-parameter logistic model. We are also 

interested in studying the robust c-optimal design that works well for different models. In the 

future, we will find a robust c-optimal design that works well for both different values of 𝑝𝑝 and 

the changes in the models.  
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APPENDIX A. R CODE FOR C OPTIMAL DESIGN POINTS 

## Generalized Inverse of a Matrix 

ginv<-function(X, tol = sqrt(.Machine$double.eps)) 

{ 

  dnx <- dimnames(X) 

  if(is.null(dnx)) dnx <- vector("list", 2) 

  s <- svd(X) 

  nz <- s$d > tol * s$d[1] 

  structure( 

    if(any(nz)) s$v[, nz] %*% (t(s$u[, nz])/s$d[nz]) else X, 

    dimnames = dnx[2:1]) 

} 

###c-optimality for research### 

library(matrixcalc) 

#Number of Parameters 

k=4   

#Value of Parameters 

sita1=0 

sita2=-1.7 

sita3=4 

sita4=5 

#Initial value 

x0=c(0.1,2.91,4.83,8) 
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n0=length(x0) 

w=rep(1/n0,(n0-1)) 

D=rbind(x0,w) 

#information matrix 

#1.Information matrix for one design point 

infor=function(x) 

{f=matrix(c(sita3^sita4/(x^sita4+sita3^sita4), x^sita4/(x^sita4+sita3^sita4), (sita1-

sita2)*sita3^(sita4-1)*sita4*x^sita4/(x^sita4+sita3^sita4)^2, (sita2-

sita1)*(sita3^sita4)*x^sita4*log(x/sita3)/(x^sita4+sita3^sita4)^2),nrow=4,ncol=1,byrow=F) 

f%*%t(f)} 

#2.Updated information matrix 

upinfor=function(W,X) 

{k=length(X) 

last_infor=infor(X[k]) 

infor=(1-sum(W))*last_infor 

for (i in 1:(k-1)) 

{infor=infor+W[i]*infor(X[i])} 

infor} 

W=w[1:n0-1] 

X=x0 

newM=upinfor(W,X) 

#initial information matrix 

M0=upinfor(w,x0)  
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#Find dn, 

f<-function(x){ 

matrix(c(sita3^sita4/(x^sita4+sita3^sita4), x^sita4/(x^sita4+sita3^sita4), (sita1-

sita2)*sita3^(sita4-1)*sita4*x^sita4/(x^sita4+sita3^sita4)^2, (sita2-

sita1)*(sita3^sita4)*x^sita4*log(x/sita3)/(x^sita4+sita3^sita4)^2),nrow=4,ncol=1,byrow=F) 

} 

phi.1 <- function(x){ 

 matrix(c(0, 0, (x/(1-x))^(1/sita4), -sita3/sita4^2*(x/(1-x))^(1/sita4)*log(x/(1-x))), nrow=4, 

ncol=1, byrow=F) 

} 

p=1 

t=2 

while(p>.0005){ 

 x1=seq(0.001,8,.01) 

 p1=0.1 

 n1=length(x1) 

 dn=rep(0,n1) 

 for (j in 1:n1) 

 {dn[j]=(t(f(x1[j]))%*%ginv(M0)%*%phi.1(p1))^2} 

 for (j in 1:n1) 

  {if(max(dn)==dn[j])x1[j]=x1[j] else x1[j]=NA} 

 newX=na.omit(x1) 

 newdn=max(dn) 
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 k=t(phi.1(p1))%*%ginv(M0)%*%phi.1(p1) 

#Find alpha(n+1) 

 #an=(newdn-k)/(k*(newdn-1)) 

 an=1/t 

 #p<-abs(newdn-k) 

#Get M(n+1) 

 newM=c(1-an)*M0+c(an)*f(newX)%*%t(f(newX)) 

 M0<-newM 

 p=abs((t(f(newX))%*%ginv(M0)%*%phi.1(p1))^2-

(t(phi.1(p1))%*%ginv(M0)%*%phi.1(p1))) 

 newW=(1-an)*D[2,] 

 W=c(newW,an) 

 X=c(D[1,],newX) 

 newD=rbind(X,W) 

 D=newD 

 print(p) 

 t=t+1 

} 

#Summarize the result 

c_optimal=by(D[2,],D[1,],FUN=sum) 

 

#Verify c-optimal design 

x0=D[1,] 
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n0=length(x0) 

w=D[2,1:(n0-1)] 

M=upinfor(w,x0) 

x1=seq(0.001,8,.01) 

n1=length(x1) 

ds=rep(0,n1) 

BB=t(phi.1(p1))%*%ginv(M)%*%phi.1(p1) 

for (i in 1:n1) 

{ds[i]=(t(f(x1[i]))%*%ginv(M)%*%phi.1(p1))^2-BB} 

plot(x1,ds,cex=.1,main="Verify the c-optimal design for ED10",ylab="Sensitive 

function",xlab="Dose levels")  
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APPENDIX B. R CODE FOR C OPTIMAL WEIGHTS 

## Generalized Inverse of a Matrix 

ginv<-function(X, tol = sqrt(.Machine$double.eps)) 

{ 

  dnx <- dimnames(X) 

  if(is.null(dnx)) dnx <- vector("list", 2) 

  s <- svd(X) 

  nz <- s$d > tol * s$d[1] 

  structure( 

    if(any(nz)) s$v[, nz] %*% (t(s$u[, nz])/s$d[nz]) else X, 

    dimnames = dnx[2:1]) 

} 

#number of parameter 

k=4 

#design spage(log(x)) 

LB=log(.001) 

LB=round(LB,2) 

UB=log(8) 

UB=round(UB,2) 

x=seq(LB,UB,.01) 

 

sita1=0 

sita2=-1.7 
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sita3=4 

sita4=5 

#value of parameter 

T=c(sita1,sita2,sita3,sita4) 

#information matrix 

#1.Information matrix for one design point 

infor=function(T,X) 

{f=matrix(c(T[3]^T[4]/(X^T[4]+T[3]^T[4]), X^T[4]/(X^T[4]+T[3]^T[4]), (T[1]-

T[2])*T[3]^(T[4]-1)*T[4]*X^T[4]/(X^T[4]+T[3]^T[4])^2, (T[2]-

T[1])*(T[3]^T[4])*X^T[4]*log(X/T[3])/(X^T[4]+T[3]^T[4])^2),nrow=4,ncol=1,byrow=F) 

f%*%t(f)} 

#2.Updated information matrix 

upinfor=function(W,T,X) 

{k=length(X) 

last_infor=infor(T,X[k]) 

infor=(1-sum(W))*last_infor 

for (i in 1:(k-1)) 

{infor=infor+W[i]*infor(T,X[i])} 

infor} 

 

#g function 

g=function(X) 
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{matrix(c(0, 0, (X/(1-X))^(1/sita4), -sita3/sita4^2*(X/(1-X))^(1/sita4)*log(X/(1-X))), nrow=4, 

ncol=1, byrow=F)}  

#NW algorithm to find weight 

c_weight=function(W,T,X,d,r) 

{p=length(W) 

k=length(X) 

inv=ginv(upinfor(W,T,X)) 

V=g(r)%*%t(g(r)) 

M=upinfor(W,T,X) 

f1=rep(0,p) 

f2=matrix(c(rep(f1,p)),nrow=p,ncol=p,byrow=F) 

for (i in 1:p) 

{f1[i]=sum(diag(-inv%*%(infor(T,X[i])-infor(T,X[k]))%*%inv%*%V))} 

for(i in 1:p) 

{for(j in 1:p) 

{f2[i,j]=(sum(diag((inv%*%(infor(T,X[j])-infor(T,X[k]))%*%inv%*%(infor(T,X[i])-

infor(T,X[k]))%*%inv+inv%*%(infor(T,X[i])-infor(T,X[k]))%*%inv%*%(infor(T,X[j])-

infor(T,X[k]))%*%inv)%*%V)))}} 

newweight=W-d*(f1%*%ginv(f2)) 

newweight} 

##NW algorithm 

Search_weight=function(X,T,r) 

{diff=10 
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k=length(X) 

W=rep(1/k,k-1) 

while(diff>.000000001) 

{d=.2 

NW=c_weight(W,T,X,d,r) 

minW=min(min(NW),1-sum(NW)) 

while(minW<0 & d>.0001) 

{d=d/2 

NW=c_weight(W,T,X,d,r) 

minW=min(min(NW),1-sum(NW))} 

NW=c(NW,1-sum(NW)) 

n=length(NW) 

minW=min(NW) 

if (minW<0) 

{for(i in 1:n) 

{if (NW[i]==minW)NW[i]=0}} 

diff=max(abs(W-NW[1:n-1])) 

D=rbind(X,NW) 

for (i in 1:n) 

{if (D[2,i]==0) D[,i]=NA} 

X=D[1,] 

W=D[2,] 

X=na.omit(X) 
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W=na.omit(W) 

k=length(X) 

W=W[1:k-1] 

} 

W=c(W,1-sum(W)) 

D=rbind(X,W) 

D} 

r=.9 

X=c(0.001, 3.02, 4.90, 7.99) 

Search_weight(X,T,r)  
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APPENDIX C. R CODE FOR ROUBST C-OPTIMAL DESIGN 

## Generalized Inverse of a Matrix 

ginv<-function(X, tol = sqrt(.Machine$double.eps)) 

{ 

  dnx <- dimnames(X) 

  if(is.null(dnx)) dnx <- vector("list", 2) 

  s <- svd(X) 

  nz <- s$d > tol * s$d[1] 

  structure( 

    if(any(nz)) s$v[, nz] %*% (t(s$u[, nz])/s$d[nz]) else X, 

    dimnames = dnx[2:1]) 

} 

###c-optimality for research### 

library(matrixcalc) 

#Number of Parameters 

k=4   

#Value of Parameters 

sita1=0 

sita2=-1.7 

sita3=4 

sita4=5 

 

#Initial value 
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x0=c(0.1,2.91,4.83,8) 

n0=length(x0) 

w=rep(1/n0,(n0-1)) 

D=rbind(x0,w) 

#information matrix 

#1.Information matrix for one design point 

infor=function(x) 

{f=matrix(c(sita3^sita4/(x^sita4+sita3^sita4), x^sita4/(x^sita4+sita3^sita4), (sita1-

sita2)*sita3^(sita4-1)*sita4*x^sita4/(x^sita4+sita3^sita4)^2, (sita2-

sita1)*(sita3^sita4)*x^sita4*log(x/sita3)/(x^sita4+sita3^sita4)^2),nrow=4,ncol=1,byrow=F) 

f%*%t(f)} 

#2.Updated information matrix 

upinfor=function(W,X) 

{k=length(X) 

last_infor=infor(X[k]) 

infor=(1-sum(W))*last_infor 

for (i in 1:(k-1)) 

{infor=infor+W[i]*infor(X[i])} 

infor} 

W=w[1:n0-1] 

X=x0 

newM=upinfor(W,X) 

#initial information matrix 
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M0=upinfor(w,x0)  

#Find dn, 

f<-function(x){ 

matrix(c(sita3^sita4/(x^sita4+sita3^sita4), x^sita4/(x^sita4+sita3^sita4), (sita1-

sita2)*sita3^(sita4-1)*sita4*x^sita4/(x^sita4+sita3^sita4)^2, (sita2-

sita1)*(sita3^sita4)*x^sita4*log(x/sita3)/(x^sita4+sita3^sita4)^2),nrow=4,ncol=1,byrow=F) 

} 

phi.1 <- function(x){ 

 matrix(c(0, 0, (x/(1-x))^(1/sita4), -sita3/sita4^2*(x/(1-x))^(1/sita4)*log(x/(1-x))), nrow=4, 

ncol=1, byrow=F) 

} 

p=1 

t=2 

ob=function(x,p) 

{(((t(f(x))%*%ginv(M0)%*%phi.1(p))^2/(t(phi.1(p)))%*%ginv(M0)%*%phi.1(p)))} 

while(p>.0005){ 

 x1=seq(0.001,8,.01) 

 p1=c(.1, .3, .5, .7, .9) 

      T=length(p1) 

 n1=length(x1) 

 dn=rep(0,n1) 

 for (j in 1:n1) 
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 {dn[j]=.2*ob(x1[j],p1[1])+.2*ob(x1[j],p1[2])+.2*ob(x1[j],p1[3])+.2*ob(x1[j],p1[4])+.2*

ob(x1[j],p1[5])} 

 for (j in 1:n1) 

  {if(max(dn)==dn[j])x1[j]=x1[j] else x1[j]=NA} 

 newX=na.omit(x1) 

 newdn=max(dn) 

 k=1 

#Find alpha(n+1) 

 #an=(newdn-k)/(k*(newdn-1)) 

 an=1/t 

 #p<-abs(newdn-k) 

 

#Get M(n+1) 

 newM=c(1-an)*M0+c(an)*f(newX)%*%t(f(newX)) 

 M0<-newM 

 p=abs(newdn-1) 

 newW=(1-an)*D[2,] 

 W=c(newW,an) 

 X=c(D[1,],newX) 

 newD=rbind(X,W) 

 D=newD 

 print(p) 

 t=t+1 
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} 

#Summarize the result 

c_optimal=by(D[2,],D[1,],FUN=sum) 

#Verify c-optimal design 

x0=D[1,] 

n0=length(x0) 

w=D[2,1:(n0-1)] 

M=upinfor(w,x0) 

x1=seq(0.001,8,.01) 

n1=length(x1) 

ds=rep(0,n1) 

#BB=t(phi.1(.1))%*%ginv(M)%*%phi.1(.1)%*%(t(phi.1(.3))%*%ginv(M)%*%phi.1(.3))%*%(t

(phi.1(.5))%*%ginv(M)%*%phi.1(.5))%*%(t(phi.1(.7))%*%ginv(M)%*%phi.1(.7))%*%(t(phi.

1(.9))%*%ginv(M)%*%phi.1(.9)) 

for (i in 1:n1) 

{ds[i]=.2*ob(x1[i],p1[1])+.2*ob(x1[i],p1[2])+.2*ob(x1[i],p1[3])+.2*ob(x1[i],p1[4])+.2*ob(x1[i]

,p1[5])} 

plot(x1,ds,cex=.1,main="Verify the robust c-optimal design for different EDp",ylab="Sensitive 

function",xlab="Dose levels") 
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APPENDIX D. R CODE FOR FINDING EFFICIENCY 

## Generalized Inverse of a Matrix 

ginv<-function(X, tol = sqrt(.Machine$double.eps)) 

{ 

  dnx <- dimnames(X) 

  if(is.null(dnx)) dnx <- vector("list", 2) 

  s <- svd(X) 

  nz <- s$d > tol * s$d[1] 

  structure( 

    if(any(nz)) s$v[, nz] %*% (t(s$u[, nz])/s$d[nz]) else X, 

    dimnames = dnx[2:1]) 

} 

#information matrix 

#1.Information matrix for one design point 

infor=function(T,X) 

{f=matrix(c(T[3]^T[4]/(X^T[4]+T[3]^T[4]), X^T[4]/(X^T[4]+T[3]^T[4]), (T[1]-

T[2])*T[3]^(T[4]-1)*T[4]*X^T[4]/(X^T[4]+T[3]^T[4])^2, (T[2]-

T[1])*(T[3]^T[4])*X^T[4]*log(X/T[3])/(X^T[4]+T[3]^T[4])^2),nrow=4,ncol=1,byrow=F) 

f%*%t(f)} 

#2.Updated information matrix 

upinfor=function(W,T,X) 

{k=length(X) 

last_infor=infor(T,X[k]) 
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infor=(1-sum(W))*last_infor 

for (i in 1:(k-1)) 

{infor=infor+W[i]*infor(T,X[i])} 

infor} 

f<-function(x){ 

matrix(c(sita3^sita4/(x^sita4+sita3^sita4), x^sita4/(x^sita4+sita3^sita4), (sita1-

sita2)*sita3^(sita4-1)*sita4*x^sita4/(x^sita4+sita3^sita4)^2, (sita2-

sita1)*(sita3^sita4)*x^sita4*log(x/sita3)/(x^sita4+sita3^sita4)^2),nrow=4,ncol=1,byrow=F) 

} 

#g function 

g=function(X) 

{matrix(c(0, 0, (X/(1-X))^(1/sita4), -sita3/sita4^2*(X/(1-X))^(1/sita4)*log(X/(1-X))), nrow=4, 

ncol=1, byrow=F)}  

#Value of Parameters 

sita1=0 

sita2=-1.7 

sita3=4 

sita4=5 

T=c(sita1,sita2,sita3,sita4) 

#robust design points 

X2=c(0.001,3.221,4.581,7.991) 

W2=c(0.197, 0.269, 0.322) 

#c-optimal design points 
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X1=c(0.001,3.021,4.901,7.991) 

W1=c(0.051, 0.201, 0.449) 

LB=.0001 

UB=8 

U4=c(LB,LB+8/3,LB+2*(8/3),LB+3*(8/3)) 

W4=rep(1/4,3) 

U8=c(LB,LB+8/7,LB+2*(8/7),LB+3*(8/7),LB+4*(8/7),LB+5*(8/7),LB+6*(8/7),LB+7*(8/7)) 

W8=rep(1/8,7) 

U11=c(LB,LB+8/10,LB+2*(8/10),LB+3*(8/10),LB+4*(8/10),LB+5*(8/10),LB+6*(8/10),LB+7*

(8/10),LB+8*(8/10),LB+9*(8/10),LB+10*(8/10)) 

W11=rep(1/11,10) 

##Var10 

eff10=function(X2,W2) 

{M10=upinfor(W1,T,X1) 

M=upinfor(W2,T,X2) 

p=.90 

N=(t(g(p))%*%ginv(M10)%*%g(p)) 

DN=t(g(p))%*%ginv(M)%*%g(p) 

eff=N/DN 

eff} 

eff10(X2,W2) 

eff10(U4,W4) 

eff10(U8,W8) 
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eff10(U11,W11) 
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