
ON K-MEANS CLUSTERING USING MAHALANOBIS

DISTANCE

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Joshua David Nelson

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Statistics

April 2012

Fargo, North Dakota

 North Dakota State University
 Graduate School

 Title

On K-Means Clustering Using Mahalanobis Distance

 By

Joshua David Nelson

The Supervisory Committee certifies that this disquisition complies with North

Dakota State University’s regulations and meets the accepted standards for the

degree of

 MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Volodymyr Melnykov

Chair

Rhonda Magel

Seung Won Hyun

James Coykendall

 Approved:

5/7/2012

Rhonda Magel

Date

Department Chair

ABSTRACT

A problem that arises quite frequently in statistics is that of identifying groups,

or clusters, of data within a population or sample. The most widely used procedure to

identify clusters in a set of observations is known as K-Means. The main limitation

of this algorithm is that it uses the Euclidean distance metric to assign points to

clusters. Hence, this algorithm operates well only if the covariance structures of the

clusters are nearly spherical and homogeneous in nature. To remedy this shortfall

in the K-Means algorithm the Mahalanobis distance metric was used to capture the

variance structure of the clusters. The issue with using Mahalanobis distances is that

the accuracy of the distance is sensitive to initialization. If this method serves as

a significant improvement over its competitors, then it will provide a useful tool for

analyzing clusters.

iii

TABLE OF CONTENTS

ABSTRACT . iii

LIST OF TABLES . v

LIST OF FIGURES . vi

1. INTRODUCTION TO CLUSTER ANALYSIS . 1

1.1. Hierarchical Clustering . 1

1.2. Model-Based Clustering . 3

1.3. Partitional Clustering . 5

2. K-MEANS USING MAHALANOBIS DISTANCES 9

3. SIMULATION STUDY . 15

4. FURTHER APPLICATIONS TO REAL DATA . 22

5. CONCLUSION . 25

REFERENCES . 27

APPENDIX . 29

iv

LIST OF TABLES

Table Page

1 Cluster Parameters for Simulation Study. 21

2 Results for Bivariate Data. 21

3 Results for 5-variate Data. 21

4 Results for Iris Data Classification. 24

v

LIST OF FIGURES

Figure Page

1 An illustration of how the K-Means algorithm would partition the
points into clusters during a single iteration. 7

2 The smaller of the two rings is the 95% confidence ellipsoid of the
spherical cluster, and the larger of the two rings is the 95% confidence
ellipsoid of the cluster after the stretching step. 13

3 The graph shows 500 bivariate observations divided into five clusters
with minimal overlap (Ωmax = 0.005). 16

4 Box plots for K-Means, MK-Means1, and MK-Means2 for Bivariate
Case with 5 Clusters. 19

5 Box plots for K-Means, MK-Means1, and MK-Means2 for 5-variate
Case with 5 Clusters. 19

6 Box plots for K-Means, MK-Means1, and MK-Means2 for Bivariate
Case with 10 Clusters. 20

7 Box plots for K-Means, MK-Means1, and MK-Means2 for 5-variate
Case with 10 Clusters. 20

8 Iris setosa observations are shown in black, Iris versicolor in red, and
Iris virginica in green. 23

vi

1. INTRODUCTION TO CLUSTER ANALYSIS

The process of separating observations into clusters is a very fundamental prob-

lem at the heart of statistics. Clusters are characterized by groups of data points which

are in ”close” proximity to one another. Data clusters are frequently encountered

when sampling from a population because there may exist several distinct subpop-

ulations within the population whose responses vary considerably from one another.

While it is much easier to visually detect clusters in univariate or bivariate data,

the task becomes increasingly difficult as the dimensionality of the data increases.

Currently, there is no optimal clustering method for every scenario. It is for this

reason that many clustering algorithms exist today.

There are three popular approaches to clustering: hierarchical clustering, par-

titional clustering, and model-based clustering, each with its own strengths and

drawbacks. We will now provide a brief overview of these strategies.

1.1. Hierarchical Clustering

One approach when forming clusters is to use a hierarchical technique. Hierar-

chical techniques come in two varieties: agglomerative and divisive. Both methods

require a means to evaluate the ”closeness” between points, and also between clusters

at each step. To determine the closeness between individual points, a distance metric

is required. A few common choices of distance metric are shown below [1].

Let x, y ∈ Rp, where x = (x1, x2, . . . , xp)
T and y = (y1, y2, . . . , yp)

T . Then we

define the following distance metrics:

1. Euclidean Distance

D(x, y) = ||x− y|| =

√√√√ p∑
i=1

(xi − yi)2,

1

2. Manhattan Distance

D1(x, y) =

p∑
i=1

|xi − yi|,

3. Mahalanobis Distance

Dm(x, y) =

√√√√ p∑
i=1

(xi − yi)TΣ−1(xi − yi).

In addition to these measures of distance between individual points, it is nec-

essary to have a distance measure between clusters in order to decide whether or

not they should be merged. There are several intercluster distance measures, called

linkages, that may be used when merging clusters. Below are some routinely used

linkage criteria.

Let A and B be distinct clusters. Then we define the following:

1. Complete Linkage

max{D(a, b)|a ∈ A, b ∈ B},

2. Single Linkage

min{D(a, b)|a ∈ A, b ∈ B},

3. Average Linkage

1

|A||B|
∑
a∈A

∑
b∈B

D(a, b).

Agglomerative clustering takes a bottom-up approach by assigning each of the N

points in the data set to its own cluster, then combining the clusters systematically

until only one cluster remains. At each step, the two closest clusters are merged

together using either a distance or linkage measure, whichever is appropriate. In

2

contrast, divisive clustering begins by assigning all N points to one cluster and

dividing them into smaller clusters until each point is its own cluster [1]. There

exist several algorithms for both of these types of clustering methods, but those will

not be discussed here.

There are two benefits of employing a hierarchical clustering technique. Firstly,

the number of clusters does not need to be specified in order for the algorithm to

work. The tree-like structure allows the user to decide a logical stopping point for the

algorithm. Another feature of such an approach is the nested nature of the clusters.

In this way, there is a convenient, hierarchical ordering of the clusters. A disadvantage

of hierarchical strategies is also related to the nested nature of the clusters produced.

Since the clusters are nested, there is no way to correct an erroneous step in the

algorithm. Therefore, hierarchical clustering is an advantageous approach when it is

known a priori that the clusters have a particular structure. The next section will

cover a clustering method that uses information about the underlying distributions

of the clusters to obtain classifications for data points.

1.2. Model-Based Clustering

The idea behind mixture modeling is represent each individual cluster with its

own distribution function. Usually, each distribution, commonly referred to as a

mixing component, takes the form of a Gaussian distribution. Suppose there are K

clusters in our data set. If our data set is p-dimensional the distribution for kth mixing

component takes the form:

fk(x) =
1√

(2π)p |Σk|
exp

(
−1

2
(x− µk)TΣ−1k (x− µk)

)
However, µ = {µ1,µ2, . . . ,µK} and Σ = {Σ1,Σ2, . . . ,ΣK} are unknown, so

they must be estimated. The mixture itself is obtained by taking the sum of these

mixing components together with their respective weights π = {π1, π2, . . . , πK}, where

3

∑K
k=1 πk = 1, 0 < πk ≤ 1.

f(xj|π,µ,Σ) =
K∑
k=1

πkfk(x|µ,Σ)

Using this mixture distribution function, it is easy to construct the likelihood

function for our set of observations:

L(x) =
N∏
j=1

f (xj|π,µ,Σ)

In order to form the clusters, each point is assigned a probability of belonging

to each of the K clusters called a posterior probability. The posterior probability of

observation xj belonging to cluster Ck is:

P̂ (Ck|xj) =
π̂kf

(
xj, µ̂k, Σ̂k

)
f (xj)

,

where π̂k, µ̂k, and Σ̂k are given by:

π̂k =
1

N

N∑
j=1

P̂ (Ck|xj) , k = 1, 2, . . . , K − 1,

µ̂k =
1

π̂kN

N∑
j=1

xjP̂ (Ck|xj) , k = 1, 2, . . . , K,

Σ̂k =
1

π̂kN

N∑
j=1

(xj − µ̂k) (xj − µ̂k)T P̂ (Ck|xj) , k = 1, 2, . . . , K.

Posterior probabilities and likelihood functions are calculated iteratively, so they

are either impossible or very arduous to maximize analytically. Therefore, a numerical

method is often employed instead to locate a local maximum in the likelihood function.

One such method is the Expectation-Maximization (EM) algorithm [1, 2].

4

1.3. Partitional Clustering

Partitional clustering is another good approach when the number of clusters,

K, is known. There are two partitioning algorithms that operate in similar ways:

K-Means and K-Medoids. K-Medoids will be discussed briefly; however, K-Means is

our primary interest in this paper, so it will receive more attention in this section.

The K-Medoids algorithm is as follows:

1. Select K initial medoids at random from the N points in the data set.

2. Assign each point in the data set to the closest of the chosen K initial medoids.

Here, a commonly used distance metric is the Euclidean distance. These K sets

of points are the new medoids.

3. For each medoid ck, and for each non-medoid point P , swap ck and P , then

compute the total cost of the new configuration, where the cost is given by

C =
∑K

k=1

∑nk

j=1 ||xkj − ck||.

4. Choose the configuration whose cost is the minimum of all configurations.

5. Repeat steps 2 to 5 until there is no change in the medoids.

The K-Medoids algorithm is flexible in that medoids can be swapped at each

step. The cost can be computed using any of the distances mentioned in the previous

section, and ultimately the choice of distance will affect the shape of the clusters

[3, 4, 5].

A staple of cluster analysis, and one of the most commonly used algorithms

today, is the K-Means algorithm. The K-Means algorithm was developed by Stuart

Lloyd in 1957 in his later published paper regarding Pulse-Code Modulation and

researched further by James MacQueen in his 1967 analysis of the algorithm [6].

The algorithm does not make any explicit assumptions about the distribution of

5

the clusters; however, K-Means operates under the assumption that the number of

clusters K is fixed or known a priori, and assigns points into clusters in a way that

tries to minimize the cost function given by:

C =
K∑
k=1

∑
xj∈Ck

||xj − µ̂k||2 (1)

where Ck represents the set of data points assigned to the kth cluster, and µ̂k

is the mean vector for the kth cluster [7, 8]. The algorithm proposed by Lloyd works

in the following way:

1. Select K points at random from the N points in the data set. These will be the

initial cluster centers.

2. Assign each point in the data set to the nearest cluster center.

3. Recalculate the mean vector for each cluster using the points assigned in the

previous step.

4. Repeat steps #2 and #3 until the clusters do not change.

One way to visualize how the algorithm works is to create a Voronoi diagram.

Let S = {x1, x2, . . . , xN} be a set of points existing in a space X containing some

measure of distance. Then, the region Ck ⊆ X is the set of points in X which are

closest to xj. In the diagram below, the cluster centers are shown. Any other points in

the data set that fall within the dotted boundaries are assigned to the corresponding

cluster. Within each region, the centroid of the points is calculated, and the diagram

is redrawn for the new cluster centers.

A notable advantage of K-Means is that the algorithm is non-deterministic. The

algorithm also works very fast due to its simplicity. This feature allows K-Means to

be run numerous times until a satisfactory cluster configuration is reached. However,

6

Figure 1. An illustration of how the K-Means algorithm would partition the points
into clusters during a single iteration.

it is easy to see that such an approach requires more memory and computational time.

Regardless, it is customary to rerun the algorithm several times in order to overcome

the drawback of picking initial cluster centers at random, and many implementations

of K-Means have a feature allowing the user to specify the number of iterations to

be run. Due to the stochastic nature of the algorithm, much attention is paid to

how K-Means is initialized. Since K-Means only locates a local minimum rather than

a global minimum for the cost function, bad initializations can lead the algorithm

to poor classifications. However, this shortfall can be mitigated to some extent by

initializing the clusters in a more intelligent manner. Several approaches have been

proposed, and some of them will be discussed below.

• The Forgy Approach (FA) was proposed by Forgy in 1965. The FA method

initializes the K-Means algorithm by choosing K observations at random from

the data set and designates them as initial cluster centers. The remaining N−K

points in the data set are then assigned to the closest cluster center to form the

initial partitioning [9].

• The MacQueen Approach (MA) is a slight variation of the Forgy Approach de-

vised by MacQueen in 1967. The initial K cluster centers are chosen at random

7

from the data set. In order to assign the remaining points into clusters, the

MA method takes the first observation among the remaining N −K unassigned

points and assigns it to the cluster whose center is nearest. Next, the cluster

centers are recalculated by taking the centroid of the points assigned to each

cluster. This process is repeated with each remaining observation until all N

points are assigned to a cluster [10].

• Kaufman and Rousseeuw developed another sequential initialization technique

in 1990. Their method begins by taking the observation located closest to the

center of the data set and using this point as the first initial cluster center.

Then, the second cluster center is chosen in a fashion such that the total within

sum of squares is reduced the most. This process is repeated until K cluster

centers are chosen [11].

The biggest disadvantage of the K-Means algorithm is that it is ill-equipped to

handle non-spherical clusters. This arises due to the distance metric chosen in the

cost function, most commonly the Euclidean distance. This choice of metric allows

the algorithm to complete computations quickly and is a very intuitive measure of

distance; however, it is not always suitable for clustering. In many cases, a data

set may contain clusters whose eigenvalues and eigenvectors differ substantially. A

broader approach to clustering should be able to handle these types of situations

without any explicit distributional assumptions about the data, as in model-based

clustering methods. We will explore another option in the case where the clusters to

be classified have a more elongated, ellipsoidal structure.

8

2. K-MEANS USING MAHALANOBIS DISTANCES

Improving accuracy of the K-Means algorithm means that two problems need

to be addressed: the initialization procedure should be altered to select points close

to cluster centers, and a distance metric must be used which is better equipped to

handle non-spherical clusters [12]. To handle the first issue, points which have more

neighbors will be favored in the initialization step. This will help the algorithm to

choose points which are near the centers of clusters where the density is the highest.

Next, the K-Means algorithm will be adapted to use the Mahalanobis distance metric

in place of the Euclidean distance metric. The Mahalanobis distance metric will allow

K-Means to identify and correctly classify non-homogeneous, non-spherical clusters.

It is easy to see how the Mahalanobis distance is a generalization of the Eu-

clidean distance. The Euclidean distance D can be written as:

D(x, y) =

√√√√ p∑
i=1

(xi − yi)2 =
√

(x− y)T (x− y) =
√

(x− y)T I−1(p×p)(x− y).

Hence, the Euclidean distance tacitly assumes that Σ = I(p×p). By allowing the

covariance matrix to take on a more general form

Σ =

σ11 σ12 · · · σ1p

σ21 σ22 · · · σ2p
...

...
. . .

...

σp1 σp2 · · · σpp,

the clusters can take a larger variety of shapes.

Intuitively, we can think of the Mahalanobis distance from a point to its respec-

tive cluster center as its Euclidean distance divided by the square root of the variance

9

in the direction of the point. The Mahalanobis distance metric is preferable to the

Euclidean distance metric because it allows for some flexibility in the structure of the

clusters and takes into account variances and covariances amongst the variables. Two

different initialization procedures will be developed using the Mahalanobis distance

metric. The first will involve using Euclidean distances to generate initial clusters as

in the traditional K-Means algorithm.

Mahalanobis K-Means Initialization without Stretching:

1. Pick K points at random from the data set to be the initial clusters.

2. Calculate the Euclidean distance from each point in the data set to each cluster

center.

3. Form the initial clusters by assigning each point to the cluster center whose

distance is the least of the k distances.

It can be shown that if X ∼ Np(µ,Σ) then D2
m ∼ χ2

p. Since the estimates

µ̂ and Σ̂ available for each cluster rather than the true cluster parameters, D2
m ∼

χ2
p asymptotically. Using this information, we can develop another algorithm to

classify observations into clusters. We introduce a novel approach to initialization by

”stretching” the clusters, which will improve the cluster covariance matrix estimates.

Mahalanobis K-Means Initialization with Stretching:

1. Form initial clusters of size w by locating a point near the mode of a cluster

and taking the w − 1 nearest points to it.

2. Using these w points, estimate µ̂ and Σ̂ for the cluster.

3. Find the 95% confidence ellipsoid for this cluster and pick up any additional

points falling within the ellipsoid.

4. Update µ̂ and Σ̂ using these additional points.

10

5. Repeat steps 3 and 4 until no additional points are picked up by the confidence

ellipsoid.

6. Next, remove these points from the data set and steps 1-5 until K initial clusters

are formed.

With these initialization procedures in mind, we introduce the two versions of

Mahalanobis K-Means denoted MK-Means1 (without stretching) and MK-Means2

(with stretching).

MK-Means1 Algorithm

1. Pick K points at random from the data set to be the initial clusters.

2. Calculate the Euclidean distance from each point in the data set to each cluster

center.

3. Form the initial clusters by assigning each point to the cluster center whose

distance is the least of the k distances.

4. Next, calculate the Mahalanobis distance from each cluster center to each of

the N data points and assign each point to the nearest cluster center.

5. Recalculate µ̂k and Σ̂k for k = 1, . . . , K and repeat step 5 until the clusters do

not change.

MK-Means2 Algorithm

1. Locate the nearest w points to each point in the data set and calculate the sum

of these distances. Sort these summed distances from least to greatest.

2. Generate a random variable R from a multinomial distribution with weights

cn2, c (n− 1)2 , . . . , c (1)2, where c =
(

1
2

∑n
j=1 j

)−1
.

11

3. Select the Rth element of the summed distance list and designate it as a cluster

center, then remove this observation as well as its w − 1 closest neighbors so

that they may are not eligible as candidates for the next cluster center. Repeat

steps 1 through 3 until K cluster centers are chosen.

4. For each cluster center, take the w−1 closest points and form the initial clusters.

Use these points to calculate the initial estimates of µ̂k and Σ̂k for k = 1, . . . , K.

5. Using the estimates of µ̂k and Σ̂k, locate all points in the data set satisfying

(xj − µ̂k)T Σ̂
−1
k (xj − µ̂k) ≤ χ2

p(0.05), where j = 1, . . . , n and k = 1, . . . , K and

include them into their corresponding cluster.

6. Update the cluster means and variances µ̂k and Σ̂k for each k and repeat steps

5 and 6 until the clusters do not change.

7. Next, calculate the Mahalanobis distance from each cluster center to each of

the remaining N −K data points and assign each point to the nearest cluster

center.

8. Recalculate µ̂k and Σ̂k for k = 1, . . . , K relying on the new partitioning and

repeat steps 7 and 8 until the clusters do not change.

The second algorithm is a bit more complicated in the initialization step. It

requires the construction of confidence ellipsoids, which will be used to pick up more

points in the cluster. However, the advantage is that the ”stretching” of the original

spheres will likely pick up more observations along the eigenvector corresponding to

the largest eigenvalue of the cluster, which will allow the algorithm to better approx-

imate an initial covariance matrix for each cluster. This step is crucial because poor

estimates of cluster covariance matrices can lead to inaccurate distance computations,

affecting the final shape of the clusters as in K-Means. Figure 2 illustrates how a

12

cluster that is initially spherical expands to become more elliptical and better reflects

the shape of the cluster after the stretching process.

Figure 2. The smaller of the two rings is the 95% confidence ellipsoid of the spherical
cluster, and the larger of the two rings is the 95% confidence ellipsoid of the cluster
after the stretching step.

The initialization shown in the figure does not capture the entirety of the cluster;

however, this is not a major issue. It does capture the general shape of the cluster

which is the more important aspect in terms of calculating Mahalanobis distances.

While more computationally expensive, initializing spherical clusters in this manner

will help to ensure that initial cluster centers are chosen in regions with a greater

concentration of points with high probability. Typically, several runs of the algorithm

are used to obtain different cluster configurations, as in K-Means. The selection

process of initial cluster centers is strengthened by the removal of neighboring points

because the likelihood of selecting two points from the same cluster is reduced greatly

by removing a high density subset of the cluster. However, the possibility of this

occurring increases if the clusters are not homogeneous, i.e. if the points in the data

set are distributed very unevenly among clusters. In the case where clusters are non-

homogeneous, the value of w may be substantially lower than the number of points

13

nk in cluster k, and care must be taken to ensure that a suitable realization for the

initial cluster centers is found.

Another issue that arises due to bad initializations is cluster absorption. If an

outlying point P is chosen by chance to be a cluster center in the initialization step,

the estimate of the covariance matrix will be inflated. This is because the cluster will

be formed by taking the nearest w− 1 points to P , which will likely be further away

than if P were chosen closer to a high density region of points. If two clusters are

close enough together, it could be the case that the initial cluster around P will pick

up several points from each cluster. This is a problematic feature of the algorithm

because an inflated covariance matrix will cause the cluster to expand further and

potentially absorb two or more clusters.

In the next section, we will conduct a simulation study to compare the accuracy

of K-Means and the two Mahalanobis K-Means algorithms that have been developed.

The three algorithms will also be compared side by side using an actual data set. To

assess the accuracy of the two algorithms, it is necessary to have a decision criterion

for which run of the algorithm should be used. For both algorithms, equation 1 on

page 6 will be used to determine the best run.

14

3. SIMULATION STUDY

The K-Means algorithm and the Mahalanobis K-Means algorithm were com-

pared side by side in a simulation study. The study took into account various param-

eter settings for the clusters generated to test the performance of each algorithm. For

each setting, 1000 data sets were generated with known classification. The algorithms

ignored this information and proceeded to classify the observations into clusters.

To compare the three algorithms, the cluster classifications obtained by each were

compared against the known cluster classifications, and the proportion of correctly

classified observations was calculated for each algorithm.

Simulations were implemented using R statistical software using the MixSim

[13] package. This package allows us to simulate mixture models with multivariate

normal component distributions from which observations are drawn. We are then

able to run the three algorithms which will decide cluster membership for the points.

Resulting clusters for each of the three algorithms can then be compared to the actual

cluster membership of the points.

There were several parameters studied including the number of clusters, clusters’

mixing proportions and overlap between clusters. The maximum pairwise overlap,

denoted by Ωmax, is the probability of misclassification. Thus, the higher Ωmax is, the

harder it is to classify points into clusters. An example of the code used to generate

a bivariate data set along with a plot of the points is shown below.

> A <- MixSim(MaxOmega = 0.005, K = 5, p = 2, PiLow = 0.05)

> n <- 500

> PI <- A$Pi

> mu <- A$Mu

> s <- A$S

> sim <- simdataset(n, PI, mu, s)

15

> plot(sim$X[,1], sim$X[,2], col = sim$id, xlab = "x", ylab = "y")

Figure 3. The graph shows 500 bivariate observations divided into five clusters with
minimal overlap (Ωmax = 0.005).

The primary focus of the simulation study was to compare the performance of

each algorithm when the number of clusters, the dimensionality and overlap of the

clusters change. However, the mixing proportions were left variable to emulate the

uneven cluster representation that might be seen in actual data. A list of the cluster

parameters used in the study is shown in table 3.

For each data set generated, each algorithm was run 10 times and the iteration

with the smallest value of the cost function was chosen for each algorithm. The

proportion of correctly classified observations was then calculated for each method.

The distribution of this proportion is highly skewed for these algorithms, so the

median will be used to minimize the impact of extreme outliers. For box plots of the

algorithms on different settings, see the Appendix. Data given in the following tables

16

show the median values of the proportion of correctly classified observations. The K-

Means column shows the median proportion with ordinary K-Means, the MK-Means1

column gives the median proportion using Mahalanobis K-Means with no covariance

matrix stretching in the initialization step, and finally the MK-Means2 column gives

the median proportion using Mahalanobis K-Means with the proposed stretching in

the initialization step.

Figures 4-7 show the distributions of the proportion of correctly classified ob-

servations for each of the different parameter settings used in the simulation study.

The boxplots are not stratified by the values of Ωmax as this value would be unknown

in general.

The most striking result from the simulation study is how poorly the ”no-

stretching” version of Mahalanobis K-Means works with respect to both of the other

algorithms. The vast difference between the median proportions with and without

stretching provide strong evidence that stretching the cluster covariance matrices in

the initialization step is crucial to the algorithm’s success. This difference appears

even more drastic when the data increases in dimensionality. While the ordinary

K-Means algorithm and MK-Means2 appear to perform similarly on bivariate and 5-

variate data, MK-Means1 suffers considerably. Taking the additional steps to ensure

that cluster covariance matrices are scaled and rotated properly greatly improves

the utility of the Mahalanobis distance. In the absence of this stretching step, the

resulting estimates of Σ are far less accurate than using the identity matrix for Σ

as ordinary K-Means does. However, it does appear that the Mahalanobis K-Means

with stretching provides a substantial improvement over ordinary K-Means.

Comparing ordinary K-Means to Mahalanobis K-Means with stretching yields

interesting results. First, the two algorithms perform very well with only 5 clusters

present in the data set; however, there is a slight drop off in the accuracy of MK-

17

Means2 as cluster overlap increases, whereas K-Means only drops off in the 5 cluster

case when overlap increases. Since MK-Means2 picks up initial cluster centers in areas

of high point density it may be the case that in high overlap scenarios, MK-Means2

picks up initial points in regions where there is significant cluster overlap. This can

cause MK-Means2 to mistakenly classify the two overlapping clusters as one cluster.

Therefore, the MK-Means2 algorithm appears to work optimally on data sets where

clusters are more well-separated.

The most attractive feature of MK-Means2 is that it is better equipped to handle

data sets with more clusters. As the number of clusters in the data set increases,

K-Means drops off substantially, whereas MK-Means2 remains very accurate. In

the 5 cluster case, K-Means and MK-Means2 are both very effective at identifying

clusters in data. However, if the data set contains 10 clusters, the median proportion

of correctly classified observations for K-Means drops by 4.0-11.6%, with maximum

cluster overlap and dimensionality held constant. In contrast, the accuracy of MK-

Means2 remains virtually identical for these scenarios.

18

Figure 4. Box plots for K-Means, MK-Means1, and MK-Means2 for Bivariate Case
with 5 Clusters.

Figure 5. Box plots for K-Means, MK-Means1, and MK-Means2 for 5-variate Case
with 5 Clusters.

19

Figure 6. Box plots for K-Means, MK-Means1, and MK-Means2 for Bivariate Case
with 10 Clusters.

Figure 7. Box plots for K-Means, MK-Means1, and MK-Means2 for 5-variate Case
with 10 Clusters.

20

Symbol Definition Settings
Ωmax Maximum amount of pair-

wise overlap between the
clusters.

0.005, 0.01, 0.05

K Number of clusters in
dataset.

5,10

p Dimensionality of dataset. 2,5
πlow Lowest proportion of obser-

vations assigned to a clus-
ter.

0.05

N Number of total observa-
tions.

500

nstart Number of iterations of al-
gorithm on each data set.

10

w Number of nearest neigh-
bors used to calculate initial
clusters.

25

Table 1. Cluster Parameters for Simulation Study.

Ωmax Number of Clusters K-Means MK-Means1 MK-Means2
0.005 5 0.994 0.760 0.998
0.01 5 0.990 0.763 0.996
0.05 5 0.956 0.720 0.932
0.005 10 0.878 0.732 0.996
0.01 10 0.880 0.728 0.996
0.05 10 0.876 0.711 0.943

Table 2. Results for Bivariate Data.

Ωmax Number of Clusters K-Means MK-Means1 MK-Means2
0.005 5 0.996 0.732 0.998
0.01 5 0.992 0.720 0.996
0.05 5 0.950 0.684 0.944
0.005 10 0.896 0.708 0.998
0.01 10 0.904 0.714 0.994
0.05 10 0.910 0.673 0.928

Table 3. Results for 5-variate Data.

21

4. FURTHER APPLICATIONS TO REAL DATA

It has been shown empirically that the modified K-Means algorithm assigns

data into clusters better than K-Means under certain conditions. In this section, we

apply the modified K-Means algorithm to a familiar data set. This exercise will test

the performance of the modified K-Means algorithm on real data. The modified K-

Means outperforms K-Means if the clusters are multivariate normal as we’ve seen in

the simulation study; however, it remains to be seen if the algorithm is more effective

with messier data. In this section, both algorithms will be used to identify clusters

in the Iris data set.

The Iris data set is a very well-known data set consisting of 150 total samples

of three species of Iris: Iris setosa, Iris virginica, and Iris versicolor, with 50 samples

from each species [14]. Four characteristics of the flowers were measured: petal

length, petal width, sepal length, and sepal width. Iris has grown to become a

benchmark for testing classification techniques by statisticians. In particular, R.A.

Fisher investigated the nature of the data in his research on discriminant analysis

[15]. Our goal will be to separate the observations into clusters representing the

aforementioned species by using the sepal and petal information collected. Figure 8

shows a scatterplot matrix of the four independent variables in the Iris data set.

22

Figure 8. Iris setosa observations are shown in black, Iris versicolor in red, and Iris
virginica in green.

Looking at the figure, there appears to be considerable separation between

Iris setosa and the other two species; however, Iris versicolor and Iris virginica are

overlapped heavily in all of the bivariate scatterplots. In lieu of a clustering algorithm,

visual detection of Iris versicolor and Iris virginica as two separate clusters is nearly

impossible in two dimensions. Using the three algorithms to separate the observations

into clusters yields more promising results. The proportion of correctly classified

23

observations for each algorithm is given in table 4. This exercise illustrates the ability

of the MK-Means2 algorithm to separate the Iris virginica and Iris versicolor clusters

despite their close proximity simply by utilizing their respective covariance structures.

Method Proportion Correct
K-Means 0.893
MK-Means1 0.947
MK-Means2 0.967

Table 4. Results for Iris Data Classification.

24

5. CONCLUSION

The K-Means algorithm remains a fixture in modeling clusters. It has the ad-

vantage of being computationally fast and accurate in cases where there are relatively

few clusters. However, it lacks the capability to handle non-spherical clusters and as

the number of clusters increases, K-Means is far less useful for cluster classification.

Therefore, an alternative approach has been developed to handle data sets with

numerous clusters. Modifying the K-Means algorithm by using Mahalanobis dis-

tances rather than Euclidean distances allows the algorithm to take clusters’ variance

structures into account.

Two different initialization procedures were developed in order to maximize

the classification accuracy of Mahalanobis K-Means. The first initialization method

proposed uses Euclidean distances to initialize spherically shaped clusters in regions

with a high concentration of data points. The second initialization method is an

extension of the first method and uses the covariance matrix estimate Σ̂ for each

cluster to generate 95% confidence ellipsoids which then capture more points. The

mean vector and covariance matrix are then updated, and this process is repeated

until no additional points are captured by the confidence ellipsoids. The Mahalanobis

K-Means algorithms associated with these two initialization methods were named

MK-Means1 and MK-Means2, respectively.

Performance of both Mahalanobis K-Means algorithms and the regular K-Means

algorithm was evaluated in a simulation study. In general, the performance of MK-

Means1 was very poor because the cluster covariance matrices were poorly estimated

in the initialization step. As for MK-Means2 and K-Means, both performed very well

in the five cluster case. However, MK-Means2 vastly outperformed K-Means in the

ten cluster case with the difference being the most pronounced in data sets with lower

cluster overlap. MK-Means1 and MK-Means2 both outperformed regular K-Means

25

in correctly classifying observations in the Iris data set, but MK-Means2 was again

the best algorithm of all three.

26

REFERENCES

[1] A. C. Rencher, Methods of Multivariate Analysis. Wiley series in probability and

mathematical statistics. Probability and mathematical statistics, J. Wiley, 2002.

[2] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood

from incomplete data via the em algorithm,” JOURNAL OF THE ROYAL

STATISTICAL SOCIETY, SERIES B, vol. 39, no. 1, pp. 1–38, 1977.

[3] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids

clustering,” Expert Syst. Appl., vol. 36, pp. 3336–3341, Mar. 2009.

[4] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids

clustering,” Expert Systems with Applications, vol. 36, no. 2, Part 2, pp. 3336 –

3341, 2009.

[5] I. Lee and J. Yang, “2.27 - common clustering algorithms,” in Comprehensive

Chemometrics (E. in Chief:Stephen D. Brown, R. Tauler, , and B. Walczak, eds.),

pp. 577 – 618, Oxford: Elsevier, 2009.

[6] S. P. Lloyd, “Least squares quantization in pcm.,” IEEE Transactions on

Information Theory, vol. 28, no. 2, pp. 129–136, 1982.

[7] H. Steinhaus, “Sur la division des corp materiels en parties,” Bull. Acad. Polon.

Sci, vol. 1, pp. 801–804, 1956.

[8] R. C. de Amorim and B. Mirkin, “Minkowski metric, feature weighting and

anomalous cluster initializing in k-means clustering,” Pattern Recognition,

vol. 45, no. 3, pp. 1061 – 1075, 2012.

27

[9] J. Pea, J. Lozano, and P. Larraaga, “An empirical comparison of four

initialization methods for the k-means algorithm,” Pattern Recognition Letters,

vol. 20, no. 10, pp. 1027 – 1040, 1999.

[10] J. B. MacQueen, “Some methods for classification and analysis of multivariate

observations,” in Proc. of the fifth Berkeley Symposium on Mathematical

Statistics and Probability (L. M. L. Cam and J. Neyman, eds.), vol. 1, pp. 281–

297, University of California Press, 1967.

[11] L. Kaufman and P. Rousseeuw, Finding Groups in Data An Introduction to

Cluster Analysis. New York: Wiley Interscience, 1990.

[12] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM

Comput. Surv., vol. 31, pp. 264–323, Sept. 1999.

[13] V. Melnykov, W.-C. Chen, and R. Maitra, MixSim: Simulating Data to Study

Performance of Clustering Algorithms., 2010. R package version 1.0-2.

[14] E. Anderson, “The species problem in iris,” Annals of the Missouri Botanical

Garden, vol. 23, pp. 457–509, 1936.

[15] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals

Eugen., vol. 7, pp. 179–188, 1936.

28

APPENDIX

testfunc <- function(){

require(MixSim)

c1 <- matrix(ncol = 4)

Initialization of K Clusters

###

A <- MixSim(MaxOmega = 0.05, K = 10, p = 2, PiLow = 0.05)

n <- 500

PI <- A$Pi

mu <- A$Mu

s <- A$S

sim <- simdataset(n, PI, mu, s)

p <- 2

Single Iteration

##

nstart <- 10

itermat <- c(NA, NA)

indmat <- matrix(rep(NA, n), ncol = n)

ind1mat <- matrix(rep(NA, n), ncol = n)

ind2mat <- matrix(rep(NA, n), ncol = n)

Functions

#############

29

Growing Clusters

###################

cluster <- function(data, sigmahat, muhat, alpha){

n <- dim(data)[1]

p <- dim(data)[2]

data0 <- sweep(data, 2, muhat, FUN = "-")

m0 <- diag(data0 %*% solve(sigmahat, tol = 1e-50) %*% t(data0))

ind <- which(m0 < qchisq(alpha, df = p, lower.tail = F))

muhat <- colMeans(data[ind,])

sigmahat <- var(data[ind,])

outputs <- list(ind, muhat, sigmahat)

return (outputs)

}

Cluster Initialization

##########################

clusterinit <- function(data, alpha, w){

Create a Distance Matrix

30

d <- as.matrix(dist(data, method = "euclidean"))

n <- dim(data)[1] - length(which(is.na(d)[1,] == TRUE))

p <- dim(data)[2]

Need to remove NA values from dist.list so it does not select an NA point

use which(is.na(data[,1])).

rand1 <- rmultinom(1, 1, (n:1)^2 / sum((1:n)/2))

randn <- sum((1:n)*rand1)

dist.list <- apply(d, 1, dist.n, w)

dist.id <- order(dist.list)[randn]

r <- sort(d[dist.id,])[w]

sphcluster <- as.matrix(data[which(d[dist.id,] < r),])

muhat <- as.vector(colMeans(sphcluster))

sigmahat <- var(sphcluster)

all.est <- list()

all.est[[1]] <- list(which(d[dist.id,] < r), muhat, sigmahat)

all.est[[2]] <- cluster(data, sigmahat, muhat, alpha) # 1st iteration

iter <- 2

31

while(identical(all.est[[iter]][[1]], all.est[[(iter-1)]][[1]]) != TRUE){

sigmahat <- unlist(all.est[[iter]][[3]])

muhat <- unlist(all.est[[iter]][[2]])

iter <- iter + 1

est <- cluster(data, sigmahat, muhat, alpha)

all.est[[iter]] <- est

}

return(all.est)

}

Mahalanobis K-Means

######################

mkmeans <- function(data, clusters){

b <- list()

32

clusters <- clusters[as.vector(unlist((lapply(1:length(clusters),

function(i) if(length(clusters[[i]]) > p)

b[[i]] <- i else b[[i]] <- NULL))))]

clusters <- clusters[as.vector(unlist((lapply(1:length(clusters),

function(i) if(det(var(data[clusters[[i]],])) >= 1e-50)

b[[i]] <- i else b[[i]] <- NULL))))]

k <- length(clusters)

distmatrix <- matrix(unlist(lapply(1:k,

function(j) mahalanobis(data, apply(data[clusters[[j]],], 2, mean),

solve(var(data[clusters[[j]],]), tol = 1e-50), inverted = TRUE))),

ncol = k)

ind <- apply(distmatrix, 1, which.min)

clusters <- lapply(1:k, function(i) which(ind == i))

clusters <- lapply(1:k, function(i) unique(clusters[[i]]))

clusters <- clusters[as.vector(unlist((lapply(1:length(clusters),

function(i) if(length(clusters[[i]]) > p) b[[i]] <- i

else b[[i]] <- NULL))))]

return(clusters)

33

}

Regular K-Means Initialization

#################################

kinit <- function(data, k){

centers <- sample(1:dim(data)[1], k)

d <- as.matrix(dist(data, method = "euclidean"))

dcenters <- d[,centers]

ind <- apply(dcenters, 1, which.min)

clusters <- lapply(1:k, function(i) which(ind == i))

clusters <- lapply(1:k, function(i) unique(clusters[[i]]))

return(clusters)

}

Within Sums of Squares Functions: Mahalanobis and Euclidean

##

SSm <- function(data, cluster){

mu0 <- apply(data[cluster,], 2, mean)

data0 <- sweep(data[cluster,], 2, mu0, FUN = "-")

s <- var(data[cluster,])

d <- sqrt(diag(data0 %*% solve(s, tol = 1e-50) %*% t(data0)))

ss <- sum(d)

34

return(ss)

}

SS <- function(data, cluster){

mu0 <- apply(data[cluster,], 2, mean)

data0 <- sweep(data[cluster,], 2, mu0, FUN = "-")

d <- sqrt(diag(data0 %*% t(data0)))

ss <- sum(d)

return(ss)

}

rowreplace <- function(x, list, values){

x[list,] <- values

x

}

for(m in 1:nstart){

clusters <- list()

i <- 2

n <- dim(sim$X)[1]

k <- 10

alpha <- 0.05

w <- 25

35

data <- sim$X

d <- as.matrix(dist(data, method = "euclidean"))

cl <- clusterinit(data, alpha, w)

clusters[[1]] <- unlist(cl[[length(cl)]][[1]])

data <- rowreplace(data, clusters[[1]], NA)

while(i <= k && length(which(is.na(data[,1]) == F)) > w){

cl <- clusterinit(data, alpha, w)

clusters[[i]] <- cl[[length(cl)]][[1]]

data <- rowreplace(data, clusters[[i]], NA)

i <- i + 1

}

mcl <- list()

mcl[[1]] <- clusters

iter <- 2

36

repeat{

mcl[[iter]] <- mkmeans(sim$X, mcl[[(iter-1)]])

if(identical(mcl[[iter]], mcl[[(iter-1)]]) == FALSE){

iter <- iter + 1

}

else {

break

}

}

ind <- rep(NA, dim(sim$X)[1])

a <- mcl[[length(mcl)]]

for(i in 1:length(a)){

for(j in 1:length(a[[i]])){

ind[a[[i]][[j]]] <- i

}

}

37

Alternate Initialization

###

clusters <- kinit(sim$X, k)

mcl1 <- list()

mcl1[[1]] <- clusters

iter <- 2

repeat{

mcl1[[iter]] <- mkmeans(sim$X, mcl1[[(iter-1)]])

if(identical(mcl1[[iter]], mcl1[[(iter-1)]]) == FALSE){

iter <- iter + 1

}

else {

break

}

}

38

ind1 <- rep(NA, dim(sim$X)[1])

a1 <- mcl1[[length(mcl1)]]

for(i in 1:length(a1)){

for(j in 1:length(a1[[i]])){

ind1[a1[[i]][[j]]] <- i

}

}

Regular K-Means

##################

kmeans <- kmeans(sim$X, k)

Results

##############

SS1 <- 0

for(i in 1:length(a)){

SSt <- SS(sim$X, a[[i]])

SS1 <- SS1 + SSt

}

39

WSS1 <- 0

for(i in 1:length(a)){

SSc <- SSm(sim$X, a[[i]])

WSS1 <- WSS1 + SSc

}

WSS2 <- 0

for(i in 1:length(a1)){

SSc1 <- SSm(sim$X, a1[[i]])

WSS2 <- WSS2 + SSc1

}

WSS3 <- kmeans$tot.withinss

if(m == 1)

indmat[m,] <- ind

ind1mat[m,] <- ind1

ind2mat[m,] <- kmeans$cluster

if(m > 1)

indmat <- rbind(indmat, ind)

ind1mat <- rbind(ind1mat, ind1)

ind2mat <- rbind(ind2mat, kmeans$cluster)

itermat <- rbind(itermat, c(SS1, WSS1, WSS2, WSS3))

40

}

itermat <- itermat[-which(is.na(itermat[,1]) == TRUE),]

a10 <- ClassProp(indmat[which.min(itermat[,1]),], sim$id)

MK-Means1

#a11 <- ClassProp(indmat[which.min(itermat[,2]),], sim$id)

My Algorithm using Mahalanobis WSS to determine best clusters

a12 <- ClassProp(ind1mat[which.min(itermat[,3]),], sim$id)

MK-Means2

a13 <- ClassProp(ind2mat[which.min(itermat[,4]),], sim$id)

K-Means

c1 <- rbind(c1, c(a10, NA, a12, a13))

c1 <- c1[-which(is.na(c1[,1]) == TRUE),]

return(c1)

}

Algorithm comparison code for Ωmax = 0.05, K = 10, p = 2. This code will

produce 10 runs of each algorithm for each data set, with the best cluster configuration

chosen to represent the optimal assignments for each algorithm.

41

