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ABSTRACT 

The success of a software organization depends upon its ability to deliver a quality 

software product within time and budget constraints. To ensure the delivery of quality software, 

software inspections have proven to be an effective method that aid developers to detect and 

remove problems from artifacts during the early stages of software lifecycle. In spite of the 

reported benefits of inspection, the effectiveness of the inspection process is highly dependent on 

the varying ability of individual inspectors. Software engineering research focused at 

understanding the factors (e.g., education level, experience) that can positively impact the 

individual’s and team inspection effectiveness have met with limited success. This dissertation 

tries to leverage the psychology research on Learning Styles (LS) – a measure of an individuals’ 

preference to perceive and process information to help understand and improve the individual 

and team inspection performance. To gain quantitative and qualitative insights into the LSs of 

software inspectors, this dissertation reports the results from a series of empirical studies in 

university and industry settings to evaluate the impact of LSs on individual and team inspection 

performance. This dissertation aims to help software managers create effective and efficient 

inspection teams based on LSs and reading patterns of individual inspectors thereby improving 

the software quality. 
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1. INTRODUCTION 

Software organizations focused on delivering quality software product within allocated 

budget and time [55]. Software industries follow various quality improvement approaches 

ranging from informal walkthroughs [27, 60] to formal checklist based inspections [45, 56] to 

prototyping [66] to testing [68]. All of these approaches aid developers to detect faults by 

inspecting software artifacts produced at different stages of development. While these methods 

are effective, evidence suggests that methods focused towards detecting faults introduced in the 

early software artifacts (i.e. requirements and design documents) of Software Development 

Lifecycle (SDLC) have most impact on the rework cost savings (i.e., the cost that are otherwise 

spent on fixing the faults) [16, 32]. Faults if left undetected are harder to find and fix [15] at the 

later stages of development. As a result, leading software organizations focus their attention on 

developing methods to aid developers in finding and fixing faults at the early stages of software 

development [24, 46]. 

To have most impact on software quality and rework cost savings, this research is 

focused on detecting faults committed during the development of requirement document (used to 

establish a problem space). Requirements are typically written in Natural Language (NL) where 

customer’s needs for the software (to be developed) are documented in requirements document 

and is formally known as Software Requirements Specification (SRS). SRS is often written in 

Natural Language (NL) which is a means of communication among different stakeholders (e.g., 

technical and non-technical, end users and developers). However, due to the inherently flexible 

and ambiguous nature of NL, SRS development is prone to faults (e.g., incompleteness, 

ambiguity, inconsistency, correctness) [13, 14, 26]. 
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Among different approaches (e.g., NL to State transitions [1, 2], Checklist based 

inspections [56], Scenario based reading [63],  Ad Hoc inspections [59]) for detecting NL 

requirement faults, software inspection are widely recognized as most effective verification 

technique. During an inspection process, a team of inspectors is selected (depending upon their 

prior experience, or their technical background, or their domain knowledge) to review a software 

artifact by reading through it and recording faults during the process. The output of this process 

is a list of faults present in the artifact that can be fixed by the artifacts’ author to avoid costly 

rework at the later stages [3, 27, 28]. While inspections have been reported to be widely 

beneficial, the evidence shows that, the effectiveness (i.e. Fault Count – FC) during the 

individual review significantly impacts overall inspection performance [58].  

On that end, researchers [20, 21] have tried to investigate the factors (e.g., effect of 

educational background, level of technical degree of inspectors) that may impact the 

performance of individual inspectors and in turn improve the team efficiency (Fault Rate – FR). 

Research results at major software development organizations showed that inspection 

performance does not depends on the level of educational background [5, 21]. Contrary to the 

expectations, Software Engineers with a non-technical degree performed better inspections of a 

requirements document compared to the technical degree holders [21]. Even when inspectors 

utilize the same inspection technique, and receive same training, their effectiveness varies 

significantly. Hence, the results from the studies report that the higher level of technical degree 

and the technical education background had no impact on the inspection performance as 

compared to individuals with non-technical education background. 

Research [9] summarizing the results from inspection studies of 25 years stated the open 

question: What is the best way to staff software inspections? One of the methods (e.g., 
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Perspective Based Reading (PBR) [63]) utilized to staff inspectors relies on having inspectors 

assume different perspectives and review the document  using a reading method for that 

particular perspective. In PBR technique, each inspector reviews an artifact from one perspective 

(e.g., user, designer, or tester). The idea of this method is to reduce the fault overlap by 

inspectors (by creating heterogeneous perspectives of reading) and to increase number of faults 

logged during inspections. The downside of PBR is, the number of perspectives of software 

developers are limited (only few in number) and the inspectors need to be matched (or else 

trained) to fit the perspective that would yield the best inspection result. 

Research results [10, 34], regarding the correlation (or lack thereof) between technical 

knowledge vs. inspection performance led us to hypothesize that inspector’s ability of detecting 

faults in requirements document may be affected by the ways with which an individual 

characteristically acquires, retains and retrieves the information known as Learning Styles (LS). 

Cognitive psychologists have studied LSs for a long time to gain insights into the learning 

strengths of individuals [6, 22, 53]. For example, some individual tends to work in group while 

some prefer to think about the information and work alone. Cognitive psychologists have been 

successful at developing an instrument for measuring the LS of an individual [31]. Research [4, 

29] in cognitive psychology that uses LS has successfully crossed over to academia where LS of 

students are taken into account to improve scores in their performance in the course(s). Results 

show that if information is presented in the preferred LS of an individual, they perceive and 

process it better [6]. This in turn helps faculty members to design their course in a way that 

matches with the learning preference of students. LSs are more complex and measure user 

characteristics along different dimensions which could be used as different perspectives for 

inspections. Therefore, like PBR, we were motivated towards creating heterogeneous inspection 
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teams with inspectors of diverse LSs which could yield high inspection output. This dissertation 

tries to answer this question by borrowing the research from psychology to bear on the task of 

software inspection team development. 

Project managers employing software inspections in their organizations need a reliable 

strategy that can aid them to determine effective inspection team from a pool of available 

inspectors. Using psychology measures to improve software teams is not a novel idea. On that 

note, Software Engineering researchers have borrowed cognitive and social psychology research 

to improve inspection team performance in past [52]. Using Myers-Briggs Type Indicator 

(MBTI) instrument [54] authors created heterogeneous inspection teams by maximizing 

cognitive disparity between team members. Despite these efforts, they have met with limited 

success because unlike LS instruments (that measure the cognitive learning preferences), MBTI 

is a personality inventory [53]. In software engineering domain, we were able to find one 

research [8] which takes in LS of software engineers in a geographically distributed team and 

suggests requirements elicitation tool which matches their LS preference. The results suggest 

that LSs of stakeholders varies significantly and they should be taken into account while 

selecting requirements elicitation methods to improve the quality of elicitation task in 

geographically distributed teams. This motivated us to evaluate whether LS could be used on 

improving individual and team performance in software requirements inspection. 

After getting significant positive results from our experiments, where inspection team 

with inspectors of diverse LSs are more effective and efficient as compared to similar teams, we 

believed, we believe that high performing inspectors and inspection teams (who detect more 

number of faults in less time) have certain LSs and that, they tend to read inspection document in 

a certain fashion, to comprehend information depending on their LS preference. 



 

5 

Researchers in software engineering domain have characterized eye movements of 

software engineers during program comprehension [12], source code reviews [71], UML class 

diagrams [73], computer interface evaluation [35], user behavior in www search [37] to 

understand the reading patterns in the past. Some researchers [18, 51] have tried to understand 

reading patterns of individuals with different LS preference. Authors used an eye-tracking device 

to track the eye movements of participants while they were presented with one page information 

on screen. Results helped them to understand how individuals with different LS focus on the 

information presented (i.e. pictures vs. written sentences) and how they read them (i.e. 

sequentially vs. randomly). This directs our attention towards investigating the relationship 

between eye movement of inspectors during inspection and their inspection performance. Hence, 

we were interested to explore reading techniques followed by inspectors of different LSs during 

inspection. Tracking eye movements of inspectors where inspectors’ eye movements will be 

recorded while inspecting requirements document (with multiple pages) during inspection on a 

computer monitor. An eye-tracking device was used to record eye movements of participants as 

they inspect a NL requirements document. During the experiment, the participants reported their 

LSs and performed an individual inspection of a requirements document (on a computer 

monitor) in an eye tracking laboratory settings. We analyzed the effect of LSs by measuring eye 

movement data of inspectors belonging to different LS groups with respect to their inspection 

effectiveness and efficiency. The results show that eye movement are significantly correlated 

with the inspection outcome in general and more positively correlated for inspectors with certain 

LS preferences.  
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1.1. Dissertation Goals 

While LS have successfully been used in academia [4, 6, 29] to improve student’s 

performance in their coursework, no concrete empirical evidence was found that focused on the 

reading strategies of inspectors with different LSs during inspection. Using these results as our 

motivation, we propose a systematic framework (Figure 1) where LSs of individual inspectors is 

taken into account and high performance inspection teams are generated based on LS input. This 

technique would guide software industries to detect more unique faults in early artifact (i.e. 

requirements document) of SDLC and thereby, leads to more fault coverage. Using these results 

as our motivation, we propose a systematic framework (Figure 1) where LSs of individual 

inspectors is taken into account and high performance inspection teams are generated based on 

LS input. The research framework describes a series of studies starting with the feasibility study 

that evaluated the impact of individual LS on inspection performance. Based on the promising 

results from feasibility studies, we investigated the impact the LSs had on team based inspections 

in terms of increasing LS diversity among inspection team members. Next, we replicated studies 

with academic as well as industrial participants to validate our previous results. The results of 

individual studies were also combined using meta-analysis technique to validate and generalize 

our results. Using eye tracking studies, the last phase of our framework investigated the relation 

between the reading pattern and inspection performance of inspectors in general as well as in 

teams. This technique would guide software industries to detect more unique faults in early 

artifact (i.e. requirements document) of SDLC and thereby, leads to more fault coverage. 

Inspection teams with inspectors of diverse LS preference would look an artifact from different 

perspectives and leads to less fault overlap during inspection. Creating inspection teams with 

diverse inspectors would lead to less number of faults to propagate in later stages of SDLC and 
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assures the quality software development. Hence, saves the amount of re-work, time, and cost 

involved in it.  

 

Figure 1. Research framework 

Following are the major dissertation goals and research questions under each goal: 

G1: Evaluate the impact of individual LSs on inspection. 

RQ 1: Whether inspectors with certain LSs have positive impact on inspections? 

RQ 2: In each LS dimension, which LS category favors inspections? 

G2: Improving the effectiveness of inspection team performance based on LSs. 
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RQ 3: How inspection performance of inspection teams is affected when 

dissimilarity in LSs of inspectors is increased?  

RQ 4: Are dissimilar teams are more cost-effective during inspection as compared 

to random or similar teams? 

RQ 5: Are results from replicated studies validate previous results when 

combined? 

G3: Characterization of reading pattern of inspectors. 

RQ 6: Is overall inspection performance affected by the way inspectors read 

requirements document? 

RQ 7: Does inspection teams, ranging from dissimilar to similar, based on LSs 

have a particular reading pattern that impacts their inspection performance? 

RQ 8: Does inspectors belonging to a particular LS category have a reading 

pattern which supports inspection outcome positively? 

RQ 9: What insights can be gained from the eye tracking and inspection results to 

help improve the readability of requirements development? 

RQ 10: How does the reading patterns of high-performing inspectors varies across 

different LS categories and dimensions? 

1.2. Key Terms 

This subsection describes major terms used throughout the dissertation.  

• Learning Styles: the characteristic strengths and preferences in the ways individuals 

take in and process information. 

• Fixations: a point where eyes are relatively stationary and an individual in taking in 

the information. 
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• Saccades: quick eye movements between fixations. 

• Scanpath: Series of fixations and saccades is known as a scanpath (i.e. Complete 

saccade – fixate – saccade sequence). 

• Gaze: is the sum of fixations durations in an area. They are also known as “dwell”, 

“fixation cluster”, or “fixation cycle”. 

• Region of Interest (ROI): is an analysis method where eye movements that fall under 

certain area is evaluated (ROI in this study is the area where fault exist in the 

document). 

Rest of the document is organized into following sections: Section 2 covers details about 

the concepts of inspections, LSs, and eye-tracking techniques. Section 3 elaborates completes 

research work on the grounds of research goals and research questions in it. Section 4 describes 

importance of our work to software engineering domain. Section 5 consists of publications with 

our research and Section 6 covers our conclusion and future work with our research.  
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2. BACKGROUND 

This section describes the background terms that we have used in our experiment and 

how they are related to our research. Section 2.1 describes inspection and inspection cost model 

which was used to construct inspection teams of high performance which are also cost-effective 

in nature.  Section 2.2 discusses about Learning Styles and its instrument (i.e. Index of Learning 

Styles) which is used to derive LS of individuals for our different studies. Section 2.3 describes 

background of eye-tracking in research and studies that used LS of individuals to track eye 

movements.  

2.1. Inspections 

The concept of inspection was introduced by Fagan [28] to detect and report faults in a 

software artifact. Inspection is widely used and is empirically validated [25, 27, 61] for early 

detection and elimination of fault in software artifacts. Researchers introduced many versions 

[49, 57] of inspection that emphasize different parts of the inspection process (e.g., placing more 

emphasis on the individual preparation phase and less emphasis on the team meeting phase). 

Inspection is carried out in the following steps: 

• Inspection manager selects an inspection team of from a pool of skilled inspectors 

who are provided with the requirements document to be inspected.  

• The requirements author provides a brief overview and background of the document. 

• Each inspector performs an individual review by reading and reporting faults detected 

in a fault form followed by a meeting to create a master fault list. 

• The master fault list is then handed back to the author to fix faults or explains why 

they are not faults.  
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We have used inspection data from fault-checklist based inspection technique to measure 

inspection performance of individual inspectors and inspection teams. 

2.1.1. Inspection Cost Model 

Inspection cost model [44] determines, how much cost is saved by inspections as 

compared to software testing. It has following components: 

• Cr – cost spent on an inspection, is the sum of total time taken to inspect a document 

by each inspector. 

• ct – Average cost to detect a fault in testing, is not available during inspection. 

Therefore, it is measured as a factor of an average cost to detect a fault during an 

inspection. If a defect introduced at the earlier stage passes to the later stages, it 

requires rework which involves huge cost. Hence, it is always cost-effective to detect 

a fault as early as possible. 

• Dtotal – total number of faults present in the software product, can be determined if a 

document seeded with faults or the number of faults found by multiple inspectors. 

• Dr – number of faults detected: unique faults found during the inspection by all 

inspectors. 

• Ct – testing cost: cost to detect remaining faults in testing, (i.e. Dtotal – Dr) after 

inspection. If we consider ct as the average cost to detect a fault in testing, then the 

cost can be measured as the product of total number of faults remaining after 

inspection and the average cost to detect a fault during testing. This is, Ct = (Dtotal – 

Dr) * ct 

• ∆ Ct – testing cost saved by inspection: by spending cost Cr during inspection, the 

cost ∆ Ct is saved during the testing. It is calculated as the product of the total number 
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of unique faults found during the inspection (Dr) and the average cost to detect a fault 

in testing (ct). That is, ∆ Ct = Dr * ct 

• Cvt – virtual testing cost, (i.e. testing cost if no inspections are performed) is the total 

of the cost required to detect faults left after inspection (Ct) and the testing cost saved 

by inspection (∆Ct). That is, Cvt = (Ct + ∆Ct). 

2.1.2. Kusumoto Cost Metric (Mk) 

Kusumoto cost metric (Mk) [44] is a ratio of the reduction of the total costs to detect and 

remove all faults using inspections in a project to the virtual testing cost if no inspections were 

performed. The testing cost is reduced by (ΔCt-Cr) compared to the virtual testing cost (Ct+ΔCt) 

if no inspection is executed. The model proposed by Kusumoto normalizes the savings by the 

potential fault cost. Hence, it can be compared across different inspections and projects, and is 

deemed most appropriate for our research purpose. Accordingly, the Kusumoto metric can be 

derived as: 

Mk = (ΔCt - Cr) / (Ct + ΔCt) 

Mk is intuitive as it can be interpreted as the percentage of fault rework savings due to 

inspections. Using Mk, cost-effectiveness can also be compared across inspections on different 

projects. This research appropriately uses the Kusumoto metric to evaluate the cost effectiveness 

of inspection teams formed using the LSs of the inspectors (i.e. dissimilar, similar and no 

preference). 

2.2. Learning Styles 

The LSs was introduced by Kolb [43]. Since then, cognitive psychologists developed 

multiple versions of LS models [17, 23, 33, 41, 43, 50, 54] and validated the use of LS in 

engineering education [29]. We have used Felder Silverman Learning Style Model which is the 
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most advanced and widely used to measure LS preferences among individuals through an 

instrument known as Index of Learning Styles (ILS) [29–31, 64]. The FSLSM model classified 

individuals across four LS dimensions listed below: 

• Sensing (SEN) Learners (Oriented towards facts, follow concrete content, data, 

careful with details, follow existing ways) or Intuitive (INT) learners (abstract, 

conceptual, innovative, oriented towards theories and meaning, discovering 

possibilities); 

• Visual (VIS) learners (prefer visual representations of presented material – pictures, 

diagrams, flow charts, time line, video, demonstration) or Verbal (VER) learners 

(prefer written and spoken explanations); 

• Active (ACT) learners (learn by trying things out, working in groups, discussing, 

explaining, brainstorming) or Reflective (REF) learners (learn by thinking things 

through, working alone, writing summaries); 

• Sequential (SEQ) learners (linear, orderly, learn in small logical steps) or Global 

(GLO) learners (holistic, context and relevance of the subject, learn in large jumps). 

LS of an individual is measured over these four dimensions, through an instrument called 

Index of Learning Styles (ILS), shown in Figure. 2. ILS is an online questionnaire, empirically 

validated for its reliability and construct validity [31], with 44 questions. Each dimension has 11 

questions with two options favoring each category in that dimension. For example, in Sensing vs. 

Intuitive dimension, out of 11 questions, if an individual answered 8 in favor of Intuitive and 3 in 

favor of Sensing, then the final score will be 8-3 = 5 towards Intuitive category with an ‘X’ on 

the top (as shown in Figure. 2). The number of questions answered in favor of a LS category (i.e. 

8 and 3 in the example) is also known as actual score in this research. Hence, the LS of an 
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individual from Figure. 2 is: REF-INT-VIS-SEQ (formed from combining a category from each 

dimension). A balanced person towards both categories is represented by the score of 1-3 on the 

ILS. A Score of 5-7 and 9-11 states that the person has a moderate and strong LS preference 

towards a category in a LS dimension respectively. We have used ILS to measure LS of 

participants for our experiments. 

 

Figure 2. Example result of the questionnaire on the ILS 

2.3. Eye Tracking 

Eye movements and pattern of eye movements refers to the amount of cognitive 

processing by an individual [40]. Eye movement system is the result from Javal’s gaze motion 

research in 1879. The system used set of mirrors to observe the eye movement of participants 

while reading [69]. The results showed that people tend to incorporate fixations and saccades 

instead of reading in a linear fashion. Modern eye tracking system works by reflecting infra-red 

light on an eye, and recording the reflection pattern. Early research [72] in eye tracking showed 

that, people tend to incorporate regressive fixations and saccades (instead of reading in a linear 

fashion) when  faced with comprehension difficulty to review their understanding and retention. 
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Cognitive psychologists used eye tracking technology [18, 51] to understand 

Visual/Verbal and Sequential/Global LS preference of individuals by displaying information on 

a computer monitor. The results showed that visual learners tend to focus at the pictures whereas, 

sequential learners read sentences, took more time to read the information, and had less vertical 

eye movements. This study utilized eye movements to understand the reading patterns of 

students as they review requirements document. We have used eye-tracking to find reading 

patterns (i.e. their focus of attention on different parts and reading approach of requirement 

document) of inspectors and to correlate with their LS and inspection performance. 
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3. RESEARCH WORK: EMPIRICAL STUDIES AND MAJOR RESULTS 

This chapter describes a series of studies that were conducted to validate the impact LSs 

had, on individual and team inspection performance. Section 3.1 describes feasibility studies 

conducted at NDSU that motivated the design of following experiments, Section 3.2 provides 

description of software tool that was developed to generate inspection teams based on LS input. 

Section 3.3 elucidates eye-tracking studies to find eye-movements of inspectors with different 

LSs, and Section 3.5 describes analysis and results for each study in detail in order to achieve our 

research objectives. 

3.1. Feasibility Studies: Study 1 & Study 2 

This study utilized participants from North Dakota State University to understand 

whether individual LS have an impact on inspection outcome. In both studies, LS of participants 

was gathered from online survey questionnaire. Participants then used the fault-checklist method 

to identify and record faults. The objective of these studies was to investigate whether LSs have 

an impact on inspections as an individual as well as in teams? Both the studies have the same 

design which is described in further subsections. 

3.1.1. Artifact 

Both the studies utilized the same requirements document (developed externally) that 

describe the requirements for Restaurant Interactive Menu (RIM) and contained naturally 

occurring faults (i.e. faults manifest during development of requirements document). RIM 

system is responsible for taking customer’s orders in a restaurant with the help of an interactive 

online system. This gives customers a flexibility to make dining choices at their own pace and 

request assistance at their convenience. The system also gives restaurant owner better 

manageability over the menu, staff, inventory, and revenue/cost analysis. 
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3.1.2. Participants 

Study 1 and 2 were conducted at North Dakota State University (NDSU). The eleven 

participants in study 1 and thirty-six participants in study 2 were undergraduate students enrolled 

in System Analysis and Design course. The participants were management students (i.e. not 

technical students). The course covers the understanding of the process of requirement and 

design development. Participants received training in-class via same instructor which involved 

reading of an SRS using standard fault-checklist method and recording faults found. 

3.1.3. Experiment Procedure 

Study 1 and study 2 follow the same experiment procedure where participants took LS 

survey, involved in inspection training based on fault-checklist based method, and performed 

individual inspections guided by fault-checklist method. Following are the detailed steps of the 

studies (Figure 3). 

 

Figure 3. Feasibility study procedure 

• Step 1 - Learning Styles Questionnaire Survey: at the beginning of the experiments, 

all participants were handed out Felder Silverman’s LS questionnaire. Participants 
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answered all 44 multiple choice questions 

(https://www.engr.ncsu.edu/learningstyles/ilsweb.html) and, the LS results are 

generated for each participant on ILS scale. For each dimension on ILS 

(Active/Reflective, Sensing/Intuitive, Visual/Verbal, and Sequential/Global), the 

participant has score towards one category. Hence, only four LS categories (from 

each dimension) form LS of an individual with a score of either 1 or 3 or 5 or 7 or 9 

or 11.  

• Step 2 - Training and Inspecting SRS for faults: participants for both study 1 and 

study 2 were trained in-class by the instructor on how to use fault-checklist technique 

to detect faults in a given SRS. The inspection training lasts for one class session (i.e. 

70 minutes) where they were given examples on how to detect and record faults in an 

SRS. Next, each participant was handed with RIM SRS for individual inspection and 

to log faults as their take home assignment. 

3.1.4. Data Collection 

The data from both studies includes the faults found by each participant using the fault 

checklist technique and the LS score of each participant. The participants used fault form to 

record the fault found during inspection. The fault form provides participants with the space to 

indicate inspection timing (i.e. start and end tie of inspection, time they found each fault, and 

break(s) if they took any). In addition, the fault reporting forms required participants to classify 

the fault identified during the inspection in one of the following fault types: General (G), Missing 

Functionality (MF), Missing Performance (MP), Missing Information (MI), Missing 

Environment (ME), Ambiguous Information (AI), Inconsistent Information (II), Extraneous (E), 

Wrong Section (WS), and Others (O). I evaluated the faults reported by each participant and 

https://www.engr.ncsu.edu/learningstyles/ilsweb.html
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provided them feedback about true and false positives. I had the knowledge of the system for 

which requirements were developed and detection of true and false positives process includes 

reading through the faults reported by each participant to remove any false-positives before 

analyzing the data. 

3.2. Research Approach 

To achieve our research goals, a software tool [11, 36] was developed that generates 

virtual inspection teams that creates inspection teams from diverse to similar LSs of inspectors. 

This section describes various statistical techniques that were utilized to form inspection teams 

based on the LS of individual inspectors. Section 3.1 describes principal component analysis 

which was used to convert correlated variables (i.e. scores in LS categories across each LS 

dimension) to independent variables. Section 3.2 discusses cluster analysis which is used to 

group similar participants into different clusters based on their LSs. Section 3.3 explains 

discriminant analysis which is used to find out the probability of a participant to belong in a 

cluster. 

3.2.1. Principal Component Analysis (PCA) 

LS score of an individual is classified into two categories in each dimension 

(sensing/intuitive, visual/verbal, active/reflective and sequential/global). The relationship 

between two categories of each dimension is negatively correlated (i.e. if score on one category 

increases, the score on other decreases). PCA technique is utilized in this research to convert 

correlated LS scores (as shown in Figure. 2) across each dimension into uncorrelated variables 

that are also known as Principal Components (PCs) [7]. The possible number of PCs for each 

individual with a LS score is always less than or equals to 8 LS categories across four 

dimensions [70].  
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Each PC will account for a certain variance between the categories in each dimension and 

within the dimensions. The first PC will try to account for the maximum variance and the second 

PC will try to account for maximum variance that is not addressed by the first PC. This results in 

listing of PCs in order of decreasing variance where each PC represents a different property of 

the original data. Therefore, all possible number of PCs (i.e. less than or equal to the original 

number of variables) when combined, covers 100% variance of original data. 

3.2.2. Cluster Analysis (CA) 

The next step was to group similar participants into different clusters based on their LSs. 

CA is a multivariate technique, which form groups (also called clusters) with the objects that are 

relatively homogeneous within themselves and heterogeneous between each other [39]. The 

objective of CA in our research is to form clusters of similar individuals based on their LS data 

and to order teams that consists inspectors of dissimilar to similar LS preferences. The resulting 

clusters results in high similarity of LSs within each cluster and high dissimilarity of LSs 

between different clusters [65]. A team formed with inspectors of different clusters will lead to 

dissimilar team and a team formed with inspectors from the same cluster leads to a similar team.  

We used k-means clustering technique [38], where the user inputs desired number of 

clusters (k or team size in our research), then the k-means assigns each participant to the nearest 

centroid out of k centroids. Next, participants are reassigned to the new closest centroid and the 

process is repeated until it results in no more changes [47]. The CA could be understood more 

from the Figure. 4, which shows two different clusters. The human clipart represents individual 

participants, which are then grouped into two different clusters (referred as active and reflective 

learners). Below each participant, values of active and reflective PCs are denoted. The 
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individuals belonging to each cluster are more similar in their characteristics (active cluster has 

participants with higher value of active PC and vice versa) as compared to other clusters. 

 

Figure 4. Example to show statistical techniques (PCA, CA, and DA) used for virtual inspection 

team creation  

3.2.3. Discriminant Analysis (DA) 

In the last step, DA was used to find out the probability of each participant belonging to a 

cluster. This result of the DA is used to maximize the LS variations across different clusters, and 

minimize the LS variations within each cluster [7, 42, 67]. DA provides Group Membership 

(GM) which is used to determine the dissimilarities between individual LSs within the same 

cluster in this research by using the difference between the GM values of individuals.  

For example, in Figure. 4, GM values are indicated for each inspector in active and 

reflective PCs. In active cluster, inspector 1 has the highest GM value and in reflective cluster, 

inspector 5 has the highest GM value. When both inspectors (i.e. 1 and 5) are selected from each 
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cluster, they form the most dissimilar team. GM was used in our research to sort the teams 

ranging from most dissimilar LS to teams with most similar LS preferences and strengths. 

3.2.4. Generation of Virtual Inspection Teams 

The tool follows above techniques, shown in Figure 5, to generate inspection team of a 

particular size (r) based on LS of each inspector. 

 

Figure 5. Tool approach 

• Step 1 – Create virtual inspection teams: Virtual inspection teams (i.e. teams that did 

not actually meet) were created to determine the effect of LS on effectiveness and 

efficiency for various team sizes. For each experiment, we created inspection teams 

of size ranging from 2 to 10 with all the possible combinations of virtual teams. For 

example, to create inspection team size 4 out of 32 inspectors, we created 35960 

inspection teams (i.e. 32C4) from the pool of 32 inspectors. 

• Step 2 – Grouping of similar inspectors in clusters:  The LS scores of each participant 

is first converted into actual scores which has number of answers supported for each 
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category in a dimension. The correlated LSs of each inspector in each dimension were 

converted into uncorrelated variables by using PCA (Section 3.2.1). Next, based on 

PCs, different clusters (same in number as team size) were created and inspectors of 

similar LSs were grouped together using CA (Section 3.2.2). Table 1 shows the 

cluster output of team size of 4 inspectors (from data set 2) where first row represents 

cluster number and the second row shows the inspector ID who belongs to a cluster. 

In this example, for team size 4, tool creates 4 different clusters (i.e. equal to team 

size). Inspector 1, 5, 6, 7, 10, 15, 16, 20, 22, 24, 27, 28 and 32 grouped into cluster C1 

and similarly, rest of the inspectors belong to cluster C2, C3 and C4.  

Table 1. Grouping inspectors for team size 4 into clusters 

Cluster No C1 C2 C3 C4 

Participant ID 1 

5 

6 

7 

10 

15 

16 

20 

22 

24 

27 

28 

32 

12 

17 

23 

26 

3 

9 

22 

13 

21 

31 

2 

4 

8 

18 

19 

25 

29 

30 

 

• Step 3 – Sorting teams based on the LS of inspectors:  In this step, using DA, each 

inspector is assigned a GM value within the same cluster (shown in Table 2). First 

column within each cluster (i.e. C1, C2, C3 and C4) represents the inspector ID 
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number and second column shows the GM value of inspectors in their respective 

clusters. As shown in Table 2, for cluster C1, participant 5, 15 and 22 has GM value 

of 1 which is the highest probability to belong in cluster C1 as compared to rest of the 

participants in the same cluster. 

Table 2. Group membership for 4 clusters 

C1 C2 C3 C4 

ID GM ID GM ID GM ID GM 

1 

5 

6 

7 

10 

15 

16 

20 

22 

24 

27 

28 

32 

0.98 

1.00 

0.79 

0.99 

0.97 

1.00 

0.93 

0.99 

1.00 

0.97 

0.97 

0.99 

0.97 

12 

17 

23 

26 

1.00 

1.00 

0.89 

0.68 

 

3 

9 

11 

13 

14 

21 

31 

1.00 

0.81 

0.99 

1.00 

1.00 

0.90 

0.95 

2 

4 

8 

18 

19 

25 

29 

30 

0.76 

1.00 

1.00 

0.98 

0.99 

0.99 

1.00 

0.90 

 

• Next, all inspection teams (i.e. 32C4, from step 1) were sorted in the order of 

decreasing level of LS dissimilarity (i.e. most dissimilar to similar) of the individual 

inspectors as shown in Figure. 6. Team with inspector number (ID) 5, 8, 12 and 13 is 

the most dissimilar team. The level of LS dissimilarity for most dissimilar teams 

(team with maximum number of clusters involved) in a team decreases (shown by 

decreasing value of total GM) as we move down in Figure. 6 till team number 2912.  

Similarly, as we move down the team list (Figure. 6) for most similar teams (i.e. 

lowest number of clusters or single cluster involved), similarity of LS preference 
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among inspectors decreases. Team number 35140 is the most similar team with 

highest GM value that represents the most similarity among the team members. The 

process was repeated for team size 2 to 10. 

 

Figure 6. Virtual inspection teams created from 4 clusters 

3.3. Replicated Studies: With Students: Study 3, With Professional in US: Study 4, With 

Professionals in India: Study 5 

This section explains the replication studies that were conducted with different set of 

participants in the same academic environment, with industrial participants in United States, and 

with industrial participants in India. The previous results were validated in these studies with 

different number of participants as well as requirements documents. Later, all the results were 

combined using meta-analysis technique to generalize our results. 

3.3.1. Artifact 

Study 3 utilizes the same RIM requirements document (used in study 1 and study 2) with 

naturally occurring defects as described in Section 3.1.1. Study 4 and 5 utilized Loan Arranger 

System (LAS) document developed externally by Microsoft. LAS system provides functionality 
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that allows a financial organization to sell group of loans to other financial organizations. The 

organization purchasing the loan is provided with the capability to search for loans based on 

outstanding value, remaining term of the loan and, risk. The LAS document is 10 pages long and 

consists of 49 detailed requirements for the system. This document has been used in previous 

inspection studies and has been seeded with 30 defects [19, 21, 62].  

3.3.2. Participants 

Study 3 comprises of thirty-two participants enrolled in undergraduate course of System 

Analysis and Design at NDSU. Nineteen software professionals working in a software company 

participated for study 4. Some of them have worked on multiple projects in industry. The 

participants reported to have an average of three years of experience in interacting with user to 

writing and inspecting requirements and use cases. Forty professionals (with varying level of 

industrial experience) enrolled in Requirements Management workshop at Symbiosis 

International University (SIU) participated for study 5. The workshop covered the process of 

managing requirements as practices used in the real-world projects for delivering quality 

software product. 

3.3.3. Experiment Design 

Study 3 at NDSU follows the same experiment design as described in Section 3.1 for 

study 1 and study 2. This study varies on environment and time aspects as compared to study 1 

and study 2. Inspections for this study held in-class and participants were given 70 minutes to 

complete their inspection task. 

Study 5 was conducted as a workshop for participants to understand the concepts and 

details of requirements inspection. Participants in study 4 and study 5 went through a pre-study 

survey questionnaire. This helped us to gain some insights into their education background and 
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experience before experiment and their feedback after experiment. Following is the detailed 

experiment design for study 4 and study 5. 

• Step 1 - Pre-study questionnaire: participants in both study 4 and study 5 went for 

pre-study survey questionnaire (http://rebrand.ly/PreStudySurveyIndustry) where they 

have to answer details about their educational background and experience of working 

in software industry. The survey also has a breakdown to get detailed information 

about their work experience of working with requirements phase during software 

development. This consists of their experience of interacting with user to write 

requirements, writing use cases, inspecting requirements, and changing requirements 

for maintenance. On average, participants in study 4 had about 3 years and 

participants in study 5 had about 2 years of experience. 

• Step 2 - Learning Styles Questionnaire Survey: This step follows the same procedure 

for both study 4 and study 5 as described in Section 3.1.3 step 1. 

• Inspection Training: For study 4, participants were provided with the training 

material (in the form of PowerPoint slides). For study 5, the participants were trained 

for thirty minutes. During training, examples were given to the participants on how to 

detect faults in a requirements document using fault checklist method. 

• Step 4 - Inspecting SRS for Faults: Study 4 and 5 participants received LAS SRS 

document after their training where participants have to read through SRS 

individually, detect faults and report them in fault form as described in Section 3.2.3 

Step 3. For study 4, participants received 60 minutes to complete their inspection 

task. 

http://rebrand.ly/PreStudySurveyIndustry
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3.3.4. Data Collection 

This part for all three studies (i.e. study 3, study 4, and study 5) follows the same steps as 

described in Section 4.2.4. For study 4 and study 5, master fault list (with 30 defect list) was used 

to detect false-positives from each individual’s inspection data. 

3.4. Tracking Eye Movements during Inspections: Study 6 and Study 7 

As, described in Section 1, the use of eye-tracking method has been studied for different 

phases of SDLC expect requirement inspections. Since, individual has different viewing 

strategies and have a different learning preference; hence, we hypothesize that inspectors tends 

towards different reading approach during inspection which could affect inspection performance. 

We also want to gain insights into eye-movements of inspectors with different LSs. Therefore, 

we conducted studies with students of NDSU. This study validates the LS with the eye-

movements of inspectors by inspecting an artifact at CVCN (Center for Visual and Cognitive 

Neuroscience) lab of NDSU. Research questions of this experiment are described in Section 1.1. 

The LS, fault, and eye-tracking data was collected for each participant. The results from this 

study would help us to find whether reading pattern of inspectors with certain LS aids in 

detection of more faults during inspection.  

3.4.1. Artifact 

For both the studies, participants inspected a common document (developed externally) 

that described the requirements for Parking Garage Control System (PGCS) developed externally 

at University of Maryland was used for inspection in eye tracking settings. The document 

describes requirements for a parking system that manages entry and exit of vehicles 

automatically. The system displays the status of parking garage to each driver while entering and 

even provides monthly access card for drivers in need of reserved parking space. PGCS 
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document was seeded with 34 realistic faults and have been used previously in inspection studies 

[19, 62]. PGCS is a generic domain and was selected to avoid any impact of domain knowledge 

bias. For both the studies, inspections took place by reading requirements document on a 

computer monitor with the eye-tracker tracking eye movement. Hence, document was modified 

in Microsoft Word 2013 to include line number before each line and was converted into high 

resolution image (1080 x 1920) for each page. This modification of SRS and its conversion was 

done with an objective of page by page navigation during inspection on computer monitor and 

collection of eye-tracking data for each page. Inspectors were able to point out faults by calling 

out line number before intended line (where fault was found) and describing faults with less 

disruption in eye-tracking data.  

3.4.2. Eye Tracking Apparatus 

For both the studies, EyeLink 1000 desktop mount, shown in Figure. 7, was used to track 

and record eye movements of participants during the inspection. The instrument consists of three 

main components: (a) high-speed camera, (b) infrared illuminator, and (c) a host PC connected 

via Ethernet dedicated to record eye movements. It is a non-invasive system that sits at the 

bottom of computer monitor/projection area (i.e. below the tracked area the participant is 

viewing) and allows participants to read from a monitor while eye tracker allows eye movement 

recordings with a sample frequency of 250-2000 Hz, a tracking range of 32o x 25o with an 

accuracy greater than 0.5 degree and a resolution less than 0.01 degree.  
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Figure 7. EyeLink 1000 desktop mount 

3.4.3. Participants 

Study 6 and Study 7 were conducted at North Dakota State University (NDSU). A total 

of thirty-nine graduate and undergraduate students participated in this study. Thirteen graduate 

students for (study 6) were enrolled in Requirements Engineering course and twenty-three 

undergraduate students for (study 7) were enrolled in System Analysis and Design course during 

at North Dakota State University (NDSU). System Analysis and Design course covers the basic 

understanding of requirements, design, and development of software system. Requirements 

Engineering course focuses on the requirements development technique and tasks which includes 

requirements inspection technique. Both courses were taught by the same instructor and students 

in both courses were required to learn software inspections and their impact on software quality 

improvement. 

3.4.4. Experiment Design 

To evaluate the relationship of reading patterns and LSs of requirements inspectors on 

their inspection performance, two studies were conducted in Computer Science course where LS 

of participants were gathered via online questionnaire. Participants were then trained on fault-
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checklist based inspection process. Participants then individually performed requirements 

inspection in an eye-tracking laboratory settings. Their raw LSs, eye-tracking data along x & y 

axis, and timestamp and fault data (i.e. number of faults found and time taken) was collected to 

analyze the reading patterns of individual inspectors and virtual inspection teams of different LSs 

using EyeMMV toolbox (https://github.com/krasvas/EyeMMV). EyeMMV is a complete utility 

for post-experiment eye movement analysis for generating fixation, scanpaths, and heatmaps. 

This toolbox was used to visualize fixations (i.e. certain area where inspectors focused for a 

larger amount of time during inspection), scanpaths (i.e. what is the path of reading requirements 

document during inspection), and heatmaps (i.e. areas, represented by different colors, in the 

document which gained more attention of an inspector during the inspection process). 

Following are the steps followed during the studies: 

• Step 1 - Learning Styles questionnaire survey: at the beginning of the experiments, all 

participants were handed out Felder Silverman’s LS questionnaire 

(https://www.engr.ncsu.edu/learningstyles/ilsweb.html). Participants answered all 44 

multiple choice questions and, the LS results are generated for each participant on 

ILS scale. For each dimension on ILS (Active/Reflective, Sensing/Intuitive, 

Visual/Verbal, and Sequential/Global), the participant has score towards one 

category. Hence, only four LS categories (from each dimension) form LS of an 

individual with a score of either 1 or 3 or 5 or 7 or 9 or 11. 

• Step 2 - Training on Inspecting SRS for Faults: Participants in both the studies were 

trained in-class by the instructor on how to use fault-checklist method to detect faults 

in SRS for 70 minutes. To ensure that students understood the fault inspection, as part 

https://github.com/krasvas/EyeMMV
https://www.engr.ncsu.edu/learningstyles/ilsweb.html
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of their course objectives, students applied fault-checklist technique on LAS 

document (Step 2a) followed by a reflection of their inspection results (Step 2b). 

• Step 2a – Inspection of LAS document: during this step, participants used their 

training to perform an individual inspection of LAS document and reported faults. 

• Step 2b – Reflection of LAS inspection results: One of the researcher evaluated the 

faults reported by each participant and provided them feedback about true and false 

positives. Next, post inspection reflection was performed wherein, participants were 

provided a list of original 30 faults in LAS document (that they had inspected) and 

were asked to reflect upon the faults they saw (but did not reported) or missed during 

the inspection by comparing it against their reviewed fault list. Table 3 shows a 

sample of reflection document and each column is described as follows: 

• Defect#: represents the defect ID in seeded fault list. 

• Req.#: indicates the requirement ID(s) where fault is present. 

• Type: denotes categorization of faults into different fault categories. For example, 

ambiguity (A) in the requirements.  

• Description: brief description of the problem for an author to be able to understand 

and fix it. 

• Is it a defect: Whether students to agree or disagree that the fault represents an actual 

requirement problem? 

• Did you see this: Whether they were saw this fault (‘yes’ or ‘no’) during the 

inspection? 

• Did you report this: Whether (‘yes’ or ‘no’) they reported this fault during inspection 

of LAS document? 
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• Explain: this field allowed a brief explanation if their response in the three earlier 

fields were inconsistent. 

Table 3. Sample of reflection form for LAS document 

Defect 

# 
Req.# Type Description 

Is it a 

defect? 

Did 

you see 

this? 

Did you 

report this? 
Explain 

1 1, 2 A Are the reports in 

these requirements 

the same or separate? 

    

2 1, 2 O When do the updates 

occur? Are they 

effective 

immediately? 

    

 

• Post Reflection, students discussed their doubts regarding inspections and reflection 

of their faults with researchers. A week after this exercise (to avoid fatigue effect), 

participants were provided with the quick recap of fault checklist based inspection 

technique. 

• Step 3 - Inspecting PGCS requirements via Eye tracker - Next, each participant 

performed an individual inspection in eye-tracking laboratory as shown in Figure 8. 

Each participant individually read through the PGCS document on a computer 

monitor (rotated in portrait mode as requirements were documented in portrait mode). 

Throughout the process, EyeLink 1000 eye tracker sitting at the bottom tracked their 

eye movements during the inspection. One of the researchers was present in the eye-

tracking laboratory that assisted the participants during the inspection process. At the 

beginning of the experiment, researcher gave the overview of the PGCS SRS 

document to be inspected, fixed eye distance with eye-tracking instrument, calibrated 

(i.e. focusing at known locations on the computer screen) and validated (determining 
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whether apparatus estimation of eye position is indeed close to the known position of 

the targets) eye movements, and drift correction (to correct small drifts in the 

calculation of gaze position). During the experiment, if participant needed break, 

researcher paused the inspection process and resumed it after performing drift 

correction. 

 

Figure 8. Inspection task in eye-tracking laboratory 

• During the initial setup, participants were aligned at the center of a computer monitor 

(both horizontally and vertically). The distance between eye and camera was fixed 

between 55cm – 60cm. This distance was chosen through pilot testing with sample 

participants to evaluate if they were comfortable in reading document from the 

monitor. Also, this distance lies in the optimum distance to capture eye movements 

by the eye-tracker as suggested by SR research in EyeLink 1000 manual (i.e. between 

40 cm – 70 cm) [74].  

• Participant’s eye movements were calibrated with the eye-tracker, using sampling 

rate of 250Hz, and then validated via EyeLink 1000 built in software. The validation 
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checks for the eye movement readings and compares it with the calibration reading to 

avoid any deviation in the data.  Based on the comparison, results are generated (on 

the eye-tracking system screen) as poor, fair, good, and excellent. If results are poor, 

the validation process was repeated again. Before starting the inspection process, a 

final drift correction of participant’s eye was performed (a corrective adjustment 

based on raw eye position of a participant).  

• Each page of requirements document is displayed on the monitor at a resolution of 

1080 × 1920 in portrait mode. Using right and left click on mouse, participants were 

able to switch pages of PGCS document forward and backward. Eye-tracker at the 

bottom of the monitor captures the eye movements along ‘x’ and ‘y’ axis of the 

monitor continuously during the entire inspection task. Inspection task also required 

the participants to talk-it-out-loud any faults that they discover during the inspection 

process so that they don’t have to look away from the screen to disrupt eye-tracking. 

A voice recorder was used to assist the fault reporting. The participants speak out 

loud the place (line number) where they found fault and describe the fault to establish 

why it represents a problem.  

• During the entire process, participants were allowed to take break(s). In such case, 

researcher with the control of eye-tracking system paused the eye-tracking and the 

voice recorder. During breaks, participants were encouraged to relax their eyes, look 

away from monitor but were not allowed to move their chair to avoid disruption of 

eye calibration. Whenever participant wanted to resume, drift correction was 

performed again and inspection was resumed (i.e. recording of eye movement was 

started again) from the same page where inspection was paused. After completing 
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inspection, recorded faults (in the form of audio) are transcribed as a fault list along 

with the timing data (i.e. start and finish times, time when each fault was found, 

breaks) for each participant. 

• Step 4 -Post-inspection: Researchers again provided a complete list of defects in the 

PGCS document to the students (similar to LAS reflection) and asked them to reflect 

on their inspection experience. We also discussed the issues they may have faced in 

eye tracking environment to gain insights into their inspection results. 

3.4.5. Data Collection 

This section describes the raw eye tracking data collected during the inspection for study 

6 and 7. The PGCS document was marked with twenty-seven ROI’s where faults were present. 

The XYstart and XYend coordinates of region where faults were present in the document were 

calculated using a software tool known as IrfanView (http://www.irfanview.com). We simply 

dragged the mouse pointer to select the ROI and released after selecting. IrfanView 

automatically records the coordinates of the region selected in a text file. ROI measure was used 

to analyze whether all participants in general and participants belonging to a certain LS were 

able to focus at the areas where faults were present. The eye tracking data (i.e. coordinates along 

‘x’ and ‘y’ axis and timestamp) was written into Export Data Format (EDF) file by EyeLink 

1000 software. To enable these files to be read into MATLAB system, they were first converted 

into ASCII format. While converting into MATLAB file, the unwanted data (e.g., during blink of 

an eye where no eye movement was recorded) was cleansed before analysis. 

This converted eye movement data (in .mat extension format) for each participant was 

inputted to EyeMMV toolbox (https://github.com/krasvas/EyeMMV) for offline analysis. The 

tool runs under MATLAB environment and uses different functions to identify fixations, 

http://www.irfanview.com/
https://github.com/krasvas/EyeMMV
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saccades, generate heatmaps, and analyze ROI. A sample eye movement visualization in the 

form of fixation, scanpath and heatmap for page 11 (marked with ROI’s) is shown in Figure 9.  

 

Figure 9. A sample fixation, scanpath, and heatmap 

The tool extracted the gaze data of each participant and filtered the results (e.g., eye 

blinks where no data was recorded). The resulting data was then used for analysis in this study. 

Apart from eye movement data along x & y axis and time for each participant, other 

variables were calculated and saved into separate files (.mat extension) using raw eye tracking 

data into EyeMMV toolbox. The variables are listed below: 

• Total time (Ttotal): Each participant spent some time (in milliseconds) reviewing and 

reporting faults on each page. Hence, a total of fourteen durations were calculated 

(one for each page) and converted into seconds by EyeMMV toolbox. 

• Fixation time (Tfixation): During the review, participants tended to fixate on certain 

parts in the document (where eye movements are relatively stationary  coordinates 

roughly remains same with the time). These parts (fixations) involves cognitive 

processing  and the radius of each fixation depicts the amount of time spent [40]. The 

total fixation time for each page was calculated. Fixation events were detected and 
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visualized using an algorithm based on spatial and temporal constraints [35]. The 

fixation identification depends of three basic parameters: two spatial parameters 

(tolerance 1: t1 and tolerance 2: t2) measured in pixels and one minimum duration 

(minDur). The minDur value suggested by the algorithm was between 100ms to 

900ms. “t1” depicts how tight a fixation cluster will be and “t2” depicts the 

discrimination between clusters. As inspection required reading in which participants 

fixated for a smaller duration, we used t1=50, t2=25, minDur=150 to visualize 

fixations. 

• Scanpaths (Slinear): To investigate the reading trend of inspectors, we utilized 

scanpaths during the first occurrence of reading the PGCS document. This was done 

because, while reading back, inspectors tend to search for information in the 

document (or report faults) that may not be indicative of their reading style. To 

differentiate between linear and random reading motion, we considered saccades that 

were greater than or equals to an angle of 30 degrees. We calculated percentage of 

linear motion on each page by taking ratio of linear saccades to all saccades on each 

page. 

The EyeMMV tool also calculated following data at ROI’s (Figure 9. area marked in SRS 

as rectangular boxes) during inspection task: 

• FROI: total number of fixations by the participant at ROI in the PGCS document. 

• TROI: total time taken (in seconds) by the participant to read through the ROI’s during 

inspection. 

For visualizing heatmaps (Figure 9), EyeMMV uses a parameter of gridSize (defined in 

pixels) which is used to generated heatmap from the point data. Grid size is inversely 
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proportional to the number of different regions generated on heatmaps and Bicubic interpolation 

was also used to smooth out the heatmap generated. For generating heatmaps in our experiment, 

we used gridSize=135. Heatmaps followed a color scale that helps investigator to find out the 

area which received attention at different levels of focus (based on different colors). The color 

scale in our experiment uses blue, green, yellow, orange, and red to represent minimum (blue) to 

maximum (red) region of attention. 

The PGCS requirements document was also divided into three major sections: (a) 

Introduction, (b) General Description, and (c) Functional Requirements. During the inspection, it 

was observed that participants went back and forth between different pages or different sections 

to search for some information to gain context of the system and to report faults. To achieve that, 

if a participant is at page 7 and wants to go back at page 4, they had to switch between pages 6, 

5, and then 4 using left mouse click. This pattern was evaluated by collecting data regarding the 

number of times a previous section was revisited (or referenced) and the total time spent on 

referencing previously read sections. To collect this data, eye tracking data (the sequence by 

which pages were read, fixation & saccade information, time spent) was exported into Microsoft 

Excel format and a script was written in Visual Basic for Applications (VBA). The script 

removed eye movement data on intermediate pages that were not targeted during search with a 

criteria of fixation number less than or equals to 10.  Accordingly, following variables were 

collected in context of referring different sections backwards: 

• Icount: number of times the introduction section was referenced;  

• GDcount: number of times the general description section was referenced;  

• FRcount: number of times the requirements section referenced;  
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• Tcount: Total number of times a previously read section was referenced (Icount + GDcount 

+ FRcount); 

• Itime: time spent in referring back to the introduction section 

• GDtime: time spent in referring back to the general description section 

• FRtime: time spent in referring back to the requirements section 

• Ttime: time spent in referring back to previously read sections (Itime + GDtime + FRtime) 

Therefore, a total of 13 eye movement variables were collected and analyzed to find the 

impact of reading pattern on inspection performance.  

3.5. Results 

This section reports results from studies conducted over a period of time to answer 

research questions in order to achieve our research goals. 

3.5.1. Inspectors with certain LS have positive impact on inspections? 

Results from feasibility study (i.e. study 2) and replicated study (study 3) are described in 

this section. The motive was to find, do LS have an impact on inspections or not? If yes, which 

are the LS that favors inspection outcome? While looking at the raw LS data, it was found that, 

out of 36 inspectors in study 2, only one had a preference towards the verbal LS category (with 

the score of 1 on ILS) and out of 32 inspectors in study 3; only 4 had a preference towards the 

verbal category with a score in the balanced range (i.e. 1 or 3 on ILS). So, we removed 

Visual/Verbal dimension for analysis from both studies. Therefore, only remaining 6 LSs (Active 

– ACT, Reflective – REF, Sensing – SEN, Intuitive – INT, Sequential –SEQ, and Global – GLO) 

were analyzed. We haven’t covered data from study 1 as number of participants were very less 

(i.e. 11). 
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Using 6 LS categories across 3 LS dimensions, we created 8 clusters of possible LS 

combinations namely: 1) ACT-SEN-SEQ, 2) ACT-INT-SEQ, 3) REF-SEN-SEQ, 4) REF-INT-

SEQ, 5) ACT-SEN-GLO, 6) ACT-INT-GLO, 7) REF-SEN-GLO, and 8) REF-INT-GLO. Using 

the LSs results, participants were then grouped into these clusters. As an example, in Figure 2, 

ILS score sheet represents that a person has a preference towards REF, SEN, and SEQ LSs and 

can be placed in the REF-SEN-SEQ cluster.  

All 36 participants in Study 2 were grouped into 8 clusters based using their ILS score 

sheet. The number of participants belonging to each cluster after this step is: ACT-SEN-SEQ 

(seven), ACT-INT-SEQ (three), REF-SEN-SEQ (nine), REF-INT-SEQ (zero), ACT-SEN-GLO 

(five), ACT-INT-GLO (three), REF-SEN-GLO (six), and REF-INT-GLO (three). The REF-

INT-SEQ cluster (that contained zero participants) was removed from further analysis. Next, the 

effectiveness of each cluster was calculated by averaging the number of unique faults found by 

inspectors belonging to that cluster. This process is repeated for every cluster and for the 

efficiency results (i.e., average faults rate). Figure. 10 shows the average effectiveness and 

efficiency of participants belonging to each cluster (the results are ordered by the most effective 

to the least effective cluster). 

 

Figure 10. Number of faults found by inspectors of different LSs for study 2 
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The major result from Figure 10 is that, the inspectors with ACT-SEN-SEQ LSs had the 

maximum average effectiveness and the maximum average efficiency. Conversely, the 

inspectors with REF-INT-GLO (i.e., exact opposite of the ACT-SEN-SEQ) LSs uncovered the 

least number of faults and at a slowest pace during the requirements inspection. Based on the 

results presented in this section, inspectors with ACT-SEN-SEQ are best suited for an effective 

and efficient inspection of requirements document. This means that, an effective and efficient 

inspector is more oriented towards facts, concrete data and is careful with the requirement 

details, and these inspectors prefer step by step learning and follow a logical process to read 

through a requirements document and record faults present in the document. 

For study 3, only effectiveness of participants is analyzed due to fixed inspection timings 

in this study. 32 participants were grouped into 8 clusters based on their ILS score sheet. The 

number of participants belonging to each cluster after this step is: ACT-SEN-SEQ (five), ACT-

INT-SEQ (two), REF-SEN-SEQ (nine), REF-INT-SEQ (four), ACT-SEN-GLO (five), ACT-

INT-GLO (two), REF-SEN-GLO (two), and REF-INT-GLO (three). Effectiveness for each 

cluster is calculated.  

Figure 11 shows the average effectiveness of participants belonging to each cluster 

(results ordered from the most effective to less effective cluster). The major result from Figure 

12 is that, the inspectors with REF-INT-SEQ LSs (categories with positive correlation) had the 

maximum average effectiveness. Conversely, the inspectors with ACT-SEN-GLO (i.e. exact 

opposite of REF-SEN-SEQ) LSs uncovered the least number of faults. 
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Figure 11. Number of faults found by inspectors of different LSs for study 3 

Based on the results presented in this section, inspectors with REF-INT-SEQ are best 

suited for an effective and efficient inspection of requirements document. This means, an 

effective and efficient inspector thinks about the information first, tends to understand from 

theories and its meaning written in requirements document, and these inspectors prefer step by 

step learning and follow a logical process to read through requirements document and record 

faults present in the document. 

We were also interested in finding out the impact of LS on the type of faults found during 

inspections. To perform this analysis, we compared the classification of faults (explained in the 

data collection Section 4.1.4) found by the participants belonging to each cluster (listed above 

and shown in Figure. 11). Figure 12 (for study 2) and Figure 13 (for study 3) compares the 

average number of unique faults detected by each cluster (e.g., ACT-SEN-GLO) for each fault 

type (e.g., MF, AI).  
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Results from study 2 showed that, the inspectors belonging to the ACT-SEN-SEQ cluster 

found the maximum number of General (G) faults and Ambiguous Information (AI) faults. 

Another observation is that, the REF-SEN-SEQ cluster detected the maximum number of 

Inconsistent Information (II) faults. Also, REF-SEN-GLO inspectors detected maximum number 

of Missing Information (MI) faults. The inspectors in the ACT-INT-GLO found the most number 

of Missing Functionality (MF) faults. This shows that, a combination of different LSs enabled 

inspectors to find higher number of a particular fault type. This gave an indication that difference 

in the LS of inspectors will enable a higher coverage of faults present in an artifact. The result 

also revealed that inspectors belonging to the four LS clusters (i.e., ACT-SEN-SEQ, ACT-INT-

GLO, REF-SEN-SEQ, REF-SEN-GLO) out of 8 clusters were able to uncover all the types of 

faults present in a requirements document. 

 

Figure 12. Faults type found by participants in different LS clusters for study 2 

Results from study 3 (Figure 13) showed that, the inspectors to the REF-INT-SEQ cluster 

found the maximum number of Missing Information (MI), Missing Environment (ME) and 

General (G) fault type. Another observation is that REF-INT-GLO cluster has found the 
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maximum number of Ambiguous Information (AI) fault type. Also, ACT-INT-SEQ cluster 

found the maximum number of Inconsistent Information (II) and Extraneous (EF) faults and 

ACT-INT-GLO cluster found maximum of Missing Functionality (MF) faults. The result also 

revealed that inspectors belonging to the five LS clusters (i.e., REF-INT-SEQ, REF-INT-GLO, 

ACT-INT-SEQ, ACT-INT-GLO, ACT-SEN-GLO) out of 8 clusters were able to uncover all the 

types of faults present in a requirements document. 

 

Figure 13.  Faults type found by participants in different LS clusters for study 3 

Results presented above clearly showed that difference in the LS of inspectors will enable 

a higher coverage of faults present in an artifact. These results also gave an indication that 

individual LSs have an impact on the inspection effectiveness of inspectors. Inspectors with 

certain LSs do find more faults as compared to others during the inspection. 
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3.5.2. In each LS dimension, which LS category favors inspections? 

To investigate the impact of LS categories in each dimension (except VIS/VER), we 

performed multiple regression test for study 2 and study 3. 

The results in Table 4 (for study 2) show that ACT, SEN, and SEQ categories had a 

positive relationship (represented by shaded cells) with the number of faults found by individual 

inspectors. The SEN and SEQ LS categories were also positively correlated to the fault rate of 

individual inspectors. Conversely, the REF, INT, GLO learning styles are negatively correlated 

to the inspection results. This means that the inspectors with a higher preference towards ACT, 

SEN, and SEQ learning styles are more likely to perform an effective and efficient inspection. 

While this result is positive, it was not found to be significantly correlated. An analysis of the LS 

data showed that there was not enough variation in the participants LSs within each category that 

is required to obtain a significant correlation to the inspection results. This means, each category 

out of two in a dimension does affects inspection performance positively. 

Table 4. Six LS categories vs. Effectiveness and efficiency 

LS category ACT REF SEN INT SEQ GLO 

Effectiveness:  

Correlation 
.036 -.079 .005 -.106 .082 -.196 

p-value .418 .327 .489 .273 .321 .129 

Efficiency:  

Correlation 
-1.33 -.117 .166 -2.17 .239 -.334 

p-value .223 .252 .171 .105 .083 .025 

 

The results in Table 5 (for study 3) shows that REF and SEQ categories have a significant 

positive correlation (represented by shaded cells) with the number of faults found as well as fault 

detection rate by individual inspector. Conversely, ACT and GLO LS categories have significant 

negative correlation with the inspection performance. Also, INT LS category has a positive 
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(whereas, SEN is negatively correlated) but does not have significant correlation with 

effectiveness and efficiency of inspection. This means that inspectors with a higher preference 

towards REF, INT and SEQ LSs perform an effective and efficient inspection. 

Table 5. Multiple regression results for effect of each LS category 

LS Category ACT REF SEN INT SEQ GLO 

Effectiveness: 

Pearson Corr. 
-0.169 0.504 -0.007 0.084 0.379 -0.305 

p-value 0.178 0.002 0.485 0.323 0.016 0.045 

 

All these results are in accordance with the results presented in Section 4.5.1 where high 

performing LS (e.g. REF-INT-SEQ) had the same set of LS categories from each dimension 

which favors inspection positively and vice versa is also true. Results presented in Section 4.5.1 

and 4.5.2 shed a light that LS do have an impact on inspection outcome and constructing teams 

with inspectors of different LS might provide better fault coverage. Therefore, improved 

inspection performance. 

3.5.3. How inspection performance is affected as dissimilarity in teams increased? 

LSs of the 11 (from study 1), 32 participants (from study 3), and 19 participants (from 

study 4) as well as their fault data to generate all possible virtual inspection teams for inspection 

team size of 2 up to 10 inspectors as described in Section 3.2. For each inspection team size (2 to 

10), inspection teams were sorted in decreasing order of the LS dissimilarity amongst the 

inspectors that make up the team. The unique fault count (i.e. effectiveness) and the fault rate 

(i.e. efficiency) of each inspection team. 

Inspection data of participants from three studies was individual data; so we had to 

combine individual results to form a team score for each virtual inspection team. Fault detection 

effectiveness for teams was found by combining the count of unique faults each participant had 
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found in RIM requirements document. The reason for choosing unique fault count is because we 

were interested in overall fault coverage by a team as opposed to high overlap in the fault list. 

Efficiency is the number of unique faults found by each team in one hour (calculated by dividing 

total unique fault count by the total time spent during the inspection). The time taken by each 

participant in a team is combined to calculate the overall time took by team to complete 

inspection process. This analysis was performed all possible virtual inspection teams for all 

sizes. We haven’t analyzed efficiency for study 3 and study 4 as inspection timings were fixed 

for both studies. Following are the results described for each study. 

To provide an overview of the results, Figure 14 shows the average number of faults 

(shown by solid line) and the average number of faults per hour (shown by dotted line) found by 

teams of 2 to 10 inspectors for study 1. To understand the impact of the LS, for each team size, 

the effectiveness and the efficiency results are organized by the increasing number of clusters 

involved in the team formation (the higher the cluster number, the higher is the dissimilarity in 

LSs of team members). Note that the number of clusters that could participate in the team 

formation is always less than or equal to the team size (i.e., 1 or 2 clusters for team size 2; 1 or 3 

clusters for team size 3 and so on). However, for some larger team sizes (e.g., team size 8 in 

Figure 14), virtual inspection teams could not be formed using only 1, or 2, or 3, or 4 clusters. 

This is because for team size 8, the tool creates 8 different clusters via k-means algorithm. All 11 

participants were distributed across these 8 clusters. There was no single cluster that contained 

all the participants. Therefore, no virtual teams were created (for team size 8) from only one 

cluster. Simply put, as the team size increases, the number of participants that belong to same 

cluster decreases which reduces the probability that a team will be formed from less number of 

clusters. 
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Figure 14. Inspection effectiveness and efficiency of team size two to ten inspectors for study 1 

The effectiveness results (solid lines in Figure 14) showed that, for team size of 4 up to 10 

inspectors, teams that include inspectors belonging to more number of clusters (i.e., inspectors 

with dissimilar LSs) are able to detect larger number of faults as compared to teams with 

inspectors belonging to fewer number of clusters (i.e., inspectors with more similar LSs). This 

result is not evident for team size of 2 and 3 inspectors where the inspectors belonging to the 

same cluster were almost as effective as compared to the inspectors pooled from the different 

clusters. Analysis of the raw data revealed that, in case of 3 or less number of inspectors, the 

inspectors were distributed over 2 or 3 clusters. 

As a result, a clear separation of LSs of inspectors across different clusters was not 

achieved with a small number of clusters. After team size 3, inspection effectiveness of teams 

shows a consistent increase with an increase in the number of clusters used to formulate 

inspection teams. That is, teams with diverse LSs of inspectors are more effective. We also 
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compared the effectiveness and efficiency result within the same cluster for each team size (e.g. 

all inspection teams of size 6 generated from 2 clusters) based on the decreasing value of GM 

(which denote the decrease in their dissimilarity of the LSs within that cluster size). We did not 

found any consistent decrease in the inspection abilities of teams within a particular cluster size 

as the GM value decreases. This might be due to the fact that inspectors within the same cluster 

are very similar in their LS preferences even if they have different GM values within the same 

cluster. The efficiency results (dotted lines in Figure 14) also follow the same trend as 

effectiveness. That is, for team size 3 to 10, teams with inspectors belonging to different clusters 

(i.e., are dissimilar in their LSs) are able to detect more faults per hour as compared to teams 

with similar inspectors. 

We performed a linear regression test to see whether the dissimilarity in the LSs of 

inspectors is positively correlated with the number of unique faults found by inspection teams of 

different sizes. The results show that, dissimilarity in the LS of inspectors had a strong and 

significant positive correlation (shown in Table 6) with the team effectiveness for team size 5, 6, 

7, and 8. There is no significant correlation for team size of 2, 3 and 4 inspectors, which was due 

to the fact that the team size ranging from 5 to 8 inspectors covers most of the LSs (across 8 LS 

categories). Diverse set of inspectors in these teams were able to find different types of faults 

(also discussed later) resulting in an increase in their team effectiveness. Also, for team size 9 

and 10, though the team effectiveness increased with an increase in the cluster size, this increase 

was not significant because there are only 8 LS categories and adding more number of inspectors 

in a team increased the overlap of the faults. 
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Table 6. Correlation between LS and inspection effectiveness for study 1 

Team size Correlation with the faults (within same team size) 

5 p<0.001; r2=0.037 

6 p<0.001; r2=0.079 

7 p=0.002; r2=0.030 

8 p<0.001; r2=0.118 

 

Similarly, a linear regression test evaluated the correlation between the dissimilarity in 

the LSs of inspectors and the fault rate of inspection teams. The results show that, the LS had a 

strong and significant positive correlation (Table 7) with team efficiency for team sizes 4, 5, 6, 7, 

and 8. Therefore, based on these results, creating a team of 5 up to 8 number of inspectors based 

on the dissimilarity in their LS strengths (guided by the number of clusters involved in their 

formation) does appear to significantly increase the fault detection effectiveness and fault 

detection efficiency during an inspection of requirements document. 

Table 7. Correlation between LS and inspection efficiency for study 1 

Team size Correlation with the efficiency (within same team size) 

4 p=0.006; r2=0.023 

5 p<0.001; r2=0.028 

6 p=0.005; r2=0.017 

7 p=0.001; r2=0.032 

8 p<0.001; r2=0.157 

 

For study 3 results, the effectiveness results (solid lines in Figure 15) showed that, for 

team size of 4 up to 10 inspectors, teams that include inspectors belonging to more number of 

clusters (i.e., inspectors with dissimilar LSs) are able to detect large number of faults as 

compared to teams with inspectors belonging to fewer number of clusters (i.e., inspectors with 

more similar LSs). This result is not evident for team size of 2 and 3 inspectors where the 
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inspectors belonging to the same cluster were almost as effective as compared to the inspectors 

pooled from the different clusters. Analysis of the raw data revealed that, in case of 3 or less 

number of inspectors, the inspectors were distributed over 2 or 3 clusters. As a result, a clear 

separation of different LSs of inspectors across various clusters was not achieved with a small 

number of clusters. After team size 3, inspection effectiveness of teams shows a consistent 

increase with an increase in the number of clusters used to formulate inspection teams. That is, 

teams with diverse LSs of inspectors are more effective. 

 

Figure 15. Inspection effectiveness of team size two to ten inspectors for study 3 

Liner regression results (Table 8) show that, dissimilarity in the LS of inspectors had a 

strong and significant positive correlation with the team effectiveness for team size 4 to 10. 
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There is no significant correlation for team size of 2 and 3 inspectors, which was due to the fact 

that the team size ranging from 4 to 8 inspectors covers most of the LSs (across 8 LS categories). 

Diverse set of inspectors in these teams were able to find different types of faults (also discussed 

later) resulting in an increase in their team effectiveness. 

Table 8. Correlation between LS and inspection effectiveness for study 3 

Team size Correlation with the efficiency (within same team size) 

4 p=0.048; r2=0.000 

5 p=0.001; r2=0.043 

6 p=0.001; r2=0.046 

7 p=0.001; r2=0.059 

8 p=0.001; r2=0.034 

9 p=0.001; r2=0.028 

10 p=0.001; r2=0.005 

 

Similar analysis was done with study 4 data. Figure 16 compares the average number of 

faults found by virtual inspection teams. Results are organized by the increasing number of 

clusters (or increasing dissimilarity) involved in the team formation (i.e., the higher the cluster 

number, the more dissimilarity the team members). To reiterate, the number of clusters could 

participate in the team formation is always less than or equal to the team size (e.g., 1 or 2 or 3 

clusters for team size 3). Based on the results in Figure 16, for each inspection team size (2-10), 

the inspection teams formed with more number of clusters (i.e., dissimilar LSs) are more 

effective at finding defects as compared to the teams with inspectors belonging to a fewer 

number of clusters. 
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Figure 16. Inspection effectiveness of team size two to ten inspectors for study 4 

The results show a consistent increase in the inspection effectiveness with an increase in 

the number of clusters used to form teams. We believe that the teams with more dissimilar LSs 

of inspectors have less fault overlap and consequently, their inspection effectiveness increases. 

To evaluate this, we performed a linear regression test to see whether the dissimilarity in the LSs 

of inspectors is positively correlated with the number of unique faults found by inspection teams 

of different sizes. The results (Table 9) show that, dissimilarity in the LS of inspectors had a 

strong and significant positive correlation with the team effectiveness for team size 3 to 10. 

Table 9. Correlation between LS and inspection effectiveness for study 4 

Team size Correlation with the faults (within same team size) 

3 p=0.001; r2=0.015 

4 p=0.001; r2=0.034 

5 p=0.001; r2=0.072 

6 p=0.001; r2=0.052 

7 p=0.001; r2=0.085 

8 p=0.001; r2=0.044 

9 p=0.001; r2=0.028 

10 p=0.001; r2=0.004 
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For study 5, we followed meta-analysis approach. To provide an overview of results, 

Figure. 17 compares the inspection team effectiveness of inspection teams formed with similar 

LSs (left side of the scale of treatment effect) vs. dissimilar LSs (right side of the scale of 

treatment effect) of individual inspectors for inspection team size of 2 to 10 inspectors. For 

varying team sizes, forest plots for effectiveness describes the following parameters: 

• Hedges’ g denotes effect size (the difference between means divided by the standard 

deviation). For comparing results for each team, effect size measures the magnitude of 

the impact of LSs variation on team effectiveness. 

• 95% Confidence Intervals (CI) – describes the uncertainty associated with a sampling 

method. 95% CI of overall effect is measured across the width of diamond in plot.   

• p-value denotes level of statistical significance for each team size and overall 

significance due to all team sizes. 

• Scale of treatment effect (and line of no effect) - is denoted by center line. If width of 

diamond is towards right (doesn’t overlap with center line), then results would be 

statistically significant for dissimilar teams. 

 

Figure 17. LSs dissimilarity vs. Inspection effectiveness for varying team sizes for study 5 
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Regarding effectiveness; the results in Figure. 17 show that, for team size 2, 4, and 6-10 

inspectors; dissimilar teams found significantly more number of faults than similar teams. Since 

this analysis is based on the participants from a single study, the only variance is due to the 

participant variability. Therefore, fixed effect model (instead of random effect model) should be 

used to evaluate the overall effect of LS dissimilarity on the inspection team effectiveness. The 

overall effects (diamonds on the right side of the line of no effect) for effectiveness are also 

highlighted in Figure. 17. The 95% CI of the overall effect estimate (i.e., width of diamond) for 

larger teams does not overlap 0 (i.e., line of no effect). So, there is statistical significance 

(p=0.000 for effectiveness) towards the right side of treatment scale (i.e., favors dissimilarity of 

LSs). 

For smaller teams, (e.g., 2 to 5), the effect of dissimilarity vs. inspection effectiveness is 

uneven. That is, team size of 3 and 5 favors LS similarity (left side of 0) and team size of 2 and 4 

favor LS dissimilarity (right side of 0). Digging deeper, this was because inspectors are 

distributed into small number of clusters (e.g., three clusters for team size three) which doesn’t 

always enable LSs disparity among inspectors resulting in random results. Therefore, based on 

these results, an inspection team size of 6-10 inspectors showed a significant improvement in 

fault detection effectiveness with an increase in LS disparity amongst individual inspectors. 

For study 6 and 7, we combined their inspection results. Figure 18 compares the average 

number of unique faults detected (effectiveness – left side) and fault detection rate (efficiency – 

right side) for virtual inspection teams of size 2 to 10. Each line in the graph represents 

inspection effectiveness and efficiency for a team size. The number of clusters involved in team 

formation is always equal to team size. The more number of clusters involved, the more 

dissimilar a team for a particular team size would be (as it increases the LS disparity among 
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inspectors). For example, in team size 4, inspection teams created from a total of four clusters 

would be the most dissimilar team whereas, teams created from one cluster will be the team with 

inspectors of most similar LSs. An evident observation from the Figure 18, is that, effectiveness 

and efficiency of inspection teams increases with an increase in the LS disparity.  

 

Figure 18. LSs dissimilarity vs. Inspection effectiveness and efficiency for team size 2 to 10 for 

study 6 & 7 

To evaluate this effect, we performed regression analysis to see whether dissimilarity in 

LSs yields higher fault coverage and higher fault rate for inspection teams? The results in Table 

10 shows that inspection performance of larger teams (i.e., N = 6-9 for effectiveness and N = 4-9 

for efficiency) significantly favors LS dissimilarity amongst individual inspectors. For smaller 

team sizes (e.g., team size 3), inspection performance is not significant because smaller teams are 

created from less number of clusters (e.g., team size 3 has maximum 3 clusters) which does not 

lead to LS disparity among team members in dissimilar teams. Also, for larger team sizes (e.g., 

team size 10), the more number of cluster creation leads to the repetition of team members (due 

to 8 possible LS categories) with same LS preference which does not results in unique fault 

reporting.  
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Table 10. LS vs. Inspection performance of virtual team 

Team Size Effectiveness Efficiency 

2 p=0.294 p=0.006 

3 p=0.072 p=0.100 

4 p=0.017 p=0.011 

5 p=0.086 p=0.002 

6 p=0.025 p=0.042 

7 p<0.001 p=0.002 

8 p=0.001 p=0.001 

9 p=0.003 p=0.001 

10 p=0.215 p=0.259 

 

Research [48] suggests that increasing the team size beyond a certain number of 

inspectors would not significantly diversify the LSs of inspectors in a team (due to 8 possible LS 

categories). Generally, companies do not employ a large inspection teams (which is the reason 

we had analyzed up to team of 10 inspectors). Based on this result, creating a team of 2 up to 10 

number of inspectors based on the dissimilarity in their LS strengths (guided by the number of 

clusters involved in their formation) appears to increase the fault detection effectiveness during 

an inspection of requirements document. Based on these results, we can generalize that 

increasing inspectors (up to an extent) with diverse LSs in an inspection team do increase 

inspection effectiveness. 

3.5.4. Are dissimilar teams more cost-effective as compared to random or similar teams? 

This section utilizes results from study 1 for measuring cost effectiveness of inspection 

teams of varying LSs and of various sizes. For each team size (ranging from 2 to 9 inspectors), 

all possible virtual inspection teams were generated. The result was then sorted by teams with 

most dissimilar LSs (involved largest number of clusters) to the teams with most similar LSs 

(least number of clusters involved) of participating inspectors. Inspection data was calculated for 
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each of these virtual teams. The data consists of the unique number of faults uncovered and total 

time taken by the team members during the inspection of RIM document. Next, for each team 

size, from a pool of all possible virtual inspection teams (e.g., 11C2 for team size 2), 10 teams 

were selected from each set of LSs (i.e. for each team size, 10 teams of inspectors with dissimilar 

LSs, 10 teams of inspectors with similar LSs; 10 teams of inspectors randomly selected). For 

each team chosen, cost effectiveness (Mk) was calculated. 

Step 1) Average cost to detect a fault in inspection (cr): adding all the faults found by 

inspectors, average number of faults found by an inspector is calculated. From the available 

values of time and average fault detected by an inspector, cr is calculated from the following 

equation:  

cr = Cr / Dr (cost of inspection / total faults found during inspection) 

• “Cr - Cost of inspection”, is calculated by total time spent by all inspectors during 

inspection. 

• “Dr”, is the total number of unique faults found by all the inspectors during 

inspection. 

Step 2) Virtual testing cost (Cvt): is the product of average cost to detect a fault in testing 

(i.e., ct) and the total number of faults present in the product (i.e., Dtotal). 

• “ct – Average cost to detect a fault in testing”, is calculated as 6 times the average 

cost to detect a fault during the inspection (cr). The average cost to detect a fault in 

testing varies with the team size as it depends on the time taken and faults found by 

the inspectors. However, testing is independent of inspection and inspection team 

size, and considering all faults of the same severity, the average cost to detect a fault 
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in testing (ct) is kept constant for the evaluation regardless of the inspection team 

size. 

• “Dtotal – Total fault count”, is the total number of faults present in the document. 

The artifact used has 98 natural faults in it. 

Step 3) Cost saved from inspection (ΔCt): testing cost saved by inspections is the product 

of unique faults found during inspection (Dr) and average cost to detect a fault in testing (ct). 

That is, ΔCt = Dr * ct. 

The difference between the testing cost saved by inspection and cost spent on inspection 

provides the total reduction in costs. Kusumoto metric (Mk) is then obtained as follows: 

Mk = Reduction is cost to detect all faults (i.e., ΔCt - Cr) / 

Virtual testing cost (i.e., Cvt)----- Eq 3.5.4 

The Mk value can range from -1 to +1. The Mk value of 1 means the most cost-effective 

inspection. A positive Mk value indicates that cost saved from inspection outweighs the costs 

spent on inspection. A negative Mk value indicates a cost ineffective process, and Mk value of 0 

is when the inspection cost equals the testing savings. 

Using Eq 3.5.4, we computed the Mk values for 10 virtual inspections for all team sizes 

(ranging 2-9 inspectors) and using all three means of team formation (dissimilar vs similar vs no 

LS preferences). As an example, 10 Mk values (representing 10 virtual inspections) for a team 

size of 6 inspectors (using the dissimilar LSs) as shown in Figure 19. Similar process was used to 

derive the Mk values for all the 10 virtual inspection teams by varying inspection team size (2-9) 

and for all three types of LS variations. 

 

 



 

61 

 

Figure 19. Calculation of Kusumoto metric for team size 6 

To provide an overview of our results, Figure 20 shows the average cost effectiveness 

(shown by lines) and average unique faults detected (shown by bars) for each inspection team 

size (ranging from 2–9 inspectors) for each team formation set (i.e. dissimilar, random and 

similar). Results are organized in the order of increasing team size. Left y-axis shows the average 

number of unique faults detected and secondary y-axis on the right shows the cost-effectiveness 

(Mk) of each team. 

 

Figure 20. Comparison of LS on cost-effectiveness for team size 2 – 9 



 

62 

Cost effectiveness results show that inspection teams with dissimilar inspectors always 

found more number of faults and were more cost-effective as compared to teams of inspectors 

with similar or randomly selected. The results also show that teams whose members were 

randomly selected are more cost effective (except for team size 3) when compared to the team of 

inspectors with similar LSs. This is because, when randomly selected, there is still a higher 

chance of inspectors being dissimilar as opposed to intentionally selecting the more similar 

inspectors based on their LSs. Overall, dissimilar inspection teams were always cost effective 

across all team sizes as compared to random or similar teams. That is, more diverse inspectors 

uncovered the requirements from different perspectives and find a larger number of faults faster. 

We performed a paired t-test to see whether inspection teams with dissimilar inspectors 

are significantly more cost-effective as compared to inspection teams of random or similar LSs. 

Results in Table 11 shows that dissimilar inspectors in an inspection team had a strong and 

significant impact as compared to inspection teams with inspectors of random (pair 1) and 

similar LSs (pair 2). Among random and similar (pair 3), teams with random LSs inspectors had 

strong and significant impact as compared to similar inspectors in a team which was due to the 

chance that some variation in the LS of the inspectors is achieved during the random selection of 

inspectors. Therefore, based on the results, forming inspection team with dissimilar inspectors 

significantly increased the cost-effectiveness. 
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Table 11. Paired sample test result 

 Mean Sig. (2-tailed) 

Pair 1 Cost Dissimilar 

Cost Random 

0.45414665 

0.38718237 
<0.001 

Pair 2 Cost Dissimilar 

Cost Similar 

0.45414665 

0.35261604 
<0.001 

Pair 3 Cost Random 

Cost Similar 

0.38718237 

0.35261604 
0.029 

 

Based on this result, creating a team of 2 up to 10 number of inspectors based on the 

dissimilarity in their LS strengths (guided by the number of clusters involved in their formation) 

appears to increase the fault detection effectiveness during an inspection of requirements 

document. Based on these results, we can generalize that increasing inspectors (up to an extent) 

with diverse LSs in an inspection team do increase inspection effectiveness. 

3.5.5. Are results from previous studies validated when combined? 

The LS scores of students (in studies 1 and 3) and industrial professionals (studies 4 and 

5) were utilized to evaluate the impact of inspectors’ LSs on their inspection team effectiveness 

and efficiency for teams ranging from size 2 up to 10 inspectors. To provide an overview of the 

results, the effectiveness results from study 5 are shown in Figure. 17 using a forest plot. To 

address heterogeneity and to generalize the results across four experiments, meta-analysis was 

performed that combined the results from all four studies and is shown in Figure. 21 (discussed 

later in this section). Figure. 21 shows the forest plots generated from four experiments for 

standardized effect of effectiveness and efficiency for inspection team size of 2 – 10 inspectors. 

The overall effect is also shown for each team size. Random effect model is more appropriate for 

deriving conclusions due to heterogeneity of population across four experiments. The thickness 



 

64 

of each block for each team size in the meta-analysis (Figure. 21) shows the relative random 

weight assigned to the result of each experiment by random effects model. 

 

Figure 21. Meta-Analysis: comparing and combining results from four experiments 

Based on the overall effect of results across four experiments as shown in Figure 21, 

major observations are listed as follows: 
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• Team sizes 4, 6-10 (regarding effectiveness) and team sizes 4, 6 to 8, 10 (regarding 

efficiency) showed significantly positive overall effect of LS dissimilarity on the 

inspection performance. 

• The effectiveness results are consistent in experiment 2, 3, and 4 as compared to the 

results from experiment 1 (that contained 11 students). The relative weights assigned 

to each experiment (lower weight for experiment 1) also highlight the lack of 

consistency and preciseness in the results.  

• Overall diamond’s line (that also covers left side of line of no effect) for teams that 

are not significant (e.g. team size 2, 3, 5) shows that, though positively correlated, the 

particular team size does not always favor dissimilarity for effectiveness and 

efficiency of inspection.  

Therefore, based on the results from all three experiments, it can be concluded that, 

“staffing inspection teams of 6-10 inspectors formed with varying LSs would results in detection 

of larger number of faults but would not always result in detection of faults faster”. 

3.5.6. Is overall inspection performance affected by the way inspectors read requirements 

document? 

As mentioned in Section 3.4.1, participants inspected PGCS requirements and verbalized 

faults found while reading the document on a computer monitor. During this process, we also 

recorded their eye movements (to understand their reading patterns). Using the fault and timing 

data (to calculate fault count and fault rate) and eye tracking data (5 variables namely – Tfixation, 

Ttotal, Slinear, FROI, and TROI described in Section 3.4.5), we performed multiple regression with 

model selection (forward selection) to gain insights into the reading patterns of more effective 

(found more faults) and efficient (found faults faster) inspectors. Table 12 reports the results in 
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the form of correlation and p-values between 5 eye movement variables and 2 inspection 

performance variables.  

Table 12. Eye tracking vs. Inspection performance 

  Ttotal Tfixation Slinear FROI TROI 

Effectiveness 
Correlation 0.18 0.083 -0.162 0.294 0.193 

p-value 0.137 0.308 0.163 0.035 0.120 

Efficiency 
Correlation -0.314 -0.361 -0.104 -0.104 -0.209 

p-value 0.026 0.012 0.264 0.263 0.101 

 

Major observations from Table 12 are listed below: 

• In terms of inspection effectiveness, apart from linear reading motion (Slinear) all eye 

movement variables (Ttotal, Tfixation, FROI, and TROI) were positively correlated but FROI 

had a significant positive correlation. That is, participants who reported more faults, 

were able to quickly find inconsistencies at the area where faults were present (i.e. 

ROI) and then spent more time fixating on ROI’s to detect and log faults present.  

• Contrary to the effectiveness results, all eye movements were negatively correlated 

and two variables (Ttotal and Tfixation) had a significant negative correlation. That is, 

fixation on ROI’s is more important than the total fixation (which in fact may be due 

to lack of information processing).  

• Also, participants reading in a linear fashion, were negatively correlated with 

efficiency. Based on the participant behavior (observed by one of the researcher 

during experiment), some sequential readers tend to read and comprehend the entire 

information to understand the system first and then searched for faults which results 

in more inspection time. 
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Overall, effective inspectors tend to fixate more at the regions where faults exist to 

comprehend information instead of spending more time to fixate non ROI’s on each page. This 

might be due to the fact that, during the inspection, effective inspectors find odds in reading NL 

requirements mostly at ROI’s. Therefore, they fixate to find and report faults documented in the 

requirements at ROI’s which led to significantly positive correlation between number of 

fixations at ROI (as opposed to the total fixation) and inspection effectiveness. Also, inspectors 

who spent more time fixating on each page were significantly less efficient because of the 

difficulty in processing requirements information. Following up on this result, in later sections, 

we present analysis of LSs of inspectors that exhibited such behavior (i.e., tendency to fixate on 

ROI’s) to be make more informed decisions for selecting inspection team. 

3.5.7. Does inspection teams, based on LSs have a particular reading pattern that impacts 

their inspection performance? 

To find the impact of inspection teams based on their LS diversity and eye movements, 

the overall eye movement data for all virtual inspection teams in each team size was calculated.  

The eye movement data for each individual was averaged to calculate reading pattern of an 

inspection team of a particular size. We performed linear regression analysis to evaluate eye 

tracking factors that affects the high inspection performance of dissimilar teams of varying 

inspection team sizes. The results (Table 13) shows the linear regression output of eye tracking 

vs. LS dissimilarity data of team size 2 to 10. The shaded portion in Table 13 shows significant 

positive correlation wherein, bold with italics denote negative correlation. Major observations 

from Table 13 are listed below: 
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Table 13. Eye movement vs. Virtual inspection teams of size 2-10 

Team 

Size 

Fixation Time Per 

Page 

Tfixation 

Time Per 

Page 

Ttotal 

Total Fixations at 

ROI 

FROI 

Total Duration at 

ROI 

TROI 

2 p=0.003 p=0.006 p=0.109 p=0.010 

3 p=0.103 p=0.100 p=0.556 p=0.026 

4 p=0.011 p=0.029 p=0.058 p=0.004 

5 p=0.003 p=0.003 p=0.003 p=0.003 

6 p=0.038 p=0.038 p=0.038 p=0.038 

7 p=0.129 p=0.074 p<0.001 p<0.001 

8 p=0.001 p=0.001 p<0.001 p<0.001 

9 p<0.001 p<0.001 p<0.001 p=0.001 

10 p=0.198 p=0.198 p=0.198 p=0.198 

 

• High-performing teams (i.e. team size 6 to 9) spent less time fixating per page 

(Tfixation) and overall spent less time on each page (Ttotal). This was especially true for 

larger teams; 

• Conversely, fixating on ROI’s (FROI) and total time spent at fault locations (TROI) 

resulted in increased inspection performance for larger team sizes (N=6 to 9).  

Overall, if individual inspectors in a team of diverse LSs of inspectors naturally tend to 

spend more time processing information and extracting faults by fixating at the area where faults 

are present, it resulted in improved performance (effectiveness and efficiency) as well. 

3.5.8. Does inspectors belonging to a particular LS category have a reading pattern which 

supports inspection outcome positively? 

We also wanted to investigate the impact of eye movement of individual LSs category 

(e.g., ACT vs REF) on inspection outcome to gain more insights into how eye movement factors 

relates to different LS categories. Therefore, individual LS categories were separated from LS of 

all participants and results in individual LS categories consists of following number of 
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participants: ACT (4) vs REF (9), SEN (8) vs INT (5), VIS (10) vs VER (3), and SEQ (7) vs. 

GLO (6). All individual LS category data (inspection and eye tracking) was collected. Total 

fixations at ROI were converted as one tenth of the actual value (FROI/10) to accommodate all 

results in the graph. While comparing the eye movement performance of each LS category, it 

was found that, participants with ACT - Active LS (Figure 22) had the highest number of 

fixation time per page and time per page (which were shown to be negatively correlated to 

inspection performance in Section 4.5.6). Also, shown in Figure 22, participants with SEQ- 

Sequential LS preference had maximum number of total fixation at ROI and total duration at 

ROI (that was positively correlated with inspection performance). 

 

Figure 22. Comparison of eye movements of LS categories 

To enable such comparison for each LS category, we performed multiple regression to 

find the eye movement factors in each LS category that impacts inspection performance (i.e. 

effectiveness and efficiency). The results are shown in Figure 23. The results (Figure 23) shows 

the following observations: 
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Figure 23. Multiple regression results comparing inspection performance of LS categories based 

on eye movement factors 

• SEN LS category has the maximum number of significantly positive supporting 

factors of eye movement (Tfixation, FROI, and TROI) for high inspection effectiveness.  

• SEQ category had the second highest number of eye movement factors (FROI and 

TROI) that significantly supports inspection effectiveness positively and are important 

in terms of high performance. 

• For inspection efficiency, there was no significant positive factor in eye movement of 

different LS categories but participants who tend towards INT and GLO LS category 

had eye movement factors that significantly affects inspection efficiency in a negative 

manner.  

• Interestingly, for VER- verbal learners (conducive for reading a NL document like 

SRS); reading in a linear fashion is significantly negatively correlated to the overall 

inspection effectiveness (p=0.005).  

Based on the results, it could be said that participants that tend towards Sequential 

learning (and Sensing and Reflective to some extent) are preferred for requirements inspections 
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by fixating on the ROI’s. Therefore, a certain combination of LSs should be selected that would 

enable inspectors to focus on areas where faults may exist and enable enough diversity to be able 

to reduce overlap of faults and increase inspection performance.  

3.5.9. What insights can be gained from the eye tracking and inspection results to help 

improve the readability of requirements development? 

We also wanted to evaluate the general effect of looking back to previously read 

information (to search, comprehend or recall information) on inspector’s ability to detect and 

report faults. To do so, we performed linear regression (Figure 24) between eye tracking 

variables related to page referencing (Icount, GDcount, FRcount, Itime, GDtime, and FRtime) and 

inspection outcomes (FC and FR).  

 

Figure 24. Page transition vs. Inspection performance 

Major obervations from Figure 24 (highlighted cell denote significant results) are: 

• Time spent referring back to previous sections of document (Itime, GDtime, FRtime, 

Ttime) had a positive correlation (though non-significant) with inspection effectiveness 

(i.e., FC). Considering the length and nature of requirements document, inspectors 

tend to refer back to either check their undestanding, or recall information.  

• While all transition variables were negatively correlated with FR, the number of times 

(Icount) and time spent (Itime) going back to the Introduction section had significant 

(but weak) negative corerlation on inspection efficiency (FR). Also, participants that 

spent more time (Ttotal) going back to previous sections of document, their inspection 

efficiency was significantly hampered.  
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Further, we wanted to evaluate which section (and accompanying information) received 

maximum amount of recall. To find most frequently (number of times) and heavily (time spent) 

referenced sections, the results from paired t-test showed that subjects went back to the general 

description section at a significantly higher rate (both in terms of count: p=0.005 and time spent 

p=0.004) than the introduction and functional/non-functional requirements section. To help 

readers understand this result, the general description section was written in paragraphs, 

introduction section was mix of paragraphs and system diagram, and functional requirements 

were written in bullet points. When generated heat maps when going back (using EyeMMV 

toolbox and color band of blue, green, orange, yellow, red) for a sample of pages in each section 

(Figure 25), it was clear that description section received maximum fixations and the fixation 

duration (shown in red) from participants specifically due to the dense information. This result is 

consistent with previous eye tracking research [40] that individuals reading passages find it 

difficult to comprehend and retaining information and their frequency and duration of fixations 

increase (especially at the end of sentences as seen with general description section in Figure 25) 

with the increasing difficulty of passages written in NL. 

 

Figure 25. Heatmaps for introduction, general description and functional requirements page 
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Therefore, based on these results; to overcome the reference overhead, requirements 

should be written in a manner that participants don’t have to spend more time in going back and 

searching for the relevant information to verify the correctness of functional/non-functional 

requirements. Adding pointers for the reference information may help reduce the reference 

overhead and improve readability of document under inspection. 

3.5.10. How does the reading patterns of high-performing inspectors varies across different 

LS categories and dimensions? 

We also investigated the relationships between the eye movements for inspectors 

belonging to different LS categories (e.g., SEN vs INT) and their inspection performance. Out of 

39 participants, only 3 had any preference towards verbal LS. Therefore, we removed 

Visual/Verbal LS category from analysis and grouped participants into remainder of six LS 

clusters: ACT (17), REF (22), SEN (29), INT (10), SEQ (18), GLO (21). Next, we performed 

linear regression to evaluate relationships between eye movements and inspection performance 

for each LS category. The results are shown in Figure 26 & 27 and are discussed as follows: 

• Sequential vs. Global: Of all LS categories, SEQ has the maximum number of factors 

(FROI, TROI, GDcount, FRcount, Tcount, GDtime, FRtime, and Ttime) that had a significant 

positive correlation with inspection effectiveness (FC). That is, inspectors with SEQ 

LS spent more time at fault areas (i.e. ROI’s), spent more time referencing previously 

reviewed sections and subsequently found significantly more number of faults and 

found them faster.  

• Sensing vs. Intuitive: SEN LS category had the second highest number of factors 

(GDcount, Tcount, GDtime, and Ttime) that supports inspection effectiveness positively. 
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But these learners spent more time fixating at regions other than ROI’s (Ttotal and 

Tfixation) which negatively impacted their inspection efficiency.  

• Active vs. Reflective: REF learners saw a positive correlation between eye tracking 

variables and inspection effectiveness, however none of the relationship was 

significantly correlated.  

 

Figure 26. Comparison of eye tracking data and inspection fault count between ACT/REF, 

SEN/INT, and SEQ/GLO LS category 

 

Figure 27. Comparison of eye tracking data and inspection fault rate between ACT/REF, 

SEN/INT, and SEQ/GLO LS category 

• ACT, INT, and GLO learners had a significant negative correlation with inspection 

efficiency and eye tracking variables. Inspectors belonging to these three clusters 

spent more time fixating throughout document (Ttotal and Tfixation) instead of ROI’s 

which negatively impacted inspection efficiency. Additionally, consistent to the LS 
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theory, GLO learners took large jumps and INT leaners spent more time transitioning 

back and forth which significantly affected their inspection performance. 

Based on these results, inspection performance was impacted by the ways participants 

read information contained across different sections of SRS document along with the effort spent 

to search or recall information during the inspection. Effective inspectors fixate at areas they find 

logical inconsistencies (at ROI) whereas underperforming inspectors make more regressive 

fixations due to comprehension problems (i.e., Tfixation). This is especially true when trying to 

comprehend information written in a paragraph form (as seen in the General Description section 

of SRS document). Additionally, reading a document in small logical steps helps them detect 

more faults even if they switch between pages to comprehend information. This trend helps them 

to understand requirements better during requirements review and find odds at fault areas during 

inspections. Results also indicate that inspection efficiency could increase if requirements 

document could be structured in a manner that reduces the amount of transition overhead when 

referencing back to previous pages to search for certain information or to check their 

understanding. 
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4. RELEVANCE TO SOFTWARE ENGINEERING 

Human learning preferences have been captured widely using FSLSM, but mostly in 

academia. Software engineering research validates that the overall inspection effectiveness 

decreases due to the overlap in the faults detected when inspectors are reviewing from same 

point of view. Results indicated that stakeholders involved during the requirement elicitation 

have different LSs and that the LSs of individual inspectors can have an impact on their 

inspection results. We believe that extending the concept of LS into software engineering context 

can be very effective in improving the quality of software artifacts. Software engineers vary in 

the way they “perceive” and “process” the information that is documented in software artifacts. 

This is especially true in context of NL requirements which involves collaboration between 

technical and non-technical stakeholders.  

The concept of LS is applicable in software inspections domain and can help to manage 

the quality of software by creating high performance inspection team(s). Since each participant 

spent the same amount of time performing an inspection, we anticipate that the efficiency (faults 

found per time) results will follow the trend. The concept of using LS to form more effective 

software inspection teams is not just limited to the requirements phase, but rather applicable to 

the inspection of software deliverables produced at the other stages of the software development 

lifecycle (e.g., code, test plans etc.). 
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6. CONCLUSION AND FUTURE WORK 

Based on our results, the concept of LS is applicable in software inspections domain and 

can help to manage the quality of software by creating high performance inspection team(s). The 

technique can be used by researchers and project managers to staff inspections depending on 

their need of overall fault coverage or to focus specifically on a particular type. Based on the 

results, we recommend the use of LSs concept for managing software inspections. We 

recommend having large number of inspectors in pool of inspectors from which inspection team 

will be selected that helps to select diverse inspectors for a team. For larger team sizes, higher 

the LSs disparity among individual inspectors, more effective the virtual inspection teams tend to 

be. Therefore, to deliver quality software product, manager should select inspection team size 

between 6 to 10 inspectors from the large pool of inspectors. We do not recommend inspectors 

with Global learning preference in academic inspections as they have a strong negative impact 

on fault detection effectiveness. But Global inspectors with a combination of Reflective and 

Sensing preference could be considered for inspections in industrial environment. Our results 

also showed that the dissimilarity in the LS of the participating inspectors had a direct and 

positive relationship with the cost effectiveness of inspection teams. This means, for an 

inspection team size, higher the dissimilarity in LS of inspectors more number of unique faults 

are found during the inspection of requirements. When the result was tested statistically, there 

was significant correlation between the LS dissimilarity and inspection cost effectiveness.  

Results from our eye-tracking studies showed that effective inspectors tend to find more 

inconsistencies at the region where fault exists which was evident from the fixations at ROI’s to 

comprehend information that leads to significantly positive correlation between number of 

fixations at ROI (as opposed to the total fixation) and inspection effectiveness. Also, inspectors 
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who face difficulty in understanding and processing information spend more time fixating on 

each page and have a significant negative impact on inspection efficiency. The results also 

showed that high performance inspection teams (i.e. with diverse members) actually fixate 

significantly at the fault area that leads to improved inspection performance. From different LS 

categories (ACT vs REF, SEN vs INT, VIS vs VER, and SEQ vs GLO), participants that had 

Sequential learning (and Sensing and Reflective to some extent) preference fixate more on the 

ROI’s and hence, certain combination of LSs with LS diversity in teams would enable inspectors 

to focus on the fault areas where faults may exist, reduce overlap of faults, and increase 

inspection performance. The results from referring different sections (i.e. introduction, general 

description, and requirements) back during inspections showed that participants went back to the 

general description section at fixated more due to the paragraph nature of the section as 

compared to mix of paragraph and images, bullet points in other two sections (introduction and 

functional/non-functional requirements). Hence, it was concluded that requirements should be 

written in a manner (small logical steps) that reduces search overhead during inspections by 

adding pointers for the reference information that may improve readability of document under 

inspection. 

Our future work involves replicating the study with software engineers in the industry 

which involves non-technical inspectors. Another future work is to replicate the study for 

inspection of other software artifacts (e.g., software design, test plan) and to select inspection 

teams based on LS of author of software artifact. The other future work is to evaluate the impact 

of LSs on an agile software development environment. 



 

81 

REFERENCES 

[1] Aceituna, D. et al. 2011. Evaluating the use of model-based requirements verification 

method: A feasibility study. Empirical Requirements Engineering (EmpiRE), 2011 First 

International Workshop on (2011), 13–20. 

[2] Aceituna, D. et al. 2014. Model-based requirements verification method: Conclusions 

from two controlled experiments. Information and Software Technology. 56, 3 (2014), 

321–334. 

[3] Ackerman, A.F. et al. 1989. Software Inspections: An Effective Verification Process. 

IEEE Software. 6, 3 (1989), 31–36. 

[4] Agogino,  a. M. and Hsi, S. 1995. Learning style based innovations to improve retention 

of female engineering students in the Synthesis Coalition. Proceedings Frontiers in 

Education 1995 25th Annual Conference. Engineering Education for the 21st Century. 2, 

(1995), 4a2.1-4a2.4. 

[5] Albayrak, Ö. and Carver, J.C. 2014. Investigation of individual factors impacting the 

effectiveness of requirements inspections: a replicated experiment. Empirical Software 

Engineering. 19, 1 (2014), 241–266. 

[6] Allert, J. 2004. Learning style and factors contributing to success in an introductory 

computer science course. Proceedings - IEEE International Conference on Advanced 

Learning Technologies, ICALT 2004 (2004), 385–389. 

[7] Anderson, T.W. 2009. An Introduction To Multivariate Statistical Analysis, 3rd Ed. Wiley 

India Pvt. Limited. 

 

 



 

82 

[8] Aranda, G.N. et al. 2005. A cognitive-based approach to improve distributed requirements 

elicitation processes. Fourth IEEE Conference on Cognitive Informatics 2005, ICCI 2005 

(2005), 322–330. 

[9] Aurum, A. et al. 2002. State-of-the-art: Software inspections after 25 years. Software 

Testing Verification and Reliability. 12, 3 (2002), 133–154. 

[10] Basili, V.R. et al. 1996. The Empirical Investigation of Perspective-based Reading. 

Empirical Software Engineering. 1, (1996), 133–164. 

[11] Bavanari, H. 2012. Software Inspection Team Formation Based on the learning Style of 

Individual Inspectors. 

[12] Bednarik, R. and Tukiainen, M. 2006. An eye-tracking methodology for characterizing 

program comprehension processes. Proceedings of the 2006 symposium on Eye tracking 

research & applications - ETRA ’06. (2006), 125. 

[13] Berry, D.M. 2008. Ambiguity in Natural Language Requirements Documents, Innovations 

for Requirement Analysis. From Stakeholders’ Needs to Formal Designs: 14th Monterey 

Workshop 2007, Monterey, CA, USA, September 10-13, 2007. Revised Selected Papers. 

Springer-Verlag, Berlin, Heidelberg. 

[14] Berry, D.M. and Kamsties, E. 2004. Ambiguity in requirements specification. 

Perspectives on software requirements. Springer. 7–44. 

[15] Boehm, B. and Basili, V.R. 2001. Software Defect Reduction Top 10 List. Computer. 34, 

(2001), 135–137. 

[16] Briand, L.C. et al. 2000. Assessing the cost-effectiveness of inspections by combining 

project data and expert opinion. Software Reliability Engineering, 2000. ISSRE 2000. 

Proceedings. 11th International Symposium on (2000), 124–135. 



 

83 

[17] Busato, V. V et al. 1998. The relation between learning styles, the Big Five personality 

traits and achievement motivation in higher education. Personality and Individual 

Differences. 26, 1 (1998), 129–140. 

[18] Cao, J. and Nishihara, A. 2012. Understand learning style by eye tracking in slide video 

learning. Journal of Educational Multimedia and Hypermedia. 21, 4 (2012), 335–358. 

[19] Carver, J. et al. 2003. Observational studies to accelerate process experience in classroom 

studies: An evaluation. Proceedings - 2003 International Symposium on Empirical 

Software Engineering, ISESE 2003 (2003), 72–79. 

[20] Carver, J. 2004. The impact of background and experience on software inspections. 

Empirical Software Engineering. 9, 3 (2004), 259–262. 

[21] Carver, J. et al. 2008. The impact of educational background on the effectiveness of 

requirements inspections: An empirical study. IEEE Transactions on Software 

Engineering. 34, 6 (2008), 800–812. 

[22] Chamillard, A.T. and Karolick, D. 1999. Using learning style data in an introductory 

computer science course. ACM SIGCSE Bulletin (1999), 291–295. 

[23] Charkins, R.J. et al. 1985. Linking teacher and student learning styles with student 

achievement and attitudes. The Journal of Economic Education. 16, 2 (1985), 111–120. 

[24] Chillarege, R. et al. 1992. Orthogonal defect classification-a concept for in-process 

measurements. IEEE Transactions on software Engineering. 18, 11 (1992), 943–956. 

[25] Doolan, E.P. 1992. Experience with Fagan’s inspection method. Software: Practice and 

Experience. 22, 2 (1992), 173–182. 

[26] Fabbrini, F. et al. 1998. Achieving quality in natural language requirements. Proceedings 

of the 11th International Software Quality Week (1998), 4–5. 



 

84 

[27] Fagan, M.E. 1986. Advances in Software Inspections. IEEE Transactions on Software 

Engineering. SE-12, 7 (1986), 744–751. 

[28] Fagan, M.E. 1976. Design and code inspections to reduce errors in program development. 

IBM Systems Journal. 15, 3 (1976), 182–211. 

[29] Felder, R. and Silverman, L. 1988. Learning and teaching styles in engineering education. 

Engineering education. 78, June (1988), 674–681. 

[30] Felder, R.M. 2010. Are Learning Styles Invalid? (Hint: No!). On-Course Newsletter, 

September 27, 2010. (2010). 

[31] Felder, R.M. and Spurlin, J. 2005. Applications, Reliability and Validity of the Index of 

Learning Styles. International Journal of Engineering Education. 21, 1 (2005), 103–112. 

[32] Freimut, B. et al. 2005. Determining inspection cost-effectiveness by combining project 

data and expert opinion. IEEE Transactions on Software Engineering. 31, 12 (2005), 

1074–1092. 

[33] Friedman, P. and Alley, R. 1984. Learning/teaching styles: Applying the principles. 

Theory into Practice. 23, 1 (1984), 77–81. 

[34] Fusaro, P. et al. 1997. A replicated experiment to assess requirements inspection 

techniques. Empirical Software Engineering. 2, 1 (1997), 39–57. 

[35] Goldberg, J.H. and Kotval, X.P. 1999. Computer interface evaluation using eye 

movements: Methods and constructs. International Journal of Industrial Ergonomics. 24, 

6 (1999), 631–645. 

[36] Goswami, A. 2015. Using Learning Styles to Create Virtual Inspection Teams: Technical 

Report. 

 



 

85 

[37] Granka, L. a. et al. 2004. Eye-Tracking Analysis of User Behavior in WWW Search. 

Proceedings of the 27th annual international ACM SIGIR conference on Research and 

development in information retrieval. (2004), 478–479. 

[38] Hartigan, J.A. and Wong, M.A. 1979. A K-Means Clustering Algorithm. Applied 

Statistics. 28, 1 (1979), 100–108. 

[39] Jolliffe, I. 2002. Principal component analysis. Wiley Online Library. 

[40] Just, M. and Carpenter, P. 1980. A theory of reading: from eye fixations to 

comprehension. Psychological review. 87, 4 (1980), 329–354. 

[41] Kane, M. 1984. Cognitive styles of thinking and learning part one. Academic Therapy. 19, 

5 (1984), 527–536. 

[42] Klecka, W.R. 1980. Discriminant analysis. Sage. 

[43] Kolb, D. 1984. Experiential learning: Experience as the source of learning and 

development. Journal of Organizational Behavior. 8, 4 (1984), 359–360. 

[44] Kusumoto, S. et al. 1992. A new metric for cost effectiveness of software reviews. IEICE 

Transactions on Information and Systems. 75, 5 (1992), 674–680. 

[45] Laitenberger, O. 2002. A Survey on Software Inspection Technologies. Handbook on 

Software Engineering and Knowledge Engineering. 517–555. 

[46] Leszak, M. et al. 2000. A case study in root cause defect analysis. Proceedings of the 22nd 

international conference on Software engineering - ICSE ’00. (2000), 428–437. 

[47] MacKay, D.J.C. 2005. Information Theory, Inference, and Learning Algorithms David 

J.C. MacKay. 

 

 



 

86 

[48] Mandala, N.R. et al. 2012. Application of kusumoto cost-metric to evaluate the cost 

effectiveness of software inspections. Proceedings of the ACM-IEEE international 

symposium on Empirical software engineering and measurement. (2012), 221–230. 

[49] Martin, J. and Tsai, W.T. 1990. N-Fold inspection: a requirements analysis technique. 

Communications of the ACM. 33, 2 (1990), 225–232. 

[50] McCarthy, B. 1987. The 4MAT system: Teaching to learning styles with right/left mode 

techniques. Excel, Incorporated. 

[51] Mehigan, T.J. and Pitt, I. 2012. Detecting Learning Style through Biometric Technology 

for Mobile GBL. International Journal of Game-Based Learning. 2, 2 (2012), 55–74. 

[52] Miller, J. and Yin, Z. 2004. A cognitive-based mechanism for constructing software 

inspection teams. IEEE Transactions on Software Engineering. 30, 11 (2004), 811–825. 

[53] Montgomery, S.M. 1995. Addressing diverse learning styles through the use of 

multimedia. Proceedings Frontiers in Education 1995 25th Annual Conference. 

Engineering Education for the 21st Century. 1, (1995), 13–21. 

[54] Myers, I.B. et al. 1985. Manual: A guide to the development and use of the Myers-Briggs 

Type Indicator. Consulting Psychologists Press Palo Alto, CA. 

[55] Nalbant, S. 2005. An Evaluation of the Reinspection Decision Policies for Software Code 

Inspections. Middle East Technical University. 

[56] Parnas, D.L. and Lawford, M. 2003. The role of inspection in software quality assurance. 

IEEE Transactions on Software Engineering (2003), 674–676. 

[57] Parnas, D.L. and Weiss, D.M. 1985. Active Design Reviews: Principles and Practices. 

Proceedings of the 8th International conference on Software engineering. (1985), 132–

136. 



 

87 

[58] Porter, A. et al. 1998. Understanding the sources of variation in software inspections. 

ACM Transactions on Software Engineering and Methodology. 7, 1 (1998), 41–79. 

[59] Porter, A.A. et al. 1995. Comparing detection methods for software requirements 

inspections: A replicated experiment. IEEE Transactions on software Engineering. 21, 6 

(1995), 563–575. 

[60] Pressman, R.S. 2005. Software engineering: a practitioner’s approach. Palgrave 

Macmillan. 

[61] Russell, G.W. 1991. Experience with inspection in ultralarge-scale development. IEEE 

software. 8, 1 (1991), 25–31. 

[62] Shull, F. et al. 2001. An empirical methodology for introducing software processes. ACM 

SIGSOFT Software Engineering Notes. 26, 5 (2001), 288. 

[63] Shull, F. et al. 2000. How perspective-based reading can improve requirements 

inspections. Computer. 33, 7 (2000), 73–79. 

[64] Solomon, B.A. and Felder, R.M. 1999. Index of learning styles. Raleigh, NC: North 

Carolina State University. Available online. (1999). 

[65] Steinbach, M. et al. 2004. The challenges of clustering high dimensional data. New 

Directions in Statistical Physics. Springer. 273–309. 

[66] Subramanian, G. et al. 2007. Software quality and IS project performance improvements 

from software development process maturity and IS implementation strategies. Journal of 

Systems and Software. 80, 4 (2007), 616–627. 

[67] Tatsuoka, M.M. and Tiedeman, D. V 1954. Chapter IV: Discriminant Analysis. Review of 

Educational Research. 24, 5 (1954), 402–420. 

 



 

88 

[68] Tian, J. 2005. Software quality engineering: testing, quality assurance, and quantifiable 

improvement. Quality Engineering. 2, (2005), 1–52. 

[69] Tinker, M.A. 1928. A photographic study of eye movements in reading formulae. Genetic 

Psychology Monographs. (1928). 

[70] Torbick, N. and Becker, B. 2009. Evaluating principal components analysis for identifying 

Optimal bands using wetland hyperspectral measurements from the Great Lakes, USA. 

Remote Sensing. 1, 3 (2009), 408–417. 

[71] Uwano, H. et al. 2006. Analyzing Individual Performance of Source Code Review Using 

Reviewers’ Eye Movement. Eye tracking research & applications (ETRA). (2006), 133–

140. 

[72] Yarbus, A.L. 1967. Eye movements and vision. Neuropsychologia. 6, 4 (1967), 222. 

[73] Yusuf, S. et al. 2007. Assessing the comprehension of UML class diagrams via eye 

tracking. IEEE International Conference on Program Comprehension (2007), 113–122. 

[74] 2008. EyeLink® User Manual. SR Research Ltd. 

 



 

89 

APPENDIX A. PRE-STUDY SURVEY 

This is a pre-study questionnaire. Please fill information in the questions below. 

* Required  

1. Please enter your First name and Last name: * 

_____________________________________________________ 

2. Please rate your English Level Reading/Writing (Mark only one oval). * 

 1 2 3 4 5  

Min      Max 

3. What is your previous experience with software development in practice? (Check the bottom-

most item that applies.) * 

 I never developed software. 

 I have developed a software on my own. 

 I have developed software as a part of a team, as part of a course. 

 I have developed software as a part of a team, in industry one time. 

 I have worked on multiple projects in industry. 

4. Duration of your work experience (as mentioned above. E.g., 4 years 9 months)? *   

_____ Years ____ Months 

5. Software Development Experience * 

Please rate your experience with respect to the following 5 point-scale:  

1 = No experience;         2 = learned in class or from book;       3 = used on a class project;         

4 = used on one project in industry;                  5 = used on multiple projects in industry. 
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• Experience writing requirements 1 2 3 4 5 

• Experience interacting with user to write 

requirements 

1 2 3 4 5 

• Experience writing use cases 1 2 3 4 5 

• Experience reviewing requirements 1 2 3 4 5 

• Experience reviewing use cases 1 2 3 4 5 

• Experience changing requirements for 

maintenance 

1 2 3 4 5 

• Experience with software inspection  1 2 3 4 5 

 

6.Comments: 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

___________________________________________________________________________ 

 

  



 

91 

APPENDIX B. FAULT REPORTING FORM 

Full Name: _____________________ Checklist Start Time and Date: _______ 

Fault # Page # Requirement # 
Fault 

Class 
Description 

Time 

Found 

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

          

      

      

      

      

      

      

 

 


