
DOMAIN ONTOLOGY BASED DETECTION APPROACH TO IDENTIFY EFFECT TYPES

OF SECURITY REQUIREMENTS UPON FUNCTIONAL REQUIREMENTS

A Dissertation
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Bilal Ibrahim Al-Ahmad

In Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Major Program:
Software Engineering

May 2015

Fargo, North Dakota

North Dakota State University
Graduate School

Title

 DOMAIN ONTOLOGY BASED DETECTION APPROACH TO IDENTIFY
EFFECT TYPES OF SECURITY REQUIREMENTS UPON FUNCTIONAL

REQUIREMENTS

 By

Bilal Ibrahim Al-Ahmad

 The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

 DOCTOR OF PHILOSOPHY

 SUPERVISORY COMMITTEE:

Kenneth Magel

 Chair

Sameer Abufardeh

Simone Ludwig

Gokhan Egilmez

 Approved:

 5/7/2015 Brian Slator
 Date Department Chair

ABSTRACT

Requirements engineering is a subfield of software engineering that is concerned with

analyzing software requirements specifications. An important process of requirement

engineering is tracing requirements to investigate relationships between requirements and

other software artifacts (i.e., source code, test cases, etc.). Requirements traceability is mostly

manual because of difficulties automating the process. A specific mode of tracing is inter-

requirements traceability, which focuses on tracing requirements with other requirements.

Investigating inter-requirements traceability is very important because it has significant

influence on many activities of software engineering such as requirements implementation,

consistency checking, and requirements impact change management. Several studies used

different approaches to identify three types of relationships: cooperative, conflicting, and

irrelevant. However, the current solutions have several shortcomings: (1) only applicable to

fuzzy requirements, user requirements, and technical requirements, (2) ignoring the syntactic

and semantic aspects of software requirements, and (3) little attention was given to show the

influence of security requirements on functional requirements. Furthermore, several

traceability tools have a lack of using predefined rules to identify relationships.

To overcome these limitations, our approach uses a rule based system to construct

several deterministic detection rules that identify relationship types between security and

functional requirements. Our proposed approach has two main parts: (1) Security Functional

Tracing Model (SFTM), and (2) Security Functional Requirements Diagram (SFRD). To apply

SFTM and generate SFRD, we developed a tool called Detection Rules Constructor (DRC).

The experimental results shows that our approach is very effective for automating the tracing

of security requirements with functional requirements.
iii

ACKNOWLEDGMENTS

I would like to thank my supervisor, Dr. Kenneth Magel, for his excellent supervision,

incredible encouragement, extreme support, and insightful comments in every step of my

research which enabled me to complete successfully my dissertation.

Special thanks to my supervisory committee, Dr. Sameer Abufardeh, Dr. Simone

Ludwig, and Dr. Gokhan Egilmez for their support, guidance, and helpful suggestions.

Without their comments and assistance this dissertation would not have been successful.

The sincere thankfulness are due to my mom, Ali’a, and my dad, Ibrahim, for their

praying, endless love, and wonderful supporting throughout my whole life. This

accomplishment is impossible without them. I would like to thank my wife, Ala’a, for her

inspiration and patience that allowed me to complete my graduate study. Special thanks to my

beloved daughter, Leen.

Lastly, I wish to thank my dear wonderful brothers, Nidal and Ihap, and all of my

favorite friends for being an endless source of encouragement through my graduate study.

iv

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER 1. INTRODUCTION ... 1

1.1. Requirements Engineering .. 1

1.2. Requirements Traceability .. 2

1.3. Security and Functional Requirements ... 4

1.4. Domain Ontology.. 4

1.5. Rule Based System ... 6

1.6. Problem Statement .. 6

CHAPTER 2. LITERATURE REVIEW .. 8

2.1. Security and Functional Requirements ... 8

2.2. Cooperative, Conflicting, and Irrelevant Relationships .. 10

2.3. Requirements Traceability Tools .. 13

CHAPTER 3. THE PROPOSED APPROACH .. 15

3.1. Domain Ontology Based Detection Approach ... 15

3.2. Security Functional Tracing Model (SFTM) .. 18

3.3. Security Functional Requirement Diagram (SFRD) ... 22

3.4. Domain Ontology for Security and Functional Requirements 23

3.5. The Definitions for Effect Types .. 26

3.6. The Detection Rules .. 27

3.7. Detection Rules Constructor Tool Support ... 27

3.7.1. Inputs for DRC Tool ... 31
v

3.7.2. Outputs for DRC Tool .. 32

3.8. Importance of Investigating Effect Types of Security Requirements upon
Functional Requirements .. 33

3.8.1. Prioritization of Security Requirements .. 33

3.8.2. Finding Association among Security Requirements 34

3.8.3. Finding Inconsistency between Security and Functional
Requirements .. 36

CHAPTER 4. EXPERIMENTAL EVALUATION .. 38

4.1. Online Medical Database System ... 38

4.2. Online Store System ... 45

4.3. Course Management System/ Students ... 53

4.4. Course Management System/ Lecturers ... 59

4.5. Health Monitor System ... 64

4.6. Automated Railway Reservation System.. 67

4.7. Hotel Management System ... 70

4.8. Evaluation for DRC Tool .. 76

CHAPTER 5. CONCLUSIONS AND FUTURE WORK .. 81

5.1. Conclusions ... 81

5.2. Future Work .. 82

REFERENCES ... 83

vi

LIST OF TABLES

Table Page

1. Features matrix for the requirements traceability approaches…………………….…..…13

2. Negative and positive modifiers for inferring the implicit relations…………………..…25

3. Adjustments of concepts extraction for user requirements statements………………..…25

4. A portion of an output file for matching parsing requirements with domain
ontology………………………………………………………………………………….47

5. A portion of an output file for matching requirements with associated detection
rules………………………………………………………………………………..…….48

6. Glossary of course management system requirements terms……………….……...……54

7. Statistical summary for all systems …………………………...……….…………..……76

8. Accuracy for online medical database security requirements.……...……………….…..78

9. Accuracy for online store security requirements ……….…………………………….…78

10. Accuracy for student’s security requirements…...…….……………………………....…79

11. Accuracy for lecturer’s security requirements………………………………..…..…...…79

12. Accuracy for health monitor security requirements………………………….……...…...79

13. Accuracy for railway reservation security requirements.…………………………..……80

14. Accuracy for hotel management security requirements.……………………….…...……80

vii

LIST OF FIGURES

Figure Page

1. Software development life cycle ………………………….….……………….…………..2

2. Software requirements traceability ………………………….….……………..…...…......3

3. An overview of our approach ……………………………….….………………..……...15

4. Domain ontology for our approach ………………………….………………….…..…...17

5. Security functional tracing of SR1 for system A ………………………..……………....20

6. Security functional tracing of SR2 for system A …………..…………………………....20

7. Security functional tracing of SR3 for system A …………………...…………...……....21

8. SFRD for system A …………………………………….…..……………………………22

9. The structure of the detection rule …………………………….………………….......…27

10. The domain ontology interface ………………………………………...……………..…28

11. Tree view for security and functional requirements concepts and relations ……...…......29

12. A portion of the detection rules XML file ……...……………….……………..……......30

13. Inputs files for DRC ………………………………...……...………………………........31

14. Main interface for DRC ………………………….….…...…………………….………..32

15. The cooperated functional requirements nodes for system A ………………..………….34

16. A weighted association graph for system A ………………………………………..…...35

17. A part of domain ontology for an online medical database system ………………….....39

18. A sample of the detection rules for an online medical database system …...…...…........40

19. SFRD for an online medical database system …………..………………….......….……41

20. A weighted association graph for an online medical database system …………….……43

21. A part of domain ontology for an online store system …………………….……….…...45

viii

22. A sample of the detection rules for an online store system ………………….………….46

23. SFRD for an online store system …………………………………...…...…………....…50

24. A weighted association graph for an online store system ……………….………………52

25. A part of domain ontology for students system …….…....……....……....……....……...55

26. SFRD for students system ……………………………………...………………….……57

27. A weighted association graph for students system ……...…………………………..…..58

28. A part of domain ontology for lecturers system. ……......….…….…….…….…….…...60

29. A sample of the detection rules for lecturers system …..……………………….……....61

30. SFRD for lecturers system …………..…………………………………….…………....62

31. A weighted association graph for lecturers system ……………………….....………….63

32. A part of domain ontology for health monitor system ………………………………….65

33. SFRD for health monitor system …………………………..………………...………….66

34. A weighted association graph for health monitor system ………………………………67

35. A part of domain ontology for railway reservation system ……………………….…….68

36. SFRD for railway reservation system …………………………………………....…..….69

37. A weighted association graph for railway reservation system ………………………….70

38. A part of domain ontology for hotel management system ……..........................……......72

39. SFRD for hotel management system ……...………………….……………….………...73

40. A sample of the detection rules for hotel management system ……...…...……..............74

41. A weighted association graph for hotel management system ……...…...……….……....75

42. Manual and DRC tracing of SR4 for an online medical database system...…………..…77

ix

CHAPTER 1. INTRODUCTION

This research is related to requirements engineering, requirements traceability, security

and functional requirements, domain ontology, and rule based system. In this chapter, we

briefly introduce each of these areas.

1.1. Requirements Engineering

Requirements engineering [1] is a first phase of software life cycle that is concerned

with the use of systematic and repeatable techniques that ensure the completeness, consistency,

and relevance of the system requirements as in Figure 1. Thus, requirements engineering [2]

must identify the software functionalities and the constraints on how the software must be

designed and implemented. Requirements engineering includes five main activities;

requirements elicitation, requirements analysis, requirements specification, requirements

verification, and requirements management. The final output of requirements engineering is

the software requirements specification (SRS), which is a document that clearly describes each

requirement’s functions, performance, design constraints, and quality attributes of the

software.
There is an increasing awareness of the importance of requirements engineering, based

on empirical investigations and industry experiences, many studies [3, 4, 5] emphasized that

the requirements engineering process is an essential contributor to the overall quality of

software. As a significant process of software engineering, requirements engineering [6] plays

a critical role throughout the whole software engineering lifecycle.

1

A major problem is that poorly defined requirements often lead to the failure of a

software project. As a result, well-defined requirements will increase the possibility of the

overall success of a software project.

Figure 1. Software development life cycle

1.2. Requirements Traceability

Requirements traceability is an important activity of the requirement engineering

process that concentrate on finding relationships between requirements, or between

requirements and other software artifacts as in Figure 2. Requirements traceability [7] is

defined as the process of linking requirements with either design, implementation components

(i.e., forward direction) or with its source’s (i.e., backward direction). Requirements

traceability has a significant impact on different activities of software engineering process such

as requirements change management [8, 9], requirements implementation [10], release

planning [11,12] and requirements management [13].

2

Figure 2. Software requirements traceability

Several studies have tried to propose relationships between software requirements for

several purposes. For example, Karlsson et al. [14] created a preliminary set of requirements

dependency types in order to use it in requirements selection such as prioritizing task of

software requirements. Furthermore, Pohl [15] and Dahlst-edt and Persson [16] used literature

reviews particularly in the requirements engineering field to propose several dependency types

among software requirements. Carlshamre et al. [17] studied the effect of requirements

dependencies in release planning process by organizing a particular industry survey on

requirements. In addition, Goknil, Kurtev, and van den Berg [18] investigated the applicability

of using dependency types between requirements for analyzing the process of impact change.

Requirements traceability [19] has two main modes, inter-requirements traceability and

extra-requirements traceability. Inter-requirements traceability focuses on tracing requirements

with other requirements while extra-requirements traceability focuses on tracing requirements

with other software artifacts (i.e., source code, test cases, and etc.). Inter-requirements

traceability influences a number of activities during the software development process:

requirements implementation, consistency checking, and change impact. The scope of our

research considers the inter-requirements traceability rather than the extra-requirements

traceability because we intend to investigate the relationship types between security and

functional requirements.
3

1.3. Security and Functional Requirements

Security requirements are a specific class of non-functional requirements that focuses

on system confidentiality, reliability, integrity, and availability that required to be fulfilled in

order to attain the intended security features for the system. Meaning that, it is not investigated

until all of the functional requirements have been fully identified. Security requirements

describe how the system should follow a reliable procedure to protect itself from information

disclosure, information threat, and information corruption. It guarantees that the system

applies a certain manner to keep a secure access, secure communication, and secure storage.

While functional requirements describe the system behavior by expressing it as inputs to the

system, outputs from the system, and relationships between inputs and outputs. There are

several parties involved in the requirements engineering process, each has different

backgrounds, knowledge, concerns, perceptions, and expressions. These parties include

customers, users, domain experts, requirements engineers, software developers, and etc., they

might have a conflicting viewpoints [20] among them in some cases. As a result, there is an

essential necessity to discover relationships between security and functional requirements to

detect such conflict, show which security requirements affect which functional requirements,

and determine the type for this effect.

1.4. Domain Ontology

Domain ontology is a very popular semantic processing technique that classifies

concepts and relations between concepts within a particular domain. Due to the difficulty of

automated analysis of software requirements, and the bottlenecks in dealing with Natural

Language Processing (NLP) techniques, semantic techniques are required to analyze software

requirements in higher quality rather than traditional natural language techniques.

4

Using domain ontology in requirements engineering helps to better understanding and

capturing the requirements information. Additionally, reusing and sharing of concepts and

relations that are represented by the ontology. An example of a domain ontology is an

ontology for the health domain. In order to apply domain ontology for analyzing software

requirements, several studies used domain ontology for many goals. For example, Kaiya and

Saeki [21] used domain ontology to measure the overall quality of requirements document.

Also, Li et al. [22] used domain ontology to simplify the requirements elicitation process.

Assawamekin, Sunetnanta, and Pluempitiwiriyawejet [23] used a domain ontology to

solve semantic dissimilarities between multi-views requirements. In addition, Jyothilakshmi

and Samuel [24] used domain ontology to extract the class diagram from the functional

requirements. In another study, Lee et al. [25] used domain ontology models to extract the

main attributes and constraints of regulatory requirements.

Moreover, L´opez, Cysneiros, and Astudillo [26] used ontology to describe non-

functional requirements and design foundation by using a goal dependency graph in order to

reuse the knowledge about non-functional requirements. Also, Falbo, Guizzardi, and Duarte

[27] presented ontology approach for domain engineering that linked ontologies and objects in

object oriented methodology.

Jureta, Mylopoulos, and Faulkner [28] proposed an essential ontology for software

requirements engineering that covered the main concerns and intentions of the stakeholders to

make a nearly complete view about requirements engineering problem. Our approach uses

domain ontology for automating the traceability between security and functional requirements.

5

http://www.informatik.uni-trier.de/%7Eley/pers/hd/s/Sunetnanta:Thanwadee.html
http://www.informatik.uni-trier.de/%7Eley/pers/hd/p/Pluempitiwiriyawej:Charnyote.html
http://www.merriam-webster.com/dictionary/dissimilarity

1.5. Rule Based System

IF-THEN [29] rules are one of the most common forms of the knowledge

representation. Systems that employed such rules as the major representation are called rule

based systems. The statements after IF are called the conditions (i.e., antecedents), those after

THEN are called the conclusions (i.e., consequents). We decide to use a rule based system to

construct new detection rules because it has the following advantages: Very useful approach to

represent knowledge, simple to construct, and easy to understand without extra interpretation.

1.6. Problem Statement

Manual traceability requires an extreme amount of effort and time. As a result,

automating of requirements traceability among various types of software requirements is very

necessary to make the task of requirements traceability more achievable and cost effective.

Several requirements tractability tools proposed in the literature, but many lack to use a

predefined deterministic rules to identify relationships between requirements. Moreover,

several approaches [30, 31, 32, 33] that were proposed to identify cooperative, conflicting, and

irrelevant relationships however these current approaches have several limitations such as:

limited to fuzzy requirements, a little consideration to show the effects of security

requirements upon functional requirements, and lack of capturing the syntactic and semantic

aspects of requirements. To overcome such problems, we developed a requirements diagram,

Security Functional Requirements Diagram (SFRD) that shows the relationships types

between security and functional requirements. Our approach is designed to overcome the

current limitations by capturing syntactic and semantic aspects of requirements, shows the

effects of security requirements onto functional requirements, and it is applicable for both

certain and uncertain (i.e., fuzzy) requirements.

6

Our solution is a hybrid approach, it uses syntactic parsing technique to extract

requirements statements constructs, domain ontology to create a knowledge repository about

security and functional requirements domain, and a rule based system to build multiple

detection rules that identify the effect types of security requirements upon functional

requirements. In addition, we develop a tool called Detection Rules Constructor (DRC) that

efficiently applies the domain ontology based tractability approach and graphically generate

SFRD.

Our traceability tool captures the syntactic and semantic aspects of the natural

requirements text and applies 343 different detection rules to identify three types of effect: (1)

cooperative, (2) conflicting, and (3) irrelevant.

7

CHAPTER 2. LITERATURE REVIEW

This research is related to security and functional requirements, inter-requirements

relationships, and traceability tools. This chapter presents a background material for these

areas.

2.1. Security and Functional Requirements

There are many studies that defined precisely security and functional requirements. For

example, Haley et al. [34] described the security requirements as a part of non-functional

requirements that constrained the functional requirements of a system. Kotonya and

Sommerville [35] defined security requirements as restrictions or constraints on system

services. Also, Rushby [36] defined security requirements as mostly concerns of the system

that must not occur.

While functional requirements [37] are defined as the requirements that describe the

system behavior by expressing it as the inputs to the system, the outputs from the system, and

the relationships between inputs and outputs. Another study [38] defined it as what the system

should do in terms of its functionalities and services that it should provide. Security

requirements have several types [39] such as the following:

1. Identification Requirements: a security requirement that identifies the level to which an

application shall identify the externals users.

• Example: The system shall identify all of its users before allowing them to use its

resources.

2. Authentication Requirements: a security requirement that identifies the level to which the

system shall verify the identity of its externals users.

8

• Example: The system shall verify the identity of all of its users.

3. Authorization Requirements: a security requirement that identifies the access privileges of

authenticated users.

• Example: The system shall allow each user to gain access to all his/her account

information.

4. Immunity Requirements: a security requirement that identifies the level to which the system

shall protect itself from infection such as viruses, hackers, and worms.

• Example: The system shall protect itself from viruses.

5. Integrity Requirements: a security requirement that identifies the level to which keeps the

information safe from illegal corruption or modification.

• Example: The system shall prevent the unauthorized corruption of all user

information.

6. Privacy Requirements: a security requirement that identifies the level to which the system

shall keep all critical data private from illegal users.

• Example: The system shall not allow unauthorized users access to any stored data.

Since security requirements [34, 35] are considered as constraints on functional

requirements of the system. The investigation of relationships between security and functional

requirements helps for checking consistency, prioritizing security requirements, finding

association between security requirements, and analyzing the impact of relationships change.

9

2.2. Cooperative, Conflicting, and Irrelevant Relationships

Identifying cooperative, conflicting, and irrelevant relationships between software

requirements is very important because it affects several significant factors such as

requirements implementation, consistency checking, and impact change. In the literature,

several studies had used different approaches to identify cooperative, conflicting, and

irrelevant relationships.

Egyed and Grünbacher [30] proposed an approach for determining conflicts and

cooperation dependencies among software requirements using the quality attributes of

requirements and automated trace analyzer technique. Their approach consists of the following

steps. First, manually classifying of software requirements into related quality attributes using

international taxonomy of requirements. Second, automatic detection of cooperation and

conflicts based on their associated quality characteristics using a specific model of potential

impacts among software requirements, as well as ISO 9126 standardization. Third, automatic

generation of dependencies among requirements by using a trace analyzer tool for the

associated source code. A trace analyzer uses testing to generate trace dependencies. Fourth,

filtering all the related attributes for both cooperation and conflicts among software

requirements by measuring the requirements overlapping. For example, if two requirements

execute the same lines of code, then they are overlapping, this reflects that there exists a trace

dependency between them, and they can be used for detecting conflict and cooperation. The

no-overlapping case means that there is no trace dependencies between them and they cannot

be used for detecting conflict and cooperation effects since they are irrelevant.

10

This approach has several limitations, it is only applicable to product requirements and

cannot be applied to the other process requirements like schedule and budget requirements, the

need for source code with the associating requirements. In addition, does not capture the

syntactic and semantic sides of software requirements.

Liu [31] identified the conflicts and cooperation dependencies among uncertain

software requirements by using fuzzy logic technique. He represented each requirement (R) as

a satisfaction function (i.e., fuzzy subset of the requirement domain D). For example, if a

satisfaction of the first requirement increases the satisfaction of the second requirement, then

they are cooperative while if satisfaction of the first requirement decreases the satisfaction of

the second requirement, then they are conflicting. Also, they are irrelevant if the satisfaction of

the first requirement does not have any effect on the satisfaction of the second requirement.

The disadvantages for this approach are: it is only applicable to the fuzzy requirements that

have uncertain terms like low, high, and medium. Also, it ignores the semantic and syntactic

aspects of software requirements.

In another study, Temponi, Yen, and Tiao [32] employed Quality Functional

Deployment (QFD) methodology to translate customer satisfaction (i.e., customer

requirements) into organization functions (i.e., technical requirements) and they used fuzzy

logic based requirements analysis to represent QFD because it can handle the imprecise

expressions in the requirements. Based on this representation, they identified cooperative and

conflicting relationships between customer and technical requirements. In addition, based on

the existing customer and technical requirements relationships. This approach considers only

the imprecise customer and technical requirements, it does not show impact of non-functional

requirements onto functional requirements.

11

Lee and Xue [33] used a goal based approach to analyze and evaluate the cooperative,

conflicting, and irrelevant relationships between user requirements. They represented the user

requirements by building the use case models with the associated goals. In order to find the

user requirements relationships, they found the relationships between use cases and the

associated goals by identifying the certain satisfied and denied use cases for each goal, then

finding interactions between goals in both use case and system level. For example, at the use

case level, if a use case satisfied with the first goal and denied with the second goal, then both

goals have a conflicting relationship while if a use case satisfied with the first and second

goals, then both goals have a cooperative relationship. At the system level, both goals are

conflicting if the cooperative predicate is false and conflicting predicate is true, and they are

cooperative if cooperative predicate is true and conflicting predicate is false while they are

irrelevant if both of cooperative and conflicting predicate is false. This approach considers

only the relationships between functional requirements (i.e., user requirements) and does not

find the relationships between functional and non-functional requirements. This approach

applies in particular to the user requirements. Our approach differs from the current

approaches. Our approach covers both non-functional and functional requirements rather than

just focusing on one type of requirements like fuzzy requirements. Also, it captures both

syntactic and semantic aspects of software requirements as in Table 1. It is a hybrid approach

that applies: (1) syntactic parsing technique for requirements statements to decompose each

requirement statement into three constructs (i.e., Subject-concept, Verb-concept, and

Complement-concept), (2) domain ontology to capture the semantic meaning for security and

functional requirements concepts and relations, and (3) rule based system to construct

detection rules that identify cooperative, conflicting, and irrelevant relationships.

12

Table 1. Features matrix for the requirements traceability approaches

2.3. Requirements Traceability Tools

Automated solutions to requirements traceability face a difficult challenge due to the

need to handle multiple types of software requirements and relationships that generated during

the requirements analysis. Additionally, these software requirements are typically written

using natural language making them very challenging to process automatically. Furthermore,

the task of searching the requirements documents manually looking for the relationships is

time and effort consuming. This situation increases the necessity to automate the requirements

traceability among various types of software requirements to make the task of requirements

traceability more achievable and cost effective. Automating the requirements traceability has

several benefits such: reduce the effort of manual finding of relationships, and reduce the

human errors that appears when trying to produce this information manually. Several

requirements traceability tools have been identified to relate requirements with other

requirements, or requirements with other software artifacts.

 Features

 Requirements traceability approach
Egyed and
Grünbacher
[30]

Liu
[31]

Temponi,
Yen, and Tiao
[32]

Lee and
Xue [33]

Our
approach

Capturing syntactic and
semantic aspects of
requirements

✘ ✘

✘ ✘ ✔

Finding relationships
between non-functional and
functional requirements

✘ ✘ ✔ ✘ ✔

Applying for fuzzy
requirements

✘ ✔ ✔ ✘ ✔

Applying for precise
requirements

✔ ✘ ✘ ✔ ✔

13

However, less attention has been paid for relating functional requirements with other

non-functional requirements, and there is a lack of using a predefined deterministic rules to

identify relationships between requirements.

For instance, Rational RequisitePro [40] provides only two general relations types

between requirements: traceFrom and traceTo but there is no specific definitions for these

relations. It used to manage requirements and allows the user to associate attributes and

rational with requirement documents. However, the user manually adds relationships if other

software artifacts are involved. Also, SysML [41] has three relations: contain, copy, and

derive. However, there are no precise rules on how to determine these relations.

In addition, Telelogic Doors [42], linking requirements to design items, test plans, test

cases and other requirements but there is no deterministic types for the requirements relations

such the user can specify his own relation type, they define specific relationship types but they

do not attach any meaning to these types. TopTeam Analyst [43], there are four relation types:

trace, tracing links into, impact, and used in. None of these relation types have formal semantic

definition. Also, QUARCC [44] supports finding dependencies between non-functional

requirements, and does not consider dependencies between functional and non-functional

requirements. These tools have lack to support consistency checking of the relations.

Our tool addresses the previous tools limitations such as: (1) defines several user-

predefined detection rules for each type of relations (i.e., cooperative, conflicting, and

irrelevant), (2) relates functional and non-functional requirements, (3) captures syntactic and

semantic aspects of requirements, and (4) checks the consistency of the relations.

14

CHAPTER 3. THE PROPOSED APPROACH

3.1. Domain Ontology Based Detection Approach

To decrease the ambiguity and inconsistency of the informal natural language of

requirements, our approach captures both the syntactic and semantic features of requirements

statements as in Figure 3. The syntactic aspect of requirements focuses on the grammatical

analysis of requirements statements parts like Subject, Verb, and Complement, and the

semantic aspect of requirements focuses on understanding the meaning of requirements. In our

research, we integrate syntactic analysis (i.e., syntactic parsing) and semantic analysis (i.e.,

domain ontology), which helps to identify relationships between security and functional

requirements.

 Figure 3. An overview of our approach

15

Domain ontology is a very common semantic processing technique that is used to

analyze the requirements specifications. Thus, we used it to determine the relations between

the security and functional requirements concepts. Also, we decided to use a rule based system

to construct our new detection rules to determine the types of relationships. Our approach

includes the following steps:

1. Applying syntactic parsing on the security and functional requirements statements by using

an online parsing tool [45] to split each security and functional requirements statements

into Subject, Verb, and Complement constructs. We consider each requirement construct

as a single concept, each requirement statement has three concepts: Subject, Verb, and

Complement. Each concept can be either a single term or a phrase.

2. Building the domain ontology to represent the domain concepts and relations for a

particular domain. Security and functional requirement Concepts have three types: (1)

Subject-concept (which represents requirement entity), (2) Verb-concept (which represents

requirement action) and (3) Complement concept (which represents the extra description

for the requirement entity or the Object that represents requirement target). The relations

have five main types: Generalization, Aggregation, Association, Synonyms, and

Antonyms. The domain ontology contains two sets: (1) Concepts = {Subject-concept,

Verb-concept, and Complement-concept} and (2) Relations between concepts =

{Generalization, Aggregation, Association, Synonyms, and Antonyms}. Figure 4 shows

our domain ontology, in which the first three relations (i.e., Generalization, Aggregation,

and Association) are extracted from the built class diagram. Also, the last two relations

(i.e., Synonyms and Antonyms) are extracted from WordNet [46], it is a lexical database of

English, and then mapped into the domain ontology as in Figure 4.

16

Figure 4. Domain ontology for our approach

3. Generating detection rules, each detection rule includes three conditions (i.e., three

relations between security and functional requirement concepts) and single conclusion (i.e.,

single effect type), effect can be one of following types: Cooperates with, Conflicts with,

and Irrelevant to. Every ontology has a reasoning engine and the rule based system has

been considered as a reasoning engine for our domain ontology.

4. Identifying the Effect-type of the security requirement onto the functional requirement

based on the detection rules.

Our approach consists of two important parts: (1) Security Functional Tracing Model

(SFTM), and (2) Security Functional Requirements Diagram (SFRD). SFTM is the tracing

model for both security and functional requirements while SFTM is a requirements diagram

that illustrates the effects of security requirements upon functional requirements.

17

3.2. Security Functional Tracing Model (SFTM)

Inter-requirements traceability refers to finding the relationships between requirements.

Identifying cooperative, conflicting, and irrelevant relationships between security and

functional requirements is very important requirements engineering activity because it affects

several significant software activities such as requirements implementation, consistency

checking, and impact of requirements change.

In this research, we propose a tracing model called SFTM that applies a whole tracing

to cover the relationships between the whole set of security and functional requirements. Our

automated tracing model is a quicker method and relatively inexpensive rather than manual

tracing approach.

This model consists of four essential sub sets: Security requirements, Functional

requirements, Tracing pairs, and Effect types. Each set is a subset of the superset SFTM. For

example, if we have system x, we represent the main components of our tracing model as

follows:

1. Security Requirements set, denoted as: SR(x) = {SRi, SRi+1,…,SRn}, where x is the name of

software system.

2. Functional Requirements set, denoted as: FR(x) = {FRj, FRj+1,…,FRm}.

3. Tracing Pairs set, denoted as T(x) ={ (SRi, FRj),(SRi, FRj+1),…,(SRi, FRm), (SRi+1, FRj),(

SRi+1, FRj+1),…,(SRi+1, FRm),…, (SRn, FRj),(SRn, FRj+1),…,(SRn, FRm)}.

4. Effect types set, denoted as E(x) = {Cooperates with, Conflicts with, and Irrelevant to}, here

we read the effect type starting from functional requirement side then effect type then

security requirement, for instance: FRi “Cooperates with” with SRi.

18

SFTM is a super-set that contains the four previous subsets and is represented as:

SFTM (x) = {SR(x), FR(x), T(x), E(x)}. The idea behind this approach is to trace the first

security requirement (SRi) with the whole set of functional requirements {FRj,

FRj+1,…,FRm}. Then, for each single tracing pair (SRi, FRj) there will be a single particular

effect type by using the detection rules. The same tracing technique will be applied

respectively for the second security requirement (SRi+1) and similarly continue until the last

security requirement (SRn).For example, if there is system A that has three security

requirements {SR1, SR2, SR3} and 6 functional requirements {FR1,…, FR6}. The tracing

approach is to map the first security requirement (SR1) with all 6 functional requirements

{FR1,…, FR6}. Next, the second security requirement (SR2), until the third security

requirement (SR3) proceeds through the tracing of 6 functional requirements. For each pair,

the relationship type (i.e., effect type) will be identified based on the predefined detection

rules.

As a result, in total there are 18 tracing pairs with 18 effect types (i.e., 6 tracing links

for each security requirement and 6 effect types for each security requirement). Figure 3 shows

the tracing process and the associated effect types for SR1 with all 6 functional requirements

{FR1,…, FR6}. In Figure 5, there are 6 tracing links between SR1 and the whole set of

functional requirements {FR1,…, FR6} as well as 6 effect types.

19

Figure 5. Security functional tracing of SR1 for system A

Figure 6 shows the tracing process and the associated effect types for SR2 with all 6

functional requirements {FR1,…, FR6}. There are 6 tracing links and 6 effect types such as:

Conflicts with, Cooperates with, Irrelevant to, Cooperates with, Cooperates with, Cooperates

with.

Figure 6. Security functional tracing of SR2 for system A

20

Figure 7 shows the tracing process and the associated effect types for SR3 with all 6

functional requirements {FR1,…, FR6}. There are 6 tracing links and 6 effect types such as:

Irrelevant to, Irrelevant to, Conflicts with, Conflicts with, Cooperates with, Irrelevant to.

Figure 7. Security functional tracing of SR3 for system A

Based on our traced model, system A will be represented as the following

mathematical notations:

1. SR(system A) ={ SR1, SR2, SR3}

2. FR(system A) = { FR1,… ,FR6}

3. T (system A) = {(SR1, FR1),…, (SR1, FR6),…, (SR3, FR1),..., (SR3, FR6)}.

4. E(system A) = { Conflicts with,…,Cooperates with,…, Irrelevant to,…, Irrelevant to }

5. SFTM (system A) = {{ SR1, SR2},{ FR1,…,FR6},{(SR1, FR1),… ,(SR1, FR6),…,(SR3,

FR1),…,(SR2, FR6)}, {Conflicts with,…,Cooperates with,…, Irrelevant to,…, Irrelevant

to}}

21

3.3. Security Functional Requirement Diagram (SFRD)

Since security requirements are considered as constraints on functional requirements,

we called relationships types as effects types. We propose requirements diagram called

Security Functional Requirement Diagram (SFRD) that shows the effect types of security

requirements upon Functional requirements. The diagram has been graphed as a tabular form,

in which the columns represent the security requirements while the rows represent the

functional requirements. Each cell (i.e. intersection between each column and each row)

indicates whether the functional requirement is affected/or not by the security requirement.

Different types of effects (i.e., relationships) have been indicated by different colors. For

example, a functional requirement that cooperates with security requirement is shown in green,

a functional requirement that conflicts with security requirement is shown in red, and a

functional requirement that is irrelevant to security requirement is shown in yellow.

Consequently, SFRD for System A will be tabulated as shown in Figure 8.

Figure 8. SFRD for system A

22

3.4. Domain Ontology for Security and Functional Requirements

In respect to the traceability goal, our traceability approach uses domain ontology to

represent domain knowledge for security and functional requirements. The domain ontology

has the concepts and the relations, the concepts have three types:

1. Subject-concept (i.e., requirement entity)

2. Verb-concept (i.e., requirement action)

3. Complement-concept (i.e., extra description for the requirement entity, or the object that

represents requirement target). For example, in this security requirement statement “The

system shall not contain any failure”. “The system” represents the Subject-concept, “shall

not contain” represents the Verb-concept, and “any failure” represents the Complement-

concept.

 For the relations between concepts, we used the class diagram to find Generalization,

Aggregation, and Association relations [47]. In addition, we consider if two concepts have a

pre-condition and post-condition relation, then they have an association. For example, register

is a pre-condition for log in functionality. Furthermore, authenticate is a post-condition for log

in functionality.

Additionally, we use the WordNet to find Synonyms and Antonyms relations [48].

Also, we add two more relations between concepts that reflect “Exact matching” and “No-

matching” cases. Each of these relations is defined as follows:

1. Generalization: Generalization (also called inheritance) occurs when one concept (child)

inherits some properties from another concept (parent). For example, an audio player is a

music player.

23

2. Aggregation: Aggregation occurs when one concept is part of another concept (whole). For

example, an engine is a part a car.

3. Association: Association represents a binary interaction between two concepts. For example,

the instructor grades the course.

4. Synonyms: A Synonym is defined as two different concepts that have similar meanings. For

example, Close and Shut are Synonyms.

5. Antonyms: An Antonym is when two concepts that have opposite meanings. For example,

Add and Remove are Antonyms.

6. Identical: An Identical relation occurs when both concepts have the same name (i.e., exact

matching). For example, Identical (personal information, personal information).

7. No-relation: No-relation occurs when both concepts do not have any of the previous

specified relations. For example, No-relation (user password, customer address).

We build the domain ontology, as a class diagram [49], which includes a single class

for each concept. Subject-concept, Verb-concept, and Complement-concept are stereotyped as

<<Subject>>, <<Verb>>, and <<Compl>> respectively. A concept can be a single term or a

whole phrase. In our approach, during the parsing step we handle positive and negative

modifiers that usually used with the verbs in the natural language of the requirements

description, the positive modifiers indicated for the synonyms while the negative modifiers

indicated for the antonyms. Table 2 shows some of the common modifiers that we capture in

our traceability approach.

24

Table 2. Negative and positive modifiers for inferring the implicit relations

Modifier Type Relation meaning Example

Except Negative Antonyms read, except read

Must Positive Synonyms protect, must protect

Never Negative Antonyms never modify, modify

Shall Positive Synonyms encrypt, shall encrypt

Only Negative Antonyms only read, write

Shall Not Negative Antonyms access, shall not access

Prevent Negative Antonyms display, prevent display

In addition, during the concepts extraction, we adjust only the user requirement

statement (i.e., if requirement statement has both system and user as a Subject-concept) while

the system requirement statement remain without any change (i.e., if requirement statement

has only system as a Subject-concept) such as in Table 3.

Table 3. Adjustments of concepts extraction for user requirements statements

Requirement statement Subject-
concept

Verb-
concept

Complement-
concept

The system shall not allow the user to change
the personal information.

user shall not
change

personal
information

The system shall allow the user to print the
invoice.

user print invoice

The system shall enable the user to select the
shipping method.

user select shipping
method

The system shall let the user to change the
payment option.

user change payment option

The system shall list all the available
promotions.

system list available
promotions

25

3.5. The Definitions for Effect Types

Discovering effect types (i.e., relationship types) between security and functional

requirements has several advantages: improving the understandability of security and

functional requirements implementation, prioritizing security requirements, finding association

between security requirements, and detecting inconsistency for security requirements:

1. Cooperative effect: the functional requirement is positively affected by the security

requirement, so both security and functional requirements can be implemented at the same

time.

• Example: The system shall encrypt the user profile information (SR)

 The system shall allow user to enter his password (FR)

2. Conflicting effect: the functional requirement is negatively affected by the security

requirement, so both security and functional requirements cannot be implemented at the

same time.

• Example: The user shall not access the student’s academic records (SR)

 The user can modify the student’s grades (FR)

3. Irrelevant effect: the functional requirement is neither positively nor negatively affected by

the security requirement, so the implementation of the security requirement does not affect

the implementation of the functional requirement.

• Example: The system shall allow user to only read the payment history (SR)

 The user shall select the product category (FR)

26

3.6. The Detection Rules

Based on the resulting domain concepts and relations that we obtained from domain

ontology, we constructed the detection rules to identify the effect types between security and

functional requirements. These detection rules are constructed using IF-THEN rules. Every

detection rule has three relations and one effect type as in Figure 9.

Figure 9. The structure of the detection rule

The first relation relates two Subject-concepts, the second relation relates two Verb-

concepts, and the third relation relates two Complement-concepts. Each detection rule has only

one effect type. In addition, each effect type has several detection rules that have been

constructed to identify it.

3.7. Detection Rules Constructor Tool Support

Requirements traceability [50] is mostly acknowledged to be a highly manual and

difficult to process. Moreover, automated solutions to requirements traceability considered to

be a very challenge problem due to the following reasons: 1) the need to handle several types

of requirements and relations that generated during the requirements analysis, 2) ambiguous

requirements frequently raise the cost of software projects, and 3) requirements have been

written using natural language that makes them very hard to process automatically.

IF Relation (Subject-concept (SR), Subject-concept (FR))
AND Relation (Verb-concept (SR), Verb-concept (FR))
AND Relation (Complement-concept (SR), Complement-concept (FR))
THEN Effect-type ∈ {Cooperative, Conflicting, Irrelevant}

27

Most requirements traceability tools have paid less consideration for relating functional

requirements with other non-functional requirements, and there is a lack of using a predefined

deterministic rules to identify relationships between these requirements. As a result we

developed a requirements traceability tool called DRC using C#.Net, it mainly uses to let the

user identify the effect types of security requirements upon functional requirements, and it

manipulates the three main parts of our traceability approach: domain ontology, effect types,

and detection rules.

Our tool efficiently automates the SFRM and finally generates the SFRD. By using the

DRC, the user can generate three outputs files: 1) matching parsing requirements with domain

ontology, 2) matching tracing security and functional requirements with the associated

detection rules numbers, and 3) generating SFRD that graphically showing security

requirements effects on functional requirements with labeling the associated detection rules

numbers for each effect. Figure 10 shows the domain ontology of our tool, it combines the

three types of domain concepts and seven types of the domain relations.

Figure 10. The domain ontology interface

28

The domain ontology interface let user to create a knowledge repository of concepts

and relations for security and functional requirements domain, the tool will automatically

generate a tree view for the all selected concepts and relations as in Figure 11.

A tree view is a graphical control element that presents a hierarchical view of domain

ontology information. Each main node represents requirement concept, and sub nodes

represent relations between concepts.

Figure 11. Tree view for security and functional requirements concepts and relations

In our traceability approach, we have three main concepts and seven relations for each

of these concepts, as a result we will have 343 possible combinations for the detection rules.

29

After the detection rules have been constructed, the user can save all of the detection

rules and the associated effect types into an XML file. The detection rules that used in our

approach are expressed in XML as well as the relation discovery is based on a rule-based

system. The detection of the effects starts by converting all relationships between security and

functional requirements into XML file as in Figure 12.

Figure 12. A portion of the detection rules XML file

Our approach identifies 131 detection rules for cooperative effect, 92 detection rules

for conflicting effect, and 120 different detection rules for irrelevant effect. Overall, DRC

handles 343 distinct detection rules that cover the all possible combinations.

30

3.7.1. Inputs for DRC Tool

Since our approach combines the syntactic and semantic aspects of the requirements,

then our tool takes two inputs files: 1) Microsoft Word file which represents parsing security

and functional requirements, and 2) Microsoft Access file which represents the stored domain

ontology as in Figure 13.

Figure 13. Inputs files for DRC

The MS Word file has the requirements statements with the associated Subject-

concept, Verb-concept, and Complement-concept. Each requirement has been labeled to

indicate the type and the number for each requirement, and the MS Access file has the

information repository for security and functional requirements.

31

3.7.2. Outputs for DRC Tool

Our tool handles 343 different possible combinations for the detection rules, Figure 14

shows the main interface of our tool that allows the user to automatically generate three

outputs files based on reading the two inputs files. In this section we will show a brief

description about each output.

Figure 14. Main interface for DRC

A. Comparing parsing security and functional requirements with the domain ontology: This is

the first output file from our tool such when the user click onto compare task on the main

interface. The input dialog will prompt the user to select the parsing requirements Word file.

Then, DRC will automatically apply the comparison with the built domain ontology, and

generate the whole tracing pairs of security and functional requirements with the

corresponding Subject-Relation, Verb-Relation, and Complement-Relation.

B. Matching security and functional requirements with the associated detection rules-ID: This

is the second output file from the tool, it matches the whole tracing security and functional

requirements with the associated general detection rules numbers. It is the same as the first

output file plus adding a new column for the associated detection rules numbers.

32

C. Generating Security and Functional Requirements Diagram: This is the third output file

from the tool. Based on the first and second output files, our tool generates SFRD which

significantly provides a well-defined structured manner for illustrating requirements

traceability. Each cell in SFRD is labeled with the associated detection rule number that

identifies a certain type of effect. SFRD increases the user understandability for inferring

potential relationships between security and functional requirements.

3.8. Importance of Investigating Effect Types of Security Requirements upon Functional

Requirements

3.8.1. Prioritization of Security Requirements

Prioritizing requirements based on importance and dependency lead to have many

benefits [51, 52]. Firstly, it can be used to show the features in each software product version

or release planning [53]. Secondly, prioritization supports an accurate method for choosing the

most important security requirements to implement, which may result in a reduction a number

of implemented functional requirements [54].

As a result, one of the significant benefits of our approach is to prioritize security

requirements based on counting number of functional requirements that cooperate with

security requirement (i.e. Weight). Each security requirement has a different number of

associated dependent functional requirements. System A has three security requirements (SR1,

SR2, and SR3) as in Figure 15. SR1 has three cooperated functional requirements (FR2, FR5,

and FR6). Also, SR2 has four cooperated functional requirements (FR2, FR4, FR5, and FR6)

and SR3 has only one cooperated functional requirement (FR5) as follows:

33

• Weight (SR1) = # of cooperated functional requirements nodes with SR1= 3

• Weight (SR2) = # of cooperated functional requirements nodes with SR2=4

• Weight (SR3) = # of cooperated functional requirements nodes with SR3= 1

Therefore, SR2 has the highest priority, and SR3 has the lowest priority. The highest

priority security requirement positively affects many functional requirements more than any

other security requirements. This prioritization helps requirements engineer in the

requirements selection process.

Figure 15. The cooperated functional requirements nodes for system A

3.8.2. Finding Association among Security Requirements

In our approach, we create an association graph for security requirements by using

Jaccard similarity technique [55]. We measure the association between the security

requirements nodes based on the mutual cooperated functional requirements nodes. The

technique is defined as the quotient between the intersection and the union between the

security requirements as in Equation 1.

|SRjSRi|
|SRjSRi| = SRj) n(SRi,Associatio



 (Eq. 1)

34

• Where (SRi, SRj) represents security requirements.

• SRjSRi : represents the number of common cooperated functional requirements

nodes between SR i and SR j.

• SRjSRi : represents the number of all cooperated functional requirements nodes in

both SR i and SR j.

We use an Association to measure the similarity values between the dependent security

requirements. For instance, if Association value is equal to zero, both security requirements are

dissimilar while if Association is equal to one both security requirements are identical. By

applying Jaccard similarity for the example in Figure 16, the resulting association values have

been calculated as follows:

1. Association (SR1, SR2) = 3/4= 0.75

2. Association (SR1, SR3) = 1/3= 0.33

3. Association (SR2, SR3) = 1/4= 0.25

The association between SR1 and SR2 is 0.75, which reflects strongly dependent

requirements (i.e., highly connected requirements) while the association between SR2 and SR3

is 0.25, which reflects weakly dependent requirements (i.e., lowly connected requirements).

Figure 16. A weighted association graph for system A

35

3.8.3. Finding Inconsistency between Security and Functional Requirements

The additional valuable benefit that we can get from using SFRD is to find the

inconsistency [56] for each single security requirement. The inconsistency ratio is calculated

by considering all the conflicting effects relative to the total number of effects as in Equation

2.

SRifor eseffect typ all ofnumber Total

 SRifor effect confliting ofNumber = (SRi) Rationcy Inconsiste (Eq. 2)

• Where, total number of all effects = number of cooperative effect + number of

conflicting effect + number of irrelevant effect. For system A, we can find the

following information:

• Number of conflicting effect for SR1= 1

• Number of conflicting effect for SR2= 1

• Number of conflicting effect for SR3= 2

• Total number of all effects=6, then the inconsistency ratios for the security

requirements as follows:

• Inconsistency ratio (SR1) = 1/6 = 0.16

• Inconsistency ratio (SR2) = 1/6 = 0.16

• Inconsistency ratio (SR3) = 2/6 = 0.33

36

SR3 has the highest inconsistency ratio among all the security requirements for system

A, while both SR1 and SR2 have the same ratio. As a result, we can find that if a security

requirement has more conflicting effects, this leads to increase the inconsistency for the

requirements. Our goal is to detect the inconsistency between security and functional

requirements in order to increase the clarity as well as reduce the confusion that will appear in

the requirement analysis of the software development life cycle.

37

CHAPTER 4. EXPERIMENTAL EVALUATION

A Software requirements specification [57] is a description of the developed behavior

system includes functional requirements and non-functional requirements. Functional

requirements describe all the interactions the users will have with the software and non-

functional requirements are requirements which impose constraints on the design or

implementation, such as performance requirements, quality standards, or design constraints.

Functional requirements capture the intended behavior of the system. This behavior

had been expressed as services, or functions the system is required to perform. Security

requirements are non-functional requirements that define constraints and restrictions on the

functional requirements that include authorization, access control, authentication, privacy,

integrity, identification etc.

In this chapter, we demonstrate the effectiveness of our tool in the context of various

systems that covers health, commercial, educational, and hospitality industry domains. We

consider seven different requirements specifications, and for each system we show domain

ontology, SFRD, and some samples for the detection rules that have been used in these

systems. Also, to show the major benefits of our approach: (1) prioritizing for security

requirements, (2) finding association between security requirements, and (3) determining the

inconsistency ratio for security requirements.

4.1. Online Medical Database System

In order to capture the health domain, we select to apply our traceability approach to

the online medical database system which aims to save time span through providing a

searchable database of all past medic records.

38

 This system facilitates the management and medical staff through using electronic

database instead of the manual one. It handles the current and historical illness information for

the patient, nurse information, and patient history information such as family history as well as

social work history. This system provides an interesting challenge because it is semantically

rich with different domain relations. Moreover, the privacy and security issues are so critical to

such systems. Figure 17 shows a portion for the domain ontology for online medical database

system.

Figure 17. A part of domain ontology for an online medical database system
39

We use several detection rules to determine the effect types between security and

functional requirements. Figure 18 shows a sample set for these rules.

Figure 18. A sample of the detection rules for an online medical database system

40

In this system, DRC handles the tractability between four security requirements and 33

functional requirements, so we have 132 tracing pairs. After that, DRC automatically generate

the Security Functional Requirement Diagram for an online medical database system using the

stored XML detection rules. Figure 19 shows SFRD for an online medical database system.

Figure 19. SFRD for an online medical database system

41

In Figure 19, there exists a single detection rule that can identify a single effect type

and cover several requirements tracing pairs such as R114 identifies the cooperative effect for

(SR4,FR18), (SR4,FR20), (SR4,FR21), and (SR4,FR22). Also, R127 identifies the conflicting

effect for (SR3, FR23), and (SR2, FR33). In addition, R133 identifies the irrelevant effect for

(SR1, FR4), (SR3, FR4), (SR2, FR33), (SR1, FR7), and (SR3, FR7).

1. Prioritization for security requirements: Based on SFRD, we can find clearly the cooperated

functional requirements nodes for each security requirement as follows:

• SR1 has five cooperated functional requirements: FR15, FR16, FR17, FR29, and

FR31.

• SR2 has six cooperated functional requirements: FR19, FR21, FR22, FR24, FR30,

and FR32.

• SR3 does not have any of cooperated functional requirements.

• SR4 has eight cooperated functional requirements: FR18, FR19, FR20, FR21, FR22,

FR24, FR30, and FR32. Therefore, the Weight for each security requirement is

calculated as follows:

• Weight (SR1) = 5

• Weight (SR2) = 6

• Weight (SR3) = 0

• Weight (SR4) = 8, Then, prioritization for security requirements from high weight to

low weight is: SR4, SR2, SR1, and SR3 respectively.

42

2. Finding association between security requirements: By applying Jaccard method, the

obtaining association values between the security requirements of OMD system are as

follows:

• Association (SR1, SR2) = 0/11 = 0

• Association (SR1, SR3) = 0/5 = 0

• Association (SR1, SR4) = 0/13 = 0

• Association (SR2, SR3) = 0/6 = 0

• Association (SR2, SR4) = 6/8 = 0.75

• Association (SR3, SR4) = 0/8 = 0

Figure 20. A weighted association graph for an online medical database system

Figure 20 shows that the association between SR2 and SR4 is 0.75, which reflects

strongly associated requirements, while the other security requirements have not any

association between them. These association will help the requirement engineer to figure out

the strength for the dependencies among security requirements.

3. Inconsistency ratio for each security requirement: We can find the conflicting effects for

each security requirement as follows:

43

• Number of conflicting effect for SR1 = 0

• Number of conflicting effect for SR2 = 2

• Number of conflicting effect for SR3 = 2

• Number of conflicting effect for SR4 = 0

• Total number of effects for each security requirement = 33, the inconsistency ratio is

calculated by considering all the conflicting effects relative to the total number of

effects as follows:

• Inconsistency ratio (SR1) = 0/33 = 0

• Inconsistency ratio (SR2) = 2/33 = 0.06

• Inconsistency ratio (SR3) = 2/33 = 0.06

• Inconsistency ratio (SR4) = 0/33 = 0

In our approach, we aim to detect the inconsistency between security and functional

requirements in order to improve the understandability and reduce the natural language

ambiguity for the requirements text.

Based on the inconsistency values, SR2 and SR3 have the same ratio because each of

them has two conflicting effects out of 33 effects, but SR1 and SR4 have not any conflicting

effect, so both have not any inconsistency.

44

4.2. Online Store System

In order to capture the commercial domain, we select to apply our approach to the

online store system [58] which describes online sales, distribution, and marketing for the

products. It also concentrates on the capabilities that required by customers and their needs

while defining product features and configurations. The user can select the product from the

products categorization and pay online using credit card number. Figure 21 shows a portion for

the domain ontology for an online store system.

Figure 21. A part of domain ontology for an online store system

45

Based on the above domain ontology, confidential customer information can be either

payment information or user login information (i.e., Generalization) Also, credit card number

is a part of payment information (i.e., Aggregation) while user password is a part of user login

information (i.e., Aggregation). Figure 22 shows a set for the detection rules that used in this

system.

Figure 22. A sample of the detection rules for an online store system

46

 Here we can show an example for the first and second outputs files that we can obtain

from using DRC. In the first output file, DRC finds the matching between parsing

requirements text file and the domain ontology database as in Table 4, and the second output

file shows the association between the parsing requirements and the matched detection rules

numbers for each requirements pair as in Table 5.

Table 4. A portion of an output file for matching parsing requirements with domain ontology

Requirements Pair Subject-
Relation

Verb-
Relation

Complement-
Relation

The system shall encrypt all of the confidential
customer information. (SR1), The system view
detailed product categorization. (FR5)

Identical No-Relation No-Relation

The system shall encrypt all of the confidential
customer information. (SR1), The system shall
allow user to create profile and set his
credential. (FR6)

Association Association Aggregation

The system shall encrypt all of the confidential
customer information. (SR1), The system shall
authenticate user credentials to view the profile.
(FR7)

Identical Association Aggregation

The system shall encrypt all of the confidential
customer information. (SR1), The system shall
allow user to update the profile information.
(FR8)

Association

Association

Generalization

The system shall encrypt all of the confidential
customer information. (SR1), The system shall
display both the active and completed order
history in the customer profile. (FR9)

Identical Association No-Relation

The system shall never display a customer’s
password. (SR2), The system shall display user
login information. (FR29)

Identical Antonyms Aggregation

The customer’s web browser shall never display
a customer credit card number. (SR3), The
system shall display the credit card payment
data. (FR22)

Identical Antonyms Aggregation

47

In the above table, each requirements pair has a specific combination that shows the

relation types for the security and functional requirements concepts, some tracing pairs share

the same combination.

Table 5. A portion of an output file for matching requirements with associated detection rules

Requirements Pair Subject-
Relation

Verb-
Relation

Complement-
Relation

Matched
detection
rules ID

The system shall encrypt all of the
confidential customer information.
(SR1), The system view detailed
product categorization. (FR5)

Identical No-Relation No-Relation

294

The system shall encrypt all of the
confidential customer information.
(SR1), The system shall allow user to
create profile and set his credential.
(FR6)

Association Association Aggregation

114

The system shall encrypt all of the
confidential customer information.
(SR1), The system shall authenticate
user credentials to view the profile.
(FR7)

Identical Association Aggregation

261

The system shall encrypt all of the
confidential customer information.
(SR1), The system shall allow user to
update the profile information. (FR8)

Association Association Generalization

113

The system shall encrypt all of the
confidential customer information.
(SR1), The system shall display both
the active and completed order history
in the customer profile. (FR9)

Identical Association No-Relation

266

The system shall never display a
customer’s password. (SR2), The
system shall display user login
information. (FR29)

Identical Antonyms Aggregation

275

The customer’s web browser shall never
display a customer credit card number.
(SR3), system shall display credit card
payment data. (FR22)

Identical Antonyms Aggregation

275

48

For example, (SR2, FR29), and (SR3, FR22) have the same combination: (Identical,

Antonyms, Aggregation) for (Subject-Relation, Verb-Relation, Complement-relation)

respectively. So, they should have the same detection rule and the same effect type.

The second output file that has been generated by the tool shows the corresponding

detection rule number for each requirements pair. For example, detection rule 266 (i.e., R266)

matches with the requirements pair (SR1, FR9) as in Table 5.

In the above table, the detection rule R261 identifies the cooperative effect for the

tracing requirements pair (SR1, FR7), and the detection rule R294 identifies the irrelevant

effect for the tracing requirements pair (SR1, FR5). Also, the detection rule R275 identifies the

conflicting effect for the tracing requirements pairs (SR2, FR29), and (SR3, FR22). By using

DRC, the user can generate the first table and the second table as we described above. Also,

the user can generate SFRD that collects required information from the previous tables and

graphically illustrates the effect type and the associated detection rule of each requirements

tracing pair for an online store system as in Figure 23.

SFRD generates 105 tracing links that captures the whole tracing between the three

security requirements and 35 functional requirements. Each security requirement has been

traced to 35 functional requirements, and since it has three security requirements then it has in

total 105 tracing links that cover all security and functional requirements sets.

In the online store system, the detection rules R114, R113, R261, and R261 identify 16

cooperative effect. Also, the detection rule R294 identifies two conflicting effect, and the

detection rules R266, R119, R294, R147, R280, and R133 identify 87 irrelevant effect.

49

Figure 23. SFRD for an online store system

50

Among all cooperative detection rules, we find that R114 identifies 8 requirements

pairs, R261 identifies 4 requirements pairs, R260 identifies two requirements pairs, and R113

identifies two requirements pairs. For conflicting effect, there is only one detection rule that

identifies two requirements pairs. While for irrelevant detection rules, we find that R280

identifies 22 requirements pairs, and R133 only identifies two requirements pairs.

SFRD enables the user to: (1) better understanding the requirements inter-traceability,

(2) perceiving the most important security requirements, and (3) associating the similar

functional requirements based on the mutual dependencies.

As we can notice from the above SFRD that all the parsing requirements pairs that

have the same combination will be identified by the same effect type. Different security

requirements have different effects on the same functional requirement. For example, the

requirements pair (SR1, FR22) has a cooperative effect with the associated detection rule 261,

(SR2, FR22) has irrelevant effect with associated detection rule 280, and the requirements pair

(SR3, FR22) has conflicting effect associated detection rule 275. In addition, the requirements

pair (SR1, FR29) has a cooperative effect with the associated detection rule 260, the

requirements pair (SR2, FR29) has conflicting effect associated detection rule 275, and the

requirements pair (SR3, FR29) has irrelevant effect with associated detection rule 280.

1. Prioritization for security requirements

One of the significant uses for the traceability approach is to prioritize security

requirements based on their weight. Weight is calculated by counting the number of the

functional requirements that cooperate with the security requirement as follows:

51

• Weight (SR1) = 9

• Weight (SR2) = 4

• Weight (SR3) = 3, so the prioritization for the security requirements is: SR1, SR2,

SR3.

2. Finding association between security requirements as in Figure 24:

• Association (SR1, SR2) = 4/9= 0.44

• Association (SR1, SR3) = 3/9= 0.33

• Association (SR2, SR3) = 0/7= 0.0

Figure 24. A weighted association graph for an online store system

3. Inconsistency ratio for each security requirement: the number of conflicting effect for each

security requirement is calculated as follows:

• Number of conflicting effect for SR1 = 0

• Number of conflicting effect for SR2 = 1

• Number of conflicting effect for SR3 = 1

52

• Total number of effects for each security requirement = 35, then the inconsistency

ratio for each security requirement is calculated as follows:

• Inconsistency ratio (SR1) = 0/35 = 0 %

• Inconsistency ratio (SR2) = 1/35 = 3%

• Inconsistency ratio (SR3) = 1/35 = 3%

4.3. Course Management System/ Students

In order to capture the educational domain, we select to apply our approach to the

course management system [59], it is a software application used to control the virtual

educational environments, enhance classroom education, and as a platform for distance

learning programs.

This system enriched with multiple features and different strong capabilities that

empower instructors to professionally manage courses contents, construct projects or

assignments, and manage a collaboration environment for the students that enable the students

to effectively communicate with the instructor. The course management system helps

academic organizations to accomplish communication and valuation objectives.

This system specifies the requirements for students and lecturers, the functional and

security requirements are separated for each of them. It has a specific glossary that defines the

exact meanings for personal information, static course information, dynamic course

information, and study information as in Table 6.

53

Table 6. Glossary of course management system requirements terms

Term Meaning
Personal Information Information about a person, such as name, address, a picture,

interests, etc.
Study Information Information about a person’s study progress, such as subscribed

courses, grades and exam attempts.
Assistant Lecturers Lecturers who assist the principal lecturer for a course.

Static Course
Information

Information of a course which does not change while a course is
given, but between semesters. This includes the lecturer, and study
material.

Dynamic Course
Information

Information of a course which changes while a course is given.
This includes news messages, archived files and roster.

Secondary University
Systems

All university systems which are shared by different departments,
such as a central address book containing all kinds of personal
information.

Manage Manage involves create, set, rename, read, update, and delete.

In this system we will show how we can apply our traceability approach for tracing the

security and functional requirements, the student system has four security requirements and 17

functional requirements.

The domain ontology provides a semantic repository about the concepts and relations

for a particular domain. Our domain ontology captures three main concepts of a requirement

statement: requirement entity, requirement action, and requirement target.

Moreover, it identifies the semantic relation between these concepts. For example, user

is a subject-concept, which reflects requirement entity, and there exists a generalization

relation between student and user. Figure 25 shows a portion for the domain ontology for the

student requirements in the course management system.

54

Figure 25. A part of domain ontology for students system

Also, change is a verb-concept, which reflects requirement action, and it aggregates

from several actions such as: edit. Then, there exists an aggregation relation between manage

and edit actions. There is antonyms relation between “change” and “shall not change”. In

addition, course information is a complement-concept, which reflects requirement target, and it

has two sub complement-concepts: static course information, and dynamic course information.

55

Then, there exists a generalization relation between them such static course information

is a course information, and dynamic course information is a course information.

Similarly, user-privacy is a complement-concept, and it has many parts such: student

contact information, student personal information, and student password. Also, personal

information is a complement-concept and it briefly describes the information about the person

and it aggregates from several complement-concepts: student name, student address, and

student picture, and student interests. Also, Study information is a complement-concept and it

aggregates from several complement-concepts: exams, grades, courses, and history of attended

courses.

By using the domain ontology and the detection rules, our tractability tool illustrates

the Security Functional Requirements Diagram for students system that has four security

requirements as columns and 17 functional requirements as rows as in Figure 26. Our

traceability approach simplifies the requirements traceability process and allows the user to

easy understand the requirements implementation.

56

Figure 26. SFRD for students system

1. Prioritization for security requirements:

• Weight (SR1) = 4

• Weight (SR2) = 1

• Weight (SR3) = 2

• Weight (SR4) = 5, the prioritization from high to low is: SR4, SR1, SR3, and

SR2.

57

2. Finding association between security requirements: We find association among security

requirements as in Figure 27.

• Association (SR1, SR2) = 0/5= 0.0

• Association (SR1, SR3) = 2/4= 0.50

• Association (SR1, SR4) = 0/9= 0.0

• Association (SR2, SR3) = 0/3= 0.0

• Association (SR2, SR4) = 1/5= 0.20

• Association (SR3, SR4) = 0/7= 0.0

Figure 27. A weighted association graph for students system

The weighted association graph provides a very useful information that can be used

requirements change process such it can be effectively used to estimate the cost of

requirements change as well as considering the impact of this change. For example, in Figure

30, the association value for (SR1 and SR3) reflects that both requirements strongly connected

to each other’s, while the association value for (SR2 and SR4) indicates that both requirements

weakly connected.

58

As a result, in case of requirements changing for either SR1 or SR3, the impact of

change will be higher than requirements change for SR2 or SR4. In other words, the cost of

requirements change in the first case will be greater than the cost of requirements change in the

second case.

3. Inconsistency: there is no inconsistency for this particular requirements set because it does

not have any conflicting effect.

4.4. Course Management System/ Lecturers

This system describes the functional and security requirements for the lecturers in the

course management system, we will show how we can apply our traceability approach for

tracing the security and functional requirements for the lecturers.

Figure 28 shows a portion for the domain ontology for the lecturer’s subsystem

requirements. The domain ontology has several relations. . For example, user is a subject-

concept, which reflects requirement entity, and there exists a generalization relation between

lecturer and user. Also, manage is a verb-concept, which reflects requirement action, and it

aggregates from several actions such as: create, insert, remove, read, update, rename, and etc.

Then, there exists an aggregation relation between manage and the other actions.

In addition, dynamic course information is a complement-concept that has many

complement-concepts: news messages, achieved files, roster, and course materials. Similarly,

“All grades for all students” is a complement-concept and it has many complement-concepts:

student’s grades, team’s grades, student’s grading policy, and student’s grade statistics. As a

result, there is an aggregation relation between them. The lecturer’s subsystem has three

security requirements and 35 functional requirements.

59

Figure 28. A part of domain ontology for lecturers system

60

Figure 29 shows a sample for the detection rules that have been used by our approach

to detect effect types for lecturers’ requirements. We show two detection rules that identify the

cooperative effect: R265 and R282 while the three detection rules: R294, R289, and R259

identify the irrelevant effect.

Figure 29. A sample of the detection rules for lecturers system

61

Since the lecturer’s subsystem has three security requirements and 35 functional

requirements, then it has 105 tracing links such: 15 cooperative effect, 90 irrelevant effect, and

zero conflicting effects as in Figure 30.

Figure 30. SFRD for lecturers system

62

1. Prioritization for the security requirements:

• Weight (SR1) = 6

• Weight (SR2) = 3

• Weight (SR3) = 6

Since both SR1 and SR3 have the same priority, therefore, the prioritization from high

to low is either (SR3, SR1, SR2) or (SR1, SR3, SR2).

2. Finding association between security requirements: We find association among security

requirements as in Figure 31.

• Association (SR1, SR2) = 3/6= 0.50

• Association (SR1, SR3) = 0/12= 0.0

• Association (SR2, SR3) = 0/9= 0.0

Figure 31. A weighted association graph for lecturers system

From Figure 31, we can find that SR1 associated with only SR2, and there is no an

association between (SR1, SR3), (SR2, SR3). Knowing this valuable information indicates that

the impact of change SR1 will affect only SR2, and it will not affect SR3. In addition, the

impact of change SR2 will not affect SR3 since there is not any common parts between them.

63

3. Inconsistency: There is no inconsistency for this particular requirements set because it does

not have any conflicting effect.

4.5. Health Monitor System

Health domain [60] is one of the most critical domain in which the security features are

very critical to the health staff and to the patients, health domain is one of the complex domain

that takes into account the other political and legal issues. Consequently, most of these

software that developed in health domain are critical because they encompass people health in

a large scale and therefore are very delicate to faults come from different requirements

sources, so it is very important to trace the security and functional requirements to figure out

the relationships for such systems.

 In order to capture the health domain, we select to apply our approach to the health

monitor system [61] which aims to help the users to check their food healthy level. Health

Monitor software provides a diet chart and fitness plan to the users based on various factors

that the user entered to the system which include: age, gender, race, height, weight, individual

life style, food habits details, diet plans, and exercise plans.

The system help the user to follow a healthy food style and keep them away from

various chronic diseases by showing several beneficial nutritional information for several

types of food such as calories contents and junky food effects, It let the user to judge how

healthy they are through asking several questions and a obtain facts from the user that related

to the food habits, exercise, and life style.

64

This system requires to apply the provided web server security that related to the web

services and the server database protection as well as keep the entered user data private and

secured form the disclosure or other unauthorized access from hackers. This system has three

security requirements and 30 functional requirements. Figure 32 shows a portion for the

domain ontology for the health monitor system.

Figure 32. A part of domain ontology for health monitor system

65

The Figure 33 shows SFRD for lecturers has 29 cooperative effect, 31 irrelevant effect,

and zero conflicting effects.

Figure 33. SFRD for health monitor system

1. Prioritization for the security requirements:

• Weight (SR1) = 13

• Weight (SR2) = 5

• Weight (SR3) = 11, the prioritization from high to low is: SR1, SR3, and SR2.

66

2. Finding association between security requirements: We find association among security

requirements as in Figure 34:

• Association (SR1, SR2) = 3/15= 0.20

• Association (SR1, SR3) = 3/21= 0.14

• Association (SR2, SR3) = 5/11= 0.45

Figure 34. A weighted association graph for health monitor system

3. Inconsistency for the security requirements: there is no inconsistency for this particular

requirements set because it does not have any conflicting effect.

4.6. Automated Railway Reservation System

In order to capture the booking system environment, we will apply our approach on the

automated railway reservation system [62], it has been designed to provide an electronic

version of the railway passenger reservation system. The system will have a user-friendly

graphical interface and will be more cost effective compared to the current non-electronic

version of the reservation system. This system provide customers to get their tickets in a more

convenient way and control of the railway ticket sales to avoid scalping and overselling of

tickets.

67

Figure 35. A part of domain ontology for railway reservation system

Figure 35 shows a portion of domain ontology for railway reservation system. This

system is relatively small and has only two security requirements and 10 functional

requirements. Figure 36 shows SFRD for lecturers that has 6 cooperative effect, 14 irrelevant

effect, and zero conflicting effects.

68

Figure 36. SFRD for railway reservation system

1. Prioritization for security requirements:

• Weight (SR1) = 5

• Weight (SR2) = 1, the prioritization from high to low is: SR1, SR2.

2. Finding association between security requirements:

• Association (SR1, SR2) = 1/5= 0.20

As a result, SR1 and SR2 positively affect the first functional requirements that

describe the login functionality, it includes valid username and password (i.e., FR1)

considered as a part from the customer information that should not supposed to compromise

(i.e., SR1) as well as valid username and password used by the system to authenticate the

authorized user (i.e., SR2).

69

Figure 37 shows the weighted graph for the association between SR1 and SR2, SR1

ensures to keep the user information from the disclosure, while SR2 ensures the authentication

for the access to enable only the authorized users reach the system.

Figure 37. A weighted association graph for railway reservation system

3. Inconsistency: there is no inconsistency for this particular requirements set because it does

not have any conflicting effect.

4.7. Hotel Management System

In order to capture the hospitality industry domain, we select to apply our approach to

hotel management system [63] is one of the popular software solution that used in hospitality

industry such as: hotels, resorts, inns, motels, and lodges. Our product hotel management

system is a comprehensive software suite consisting of combined elements for various aspects

of hotel management. The software product to be produced is a hotel management system

which will automate the major hotel operations.

The first subsystem is a reservation which keeps track of reservations and room

availability. The second subsystem is the tracking and selling food which charges the current

room and meals. The third subsystem is a general management services and automated tasks

which generates reports to audit all hotel operations and allows modification of subsystem.

70

The system will be able to handle many services to take care of all customers in a quick

manner. Additionally, the system should be user appropriate, easy to use, provide easy

recovery of errors and have an overall end user high subjective satisfaction.

The system has 3 security requirements and 23 functional requirements, the security

requirements for hotel management system describe the access control for the hotel customer

service representative and manager such as customer service representative has only access the

reservation and food subsystem while the manager can access the whole three subsystems:

reservation, food, and management subsystems. The manager has the privileges to add, delete,

and modify the information that related to rooms, menu items, and price while the customer

representative can only modify the customer reservations.

Figure 38 shows the domain ontology for the hotel management system. According to

the domain ontology for hotel system, user is subject-concept and it can be customer service

representative, or manager. Access is a verb-concept and it aggregates from several verb-

concepts: add, delete, and modify.

Furthermore, reservation subsystem is a complement-concept and it aggregates from

many complement-concepts: customer’s name, room number, number of occupants, check in

date/time, and check out date/time. In the same way, food subsystem is a complement-concept

and it aggregates from many complement-concepts: restaurant booking, purchasing meals, and

payment for meals.

71

Figure 38. A part of domain ontology for hotel management system

The Figure 39 shows SFRD for hotel management system that has 29 cooperative

effect, 40 irrelevant effect, and zero conflicting effect as follows:

72

Figure 39. SFRD for hotel management system

As we can notice from the above SFRD, SR1 and SR2 affected several common

mutual functional requirements because SR1 consider the access to reservation and food

subsystems while SR2 includes SR1 plus the access to management subsystem. In this

particular case, this means that both requirements are strongly associated, while SR1 and SR3

are weakly associated. Figure 40 shows a sample for the used detection rules that have been

used to capture the relationship between security and functional requirements.

73

Figure 40. A sample of the detection rules for hotel management system

1. Prioritization for the security requirements:

• Weight (SR1) = 12

• Weight (SR2) = 16

• Weight (SR3) = 1, the prioritization from high to low is: SR2, SR1, and SR3.

74

2. Finding association between security requirements: We find association among security

requirements as in Figure 41:

• Association (SR1, SR2) = 12/16 = 0.75

• Association (SR1, SR3) = 0/13= 0.0

• Association (SR2, SR3) = 1/17= 0.05

Figure 41. A weighted association graph for hotel management system

As we can see in Figure 41, since SR1 considers reservation and food subsystems

while SR2 considers reservation, food, and management subsystems, then both SR1 and SR2

are highly dependent on each other such as SR2 contains SR1.

Our approach can be applied to various types of requirements domain, in this research

we show how we can apply our traceability approach for four different domains: health,

educational, commercial, and hospitality industry. Table 7 statistically summarizes the number

for security requirements, functional requirements, number of cooperative, number of

conflicting, and number of irrelevant effects, and number of generated tracing links

correspondingly for each system.

75

Table 7. Statistical summary for all systems

System

No. of
SR

No. of
FR

No. of
Cooperative

No. of
Conflicting

No. of
Irrelevant

No. of
Tracing
links

Online
Medical

4 33 19 4 109 132

Online Store 3 63 16 2 171 189

Students 4 17 12 0 56 68

Lecturers 3 35 15 0 90 105

Health
monitor

3 30 29 0 61 90

Railway
reservation

2 10 6 0 14 20

Hotel
management

3 23 29 0 40 69

We find that online medical database system and health monitor system are the most

critical systems since they belong to the health domain. Among all seven systems, we can find

that both of health monitor and hotel management system have the largest number for

cooperative effect, online medical system has the largest number for conflicting effect.

Moreover, online store system has the largest number for irrelevant effect.

4.8. Evaluation for DRC Tool

Several metrics have been used to assess the quality of the automated tracing tools by

comparing with the manual tracing. The manual tracing [64] is still widely used approach in

requirements traceability, and it considers the human judgment based on the domain

knowledge. Today, manual traceability method is still preferred by a significant percentage of

software industry because in requirements engineering phase.

76

We cannot avoid or ignore the knowledge for the experts who have several years of

experience in this particular domain. To evaluate the results of our tool with the manual tracing

results, we decide to use accuracy [65] which measures the degree to which a requirements

tracing tool returns all the correct matching effect types with the manual tracing as in Equation

3:

 tracingmanual from effects ofnumber Total
 tracing tooland manual from effects matchingcorrectly ofNumber Accuracy = (Eq. 3)

 We evaluate each of security requirement for all systems. For example, Figure 42

shows the comparison results between manual and tool tracing of SR4 for an online medical

database system.

Figure 42. Manual and DRC tracing of SR4 for an online medical database system

77

We can see that there are 29 matching, and 4 non-matching nodes. As a result,

according to Formula 3, the accuracy for SR4 is 0.87. The requirements that highlighted in

orange represent the non-matching nodes between DRC and manual tracing: FR22, FR23,

FR24, and FR33. To show the accuracy of all security requirements for all systems. We find

the accuracy for each single security requirement by comparing the matching between the

results of manual tracing and tool tracing. Table 8, Table 9, Table 10, Table 11, Table 12,

Table 13, and Table 14 show the accuracy ratio for security requirements for an online medical

database, online store, students, lecturers, health monitor, railway reservation, and hotel

management systems respectively.

Table 8. Accuracy for online medical database security requirements

Security requirements Matching between DRC
and manual tracing

Accuracy

SR1 27 27/*33= 0.81

SR2 26 26/33= 0.78

SR3 25 25/33= 0.75

SR4 24 29/33= 0.87

Table 9. Accuracy for online store security requirements

Security requirements Matching between DRC
and manual tracing

Accuracy

SR1 30 30/*35= 0.85

SR2 30 30/35= 0.85

SR3 29 29/35= 0.82

*No. of effects for manual tracing = 35

*No. of effects for manual tracing = 33

78

Table 10. Accuracy for student’s security requirements

Security requirements Matching between DRC
and manual tracing

Accuracy

SR1 13 13/*17= 0.76

SR2 16 16/17= 0.94

SR3 14 14/17= 0.82

SR4 13 13/17= 0.76

Table 11. Accuracy for lecturer’s security requirements

Security requirements Matching between DRC
and manual tracing

Accuracy

SR1 26 26/*36= 0.72

SR2 27 27/36= 0.75

SR3 31 31/36= 0.86

Table 12. Accuracy for health monitor security requirements

Security requirements Matching between DRC
and manual tracing

Accuracy

SR1 26 26/*30= 0.86

SR2 23 23/30= 0.76

SR3 25 25/30= 0.83

*No. of effects for manual tracing = 30

*No. of effects for manual tracing = 36

*No. of effects for manual tracing = 17

79

Table 13. Accuracy for railway reservation security requirements

Security requirements Matching between DRC
and manual tracing

Accuracy

SR1 9 9/*10= 0.90

SR2 9 9/10= 0.90

Table 14. Accuracy for hotel management security requirements

Security requirements Matching between DRC
and manual tracing

Accuracy

SR1 19 19/*23= 0.82

SR2 18 18/23= 0.78

SR3 17 17/23= 0.73

 The experiments with our tool has indicated that it is capable of generating effect

types at reasonable accuracy rates, In particular with respect to accuracy, we have identified

the need to propose new effect types to capture the effect types that the existing detection rules

fail to identify.

Based on the results that we obtain from the above tables, we can summarize that by

using our tool, we can get an overall accuracy 80% comparing to the manual tracing which

reflects a very acceptable accuracy level according to the study in [66]. We observe like

different systems have different accuracy values due to several reasons such as: (1) the human

errors that occurs in the manual tracing, (2) coverage for the detection rules that used in our

tool, and (3) domain nature for the requirements.

*No. of effects for manual tracing = 23

*No. of effects for manual tracing = 10

80

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.1. Conclusions

In this research, we introduce a new hybrid traceability approach for using syntactic

parsing, domain ontology, and a rule based system. Our approach helps to identify

cooperative, conflicting, and irrelevant effects of security upon the functional requirements.

Our approach offers several benefits: (1) it serves as a structured mechanism to simplify the

finding of effects, (2) it bridges the gap between functional and non-functional requirements,

and (3) it supports the requirements analysis to improve consistency between conflicting

requirements.

We introduced DRC tool that will help automatically generate all the possible

combinations for concepts and relations in both security and functional requirements, automate

the construction process of detection rules, and generate SFRD. DRC automatically captures

the effect of security requirements upon functional requirements based on using predefined

detection rules. Our approach allows the users to construct several detection rules to discover

relationships between security and functional requirements by combining the syntactic and

semantic analysis of requirements.

We presented a several case studies of using DRC, which showed how using DRC led

to improve inconsistency checking and better understanding of the inter requirements

traceability. A valuable feature of our approach is that users can create domain ontology, and

identify effect types based on the user-defined detection rules. DRC shows several benefits

comparing with the current inter-requirements traceability tools by relating functional and non-

functional requirements, captures syntactic and semantic aspects of requirements.

81

Also, it considers consistency checking of the relations, and provide a several

reasoning rules for each identified relationships between security and functional requirements.

By using our DRC tool, we get an 80% accuracy comparing with the manual tracing.

5.2. Future Work

Our future work includes to extend DRC to cover the other non-functional

requirements effects onto functional ones. As a result, we can apply it for large applications.

We plan to show the effects for the maintainability, availability, portability, and recoverability

requirements upon functional requirements by proposing several additional detection rules, as

well as, extend our domain ontology by adding more semantic concepts and relations that will

capture various types of requirements domains.

In addition, we plan to propose a specific detection rules that control the impact of

requirements change. We will focus on traceability impact analysis which concentrates on

traceability links as the main key to express relationships between security and functional

requirements. The analysis of the impact of security requirement changes onto other functional

requirements can be based on requirements traceability. Requirements effect types (i.e.,

dependencies types) can be used as trace links to identify the impact of requirements change.

The goal of impact analysis in our research is to identify which security or functional are either

explicitly or implicitly affected by this particular proposed change. We intend to consider two

different types of changes, the first proposed type is changes in security and functional

requirements: (1) adding new requirement, (2) deleting current requirement, and (3) modifying

current requirement. The second proposed type is changes in effect types: (1) adding new

effect type, (2) deleting current effect type, and (3) modifying current effect type.

82

REFERENCES

[1] I. Sommerville, “Software Engineering,” 7th Ed. Pearson Addison Wesley, 2004.

[2] P. Zave, “Classification of research efforts in requirements engineering,” ACM Computing Surveys,
vol.29, no.4, pp. 315-321, 1997.

[3] C. Hoare, “The emperor’s old clothes,” Communications of the ACM, vol.24, no.2, pp. 75-83, 1981.

[4] F. Brooks, “No Silver Bullet: Essence and Accident in Software Engineering”, IEEE Computer,
vol.20, no.4, pp. 10-20, 1987.

[5] K. Emam and N. Madhavji, “Elements of Software Process Assessment and Improvement,” 1st Ed.
Wiley-IEEE Computer Society Press, 1999.

[6] L. Jiang, “A framework for Requirements Engineering Process Development,” Ph.D. thesis,
University of Calgary, Canada, 2005.

[7] O. Gotel and A. Finkelstein, “An Analysis of the Requirements Traceability Problem,” First IEEE
International Conference on Requirements Engineering, Colorado Springs, pp. 94-101, 1994.

[8] G. Kotonya and I. Sommerville, “Requirements Engineering: Processes and Techniques,” John Wiley
& Sons, 1998.

[9] K. Pohl, “Requirements Engineering: Fundamentals, Principles, and Techniques,” 1st Ed. Springer
Publishing Company, 2010.

[10] W. Robinson, S. Pawlowski, and V. Volkov, “Requirements Interaction Management,” ACM
Computing Surveys, vol.35,no.2, pp.132-190, 1999.

[11] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. Natt, “An Industrial Survey of
Requirements Interdependencies in Software Product Release Planning,” 5th IEEE International
Symposium, pp. 84-91, 2001.

 [12] J. Karlsson, S. Olsson, and K. Ryan, “Improved Practical Support for Large-scale Requirements
Prioritization,” Requirements Engineering Journal, vol.2, no.1, pp.51-60, 1997.

[13] B. Ramesh, and M. Jarke, “Toward Reference Models for Requirements Traceability,” IEEE
Transactions on Software Engineering, vol.27, no.1, pp.58-93, 2001.

[14] J. Karlsson and K. Ryan, “Prioritizing Requirements Using a Cost-Value Approach,” IEEE Software,
vol.14,no.5,pp.67-74, 1997.

[15] K. Pohl, “Process Centered Requirements Engineering,” John Wiley & Sons, 1996.

83

[16] A. Dahlstedt and A. Persson, “Engineering and Managing Software Requirements,” 1st Ed. Springer,
2005.

[17] P. Carlshamre, “Release Planning in Market-Driven Software Product Development: Provoking an
Understanding,” Requirements Engineering, vol.7, no.3, pp.139-151, 2002.

[18] A. Goknil, I. Kurtev, and K. Berg, “Change Impact Analysis Based on Formalization of Trace
Relations for Requirements,” ECMDA Traceability Workshop, pp.59-75, 2008.

[19] F. Pinheiro, “Requirements Traceability,” Requirements Traceability in Perspectives on Software
Requirements, Kluwer Academic Publishers, pp.91-113, 2004.

[20] A. Lamsweerde, “Requirements Engineering in the Year 00: A Research. Perspective,” 22nd
International Conference on Software Engineering, pp.5-19, 2000.

[21] H. Kaiya and M. Saeki, “Using Domain Ontology as Domain Knowledge for Requirements
Elicitation,” IEEE International Requirements Engineering Conference, pp.186–195, 2006.

[22] L. Zong, W. Zhi, Y. Ying, W. Yue, and L. Ying, “Towards a multiple ontology framework for
requirements elicitation and reuse,” 31st Annual International Computer Software and Applications
Conference, pp.189-195, 2007.

[23] N. Assawamekin, T. Sunetnanta, and C. Pluempitiwiriyawej, “Deriving Traceability Relationships of
Multiperspective Software Artifacts from Ontology Matching,” 10th ACIS International Conference on
Software Engineering, Artificial Intelligences, Networking and Parallel Computing, IEEE, pp.549-554,
2009.

[24] M. Jyothilakshmi and P. Samuel, “Domain Ontology Based Class Diagram Generation from
Functional Requirements,” International Journal of Computer Information Systems and Industrial
Management Applications, pp. 380-385, 2012.

[25] S. Lee, D. Muthurajan, R. Gandhi, et al., “Building Decision Support Problem Domain Ontology
from Natural Language Requirements for Software Assurance,” International Journal of Software
Engineering and Knowledge Engineering, pp. 851-884, 2006.

[26] C. Lopez, L. Cysneiros, and H. Astudillo. “NDR Ontology: Sharing and Reusing NFR and Design
Rationale Knowledge,” 1st International Workshop on Managing Requirements Knowledge, pp.1–10,
2008.

[27] R. Falbo, G. Guizzardi, K. Duarte, “An Ontological Approach to Domain Engineering,” 14th
International Conference on Software Engineering and Knowledge Engineering, pp. 351-358, 2002.

[28] I. Jureta, J. Mylopoulos, and S. Faulkner, “Revisiting the Core Ontology and Problem in
Requirements Engineering,” 16th IEEE International Conference Requirements Engineering, pp. 71-80,
2008.

[29] M. Sasikumar, S. Ramani, S. Raman, et al., “A Practical Introduction to Rule Based Expert
Systems,” Narosa Publishing House, 2007.

84

http://www.informatik.uni-trier.de/%7Eley/pers/hd/s/Sunetnanta:Thanwadee.html
http://www.informatik.uni-trier.de/%7Eley/pers/hd/p/Pluempitiwiriyawej:Charnyote.html
http://www.informatik.uni-trier.de/%7Eley/pers/hd/m/Muthurajan:Divya.html
http://www.informatik.uni-trier.de/%7Eley/pers/hd/g/Gandhi:Robin_A=.html
http://www.informatik.uni-trier.de/%7Eley/db/journals/ijseke/ijseke16.html%23LeeMGYA06
http://www.informatik.uni-trier.de/%7Eley/db/journals/ijseke/ijseke16.html%23LeeMGYA06

[30] A. Egyed and P. Grünbacher, “Identifying Requirements Conflicts and Cooperation: How Quality
Attributes and Automated Traceability Can Help,” IEEE Software, vol. 21, no.6, pp.50-58, 2004.

[31] X. Liu, “Fuzzy Requirements,” IEEE Potentials,vol.17, no.2, pp. 24–26, 1998.

[32] C. Temponi, J. Yen, and W. Tiao, A. “House of Quality: A fuzzy Logic-Based Requirements
Analysis,” European Journal of Operational Research, vol.117, no.2, pp.340-354, 1999.

[33] J. Lee and N. Xue, “Analyzing User Requirements by Use Cases: a Goal-Driven Approach,” IEEE
Software, vol.16, no.4, pp. 92-101, 1999.

[34] C. Haley, R. Laney, J. Moffett, et al., “Arguing Satisfaction of Security Requirements,” Idea Group
Publishing, 2007.

[35] G. Kotonya, and I. Sommerville, “Requirements Engineering: Processes and Techniques,” John
Wiley and Sons, 1998.

[36] J. Rushby, "Security Requirements Specifications: How and What?" Symposium on Requirements
Engineering for Information Security, Vol. 441, 2001.

[37] T. Adams, N. Koncz, and A. Vonderohe, 2000, “Functional Requirements for a Comprehensive
Transportation Location Referencing System,” North American Travel Monitoring Exhibition and
Conference, 2000.

[38] R. Malan and D. Bredemeyer, “Functional Requirements and Use Cases,” Architecture Resources for
Enterprise Advantage, 2001.

[39] D. Firesmith, “Engineering Security Requirements,” Journal of Object Technology, vol. 2, no. 1,pp.
53-68, 2003.

[40] IBM Rational RequisitePro. http://www-01.ibm.com/software/awdtools/reqpro/

[41] IBM Telelogic Doors. http://www.telelogic.com/Products/doors/doors/index.cfm

[42] OMG: SysML Specification. OMG ptc/06-05-04, http://www.sysml.org/specs.htm

[43] TopTeamAnalyst.http://www.technosolutions.com/topteam_requirements_management.htm

[44] B. Boehm and H. In, “Identifying Quality-Requirements Conflicts,” IEEE Software, pp. 25-35, 1996.

[45] http://www.link.cs.cmu.edu/link/submit-sentence-4.html

[46] http://wordnetweb.princeton.edu/perl/webwn

[47] http://cs.joensuu.fi/pages/koles/oop/OOP_Development.ppt

85

http://www-01.ibm.com/software/awdtools/reqpro/
http://www.telelogic.com/Products/doors/doors/index.cfm
http://www.sysml.org/specs.htm
http://www.link.cs.cmu.edu/link/submit-sentence-4.html
http://cs.joensuu.fi/pages/koles/oop/OOP_Development.ppt

[48] http://www.englishclub.com/vocabulary/synonyms-Antonyms.htm

[49] H. Kaiya and M. Saeki, “Using Domain Ontology as Domain Knowledge for Requirements
Elicitation,” 14th IEEE International Conference Requirements Engineering, pp. 186–195, 2006.

[50] R Torkar, T. Gorschek, R. Feldt, et al., “Requirements Traceability State of the Art: A Systematic
Review and Industry Case Study,” Information and Software Technology Journal, 2009.

[51] H. Hofmann and F. Lehner, “Requirements Engineering as a Success Factor in Software Projects,”
IEEE Software, vol.18, no.4, pp. 58-66, 2001.

[52] I. Hooks, and K. Farry, “Customer-Centered Products: Creating Successful Products through Smart
Requirements Management,” American Management Association, 2001.

[53] V. Tran, B. Hummel, D. Liu, et al., “Understanding and Managing the Relationship Between
Requirement Changes and Product Constraints in Component-based Software Projects,” 31st Hawaii
International Conference On System Sciences, pp. 132-142, 1998.

[54] S. Lauesen, and O. Vitner, “Preventing Requirement Defects,” Requirements Engineering Journal
,vol.6,no.1, pp. 37-50, 2001.

[55] S. Nivattanakul, J. Singthongchai, E. Naenudorn, et al., “Using of Jaccard Coefficient for Keywords
Similarity,” International Multi Conference of Engineers and Computer Scientists, pp. 380-384, 2013.

[56] H. Kaiya and M. Saeki, “Ontology Based Requirements Analysis: Lightweight Semantic Processing
Approach,” 5th International Conference on Quality Software, pp.223-230, 2005.

[57] J. Brackett, “Software Requirements,” Technical Report, Software Engineering Institute, 1990.

[58] http://www.utdallas.edu/~chung/.../SRS4.0.doc

[59] A. Goknil, I. Kurtev, K. van den Berg, et al., “Semantics of Trace Relations in Requirements Models
for Consistency Checking and Inferencing,” Software and Systems Modeling, vol.10, no.1, pp. 31-54,
2011.

[60] L. Cysneiros, “Requirements Engineering in the Health Care Domain,” International Conference on
Requirements Engineering, pp.350-356, 2002.

[61] http://www.cmaps.cmappers.net/rid=1HZ2S6K7D...GTX/SRS_HealthMonitor.doc

[62] http://www.oocities.org/cs5391/SRS4.htm

[63] http://www.oocities.org/swe626/HotelManagementSystemCorrectFinalSRS.doc

86

http://www.englishclub.com/vocabulary/synonyms-antonyms.htm
http://www.utdallas.edu/%7Echung/.../SRS4.0.doc
http://www.cmaps.cmappers.net/rid=1HZ2S6K7D...GTX/SRS_HealthMonitor.doc
http://www.oocities.org/cs5391/SRS4.htm
http://www.oocities.org/swe626/HotelManagementSystemCorrectFinalSRS.doc

[64] K. Andrew and H. Saiedian. “Why Software Requirements Traceability Remains a Challenge,” The
Journal of Defense Software Engineering, 2009.

[65] J. Hayes, A. Dekhtyar, and S. Sundaram, “Advancing Candidate Link Generation for Requirements
Tracing: The study of Methods,” IEEE Transactions on Software Engineering, vol.32, no.1, pp. 4-19,
2006.

[66] D. Cuddeback, A. Dekhtyar, and J. Hayes, “Automated requirements traceability: The Study of
Human Analysts,” International Requirements Engineering Conference, pp.231-240, 2010.

87

	Disquisition_TitlePage
	Copy2_PhD
	Disquisition_Abstract
	Disquisition_Acknowledgments
	Disquisition_TOC
	Disquisition_ListTables
	THESIS

