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ABSTRACT 

For a long time, researchers have been searching for the “recognition codes” of protein 

complexes, which determine what DNA sequence or other protein a protein can bind to. The 

binding part prediction of protein complexes have important applications in many biological 

research fields, such as cleavage enzyme design and drug design and so on. Most sequence-based 

and PWM methods only capture sequence features on the protein interfaces and ignore the 

crucial spatial attributes of the features. This study investigates the recognition codes from a new 

angle, in which the preferred binding modes are captured using local structural motifs spanning 

the protein-DNA, protein-protein and protein-ligand interfaces. Using product graph, we 

transformed the structural motif discovery problem into a search for maximal cliques. These 

motifs include more information than the traditional amino acid-base contacting pairs. For 

example, in the protein-DNA interfaces research, we studied two domains, Zinc-finger and 

Helix-Turn-Helix (HTH), that both used a recognition helix to interact with DNA. In each 

domain, we found a few frequent structural motifs spanning the protein-DNA interfaces. Each 

motif includes at least 2 amino acids and 1 nucleotide from both sides of the interfaces. The 

motifs specify not only the types of amino acids and nucleotides involved in the interaction, but 

also the distances between them and their relative orientation.  

The same method has been implemented in protein-protein and protein-ligand complexes. 

These motifs reveal preferred binding modes at the interfaces that involve more entities than the 

traditional contacting pairs. The biological and statistical significance of the motifs were 

confirmed using evolutionary conservation analysis and bootstrapping We also performed many 

other tests to evaluate our motifs’ critical roles in the interactions. For example, we compared 

our motifs with experimentally verified hotspots. We also compared our method with other 

computational prediction methods to assess the effectiveness of the method. Our results 
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confirmed that the graph motifs discovered in this study play important roles in protein-DNA, 

protein-protein and protein-ligand interactions. We believe that the proposed graph method will 

be a very helpful tool for studying protein complexes interaction and other types of molecular 

interactions. 
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1. INTRODUCTION 

With the almost entirely complete sequence of the human reference genome and 

numerous other genomes sequencing work, increasing availability of genome sequence data has 

led to the rapid growth of protein encoded information. Amino acids and nucleic acids are 

material basis of lives, and in the biological cell, proteins interact with each other and other 

biomolecules, such as DNA, to carry out specific functions.  

One urgent task in the post-genomic era is to glean knowledge from this big data to 

elucidate various important biological processes. Protein-DNA interaction plays crucial roles in 

gene regulation, DNA transcription, replication, repair, and recombination. Therefore, protein-

DNA interactions have been the subject of tremendous research efford in the past decades. 

The high-resolution 3-dimensional structures of protein-DNA complexes show atomic 

details of the protein-DNA interfaces. Analyzing these complex structures, if available, can 

reveal the chemical and physical forces that facilitate the interactions. However, this kind of 

structures are very difficult to obtained using X-ray crystallography [4] and nuclear magnetic 

resonance (NMR) [5, 6] methods. Chromatin immunoprecipitation (ChIP) followed by high-

throughput DNA sequencing (ChIP-seq) [7] is widely used to detect protein-DNA interactions in 

large scale. However, this method doesn’t provide information regarding how the proteins and 

DNA bind. Due to the limits and difficulties associated with these experimental methods, 

computational methods have become an increasingly attractive approach to studying protein-

DNA interaction. 

Compared to traditional experimental methods, computational approaches can rapidly 

and accurately find the DNA-binding proteins under the premise of large data. According to the 

different aspects, sequence or structure, used in the computational methods, many famous and 
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stable machine learning methods and docking algorithms are applied in locating binding proteins 

with DNA in the complex structure. 
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2. LITERATURE REVIEW 

2.1. Experimental Method 

Protein-DNA interactions play fundamental roles in many biological processes, such as 

DNA replication, transcription, splicing, gene regulation, sequence encoding, and protein 

synthesis. The more protein-DNA complexes’ structure we identify the better we will understand 

the mechanism of these vital processes in biological research. However, studies on protein-DNA 

recognition present complex technical challenges duo to the macromolecular structure. 

Therefore, the identification of structural features of protein-DNA complexes is at the cutting 

edge of protein-DNA interactome research. 

To date, more than 5500 protein nucleic acid complex structures are searchable in Protein 

Data Bank (PDB) database which is significantly fewer than the actual number in nature. In the 

previous studies, distinguishing DNA bind proteins or their binding sites, finding the enough 

numbers of nucleic acid and protein sequences that exist have become the major aim of structural 

biology. Although a number of experimental methods such as electrophoretic mobility shift 

assays (EMSAs) [1, 2], conventional chromatin immunoprecipitation (ChIP) [3], MicroChIP [4], 

Fast ChIP [5], peptide nucleic acid (PNA)-assisted identification of RNA binding proteins 

(RBPs) (PAIR) [6], X-ray crystallography [7], and nuclear Magnetic resonance (NMR) 

spectroscopy [8], have been implemented in the structural mapping of protein-DNA complexes. 

However, these experimental methods are costly, time-consuming, labor-intensive or 

combination thereof. 

2.2. Computational Method 

With the development of bioinformatics, researchers have developed many computational 

approaches to predict the DNA binding proteins that are also suitable for RBPs (RNA binding 

proteins) prediction. Compared with the experimental approaches, computational methods could 
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identify DNA binding sites and RBPs rapidly and cheaply. During the past decades, vast 

quantities of genome sequences has been discovered with the development of the second-

generation sequencing method (e.g., Illumine). This produces huge numbers of protein-DNA 

complexes and provides adequate data for the prediction of DNA-binding proteins and 

examining how interactions occur. 

At this time, approaches can be divided into four categories based on the input features 

they used: sequence-based DNA-binding site prediction, structure-based DNA-binding site 

prediction, protein-DNA docking method and homology modeling and threading. Firstly, the 

sequence-based method applies the similarity of sequences to the identification between query 

sequences and sequences containing DNA-binding sites. Several studies have implemented this 

kind of method [9-13]. Although this sequences-based method can reach a rapid result, their 

performance is not satisfied enough. Both protein and DNA have complex spatial structures that 

cannot be represented by the sequence features. Duo to this defect, the structure-based methods 

were developed by researchers. The query protein-DNA complexes with unknown binding sites 

can be predicted by comparing with the known binding site structures [14-17]. It is believed that 

the structural similarity could provide more reliable and in-depth prediction consequence. 

Sequence similarity and structure similarity-based strategies are shown as follow: 
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Figure 2.1. Sequence similarity and structure similarity-based strategies. 

The protein-DNA docking method can help to modeling structures of a protein-DNA 

complex and to understand the mechanisms of interaction. This method is also frequently used to 

predict RBPs. For example, The Haddock [18] program which enables various molecules such as 

nucleotides, protein and other small molecules for docking. katchalski-katzir et al. [19] proposed 

a low-resolution docking program, which assigns different scoring functions for different 

ligands.  Ritchie et al. [20] present a Hex method, which can perform protein-nucleotide docking 

and protein-protein docking. This program will give a unified score for all ligands and not 

special function for protein-DNA complexes. The FTDOCK program which is used by Gabb et 

al. [21] can accept both protein-protein docking and nucleotide-protein docking.  Recently, two 

methods called “QUASI-RNP” and “DARS-RNP” have been developed by Tuszynsk and 

Bujnicki [22] to grade protein-RNA decoys using statistical and quasi-chemical reference. 
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Further, other specific residue-base interactions, for example particular hydrogen bond or 

structurally homologous proteins, can dock on DNA with relative spatial orientation [23-27]. 

The homology modeling and threading aim to model a query protein with an unknown 

structure by identifying a template protein of known structure. This method can generate a space 

model [28-30] by homology modeling or threading in the worst situation with no template 

protein to use. The accuracy of these situations will be weakened. In general, the homology 

modeling and threading method will be used as a complementary tactics, for example this 

method can used in meta-prediction [31] and comparative studies [32] to help increasing 

accuracy of the prediction of DNA-binding sites. 

2.3. Recognition Code 

Structural and biochemical studies of zinc finger proteins, for example Cys2His2 (C2H2), 

initially lead to the prediction of various “recognition code” which contains amino acids in the 

zinc finger protein and the bases in the corresponding DNA site.  The ability to predict 

“recognition code” of protein or to effectively design the patterns that can bind to and release 

from their desired DNA target sites, could be extremely useful in many areas of biology and 

medicine [33].  

Traci M Tanaka Hall [34] present a study of the versatile of zinc finger domains, they 

claimed that the C2H2 zinc finger scaffold play important roles on the prediction of base-specific 

recognition of the DNA major groove, backbone recognition of the RNA major groove, and 

almost customized RNA base and loop recognition. Yen Choo and Aaron Klug [35] gave the 

affirmative answer to whether a stereo chemical recognition code exists, which relates protein 

primary structure to DNA-sequence preference. They find that the contacts feature in the 

recognition code which shows that the binding mode of zinc fingers favors 1:1 amino acid and 
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base contacts in the plane of the base-pairs by observing the crystal structures of Zif268 and Ttk 

zinc finger complexes. 

Jeffrey C. Miller and Carl O. Pabo [36] perform study at zinc finger variant which 

highlights another source of complexity involved in protein-DNA recognitions. They proposed 

that mutations could cause the rearrangement of key side-chains at the protein-DNA interface; 

these rearrangements would not result in fundamental changes in the spatial relationship between 

the polypeptide backbone and the DNA. Limin Angela Liu and Philip Bradley [37] claimed the 

importance of conformational flexibility for design and template-based modeling of protein-

DNA binding complexes, and in this case, non-native conformations need to be sampled and 

accurately scored. They performed continued improvements in energy functions, solvation 

models and conformational sampling and they concluded that conformational flexibility 

increases prediction accuracy in the general situation when modeling interactions not directly 

visualized by the input structure.  

Baldwin, E.P et al. [38] proposed the structural comparison of two Cre re-combinase 

variants in complex with different DNA sequences, and their results revealed that both DNA and 

protein differences affect the contacts made in the binding interface. For the purpose of account 

for the sequence degeneracy in transcription factor (TF)-DNA binding, the concept of position 

weight matrices (PWMs) was proposed and remains the most widely used representation of TF 

binding specificity [39,40].  PWMS are common representation scores for each DNA base pair 

along a binding site. PWM models can be learned from a variety of data types, from small 

collections of known binding sites to large datasets generated using high-throughput (HT) 

technologies [41]. PWMs can also be used to visualize as DNA logos, providing an intuitive feel 

for the TF-binding specificity [42]. HT studies are increasingly revealing unknown diversity in 
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DNA-binding preferences of numerous proteins, many of which may be the results of different 

binding modes [43-46].  

Whereas it is impossible to generate a code which could be applicable to DNA-binding 

proteins of all known structural families. The structures of various complexes structural families 

show significant differences in the way the recognition helices of DNA-binding protein interact 

with the major groove of DNA. In contrast, it is still possible to predict the “recognition code” 

for complexes of a single structural family [47] or for a group of families which interact in 

similar ways with DNA [48]. 

2.4. Data-driven Approach 

During the twentieth century, biology has finished the transition from a traditional 

descriptive science to a hypothesis-driven experimentation. This process is promoted by the 

increasing dominance of reductionism. In the general hypothesis-driven process, straight after 

researchers collect enough data, they need formulate a hypothesis about the aspects they are 

interested in. Then they perform experiments or observation to verify whether the hypothesis is 

correct or not. This method implicit that experiments and observations should only be made to 

support, or attack hypothesized mechanisms. Nowadays, researchers can find massive amounts 

of data benefiting from the development of information technology. They are more interested in 

the internal relation of data. In other words, researchers are attracted by the things they neither 

knew nor expected. So, with the availability of large datasets and advanced statistical and 

machine learning methods, many researchers presented their doubt whether we still need to rely 

on hypotheses in scientific inquiry [49]. Anderson [50] proposed that in the era of data 

explosion, the traditional hypothesis-driven scientific method would become obsolete.  Other 

researcher [51] concluded that the hypotheses method is eventually limited because setting a 

premise before experiments would constrain them by established ways of thinking or doing. 
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 To deal with the data deluge, the data-driven scientific method emerged. Researchers [52] 

claim this method with no more theories or hypotheses, no specific experimental results to refute 

or support the hypotheses. Equipped with such huge data sets, we can perform data mining in an 

objective way. The first step of data-driven method is to identify the specific data you are really 

interested in. Then implement a data analysis approach to measure or describe attributes of the 

data. The critical section of data-driven process are the sophisticated algorithms and statistical 

tools used here. Finally, try to extract crucial relation between data and your experimental 

results. In this sense, the data-driven approach can be seen as a hypothesis generator, not a 

hypothesis tester. The goal is to discover correlations and connections between properties of 

huge size data and to dig new things we neither knew nor expected [53]. In this way, data-driven 

method is very helpful to extract and convert implicit data information into new knowledge by 

apply algorithms mining data for plausible patterns [54]. Also, it’s a novel approach for scientific 

researchers increasing the possibilities of breakthrough areas where nobody had looked before. 

In this research we performed a data-driven approach to extract crucial patterns from 

protein complex dataset. All processes in our research are compelled by data, rather than by 

intuition or personal experience. We collected our protein complex data from many famous 

databases containing experiment verified data. So, the data we used are accessible, queryable and 

trustworthy. We also implemented strategies for the data cleaning. This step aims to remove 

structures with insufficient information and structures with high similarity. Data cleaning also 

guarantee our data credible and representative. Then we implemented innovative graph-based 

methods to extract knowledge and insights from our data to get crucial patterns for protein 

complexes. The validity of these patterns was subsequently assessed by various statistical 

modeling programs. The comparison of the results of this novel approach with analyses by other 
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computational methods supports the claim that this data-driven approach is capable of 

identifying biologically relevant patterns and associations. 
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3. OBJECTIVES 

1) The main objective of this project is to propose a graph method for the discovery of 

structure patterns in the protein-DNA interfaces. The discovered patterns will help 

understand how proteins interact with DNA to achieve desired binding affinity and 

specificity.  

2) The project aims to perform an extension study: verify the roles coevolution residues and 

conservations played in the DNA-binding site prediction. 

3) The third objective of this project is to modify the proposed method and make it 

applicable for other type of prediction, for example the Zinc-Finger and Helix-to-Helix 

prediction of residues in the protein-DNA interaction. 

4) The last objective of this project is to apply the proposed method to other type of 

interactions, such as protein-protein interaction and protein-ligand interaction. Verify the 

validity of our method. 
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4. EXPERIMENTAL APPROACH 

4.1. Mining of Common Sub-graphs at DNA-binding Sites 

 In this work, we present a graph method for the discovery of structure patterns in the 

protein-DNA interfaces. The discovered patterns will help understand how proteins interact with 

DNA to achieve desired binding affinity and specificity. 

4.1.1. Datasets 

We extracted all protein-DNA complexes from the PDB [55]. Then, the dataset was 

culled based on protein sequence similarity using PISCES [56]. The resulting dataset (will be 

referred to as Dataset I) consisted of 308 proteins-DNA complexes with mutual sequence 

identity ≤ 30% and each protein had at least 40 amino acid residues. All the structures have 

resolution better than 3.0 Å and R factor less than 0.3. This dataset will be used to discover 

common patterns enriched in the DNA-binding sites. Dataset II was the van Dijk and Bonvin 

protein-DNA docking benchmark [57]. It consisted of both bound and unbound structures of 47 

protein-DNA complexes, ranked from easy to difficult according to how much the conformation 

change during binding. The unbound structures will be used to generate docking poses for the 

complexes. Then, different scoring methods are used to assign scores to the conformations. The 

performance of the scoring functions will be evaluated by comparing the docking conformations 

with the native bound structures. 

4.1.2. Interface Residues 

Interface residues on the DNA-binding sites were defined as in [58]. We used NACCESS 

[59] software to calculate the accessible surface area (ASA) of each amino acid in both bound 

and unbound states. An amino acid was defined as an interface residue if its ASA in unbound 

state was at least 1Å2 more than that in bound state. 
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4.1.3. Graph Representation of DNA-binding Sites 

Each DNA-binding site was represented using a graph, where each node represented an 

interface residue and an edge was added between two nodes if the corresponding residues were 

in contact. Two residues were considered contacting if the nearest distance between their heavy 

atoms was less than 0.5Å. Each node was labeled with its residue type. Each edge was also 

associated with an edge label. If the two nodes at both ends of an edge were sequence neighbors 

on the protein chain, then the edge was labeled as type one; otherwise, the edge was labeled as 

type two. 

4.1.4. Mining of Common Sub-graphs 

There were 308 protein-DNA complexes, which were encoded as 308 graphs using the 

graph representation mentioned above. We implemented the VF2 algorithm [60] to discover 

common sub-graphs between each pair of graphs. In the test of isomorphism, we took into 

consideration the node labels and edge labels. In this study, we focused on the common sub-

graphs that had at least 3 nodes, because, common sub-graphs with less than 3 nodes contain too 

few information. 

4.2. Evaluate the Common Sub-graphs 

4.2.1. Discovery of Graph Patterns Enriched in the Protein-DNA interfaces 

First, 308 DNA-binding sites were extracted from Dataset I and represented as a graph. 

These graphs will be referred to as binding-site graphs. The VF2 algorithm was used to find 

common sub-graphs between each pair of binding-site graphs. After removing duplicated 

common sub-graphs, we obtained 24,356 unique common sub-graphs. In order to find the graph 

patterns that occurred with higher frequencies in the DNA-binding sites than in other regions of 

the protein surface, we randomly collected 308 non-binding sites from the 308 proteins, with one 

non-binding site from each protein. The non-binding site from a protein had the same size as the 
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DNA-binding site from the same protein and there was no overlap between the non-binding site 

and DNA-binding site. These non-binding sites served as the background control for the 

identification of common sub-graphs enriched in the DNA-binding sites. The non-binding sites 

were also represented as graphs. 

For each sub-graph, we checked whether it occurred in the 308 binding-site graphs and 

the 308 non-binding site graphs. The presence or absence of a sub-graph in the binding-site and 

non-binding sites was recorded using a vector of 616 values, with 1 being presence and 0 

absences. Then, we performed a t-test to identify sub-graphs that enriched in the DNA-binding 

sites. A lower p value given by the t-test indicated that the sub-graph was more favored in the 

DNA-binding sites. At the end, we obtained 2,594 sub-graphs with p values less than 0.05. 

Among them, 600 had 3 nodes, 1,349 had 4 nodes, and 645 had five or more nodes. These are 

the graph patterns that had higher propensities to occur in the DNA-binding sites than in other 

regions of the proteins. 

4.2.2. Discrimination between DNA-Binding Sites and Non-DNA-Binding Sites 

To evaluate the significance of the discovered graph patterns, we used the patterns as 

features to discriminate DNA-binding sites from non-DNA-binding sites. When n patterns were 

used, a binding site or non-binding site was encoded as an n-value vector, with values 1 and 0 

denoting the presence and absence, respectively, of a graph pattern on the site. The 308 DNA-

binding sites and 308 non-DNA-binding sties were used to train and test classifiers using 10-fold 

cross validation. We tried five popular classification methods implemented in Weka [61], 

including Random Forest, Support Vector Machine (SMO), Random Committee, Bayesian, and 

J48. Among these methods, the SMO (with RBF kernel) achieved the best results. For the SMO 

method, we also tested different number of patterns as encoding features. The 2,594 sub-graph 

patterns were sorted in the order of increasing p value. In each experiment, n patterns from the 
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top of the list were used to encode the protein patches. N varied from 100 to 2,500 with 

increments of 100. Our results showed that the accuracy of the classification increased as n 

increased, arriving at the best accuracy when 2,200 patterns were used. After that, the accuracy 

decreased when n continued to increase. When the 2,200 patterns were used, the SMO 

discriminated DNA-binding sites versus non-DNA-binding sites with 79.1% accuracy, 88.3% 

specificity, and 69.8% sensitivity. This result suggested that the sub-graphs discovered in the 

above section revealed the structural patterns that facilitated the interaction between protein and 

DNA and could be used to predict DNA-binding sites on protein structure. 

4.2.3. Overlap between Graph Patterns and UniProtKB Annotations 

To further evaluate the biological significance of the discovered graph patterns, we 

compared them with the annotations in UniProtKB [62], a comprehensive database of protein 

functional information. In a UniProtKB entry, we searched for fields that provided information 

regarding which amino acid residues were involved in DNA binding. We found three fields that 

contained such information: the REGION subsection denoted the stretch of protein sequence that 

matched a function domain; the SITE subsection described interesting single amino acid sites on 

the sequence; and the MUTAGEN subsection described the effect of experimental mutation of 

one or more amino acids on the biological properties of the protein. The REGION subsection 

usually contained a long stretch of protein sequence and did not provided information regarding 

specific amino acids. Thus, we focused on the SITE and MUTAGEN fields. Specifically, for the 

308 proteins in Datatset I, we searched the MUTAGEN subsection to look for amino acids 

whose mutation resulted in decrease of DNA-binding affinity, and we also searched the SITE 

subsection to look for amino acids that were involved in DNA-binding. We compared these 

residues with the residues on the proteins that were covered by the discovered sub-graph 

patterns. We were able to find DNA-binding residues in the SITE subsection in 21 proteins, and 



 

16 
 

in 16 of them these residues overlapped with the residues that were covered by the sub-graph 

patterns (Table I). We were also able to find DNA-binding residues in the MUTAGEN 

subsection of 39 proteins, and in 20 of them these residues overlapped with the sub-graph 

patterns (Table II). These results confirm the biological significance of the sub-graph patterns. 

We noticed that in a few proteins, there was no overlap between UniProtKB annotations and the 

sub-graph patterns. One possible explanation for this is that the information gathered from 

mutagenesis experiments (MUTGEN) and SITE is scarce. Thus, they only cover a small fraction 

of DNA-binding residues. 
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Table 4.1. Overlap between subgraph patterns and UniProtKB site annotations  
 

PDBID # of residues covered 

by sub-graph patterns 

# of residues found in 

the UniProtKB SITE 

subsection 

# of residues 

overlapped 

1MW8X 24 8 6 

1A31A 26 9 5 

3MVAO 64 5 5 

1I7DA 37 5 3 

1DC1A 29 2 2 

1MUSA 37 2 2 

2EX5A 42 4 2 

3H0DA 22 2 2 

3MLNA 34 2 2 

1OZJA 14 1 1 

1RFFA 18 1 1 

1XJVA 28 1 1 

2VY1A 8 4 1 

3AAFA 19 2 1 

3FDEA 31 1 1 

4GLXA 75 2 1 

1MNNA 30 6 0 

2W36A 25 1 0 

2XCSD 34 2 0 

3GNAA 9 1 0 

3IGKA 5 1 0 
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Table 4.2. Overlap between subgraph patterns and UniProtKB mutagen annotations  
 

PDBID # of residues covered 

by sub-graph patterns 

# of residues found in 

the UniProtKB 

MUTAGEN 

subsection 

# of residue 

overlapped 

2BZFA 12 8 4 

3KDEC 9 5 4 

3B39A 8 3 3 

3RNUA 4 8 3 

1FLOA 44 2 2 

1OZJA 14 2 2 

1RFFA 18 6 2 

1CL8A 12 1 1 

1H9DAB 18 10 1 

1J3EA 23 8 1 

1K3XA 19 2 1 

1T9IA 33 8 1 

2C7PA 45 1 1 

2FMPA 48 4 1 

2PY5A 40 3 1 

2W36A 25 1 1 

3AAFA 19 3 1 

3MLNA 34 5 1 

3O1TA 6 5 1 

3QE9Y 23 3 1 

1JEYAB 31 4 0 
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Table 4.2. Overlap between subgraph patterns and UniProtKB mutagen annotations (continued) 

PDBID # of residues covered 

by sub-graph patterns 

# of residues found in 

the UniProtKB 

MUTAGEN 

subsection 

# of residue 

overlapped 

1MNNA 30 6 0 

1ZRFA 17 16 0 

2BOPA 10 3 0 

2BSQAF 7 1 0 

2C62A 12 8 0 

2EX5A 42 1 0 

2O4AA 13 8 0 

2R9LA 21 4 0 

2VY1A 8 4 0 

3COQA 5 1 0 

3G9MA 17 1 0 

3GNAA 9 5 0 

3H0DA 22 1 0 

3H15A 7 2 0 

3MVAO 64 6 0 

3QMDA 16 2 0 

3U4QAB 32 3 0 

4ECQA 40 2 0 

4.2.4. A Scoring Function for Protein-DNA Docking based on Sub-graph Patterns 

When molecular docking is used to predict the structure of a protein-DNA complex, the 

unbound structures of the protein and the DNA are used as input to generate a large number of 

possible poses that the protein-DNA complex may take. Poses that are similar to the native 
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structure of the protein-DNA complex are usually known as near native poses and poses that are 

not similar to the native structure are called docking decoys. Then a scoring function is used to 

assign scores to these poses. A good scoring function should assign higher scores to near native 

poses than docking decoys. In previous sections, we have discovered a set of patterns that are 

favored in the protein-DNA interfaces. In this section, we will test the patterns’ ability to 

discriminate near native protein-DNA poses from docking decoys. For this purpose, we built a 

simple scoring function that counted the number of sub-graph patterns that occurred in the 

protein- DNA interface of a pose and assign that number as a score to the pose. The rationale of 

this design is that since these patterns are favored in the protein-DNA interfaces, a near native 

pose is more likely to have these patterns to occur in the protein-RNA interface than a docking 

decoy. We will compare our scoring method with the scoring method used in FTdock [63], a 

well-established docking method based on shape complementarity, electrostatics, and 

biochemical information. 

In a previous work, [64] used FTdock to generate 100,000 poses for each complex in 

Dataset II. They also ranked the generated poses using the scoring method implemented in 

FTdock. For the sake of reducing computational time, we used the 1,000 best poses for each 

protein-DNA complex from [64]. We assessed the performance of a scoring method using the 

same procedure proposed by [64]. For each protein-DNA complex, the root means square 

deviation (RMSD) values between the 1,000 poses and the native complex structure were 

calculated, and the 20 poses that had the lowest RMSD values were identified and they were 

named 20 best RMSD poses. Then, the scoring method was used to rank the 1,000 poses. A 

prediction set was populated by gradually recruiting more and more poses from the top of the 

ranking. The scoring function was assessed by measuring the fraction of the 20 best RMSD 
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poses that appeared in the prediction set as the size of the prediction set increased. A good 

scoring function should put the 20 best RMSD poses on the top of the ranking and thus, the 

fraction should approach 1 quickly as the size of the prediction set increases. 

Figure 4.1 shows the comparison between FTdock scoring function and our proposed 

scoring function. When the size of the prediction set was less than 75, the FTdock method 

included higher fraction of the 20 best RMSD poses in the prediction set. When the prediction 

size was 75, both methods included 10 of the 20 best RMSD poses in the prediction set. When 

the size continued to increase, the fraction achieved by our proposed method was higher and 

approached 1 faster than FTdock. The area under curve (AUC) is 0.85 for our method and o.75 

for FTdock. This result suggests that while the two methods complement each other at two ends 

of the spectrum. Our method has slightly better overall performance. We also examined the rank 

of the best RMSD pose that had the lowest RMSD value. On average, our scoring function 

ranked the best RMSD pose on the 102nd position while FTdock put it on the 124th position. 

This result showed that our scoring method is slightly better than FTdock in identifying the best 

pose. 

 

Figure 4.1. Comparison between our scoring method and the scoring method of FTdock 
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4.2.5. Conclusions 

In this part, we used an innovative graph representation method to encode protein 

structure and discovered structure patterns that were favored in the protein-DNA interfaces. 

These patterns may play critical roles in the protein-DNA interaction, while further work is still 

needed to elucidate how they contribute to the binding affinity and specificity. To evaluate the 

significance of these patterns, we used them as features to build classifiers to discriminate DNA-

binding sites versus non-DNA-binding sites. The SMO classifier was able to predict DNA-

binding sites with 79.1% accuracy, 88.3% specificity, and 69.8% sensitivity. The biological 

significance of the patterns was further confirmed by comparing them with expert knowledge in 

UniProtKB. The comparison showed that the discovered patterns had significant overlap with 

amino acids sites that were considered crucial for DNA-binding in UniProtKB. We also 

demonstrated that the patterns could be used to build a simple scoring method to discriminate 

near native docking poses from docking decoys. The proposed method was much simpler than 

FTdock scoring method and yet achieved slightly better performance. Our results confirmed that 

the graph patterns discovered in this study play important roles in protein-DNA interactions, and 

the pattern mining method proposed in this study will be a very useful tool for the investigation 

of interactions between biological macromolecules. 

4.3. Conservation and Coevolution Calculation 

4.3.1. Calculation of Mutual Information 

We analysis the original 308 PDB files, get the amino acids sequences of them. Then we 

search each sequences in the “Treefam” database and download the alignment files with “.fa” 

format if there is a successful search result. We finally get 128 alignment result files among the 

308 sequences.  
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Next step we calculated the mutual information using alignment files. We calculate the 

mutual information between every two locations in the PDB sequences base on its multiple 

sequence alignment (MSA) files. For example, there are two locations X and Y in the “1A31” 

amino acids sequence, the method to calculate their MI between them is as follow: 

𝐼(𝑋; 𝑌) = ∑∑𝑝(𝑥, 𝑦)𝑙𝑜𝑔 (
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
)

𝑥∈𝑋𝑦∈𝑌

 

Where p(x, y) is the joint probability distribution function of X and Y, P(X) and P(Y) are 

the marginal probability distribution functions of X and Y respectively. After calculation we get 

128 result files record the mutual information scores of the 128 alignment files. We also 

normalized the mutual information scores for each file and sort the MI scores. 

4.3.2. Construct Co-evolution Network 

In this section we construct two kinds of contact network using the spatial coordinates 

and co-evolution scores of amino acids. 

A. Construct 3D contact network 

The 3D contact network of all amino acids and surface amino acids will be used to edge 

filter of the co-evolution network. We calculate the 3D contact network using the spatial 

coordinates (can be obtained in the PDB files) of the amino acids in a sequence. In order to 

contrast in the next part, we need contrast two kinds of 3D contact network, one contains all the 

amino acids and the other one just contains the surface amino acids.  

In order to represent amino acids using networks we need calculate the relationship of 

each two nodes. Like the traditional network, our representation network is constituted by points 

and edges connect points. In the network each amino acid is represented by a node and we put an 

edge between two nodes if the corresponding residues were considered connected. Then we 

calculate the nearest distance between the heavy atoms from two residues so that we can decide 

https://en.wikipedia.org/wiki/Joint_distribution
https://en.wikipedia.org/wiki/Marginal_probability
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whether they are defined connected or not, if the two amino acids are sequence neighbors or the 

nearest distance between them is less than 0.5Å, we put an edge into the representation network 

between these two nodes.  

B. Filter Co-evolution network 

In this part we will first construct the original Co-evolution network using the sorted MI 

scores of the 128 sequences. We must set a threshold value to filter the amino acid and the edges 

among them. We construct the original Co-evolution networking using the amino acids with 

higher MI scores for than the threshold value. For example, we set the threshold value as 0.5 and 

we will put an edge between two nodes (amino acids) if the MI score between them is higher 

than 0.5.  

After getting the original co-evolution network of each alignment files of PDB sequences 

we need filter them using the 3D contact network. We will get the whole nodes’ co-evolution 

network filtered by the 3D contact network of all amino acids and the surface nodes’ co-

evolution network filtered by the 3D contact network of surface amino acids. When the original 

co-evolution network are filtered by the 3D contact network of all amino acids, we retain all the 

amino acids as nodes and retain all the edges appear in both original co-evolution network and 

the 3D contact network of all amino acids; When the original co-evolution network are filtered 

by the 3D contact network of surface amino acids, we retain all the surface amino acids as nodes 

and retain all the edges appear in both original co-evolution network and the 3D contact network 

of surface amino acids. The two kinds of co-evolution network will be used in the next 

comparative experiment. 
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4.3.3. Total Contact vs Co-evolution Contact 

In this part we contrast the contact number of 3D contact network and co-evolution 

network in “Whole Nodes” and “Surface Nodes” ways. We set three different threshold values 

0.5, 1, 2 respectively to perform the horizontal and vertical comparison. Also, we identify the 

DNA-binding amino acids using the NACCESS software to help result analysis. The contrast 

results are show as table4.3-4.8: 

Table 4.3. Total contact vs co-evolution contact in whole nodes and MI>0.5 

Whole Nodes Non-DNA-

binding 

DNA-binding 

Total # of 3D co-evolution contact 498329 50769 

Total # of 3D contact 648465 76767 

Percentage 0.7685 0.6613 

Table 4.4. Total contact vs co-evolution contact in surface nodes and MI>0.5 

Surface Nodes Non-DNA-

binding 

DNA-binding 

Total # of 3D co-evolution contact 275758 37102 

Total # of 3D contact 343100 55442 

Percentage 0.8037 0.6692 

Table 4.5. Total contact vs co-evolution contact in whole nodes and MI>1 

Whole Nodes Non-DNA-

binding 

DNA-binding 

Total # of 3D co-evolution contact 428724 41687 

Total # of 3D contact 648465 76767 

Percentage 0.6611         0.5430 

Table 4.6. Total contact vs co-evolution contact in surface nodes and MI>1 

Surface Nodes Non-DNA-

binding 

DNA-binding 

Total # of 3D co-evolution contact 246553 30832 

Total # of 3D contact 343100 55442 

Percentage 0.7186      0.5561 
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Table 4.7. Total contact vs co-evolution contact in whole nodes and MI>2 

Whole Nodes Non-DNA-

binding 

DNA-binding 

Total # of 3D co-evolution contact 258579 21579 

Total # of 3D contact 648465 76767 

Percentage 0.3988         0.2811 

Table 4.8. Total contact vs co-evolution contact in surface nodes and MI>2 

Surface Nodes Non-DNA-

binding 

DNA-binding 

Total # of 3D co-evolution contact 160635 15958 

Total # of 3D contact 343100 55442 

Percentage 0.4682      0.2878 

 

When contrast in the horizontal dimension, take the threshold is 0.5 as example, as table 

1 shows the percentage of 3D contact number divided by 3D co-evolution contact is about 0.77 

in the “Non DNA-binding” nodes part which is bigger than the 0.77 in the “DNA-binding” nodes 

part; it is same case in the table 2 of surface condition when 0.80 of “Non DNA-binding” nodes 

part is bigger than the 0.67 in the “DNA-binding” nodes part. When we raise the threshold to 1 

and 2, we get the same result as threshold=0.5. This means that the co-evolution amino acids 

may not contribute so much to the DNA-binding sites prediction. 

When contrast in the vertical dimension, we take the “Whole Nodes” tables of threshold 

is 0.5, 1 and 2 to analysis firstly, the percentage of 3D contact number divided by 3D co-

evolution contact are 0.77, 0.66 and 0.40 in the “Non-DNA-binding” nodes part, and 0.66, 0.54 

and 0.28 in the “DNA-binding” nodes part. Then for the “Surface Nodes” tables of threshold are 

0.5, 1 and 2, the percentage of 3D contact number divided by 3D co-evolution contact are 0.80, 

0.72 and 0.47 in the “Non-DNA-binding” nodes part, and 0.67, 0.56 and 0.29 in the “DNA-

binding” nodes part. As the threshold increase, the MI scores of nodes are increase too, but the 
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percentage of “Non-DNA-binding” and “DNA-binding” both decrease, which means that the co-

evolution feature has little effect in DNA-binding sites prediction. 

4.3.4. Degree of Intermediate and Non-intermediate 

In this part we contrast the average degree of “DNA-binding” nodes and “Non-DNA-

binding” nodes in whole nodes’ co-evolution network and surface nodes’ co-evolution network. 

We still set three different threshold values 0.5, 1, 2 respectively to perform the horizontal and 

vertical comparison. The contrast results are show as table4.9-4.14: 

Table 4.9. Degree of intermediate and non-intermediate in whole nodes and MI>0.5 

Whole Nodes DNA-binding Non-DNA-binding 

Total Degree 16403 181941 

Total # of node 3919 32174 

Average 4.1855 5.6549 

Rate 0.7401 

# of 0-degree nodes 2152 13979 

Table 4.10. Degree of intermediate and non-intermediate in surface nodes and MI>0.5 

Surface Nodes DNA-binding Non-DNA-binding 

Total Degree 13063 123197 

Total # of node 3776 23510 

Average 3.4595 5.2402 

Rate 0.6602 

# of 0-degree nodes 2100 9167 

 

Table 4.11. Degree of intermediate and non-intermediate in whole nodes and MI>1 

Whole Nodes DNA-binding Non-DNA-binding 

Total Degree 9411 111801 

Total # of node 3919 32174 

Average 2.4014 3.4749 

Rate 0.6911 

# of 0-degree nodes 2572 17332 
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Table 4.12. Degree of intermediate and non-intermediate in surface nodes and MI>1 

Surface Nodes DNA-binding Non-DNA-binding 

Total Degree 7541 79479 

Total # of node 3776 23510 

Average 1.9971 3.3806 

Rate 0.5907 

# of 0-degree nodes 2448 11424 

 

Table 4.13. Degree of intermediate and non-intermediate in whole nodes and MI>2 

Whole Nodes DNA-binding Non-DNA-binding 

Total Degree 2244 31572 

Total # of node 3919 32174 

Average 0.5726 0.9813 

Rate 0.5835 

# of 0-degree nodes 3348 24717 

Table 4.14. Degree of intermediate and non-intermediate in surface nodes and MI>2 

Surface Nodes DNA-binding Non-DNA-binding 

Total Degree 1780 23522 

Total # of node 3776 23510 

Average 0.4714 1.0005 

Rate 0.4712 

# of 0-degree nodes 3136 16703 

 

When contrast in the horizontal dimension, take the threshold is 0.5 as example, as table 

7 shows the average degree of “DNA-binding” nodes is about 4.19 which is smaller than the 5.65 

in the “Non DNA-binding” nodes part; it is same case in the table 8 of surface condition when 

3.46 of “DNA-binding” nodes part is smaller than the 5.24 in the “Non DNA-binding” nodes 

part. The percentage of “Non-DNA-binding” divided by “DNA-binding” in “Whole Nodes” co-

evolution network is 0.74 which is bigger than 0.66 in “Surface Nodes” co-evolution network. 

When we raise the threshold to 1 and 2, we get the same result as threshold=0.5. This means that 

the co-evolution amino acids may not contribute so much to the DNA-binding sites prediction. 

When contrast in the vertical dimension, we take the “Whole Nodes” co-evolution 

network tables of threshold is 0.5, 1 and 2 to analysis firstly, the average degree is 4.19, 2.40 and 
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0.57 in the “DNA-binding” nodes part, and 5.66, 3.47 and 0.98 in the “Non-DNA-binding” 

nodes part. Then for the “Surface Nodes” co-evolution tables of threshold are 0.5, 1 and 2, the 

average degree is 3.46, 2.00 and 0.47 in the “DNA-binding” nodes part, and 5.24, 3.38 and 1.00 

in the “Non DNA-binding” nodes part. As the threshold increase, the MI scores of nodes are 

increase, but the average degree and the percentage of “Non-DNA-binding” divided by “DNA-

binding” in “Whole Nodes” co-evolution network and “Surface Nodes” co-evolution network are 

all decrease, which means that the co-evolution feature has little effect in DNA-binding sites 

prediction. 

4.3.5. Conservation and Coevolution 

In this part, we use three different methods “Consurf”, “Rate4” and “Shannon” to 

calculate the conservation of each amino acid of the 128-sequence using the alignment files of 

them. We also draw the coordinate diagram in which conservation scores indicating X-axis and 

coevolution scores indicating Y-axis for each method. It is worth mentioning that the smaller the 

“Consurf” conservation score is the more conservative it is; it is same for the “Rate4” method 

and in contrast with the “Shannon” method. For the coevolution scores we choose the highest 

score for each amino acid. We also use different color to distinct DNA-binding nodes and Non-

DNA-binding nodes in the diagram. 

Figure 4.2 shows the result diagram of “Consurf” results. 
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Figure 4.2. Largest coevolution of MI (Consurf) 

 

In the Figure 4.2 the red points represent DNA-binding nodes and the blue points 

represent Non-DNA-binding nodes. We can see from the diagram that the DNA-binding nodes 

concentrated in the lower left corner of the diagram which means that the node with lower 

coevolution scores (lower coevolution property) and lower conservation scores (higher 

conservation property) is more likely to be the DNA-binding sites. 

Figure 4.3 shows the result diagram of “Rate4” results. 
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Figure 4.3. Largest coevolution of MI (rate4) 

Figure 4.3 use the same method to show DNA-binding nodes and Non-DNA-binding 

nodes. We can see from the diagram that the node with lower coevolution scores (lower 

coevolution property) and lower conservation scores (higher conservation property) is more 

likely to be the DNA-binding sites, just like the Figure 4.2. 

Figure 4.4 shows the result diagram of “Shannon” condition. 
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Figure 4.4. Largest coevolution of MI (Shannon) 

We can see from Figure 4.4 that the DNA-binding nodes concentrated in the lower right 

corner of the diagram which means that the node with lower coevolution scores (lower 

coevolution property) and higher conservation scores (higher conservation property) is more 

likely to be the DNA-binding sites. 

From the analysis of the three methods, we can conclude that the conservation property 

has more impact in DNA-binding site prediction than the coevolution property. In order to 

further confirm our conclusion, we also create the diagram with conservation scores indicating 
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X-axis and the average coevolution scores indicating Y-axis for “Rate4” method because this 

method has demonstrated our conclusion more obvious.   

Figure 4.5 shows the new result diagram of “Rate4” condition. 

 
Figure 4.5. Average coevolution of MI (Rate4) 

The Figure 4.5 shows that the DNA-binding nodes concentrated in the lower left corner 

of the diagram which still supports our previous conclusion that the conservation property is 

more important than coevolution property in DNA-binding site prediction. 
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4.3.6. Segment Contrast 

In this part, we show the distribution of DNA-binding sites and Non DNA-binding sites 

in different segment of coevolution scores and conservation scores. Figure 6 shows the amino 

acid distribution with largest coevolution scores of sites. 

 

Figure 4.6. Largest coevolution scores of sites  

We can see from the Figure 4.6 that almost all the DNA-binding sites concentrate on the 

lower coevolution area which means the coevolution property has little impact in DNA-binding 

site prediction. 
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Figure 4.7. Average coevolution scores of sites 

We can see from the Figure 4.7 that the DNA-binding sites average distribute on the 

segment of coevolution area which means the coevolution property has little impact in DNA-

binding site prediction. 
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Figure 4.8. Conservation scores of sites (Rate4) 

We can see from the Figure 4.8 that almost all the DNA-binding sites concentrate on the 

lower conservation area which means the conservation property has more impact in DNA-

binding site prediction. 

4.4. Apply the Proposed Method to Other Type of Interactions Part I 

The interactions between DNA and protein can be formed by different domains, such as 

the zinc finger or the helix-turn-helix. In this part, we apply our new structural method for 

prediction of recognition motif in these two helix regions. We take both amino acids of protein 

and nucleotides of DNA into consideration when compare the different helix region from 

Protein-DNA complexes. We use the common motif to reveal the principles that rule the 

complexity of recognition code in DNA-binding pattern. In the prediction process, we also apply 

the 3D distance and relative position among amino acids and nucleotides to the construction of 
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helix graph. In the validation phase, we confirmed the statistical significance of our motifs by 

calculating the frequencies of occurrences of our motifs in various random distribution 

situations. 

4.4.1. Dataset Preparation 

We collected two kinds of datasets from Astral Scope 2.06 genetic domain sequence 

subsets, based on PDB SEQRES records, with less than 40% identity to each other. The type 

number of Zinc-Finger dataset is g.37.1.1 and the type number of Helix-to-Helix is a.4.1.1. 

The original datasets contain 100 items of Zinc-Finger position and 21 items of Helix-to-

Helix position. Duo to not all of these items can be used in our research; we performed some 

data Filtering work. Firstly, we filtered these items by PDB ids and reserved items involving 

both DNA chain and amino acid chains in their PDB structures, secondly find helix region in 

amino acid chain for each PDB structures through the database of “Protein Data Bank”, 

“Structural Classification of Zinc Fingers” and “InterPro” website. The results are listed in Table 

4.15 and Table 4.16: 

Table 4.15. Zinc-Finger dataset 

Zinc-Finger Chain Helix index region 

2GLI A 153-166,183-194,217-225,244-

257 

1LLM C 115-128,143-155 

1A1I A 119-130,147-158,175-185 

2DRP A 122-134,152-164 
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Table 4.16. Helix-to-Helix dataset 

Helix-to-Helix Chain Helix index region 

3A01 A 225-245 

1PUF A 245-268 

1E3O C 141-157 

4J19 A 322-344 

1PUF B 276-294 

2HOS A 41-60 

1K61 A 172-189 

 

There is maybe more than one helix region in a PDB structure and for every helix region 

we will build an original graph using amino acids and nucleotides as nodes. 

4.4.2. Graph Construction 

In this part we constructed 3D graphs combining nucleotides and amino acids by using 

the filtered data of the two datasets. Our method is that we chose one helix region and all the 

nucleotides in the same PDB structure to construct an original graph every time. For the Zinc 

Finger dataset and Helix-to-Helix dataset we will get 11 graphs and 7 graphs respectively. Every 

node of the graph represents a nucleotide or amino acid. In this step we divided 20 amino acids 

into 7 types based on the side chain classes (Wikipedia), the classification is as Table 4.17: 
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Table 4.17. Classification of amino acids 

Side-chain class Abbreviation Amino Acid 

Aliphatic ALI ALA, GLY, ILE, LEU, VAL 

Basic BAS ARG, HIS, LYS 

Acid/Amide ACI ASN, ASP, GLU, GLN 

Sulfur-containing SUL CYS, MET 

Aromatic ARO PHE, TRP, TYR 

Cyclic CYC PRO 

Hydroxyl-containing HYD SER, THR 

 

We also take the 3D position of every molecular into consideration in the graphics 

building process, so we need calculate the distance between them. According to molecular 

contact properties, we use the side chain atoms of amino acids and the base atoms of nucleotides 

to calculate the distance and chose the minimum one as the edge length. For the edge length of 

graphs, we set two thresholds: 10 Å for the edge between same type of nodes (both nodes are 

amino acids or nucleotides) and 5 Å for the edge between different type of nodes (one node is 

amino acid and the other one is nucleotide). The remaining edges will help us to filter the nodes 

by removing the nodes with no edge connect to them. At last we get the final original helix 

graphs for both Zinc Finger and Helix-to-Helix datasets. 

4.4.3. Calculation of Common Sub-graphs 

During the construction of original helix graphs, we take both node type and 3D position 

into consideration and in this part of calculation of common sub-graphs we still consider these 

two aspects. For each dataset we calculate their common sub-graph of every three graphs using 
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maximal clique algorithm, the absolute difference of edge length between common Parton in 

these three graphs is less than or equal to 1 Å. We get 89 common sub-graphs (C0-C88) from 

Zinc-Finger dataset. The results are show in Table 4.18: 

Table 4.18. Common sub-graphs of Zinc-Finger dataset 

Type of vertices in the 

spatial motif 

Spatial motif How many 

proteins 

have it? 

How many times does it 

occur? (Which original 

graph does it occur?) 

(1) ALI, ACI, DG C0 2 3(1,2,6) 

(2) ACI, BAS, DG C1, C2, C18, C26 4 14(1,2,3,4,5,6,8,9) 

 
C39, C40, C48, C49, C50, 

C52, C60, C61, C62, C64, 

C65, C70, C71, C72, C73, 

C74, C75, C78, C83, C88 

4 19(1,2,4,5,6,7,8,9,10) 

 
C44, C56, C79 3 7(4,5,7,10) 

(3) ACI, BAS, DC C3, C4, C5, C10, C13, 

C14, C19, C41, C42, C43, 

C38, C47, C55, C59, C63, 

C76, C77 

4 22(1,4,5,6,7,8,10) 

 
C57, C84, C87 3 8(4,5,7,9,10) 

(4) ACI, HYD, DC C6, C7, C9, C11, C12, 

C20, C21, C66, C68, C69 

3 8(1,4,7,8,10) 

(5) ACI, HYD, DC, DC C8 3 3(1,4,7) 

(6) ACI, ACI, DT C15, C17, C22, C80 4 4(1,5,8,10) 

(7) ACI, ACI, DC C16 4 5(1,5,8,10) 

(8) BAS, BAS, DG C23, C35, C36, C37 4 12(2,3,4,5,6,9) 
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Table 4.18. Common sub-graphs of Zinc-Finger dataset (continued) 

Type of vertices in the 

spatial motif 

Spatial motif How many 

proteins 

have it? 

How many times does it 

occur? (Which original 

graph does it occur?) 

(9) ACI, BAS, DT C24 3 4(2,4,6,7) 

 C53, C54 3 8(4,5,6,9,10) 

(10) BAS, HYD, DC C25 3 4(2,3,4,7) 

 C27, C28 3 7(2,3,4,5,8) 

(11) BAS, ALI, DT C29 2 4(2,9,10) 

(12) BAS, HYD, DT C30 3 3(3,4,7) 

 C31, C32, C33, C34 4 11(3,4,7,9) 

(13) ACI, BAS, DC, DG C45 3 6(4,5,7,9,10) 

 C51 3 11(4,5,6,7,10) 

 C67 3 7(4,5,7,10) 

(14) ACI, BAS, DT, DG C46 2 3(4,5,7) 

(15) ACI, BAS, DA C81, C82, C85, C86 2 5(5,9,10) 

 

There are 15 categories of spatial motif in Zinc Finger original graphs and every motif 

contains one or more common sub-graphs. Among each type of motif, we range the same 

common sub-graphs (represent same part of original graphs) into a group by putting them in the 

same line of the table. The table also list the number of PDB structures containing the common 

sub-graph group, the number of occurrences of this group and which original graph contains it.  
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Among the 15 categories there are 6 categories having sub-groups. They are category 2, 

3, 9, 10, 12 and 13. We also calculate the RMSD of side length between different sub-group 

motifs in one category. The results are shown in Table 4.19:  

Table 4.19. RMSD of groups in Zinc-Finger common sub-graphs 

Category Containing groups RMSD between groups 

2 2, 3, 4 2:3=2.622063510353115 

2:4=1.8521920783344679 

3:4=1.184452043023833 

3 5, 6 5:6=1.9176873665617455 

9 12, 13 12:13=3.2634564564368387 

10 14, 15 14:15=1.4271028182584606 

12 17, 18 17:18=3.2111184925875262 

13 19, 20, 21 19:20=1.0644598483078727 

19:21=1.2924677455035813 

20:21=0.9159951255934112 

 

We can see from the table the RMSD between different groups in one category is around 

1or greater than 1, this means there are significantly differences between these subgroups even 

though they have same points. 

As shown in the Zinc-finger table, there are 23 groups or lines (from 1 to 23) in total. We 

calculated the internal RMSD of side length using the average graph of each group and the result 

is shown in Figure 4.9: 
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Figure 4.9. Internal RMSD of groups in Zinc-Finger common sub-graphs 

We also get 53 common sub-graphs (C0-C52) from Helix-to-Helix dataset. The results 

are in Table 4.20: 
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Table 4.20. Common sub-graphs of Helix-to-Helix dataset 

Type of vertices in the 

spatial motif 

Spatial motif How many 

proteins 

have it? 

How many times does it 

occur? (Which original 

graph does it occur?) 

(1) ACI, BAS, DG C25 4 8(1,2,3,6) 

(2) ACI, ACI, DC C31 4 4(1,2,3,6) 

(3) BAS, BAS, DG C3 5 6(0,1,3,5,6) 

(4) ACI, BAS, DT C1, C4, C7, C16, C18, 

C22, C39, C51 

6 13(0,1,2,3,5,6) 

C11, C14, C28, C32 6 12(0,1,2,3,4,5,6) 

C19, C33, C34, C36, 

C37 

5 17(0,1,2,4,5,6) 

(5) ARO, ACI, DA C0, C13, C15, C17, 

C26, C27, C29, C30, 

C38, C45, C47, C48, 

C49, C50 

5 12(0,1,3,4,5,6) 

(6) ACI, ARO, ACI, DA C2, C6, C20, C35 3 4(0,1,4,6) 

 
C46 3 3(3,4,6) 

(7) BAS, BAS, DT C5, C8, C9, C10, C23, 

C24 

5 9(0,1,2,5,6) 

 
C52 5 5(2,3,4,5,6) 

(8) ACI, HYD, DA C12 3 7(0,2,6) 

(9) ACI, ACI, DA C21 3 5(0,4,6) 

 
C40, C41, C42 4 5(2,3,4,6) 

(10) ACI, ALI, DA C43, C44 4 6(2,3,4,5) 
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There are 10 categories of spatial motif in Helix-to-Helix original graphs and every motif 

contains one or more common sub-graphs. The table is organized using the same format with the 

Zinc Finger table.  

Among the 10 categories there are 4 categories having sub-groups. They are category 4, 

6, 7 and 9. We also calculate the RMSD of side length between different sub-group motifs in one 

category. The results are shown in Table 4.21:  

Table 4.21. RMSD of groups in Helix-to-Helix common sub-graphs 

Category Containing groups RMSD between groups 

4 4, 5, 6 4:5=1.4247767560363612 

4:6=2.038416936864183 

5:6=2.288778979678851 

 

6 8, 9 8:9=2.3718044921211425 

7 10, 11 10:11=1.6604455476684572 

9 13, 14 13:14=2.493068664546218 

 

We can see from the table the RMSD between different groups in one category are all 

greater than 1, this means there are significantly differences between these subgroups even 

though they have same points. 

As shown in the Helix-to-Helix table, there are 15 groups or lines (from 1 to 15) in total. 

We calculated the internal RMSD of side length using the average graph of each group and the 

result is shown in Figure 4.10: 
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Figure 4.10. Internal RMSD of groups in Helix-to-Helix common sub-graphs 

4.4.4. Analysis of Common Groups 

From the tables of two datasets, we find 4 common type motifs between them accord to 

the vertices in the spatial motif. They are list in Table 4.22: 

Table 4.22. Common motifs between Zinc-Finger and Helix-to-Helix common sub-graphs 

Type of vertices in the spatial motif Zinc Finger Helix-to-Helix 

ACI, BAS, DG Motif (2) Motif (1) 

ACI, ACI, DC Motif (7) Motif (2) 

BAS, BAS, DG Motif (8) Motif (3) 

ACI, BAS, DT Motif (9) Motif (4) 

 

By analyzing and comparing the edge distance of these pairs of motifs (absolute value of 

the corresponding edge length difference <=1) we find a common group between them. They are 

the “C24” group of Zinc Finger and the “C19, C33, C34, C36, C37” group of Helix-to-Helix. We 

also find corresponding sites of the PDB structure of this two groups and calculate the 
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conservation of these sites. For the protein chain we use “ConSurf” server to get the normalized 

conservation scores (average score for all residues is zero, and the standard deviation is one). 

The conservation scores calculated by ConSurf are a relative measure of evolutionary 

conservation at each sequence site of the target chain. The lowest score represents the most 

conserved position in a protein. We use “Jaspar” and “Transfac” (if have corresponding data) 

sever to calculate the conservation of nucleotide chain and give out the percentage of 

conservation. The results of the group “C24” of Zinc Finger dataset is shown in Table 4.23 and 

4.24: 

Table 4.23. Conservation of points in Zinc-Finger motifs  

PDB ACI  Conservation BAS  Conservation DT  Conservation 

(Jaspar, 

Transfac) 

2GLI ASN-A222 -0.206 ARG-A217 -0.425 C9 31.0% 

1LLM ASP-C117 -0.558 HIS-C122 -1.23 B30 6.671%,100% 

1A1I ASP-A121 1.657 ARG-A127 -0.566 C53 3.97%, 87.2% 

 ASP-A148 -0.472 HIS-A153 -0.84 B5 94.0%, 83.6% 
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Table 4.24. Conservation of points in Helix-to-Helix motifs 

PDB ACI  Conservation BAS  Conservation DT  Conservation 

(Jaspar, 

Transfac) 

3A01 ASN-A235 -0.762 ARG-A242 -0.446 C9 100% 

 ASN-A235 -0.762 LYS-A230 -0.99 C12  57.9% 

 ASN-A235 -0.762 ARG-A242 -0.446 D7 89.5% 

1PUFA ASN-A255 -0.952 LYS-A262 -0.930 D11 96.7%,92.9% 

 ASN-A255 -0.952 LYS-A262 -0.930 E29 99.2%,92.9% 

 ASN-A255 -0.952 LYS-A261 -0.690 E29 99.2%,92.9% 

 ASN-A255 -0.952 LYS-A250 -0.844 E26 92.2% 

 ASN-A255 -0.952 LYS-A261 -0.690 E26 92.2% 

1E3O ASN-C151 -0.977 ARG-C146 -0.734 A206 100%,100% 

1PUFB ASN-B286 -1.41 LYS-B293 -0.217 E33 94.4%,100% 

 ASN-B282 -1.081 ARG-B288 -1.42 E29 88.9%,97.5% 

2HOS ASN-A51 -0.734 LYS-A58 -0.718 D31 100% 

 ASN-A51 -0.734 LYS-A46 -0.661 C14 93.6% 

 ASN-A51 -0.734 LYS-A58 -0.718 C11 97.3% 

1K61 ASN-A178 -0.907 ARG-A183 -0.96 E15 93% 

 ASN-A178 -0.907 ARG-A184 -0.96 F26 93.8% 

 ASN-A178 -0.907 ARG-A185 -0.886 E15 93% 
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We can see from the table that the “ACI” and “BAS” sites’ conservation score are all 

below zero except “A121” in “1A1I”. It does not necessarily indicate 100% conservation (e.g. no 

mutations at all), but rather indicates that this position is the most conserved in this specific 

protein (DNA) calculated using a specific MSA. The “DT” sites’ conservation have one or more 

percentages, the first one is calculated by “Jaspar” matrix and the second one is calculated by 

“Transfac” matrix (if have) combining with some alignment method. All these two percentages 

are almost more than 50% and some reach 90% even 100%. The 31.0% of “2GLI” is the largest 

one among A C G and T, the 6.671% of “1LLM” and 3.97% of “1A1I” is the second largest one. 

All this effective proof that the corresponding sites in PDB structure of the common group 

between Zinc Finger sub-graph and Helix-to-Helix sub-graph is conservation and are functional 

sites with a great possibility. 

4.4.5. Distribution Calculation 

To further proof the statistics significant of this common group Parton, we perform the 

randomly distribution experiment for each dataset. We reconstruct the original graph by redefine 

the type nodes through the occupancy of this type of nodes. The more occupancy they have the 

larger probabilities they are assigned. The method helped to build new randomly designed 

original graphs for both datasets. Then we will calculate the total number of occurrences of our 

common group Parton in these new original graphs. We operate this process 100 times for both 

datasets and the results are shown in Table 4.25 and Table 4.26: 
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Table 4.25. Distribution of Zinc-Finger motifs 

Type of vertices in the 

spatial motif 

Spatial motif Actual 

number of 

occurrences 

Average of 

100 trials of 

randomly 

distribution  

Standard 

deviation of 

100 trials of 

randomly 

distribution  

(1) ALI, ACI, DG C0 3 2 1.220 

(2) ACI, BAS, DG C1, C2, C18, C26 14 4.38 2.301 

 
C39, C40, C48, C49, 

C50, C52, C60, C61, 

C62, C64, C65, C70, 

C71, C72, C73, C74, 

C75, C78, C83, C88 

19 2.52 1.472 

 
C44, C56, C79 7 2.05 1.412 

(3) ACI, BAS, DC C3, C4, C5, C10, 

C13, C14, C19, C41, 

C42, C43, C38, C47, 

C55, C59, C63, C76, 

C77 

22 4.85 2.986 

 
C57, C84, C87 8 3.39 2.001 

(4) ACI, HYD, DC C6, C7, C9, C11, 

C12, C20, C21, C66, 

C68, C69 

8 1.18 0.898 

(5) ACI, HYD, DC, DC C8 3 0.18 0.313 

(6) ACI, ACI, DT C15, C17, C22, C80 4 0.65 0.806 

(7) ACI, ACI, DC C16 5 1.31 1.402 

(8) BAS, BAS, DG C23, C35, C36, C37 12 4.29 2.420 



 

51 
 

Table 4.25. Distribution of Zinc-Finger motifs (continued) 

Type of vertices in the 

spatial motif 

Spatial motif Actual 

number of 

occurrences 

Average of 

100 trials of 

randomly 

distribution  

Standard 

deviation of 

100 trials of 

randomly 

distribution  

(9) ACI, BAS, DT C24 4 0.77 0.886 

 C53, C54 8 2.03 1.540 

(10) BAS, HYD, DC C25 4 2.91 1.539 

 C27, C28 7 3.84 1.766 

(11) BAS, ALI, DT C29 4 3.49 2.139 

(12) BAS, HYD, DT C30 3 1.68 1.106 

 C31, C32, C33, C34 11 6.74 2.470 

(13) ACI, BAS, DC, DG C45 6 0.7 0.840 

 C51 11 0.56 0.750 

 C67 7 0.63 0.819 

(14) ACI, BAS, DT, DG C46 3 0.37 0.570 

(15) ACI, BAS, DA C81, C82, C85, C86 5 0.74 0.844 
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Table 4.26. Distribution of Helix-to-Helix motifs 

Type of vertices in the 

spatial motif 

Spatial motif Actual 

number of 

occurrences 

Average of 

100 trials of 

randomly 

distribution  

Standard 

deviation of 

100 trials of 

randomly 

distribution  

(1) ACI, BAS, DG C25 8 1.3 0.974 

(2) ACI, ACI, DC C31 4 1.16 1.117 

(3) BAS, BAS, DG C3 6 2.43 1.685 

(4) ACI, BAS, DT C1, C4, C7, C16, 

C18, C22, C39, C51 

13 5.69 2.467 

 
C11, C14, C28, C32 12 7.82 3.416 

  C19, C33, C34, C36, 

C37 

17 2.44 1.370400 

(5) ARO, ACI, DA C0, C13, C15, C17, 

C26, C27, C29, C30, 

C38, C45, C47, C48, 

C49, C50 

12 1.34 1.169 

(6) ACI, ARO, ACI, DA C2, C6, C20, C35 4 0.02 0.039 

 
C46 3 0.08 0.149 

(7) BAS, BAS, DT C5, C8, C9, C10, 

C23, C24 

9 5.64 2.994 

 
C52 5 4.9 2.622 

(8) ACI, HYD, DA C12 7 1.65 1.275 
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Table 4.26. Distribution of Helix-to-Helix motifs (continued) 

Type of vertices in the 

spatial motif 

Spatial motif Actual 

number of 

occurrences 

Average of 

100 trials of 

randomly 

distribution  

Standard 

deviation of 

100 trials of 

randomly 

distribution  

(9) ACI, ACI, DA C21 5 2.82 2.075 

 C40, C41, C42 5 0.86 0.877 

(10) ACI, ALI, DA C43, C44 6 1.53 1.345 

 

We do more detailed analysis of the common pattern of the two datasets: group “C24” of 

Zinc-finger dataset and group “C19, C33, C34, C36, C37” of Helix-to-Helix datasets. The result 

of 100 trials of randomly distribution of them is show in Figure 4.11: 

 

Figure 4.11. Random distribution of the common pattern of the two datasets 

The average number of occurrences of group “C24” in new reconstruct graph is 0.77 

which is far less than the original 4 times, the standard deviation is 0.885974; the average 
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number of occurrences of group “C19, C33, C34, C36, C37” in new reconstruct graph is 

2.44which is far less than the original 17 times, the standard deviation is 1.370400.  

We also download a new dataset containing 40 PDB structures from “Protein Data Bank” 

which is the X-ray resolution less than 1.5 Å involving both DNA and protein chains. We 

calculated the number of occurrences of our common group and get result as Figure 4.12: 

 

Figure 4.12. Distribution of the common pattern of the two datasets in new 40 PDB complexes 

The total number of occurrences is 71. Then we do the same randomly distribution 

experiment and get the total number of occurrence result is shown in Figure 4.13: 

 

 

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Common group Distribution

Common group
Distribution



 

55 
 

 

Figure 4.13. Random distribution of the common pattern of the two datasets in new 40 PDB 

complexes 

The average number of occurrences of common group in the randomly reconstruct graph 

is 36.16 which is far less than the original 71 times, the standard deviation is 8.982272. All these 

results confirmed the statistical significance of our motifs by calculating the frequencies of 

occurrences of our motifs in various random distribution situations. 

4.5. Apply the Proposed Method to Other Type of Interactions Part II 

Protein-protein interactions play important roles in varied biological processes. It has 

been shown that certain residues at the protein-protein interfaces, contribute more significantly to 

binding affinity than others. These residues are called hotspots. Generally, a residue is defined as 

hotspot is its mutation to Alanine results in a decrease of at least 2.0kccal/mol in binding free 

energy (ΔG=Gmut-Gwt), where Gwt is the binding free energy upon complex formation of wild-

type proteins and Gmut is the binding free energy upon complex formation of alanine mutated 

proteins.  
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Using biological methods to determine which residues are hot spots can be costly and 

time consuming. Recent advances in computational approaches to predict hot spots have 

incorporated a myriad of features and have shown increasing predictive successes. In this part, 

we apply our new structural method to predict hot spots in protein-protein interaction.  We 

obtained datasets of experimentally varified hotspots, and then used our method to identify 

crucial common patterns in protein-protein interfaces. Then, compared the patterns with 

experimentally varified hotspots. We also compared our method with other computational 

hotspots prediction method to assess the effectiveness of the method. 

4.5.1. Dataset Preparation 

First, we collected datasets of hotspots from two resources: The Alanine Scanning 

Energetics Database (ASEdb) which contains results from alanine scanning analysis and the 

Binding Interface Database (BID), which contains experimentally verified hot spots extracted 

from literature. The original datasets contained thousands of hotspot records. We filtered out the 

records that didn’t have a PDB id associated with them, and if multiple PDB and PDB ids were 

associated with one record, we only kept the one with most reliable label of hotspots in its 

residue chains. At the end, we obtained 19 protein-protein complexes from ASEdb and 29 from 

BID. Some of these protein-protein interfaces correspond to intermolecular interactions, others 

intramolecules. Table 4.27 shows the numbers of complexes in each of the categories.  

Table 4.27. Number of complexes in each category 

 # of intermolecular complexes # of intra-molecular complexes 

ASEdb 11 8 

BID 22 7 
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4.5.2. Graph Construction 

The protein-protein interfaces in the protein-protein complexes obtained from the 

previous section were represented using graphs as follows. For each complex, we used 

NACCESS software to calculate the accessible surface area (ASA) of each amino acid in both 

bound and unbound states. We collected the interface residues whose ASA in unbound state was 

at least 1Å more than that in bound state. Then we applied our graph representation method to 

construct graphs for the protein-protein interfaces such thatevery node of the graph represented 

an interface residue, and an edge was added between two nodes if the corresponding residues 

were at a distance less than 10Å. Each node was labeled with its residue type. Each edge was 

also associated with a type label, where type 0 was edges between nodes from the same protein 

chain, and type 1 edges between nodes from different protein chains. 

4.5.3. Calculation of Common Sub-graphs 

Since intermolecular and intramolecular interactions may utilize different structural 

patterns to facilitate the protein-protein interactions. We searched for common structural motifs 

for intermolecular and intramolecular interfaces separately. We also did that separately for each 

of the databases, ASEdb and BID, since they represented hotspots obtained using different 

methods. For each category of complexes, we discovered common sub-graphs for every pairs of 

graphs using the maximal clique algorithm. Table 28 showed the numbers of common structural 

motifsfound in the four categories. 
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Table 4.28. Numbers of common motif in each category before filtering 

 # of common motifs in 

intermolecular complexes 

# of common motifs in intra-

molecular complexes 

ASEdb 25 135 

BID 292 37 

 

Then we filtered the motifs in three steps. First, we removed the common motifs without 

cross-interface edges, i.e., to remove motifs that had all verticesfrom one protein chain. Second, 

we removed the common motifs that occur in less than 3 interfaces. Third, we removed 

duplicated   motifs in each category. The final common motif numbers of each category are 

shown in Table 4.29. 

Table 4.29. Final number of common motifs in each category 

 # of common motifs in 

intermolecular complexes 

# of common motifs intra-

molecular complexes 

ASEdb 0 4 

BID 23 0 

4.5.4. Verification of Our Common Motifs 

4.5.4.1. Compare the Discovered Motifs with Hotspots Identified by Other Methods 

First, we compare motifs discovered by our methods with the hotspots identified by two 

computational methods, namely FoldX [7] and Hotsprint [8]. FoldX calculates the free energy of 

a macromolecule based on its high-resolution 3D structure and uses that toevaluate how a 

residue’s mutation affects the stability, folding and dynamics of the protein structure [7]. 
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Hotsprint is a database of computational hotspots in protein interfaces which use conservation, 

buried accessible solvent area (ASA) and other important features to predicting the hotspots [8].  

Tables 4.30 and Table 4.31 (columns 2, 4, and 5) show that almost all residues on the 

structural motifs discovered by our method were also predicted to be hotspots by both FoldX and 

Hotsprint. We also compared the motifs discovered by our method with experimentally verified 

hotspots in ASEdb and BID. Tables 4.30 and 4.31 (columns 2, and 3) show that some of the 

residues on our structural motifs were annotated as hotspots in the databases.  It is worth noting 

that many of the residues on our structural motifs were not annotated as hotspots in ASEdb or 

BID. One possible reason is that the hotspots collected in ASEdb and BID are only a subset of 

the true hotspots, since only a small fraction of the hotspots have been verified with experiments. 

Table 4.30. Result in intra-molecular dataset of ASEdb 

PDB ID # of residues 

covered by our 

motifs 

# of residues are 

marked as hotspot 

in the databases 

# of residues are 

marked as hotspot in 

method FoldX 

# of residues are 

marked as hotspot in 

method Hotsprint 

1MNM 8 1 8 8 

1WAP 3 0 3 3 

1BDT 3 0 3 3 

1CDC 7 2 6 5 

Table 4.31. Result in inter-molecular dataset of BID 

PDB ID # of residues 

covered by our 

motifs 

# of residues are 

marked as hotspot 

in the databases 

# of residues are 

marked as hotspot in 

method FoldX 

# of residues are 

marked as hotspot in 

method Hotsprint 

1J2X 2 2 2 2 

1LQB 6 0 6 6 

1F3U 6 0 6 6 

1JAT 3 3 3 3 

1XDA 5 3 3 3 

1CDL 3 2 2 3 

1UB4 4 2 4 2 

1LEW 1 1 1 1 

1NFI 3 1 2 3 

1JMA 1 1 0 0 
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4.5.4.2. Evolutionary Conservation Analysis of the Structural Motifs 

Conservation is considered to be an important feature of hotspots in protein-protein 

interaction. So, we calculated the conservation scores for the residues in the motifs we found. 

The conservation scores of amino acid residues were calculated using the ConSurf server [8]. For 

each input protein structure, the server reports normalized conservation scores for all amino acid 

residues, such that the average is zero and standard deviation is 1. Lower conservation scores 

correspond to higher conservation levels. Table 4.32 shows the conservation scores for the 

motifs in the intra-molecular dataset of ASEdb. Each row in the table corresponds to one 

occurrence of the motif in the protein-protein interfaces. Table 4.33 shows the conservation 

scores for the motifs on the intermolecular dataset of BID. 

Table 4.32. Conservation score in intra-molecular dataset of ASEdb 

PDB ID Identity and PDB index of vertex (which is 
an amino acid) 

Conservation score of vertexes (9 - 
conserved, 1 - variable) 

1WAP ILE_B44 -0.335(7) 

 LEU_B38 -0.718(9) 

 LEU_A24 -0.684(9) 

1BDT PHE_A10 -0.019(5) 

 ILE_B37 -0.836(8) 

 LEU_B19 -0.286(6) 

 VAL_B22 -0.180(6) 

 LEU_B12 -0.241(6) 

 LEU_A12 -0.241(6) 
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Table 4.32. Conservation score in intra-molecular dataset of ASEdb (continued) 

 

PDB ID Identity and PDB index of vertex (which is 
an amino acid) 

Conservation score of vertexes (9 - 
conserved, 1 - variable) 

1MNM LEU_B59 -0.349(6) 

 PHE_A77 -0.086(5) 

 LEU_A59 -0.349(6) 

 ILE_B80 0.075(5) 

 LEU_A89 1.917(1) 

 ILE_A43 -0.902(8) 

 LEU_A60 -0.210(6) 

 LEU_A61 -0.350(6) 

 LEU_B89 1.917(1) 

 PHE_B77 -0.086(5) 

 VAL_A62 -0.322(6) 

 LEU_B50 -1.229(9) 

 VAL_B62 -0.322(6) 

 LEU_B61 -0.350(6) 

 ILE_A80 0.075(5) 
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Table 4.32. Conservation score in intra-molecular dataset of ASEdb (continued) 

 

PDB ID Identity and PDB index of vertex (which is 
an amino acid) 

Conservation score of vertexes (9 - 
conserved, 1 - variable) 

1CDC LEU_B68 -1.159(9) 

 LEU_A16 -1.248(9) 

 ILE_A65 -1.294(9) 

 ILE_A97 -0.817(8) 

 LEU_B16 -1.248(9) 

 VAL_A39 -0.604(7) 

 LEU_B38 0.006(5) 

 LEU_A38 0.006(5) 

 VAL_B39 -0.604(7) 

 LEU_A68 -1.159(9) 

 LEU_B10 -0.848(8) 

 ILE_B65 -1.294(9) 

 PHE_B49 2.230(1) 

 PHE_A49 2.230(1) 

 ILE_A14 -0.807(8) 
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Table 4.33. Conservation score in inter-molecular dataset of BID  

PDB ID Identity and PDB index of vertex (which is 
an amino acid) 

Conservation score of vertexes (9 - 
conserved, 1 - variable) 

1J2X LEU_B953  

 PHE_A513 -0.170(6) 

 LEU_B957  

 LEU_A474 -0.308(6) 

 LEU_A473 -1.236(9) 

 LEU_A497 -0.917(8) 

 LEU_A493 -0.225(6) 

1LQB ALA_B107 -1.121(9) 

 LEU_C188 -1.185(9) 

 LEU_B101 -0.982(8) 

 LEU_C178 -1.221(9) 

 ILE_C180 -1.192(9) 

 LEU_B103 -0.715(7) 

 LEU_C158 -1.292(9) 

 ALA_B100 -0.788(8) 

 LEU_B104 -0.819(8) 

 VAL_B73 -0.884(8) 

 LEU_C163 -0.488(7) 

 VAL_C166 -0.250(6) 
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Table 4.33. Conservation score in inter-molecular dataset of BID (continued) 

PDB ID Identity and PDB index of vertex (which is 
an amino acid) 

Conservation score of vertexes (9 - 
conserved, 1 - variable) 

1F3U LEU_A106 0.698(3) 

 ILE_B126 -0.823(8) 

 LEU_B100 -0.993(9) 

 TRP_A31 -1.069(9) 

 LEU_B47 -0.791(8) 

 ALA_B137 -1.186(9) 

 ALA_B45 -0.487(7) 

 PHE_B31 -0.912(8) 

 PHE_B146 -1.095(9) 

 VAL_A95 -1.094(9) 

 LEU_A7 -0.370(6) 

 VAL_B18 -0.823(8) 

 LEU_A9 -0.328(6) 

 ILE_B28 -0.533(7) 

 LEU_A20 -0.995(9) 

 VAL_B140 -0.953(8) 

1JAT LEU_B11 -1.034(9) 

 LEU_B30 -0.883(8) 

 LEU_A83 0.217(4) 

 LEU_B14 -1.035(9) 
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Table 4.33. Conservation score in inter-molecular dataset of BID (continued) 

PDB ID Identity and PDB index of vertex (which is 
an amino acid) 

Conservation score of vertexes (9 - 
conserved, 1 - variable) 

1XDA LEU_A13 0.792(1) 

 LEU_B11 -1.121(9) 

 LEU_A16 -0.640(8) 

 VAL_B18 -0.224(6) 

 ALA_B14 -0.922(9) 

 LEU_B17 1.465(1) 

 LEU_B15 -1.016(9) 

1CDL VAL_E807  

 TRP_E800  

 ILE_E810  

 LEU_A39 -0.864(7) 

 ALA_A128 -0.666(7) 

 VAL_A136 -0.972(8) 

1UB4 LEU_C458 -1.238(9) 

 LEU_B247 -0.095(5) 

 TRP_C473 0.068(5) 

 LEU_C455 -1.297(9) 

 LEU_A109 -1.077(9) 

 LEU_A47 -0.095(5) 

 VAL_A78 -0.129(5) 

 PHE_A60 -0.750(8) 
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Table 4.33. Conservation score in inter-molecular dataset of BID (continued) 

PDB ID Identity and PDB index of vertex (which is 
an amino acid) 

Conservation score of vertexes (9 - 
conserved, 1 - variable) 

 VAL_B278 -0.129(5) 

 ALA_A31 -0.760(8) 

 ILE_A110 -0.380(6) 

 ILE_B310 -0.380(6) 

 VAL_A15 -0.259(6) 

 VAL_A108 0.205(4) 

 VAL_C459 -0.541(7) 

1LEW VAL_A158 -0.501(7) 

 VAL_B7  

 LEU_A122 -0.622(7) 

 ILE_A116 -0.308(6) 

1NFI ALA_A249 -1.110(9) 

 LEU_A215 -1.080(9) 

 VAL_B313 -0.550(7) 

 ALA_B311 -0.965(9) 

 VAL_A251 -0.112(5) 

 LEU_B272 -0.929(9) 

1JMA ALA_A7 0.559(3) 

 LEU_B49 1.086(2) 

 LEU_A4 2.778(1) 
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These results show that in almost all the residues involved in the motifs have very high 

conservation scores. This suggests the structural and functional importance of the common 

motifs discovered by our method. 

4.5.4.3. Statistical Significance of the Discovered Motifs 

In this project, we have discovered 4 structural motifs in intramolecular protein-protein 

interfaces and 21 in intermolecular protein-protein interfaces. In this section, we will assess the 

statistical significances of these motifs. In other words, we assess whether the occurrences of 

these motifs in the protein-protein interfaces is the result of a random process or the consequence 

of the fact that they are crucial for protein-protein interactions.  To answer this question, we used 

two larger datasets generated in [9], which contained 174 and 429 protein-protein complexes 

respectively. We separated the complexes in the datasets into intra-molecular and intermolecular 

interfaces. First, we tallied how many times each of the motifs was observed in these databases. 

Then we used a bootstrapping method to estimate how many times these motifs would occur in 

the interfaces due to random process.  The results are shown in Tables 4.34 - 4.37. For each 

motif, we performed the bootstrapping experiment 100 times, and used t-test to test the 

difference between the time of occurrences observed in the real interfaces (column 3 of the 

tables) and that of random process (column 4 of the tables). The results showed that for all the 

motifs, the number of occurrences observed in the real interfaces is much higher than that in 

random process. Almost all the t-tests have a p value lower than 0.0001. This result suggests that 

the motifs discovered by our method are significantly associated with protein-protein 

interactions, rather than a result of random process. 
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Table 4.34. Occurrence and Bootstrapping of 174 datasets (intra part) 

Structural 

Motif ID 

Amino Acid 

Categories 

of the 

Vertices 

Observed 

frequencies 

in the real 

Protein-

Protein 

interfaces 

Average 

frequencies in 

bootstrapping 

Standard 

deviation of 

bootstrapping 

p-value of 

one-sample 

t-test 

1 
LEU, LEU, 

ILE 
5 1.14 1.114 

Less than 

0.0001 

2 
LEU, LEU, 

ILE 
5 1.73 1.522 

Less than 

0.0001 

3 
LEU, LEU, 

ILE 
7 1.37 1.369 

Less than 

0.0001 

4 
PHE, LEU, 

VAL 
3 1.17 1.07 

Less than 

0.0001 
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Table 4.35. Occurrence and Bootstrapping of 174 datasets (inter part) 

Structural 

Motif ID 

Amino 

Acid 

Categories 

of the 

Vertices 

Observed 

frequencies in 

the real 

Protein- 

Protein 

interfaces 

Average 

frequencies in 

bootstrapping 

Standard 

deviation of 

bootstrapping 

p-value of 

one-sample 

t-test 

1 
LEU, LEU, 

LEU 
2 1.28 1.225398 

Less than 

0.0001 

2 
LEU, LEU, 

LEU 
0 1.07 1.193776 

Less than 

0.0001 

3 
LEU, LEU, 

LEU 
3 1.2 1.104536 

Less than 

0.0001 

4 
LEU, LEU, 

LEU 
2 1.29 1.194111 

Less than 

0.0001 

5 
LEU, LEU, 

LEU 
2 1.07 1.012472 

Less than 

0.0001 

6 
LEU, LEU, 

LEU 
4 0.88 1.041921 

Less than 

0.0001 

7 
LEU, LEU, 

LEU 
4 1.19 1.238507 

Less than 

0.0001 

8 
LEU, ALA, 

LEU 
1 1 0.979796 1 

9 
LEU, LEU, 

VAL 
3 0.63 0.820427 

Less than 

0.0001 

10 
LEU, LEU, 

VAL 
2 0.68 0.76 

Less than 

0.0001 

11 
LEU, LEU, 

LEU 
4 0.92 1.270276 

Less than 

0.0001 

12 
LEU, LEU, 

ALA 
1 0.76 0.861626 

Less than 

0.0001 
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Table 4.35. Occurrence and Bootstrapping of 174 datasets (inter part) (continued) 

Structural 

Motif ID 

Amino 

Acid 

Categories 

of the 

Vertices 

Observed 

frequencies in 

the real 

Protein- 

Protein 

interfaces 

Average 

frequencies in 

bootstrapping 

Standard 

deviation of 

bootstrapping 

p-value of 

one-sample 

t-test 

13 
LEU, LEU, 

LEU 
1 1.06 1.129779 0.5963 

14 
ALA, TRP, 

VAL 
1 0.19 0.440341 

Less than 

0.0001 

15 
ILE, VAL, 

VAL 
0 0.34 0.586856 

Less than 

0.0001 

16 
LEU, LEU, 

PHE 
0 0.57 0.751731 

Less than 

0.0001 

17 
LEU, LEU, 

LEU 
2 1.17 1.131857 

Less than 

0.0001 

18 
LEU, LEU, 

VAL 
2 0.81 0.879716 

Less than 

0.0001 

19 
LEU, LEU, 

VAL 
4 0.79 1.061084 

Less than 

0.0001 

20 
ALA, VAL, 

LEU 
2 0.49 0.754917 

Less than 

0.0001 

21 
LEU, LEU, 

ALA 
2 1.13 1.308854 

Less than 

0.0001 

22 
LEU, VAL, 

ILE 
1 0.49 0.714073 

Less than 

0.0001 

23 
VAL, LEU, 

VAL 
1 0.77 0.834925 0.0070 
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Table 4.36. Occurrence and Bootstrapping of 429 datasets (intra part) 

Structural Motif 

ID 

Amino 

Acid 

Categories 

of the 

Vertices 

Observed 

frequencies in 

the real 

Protein- 

Protein 

interfaces 

Average 

frequencies in 

bootstrapping 

Standard 

deviation of 

bootstrapping 

p-value of 

one-sample 

t-test 

1 
LEU, LEU, 

ILE 
4 1.72 1.364405 

Less than 

0.0001 

2 
LEU, LEU, 

ILE 
20 2.92 1.753169 

Less than 

0.0001 

3 
LEU, LEU, 

ILE 
6 2.85 1.669581 

Less than 

0.0001 

4 
PHE, LEU, 

VAL 
3 2.12 1.394848 

Less than 

0.0001 
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Table 4.37. Occurrence and Bootstrapping of 429 datasets (inter part) 

Structural Motif 

ID 

Amino 

Acid 

Categories 

of the 

Vertices 

Observed 

frequencies in 

the real 

Protein- 

Protein 

interfaces 

Average 

frequencies in 

bootstrapping 

Standard 

deviation of 

bootstrapping 

p-value of 

one-sample 

t-test 

1 
LEU, LEU, 

LEU 
6 1.39 1.475771 

Less than 

0.0001 

2 
LEU, LEU, 

LEU 
1 1.14 1.039423 0.1809 

3 
LEU, LEU, 

LEU 
5 1.04 1.18254 

Less than 

0.0001 

4 
LEU, LEU, 

LEU 
4 0.98 1.113373 

Less than 

0.0001 

5 
LEU, LEU, 

LEU 
4 0.98 0.927146 

Less than 

0.0001 

6 
LEU, LEU, 

LEU 
2 1.27 1.317991 

Less than 

0.0001 

7 
LEU, LEU, 

LEU 
4 1.23 1.231706 

Less than 

0.0001 

8 
LEU, 

ALA, LEU 
0 0.83 0.990505 

Less than 

0.0001 

9 
LEU, LEU, 

VAL 
1 0.68 0.881816 0.0004 

10 
LEU, LEU, 

VAL 
1 0.71 0.851998 0.0009 

11 
LEU, LEU, 

LEU 
1 0.94 0.925419 0.5181 

      

 

 
     



 

73 
 

Table 4.37. Occurrence and Bootstrapping of 429 datasets (inter part) (continued) 

Structural Motif 

ID 

Amino 

Acid 

Categories 

of the 

Vertices 

Observed 

frequencies in 

the real 

Protein- 

Protein 

interfaces 

Average 

frequencies in 

bootstrapping 

Standard 

deviation of 

bootstrapping 

p-value of 

one-sample 

t-test 

12 
LEU, LEU, 

ALA 
2 0.72 0.800999 

Less than 

0.0001 

13 
LEU, LEU, 

LEU 
2 0.88 0.992774 

Less than 

0.0001 

14 
ALA, TRP, 

VAL 
2 0.14 0.424735 

Less than 

0.0001 

15 
ILE, VAL, 

VAL 
1 0.35 0.554527 

Less than 

0.0001 

16 
LEU, LEU, 

PHE 
5 0.5 0.754983 

Less than 

0.0001 

17 
LEU, LEU, 

LEU 
2 0.71 0.930537 

Less than 

0.0001 

18 
LEU, LEU, 

VAL 
2 0.77 0.914932 

Less than 

0.0001 

19 
LEU, LEU, 

VAL 
0 1.11 1.085311 

Less than 

0.0001 

20 
ALA, 

VAL, LEU 
1 0.33 0.617333 

Less than 

0.0001 

21 
LEU, LEU, 

ALA 
4 0.81 0.783518 

Less than 

0.0001 

22 
LEU, 

VAL, ILE 
0 0.6 0.812404 

Less than 

0.0001 

23 
VAL, 

LEU, VAL 
1 0.87 1.035905 0.2121 
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For each occurrence of the motif in these two datasets, we also analyze the conservation 

of the residues corresponding to the vertices of the motifs. The results are shown in Tables 4.38 - 

4.41. The results show that these residues have very high levels of conservations, indicating the 

functional importance of the motifs.  

Table 4.38. Conservation scores of residues in 174 datasets (intra part) 

PDB ID Identity and PDB index of vertex 
(which is an amino acid) 

Conservation score of vertexes (9 - 
conserved, 1 - variable) 

1MI3 ILE-B320 1.694(1) 

 LEU-B175 -0.755(7) 

 LEU-B177 0.104(5) 

 LEU-A177 0.104(5) 

 ILE-A320 1.694(1) 

 LEU-A175 -0.755(7) 

1W0I LEU-A172 1.171(1) 

 LEU-B243 1.317(1) 

 ILE-B167 0.799(3) 

 ILE-A167 0.799(3) 

 LEU-B172 1.171(1) 

 LEU-A243 1.317(1) 

1B99 LEU-C39 -0.419(6) 

 ILE-C29 -0.084(5) 

 LEU-F42 0.402(4) 
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Table 4.38. Conservation scores of residues in 174 datasets (intra part) (continued) 

PDB ID Identity and PDB index of vertex 
(which is an amino acid) 

Conservation score of vertexes (9 - 
conserved, 1 - variable) 

1BRR LEU-C95 -0.059(5) 

 LEU-A109 1.205(1) 

 ILE-C45 -0.319(6) 

1HWU LEU-A13 -0.115(5) 

 VAL-A59 0.866(2) 

 PHE-B55 0.002(5) 

2COG VAL-A92 -0.968(8) 

 LEU-A173 -0.871(8) 

 PHE-B53 -0.745(7) 

2D4V ILE-A198 -0.246(6) 

 LEU-B179 -0.573(7) 

 ILE-B175 0.573(3) 

 ILE-A175 0.573(3) 

 ILE-B198 -0.246(6) 

 LEU-A179 -0.573(7) 

1VGQ PHE-B63 -0.834(9) 

 LEU-A167 -0.881(9) 

 VAL-A16 -0.965(9) 
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Table 4.39. Conservation scores of residues in 174 datasets (inter part) 

PDB ID Identity and PDB index of vertex 
(which is an amino acid) 

Conservation score of vertexes (9 - 
conserved, 1 - variable) 

2O8A LEU-A55 0.042(5) 

 LEU-A53 -0.195(6) 

 LEU-I15 -1.448(9) 

2BE6 LEU-A112 -0.075(5) 

 VAL-D1615 -0.577(8) 

 VAL-A55 -0.115(5) 

1GXS VAL-D351 -0.179(6) 

 LEU-D349 -0.166(6) 

 LEU-D344 -0.588(7) 

 LEU-C184 0.153(4) 

2OCC VAL-A299 0.368(4) 

 ILE-B42 -0.262(6) 

 VAL-B38 -1.037(9) 

 LEU-B84 -0.896(8) 

 LEU-B37 1.328(1) 

 ALA-A303 -0.362(6) 

 LEU-A324 -0.011(5) 

2BL0 ALA-A791 0.662(3) 

 LEU-B117 -1.046(8) 

 VAL-A795 0.691(3) 
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Table 4.39. Conservation scores of residues in 174 datasets (inter part) (continued) 

PDB ID Identity and PDB index of vertex 
(which is an amino acid) 

Conservation score of vertexes (9 - 
conserved, 1 - variable) 

3PCD TRP-M400 -1.179(9) 

 VAL-A17 -0.579(7) 

 ALA-A13 -0.964(8) 

2PRG LEU-C633 -0.145(5) 

 LEU-C636 -0.933(8) 

 LEU-A468 -1.084(9) 

1PST LEU-H12 -1.078(9) 

 LEU-M286 -0.526(8) 

 VAL-M290 -0.547(8) 

 LEU-M275 -0.597(8) 

 ALA-H16 -0.220(6) 

 LEU-M278 0.164(4) 

 LEU-H27 -1.180(9) 

 ALA-H13 -1.176(9) 

2P1L LEU-A108 -0.296(6) 

 LEU-A130 -1.017(9) 

 LEU-B116 1.403(1) 

 LEU-A194 0.394(4) 

 VAL-A141 -1.007(9) 
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Table 4.39. Conservation scores of residues in 174 datasets (inter part) (continued) 

PDB ID Identity and PDB index of vertex 
(which is an amino acid) 

Conservation score of vertexes (9 - 
conserved, 1 - variable) 

1NHG LEU-D399 2.113(1) 

 VAL-B213 -0.572(8) 

 LEU-B119 -0.755(9) 

1DM5 LEU-D101 1.135(2) 

 LEU-B80 0.864(2) 

 ALA-B77 1.278(1) 

1QGE LEU-D17 -0.558(7) 

 LEU-E265 -0.474(7) 

 LEU-E314 -1.132(9) 

 ALA-D105 -1.196(9) 

 LEU-D205 0.004(5) 

 LEU-D149 0.240(4) 

 LEU-E247 0.185(4) 

 LEU-D164 -0.132(5) 

 LEU-E292 1.416(1) 

 LEU-E286 -0.192(6) 
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Table 4.40. Conservation scores of residues in 429 datasets (intra part) 

PDB ID Identity and PDB index of vertex 
(which is an amino acid) 

Conservation score of vertexes (9 - 
conserved, 1 - variable) 

1G85 VAL-B100 -0.420(6) 

 PHE-A132 -1.431(9) 

 LEU-B118 0.068(5) 

1CWQ LEU-A92 -1.499(9) 

 LEU-B99 -0.630(7) 

 ILE-B45 -0.191(6) 

 ILE-A45 -0.191(6) 

2FYI ILE-A112 -0.591(7) 

 LEU-A126 -0.564(7) 

 ILE-B112 -0.591(7) 

 LEU-B126 -0.564(7) 

 LEU-B124 -0.664(8) 

 LEU-A236 -0.454(7) 

 LEU-B236 -0.454(7) 

1I0Z ILE-A37 0.085(5) 

 LEU-A65 -0.833(8) 

 LEU-B254 0.099(5) 

 ILE-B37 0.085(5) 

 LEU-B65 -0.833(8) 

 LEU-A254 0.099(5) 
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Table 4.40. Conservation scores of residues in 429 datasets (intra part) (continued) 

PDB ID Identity and PDB index of vertex 
(which is an amino acid) 

Conservation score of vertexes (9 - 
conserved, 1 - variable) 

2NUU VAL-C50 0.653(3) 

 LEU-C54 0.248(4) 

 PHE-B247 1.706(1) 

1AUW ILE-D225 0.787(2) 

 LEU-C440 1.479(1) 

 LEU-D227 1.676(1) 

1TW2 ILE-B126 -0.680(7) 

 ILE-A74 0.650(3) 

 LEU-B67 -0.625(7) 

 LEU-A301 -1.183(8) 

 LEU-A304 -0.925(8) 

 LEU-A76 -0.315(6) 

 ILE-A126 -0.680(7) 

 LEU-B304 -0.925(8) 

 LEU-B22 0.157(5) 

 ILE-B74 0.650(3) 

 LEU-A67 -0.625(7) 

 LEU-B76 -0.315(6) 

 LEU-B301 -1.183(8) 

 LEU-B122 -1.180(8) 

 LEU-A22 0.157(5) 
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Table 4.40. Conservation scores of residues in 429 datasets (intra part) (continued) 

PDB ID Identity and PDB index of vertex 
(which is an amino acid) 

Conservation score of vertexes (9 - 
conserved, 1 - variable) 

1O5O LEU-B11 -0.889(8) 

 ILE-A67 0.215(4) 

 LEU-A48 0.063(5) 

2EGH ILE-A255 -0.487(7) 

 LEU-A270 -0.405(6) 

 LEU-B270 -0.405(6) 

1V2I VAL-A187 0.960(1) 

 LEU-A555 -0.997(9) 

 PHE-B563 -0.440(7) 

1EWK ILE-A120 -0.783(8) 

 ILE-B120 -0.783(8) 

 LEU-A174 -0.842(8) 

 LEU-B174 -0.842(8) 

1P0K ILE-A74 -0.843(8) 

 ILE-B74 -0.843(8) 

 LEU-A70 1.095(1) 

 LEU-B70 1.095(1) 

1HKV LEU-A347 -1.194(9) 

 LEU-B347 -1.194(9) 

 ILE-B343 -0.543(7) 
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Table 4.40. Conservation scores of residues in 429 datasets (intra part) (continued) 

PDB ID Identity and PDB index of vertex 
(which is an amino acid) 

Conservation score of vertexes (9 - 
conserved, 1 - variable) 

1AB8 LEU-B877 -0.696(8) 

 LEU-A915 -0.899(8) 

 ILE-B1010 -1.055(9) 

1XI9 ILE-A271 -0.614(7) 

 LEU-A268 -0.509(7) 

 LEU-B133 0.499(3) 

Table 4.41. Conservation scores of residues in 429 datasets (inter part) 

PDB ID Identity and PDB index of vertex 
(which is an amino acid) 

Conservation score of vertexes (9 - 
conserved, 1 - variable) 

1M56 LEU-B123 -0.998(8) 

 LEU-B120 -0.884(8) 

 LEU-A342 0.773(2) 

1PYT LEU-B280 1.099(2) 

 LEU-B125 0.189(4) 

 LEU-A86 -0.382(6) 

1AZS LEU-B912 -0.828(8) 

 LEU-A497 -0.758(8) 

 LEU-B915 -0.995(9) 

1NF3 LEU-B67 -1.056(8) 

 LEU-D208 -0.750(9) 

 LEU-B70 -0.955(8) 
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Table 4.41. Conservation scores of residues in 429 datasets (inter part) (continued) 

PDB ID Identity and PDB index of vertex 
(which is an amino acid) 

Conservation score of vertexes (9 - 
conserved, 1 - variable) 

1MF8 LEU-A369 -0.849(8) 

 VAL-A368 -0.181(6) 

 LEU-B29 -0.828(7) 

1Z7M LEU-E84 -0.308(6) 

 PHE-E188 0.310(4) 

 LEU-A192 0.501(3) 

1JWI LEU-B79 -0.389(6) 

 LEU-B92 -0.539(7) 

 LEU-A70 -1.101(8) 

 PHE-A101 -0.389(6) 

 LEU-B87 0.562(3) 

1AIG ALA-P13 -1.152(9) 

 LEU-O286 -0.647(9) 

 LEU-P27 -1.166(9) 

 LEU-O275 -0.579(8) 

 LEU-P24 -1.121(9) 

 LEU-P12 -0.968(8) 

1C0T LEU-B289 -0.680(9) 

 VAL-A496 -0.501(8) 

 ALA-A534 1.042(1) 
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Table 4.41. Conservation scores of residues in 429 datasets (inter part) (continued) 

PDB ID Identity and PDB index of vertex 
(which is an amino acid) 

Conservation score of vertexes (9 - 
conserved, 1 - variable) 

1JFF VAL-B260 -0.735(8) 

 TRP-A407 -0.859(8) 

 ALA-B256 -0.596(8) 

 VAL-B257 -0.733(8) 

1BML LEU-C292 1.217(1) 

 LEU-C314 0.587(3) 

 LEU-A626 1.484(1) 

1OVL VAL-B369 -0.262(6) 

 VAL-A373 0.810(2) 

 ILE-A500 0.238(4) 

1HXM LEU-A141 -0.859(9) 

 ALA-A139 -0.954(9) 

 LEU-B153 -0.758(8) 

2BTW PHE-B36 -0.444(6) 

 LEU-A45 -0.630(7) 

 LEU-B46 3.125(1) 

 LEU-B45 -0.692(7) 

 LEU-A46 3.154(1) 

 PHE-A36 -0.470(6) 
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Table 4.41. Conservation scores of residues in 429 datasets (inter part) (continued) 

PDB ID Identity and PDB index of vertex 
(which is an amino acid) 

Conservation score of vertexes (9 - 
conserved, 1 - variable) 

1NBU VAL-B18 -1.058(9) 

 VAL-C55 -0.070(5) 

 LEU-C48 -0.554(7) 

1AR1 LEU-B100 -1.015(8) 

 LEU-B97 -0.651(7) 

 LEU-A334 0.253(4) 

 ALA-A338 -0.055(5) 

 LEU-A342 0.058(5) 

1UKV LEU-G233 -0.449(7) 

 LEU-Y193 1.797(1) 

 VAL-Y191 0.149(4) 

1SB2 VAL-B85 -0.309(6) 

 LEU-A70 -1.039(9) 

 LEU-B77 -0.117(5) 

 LEU-B90 -0.536(7) 

1XDK LEU-B371 -0.844(9) 

 LEU-A425 -1.296(9) 

 LEU-A424 -1.191(9) 

 ALA-A421 -1.046(8) 

 LEU-B349 -0.695(8) 

 PHE-A420 -1.278(9) 
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For the further verification, we used FoldX and Hotsprint to predict hotspots on the two 

larger datasets. The results Tables 4.42 - 4.45 show that the majority of the residues on the motifs 

were predicted to be hotspots by both methods.  

Table 4.42. Foldx and Hotsprint results of 174 datasets (intra part) 

PDB ID 
Identity and PDB index 
of vertex (which is an 
amino acid) 

FoldX score of vertexes 
(DDG upon alanine 
mutation in Kcal/mol) 

HotSprint result of vertex 
(H for Hotspot and NH 
for not Hotspot) 

1MI3 ILE-B320 2.92288 H 

 LEU-B175 2.54529 H 

 LEU-B177 1.6709 H 

 LEU-A177 1.60163 H 

 ILE-A320 2.80066 H 

 LEU-A175 2.1897 H 

1W0I LEU-A172 2.662 H 

 LEU-B243 3.85743 H 

 ILE-B167 3.17779 H 

 ILE-A167 2.97933 H 

 LEU-B172 2.21563 H 

 LEU-A243 3.98771 H 
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Table 4.42. Foldx and Hotsprint results of 174 datasets (intra part) (continued) 

PDB ID 
Identity and PDB index 
of vertex (which is an 
amino acid) 

FoldX score of vertexes 
(DDG upon alanine 
mutation in Kcal/mol) 

HotSprint result of vertex 
(H for Hotspot and NH 
for not Hotspot) 

1B99 LEU-C39 4.09287 H 

 ILE-C29 3.5827 H 

 LEU-F42 4.49903 H 

1BRR LEU-C95 1.60257 NH 

 LEU-A109 1.06434 NH 

 ILE-C45 1.97384 H 

1HWU LEU-A13 0.89307 H 

 VAL-A59 1.94013 H 

 PHE-B55 2.12472 NH 

2COG VAL-A92 2.07821 H 

 LEU-A173 2.10625 H 

 PHE-B53 2.76446 H 

    

    

    

    



 

88 
 

Table 4.42. Foldx and Hotsprint results of 174 datasets (intra part) (continued) 

PDB ID 
Identity and PDB index 
of vertex (which is an 
amino acid) 

FoldX score of vertexes 
(DDG upon alanine 
mutation in Kcal/mol) 

HotSprint result of vertex 
(H for Hotspot and NH 
for not Hotspot) 

2D4V ILE-A198 4.64675 H 

 LEU-B179 4.15857 H 

 ILE-B175 3.72897 H 

 ILE-A175 3.9328 H 

 ILE-B198 4.65347 H 

 LEU-A179 3.94863 H 

1VGQ PHE-B63 2.90974 H 

 LEU-A167 1.72093 H 

 VAL-A16 1.39992 H 

 

Table 4.43. Foldx and Hotsprint results of 174 datasets (inter part) 

PDB ID 
Identity and PDB index 
of vertex (which is an 
amino acid) 

FoldX score of vertexes 
(DDG upon alanine 
mutation in Kcal/mol) 

HotSprint result of vertex 
(H for Hotspot and NH 
for not Hotspot) 

2O8A LEU-A55 4.75152 H 

 LEU-A53 3.22556 H 

 LEU-I15 2.05132 H 
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Table 4.43. Foldx and Hotsprint results of 174 datasets (inter part) (continued) 

PDB ID 
Identity and PDB index 
of vertex (which is an 
amino acid) 

FoldX score of vertexes 
(DDG upon alanine 
mutation in Kcal/mol) 

HotSprint result of vertex 
(H for Hotspot and NH 
for not Hotspot) 

2BE6 LEU-A112 3.19144 H 

 VAL-D1615 0.55199 NH 

 VAL-A55 2.03257 H 

1GXS VAL-D351 3.29978 H 

 LEU-D349 2.43339 H 

 LEU-D344 3.32737 H 

 LEU-C184 3.25701 H 

2OCC VAL-A299 0.899222 NH 

 ILE-B42 1.10496 H 

 VAL-B38 1.3177 H 

 LEU-B84 2.5241 H 

 LEU-B37 0.788803 NH 

 ALA-A303 0 H 

 LEU-A324 3.39641 H 
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Table 4.43. Foldx and Hotsprint results of 174 datasets (inter part) (continued) 

PDB ID 
Identity and PDB index 
of vertex (which is an 
amino acid) 

FoldX score of vertexes 
(DDG upon alanine 
mutation in Kcal/mol) 

HotSprint result of vertex 
(H for Hotspot and NH 
for not Hotspot) 

2BL0 ALA-A791 0 H 

 LEU-B117 3.18326 H 

 VAL-A795 1.42079 H 

3PCD TRP-M400 3.28324 H 

 VAL-A17 1.65332 H 

 ALA-A13 0 H 

2PRG LEU-C633 2.88897 H 

 LEU-C636 1.78349 NH 

 LEU-A468 3.17128 H 

2P1L LEU-A108 1.59735 H 

 LEU-A130 2.47983 H 

 LEU-B116 3.51503 H 

 LEU-A194 0.666135 NH 

 VAL-A141 1.95075 H 
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Table 4.43. Foldx and Hotsprint results of 174 datasets (inter part) (continued) 

PDB ID 
Identity and PDB index 
of vertex (which is an 
amino acid) 

FoldX score of vertexes 
(DDG upon alanine 
mutation in Kcal/mol) 

HotSprint result of vertex 
(H for Hotspot and NH 
for not Hotspot) 

1PST LEU-H12 -0.333749 NH 

 LEU-M286 1.92521 H 

 VAL-M290 0.894359 NH 

 LEU-M275 2.76555 H 

 ALA-H16 0 NH 

 LEU-M278 1.47245 NH 

 LEU-H27 2.8672 H 

 ALA-H13 0 H 

1NHG LEU-D399 4.02936 H 

 VAL-B213 3.30741 H 

 LEU-B119 2.7882 H 

1DM5 LEU-D101 2.8537 H 

 LEU-B80 2.3943 H 

 ALA-B77 0 NH 
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Table 4.43. Foldx and Hotsprint results of 174 datasets (inter part) (continued) 

PDB ID 
Identity and PDB index 
of vertex (which is an 
amino acid) 

FoldX score of vertexes 
(DDG upon alanine 
mutation in Kcal/mol) 

HotSprint result of vertex 
(H for Hotspot and NH 
for not Hotspot) 

1QGE LEU-D17 1.68968 H 

 LEU-E265 3.68743 H 

 LEU-E314 2.76683 H 

 ALA-D105 0 NH 

 LEU-D205 1.63874 H 

 LEU-D149 2.86152 H 

 LEU-E247 2.48624 H 

 LEU-D164 3.02598 H 

 LEU-E292 1.16693 H 

 LEU-E286 2.75518 H 
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Table 4.44. Foldx and Hotsprint results of 429 datasets (intra part) 

PDB ID 
Identity and PDB index 
of vertex (which is an 
amino acid) 

FoldX score of vertexes 
(DDG upon alanine 
mutation in Kcal/mol) 

HotSprint result of vertex 
(H for Hotspot and NH 
for not Hotspot) 

1G85 VAL-B100 3.32671 H 

 PHE-A132 5.4911 H 

 LEU-B118 3.84064 H 

2FYI ILE-A112 2.25389 H 

 LEU-A126 2.81702 H 

 ILE-B112 3.02598 H 

 LEU-B126 3.26232 H 

 LEU-B124 3.54604 H 

 LEU-A236 1.77664 NH 

 LEU-B236 1.51826 H 

1CWQ LEU-A92 -69.8588 H 

 LEU-B99 -38.1616 H 

 ILE-B45 -59.2146 H 

 ILE-A45 -46.5357 H 
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Table 4.44. Foldx and Hotsprint results of 429 datasets (intra part) (continued) 

PDB ID 
Identity and PDB index 
of vertex (which is an 
amino acid) 

FoldX score of vertexes 
(DDG upon alanine 
mutation in Kcal/mol) 

HotSprint result of vertex 
(H for Hotspot and NH 
for not Hotspot) 

1I0Z ILE-A37 2.24517 H 

 LEU-A65 3.5992 H 

 LEU-B254 1.24123 H 

 ILE-B37 2.06719 H 

 LEU-B65 3.23862 H 

 LEU-A254 1.23857 H 

2NUU VAL-C50 1.88295 H 

 LEU-C54 2.4173 H 

 PHE-B247 1.06479 NH 

1AUW ILE-D225 1.72257 H 

 LEU-C440 0.939303 NH 

 LEU-D227 0.825853 NH 

1O5O LEU-B11 2.85004 H 

 ILE-A67 3.01077 H 

 LEU-A48 2.56391 H 
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Table 4.44. Foldx and Hotsprint results of 429 datasets (intra part) (continued) 

PDB ID 
Identity and PDB index 
of vertex (which is an 
amino acid) 

FoldX score of vertexes 
(DDG upon alanine 
mutation in Kcal/mol) 

HotSprint result of vertex 
(H for Hotspot and NH 
for not Hotspot) 

1TW2 ILE-B126 2.87936 H 

 ILE-A74 2.53761 H 

 LEU-B67 3.696 H 

 LEU-A301 2.90852 H 

 LEU-A304 1.81494 H 

 LEU-A76 3.42717 H 

 ILE-A126 3.18988 H 

 LEU-B304 2.04903 H 

 LEU-B22 1.41521 NH 

 ILE-B74 2.92941 H 

 LEU-A67 3.12384 H 

 LEU-B76 3.69269 H 

 LEU-B301 2.95945 H 

 LEU-B122 2.01551 H 

 LEU-A22 2.32137 H 
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Table 4.44. Foldx and Hotsprint results of 429 datasets (intra part) (continued) 

PDB ID 
Identity and PDB index 
of vertex (which is an 
amino acid) 

FoldX score of vertexes 
(DDG upon alanine 
mutation in Kcal/mol) 

HotSprint result of vertex 
(H for Hotspot and NH 
for not Hotspot) 

2EGH ILE-A255 3.05018 H 

 LEU-A270 1.84109 H 

 LEU-B270 3.41902 H 

1V2I VAL-A187 -0.207707 H 

 LEU-A555 2.78884 H 

 PHE-B563 4.86801 H 

1EWK ILE-A120 2.11047 H 

 ILE-B120 2.21801 H 

 LEU-A174 3.16704 H 

 LEU-B174 3.15242 H 

1P0K ILE-A74 1.75001 H 

 ILE-B74 1.81817 H 

 LEU-A70 2.8364 H 

 LEU-B70 2.8744 H 
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Table 4.44. Foldx and Hotsprint results of 429 datasets (intra part) (continued) 

PDB ID 
Identity and PDB index 
of vertex (which is an 
amino acid) 

FoldX score of vertexes 
(DDG upon alanine 
mutation in Kcal/mol) 

HotSprint result of vertex 
(H for Hotspot and NH 
for not Hotspot) 

1HKV LEU-A347 3.21508 H 

 LEU-B347 3.67745 H 

 ILE-B343 2.42404 H 

1AB8 LEU-B877 2.28387 H 

 LEU-A915 2.92425 H 

 ILE-B1010 2.5096 H 

1XI9 ILE-A271 2.06895 H 

 LEU-A268 3.1054 H 

 LEU-B133 2.53108 H 

 

Table 4.45. Foldx and Hotsprint results of 429 datasets (inter part) 

PDB ID 
Identity and PDB index 
of vertex (which is an 
amino acid) 

FoldX score of vertexes 
(DDG upon alanine 
mutation in Kcal/mol) 

HotSprint result of vertex 
(H for Hotspot and NH 
for not Hotspot) 

1M56 LEU-B123 1.38927 H 

 LEU-B120 1.19847 NH 

 LEU-A342 1.16217 NH 
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Table 4.45. Foldx and Hotsprint results of 429 datasets (inter part) (continued) 

PDB ID 
Identity and PDB index 
of vertex (which is an 
amino acid) 

FoldX score of vertexes 
(DDG upon alanine 
mutation in Kcal/mol) 

HotSprint result of vertex 
(H for Hotspot and NH 
for not Hotspot) 

1PYT LEU-B280 2.58962 H 

 LEU-B125 3.50036 H 

 LEU-A86 1.53339 H 

1AZS LEU-B912 2.68622 H 

 LEU-A497 3.1188 H 

 LEU-B915 2.49169 H 

1NF3 LEU-B67 1.90269 H 

 LEU-D208 3.59395 H 

 LEU-B70 0.496832 NH 

1MF8 LEU-A369 1.61408 H 

 VAL-A368 2.00366 H 

 LEU-B29 3.68364 H 

1Z7M LEU-E84 2.15318 H 

 PHE-E188 2.27782 H 

 LEU-A192 1.55385 H 
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Table 4.45. Foldx and Hotsprint results of 429 datasets (inter part) (continued) 

PDB ID 
Identity and PDB index 
of vertex (which is an 
amino acid) 

FoldX score of vertexes 
(DDG upon alanine 
mutation in Kcal/mol) 

HotSprint result of vertex 
(H for Hotspot and NH 
for not Hotspot) 

1JWI LEU-B79 3.83968 H 

 LEU-B92 3.22457 H 

 LEU-A70 4.1262 H 

 PHE-A101 5.32497 H 

 LEU-B87 1.65859 H 

1AIG ALA-P13 0 H 

 LEU-O286 2.41348 H 

 LEU-P27 3.43386 H 

 LEU-O275 3.67513 H 

 LEU-P24 2.15223 H 

 LEU-P12 -0.25158 NH 

1C0T LEU-B289 2.77368 H 

 VAL-A496 2.50007 H 

 ALA-A534 0 NH 
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Table 4.45. Foldx and Hotsprint results of 429 datasets (inter part) (continued) 

PDB ID 
Identity and PDB index 
of vertex (which is an 
amino acid) 

FoldX score of vertexes 
(DDG upon alanine 
mutation in Kcal/mol) 

HotSprint result of vertex 
(H for Hotspot and NH 
for not Hotspot) 

1JFF VAL-B260 -3.16249 H 

 TRP-A407 -1.52793 NH 

 ALA-B256 0 H 

 VAL-B257 -1.47161 NH 

1BML LEU-C292 -1.94925 H 

 LEU-C314 2.31688 H 

 LEU-A626 -0.75152 H 

1OVL VAL-B369 2.23022 H 

 VAL-A373 1.38848 H 

 ILE-A500 1.66276 H 

1HXM LEU-A141 2.70031 H 

 ALA-A139 0 H 

 LEU-B153 2.91486 H 
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Table 4.45. Foldx and Hotsprint results of 429 datasets (inter part) (continued) 

PDB ID 
Identity and PDB index 
of vertex (which is an 
amino acid) 

FoldX score of vertexes 
(DDG upon alanine 
mutation in Kcal/mol) 

HotSprint result of vertex 
(H for Hotspot and NH 
for not Hotspot) 

2BTW PHE-B36 3.10236 H 

 LEU-A45 2.88869 H 

 LEU-B46 1.1247 NH 

 LEU-B45 2.88703 H 

 LEU-A46 1.06047 NH 

 PHE-A36 3.26134 H 

1NBU VAL-B18 -0.883619 NH 

 VAL-C55 0.564909 NH 

 LEU-C48 0.149154 NH 

1AR1 LEU-B100 2.29058 H 

 LEU-B97 2.1262 NH 

 LEU-A334 2.32249 H 

 ALA-A338 0 H 

 LEU-A342 0.979486 NH 
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Table 4.45. Foldx and Hotsprint results of 429 datasets (inter part) (continued) 

PDB ID 
Identity and PDB index 
of vertex (which is an 
amino acid) 

FoldX score of vertexes 
(DDG upon alanine 
mutation in Kcal/mol) 

HotSprint result of vertex 
(H for Hotspot and NH 
for not Hotspot) 

1UKV LEU-G233 4.4628 H 

 LEU-Y193 2.5709 H 

 VAL-Y191 1.87093 NH 

1SB2 VAL-B85 1.69258 NH 

 LEU-A70 3.55141 H 

 LEU-B77 3.3493 H 

 LEU-B90 1.22833 H 

1XDK LEU-B371 3.11804 H 

 LEU-A425 1.90253 H 

 LEU-A424 2.9613 H 

 ALA-A421 0 H 

 LEU-B349 1.68549 H 

 PHE-A420 2.48183 H 

4.6. Apply the Proposed Method to Other Type of Interactions Part III 

4.6.1. Dataset Preparation 

In this part our study focused on the interaction between protein and a significant ligand, 

ATP. ATP is a complex organic chemical nucleotide which plays an important role in many 

biological processes as a coenzyme interacting with proteins [8]. ATP is also considered to be 
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the energy currency of life. We collected all protein-ATP complexes from PDB 

(https://www.rcsb.org/pdb) that were obtained by X-ray method with a resolution less than 1.5 Å. 

Then we used the PISCES web server [13] to filter the complexes so that pair-wise identities 

between protein chains were less than 25%. We also removed the entries with the length of the 

protein chain less than 40. Finally, the protein-ligand dataset included 18 protein-ligand 

interfaces in 17 PDB complexes (Table 4.46)  

Table 4.46. Protein-ligand domains 

PDB ID Chain ID PDB ID Chain ID 

1OBD A 4ZQX A 

1XDN A 5CU6 C 

2C01 X 5ETN A 

3GAH A 5GQI A 

3QXC A 5HNV A 

4AFF A 5J1S A 

4B1Y B 5LVO A 

4C5C A 5XD4 A 

4NDO A 5XD4 A 

4.6.2. Graph Construction 

First, we divided ATP into three ATP subgroups: phosphoric acid (AT1), sugar (AT2) 

and base (AT3). These subgroups were considered building blocks of the ATP, similar to the 

amino acids of proteins. For each protein-ATP complexes, we extracted the amino acids and 

ATP subgoups that were located at the protein-ATP interfaces. An amino acid residue was 

considered at the protein-Ligand interfaces if the closest distance between its side chain and ATP 

was less than 5 Å. An ATP subgroup was considered at the interface if the closet distance 

https://www.rcsb.org/pdb
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between it and any amino acid side chain was less than 5 Å. The threshold of 5 Å was chosen 

because interactions with distances longer than that wouldn’t have significant contributions to 

the binding affinity. Then, each protein-Ligand interface was represented as a graph, with each 

residue (or ATP subgroup) being represented as a vertex and an edge being added between two 

vertices if the distance between them was less than 5 Å. The edges have two types 1 and 0, with 

1 representing edges crossing the interface (i.e., they represent contacts between amino acids and 

ATP）, and 0 being edegs that did not cross the interfaces.  Thus, we obtained 18 graphs 

corresponding to the protein-ATP interfaces. Each vertex was labeled with the category of its 

amino acid (or ATP subpart), and each edge was labeled with its length and type. 

4.6.3. Calculation of Common Sub-graphs 

A 3-dimenstional structural motif across the protein-Ligand interface can be defined by 

the set of amino acids and ATP subgroups involved in the motif and all pairwise distances 

between them. Such a motif can be represented as a clique, a graph in which every vertex is 

adjacent to every other vertex. Each vertex of the clique is labeled with its amino acid category 

(or ATP subpart type) and each edge is labeled with the distance and type between its vertices. 

Therefore, the problem of discovering common structural motifs at the protein-Ligand interfaces 

can be transformed into finding common cliques. In this work, we are interested in finding 

maximal cliques that are not a sub-graph of other cliques. We used the product graph method 

[14] to find maximal cliques shared by a pair of graphs. First, for each pair of graph G1 and G2, 

a product graph, G1XG2, was built as follows: (1) For every vertex, named v1, of G1 and every 

vertex, named u1, of G2, if the labels of v1 and u1 are the same, then a vertex, named (v1, u1), 

was created for the product graph G1XG2; (2) For every pair of vertices of G1XG2, named (v1, 

u1) and (v2, u2), an edge was created between them if (a) there was an edge between v1 and v2 
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in G1, (b) there was an edge between u1 and u2 in G2, and (c) , 

where  is the distance between v1 and v2. Then, each maximal clique in the product 

graph G1XG2 corresponded to a common structural motif shared by G1 and G2. For our dataset, 

we used the product graph method to discover maximal cliques for each pair of graphs. Since the 

goal was find frequent structural motifs spanning the interfaces, we only kept the maximal 

cliques that included both amino acids and ATP subparts with the requirement that they must 

occur in at least three of the protein-Ligand interfaces. 

In the protein-ligand dataset, we found 24 common structural motifs that each occurred in 

at least6 protein-ATP interfaces. These motifs occur a total of 213 times in the 18 protein-ATP 

interfaces. Each of the motifs contained at least 1 amino acid residues and 1 ATP subgroup. 

Table 4.47 shows the composition and frequencies of the motifs. 

Table 4.47. Structural motifs found in the ATP dataset 

Structural Motif ID Vertex Types Frequencies 
Distribution (# of 

coverage PDB) 

1 ARG, AT1, AT2 9 8 

2 ARG, AT1, GLU 6 6 

3 ARG, AT1, GLY 10 6 

4 ASP, AT1, AT2 7 6 

5 AT1, AT2, GLU 8 8 

6 AT1, AT2, GLY 14 9 

7 AT1, AT2, LYS 10 8 

 AT1, AT2, LYS 11 9 
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Table 4.47. Structural motifs found in the ATP dataset (continued) 

Structural Motif ID Vertex Types Frequencies 
Distribution (# of 

coverage PDB) 

8 AT1, GLY, ILE 7 6 

9 AT1, GLY, LYS 9 6 

 AT1, GLY, LYS 9 7 

 AT1, GLY, LYS 12 6 

10 AT1, GLY, VAL 11 7 

11 AT1, ILE, LYS 8 7 

12 AT1, LEU, LYS 9 7 

13 AT2, AT3, ILE 7 6 

14 AT2, AT3, LEU 10 8 

 AT2, AT3, LEU 6 6 

15 AT2, AT3, VAL 7 7 

16 AT2, GLY, LYS 12 7 

17 AT3, ILE, VAL 8 6 

18 AT3, LEU, LEU 8 6 

19 AT3, LEU, TYR 6 6 

20 AT3, LEU, VAL 9 7 

 

GTP, CTP, and TTP have a structure similar to ATP. They have identical phosphoric acid 

and sugar subgroups and only differ in the base. We continued to explore whether the motifs 

discovered above are unique to the protein-ATP interactions or they are common motifs shared 

in the interactions of GTP, CTP, and TTP with proteins. 

We extracted the protein-CTP, protein-GTP, protein-TTP, complexes using the same 

method as ATP dataset. The numbers of these structures were much less than the protein-ATP 
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complexes. Thus, in order to obtain sufficient data, we kept all X-ray structures with resolution 

less than 3 Å. Then we represented the protein-ligand interfaces in these datasets as graphs and 

counted the occurrence frequencies of the motifs in these protein interfaces. The results are 

shown in Table 4.48. 

Table 4.48. Total occurrence of structural motifs in three new datasets 

Dataset 
# of PDB 

complexes 

# of motif 

occurrence 

protein-CTP 37 156 

protein-GTP 71 358 

protein-TTP 21 104 

 

Tables 4.49 - 4.51 show the composition and frequencies of the motifs in these three 

datasets. 

Table 4.49. Structural motifs found in the CTP dataset 

Structural Motif ID Vertex Types Frequencies 
Distribution (# of 

coverage PDB) 

1 ARG, AT1, AT2 7 7 

2 ARG, AT1, GLU 7 5 

3 ARG, AT1, GLY 7 6 

4 ASP, AT1, AT2 12 12 

5 AT1, AT2, GLU 4 4 

6 AT1, AT2, GLY 16 12 

7 AT1, AT2, LYS 14 13 

 AT1, AT2, LYS 17 16 
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Table 4.49. Structural motifs found in the CTP dataset (continued) 

Structural Motif ID Vertex Types Frequencies 
Distribution (# of 

coverage PDB) 

8 AT1, GLY, ILE 3 3 

9 AT1, GLY, LYS 2 2 

 AT1, GLY, LYS 5 5 

 AT1, GLY, LYS 7 5 

10 AT1, GLY, VAL 11 6 

11 AT1, ILE, LYS 9 8 

12 AT1, LEU, LYS 5 5 

13 AT2, AT3, ILE 8 6 

14 AT2, AT3, LEU 6 6 

 AT2, AT3, LEU 2 2 

15 AT2, AT3, VAL 6 4 

16 AT2, GLY, LYS 4 3 

17 AT3, ILE, VAL 1 1 

18 AT3, LEU, LEU 2 1 

19 AT3, LEU, TYR 1 1 

20 AT3, LEU, VAL 0 0 

Table 4.50. Structural motifs found in the GTP dataset 

Structural Motif ID Vertex Types Frequencies 
Distribution (# of 

coverage PDB) 

1 ARG, AT1, AT2 20 15 

2 ARG, AT1, GLU 10 7 

3 ARG, AT1, GLY 7 7 
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Table 4.50. Structural motifs found in the GTP dataset (continued) 

Structural Motif ID Vertex Types Frequencies 
Distribution (# of 

coverage PDB) 

4 ASP, AT1, AT2 10 9 

5 AT1, AT2, GLU 7 7 

6 AT1, AT2, GLY 44 31 

7 AT1, AT2, LYS 31 28 

 AT1, AT2, LYS 34 33 

8 AT1, GLY, ILE 16 12 

9 AT1, GLY, LYS 8 8 

 AT1, GLY, LYS 18 14 

 AT1, GLY, LYS 25 17 

10 AT1, GLY, VAL 27 17 

11 AT1, ILE, LYS 19 13 

12 AT1, LEU, LYS 28 22 

13 AT2, AT3, ILE 9 8 

14 AT2, AT3, LEU 4 4 

 AT2, AT3, LEU 10 9 

15 AT2, AT3, VAL 6 6 

16 AT2, GLY, LYS 6 6 

17 AT3, ILE, VAL 7 5 

18 AT3, LEU, LEU 8 7 

19 AT3, LEU, TYR 3 3 

20 AT3, LEU, VAL 1 1 
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Table 4.51. Structural motifs found in the TTP dataset 

Structural Motif ID Vertex Types Frequencies 
Distribution (# of 

coverage PDB) 

1 ARG, AT1, AT2 3 2 

2 ARG, AT1, GLU 2 1 

3 ARG, AT1, GLY 2 1 

4 ASP, AT1, AT2 7 6 

5 AT1, AT2, GLU 2 2 

6 AT1, AT2, GLY 7 5 

7 AT1, AT2, LYS 12 10 

 AT1, AT2, LYS 10 10 

8 AT1, GLY, ILE 2 2 

9 AT1, GLY, LYS 4 4 

 AT1, GLY, LYS 6 5 

 AT1, GLY, LYS 6 5 

10 AT1, GLY, VAL 2 2 

11 AT1, ILE, LYS 6 5 

12 AT1, LEU, LYS 9 6 

13 AT2, AT3, ILE 9 8 

14 AT2, AT3, LEU 2 2 

 AT2, AT3, LEU 4 4 

15 AT2, AT3, VAL 2 2 

16 AT2, GLY, LYS 1 1 

17 AT3, ILE, VAL 0 0 

18 AT3, LEU, LEU 3 3 

19 AT3, LEU, TYR 0 0 

20 AT3, LEU, VAL 3 2 
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4.6.4. Statistical Significance of the Motifs 

We performed bootstrapping to evaluate the statistical significance of the discovered 

motifs. During the bootstrapping, all amino acids in the protein-Ligand interfaces were put into a 

bag. Then each amino acid vertex was re-assigned an identity by randomly taking one amino 

acid from the bag. Then the amino acid was put back into the bag. This process continued until 

all the amino acid vertices were re-assigned. The identities of ATP subgroup vertices were re-

assigned using similar method. After the re-assignment of vertices, the protein-Ligand interfaces 

were scanned to count how many times each of the motifs occurred. Bootstrapping was 

performed on the all four datasets separately, repeating 1000 times for each dataset.  

Tables 4.52-4.55 (columns 4 and 5) show the average frequency and standard deviation 

of the bootstrapping for each dataset. The average frequency indicated how many times a motif 

was expected to occur in the dataset of protein-Ligand interfaces if the vertex identities were 

randomly assigned. For each dataset, we performed a one-sample t-test to determine whether the 

observed frequency in the real dataset could have come from a random process mimicked by the 

bootstrapping. Most of results show that the observed frequencies were not a result of random 

process. All the t-tests has p value lower than 0.0001 in each of the dataset.   
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Table 4.52. Statistical significance of the motifs in ATP dataset 

Structural 

Motif ID 
Vertex Types 

Observed 

frequency in 

the real 

Protein-Ligand 

interfaces 

Average 

frequency in 

bootstrapping 

Standard 

deviation of 

bootstrapping 

p-value of 

one-

sample t-

test 

1 ARG, AT1, AT2 9 1.074 1.123 <0.0001 

2 ARG, AT1, GLU 6 0.643 0.895 <0.0001 

3 ARG, AT1, GLY 10 1.529 1.491 <0.0001 

4 ASP, AT1, AT2 7 0.567 0.793 <0.0001 

5 AT1, AT2, GLU 8 0.696 0.877 <0.0001 

6 AT1, AT2, GLY 14 1.865 1.579 <0.0001 

7 AT1, AT2, LYS 10 1.057 1.103 <0.0001 

 AT1, AT2, LYS 11 1.010 1.106 <0.0001 

8 AT1, GLY, ILE 7 1.93 1.629 <0.0001 

9 AT1, GLY, LYS 9 1.43 1.393 <0.0001 

 AT1, GLY, LYS 9 0.937 1.077 <0.0001 

 AT1, GLY, LYS 12 1.751 1.573 <0.0001 

10 AT1, GLY, VAL 11 2.026 1.690 <0.0001 

11 AT1, ILE, LYS 8 1.439 1.412 <0.0001 

12 AT1, LEU, LYS 9 1.679 1.584 <0.0001 

13 AT2, AT3, ILE 7 1.357 1.266 <0.0001 

14 AT2, AT3, LEU 10 2.146 1.644 <0.0001 

 AT2, AT3, LEU 6 0.983 1.091 <0.0001 

15 AT2, AT3, VAL 7 1.789 1.510 <0.0001 

16 AT2, GLY, LYS 12 1.125 1.205 <0.0001 

17 AT3, ILE, VAL 8 1.598 1.556 <0.0001 

18 AT3, LEU, LEU 8 1.861 1.669 <0.0001 

19 AT3, LEU, TYR 6 0.672 0.930 <0.0001 

20 AT3, LEU, VAL 9 1.701 1.752 <0.0001 
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Table 4.53. Statistical significance of the motifs in CTP dataset 

Structural 

Motif ID 
Vertex Types 

Observed 

frequency in 

the real 

Protein-

Ligand 

interfaces 

Average 

frequency in 

bootstrapping 

Standard 

deviation of 

bootstrapping 

p-value of 

one-

sample t-

test 

1 ARG, AT1, AT2 7 2.115 1.475 <0.0001 

2 ARG, AT1, GLU 7 1.271 1.261 <0.0001 

3 ARG, AT1, GLY 7 2.311 1.705 <0.0001 

4 ASP, AT1, AT2 12 1.625 1.385 <0.0001 

5 AT1, AT2, GLU 4 1.431 1.277 <0.0001 

6 AT1, AT2, GLY 16 3.378 2.095 <0.0001 

7 AT1, AT2, LYS 14 1.93 1.485 <0.0001 

 AT1, AT2, LYS 17 1.518 1.286 <0.0001 

8 AT1, GLY, ILE 3 2.373 1.784 <0.0001 

9 AT1, GLY, LYS 2 1.685 1.539 <0.0001 

 AT1, GLY, LYS 5 1.092 1.199 <0.0001 

 AT1, GLY, LYS 7 2.268 1.724 <0.0001 

10 AT1, GLY, VAL 11 3.868 2.331 <0.0001 

11 AT1, ILE, LYS 9 1.675 1.425 <0.0001 

12 AT1, LEU, LYS 5 2.25 1.725 <0.0001 

13 AT2, AT3, ILE 8 2.332 1.662 <0.0001 

14 AT2, AT3, LEU 6 3.764 2.200 <0.0001 

 AT2, AT3, LEU 2 1.636 1.333 <0.0001 

15 AT2, AT3, VAL 6 3.76 2.131 <0.0001 

16 AT2, GLY, LYS 4 1.483 1.401 <0.0001 

17 AT3, ILE, VAL 1 2.343 1.752 <0.0001 

18 AT3, LEU, LEU 2 2.873 2.009 <0.0001 

19 AT3, LEU, TYR 1 1.8 1.508 <0.0001 

20 AT3, LEU, VAL 0 2.518 1.859 <0.0001 
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Table 4.54. Statistical significance of the motifs in GTP dataset 

Structural 

Motif ID 
Vertex Types 

Observed 

frequency in the 

real Protein-

Ligand 

interfaces 

Average 

frequency in 

bootstrapping 

Standard 

deviation of 

bootstrapping 

p-value of 

one-

sample t-

test 

1 ARG, AT1, AT2 20 3.036 1.838 <0.0001 

2 ARG, AT1, GLU 10 2.227 1.639 <0.0001 

3 ARG, AT1, GLY 7 4.701 2.468 <0.0001 

4 ASP, AT1, AT2 10 2.591 1.733 <0.0001 

5 AT1, AT2, GLU 7 2.315 1.661 <0.0001 

6 AT1, AT2, GLY 44 6.473 2.916 <0.0001 

7 AT1, AT2, LYS 31 3.858 2.167 <0.0001 

 AT1, AT2, LYS 34 2.994 1.834 <0.0001 

8 AT1, GLY, ILE 16 5.668 2.703 <0.0001 

9 AT1, GLY, LYS 8 4.741 2.433 <0.0001 

 AT1, GLY, LYS 18 3.124 2.038 <0.0001 

 AT1, GLY, LYS 25 6.35 3.016 <0.0001 

10 AT1, GLY, VAL 27 7.263 3.261 <0.0001 

11 AT1, ILE, LYS 19 3.949 2.214 <0.0001 

12 AT1, LEU, LYS 28 4.423 2.360 <0.0001 

13 AT2, AT3, ILE 9 3.733 2.077 <0.0001 

14 AT2, AT3, LEU 4 5.533 2.582 <0.0001 

 AT2, AT3, LEU 10 2.954 1.785 <0.0001 

15 AT2, AT3, VAL 6 4.422 2.612 <0.0001 

16 AT2, GLY, LYS 6 4.034 2.272 <0.0001 

17 AT3, ILE, VAL 7 3.905 2.192 <0.0001 

18 AT3, LEU, LEU 8 4.293 2.424 <0.0001 

19 AT3, LEU, TYR 3 2.129 1.632 <0.0001 

20 AT3, LEU, VAL 1 4.279 2.385 <0.0001 
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Table 4.55. Statistical significance of the motifs in TTP dataset 

Structural 

Motif ID 
Vertex Types 

Observed 

frequency in 

the real 

Protein-

Ligand 

interfaces 

Average 

frequency in 

bootstrapping 

Standard 

deviation of 

bootstrapping 

p-value of 

one-

sample t-

test 

1 ARG, AT1, AT2 3 1.359 1.280 <0.0001 

2 ARG, AT1, GLU 2 0.872 1.010 <0.0001 

3 ARG, AT1, GLY 2 0.593 1.460 <0.0001 

4 ASP, AT1, AT2 7 0.666 0.862 <0.0001 

5 AT1, AT2, GLU 2 0.699 0.918 <0.0001 

6 AT1, AT2, GLY 7 2.051 1.543 <0.0001 

7 AT1, AT2, LYS 12 0.97 1.089 <0.0001 

 AT1, AT2, LYS 10 0.972 1.067 <0.0001 

8 AT1, GLY, ILE 2 1.584 1.505 <0.0001 

9 AT1, GLY, LYS 4 0.971 1.078 <0.0001 

 AT1, GLY, LYS 6 0.738 0.971 <0.0001 

 AT1, GLY, LYS 6 1.612 1.505 <0.0001 

10 AT1, GLY, VAL 2 1.782 1.534 <0.0001 

11 AT1, ILE, LYS 6 1.061 1.153 <0.0001 

12 AT1, LEU, LYS 9 1.268 1.305 <0.0001 

13 AT2, AT3, ILE 9 1.368 1.251 <0.0001 

14 AT2, AT3, LEU 2 2.043 1.613 0.3994 

 AT2, AT3, LEU 4 0.964 1.051 <0.0001 

15 AT2, AT3, VAL 2 1.308 1.265 <0.0001 

16 AT2, GLY, LYS 1 0.921 1.060 0.0186 

17 AT3, ILE, VAL 0 1.034 1.187 <0.0001 

18 AT3, LEU, LEU 3 1.653 1.471 <0.0001 

19 AT3, LEU, TYR 0 1.377 1.335 <0.0001 

20 AT3, LEU, VAL 3 1.103 1.207 <0.0001 
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Table 4.52 shows that all motifs occurred in the real protein-ATP interfaces with higher 

frequencies than the result of a random process, and the differences are statistically significant.  

Tables 4.53, 4.54, and 4.55 show that the same trend were observed in the protein-CTP, protein-

GTP, and protein TTP interfaces for all motifs except motifs 17 and 19. Tables 4.56 and 4.57 

show the occurrence of motifs 17 and 19 in the four types protein-ligand interfaces. In the 

protein-CTP and protein-TTP datasets, motifs 17 and 19 occur in the protein-ligand interfaces 

with frequencies lower than expected by a random process. In contrast, they both occur in the 

protein-ATP and protein-GTP interfaces with frequencies higher than expected by a random 

process. Combining together, these results indicate that motifs 17 and 19 are abundant in protein-

ATP and protein-GTP interfaces but are depleted in protein-CTP and protein-TTP interfaces. 

Since ATP and GTP both have a purine base, and CTP and TTP have a pyrimidine base, these 

results suggest that motifs 17 and 19 facilitate the interactions between purines and amino acids 

but are not used in the interactions between pyrimidine and amino acids. 

Table 4.56. Statistical significance of motif 17 in four datasets 

Dataset 

Observed frequency in 

the real Protein-

Ligand interfaces 

Average 

frequency in 

bootstrapping 

Standard 

deviation of 

bootstrapping 

p-value of one-

sample t-test 

protein-ATP 8 1.598 1.556 <0.0001 

protein-CTP 1 2.343 1.752 <0.0001 

protein-GTP 7 3.905 2.192 <0.0001 

protein-TTP 0 1.034 1.187 <0.0001 
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Table 4.57. Statistical significance of motif 19 in four datasets 

Dataset 

Observed frequency in 

the real Protein-Ligand 

interfaces 

Average 

frequency in 

bootstrapping 

Standard 

deviation of 

bootstrapping 

p-value of one-

sample t-test 

protein-ATP 6 0.672 0.930 <0.0001 

protein-CTP 1 1.8 1.508 <0.0001 

protein-GTP 3 2.129 1.632 <0.0001 

protein-TTP 0 1.377 1.335 <0.0001 
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5. CONCLUSION 

Biologists have strong desire for the ability to engineering proteins that can specifically 

bind to another structure such as DNA, protein or ligand, which inspires them to look for 

“recognition codes” that govern the interactions between proteins and another molecular.  

Most sequence-based and PWM methods only capture sequence features on the protein 

interfaces and ignore the crucial spatial attributes of the features. For example in the protein-

DNA studies, the pairwise contacting preferences method only takes pair-wise distances between 

amino acids and nucleotide bases into consideration, which is not enough. Some methods  take 

into  consideration the  3-dimensional structures of the interacting molecules, but only consider 

them separately.  

In this work, we implemented an innovative graph representation method to encode 

protein complex structure. For the example of protein-DNA studies, our method applied the 3D 

distance and relative position among amino acids and nucleotides to the construction of graph. 

Then we discovered structural motifs that were favored in the protein-DNA, protein-protein and 

protein-ligand interactions. Such motifs include more information than the traditional amino 

acid-base contacting pairs. Thus, they can provide more accurate prediction on protein-DNA, 

protein-protein and protein-ligand recognition. The biological and statistical significance of the 

motifs were confirmed using evolutionary conservation analysis and bootstrapping. We also 

performed many other tests to evaluate our motifs’ critical roles in the interactions. For example, 

we compared our motifs with experimentally verified hotspots. We also compared our method 

with other computational prediction method to assess the effectiveness of the method. 

Our results confirmed that the graph motifs discovered in this study play important roles 

in protein-DNA, protein-protein and protein-ligand interactions. Using product graph, we 

transformed the structural motif discovery problem into a search for maximal cliques. This study 
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sheds light on the recognition codes from a new angle by representing the recognition codes in 

form of structural motifs that span the protein-DNA, protein-protein and protein-ligand 

interfaces. We believe that the proposed graph method will be a very helpful tool for studying 

the protein complexes interaction and other type of molecular interactions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

120 
 

REFERENCES 

[1]  Jones, S.; van Heyningen, P.; Berman, H.M.; Thornton, J.M. protein–DNA interactions: 

A structural analysis. J. Mol. Biol. 1999, 287, 877–896. 

[2]  Jones, S.; Barker, J.A.; Nobeli, I.; Thornton, J.M. Using structural motif templates to 

identify proteins with DNA binding function. Nucleic Acids Res. 2003, 31, 2811–2823. 

[3]  Kono, H.; Sarai, A. Structure-based prediction of DNA target sites by regulatory proteins. 

Proteins 1999, 35, 114–131. 

[4]  Luscombe, N.M.; Laskowski, R.A.; Thornton, J.M. Amino acid-base interactions: A 

three-dimensional analysis of protein–DNA interactions at an atomic level. Nucleic Acids 

Res. 2001, 29, 2860–2874. 

[5]  Mandel-Gutfreund, Y.; Margalit, H. Quantitative parameters for amino acid-base 

interaction: Implications for prediction of protein–DNA binding sites. Nucleic Acids Res. 

1998, 26, 2306–2312. 

[6]  Olson, W.K.; Gorin, A.A.; Lu, X.J.; Hock, L.M.; Zhurkin, V.B. DNA sequence-

dependent deformability deduced from protein–DNA crystal complexes. Proc. Natl. 

Acad. Sci. USA 1998, 95, 11163–11168. 

[7]  Orengo, C.A.; Michie, A.D.; Jones, S.; Jones, D.T.; Swindells, M.B.; Thornton, J.M. 

CATH—A hierarchic classification of protein domain structures. Structure 1997, 5, 

1093–1108. 

[8] Ponting, C.P.; Schultz, J.; Milpetz, F.; Bork, P. SMART: Identification and annotation of 

domains from signalling and extracellular protein sequences. Nucleic Acids Res. 1999, 

27, 229–232. 

 

 



 

121 
 

[9]  Hwang, S.; Gou, Z.; Kuznetsov, I.B. DP-Bind: A web server for sequence-based 

prediction of DNA-binding residues in DNA-binding proteins. Bioinformatics 2007, 23, 

634–636. 

[10] Yan, C.; Terribilini, M.; Wu, F.; Jernigan, R.L.; Dobbs, D.; Honavar, V. Predicting 

DNA-binding sites of proteins from amino acid sequence. BMC Bioinform. 2006, 7, 

doi:10.1186/1471-2105-7-262. 

[11] Ahmad, S.; Sarai, A. PSSM-based prediction of DNA binding sites in proteins. BMC 

Bioinform. 2005, 6, doi:10.1186/1471-2105-6-33. 

[12] Wu, J.; Liu, H.; Duan, X.; Ding, Y.; Wu, H.; Bai, Y.; Sun, X. Prediction of DNA-

binding residues in proteins from amino acid sequences using a random forest model with 

a hybrid feature. Bioinformatics 2009, 25, 30–35. 

[13] Carson, M.B.; Langlois, R.; Lu, H. NAPS: A residue-level nucleic acid-binding 

prediction server. Nucleic Acids Res. 2010, 38, W431–W435. 

[14] Alibes, A.; Serrano, L.; Nadra, A.D. Structure-based DNA-binding prediction and 

design. Methods Mol. Biol. 2010, 649, 77–88. 

[15] Li, B.Q.; Feng, K.Y.; Ding, J.; Cai, Y.D. Predicting DNA-binding sites of proteins based 

on sequential and 3D structural information. Mol. Genet. Genomics 2014, 289, 489–499. 

[16] Li, T.; Li, Q.Z.; Liu, S.; Fan, G.L.; Zuo, Y.C.; Peng, Y. PreDNA: Accurate prediction of 

DNA-binding sites in proteins by integrating sequence and geometric structure 

information. Bioinformatics 2013, 29, 678–685. 

[17] Xiong, Y.; Xia, J.; Zhang, W.; Liu, J. Exploiting a reduced set of weighted average 

features to improve prediction of DNA-binding residues from 3D structures. PLoS One 

2011, 6, e28440. 



 

122 
 

 

[18] Dominguez, C.; Boelens, R.; Bonvin, A.M. HADDOCK: A protein–protein docking 

approach based on biochemical or biophysical information. J. Am. Chem. Soc. 2003, 

125, 1731–1737. [CrossRef] [PubMed] 

[19] Katchalski-Katzir, E.; Shariv, I.; Eisenstein, M.; Friesem, A.A.; Aflalo, C.; Vakser, I.A. 

Molecular surface recognition: Determination of geometric fit between proteins and their 

ligands by correlation techniques. Proc. Natl. Acad. Sci. USA 1992, 89, 2195–2199. 

[CrossRef] [PubMed] 

[20] Ritchie, D.W.; Kemp, G.J. Protein docking using spherical polar Fourier correlations. 

Proteins 2000, 39, 178–194. [CrossRef] 

[21] Gabb, H.A.; Jackson, R.M.; Sternberg, M.J. Modelling protein docking using shape 

complementarity, electrostatics and biochemical information. J. Mol. Biol. 1997, 272, 

106–120. [CrossRef] [PubMed] 

[22] Tuszynska, I.; Bujnicki, J.M. DARS-RNP and QUASI-RNP: New statistical potentials 

for protein-RNA docking. BMC Bioinform. 2011, 12. [CrossRef] [PubMed] 

[23] Pabo, C.O. and Nekludova, L. (2000) Geometric analysis and comparison of protein-

DNA interfaces: why is there no simple code for recognition? J. Mol. Biol., 301, 597–

624. 

[24] Suzuki, M., Gerstein, M. and Yagi, N. (1994) Stereochemical basis of DNA recognition 

by Zn fingers. Nucleic Acids Res., 22, 3397–3405. 

[25] Kortemme, T., Morozov, A.V. and Baker, D. (2003) An orientation dependent hydrogen 

bonding potential improves prediction of specificity and structure for proteins and 

protein-protein complexes. J. Mol. Biol., 326, 1239–1259. 



 

123 
 

[26] Siggers, T.W. and Honig, B. (2007) Structure-based prediction of C2H2 zinc-finger 

binding specificity: sensitivity to docking geometry. Nucleic Acids Res., 35, 1085–1097. 

[27] Siggers, T.W., Silkov, A. and Honig, B. (2005) Structural alignment of protein–DNA 

interfaces: insights into the determinants of binding specificity. J. Mol. Biol., 345, 1027–

1045. 

[28] Morozov, A.V.; Havranek, J.J.; Baker, D.; Siggia, E.D. protein–DNA binding specificity 

predictions with structural models. Nucleic Acids Res. 2005, 33, 5781–5798. 

[29] Szilagyi, A.; Skolnick, J. Efficient prediction of nucleic acid binding function from low-

resolution protein structures. J. Mol. Biol. 2006, 358, 922–933. 

[30] Gao, M.; Skolnick, J. A threading-based method for the prediction of DNA-binding 

proteins with application to the human genome. PLoS Comput. Biol. 2009, 5, e1000567. 

[31] Si, J.; Zhang, Z.; Lin, B.; Schroeder, M.; Huang, B. MetaDBSite: A meta approach to 

improve protein DNA-binding sites prediction. BMC Syst. Biol. 2011, 5, 

doi:10.1186/1752-0509-5-S1-S7. 

[32] Zhou, Q.; Liu, J.S. Extracting sequence features to predict protein–DNA interactions: A 

comparative study. Nucleic Acids Res. 2008, 36, 4137–4148. 

[33] Rhodes, Daniela, et al. "Towards an understanding of protein-DNA 

recognition." Philosophical Transactions of the Royal Society of London B: Biological 

Sciences 351.1339 (1996): 501-509. 

[34] Hall, Traci M. Tanaka. "Multiple modes of RNA recognition by zinc finger 

proteins." Current opinion in structural biology 15.3 (2005): 367-373. 

[35] Choo, Yen, and Aaron Klug. "Physical basis of a protein-DNA recognition 

code." Current opinion in structural biology 7.1 (1997): 117-125. 



 

124 
 

[36] Miller, Jeffrey C., and Carl O. Pabo. "Rearrangement of side-chains in a Zif268 mutant 

highlights the complexities of zinc finger-DNA recognition." Journal of molecular 

biology 313.2 (2001): 309-315. 

[37] Liu, Limin Angela, and Philip Bradley. "Atomistic modeling of protein–DNA 

interaction specificity: progress and applications." Current opinion in structural 

biology 22.4 (2012): 397-405. 

[38] Baldwin, E.P., Martin, S.S., Abel, J., Gelato, K.A., Kim, H., Schultz, P.G. and Santoro, 

S.W. (2003) A specificity switch in selected cre recombinase variants is mediated by 

macromolecular plasticity and water. Chem. Biol., 10, 1085–1094. 

[39] Stormo, G.D. (2000) DNA binding sites: representation and discovery. Bioinformatics, 

16, 16–23. 

[40] Staden, R. (1984) Computer methods to locate signals in nucleic acid sequences. 

Nucleic Acids Res., 12, 505–519. 

[41] Siggers, Trevor, and Raluca Gordân. "Protein–DNA binding: complexities and multi-

protein codes." Nucleic acids research (2013): gkt1112. 

[42] Workman, C.T., Yin, Y., Corcoran, D.L., Ideker, T., Stormo, G.D. and Benos, P.V. 

(2005) enoLOGOS: a versatile web tool for energy normalized sequence logos. Nucleic 

Acids Res., 33, W389–W392. 

[43] Berger, M.F., Philippakis, A.A., Qureshi, A.M., He, F.S., Estep, P.W. 3rd and Bulyk, 

M.L. (2006) Compact, universal DNA microarrays to comprehensively determine 

transcription-factor binding site specificities. Nat. Biotechnol., 24, 1429–1435. 

 

 



 

125 
 

[44] Siggers, T., Chang, A.B., Teixeira, A., Wong, D., Williams, K.J., Ahmed, B., Ragoussis, 

J., Udalova, I.A., Smale, S.T. and Bulyk, M.L. (2012) Principles of dimer-specific gene 

regulation revealed by a comprehensive characterization of NF-kappaB family DNA 

binding. Nat. Immunol., 13, 95–102. 

[45] Nakagawa, S., Gisselbrecht, S.S., Rogers, J.M., Hartl, D.L. and Bulyk, M.L. (2013) 

DNA-binding specificity changes in the evolution of forkhead transcription factors. Proc. 

Natl Acad. Sci. USA, 110, 12349–12354. 

[46] Badis, G., Chan, E.T., van Bakel, H., Pena-Castillo, L., Tillo, D., Tsui, K., Carlson, 

C.D., Gossett, A.J., Hasinoff, M.J., Warren, C.L. et al. (2008) A library of yeast 

transcription factor motifs reveal a widespread function for Rsc3 in targeting nucleosome 

exclusion at promoters. Mol. Cell, 32, 878–887. 

[47] Wolberger C, Vershon AK, Lui B, Johnson AD, Pabo CO: Crystal structure of a MATa2 

homeodomain-operator complex suggests a general model for homeodomain-DNA 

interactions. Cell 1991, 67:517-528. 

[48] Suzuki M: Common features in DNA recognition helices of eukaryotic transcription 

factors. EMBO J 1993, 12:3221-3226. 

[49] Shih, W.; Chai, S. Data-Driven vs. Hypothesis-Driven Research: Making sense of big 

data. In Academy of Management Proceedings (Vol. 2016, No. 1, p. 14843). Briarcliff 

Manor, NY 10510: Academy of Management. 

[50] Anderson, C. The end of theory: the data deluge makes the scientific method obsolete. 

Wired Magazine 16.07. 2008. 

[51] Mazzocchi, F. Could Big Data be the end of theory in science? A few remarks on the 

epistemology of data‐driven science. EMBO reports, 16(10), 1250-1255. 2015. 



 

126 
 

[52] Van Helden, P. Data‐driven hypotheses. EMBO reports, 14(2), 104-104. 2013. 

[53] Kraus, W. L. Would You Like A Hypothesis with Those Data? Omics and the Age of 

Discovery Science. 2015. 

[54] Evans, J.; Rzhetsky, A. Machine science. Science, 329(5990), 399-400. 2010. 

[55] Berman, H.M., et al., The Protein Data Bank. Nucl Acids Res, 2000. 28(1): p. 235-242. 

[56] Wang, G. and R.L.J. Dunbrack, PISCES: a protein sequence culling server. 

Bioinformatics, 2003. 19: p. 1589-1591.  

[57] Van Dijk, M. and A.M.J.J. Bonvin, A protein–DNA docking benchmark. Nucleic Acids 

Research, 2008. 36(14): p. e88.  

[58] Jones, S., et al., Using electrostatic potentials to predict DNA-binding sites on DNA-

binding proteins. Nucl Acids Res, 2003. 31(24): p. 7189-7198.  

[59] Hubbard, S.J., NACCESS. 1993, Department of Biochemistry and Molecular Biology, 

University College, London.  

[60] Cordella, L., et al., A (sub) graph isomorphism algorithm for matching large graphs. 

IEEE Trans Pattern Anal Mach Intell, 2004. 26(10): p. 1367-1372.  

[61] Hall, M., et al., The WEKA Data Mining Software: An Update. SIGKDD Explorations, 

2009. 1(1).  

[62] Bairoch, A., et al., The Universal Protein Resource (UniProt). Nucl. Acids Res., 2005. 

33: p. D154-D159.  

[63] Gabb, H.A., R.M. Jackson, and M.J.E. Sternberg, Modelling protein docking using 

shape complementarity, electrostatics and biochemical information1. Journal of 

Molecular Biology, 1997. 272(1): p. 106- 120. 

 



 

127 
 

[64] Parisien, M., K. Freed, and T. Sosnick, On Docking, Scoring and Assessing Protein-

DNA Complexes in a Rigid-Body Framework. PLoS ONE, 2012. 7(2): p. e32647.  


