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ABSTRACT

Regression testing is one of the most important and costly phases of a software development project.

Regression testing is performed to ensure no new faults are introduced due to changes in a software. Web

applications undergo frequent changes. With such frequent changes, executing the entire regression test

suite is not cost-effective. Hence, there is a need for techniques that can reduce the overall cost of regression

testing.

We propose two regression testing techniques that demonstrate the benefits from reusability of ex-

isting resources in reducing the costs of regression testing of web applications. Our techniques are based on

PHP Analysis and Regression Testing Engine (PARTE) approach that identifies code paths that were mod-

ified between two versions of an application. We extend PARTE to introduce two components. Reusable

Tests component selects existing tests that can be reused to regression test the modified version of the ap-

plication, and identifies obsolete tests. Test Repair component repairs such obsolete tests. Our hypothesis is

that this combined approach of identifying reusable tests and repairing obsolete tests, can reduce the overall

effort of regression testing.

To test our hypothesis, we conducted experiments on real-world web applications. In our first

experiment, we learned that there are significant number of input values from the original version of an

application that can be reused to test the modified version. Based on this learning, we conducted our second

experiment to evaluate if a regression test selection technique can benefit from the reusability of input

values. Results from the second experiment demonstrated that reusability of input values minimized the

cost of verification of input values in selected tests, and identified obsolete tests. Findings from these

two experiments encouraged us to conduct an experiment to evaluate if PARTE approach can be further

extended to repair obsolete tests. Results from our third experiment showed that a few obsolete tests can

be automatically repaired. Thus, these novel approaches demonstrate the benefits from the reusability of

existing resources and shows how further studies can be performed to evaluate approaches that combine one

or more regression testing techniques to further reduce the costs of regression testing.
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1. INTRODUCTION

One of the most important and costly phases of the software engineering lifecycle is the testing

phase. Testing ensures that the software matches its specification. Testing presents various challenges,

which is the reason why testing remains one of the most widely studied and practiced areas [68]. One of

the challenges is because software evolves. Regression testing is performed to ensure no new faults are

introduced due to changes in a software [65]. Regression testing of web applications presents a unique

challenge that arises due to their development lifecycle [80]. Web applications, specifically commercial

ones, undergo rapid and frequent changes. These changes are due to various factors such as the availability

of new technology, responding to user feedback, and fixing security issues [31]. Broken features or security

defects that are not fixed quickly can harm an organization’s reputation, and customers would lose trust in

the organization and that eventually can lead to financial loss [10].

The inherent characteristics of a web application makes its maintenance more challenging than for

a traditional desktop application. Web applications are dynamic, meaning that the content of a web page

changes based on the user or the time accessed. Web applications are designed to operate on multiple plat-

forms. Web applications are heterogeneous, meaning that several technologies are used in each application.

Additionally, the ubiquitous presence of web applications makes regression testing of these applications in-

credibly challenging [99, 48]. Thus, software practitioners and researchers who maintain such applications

need appropriate tools that can analyze and effectively test changes in a timely manner.

To date, researchers have presented many techniques and tools to tackle the challenges of regression

testing of web applications [52]. For example, Ricca and Tonella [79] proposed ReWeb and TestWeb, which

perform static analysis on a UML representation of a web application and generate test cases covering the

modified code paths. Dallmeier et al. introduced WebMate [22], which is a tool to detect changes between

two versions of an application and to identify any cross-browser incompatibilities. WebMate creates a usage

model, which is a graph where nodes are the states of application and edges represent the interaction that

causes a change of state, and this usage model enables users to systematically explore modifications between

two versions of an application and to prepare regression tests that execute the modified interactions. Taneja

et al. [90] presented eXpress, which uses a path-exploration-based test generation technique to identify the

differences between two versions of an application, and prune irrelevant paths from exploration. Thereby,
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the number of paths to generate tests is minimized. However, such dynamic symbolic execution techniques

are expensive and do not scale.

Do et al. [25] introduced the PHP Analysis and Regression Testing Engine (PARTE). PARTE fol-

lows a strategy of generating test cases that cover only the modified code paths. It begins by determining

the blocks of code that were modified, then uses program slices and constraint resolution techniques to

generate tests cases. Through experiments on real-world applications, we found that PARTE approach is

cost-effective, meaning the number of test cases required to cover the modified code paths is substantially

reduced. The experiments also showed that the cost of solving constraints, to determine the input values

for generated tests, is high and it often requires manual intervention even when automated solvers are used.

For instance, solving an input that contains a long string can take an inordinate amount of time [45, 39].

We learned that reusing input values can reduce the cost associated with constraint solving. A technique to

reuse constraint values was demonstrated in the Green solver interface [93].

A limitation in this area of research is the lack of empirical evaluation of approaches that explore

the benefits of reusability of existing resources in regression testing of web applications. Regression test

selection, prioritization and minimization techniques enable software practitioners to reuse existing test

suite [102]. Empirical evaluation of how these techniques can be augmented with constraint reuse informa-

tion to further reduce the regressions testing costs, is not available in the published literature. For instance,

our recent research showed that many constraint values from the original version of a web application can be

reused to regression test the modified version of that application. Thereby, the cost of solving for constraints

is minimized [40]. Regression test selection technique could be augmented with constraint reuse informa-

tion to identify which of the selected tests have reusable inputs. Thus, the cost of test input value verification

either manually or through actual test execution can be minimized. Tests that do not have reusable input

values will be obsolete, and more savings can accrue if such obsolete tests can be automatically repaired

and reused. Hence there is a need to develop techniques that explore the benefits of reusability of existing

resources, and empirical evaluation of such techniques will provide guidance for researchers and software

practitioners in reducing the cost of regression testing of web applications.

1.1. Goal of this Dissertation

Our thesis is that reusability of existing resources during regression testing can result in significant

savings that are accrued over multiple releases of a web application.
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Failure to ignore reusable resources will result in costs towards constraint resolution, verification

of test inputs in selected regression tests and determining the cause of failure in a test. Performing these

tasks manually can result in additional costs and errors. Hence, if our thesis were true, then researchers

and software practitioners can reduce the costs and manual errors by reusing existing resources to test web

applications effectively, and perform test maintenance. Though there will be upfront costs in setting up the

infrastructure that can enable such reuse, the costs can be offset due to the savings that accrue over frequent

releases of the web application.

1.2. Approach to Achieve the Goal

To address the stated goal, we present our plan of approach to conduct the empirical evaluation

to demonstrate the benefits of reusability of existing resources in reducing the overall costs of regression

testing of web applications.

We use the terms ‘cost’ and ‘effort’ interchangeably to refer to the resources needed for conducting

regression testing. These terms refer to the resources needed in the absence of automated tools to per-

form test selection, identify reusable tests, identify obsolete tests and perform test repair. We use the term

‘reusable constraint value’, which satisfies the constraints in a regression test path, interchangeably with the

term ‘input value’ when there exists an input value for a test that covers the regression path.

First, we propose a technique that identifies reusable constraint values for the modified version of

the program. Second, we propose a regression test selection approach that selects a subset of existing tests

that are necessary to test the modified version. Some selected tests cannot be used for the new version if their

inputs are not applicable anymore, but finding such inputs is time-consuming. Thus, we apply the technique

that identifies reusable input values for the selected tests so that we can identify tests with reusable inputs.

If a small portion of the new version is modified, then we can expect greater benefits associated with this

technique. Third, we propose a test repair technique that attempts to repair tests that are not applicable to the

new version (obsolete tests). A minor change in the product can cause up to 74% of existing tests to fail [61].

Some of the failing tests can be fixed with minor updates (e.g., parameter data type or order change) in the

test code, but performing such maintenance tasks can cost an organization up to $120 million a year [33].

Automating a test repair task will allow developers to minimize the manual inspection and correction of

failing tests, and reduces the cost of maintenance of the test suite.

The proposed constraint reuse technique compares the definitions and uses (def-use) of a variable

in the original and modified versions of the program. If def-use chain of the variable is same between two

3



versions, then the constraint value for that variable can be reused. The proposed test selection technique

uses slice information obtained through PARTE to identify code blocks that were modified. Existing test

coverage information enables test selection to identify tests that cover the modified code paths. The selected

tests could contain inputs values that are not applicable to the modified version. To identify such input values

automatically, each input variable in the selected test set is compared with the set of variables that have the

same def-use chain in the original and modified versions of the program. Tests that have reusable constraints

are included in the set of regression tests to be run against the modified version of the program. Tests

with non-reusable constraints are identified as obsolete tests. The proposed test repair approach automates

two of the most common test case maintenance activities. Those two activities are fixing assertions [23]

and updating method invocations [63]. Program dependence graphs (PDGs) of source and test code are

analyzed to identify assertions and method signatures. Based on the obsolete test’s failure message obtained

from PHPUnit [73], an appropriate repair is identified, and the repaired copy of the test is created.

To assess the proposed approaches, we performed three controlled experiments. In the first exper-

iment, we investigated whether reusing constraint values can reduce the overall cost of regression testing.

We conducted the experiment on five open-source PHP web applications. Each application had multiple

versions. The results from this experiment show that a large portion of constraint values can be reused for

most versions in all five applications. Thus, the cost of solving constraints could be substantially reduced.

In the second experiment, we investigated the cost-effectiveness of regression test selection with constraint

value reuse using four open-source PHP web applications with multiple versions and unit tests. The results

from second experiment show that large savings can be achieved by selecting a small portion of existing test

cases, but the results varied across programs and versions. We also observed that the rate of constraint value

reuse is proportional to rate of reusable tests across most versions of each application. As constraint values

remain applicable for multiple versions, our approach offers greater cost savings. In the third experiment,

we assessed if the proposed test repair approach is effective in repairing the obsolete tests that were detected

through the test selection experiment. From the results of the experiment, we observed that the percentage

of obsolete tests that were correctly repaired is high, which means the cost of manual effort in repairing tests

can be reduced. We also learned that failures due to changes in method parameters is not common while

minor changes in the product can affect several assertions in the test suite.
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1.3. Organization of this Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 discusses the background and

related work. Chapter 3 describes the overall methodology of our research. Chapter 4 describes the infras-

tructure developed and our approach to conduct the controlled experiments. Chapter 5 presents the details

of the three experiments we conducted. Insights and practical implications from the results of the three

experiments is summarized in Chapter 6. Finally, Chapter 7 presents the impact, and the future directions of

our research.
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2. BACKGROUND AND RELATED WORK

This chapter presents the background and related work of our research. We briefly describe our

motivation, describe the regression testing concepts applicable to work described in this dissertation, and

how our research relates to the existing research.

2.1. Motivation

I was greatly motivated with my experience over the past 10 years working as a software engineer

at Microsoft. I was a member of the team that develops the product called Microsoft Visual Studio, which

is an integrated development environment (IDE) [94]. Currently, I am on the team that develops Microsoft

Dynamics AX, which is an Enterprise Resource Planning (ERP) product [8]. Though these two products cater

to different set of customers, one of the most critical and resource consuming phases in the development

of these products is the regression testing of all the changes before the product can be delivered to the

customers.

A decade ago, the time between two major releases of Microsoft Visual Studio was around 3 years.

This gave sufficient time for the engineering teams to regression test the changes by running the entire test

suite. To meet the current customer needs and adapt to the rapidly evolving technology, a minor release of

the latest version of Microsoft Visual Studio happens every six weeks, and certain bug fixes can be delivered

weekly [77]. To enable such faster releases, I added attributes to tests so that tests can be filtered based on

those attributes. These attributes captured data such as the features and the importance of those features

covered by the test. A detailed history of test execution including traceability of a test failure and the

corresponding bug reports, enabled faster analysis of test failures. Thus, I was able to reduce the turnaround

time and minimize the cost of regression testing of the features that I owned in Microsoft Visual Studio.

Anderson [3] described how Microsoft Dynamics AX used multiple data sources and techniques to determine

the effective subset of existing tests that are needed to regression test each code submission.

As described in Chapter 1, web applications pose additional challenges compared to their desktop

counterparts. This sparked my interest in researching cost-effective regression test approaches for web

applications.
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2.2. PHP

Hypertext Preprocessor (PHP) continues to be one of the most popular programming languages [76].

Around 80% of the existing websites are built using PHP [95]. Dynamic typing, flexibility to have HTML

and PHP script in a same file, and an ecosystem that provides a large set of predefined libraries to simplify

development are some of the reasons for the popularity of PHP web applications.

PHP is a weakly typed language, meaning the arguments passed to a function does not have to match

exactly with the expected type in the function’s signature. Weak typing gives the developer some flexibility,

for example, minimizes the number of overloads of a function since one version of the overload will be able

to accept and return different types. This flexibility allows reuse and improves the speed of development.

On the other hand, this flexibility introduces the risk of a variable changing its type during the execution,

which leads security bugs [21, 75]. To ensure static typing to PHP variable such that a variable maintains

a single type throughout execution, Hack, a new variant of PHP was developed at Facebook [29]. Though

this reduces the possibility of bugs during the development, modifications to the data type or the order of

the parameters of a function can cause test failures.

Given the popularity of PHP and access to source code of PHP based applications, we chose to

pursue our research in finding cost-effective regression test techniques for web applications developed using

PHP.

2.3. Impact Analysis

Impact analysis is the process of identifying the effects of a change in a software system [6]. Impact

analysis is used not only in testing but also in tasks such as traceability of requirements, cost estimation and

resource planning.

Tonella [92] proposed an approach that combines the decomposition slice graph and concept lattice

to determine the impact a variable may have on other variables in a program. A decomposition slice graph

shows the dependency between partitions where a partition is a computation performed on different vari-

ables in the program. A concept lattice, groups entities in a program, such as methods, based on common

attributes. These groups are organized into a hierarchy of concepts that are related either through a general-

ization or a specialization. In the real-world where a change request is usually written in natural language

(e.g., English), impact analysis can be performed to determine the impact set of the change request. Ren et

al. [78] presented a tool that performs structural static analysis [89] on Java programs to identify the regres-
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sion tests. Ziftci et al. [103] applied impact analysis to detect the code change that introduces test failures

in the Continuous Integration (CI) system at Google. Bell et al. [9] presented a technique called DeFlaker

that uses static impact analysis and other attributes to mark a failing test as flaky if the test does not cover

the path impacted by the code change.

Gethers et al. [32] proposed an integrated approach to perform impact analysis given the textual

change request. Their approach begins with mining the related change requests to determine the software

entities (e.g., classes, methods, etc.) that should be included in the impact set. Second, use an information

retrieval technique to mine software artifacts such as bug reports to identify software entities that should be

added to the impact set. Third, use dynamic analysis such as execution traces to estimate the impact set for

the given change request. Kabeer et al. [43] conducted an industrial case study where impact analysis was

used to estimate the effort needed to perform a change request. They found that effort and duration can be

predicted with an accuracy of 84% and 72%, respectively when impact analysis was applied over textual

change requests.

Impact analysis should be cost-effective, meaning the cost to perform the analysis should be less

than the savings obtained from using the results of the analysis. There are two types of impact analysis

- Static and Dynamic. Static impact analysis assumes that a program can take any of the possible paths.

Though this is safer, this approach produces a large impact set. In contrast, dynamic impact analysis that

uses runtime information of the program, can produce a more relevant impact set. This conciseness makes

dynamic impact analysis more preferable. However, dynamic impact analysis techniques are either fast but

imprecise or precise but slow. The challenge of balancing this trade-off has attracted lot of researchers. Cai

et al. [11] introduced DiaPro, which is a framework that postulates that a hybrid approach of unifying static

and dynamic impact analysis can be cost-effective. In DiaPro, the process of impact analysis begins by

performing a static impact analysis to generate the program dependence graph and instrumented version of

the source code. Next, a dynamic impact analysis is performed to capture execution traces. Finally, a unified

phase where the impact set determined through static analysis is pruned based on the trace information

obtained during dynamic impact analysis.

In our work, we used static impact analysis to not only identify the regression tests but also identify

obsolete tests and repair those obsolete tests.
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2.4. Regression Test Selection

Regression test selection (RTS) techniques reduce testing costs by selecting a subset of test cases

from an existing test suite (surveyed in [44, 28, 81, 102]).

Early work conducted by Lenung et al. [51] and Rothermel et al. [82] established a theoretical

foundation for RTS techniques and a framework for empirical evaluations of these techniques. Initially, RTS

techniques focused on testing procedural languages using source code, but in recent years, the focus of RTS

shifted to various complex, real-world application domains. For example, Kim et al. [46] presented an RTS

technique aimed at ontology-driven database systems because traditional RTS approaches cannot be applied

for such systems. The proposed technique builds graphs for the original and modified ontologies, compares

the two graphs to identify the changes, and selects test cases using the changed information. Mirarab [62]

introduced a size-constrained regression test selection technique. The proposed technique selects a subset

of test cases with the predetermined size of tests using multi-criteria optimization. This approach can use

limited resources more effectively when time constraints on regression testing are imposed.

Some RTS studies employed hybrid approaches to further improve regression testing processes.

For instance, Shi et al. [87] performed an extensive study of combining RTS with test-suite reduction. The

proposed approach improves the turnaround time of regression testing, and requires fewer resources than

running the full test-suite. Another study by Elbaum et al. [27] proposed an approach that combines RTS

with Test Case Prioritization (TCP) in the CI system at Google. Traditional RTS and TCP techniques that

rely on code instrumentation and discrete sets of tests cases, were modified to operate on data available for

a given time window to accommodate the frequent testing requests in CI.

More recent RTS studies demonstrated the effectiveness of RTS approaches considering both bene-

fits and associated costs. The improvements in effectiveness obtained by certain techniques do not guarantee

the practical cost-effectiveness of those techniques because the techniques also have associated costs. Le-

gunsen et al. [50] conducted a study to evaluate how RTS techniques perform in terms of the number of tests

selected, time overhead, safety, and precision. Őqvist et al. [67] proposed a dependency graph extraction-

based RTS technique that attempts to reduce the overhead of running RTS in an agile development practice

where regression testing is performed frequently, and the code changes occur in a limited set of files. Herzig

et al. [38] introduced THEO, a cost-based test selection strategy that skips execution of test if the cost of

9



execution is greater than the expected cost of not running the test. THEO ensures all tests will be executed

before the software is ready for release.

In our research we use perform RTS based on the regression paths identified through PARTE. We

augment RTS with reusable resource information to filter out tests whose input values cannot be reused in

the modified version of the application under test.

2.5. Test Repair

Test repair is the process of repairing a failing test.

As software evolves, an existing test can fail either due to a bug in the source code or the test

becoming obsolete [36]. If the failure is due to the obsoleteness, then repairing the test and putting it back

to use would retain the original intent of the test. Throughout the lifetime of a real-world application, test

suites are modified so that the tests are effective in identifying regressions while the application evolves.

Manually modifying a test is tedious and error prone process. In practice, obsolete tests can account for

26% of test suite [49]. This motivates research on obsolete test repair techniques that can assist a developer

in devising fixes for source code [66, 60, 70] or tests [23, 91, 63, 35].

There are several tools available for repairing web application tests. For example, Web Application

Test Repair (WATER) [14], automatically identifies the mismatch between the expected and the actual values

of a web page elements, and identifies the elements that are displaced or modified. This information enables

the developer to make appropriate changes to tests. While WATER performs repairs by comparing two

version pairs, a more fine-grained approach that considers the incremental changes than happen between the

versions was presented in WATERFALL [35].

Pinto et al. [74] observed that test repairs that involved only fixing an assertion, was less than 10% of

the total repairs in the open-source applications they studied. In contrast, it is more likely to find a test repair

that requires analysis of changes to method calls, such as method parameter added, deleted and modified, and

synthesize new calls so that the existing assertions in the test can be successful. Daniel et al. [23] developed

ReAssert, a JUnit test repair tool that uses various strategies including symbolic execution, to determine the

actual value in the assert statement in the obsolete test so that the assertion is successful. Mirzaaghaei [63]

presented TestCareAssistant (TCA) that analyzes method signatures to detect the changes in parameters and

determines an appropriate fix for the obsolete test.
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In our research, we repair obsolete tests not only by fixing assertions but also repairing method

signatures. Static impact analysis information allows us to identify the offending assertion or the parameter

in a method signature.

2.6. Program Repair

Program repair techniques focus on modification to the source code of the software to address

a defect. A defect is the difference between the expected behavior and the observed behavior when the

software is executed. An oracle provides the expected behavior of the software [88]. Unlike behavior

repair, a state repair is a fix performed while the software is being executed. When a software is detected

to be in a faulty state, then actions such as reinitializing and rebooting the whole or a part of a system and

rollback to a last known good state, can get the system out of the faulty state.

In published literature, there are many program repair techniques proposed and tools implemented [64].

GenProg [30] is a genetic programing based program repair tool. This tool uses mutations such as insert,

delete and replace, and crossover operators to identify the variant of the program under repair that allows

the failing (negative) test to pass and does not introduce new failures in the passing (positive) tests. Chandra

et al. [12] presented a tool called ANGILINA that implements angelic debugging, which is an approach to

locate and fix faulty expressions in the program under test. Angelic debugging begins with the programmer

who based on his/her experience, fault localization tools or intuition would select the scope of the source

code where a modification could fix the defect. Within this scope, the tool would try to identify plausible

expressions that can be repaired. For each expression, the tool finds an alternate value that can cause the

failing test to pass, and the value should not cause a previously passing test to fail, meaning no new re-

gression is introduced. If no such value is found, then the developer should try to find the alternate value

or select a different or wider scope of the source code. Nguyen et al. [66] presented SemFix a program

repair tool based on semantic analysis of the program under test. SemFix uses three techniques. First, uses a

statistical fault isolation tool to determine the statement in the program that needs to be fixed. Second, infer

the expected behavior of the identified faulty statement. Finally, update the faulty statement based on the

inferred behavior. Mechtaev et al. [60] introduced a tool called DirectFix that focuses on generating simple

fixes. DirectFix uses an approach that integrates fault localization and program repair so that the problem

is reduced to solving a partial maximum satisfiability problem. A fix is synthesized such that the repair is

simple, meaning the changes to the structure of the program is minimal.
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A limited number of program repair tools for PHP web applications are described in the literature.

For example, Samimi et al. [85] introduced PHPQuickFix and PHPRepair, which are tools to repair HTML

generation errors in PHP web applications. PHPQuickFix identifies errors such as mismatched HTML open

and close tags and special characters that are not escaped. Given the expected HTML output for a PHP

program, PHPRepair can identify and repair the program, using string constraint solvers, to ensure that the

PHP program generates the expected HTML output.

Though program repair is not used in our research, the ideas in this area motivated us to think about

obsolete test repair strategies.

2.7. Test Suite Augmentation

Test suite augmentation is the process of creating test cases to cover the modified code paths identi-

fied during Impact Analysis.

The process of identifying modified code paths, assessing whether existing tests exercise affected

paths, and preparing new tests to cover those paths has attracted lot of research [5, 86, 101, 100, 90, 13].

Apiwattanapong et al. [5] and Santelices et al. [86] presented a propagation-based approach that uses pro-

gram dependence analysis and symbolic execution to compute test requirements to assess and augment

existing test suite. Xu et al. [101, 100] presented directed test suite augmentation techniques to create tests

that cover modified code by utilizing tests selected through RTS to seed a concolic test generation approach

or a genetic algorithm to generate new tests. Taneja et al. [90] proposed an approach called eXpress that

generates tests based on dynamic symbolic execution. To optimize search strategy, paths that are unlikely to

detect behavioral differences are pruned, meaning not explored. Thus, this approach focuses on regression

test case generation making it very efficient. A model-based regression test suite generation using depen-

dence analysis was proposed by Chen et al. [13]. Information obtained from existing unit tests was used to

automatically augment test suites in the framework proposed by Rubinov et al. [84].

The focus of the approaches described thus far was on desktop applications developed using lan-

guages such as C or Java. The focus of our research is the regression testing of web applications, which

presents a different set of challenges mostly due to the inherent nature of these applications, with character-

istics such as multi-tier architecture, multiple technologies, dynamic programming languages and a larger

surface area susceptible to attack requiring shorter turnaround time for security fixes. These challenges have

attracted many researchers, and several test case augmentation techniques have been proposed. A concolic

approach to generating test cases for PHP applications was proposed by Artzi et al. [7] and Wassermann et
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al. [96]. Use of crawlers and spiders to identify changes between versions of web applications and generate

tests to exercise the modified behavior has been a popular approach to test the interfaces of web applications.

For instance, Ricca et al. [79] proposed using a crawler to discover the link structure of a web application.

This structure is utilized to produce test specifications for the new version of the web application. Deng

et al. [24] proposed an approach of extending AGENDA, a set of tools for testing database systems, to test

databases of web applications. A web application is represented as a graph on which nodes represent URLs

and edges represent links between URLs. Tests are generated for selected paths in this graph. Halfond

et al. [34] proposed an approach that uses symbolic execution to identify precise interfaces between web

components. Alshahwan et al. [2] introduced two def-use approaches for generation of new tests based on

existing tests for web applications. Defining the state of the web application and the corresponding use of

that state forms the def-use pair.

Our review of the published literature showed that no attempt was ever made to augment RTS with

reusable constraints and test repair. Thus, our research is unique since it combines a constraint value reuse

technique with RTS to identify reusable and obsolete tests, and repairs the obsolete tests in a PHP based web

application.
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3. METHODOLOGY

To support the proposed approach, we extended PARTE [25] to include two new components. First,

we implemented a Reusable Tests component that consists of Constraint Reuse and Test Selection. Con-

straint Reuse as described in [25] compares two sets of test paths (original and modified versions) of the

system under test (SUT) to identify reusable constraint values. Test Selection selects existing tests that cover

the modified code paths using the DejaVu [83] algorithm, which is a static and safe test selection algo-

rithm. Second, we implemented a Test Repair component (PHP Obsolete Test Repair (POTR)) that consists

of Method Signature Analyzer and Assertion Analyzer. Method Signature Analyzer (MSA) compares the

method parameters in the original and modified versions of the SUT to detect changes in the parameters that

caused a test to become obsolete. Assertion Analyzer (AA) updates the test oracle by parsing the PHPUnit

assertion failure messages to identify the value returned by the SUT. Based on the analysis results, POTR

presents a repaired version of the obsolete test.

Before we describe these components in detail, we provide a brief overview of PARTE. 1

3.1. Overview of PARTE

In Figure 3.1, the boxes depict the main activities. The ovals are external tools that PARTE utilizes.

The external tools are PHC and PHPUnit. The dark gray boxes are the new additions to PARTE. These

additions are Reusable Tests and Test Repair. In this section, we describe Preprocessing and Impact Analysis.

In the next sections, we will explain the Reusable Tests and Test Repair components.

The Preprocessing converts the original and modified versions of the SUT into an Abstract Syntax

Tree (AST). Preprocessing consists of two components: File Preparation and AST2HIR.

3.1.1. File Preparation

PARTE uses ASTs to generate PDGs. To create ASTs from PHP programs, we used a PHC (PHP

compiler), a publicly available, open-source tool. PHC was used because it generates ASTs that contain

detailed information about variable data type that is necessary for input data constraint gathering and reso-

lution. However, there are a couple problems with PHC. PHC cannot properly parse ‘include’ and ‘require’

functions that contain variables instead of constant strings. Further, PHC cannot evaluate the expressions
1While PARTE was implemented for PHP web applications, its approach could be applied to any system for which the required

information is available.
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Figure 3.1. Overview of PARTE.

if any concatenation or defined values are used in the ‘include’ and ‘require’ function. Using defined val-

ues and runtime concatenation to include a specified file at a location defined during the web application’s

installation is a common practice.

PHC cannot resolve non-trivial ‘include’ and ‘require function calls. Hence, we built a parsing

tool to search for those function calls in the web application’s source code and then to locate, define, and

store them in a dictionary. When the parsing tool locates ‘include’ and ‘require function names, it resolves

them using the dictionary that maintains defined values. If ‘include’ and ‘require functions are completely

resolved, then the tool inserts the corresponding code into the source code file. This process is repeated until

the tool visits every ‘include’ and ‘require function.

Another common feature of many dynamic web applications is to specify which files to include

at runtime. One typical example of this feature is that a user selects a language preference when the web

application is presented. For cases like this one, a constant value is manually assigned to the environmental

variable in the application.
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3.1.2. AST2HIR

After obtaining the preprocessed PHP files from the previous step, ASTs for these PHP files were

generated using PHC. Next, AST was converted to a High-level Intermediate Representation (HIR) to sim-

plify PDG generation.

PHC already provides a function that generates HIR code from an AST, but the HIR code generated

by PHC does not preserve consistent variable names across versions of the same application, so it is not

suitable for the proposed regression testing approach. PHC’s HIR is focused on code optimization for

performance efficiency. PHC uses a typical three-address code generation approach and creates variable

names by incrementing a numerical suffix on a fixed prefix. Thus, if a single statement in a program is added,

deleted, or modified, every statement that comes after it in the internal representation could have variable

names that do not correspond with the variable names in the original version’s internal representation. The

proposed regression testing approach requires consistent variable names to properly generate an impact set

given two different versions of the PHP program. To resolve this issue, AST2HIR tool was implemented to

maintain consistent variable names while generating a three-address code representation for the program.

Instead of simply incrementing based on the order variables that appeared in a source file, a hashing function

was used on the values from the control dependency information combined with the expression values within

an AST statement to determine variable names.

There are two main symbol types in the AST: statements and expressions. Statements are the sym-

bols that define classes, interfaces and methods as well as the control flow of the program. Expressions

are the rest of the symbols, some of which include arithmetic operators, conditional expressions, assign-

ments, method invocations, and logical operators. The AST that PHC generates is in XML format, and the

AST2HIR converter parses the XML tags in a depth first manner. When a complex statement (‘complex’

being defined as an expression that is not in three-address code) is encountered while parsing, it is split into

multiple expressions such that all parts are not complex. These parts are given a unique variable name, and

assignment expressions are generated to assign the value of the non-complex parts to their corresponding

unique variables. Some statements are also transformed to work in the PDG Generator. For instance, a ‘for’

loop is simplified into a ‘while’ loop. ‘Switch’ statements are converted to equivalent code using a ‘while’

loop, ‘if’ and ‘break’ statements.
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The AST2HIR tool then produces a PHP program that is functionally equivalent to the original

program but in the high-level internal representation. An AST for this HIR program is then created using

PHC. This HIR version of the AST is used to generate the PDGs. Throughout the dissertation, this HIR

version of the AST is simply referred to as AST.

3.1.3. Impact Analysis

The Impact Analysis component consumes the ASTs from Preprocessing and generates Program

Dependence Graph (PDG), instrumented code, differences, program slices, and regression test paths. Paths,

PDGs and slices produced from Impact Analysis are used in Reusable Tests and Test Repair. Impact Analysis

consists of the following four components.

1. PDG Generator & Code Instrumentor: This component reads the ASTs to generate control flow

graphs for all method and function calls.

2. Differencing Tool: This component identifies the PHP files that were modified between the origi-

nal and modified versions of the SUT. For each such modified file, it compares the corresponding

PDGs from the original and modified versions to collect all the differences, which includes additions,

deletions and modifications.

3. Slicer: This component consumes the modification information from Differencing Tool to calculate

the code change impact set by performing forward and backward slicing to produce a combined

program slice for each modified PHP source file.

4. Path Generator: This component consumes slices to create linearly independent test paths, which is

a set of paths through the application where each path has at least one new edge that was not included

in any other paths in the set.

All the components were implemented using Java and we prepared Perl scripts to automate the

interaction between the components.

To analyze the impact of software modifications on a web application, we implemented a static

program slicer. The benefit of using a program slicer is that it provides a complete way to reveal which areas

of the application will be affected by software modifications [1].
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Using the ASTs constructed during the preprocessing steps, impact analysis is performed to identify

areas of the application that have been affected by code changes. For impact analysis, three steps are

involved: PDG generation, program differencing and program slicing.

To build PDGs from ASTs, the approach by Harrold et al. [37] is utilized. First, the PDG Generator

constructs control flow graphs. During this phase, the PDG Generator builds control flow graphs for all

methods and functions that have been declared. To construct an inter-procedural control flow graph, all

method or function calls within the control flow graphs are linked to their corresponding control flow graphs.

Next, the PDG Generator analyzes the data by performing a def-use analysis and gathers data dependency

information for variables.

After constructing PDGs for the two consecutive versions, it is needed to determine which files

have been changed between the versions and which statements within those files have been changed. To

perform this task, a textual differencing approach similar to that of the standard Unix ‘diff ’ command is

used. With this approach, the differencing tool compares two versions of PDGs, in XML format, which

contains the program structure and statement content. The differencing tool analyzes each program and

applies the longest common subsequence approach on the statements’ PDG representation. After the tool

determines which statements have been edited, added, or deleted, it provides this information to the program

slicer.

Finally, the program slicer creates program slices by using the program’s modification information.

Program slicing is a technique that can be used to trace control and data dependencies within an applica-

tion [97], and in our work, it is used to calculate the code change impact set. This program slicer performs

forward slicing by finding all statements that are data dependent on the variables defined in the modified

statement and then produces a program slice following these dependencies. It then performs backward

slicing on the modified statement to determine the statements upon which the modified statement is data

dependent. For each modified statement, the forward and backward slices are combined into a single slice.

3.1.4. Constraint Collector

Impact Analysis generates test paths that only contain input parameters without the actual input val-

ues. The input values need to be determined and assigned to the parameters to make test paths executable.

Constraint Collector collects constraints for the input values needed to execute the path. Inputs for Con-

straint Collector are the PDGs and the paths obtained from the Path Generator. The top-level activities in
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the constraint collection are parsing the path and PDG, which are XML files, identifying constraints for each

path, and writing the collected constraints to an XML file.

Constraint collection begins with path nodes that contain a conditional statement. The primary

activities to collect constraints are determining the truth value of conditional statements and reducing the

conditional expression in these statements. A path constraint corresponds to a path PDG node with an ‘if’

statement. To determine the truth value of a constraint, the collector looks ahead one node in the path node

list and examines the node type (which will be either true or false). After determining the constraint truth

value, the constraint condition is then recursively reduced. This reduction involves parsing the expression

string to determine the expression type (using regular expression matching), creating an expression object

with this type, assigning any expression attributes from the parsed information (e.g., operator type) to the

expression object, and generating appropriate expression objects for child expressions, if any. If there are

child expressions, they are recursively reduced in the same way.

Each type of expression provides its own method for reducing child expressions in order to take

advantage of information on the reduction context. For example, a compound boolean expression must have

child expressions that are boolean. When generating child expressions, this information can be provided

in addition to what is provided by regular expression matching. This is useful in verifying that generated

expressions are of the correct type. If regular expression matching determines that an expression is a variable

(e.g., ‘$num_of_files’), then the reduction process involves additional steps:

1. The collector backtracks in the path node list, starting at the variable node’s index. It continues

backtracking until a PDG node that provides a definition of the variable is encountered or until the

beginning of the list is reached. If a definition is found, then the expression generated for the variable

is of the complex type. This type is used for variables that can be defined in terms of other expressions.

If no variable definition is found before reaching the start of the list, the generated expression is of the

simple variable type.

2. Regular expression matching is performed on the variable expression string to determine if it is in-

dexed (e.g., ‘$files[$id]’). These correspond to PHP array variables. An expression is then generated

for the array’s index, and the generated expression for the variable is an indexed version of the type

(i.e., simple or complex) determined via backtracking.

19



The recursive reduction process terminates on expressions of the simple type because simple type

expressions do not contain child expressions that need to be reduced. After collecting a constraint, the

collector records it for inclusion in the output. Once all path constraints have been generated, the collector

writes the constraint information to an XML file.

3.2. Reusable Tests

As shown in Figure 3.1, Reusable Tests consist of two components: Constraint Reuse and Test Se-

lection. Constraint Reuse determines a list of variable values that can be reused in regression test cases [40].

Test Selection performs regression test selection to determine a subset of tests that are applicable to the new

version of the program, including identifying reusable input values for the selected tests. We describe these

two components in detail, including algorithms and an example.

3.2.1. Constraint Reuse

Constraint Reuse identifies constraints and their corresponding values that can be reused in regres-

sion testing the new version of the SUT. This is achieved through comparing the def-use chain of each

variable present in the test paths of original and modified versions of the application. If the def-use of the

variable remains same in the new version of the SUT, then the input test value of the variable can be reused

in regression testing.

The process of collecting constraints and their input values, and determining reusability in the new

version of the SUT, involves the following steps:

1. First, the set of test paths for the original and the modified version of the SUT are obtained from the

Path Generator.

2. Next, the two set of test paths (original and modified versions) are compared to find the same variables

that are used in both versions. Note that the input values for the old version already exist.

3. For each variable identified in the previous step, reusable constraint values for the new paths are

collected by analyzing the variable’s definitions and uses. The variable’s definition is symbolically

evaluated.

These steps are presented in Algorithms 1 and 2. Algorithm 1 returns an array of variables that have

reusable constraint values.

Algorithm 1 takes four inputs: old test paths, new test paths, old PDGs, and new PDGs. ‘Old’

indicates the previous version, and ‘new’ refers to the current version being tested. The output of the
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Algorithm 1 Find Variables with Reusable Input Values
1: Inputs:

oldPDG[]: An array of PDGs for the original version.

newPDG[]: An array of PDGs for the modified version.

oldPath[]: An array of identified test paths for the original version.

newPath[]: An array of identified test paths for the modified version.

2: Outputs:

variablesWithReusableInputValues: An array of variables that have same constraints in the original and modified
version, and hence the test input value for these variables can be reused.

3: Declare:

oldDefUseMap: An array of all variables and their corresponding mapping to def-use, block numbers, code statements
in the original version.

newDefUseMap: An array of all variables and their corresponding mapping to def-use, block numbers, code statements
in the modified version.

4: procedure GETVARIABLESWITHREUSABLEINPUTVALUES(oldPDG, newPDG, oldPath, newPath)
5: oldDefUseMap← ∅
6: newDefUseMap← ∅
7: variablesWithReusableInputV alues← ∅
8: for n←− 0, n < newPath.size(), n++ do
9: currentBlock ← newPDG.getBlock(newPath.getBlockID(n))

10: if currentBlock.HasDefOrUse() then
11: UpdateDefUseMap(currentBlock, newDefUseMap)
12: end if
13: end for
14: for n←− 0, n < oldPath.size(), n++ do
15: currentBlock ← oldPDG.getBlock(oldPath.getBlockID(n))

16: if currentBlock.HasDefOrUse() then
17: UpdateDefUseMap(currentBlock, oldDefUseMap)
18: end if
19: end for
20: for n←− 0, n < newDefUseMap.size(), n++ do
21: currentV ar ← newDefUseMap.getV ars(n)

22: if oldDefUseMap.getV ars.contains(currentV ar) then
23: isSimilar ← CheckSimilarity(currentV ar, oldDefUseMap, newDefUseMap)

24: if isSimilar then
25: variablesWithReusableInputV alues.Add(currentV ar)
26: end if
27: end if
28: end for
29: end procedure

algorithm is a list of reusable variables. Line 3 declares two maps corresponding to the old and new versions

of the application. The map contains the def-use chain for each variable that appears in the test paths.

Mapping information includes the PDG block number of the variable’s definition, variable’s information

such as name, data type, and the corresponding PDG nodes where the variable is used. Lines 8 through 13

show steps for preparing this map for the new version of an application. This loop iterates through each

node in the new PDGs. If a block in the node has either a definition or a use of a variable, then function
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‘UpdateDefUseMap’ is invoked to build the map for that variable. Similarly, lines 14 through 19 prepare

def-use mapping for old test paths. Lines 20 through 28 compare the mapping information corresponding

to the old and new versions of the application to determine reusable variables. This process loops through

each map in ‘newDefUseMap’ (line 20) and checks if the variable corresponding to the map also occurs

in ‘oldDefUseMap’ (line 21). If the variable is present, then the variables are compared for similarity by

invoking function ‘CheckSimilarity’ (lines 22 and 23). If this function returns ‘true’, then the variable is

added to ‘variablewithReusableInputValues’. Otherwise, the variable is discarded.

Algorithm 2 Check Similarity
1: Inputs:

currentVar: A variable and its corresponding mapping to def-use, block numbers and code statements in the new
version.

oldDefUseMap: An array of all variables and their corresponding mapping to def-use, block numbers, code statements
in the original version.

newDefUseMap: An array of all variables and their corresponding mapping to def-use, block numbers, code statements
in the modified version.

2: Outputs:

true or false. A boolean value indicating if the given variable has similar def-use in the old and new versions.

3: Declare:

oldPathStatements: An array of code statements that either have definitions or uses of the given variable in the old
version.

newPathStatements: An array of code statements that either have definitions or uses of the given variable in the new
version.

4: procedure CHECKSIMILARITY(currentV ar, oldDefUseMap, newDefUseMap)
5: oldPathStatements← oldDefUseMap.getStmts(currentV ar)
6: newPathStatements← newDefUseMap.getStmts(currentV ar)

7: for n←− 0, n < newPathStatements.size(), n++ do
8: if (CompleteMatch(newPathStatements[n], oldPathStatements[n]) 6= true) then
9: if (PartialMatch(newPathStatements[n], oldPathStatements[n]) 6= true) then

10: return false
11: end if
12: end if
13: isV ariableDependent← CheckV ariableDependency(newPathStatements[n], oldPathStatements[n])

14: if isV ariableDependent then
15: isResolved← ResolveV ariableDependency(newPathStatements[n], oldPathStatements[n])

16: if ¬isResolved then
17: return false
18: end if
19: end if
20: end for
21: return true

22: end procedure
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Algorithm 2 shows the procedure for checking variable similarity. The inputs for this algorithm

are mapping information of the variable, ‘oldDefUseMap’ and ‘newDefUseMap’ (line 1), and output is a

Boolean value, where ‘true’ indicates that the variables in the old and new versions of the application are

similar, and false indicates otherwise (line 2). To begin the process, two data structures are declared, ‘old-

PathStatements’ and ‘newPathStatements’, to store the actual code statements of the variables in old and

new versions of the application (line 3). Lines 7 through 20 iterate through each code statement in ‘new-

PathStatements’ comparing with the corresponding statement from ‘oldPathStatements’. If the statements

do not match perfectly (line 8), then a partial match is checked. If the statements do not have a partial match

(line 9), then this procedure returns false and exits. If either a perfect or a partial match is found, then the

algorithm continues to find variable dependency. Variable dependency occurs if some parts of the new and

old statements perfectly match, but there are other variable(s) that do not match. In such cases, the def-use

of mismatched or dependent variables needs to be checked for similarity.

Suppose that a statement in the old version, ‘if (a ≤ 12)’, is changed to ‘if (a ≤ 12||b ≥ 7)’. This

would result in a partial match for the condition ‘a ≤ 12’. If the def-use of variable ‘a’ remains the same

across the versions, then the additional condition to satisfy for variable ‘a’ to be considered reusable is the

def-use of variable ‘b’, which is the dependent variable, should remain unchanged between the versions.

‘CheckVariableDependency’ at line 13 checks if there are such dependent variables and if so, ‘ResolveVari-

ableDependency’ at line 15 verifies if the def-use of the dependent variables remains the same between

versions. If def-use of the dependent variables is found to be different, then the procedure returns ‘false’

and exits. Otherwise, the procedure returns ‘true’ confirming that the def-use of dependent variables has

remained the same.

3.2.1.1. An Example of Reusable Input Variable Identification

The process of identifying variables with reusable constraint values is explained through an example

in this section.

Consider the two pairs of consecutive versions v0.php, v1.php and v1.php, v2.php of a simple PHP

program shown in Figure 3.2 and Figure 3.3, respectively. Modified statements in v1 and v2 are at lines 8

and 7, respectively, as commented in the code. In v1, line 8 changed from ‘$a = $a - 1’ to ‘$a = $a -3’. Line

7 in v2 changed from ‘$b = 5’ in v1 to ‘$b = $b -1’.
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v0.php (Original Version)

f u n c t i o n foo ( $a = 0 , $b = 0)
{

echo " Value o f a i s $a " ;
echo " Value o f b i s $b " ;
i f ( $a < 12)
{

$b = 5 ;
$a = $a − 1 ;

}
e l s e
{

$b = $b + 3 ;
}
i f ( $a > 7)
{

i f ( $b == 5)
{

echo " a " ;
}
e l s e
{

$b = 7 ;
}

}
echo " b " ;
echo " Done P r o c e s s i n g . " ;

}

v1.php (Modified Version)

1 f u n c t i o n foo ( $a = 0 , $b = 0)
2 {
3 echo " Value o f a i s $a " ;
4 echo " Value o f b i s $b " ;
5 i f ( $a < 12)
6 {
7 $b = 5
8 $a = $a − 3 ; / / CHANGED
9 }

10 e l s e
11 {
12 $b = $b + 3 ;
13 }
14 i f ( $a > 7)
15 {
16 i f ( $b == 5)
17 {
18 echo " a " ;
19 }
20 e l s e
21 {
22 $b = 7 ;
23 }
24 }
25 echo " b " ;
26 echo " Done P r o c e s s i n g . " ;
27 }

Figure 3.2. Two Consecutive Versions (v0 and v1) of a PHP Source File.

One of the regression test paths for v1 is {1, 2, 3, 4, 5, 6, 7, 8, 14, 15, 16, 17, 18, 25, 26}. In this

path, there are three constraints, and those are ‘$a <12’, ‘$a - 3 >7’ and ‘$b = 5’. Before solving these

constraints, it is checked if the constraints have remained unchanged between the original and modified

versions. Constraints ‘$a <12’ and ‘$b = 5’ have remained the same in v1. Line 8 in v1 modified the

definition of variable ‘a’, and thus the symbolic value of variable ‘a’ is different v0. This means that the

existing value of variable ‘a’ in a test used in v0 may no longer solve the constraint ‘$a - 3 >7’. For instance,

if the existing input value of variable ‘a’ is 9, then this value satisfies constraints ‘$a <12’ and ‘$a - 1 >7’

but not ‘$a - 3 >7’. The def-use of variable ‘b’ has remained the same between v0 and v1. A value of 5 for

variable ‘b’ will solve the constraint ‘$b = 5’. Therefore, variable ‘a’ is not a reusable variable, while ‘b’ is

a reusable input variable.
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v1.php (Original Version)

f u n c t i o n foo ( $a = 0 , $b = 0)
{

echo " Value o f a i s $a " ;
echo " Value o f b i s $b " ;
i f ( $a < 12)
{

$b = 5
$a = $a − 3 ;

}
e l s e
{

$b = $b + 3 ;
}
i f ( $a > 7)
{

i f ( $b == 5)
{

echo " a " ;
}
e l s e
{

$b = 7 ;
}

}
echo " b " ;
echo " Done P r o c e s s i n g . " ;

}

v2.php (Modified Version)

1 f u n c t i o n foo ( $a = 0 , $b = 0)
2 {
3 echo " Value o f a i s $a " ;
4 echo " Value o f b i s $b " ;
5 i f ( $a < 12)
6 {
7 $b = $b − 1 ; / / CHANGED
8 $a = $a − 3 ;
9 }

10 e l s e
11 {
12 $b = $b + 3 ;
13 }
14 i f ( $a > 7)
15 {
16 i f ( $b == 5)
17 {
18 echo " a " ;
19 }
20 e l s e
21 {
22 $b = 7 ;
23 }
24 }
25 echo " b " ;
26 echo " Done P r o c e s s i n g . " ;
27 }

Figure 3.3. Two Consecutive Versions (v1 and v2) of a PHP Source File.

Next, consider versions v1 and v2 shown in Figure 3.3. The modified statement between these

versions is line 7, where ‘$b = 5’ changed to ‘$b = $b - 1’. A regression test path for this version pair is {1,

2, 3, 4, 5, 6, 7, 8, 14, 15, 16, 17, 18, 25, 26}, and constraints for this path are ‘$a <12’, ‘$a - 3 >7’ and ‘$b

- 1 = 5’. Constraint ‘$a <12’ remained the same across all three versions. Constraint ‘$a - 3 >7’ remained

same between v1 and v2. In v2, the symbolic value of variable ‘b’ is modified due to the code change at line

7. This means that the existing value of variable ‘b’ in a test used in v1 may no longer solve the constraint

‘$b - 1 = 5’. For example, if the input value for variable ‘b’ is 5 in v1, then this value will be modified to 4

at line 7 in v2, and thus at line 16 the condition ‘$b = 5’ returns false. Therefore, the value of variable ‘b’

from v1 is not reusable in v2 while variable ‘a’ is reusable.
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This example does not include cases that assign variables to other variables or non-primitive vari-

ables, but a process like the one shown in our example is applied to such variables. However, in the case of

non-primitive variables, before applying the process, they are tokenized in our preprocessing step (conver-

sion from PHP code to AST and HIR [25]).

3.2.2. Test Selection

As shown in Algorithm 3, Test Selection selects a subset of tests from the existing tests that are

applicable to the current version using the DejaVu approach, and identifies reusable constraint values using

the procedure described in Constraint Reuse, which automates the process of identifying obsolete tests (tests

that include input values that are not applicable to the modified version).

The inputs for this procedure are the new and old PDGs, instrumented source code of the old ver-

sion, slices identified by analyzing the changes between two versions, and tests for the old version. The

output is ‘SelectedTestsWithValues’, an array of selected tests with reusable input values. The algorithm in-

vokes ‘TestHistoryBuilder’ and ‘SelectExistingTests’ functions to obtain an array of selected tests that cover

the modified code. Procedures for these two functions are shown in Algorithms 4 and 5. Once the tests

are selected from the existing tests, the algorithm invokes function ‘GetVariablesWithReusableInputValues’

(Algorithm 1), which was explained in the previous subsection, to find reusable input values for the selected

tests.

The test history builder (THB) procedure shown in Algorithm 4 reads PDGs, instrumented source

code, and tests for the old version. It returns ‘TestHistory’, a data structure containing node coverage for

each test. THB uses PHPUnit [73] to execute each existing unit test against the instrumented version of

the source code to collect test history information. PDG Generator, in addition to generating PDGs, also

generates instrumented code, which enables THB to build test history. Test history captures node coverage,

which in this case is a list of PDG nodes and the corresponding number of times the nodes were covered

during test execution.

The ‘SelectExistingTests’ procedure shown in Algorithm 5 uses test history, PDGs for the old ver-

sion, and program slices to determine the subset of tests that cover modified code paths in the new version

of the application. PDGs and slices are obtained from Impact analysis. A slice is a list of code statements

or blocks (See our previous work [25] for more details about slices.). Each slice is a code path that includes

the modified block and impacted blocks. When selecting tests, we check if a test covers a path listed in the

slice.
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Algorithm 3 Test Selection
1: Inputs:

oldPDG[]: An array of PDGs for the original version.

newPDG[]: An array of PDGs for the modified version.

Inst[]: An array of instrumented code of each source file from the original version.

Slices[]: An array of slices identified by analyzing the changes that happened between the original and modified
versions.

Tests[]: An array of existing tests of the original version.

2: Outputs:

SelectedTestsWithValues: An array of selected tests with reusable constraint values for the modified version.

3: Declare:

oldPath[]: An array of test paths in the original version.

newPath[]: An array of test paths in the modified version.

SelectedExistingTests[]: An array of existing tests that cover the modified code paths in the new version.

TestHistory[]: An array of existing tests and the corresponding PDG block coverage.

VariablesWithReusableInputValues[]: An array of input variables that have same def-use in the new version.

4: procedure TESTSELECTION(oldPDG, newPDG, Inst, Slices, Tests)
5: SelectedTestsWithV alues← ∅
6: TestHistory ← TestHistoryBuilder(oldPDG, Inst, Tests)
7: SelectedExistingTests← SelectExistingTests(TestHistory, oldPDG,Slices)
8: V ariablesWithReusableInputV alues← GetV ariablesWithReusableInputV alues(

oldPath,newPath,oldPDG,newPDG)

9: for n←− 0, n < SelectedExistingTests.size(), n++ do
10: IsTestReusable← true
11: for v ←− 0, v < SelectedExistingTests[n].GetInputParameterCount(), v++ do
12: InputParameter ← SelectedExistingTests[n].GetInputParameter(v)
13: if InputParameter /∈ V ariablesWithReusableInputV alues then
14: IsTestReusable← false
15: break
16: end if
17: end for
18: if IsTestReusable then
19: SelectedTestsWithV alues.add(SelectedExistingTests[n])
20: end if
21: end for
22: return SelectedTestsWithV alues

23: end procedure

Algorithm 4 Test History Builder
1: procedure TESTHISTORYBUILDER(oldPDG, Inst, Tests)
2: for t←− 0, t < Tests.size(), t++ do
3: coverage← phpunit(Inst,Test[n])
4: for block ←− 0, block < coverage.size(), block++ do
5: if coverage.GetBlock(block) ∈ oldPDG then
6: TestHistory.add(Test[t], coverage.GetBlock(block))
7: end if
8: end for
9: end for

10: return TestHistory

11: end procedure
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Algorithm 5 SelectExistingTests
1: procedure SELECTEXISTINGTESTS(TestHistory, oldPDG, Slices)
2: for s←− 0, s < Slices.size(), s++ do
3: blocks← Slices[s].GetBlocks()
4: pdgBlocks← oldPDG.GetBlocks(blocks)
5: for history ←− 0, history < TestHistory.size(), history++ do
6: if TestHistory[history].GetBlocks() ∈ pdgBlocks then
7: SelectedExistingTests.add(TestHistory[history].GetTest())
8: end if
9: end for

10: end for
11: return SelectedExistingTests

12: end procedure

In PARTE, the PDGs of the old and new versions are compared to determine the statements that

were added, edited, or deleted. Slicer uses the modification information to calculate the code change impact

set. For the variables defined in a statement that was modified, forward slicing is performed by finding

all statements that are data dependent on such variables. Next, backward slicing is performed to locate all

statements on which modified statement is data dependent. Forward and backward slices are combined into

a single slice for each such modified statement. Lines 2 through 10 in Algorithm 5 iterate through each slice,

checking test history to see whether all PDG blocks in the slice are covered by any of the existing tests. If

any such tests are found, they are added to the ‘SelectedExistingTests’ array.

3.2.2.1. An Example of Test Selection

Test selection is explained through an example. Consider the same three versions shown in Fig-

ure 3.2 and Figure 3.3. The unit tests for v0 are shown in Figure 3.4. The test paths that are expected to

be covered by the unit tests are shown in the comment lines. For example, ‘test1Foo’ covers a test path

represented by the following set of statement numbers: {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 25, 26, 27}.
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v0unittest.php

1 class FooTests extends PHPUnit_Framework_TestCase{

2 // Test Path {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 25, 26, 27}

3 public function test1Foo(){

4 echo "Input value for variable a is not provided.";

5 echo "Input value for variable b is not provided.";

6 foo();}

7 // Test Path {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 25, 26, 27}

8 public function test2Foo(){

9 echo "Input value for variable a is 8.";

10 echo "Input value for variable b is 0.";

11 foo(8,0);}

12 // Test Path {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 16, 17, 18, 19, 24, 25, 26, 27}

13 public function test3Foo(){

14 echo "Input value for variable a is 9.";

15 echo "Input value for variable b is 5.";

16 foo(9,5);}

17 // Test Path {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27}

18 public function test4Foo(){

19 echo "Input value for variable a is 11.";

20 echo "Input value for variable b is 6.";

21 foo(11,6);}

22 // Test Path {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 16, 17, 18, 19, 24, 25, 26, 27}

23 public function test5Foo(){

24 echo "Input value for variable a is 11.";

25 echo "Input value for variable b is 5.";

26 foo(11,5);}

27 // Test Path {1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15, 16, 20, 21, 22, 23, 24, 25, 26, 27}

28 public function test6Foo(){

29 echo "Input value for variable a is 12.";

30 echo "Input value for variable b is 0.";

31 foo(12,0);}

32 // Test Path {1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 24, 25, 26, 27}

33 public function test7Foo(){

34 echo "Input value for variable a is 12.";

35 echo "Input value for variable b is 2.";

36 foo(12,2);}

37 }

Figure 3.4. Unit Tests for v0.php (Original Version).
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THB runs these unit tests against source code to collect node and block coverage information.

‘SelectExistingTests’ reads this coverage information to identify tests that cover paths with code changes. In

this example, PARTE’s impact analysis lists such paths in v1. ‘SelectExistingTests’ identifies tests ‘test1Foo’,

‘test2Foo’, ‘test3Foo’, and ‘test4Foo’ as test that cover paths containing code changes in v1.

Although the selected tests cover the code modifications, the actual input values may not be applica-

ble to the new version depending on the type of modification in the new source code. For the version pair v0

and v1, variable ‘b’ is unchanged with respect to def-use while that of variable ‘a’ has changed. This means

tests that pass a value to variable ‘a’ cannot be reused without manually inspecting whether the structural

coverage of the test is maintained in v1. For example, ‘test3Foo’ is designed to cover a test path represented

by the following set of line numbers: {1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 16, 17, 18, 19, 24, 25, 26, 27} in v0.

In v1, due to change in definition of variable ‘a’ from ‘$a-1’ to ‘$a-3’ the condition at line 14 may return

false depending on the value of variable ‘a’, and execution will not cover lines 15 through 24. Suppose that

a value of 10 for variable ‘a’ will maintain the path in v0 and v1, but a value of 9 will execute the path in

v0 but not in v1 because ‘$a-3’ will not be greater than 7, which is required for the condition at line 14 to

return true. This means the input value for variable ‘a’ in ‘test3Foo’ needs to be manually verified to check

whether the current value provided for this variable allows the test to cover the test path in v1. If the value

does not cover the test path, then the test is obsolete. Thus, test case ‘test3Foo’ cannot be selected, and the

final set of selected regression tests for v1 are ‘test1Foo’, test2Foo, and test4Foo. Similarly, between v1 and

v2, variable ‘b’ does not have the same def-use. Thus, for regression test of v2, only ‘test4Foo’ is selected.

3.3. Test Repair

As described in Section 3.2.1, Reusable Tests not only identifies existing tests that can be reused for

the new version but also identifies tests that are obsolete. Though the test repair approaches described in

literature, are shown to be effective, we identified a few limitations. First, when the number of obsolete tests

is large, a developer should be provided guidance on which of the obsolete tests are likely to cover the code

paths that have undergone a change in the modified version of the application. Since there is a cost associated

with repairing a test, it is efficient to do a selective repair as opposed to a repair all tests approach. Second,

use multiple strategies to repair a test. Not only fixing the failing assertions but also the failures introduced

due to method signature changes should be incorporated into the repair technique [63] In POTR, we chose to

implement two most common types of test repairs, which fix assertions and update method invocations. To

perform such repairs, using the PARTE approach, PDGs of the source and test code are analyzed to identify
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the assertions and method invocations that require fixes. Test Repair component performs such repairs on the

obsolete tests. As shown in Figure 3.1, Test Repair consists of two components: MSA (Method Signature

Analyzer) and AA (Assertion Analyzer). MSA repairs obsolete tests by detecting changes to the parameters

in the method signature that caused a test to become obsolete. AA repairs failing assertions in an obsolete

test. We describe these two components in detail, including algorithms and an example.

3.3.1. Method Signature Analyzer (MSA)

MSA attempts to repair an obsolete test by identifying the change in the signature of the method

covered by that test. MSA compares the PDG node corresponding to the method in the original and the

modified versions. The PDG node provides the details of parameters in the method’s signature. These

details include the name of the parameter, data type and default value. MSA compares these details to

identify if a parameter in the method signature was added/removed, or its data type was modified.

The overview of MSA is as follows:

1. Identify the method whose invocation in the test needs to be updated. Test failure messages contain

the method name and line number(s) where the invocation caused a failure.

2. Gather the method’s parameter details from PDGs of the original and modified versions of SUT.

3. Compare the parameter details between the two versions to determine the changes.

These steps are shown in Algorithms 6 and 7. Algorithm 6 returns an array that contains method

parameter analysis results for each obsolete test.

Algorithm 6 takes three inputs: obsolete tests, PDG for the original version, and PDG for the modi-

fied version. The output of the algorithm is an array of suggestions determined based on method parameter

comparison analysis results. Line 3 declares an array that will hold the repair suggestions for obsolete tests.

Lines 4 through 13 iterate over each obsolete test. Line 7 prepares the test object for the obsolete test in the

current iteration. For this test, line 8 extracts the fully qualified name of the method that is covered by the

test. Lines 9 and 10 extract the method’s parameter details, which includes name, data type and default value.

These details are obtained from the method’s PDG node. Line 11 invokes ‘CompareParameters’ procedure

that performs the comparison of the method’s parameters between the versions to identify the changes. Line

12 captures the comparison analysis for the test in the current iteration. After iterating through all obsolete

tests, line 14 returns the analysis of each obsolete test as repair suggestions.
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Algorithm 6 Method Signature Analyzer
1: Inputs:

obsoleteTests[]: An array of obsolete tests for the modified version.

oldPDG[]: An array of PDGs for the original version.

newPDG[]: An array of PDGs for the modified version.

2: Outputs:

RepairedTests: An array containing repair suggestions for obsolete tests.

3: Declare:

RepairedTests[]: An array containing repair suggestions for obsolete tests.

4: procedure METHODSIGNATUREANALYZER(obsoleteTests, oldPDG, newPDG)
5: RepairedTests← ∅
6: for n←− 0, n < obsoleteTests.size(), n++ do
7: test← obsoleteTests[n]
8: testMethod← test.GetTestMethod()
9: oldParams← oldPdg.GetBlocks(testMethod).GetParameters()

10: newParams← newPdg.GetBlocks(testMethod).GetParameters()
11: paramStatus← CompareParameters(oldParams, newParams)
12: RepairedTests.Add(test, paramStatus)
13: end for
14: return RepairedTests

15: end procedure

Algorithm 7 Compare Method Parameters
1: procedure COMPAREPARAMETERS(oldParams, newParams)
2: paramAnalysis← ∅
3: paramStatus← ∅
4: for i←− 0, i < newParams.size(), i++ do
5: newParameter ← newParams[i]

6: if newParameter /∈ oldParams then
7: paramStatus← ("Parameter newParameter.Name was added.")
8: else
9: for j ←− 0, j < oldParams.size(), j++ do

10: oldParameter ← oldParams[j]

11: if oldParameter /∈ newParams then
12: paramStatus← ("Parameter oldParameter.Name was removed.")
13: else
14: if oldParameter.Name ≡ newParameter.Name AND oldParameter.Type 6≡

newParameter.Type then
15: paramStatus← ("Parameter data type of oldParameter.Name was modified from oldParameter.Type

to newParameter.Type")
16: end if
17: end if
18: end for
19: end if
20: paramAnalysis.Add(paramStatus)
21: end for
22: return paramAnalysis

23: end procedure

Inputs for ‘CompareParameters’ procedure are two arrays: ‘oldParams’ and ‘newParams’, which

contain parameter details of a method in the original and modified version of SUT, respectively. Lines
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4 through 21 iterate over each parameter in ‘newParams’. Line 6 checks if a parameter in the modified

version of the method does not exist in the original version, and if so the status of this parameter is set as

added. Lines 9 through 18 iterate over each parameter in the original version of the method. Line 11 checks

if a parameter in the original version of the method does not exist in the modified version, and if so the status

of the parameter is set as removed. Line 14 checks if the data type of a parameter has remained the same

between the versions. If not, then the parameter status is set as data type modified. After both the inner and

outer loops finish, comparison analysis result is returned to ‘paramStatus’ at line 12 of Algorithm 6.

3.3.1.1. An Example for Method Signature Analyzer

In this section, the procedure for MSA is explained through an example. Consider the two consec-

utive versions of ‘findShortestPathCode’ function from Composer, which is one of the applications used in

our experiments. Figure 3.5 and Figure 3.6 show version 1.0.0 and 1.1.0 of ‘findShortestPathCode’ function,

respectively.

findShortestPathCode (Original Version)
1 public function findShortestPath($from, $to, $directories = false) {
2 if (!$this−>isAbsolutePath($from) || !$this−>isAbsolutePath($to)) {
3 throw new \InvalidArgumentException();
4 }
5 $from = lcfirst($this−>normalizePath($from));
6 $to = lcfirst($this−>normalizePath($to));
7 if ($directories) {
8 $from = rtrim($from, ’/’) . ’/dummy_file’;
9 }

10 if (dirname($from) === dirname($to)) {
11 return ’./’.basename($to);
12 }
13 $commonPath = $to;
14 while (strpos($from.’/’, $commonPath.’/’) !== 0
15 && ’/’ !== $commonPath && !preg_match(’{^[a−z]:/?$}i’, $commonPath)) {
16 $commonPath = strtr(dirname($commonPath), ’\\’, ’/’);
17 }
18 if (0 !== strpos($from, $commonPath) || ’/’ === $commonPath) {
19 return $to;
20 }
21 $commonPath = rtrim($commonPath, ’/’) . ’/’;
22 $sourcePathDepth = substr_count(substr($from, strlen($commonPath)), ’/’);
23 $commonPathCode = str_repeat(’../’, $sourcePathDepth);
24 return ($commonPathCode . substr($to, strlen($commonPath))) ?: ’./’;}

Figure 3.5. Function findShortestPathCode in Version 1.0.0 of Composer.
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findShortestPathCode (Modified Version)
1 public function findShortestPathCode($from, $to, $directories = false, $staticCode = false) {
2 if (!$this−>isAbsolutePath($from) || !$this−>isAbsolutePath($to)) {
3 throw new \InvalidArgumentException();
4 }
5 $from = lcfirst($this−>normalizePath($from));
6 $to = lcfirst($this−>normalizePath($to));
7 if ($from === $to) {
8 return $directories ? ’__DIR__’ : ’__FILE__’;
9 }

10 $commonPath = $to;
11 while (strpos($from.’/’, $commonPath.’/’) !== 0 && ’/’ !== $commonPath
12 && !preg_match(’{^[a−z]:/?$}i’, $commonPath) && ’.’ !== $commonPath) {
13 $commonPath = strtr(dirname($commonPath), ’\\’, ’/’);
14 }
15 if (0 !== strpos($from, $commonPath) || ’/’ === $commonPath
16 || ’.’ === $commonPath) {
17 return var_export($to, true);
18 }
19 $commonPath = rtrim($commonPath, ’/’) . ’/’;
20 if (strpos($to, $from.’/’) === 0) {
21 return ’__DIR__ . ’.var_export(substr($to, strlen($from)), true);
22 }
23 $sourcePathDepth = substr_count(substr($from, strlen($commonPath)), ’/’) + $directories;
24
25 // CHANGED
26 if ($staticCode) {
27 $commonPathCode = "__DIR__ . ’".str_repeat(’/..’, $sourcePathDepth)."’";
28 } else {
29 $commonPathCode = str_repeat(’dirname(’, $sourcePathDepth).’__DIR__’.str_repeat(’)’,
30 $sourcePathDepth);
31 }
32
33 $relTarget = substr($to, strlen($commonPath));
34 return $commonPathCode . (strlen($relTarget) ? ’.’ . var_export(’/’ . $relTarget, true) : ’’);}

Figure 3.6. Function findShortestPathCode in Version 1.1.0 of Composer.

‘findShortestPathCode’ function is a file system utility that returns the PHP code that when executed

in the ‘$from’ path, will return the path to ‘$to’. Observe that in version 1.1.0, the function signature has

a new parameter called ‘staticCode’, and this parameter gets used in the newly introduced ‘if-else’ block

at lines 25 through 31. These changes were part of performance improvements [17]. Figure 3.7 shows the

PDG block corresponding to the function signature in version 1.1.0. Observe that the parameter details,

which includes the name, type and default value are available at lines 11 through 14. Figure 3.8 shows a

unit test for ‘findShortestPathCode’ function in version 1.0.0.

Observe that the parameter ‘$from’ in ‘findShortestPathCode’ does not have the same definition and

use between versions 1.0.0 and 1.1.0. Value of ‘$from’ is assigned to another variable (‘sourcePathDepth’),

see line 23 in version 1.1.0. The use of ‘sourcePathDepth’ changed due to the introduction of the if-else
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PDG for findShortestPathCode (Modified Version)
1 <PDGNode BlockID="256" ContextString="def1methodDec256"
2 ParentContext="def1" type="ClassMethodDec">
3 <Exits>
4 <Exit BlockID="257"/>
5 </Exits>
6 <Entries>
7 <Entry BlockID="232"/>
8 </Entries>
9 <MethodCallExits/>

10 <Defs>
11 <Def Name="$from" Type="" Value=""/>
12 <Def Name="$to" Type="" Value=""/>
13 <Def Name="$directories" Type="" Value="False"/>
14 <Def Name="$staticCode" Type="" Value="False"/>
15 <Defs>
16 <Uses/>
17 <DataPreds/>
18 <DataDeps/>
19 <CDChildren>
20 <!−− List of children −−>
21 </CDChildren>
22 <StatementValue>
23 public findShortestPathCode($from, $to, $directories=False, $staticCode=False)
24 </StatementValue>
25 </PDGNode>

Figure 3.7. PDG for One of the Modified Blocks in findShortestPathCode.

testFindShortestPathCode (Original Version)
1 public function testFindShortestPathCode($a, $b, $directory, $expected) {
2 $fs = new Filesystem;
3 $this−>assertEquals($expected, $fs−>findShortestPathCode($a, $b, $directory));
4 }

Figure 3.8. A Unit Test for findShortestPathCode.

block in version 1.1.0. Hence, due to these changes the unit test shown in Figure 3.8 is identified as an

obsolete test and this test will be included in the list of obsolete tests passed to MSA for repair. As described

in Algorithm 6, MSA extracts the parameter details of ‘findShortestPathCode’ from the PDG nodes corre-

sponding to the original and modified versions, compares and identifies the newly added parameter, which

is ‘$staticCode’ and its default value as ‘false’. MSA gathers this analysis and creates a copy of the test with

the identified repairs to the method signature. Figure 3.9 shows the repaired version of the test. Providing

such repaired copy of a test can assist developers to assess the coverage of existing test and determine if a

new test, for example, with ‘$staticCode’ value as ‘true’ would be valuable to include in the regression test

suite.
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testFindShortestPathCode (Repaired Version)
1 public function testFindShortestPathCode($a, $b, $directory, $expected, $static = false) {
2 $fs = new Filesystem;
3 $this−>assertEquals($expected, $fs−>findShortestPathCode($a, $b, $directory, $static));
4 }

Figure 3.9. Repaired Unit Test for findShortestPathCode.

3.3.2. Assertion Analyzer (AA)

AA attempts to repair an obsolete test by updating the test oracle. AA identifies the new value for

the test oracle, which we refer to as the assertion, based on the PHPUnit failure message returned from the

test execution. The steps below describe how AA performs test repair.

1. AA uses PHPUnit to execute the identified obsolete test. AA parses the test failure message to identify

the new value of the test oracle.

2. If the expected object in the assertion method of the test is a constant, which is determined from

the PDG node corresponding to the assertion statement in the test, then a copy of the original test is

created. In the copy, the excepted value in the assertion method is replaced with the new value that

was captured in the previous step.

3. Similar to the previous step, if the expected object in the assertion is a variable, then in the copy of

test, the variable’s last definition before the assertion is updated with the new value. PDG of the test

is used to locate the statement that corresponds to the variable’s definition.

4. Finally, AA uses PHPUnit to execute the newly created copy of the test. If the assertion succeeds,

then the new test is presented to the user as the repaired version of the obsolete test.

These steps are shown in Algorithm 8. The Input for Algorithm 8 is an array of obsolete tests

that were identified using Reusable Tests component. This algorithm returns an array that contains the

corresponding repaired copy of each obsolete test. Lines 6 through 25 iterate over each obsolete test. Line 8

captures the result from PHPUnit obtained when the obsolete test is executed against the modified version of

SUT. Line 9 verifies that the test indeed fails. Line 12 parses the assertion failure message to identify the new

value for the test oracle, which is the assertion in the test. The new value is assigned to ‘repairValue’. Line

14 extracts the PDG block corresponding to the assertion in the test. From this PDG block, it is possible to

determine if a variable or a constant is used in the assertion. Line 16 invokes ‘CreateTest’ method to create a
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copy of the original test and updates the assertion with the value captured in ‘repairValue’. Similarly, line 19

creates a copy of the test but with the variable definition updated to ‘repairValue’. PDG of the test enables

identification of the statement corresponding to the variable definition. Line 21 captures the execution result

of the repaired test. Line 22 checks if the execution did indeed succeed, and if so, the repaired test is added

to ‘RepairedTests’ array. After looping through all the obsolete tests, the repaired tests are available in

‘RepairedTests’

Algorithm 8 Assertion Analyzer
1: Inputs:

obsoleteTests[]: An array of obsolete tests for the modified version.

2: Outputs:

RepairedTests: An array containing repaired copy of the obsolete tests.

3: Declare:

RepairedTests[]: An array containing repaired copy for obsolete tests.

4: procedure ASSERTANALYZER(obsoleteTests)
5: RepairedTests← ∅
6: for n←− 0, n < obsoleteTests.size(), n++ do
7: test← obsoleteTests[n]
8: currentTestExecutionResult← test.Execute()
9: if currentTestExecutionResult.IsSuccess then

10: continue
11: end if
12: repairV alue← currentTestExecutionResult.NewV alue
13: testPDG← GeneratePDG(test)
14: assertBlock ← testPDG.GetAssertBlock()

15: if assertBlock.ExpectedType ≡ Literal then
16: newTest← CreateTest(test, repairV alue)
17: end if
18: if assertBlock.ExpectedType ≡ V ariable then
19: newTest← CreateTest(test, repairV alue, assertBlock))
20: end if
21: repairTestExecutionResult← newTest.Execute()
22: if repairTestExecutionResult.IsSuccess then
23: RepairedTests.Add(newTest)
24: end if
25: end for
26: return RepairedTests

27: end procedure

3.3.2.1. An Example for Assertion Analyzer

In this section, Assertion Analyzer is explained using an example. Figure 3.10 and Figure 3.11

show ‘getPlatformPath’ function in Filesystem.php of Composer in version 1.0.0 and 1.1.0, respectively.

This function returns a platform specific file URI path for the given input path. A bug in this function was
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identified [16] and fixed [20]. The fix was at line 4, where ‘file:///([a-z])/)i’ was replaced with ‘file:///([a-

z])/):?)i’, notice the additional ‘:?’ in the regular expression pattern of ‘preg_replace’ function. Reusable

Tests selects all tests from version 1.0.0 that cover this modified statement. Figure 3.12 shows an example of

such test. The test would be considered obsolete because the definition of the variable ‘$path’ was modified

due to the change at line 4 in version 1.1.0.

getPlatformPath (Original Version)
1 public static function getPlatformPath($path) {
2 if (Platform::isWindows()) {
3 $path = preg_replace(
4 ’{^(?:file:///([a−z])/)}i’,
5 ’file://$1:/’, $path);
6 }
7
8 return preg_replace(’{^file://}i’, ’’, $path);
9 }

Figure 3.10. Function getPlatformPath in Version 1.0.0 of Composer.

getPlatformPath (Modified Version)
1 public static function getPlatformPath($path) {
2 if (Platform::isWindows()) {
3 $path = preg_replace(
4 ’{^(?:file:///([a−z]):?/)}i’, // CHANGED
5 ’file://$1:/’, $path);
6 }
7
8 return preg_replace(’{^file://}i’, ’’, $path);
9 }

Figure 3.11. Function getPlatformPath in Version 1.1.0 of Composer.

The procedure for AA begins with passing an array of obsolete tests. In this example, the array

contains ‘getPlatformPathTest’. AA executes this test against version 1.1.0 using PHPUnit. The test fails

with an error message, “the expected value file:///c:/repos/composer/.git does not match the actual value,

which is file://c:/repos/composer/.git.” AA parses this test failure message and identifies the difference

between expected and actual values. The difference in this case is on the Windows platform, the actual value

will have one less ‘/’ character compared to the expected value. From the PDG of the ‘getPlatformPathTest’,
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getPlatformPathTest (Original Version)
1 namespace Composer\Test\Util;
2 use Composer\Util\Filesystem;
3 use Composer\TestCase;
4
5 class FilesystemTest extends TestCase {
6 private $fs;
7
8 public function getPlatformPathTest() {
9 $this−>fs = new Filesystem;

10 $expectedPath = ’file:///c:/repos/composer/.git’
11 $actualPath = ’file:///c:/repos/composer/.git’
12
13 $this−>assertEquals($expectedPath, $fs−>getPlatformPath(actualPath));
14 }
15 }

Figure 3.12. A Unit Test for getPlatformPath Function.

AA detects that the assertion statement has a variable ‘$expectedPath’. AA navigates the dependency graph

to identify the statement with the most recent definition of ‘$expectedPath’. AA prepares a copy of the test

with ‘$expectedPath’ set to ‘file://c:/repos/composer/.git’. Figure 3.13 shows the repaired test. AA executes

this repaired test against version 1.1.0 and verifies if the test indeed succeeds, and if so, AA presents this

copy of the test as the repaired test to the developer who can review the change.

getPlatformPathTest (Repaired Version)
1 namespace Composer\Test\Util;
2 use Composer\Util\Filesystem;
3 use Composer\TestCase;
4
5 class FilesystemTest extends TestCase {
6 private $fs;
7
8 public function getPlatformPathTest() {
9 $this−>fs = new Filesystem;

10 $expectedPath = ’file://c:/repos/composer/.git’
11 $actualPath = ’file:///c:/repos/composer/.git’
12
13 $this−>assertEquals($expectedPath, $fs−>getPlatformPath(actualPath));
14 }
15 }

Figure 3.13. Repaired Unit Test for getPlatformPath Function.
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4. INFRASTRUCTURE

This section describes the infrastructure that was developed to conduct our experiments.

4.1. Application Acquisition

One of the key requirements to conduct our experiments was to acquire PHP web applications. To

verify the proposed approaches, we needed access to the source code of multiple consecutive versions of

real-world applications. For the test selection and test repair experiments, it is required that the applications

have unit tests available. To evaluate the effectiveness of the proposed approaches, a changelog of the

versions should be available to verify if all the real faults were detected by the tests selected through our

proposed approach. Additionally, applications with active users and forums to clarify any questions we

have, would assist in our experimentation. Based on these criteria, we identified several applications, and

10 of which are listed in Table 4.1.

Table 4.1. PHP Web Applications.

Application Description Lines of
Code

Composer A dependency manager. Used to declare, manage and install dependencies. 73673
FAQForge A content management system focused on creating Frequently Asked Ques-

tions (FAQs), manuals and guides.
1775

Grav A flat-file, web-based content management system. 43627
Laravel A web application framework. 2681
log4hp A logging framework. 143392
Mambo A content management system. 136427
Manits An issue tracking application. 181966
MediaWiki A web-based application to build a wiki, which is website where users collab-

oratively modify content.
740547

osCommerce A store-management application. 67920
phpScheduleIt A reservation and scheduling application. 52683

In Table 4.1, “Application” is the name of the PHP web application, “Description” is a one-line

description of the application, and “Lines of Code” is the average number of lines of code across the mul-

tiple versions of the application that we reviewed. We listed the “Lines of Code” metric to show that the

applications consider were non-trivial, and lot of effort went into vetting the applications needed for experi-

mentation.
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We manually reviewed each version pair i.e., consecutive versions of an application. We identified

the modifications between the versions, and traced each modification to a real fault or a feature request. We

reviewed the coverage of existing tests. In case the existing tests did not cover the modifications or a core

functionality, then we manually prepared unit tests to improve the coverage. We ran the tests and manually

verified the results to ensure that the tests filled the gaps in the coverage.

4.2. Tools of PARTE

As shown in Figure 3.1, PARTE is a collection of components and each component is a collection

of tools. A list of such tools is shown in Table 4.2.

Table 4.2. Tools in PARTE.

Tool Description Lines of
Code

AST2HIR Convert an AST to HIR. 2986
Constraint Collector Collect constraints in the given test paths. 1063
Constraint Reuse Identifies reusable constraints. 515
Impact Analysis Identifies the impact set based on static impact analysis. 845
Includer Searches for include and require statements, and replaces

with appropriate code.
3594

Path Generator Identifies the regression test paths. 4078
PDG Generator Generate PDGs and instrumented code. 12570
Slicer Identifies program slices. 853
Test History Builder Identifies test coverage for the given test. 730
Test Repair Repairs the given obsolete tests. 9741
Test Selection Identifies existing tests that cover the given regression test

paths.
857

In Table 4.2, “Tool” is the name of the tool, “Description” is a one-line description of the tool,

and “Lines of Code” is the number of lines of code in the tool. All these tools were developed using Java.

Generation of PDG requires considering various PHP constructs such as class, methods, statements, loops

conditionals, operators and variables. Hence the lines of code for PDG Generator was 12,570. In case of

Test Repair, we had to handle various types of assertions supported by PHP, and detect changes to parameters

in a method signature. This added up to 9,741 lines of code for Test Repair.

To control the process and data flow between PARTE components, we prepared Perl scripts. Before

running these scripts on an application, we ensure environment cleanliness by starting an empty environment
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using ‘env -i’ Unix shell command. We did not use any visualization or containerization technologies that

would have offered a cleaner environment for running the scripts on an application.

4.3. Organization of Infrastructure

To support the process of controlled experiments, we organized a directory structure so that the

experiments can be replicated consistently and reliably. This structure is shown in Figure 4.1, and Table 4.3

provides a description of these directories.

Figure 4.1. Directory Structure of the Infrastructure.

Items not listed in Figure 4.1 and Table 4.3 are the logs and the usage guides. These are essential

in understanding the usage or the tools, output, and helpful in replicating the experiments. All the tools

generate verbose logs, which are plain text files stored in the corresponding output folder. For example, logs
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from PDG generation on original version (v0) of SUT will be under ‘v0_v1/v0/pdg’. A detailed usage guide

was prepared for each tool. The guide can be accessed through a command line argument. For example,

‘java -jar PDGGenerator.jar -help’ would display the usage guide for PDGGenerator. To keep track of the

changes, we used Apache Subversion, which is an open-source software version control system.

Table 4.3. Description of Directories.

Directory Description
source Source code of the version pair of the SUT.
source/v0/src Source code of the original version.
source/v0/tests Unit tests for the original version.
source/v1/src Source code of the modified version.
source/v1/tests Unit tests for the modified version.
util All the tools of PARTE. This includes the Java Archive (JAR) of

each tool in PARTE, shell and Perl scripts.
v0_v1 Artifacts of running the tools over the source code.
v0_v1/constraints Constraints in the regression paths.
v0_v1/diffs Differences between the PDGs corresponding to the original and

modified versions.
v0_v1/paths Regression paths in the modified version.
v0_v1/v0/ast ASTs for the original version.
v0_v1/v0/ast_preprocessed ASTs corresponding to the preprocessed source code files of the

original version.
v0_v1/v0/hir HIR corresponding to the AST of the original version.
v0_v1/v0/inst Instrumented source code of the original version.
v0_v1/v0/pdg PDGs for the original version.
v0_v1/v0/select Original version tests that are reusable for regression testing the

modified version.
v0_v1/v0/select-obsolete Original version tests that are identified as obsolete.
v0_v1/v0/repair Obsolete tests that were successfully repaired.
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5. EMPIRICAL STUDIES

To investigate the approaches described in Chapter 3, we performed a family of empirical studies.

We describe each of them in the following subsections.

5.1. Experiment 1: Reusable Constraint Values

To assess the proposed approach that identifies reusable constraints values, we performed a con-

trolled experiment. The design, data collection, analysis and reporting of the results of the experiments

(Experiments 1, 2, and 3) followed the guidelines described in Kitchenham et al. [47].

We presented this empirical study at the IEEE Conference on Software Testing, Regression 2014 [40].

The research question for this experiment is as follows:

RQ: Can our approach be effective in reducing the effort during regression testing?

The following sections describe the experiment details, which include objects of analysis, indepen-

dent and dependent variables, measures, experiment setup and design, and threats to validity.

5.1.1. Objects of Analysis

In this experiment, we used five open-source PHP web applications with multiple versions.

OsCommerce [58] (open-source Commerce) is a web-based store-management and shopping cart

application. This application has multiple add-ons developed by its large user community. FAQForge [56]

enables users to create frequently asked questions (FAQs), documents, and manuals. PhpScheduleIt [71],

is a web-based reservation and scheduling system. It provides a wide range of configurations: for exam-

ple, administrators can set up access control that grants or denies access to reserve a resource for a user.

Mambo [55] is a content management system for building various websites such as blogs, forums, and polls.

It offers a robust set of API and caching mechanisms that enable building websites that are responsive even

under high traffic conditions. Mantis [57] is a widely used web-based bug tracking system. It supports a

wide array of browsers, operating systems, and mobile devices. Mantis integrates with source control tools

such as Subversion, and with other bug-tracking systems such as Bugzilla. All these applications have many

active users and have support groups that discuss the usage of existing features, issues, workarounds, and

suggestions for improvement.
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Table 5.1 lists, for each of the five applications, data about its associated “Version”, “Lines of Code”

and “Number of Files.” Lines of code metric includes both PHP script and HTML.

Table 5.1. Objects of Analysis in Experiment 1.

Application Version Lines of
Code

Number
of Files

FAQForge 1.3.0 1806 20
1.3.1 1837 20
1.3.2 1671 18

osCommerce 2.2MS1 53510 302
2.2MS2 68330 506
2.2MS2-06017 78892 502

Mambo 4.5.5 149868 703
4.5.6 150967 719
4.6.1 127309 771
4.6.2 129235 659
4.6.3 130716 654
4.6.4 133420 663
4.6.5 133475 663

phpScheduleIt 1.0.0 35045 90
1.1.0 59753 143
1.2.0 63138 178

Mantis 1.1.6 139124 496
1.1.7 139196 496
1.1.8 139194 496
1.2.0 206150 748
1.2.1 206492 747
1.2.2 207123 746
1.2.3 209104 753
1.2.4 209345 753

5.1.2. Variables and Measures

5.1.2.1. Independent Variables

The independent variable in this study is the test input generation technique. The experimental con-

trol (baseline) is the technique that generates executable test cases without utilizing reusable input constraint

values. The heuristic technique generates executable test cases considering the reusability of input constraint

values.
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5.1.2.2. Dependent Variable and Measures

The dependent variable is the number of reusable input values identified using the proposed tech-

nique. We also measured the percentage of reusable input values over the total number of input values.

5.1.3. Experiment Setup

This experiment was performed on a standalone machine. The operating system on the machine was

Ubuntu Desktop 16.04. To support the web-based applications, an Apache HTTP server was used. MySQL

was installed to support the DBMS that is required for the object programs. PHP version 5.6, PHC 0.3 and

PHPUnit 5.3 were installed to run and test PHP web-applications. Our tool was written in Java, and Perl

and Bash scripts were used to automate various processes of the experiment. As described in Section 3.2.1,

the process of identifying reusable constraints begins with Preprocessing. The Perl script takes the source

code path to original and modified versions of the SUT, and generate ASTs. Then, impact analysis was

performed by analyzing these two sets of ASTs, and finally, reusable constraint detection was performed

using the impact analysis results.

We measured the total number of input values (Total) required for the new test paths and the number

of reusable input values (Reuse) to calculate the percentage of reusable input values (Reuse/Total).

5.1.4. Data and Analysis

The results of this study and data analysis considering the research question are presented in this

section. The research question of this study is to assess the effectiveness of the proposed approach in terms

of the costs of generating new test cases for regression testing. The following two sets of data were collected

to answer our research question:

1. The total number of input values required to execute new test paths

2. The number of reusable input values

These two sets of data collected from the experiment are summarized in Table 5.2. The table also

includes the total number of paths and regression test paths. Traversing these paths enables us to compute

the number of input test values required.

The total number of constraints across all version pairs of FAQForge, Mambo, Mantis, osCommerce

and phpScheduleIt were 298, 15,863, 21,926, 8,462 and 3,376, respectively. The total number of constraints

used were 83, 5,925, 9,887, 5,973 and 2,051, respectively for all version pairs of FAQForge, Mambo, Mantis,

osCommerce and phpScheduleIt.
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For each application, Table 5.2 shows “Version Pair”, which is a pair of consecutive versions that

were analyzed. “No. of Paths (Pt)” indicates the total number of paths in the newer version in the version

pair. “No. of Regression Paths (Pp)” is the total number of paths generated by PARTE (the paths that

exercise the modified code in the newer version). Pp is a subset of Pt. “No. of Input Values Required for Pp

(It)” is the total number of input values required for the regression paths Pp. “No. of Reusable Input Values

in Pp (Ir)” is the total number of input values that can be reused from the previous version for the regression

paths. Ir is a subset of It. A visual representation of this data is shown in Figure 5.1, where the y-axis in the

graphs is the percentage of input values that are reusable. The remainder of this section discusses the results

of each application.

5.1.4.1. Results for FAQForge

As shown in Table 5.2, the version pair 1.3.0 and 1.3.1 has the total number of paths as 73, the

number of regression paths as 5, the number of input values required to execute these paths as 25, and 19 of

the 25 input values are reusable.

Manual code inspection of the changes introduced in version 1.3.1 shows that only one library file

was affected. PARTE stores library files in a folder named ‘lib’ and these files are not analyzed because they

are not part of the application’s source code. However, during the Preprocessing phase, if a PHP source code

file of the application references a library using ‘include’ and ‘require’, then the library code is inserted into

the PHP file. If there was any change in the library code, as in this version of FAQForge, Path Generator

would recognize the change and create a test path corresponding to the change. Hence, this resulted in 5

regression paths for version 1.3.1.

The number of changes between versions 1.3.1 and 1.3.2 is higher compared to the first pair. Several

source code changes across 3 files and a change to a library were observed during manual inspection. These

modifications caused Path Generator to identify 19 regression paths. To execute these paths, 210 input

values were needed. However, only 15 input values were determined to be reusable. The lower reuse

is due to the source code changes that modified the def-use of variables between versions. Compared to

the control technique, which generates tests and their input values, the results indicate that the proposed

approach requires a relatively smaller number of test input values and some of which are reusable.

FAQForge is a smaller application than the other four considered in the experiment. The latest

version of FAQForge has 18 files with around 1671 lines of code. Hence the number of paths and input

values required is relatively small compared to other applications.
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Table 5.2. Results of Reusable Constraint Values.

Application Version Pair No. of Paths

(Pt)

No. of Regres-

sion Paths (Pp)

No. of Input Val-

ues Required for

Pp (It)

No. of Reusable

Input Values in

Pp (Ir)

FAQForge 1.3.0 & 1.3.1 73 5 25 19

1.3.1 & 1.3.2 73 19 210 15

Mambo 4.5.5 & 4.5.6 1357 65 490 294

4.5.6 & 4.6.1 1388 1388 4446 67

4.6.1 & 4.6.2 1416 236 2075 536

4.6.2 & 4.6.3 1409 92 1236 250

4.6.3 & 4.6.4 1444 114 1567 191

4.6.4 & 4.6.5 1444 20 324 57

Mantis 1.1.6 & 1.1.7 3482 221 1524 708

1.1.7 & 1.1.8 3482 185 1238 662

1.1.8 & 1.2.0 4345 2802 20425 195

1.2.0 & 1.2.1 4373 166 1772 558

1.2.1 & 1.2.2 4389 106 1042 296

1.2.2 & 1.2.3 4403 103 890 267

1.2.3 & 1.2.4 4419 199 2643 263

osCommerce 2.2MS1 &

2.2MS2

2403 1719 4392 702

2.2MS2 &

2.2MS2-060817

2409 58 813 219

phpScheduleIt 1.0.0 & 1.1.0 481 338 2389 280

1.1.0 & 1.2.0 518 314 3877 472

1.2.0 & 1.2.12 529 154 2339 861
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Figure 5.1. Input Value Reuse Rates.

5.1.4.2. Results for Mambo

Six version pairs of Mambo were analyzed. As shown in Table 5.2. Between versions 4.5.5 and

4.5.6 the number of functional changes were minor, and hence a higher reuse of input values was obtained.

The release notes for version 4.6.1 mention that this was a major update, which included fixes and feature

upgrades. The type and number of changes introduced in this version caused 1,388 regression paths with

4,446 input values. The def-use of several variables changed, which prevents reuse of many input values.

The remaining four version pairs had changes between the versions. Security patches to address

cross-site scripting issues and minor bug fixes were introduced in these versions.

5.1.4.3. Results for Mantis

In Mantis, version pair 1.1.8 and 1.2.0 had lower reuse of input value. A manual inspection of

source code changes and release notes for version 1.2.0 shows that many files were modified, several bug

fixes were introduced, and feature were upgraded. These changes resulted in 2,802 regression test paths.

These regression paths required 20,425 input values, with only 195 reusable input values.

Version pair 1.1.7 and 1.1.8 had a greater reuse since the number of source code changes between

the versions was quite low.
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Mantis is the largest application that was analyzed in the experiment. The latest version of Mantis

has around 700 files and more than 200 KLOC. Given the size of Mantis reusing 1 in 4 input values save in

the cost of solving constraints, and thus the proposed approach reduces the overall cost of regression testing.

5.1.4.4. Results for osCommerce

In osCommerce, the first version pair i.e., 2.2MS1 and 2.2MS2, the number of regression paths

identified was 1,719, with 4,392 input values needed to execute these paths. Between these versions, a total

of 279 files were modified. Although most changes were in the library files, there were a few modifications

in each module of the application. Thus, only 702 input values were determined to be reusable.

In the second version pair, 2.2MS2 and 2.2MS2-060817, 105 of the 502 files had changes. The

number of changes and files modified was lower compared to the first version pair. Fifty-eight regression

paths, with 813 input values required to execute those paths, were identified. Given the type of changes, 219

input values were determined to be reusable.

5.1.4.5. Results for phpScheduleIt

A manual inspection of release notes and source code showed that new functionality and bug fixes

were introduced in phpScheduleIt versions 1.1.0 and 1.2.0 while version 1.2.12 included a couple of minor

patches. As observed with other applications in the experiment, when the number of changes is greater, the

regression paths identified will also be greater in number, more input values will be needed to execute those

paths, and input value reuse will decline. Version 1.1.0 introduced support for multiple administrators, web-

configurable announcements, and localization features. Version 1.2.0 added features such as user groups, the

ability to reserve additional resource for a given reservation, and support for user time zones. Introducing

such major features caused a higher number of regression test paths and a reduced reuse. Version pair 1.2.0

and 1.2.12 had higher reuse due to the lower number of changes between those versions.

These results demonstrate that the proposed technique requires fewer input test values than the con-

trol technique and can reuse input values. To investigate whether the difference we observed is statistically

significant, we performed the paired t-test at a significance level of 0.05. The test results indicate that there

is a significant difference between techniques (p-value < 0.01), meaning that our approach was significantly

effective in reducing input test values.

5.1.5. Threats to Validity

In this section, the internal and external threats to the validity of this study are explained. The

approaches used to limit the impact of these threats are also described.

50



5.1.5.1. Internal Validity

The outcome of this study could be affected by the choice of program analysis. We applied static

analysis on a dynamic programming language, PHP. To do so, we had to change many statements in the

program during the file preparation phase, removing and fixing many dynamic environment variables. How-

ever, the process was carefully examined to minimize the adverse effect that might be introduced into the

modified files.

5.1.5.2. External Validity

This study used open-source web applications, so these programs are not representative of the ap-

plications used in practice. Therefore, the results cannot be generalized. However, we tried to reduce this

threat by using five non-trivial sized web applications with multiple versions that have been utilized by many

users.

5.1.6. Discussions

Our experiment results strongly suggest that the approach that supports input variable value reuse

for regression tests can save a substantial amount of effort during regression testing.

As we observed from the data analysis, overall many version pairs of the applications produced the

high reuse rates of input values with our approach over the control technique (original PARTE approach).

For some version pairs, the reuse rates were exceptionally high. The first version pair (1.3.0 and 1.3.1) for

FAQForge yielded a 76% reuse rate, and the first version pair (4.5.5 and 4.5.6) for Mambo yielded 60%.

Further, two version pairs for Mantis (1.1.6 and 1.1.7, and 1.1.7 and 1.1.8) showed reuse rates of 46% and

53%, respectively.

Because the test paths require actual inputs to create executable test cases, incorporating this ap-

proach to the PARTE approach that we introduced in our previous work can reduce regression testing ef-

fort substantially. For instance, in the case of osCommerce, the number of test paths generated using pro-

gram slice information was 1,719 for version 2.2MS2. For those test paths, we learned from our previous

study [59] that a large number of constraints were not solvable by automatic resolvers. Instead, many input

values had to be resolved manually, and it required a lot of effort. Our approach that facilitates constraint

reuse allowed a substantial reduction of efforts during the constraint resolution process.

We also observed that there is a relationship between the reuse rate and the number of changes in the

version pair. For FAQForge, our approach identified more reusable input values from the first version pair
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than the second version pair. Our manual inspection of the source files for the versions revealed that there

are fewer changes in the first version pair than in the second version pair. Similarly, for osCommerce, more

reusable input values were identified in the second version pair than the first version pair. Our inspection

revealed that, for the second version pair, the number of changed files was fewer than the first version pair.

In addition to the impact of the amount of changes to the reuse rate, we also observed that the type

of changes between versions can impact the reuse rate.

In phpSchedulelt, the changes in the last version pair were related to language support and several

minor bug fixes, whereas the changes in other version pairs involve new feature additions and several bug

fixes. For example, version 1.1.0 introduced a feature for multiple day reservations and version 1.2.0 allowed

additional resources to be added to an existing reservation. To support these new features, several new

classes were added in those versions, and thus their input reuse rates were relatively low compared to the

last version pair.

In the case of Mambo, the second version pair went through significant code changes including an

external editor integration into Mambo and a security feature addition. The existing code had to be modified

to support these new features, and as a consequence, the majority of input constraints generated for the

previous versions could not be reused (the reuse rate was 2%). But, the first version pair involved minor bug

fixes, so the reuse rate was relatively high (60%).

In the case of Mantis, for the third version pair (1.1.8 and 1.2.0), 149 files had changed. The changes

involved bug fixes and several new feature additions, such as monitoring bugs. Similar to Mambo, these new

additions affected the existing code, thus the reuse rate (1%) was exceptionally low. The version pair, 1.1.6

and 1.1.7, involved only 18 minor bug fixes, and no new source code or resource files were added. Thus, the

reuse rate (46%) was relatively high compared to other version pairs.

These observations clearly state the fact that application versions with fewer changes or changes

introduced in small patches are more beneficial in reducing test case generation costs than versions with a

large number of changes. In general, irrespective of the number of changes in program source code, reusing

constraints reduced the new test case generation effort by a substantial amount.

To our knowledge, this study was the first attempt to investigate the reusability of variable con-

straints and their input values. The proposed approach produced promising results and the findings from

the study provided an insight about how reusable constraint values can be utilized during the testing and

regression testing process.
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Encouraged by the results of this experiment we pursued our research on how existing unit tests

can be utilized effectively, and avoid the costs of generating new tests so that the overall cost of regression

testing can be further reduced. In our next chapter we describe our second experiment that investigates on

how reusable tests can be identified using constrain reuse information.

5.2. Experiment 2: Test Selection with Reusable Constraint Values

The results of Experiment 1 suggest that the proposed approach that supports input variable value

reuse for regression tests can save a substantial amount of effort during regression testing. In our second ex-

periment, we explore additional cost savings by considering test selection that utilizes existing test cases and

reusable constraint values when applications possess existing test cases. We submitted this study to Else-

vier’s Information and Software Technology [26]. Our second experiment addresses the following research

questions:

RQ1: Is our test selection approach that selects existing test cases and reuses constraint values effective in

reducing the overall effort for testing new versions of programs?

RQ2: Do the selected tests have the same fault detection ability as the original tests?

The following subsections describe the objects of analysis, experiment setup, threats to validity, and

interpretation of the results.

5.2.1. Objects of Analysis

This experiment requires existing test cases; thus, we utilized a subset of the object programs

and versions used in Experiment 1 that have test cases, including one additional application (log4php).

Log4php [53] is a logging framework for PHP. It is configurable through xml, properties or PHP files and

it has built-in logging formats that include HTML, XML or any user defined pattern. It has been used in

many large open-source applications, such as vtiger, scalr and Helpzilla, and commercial projects such as

sitesupra. See Section 5.1 for descriptions of remaining applications: (Mantis, Mambo, and phpScheduleIt).

We chose these specific versions of the applications in this study because the changes between the versions

addressed customer reported bugs and included fixes for security issues.

Test cases for Mantis and log4php came with these programs. Although these tests cover the core

functionality of the applications, the overall coverage was quite low. A few modifications between the

versions were not covered by any of the existing tests. Hence, we manually created new tests, verified that
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the new tests cover the missing gaps in the core functionality and thus, increased the code coverage. Mambo

and phpScheduleIt do not have any existing tests, so we created test cases for them. When we create these

test cases, we focused on covering the core functions of each application, so the number of test cases is

rather small compared to two other applications.

Table 5.3 shows the object programs and their associated data. “Number of Existing Tests” shows

the number of existing test cases for the corresponding version. “Coverage of Existing Tests” is the code

coverage of existing tests. “Number of New Tests” is the number of new tests that we created. “Total

Number of Tests” is the sum of “Number of Existing Tests” and “Number of New Tests”. “Total Coverage

of Tests” is the code coverage corresponding to “Total Number of Tests”.

Table 5.3. Objects of Analysis in Experiment 2.

Application Version Lines
of
Code

Number
of Files

Number
of Existing
Tests

Coverage
of Existing
Tests

Number
of New
Tests

Total
Number
of Tests

Total
Coverage
of Tests

Mantis 1.2.0 206150 748 62 41% 32 94 48%
1.2.1 206492 747 64 41% 33 97 49%
1.2.2 207123 746 66 42% 42 108 51%
1.2.3 209124 753 70 44% 54 124 53%
1.2.4 209345 753 71 44% 59 130 57%

Mambo 4.5.5 149868 703 0 0% 65 65 36%
4.5.6 150967 719 0 0% 76 76 39%
4.6.1 127309 771 0 0% 83 83 42%
4.6.2 129235 659 0 0% 90 90 44%
4.6.3 130716 654 0 0% 102 102 53%
4.6.4 133420 663 0 0% 105 105 54%
4.6.5 133420 663 0 0% 110 110 58%

phpScheduleIt 1.0.0 35045 90 0 0% 40 40 16%
1.1.0 59753 143 0 0% 45 45 17%
1.2.0 63138 178 0 0% 52 52 20%
1.2.12 72396 192 0 0% 55 55 22%

log4php 2.0.0 12014 97 39 37% 23 62 59%
2.1.0 13702 105 44 39% 31 75 62%
2.2.0 15132 114 46 40% 50 96 73%
2.3.0 16720 132 49 42% 49 98 74%
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5.2.2. Variables and Measures

5.2.2.1. Independent Variables

The independent variable in this study is the regression test selection technique. The experimental

control is the technique that uses all existing test cases when testing the modified version of the program.

5.2.2.2. Dependent Variable and Measures

The dependent variables in this study are as follows:

1. The number of reusable tests selected for the modified version of the program.

2. Mutation score for tests considered in the selection technique.

5.2.3. Experiment Setup

This study was performed on a standalone machine. The operating system on the machine was

Ubuntu Desktop 16.04. To support the web-based applications, an Apache HTTP server was installed and

configured. MySQL was installed to support the DBMS needs of the object programs. PHP version 5.6,

PHC version 0.3, and PHPUnit 5.3 were installed to run and test PHP web applications. PARTE tools are

written in Java. For this experiment, PARTE tools were built and executed with Java 8 Update 91 version.

To control data flow between tools, Perl and Bash scripts were used. As described in Section 5.1.3, we

used a Perl script to generate ASTs, PDGs, slices and to identify reusable constraints. Next, the Perl script

is invoked to perform test selection by passing the paths to the root folder containing the impact analysis

results of the original and modified version of SUT and the path to the folder containing the tests for the

original version of SUT.

We reviewed of the changelog and manually inspected the code to verify if there are real defects

between the version pairs of the applications. Although some version pairs have such defects, many of them

did not. Hence, as a substitute [42], we chose mutation analysis to investigate whether the selected tests

catch the same faults as the original tests, which shows the selected tests maintain the same fault detection

ability.

To create mutants, we used Humbug [41], which is a mutation testing framework for PHP. Humbug

generates a basic set of mutants such as changing binary arithmetic operators, boolean values, conditional

boundaries, increments, and return values. Humbug selects existing tests that cover the statement, executes

the selected tests on mutated code, and verifies if the mutant is killed. Humbug uses PHPUnit to execute the
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tests, and it produces the mutation score for each set of test cases as the final outcome. Since our focus is

regression testing, we use only generated mutants that fall within modified areas of code.

5.2.4. Data and Analysis

This section presents the results of the second experiment and an analysis of the data.

5.2.4.1. RQ1 Analysis

RQ1 investigates if the proposed regression test selection approach is effective in identifying tests

that cover modifications between the version pairs, and if augmenting this selection with constraint value

reuse information reduces the overall costs of regression testing.

Table 5.4 summarizes the results of the test selection. For each application, the table shows “Version

Pair,” which is a pair of consecutive versions of the application being analyzed. The first version in each pair

is considered the old version, and the second is the modified version. The “Total Tests (T)” column shows

the total number of unit tests available for the corresponding old version. “Selected Tests (Ts)” shows the

total number of selected unit tests that should be run to regression test the modified version. Some selected

test cases may be obsolete if their input values are no longer applicable to the modified version. “Obsolete

Tests (To)” shows the number of obsolete tests. The “Final Tests (Tf = Ts - To)” column indicates the number

of tests obtained after subtracting the obsolete tests (To) from the selected tests (Ts).

From this table, we observed that the number of unit tests tends to grow across versions for all

applications because new tests are added to cover new features or improve existing coverage. Overall, in

each version pair of all applications there were existing tests that covered the affected code paths. We

discuss the results of each application in detail in the following subsections. The visual representation of

rate of savings, which is the percentage of “Selected Tests” in “Total Tests”, achieved in each version pair

of an application is presented as a line graph in Figure 5.2.

We calculated the percentage change in the total execution time of “Total Tests” and “Selected Tests”

for each version pair across all four applications. The highest and lowest percentage change in execution

time observed was 73% and 0%, respectively (37% on average). The lowest percentage change was 0%

since in phpScheduleIt version pair 1.0.0 & 1.1.0, all the existing tests were selected as regression tests. For

all other version pairs across applications, the percentage change was more than 10%. This shows that the

proposed test selection approach is effective in reducing the overall cost of regression testing.
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Table 5.4. Results of Test Selection.

Application Version Pair Total
Tests
(T)

Selected
Tests
(Ts)

Obsolete
Tests
(To)

Final Tests
(Tf = Ts - To)

Mantis 1.2.0 & 1.2.1 94 42 12 30
1.2.1 & 1.2.2 97 33 11 22
1.2.2 & 1.2.3 108 52 28 24
1.2.3 & 1.2.4 124 67 59 8

Mambo 4.5.5 & 4.5.6 65 28 9 19
4.5.6 & 4.6.1 76 27 18 9
4.6.1 & 4.6.2 83 45 24 21
4.6.2 & 4.6.3 90 47 25 22
4.6.3 & 4.6.4 102 23 17 6
4.6.4 & 4.6.5 105 82 72 10

phpScheduleIt 1.0.0 & 1.1.0 40 40 32 8
1.1.0 & 1.2.0 45 32 21 11
1.2.0 & 1.2.12 52 34 18 16

log4php 2.0.0 & 2.1.0 62 40 29 11
2.1.0 & 2.2.0 75 52 31 21
2.2.0 & 2.3.0 96 58 32 26

Table 5.5. Results of Mutation Testing.

Application Version Pair Total
Tests
(T)

Selected
Tests
(Ts)

Total
Mutants
(M)

Mutation
Score for
T

Mutation
Score for
Ts

Mantis 1.2.0 & 1.2.1 94 42 573 100 100
1.2.1 & 1.2.2 97 33 604 100 100
1.2.2 & 1.2.3 108 52 609 100 100
1.2.3 & 1.2.4 124 67 763 100 100

Mambo 4.5.5 & 4.5.6 65 28 560 100 100
4.5.6 & 4.6.1 76 27 622 100 100
4.6.1 & 4.6.2 83 45 740 100 100
4.6.2 & 4.6.3 90 47 745 100 100
4.6.3 & 4.6.4 102 23 785 100 100
4.6.4 & 4.6.5 105 82 793 100 100

phpScheduleIt 1.0.0 & 1.1.0 40 40 367 100 100
1.1.0 & 1.2.0 45 32 532 100 100
1.2.0 & 1.2.12 52 34 758 100 100

log4php 2.0.0 & 2.1.0 62 40 339 100 100
2.1.0 & 2.2.0 75 52 415 100 100
2.2.0 & 2.3.0 96 58 435 100 100
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Figure 5.2. Rate of Savings in Test Selection.

5.2.4.2. Results for Mantis

As shown in Table 5.4, for some version pairs, the portion of obsolete tests is somewhat high.

Version pair 1.2.3 and 1.2.4 has the highest number of obsolete tests (59), which means that only 8 tests can

be reused to test version 1.2.4.

Upon manual inspection of the source for version 1.2.4, we found that this version includes more

than 30 fixes in different areas such as API changes, security problem fixes, and enhancements to user

administration features. A few existing tests (67) of version 1.2.3 covered the code paths that had un-

dergone modification in version 1.2.4. An example of such modification is in ‘account_update.php’ that

introduced the ‘t_ldap’ variable to check if the current session is using LDAP. Tests that cover the paths

where ‘t_ldap’ was introduced, for example a test that invokes ‘account_update.php’ through a call from

‘account_update.php’, will behave differently between 1.2.3 and 1.2.4. Modifications of this kind caused

the def-use of a few variables to change between the versions. Hence, tests that had input values for such

variables, a total of 59 tests, became obsolete, leaving 6 existing tests that can be reused for regression testing

1.2.4. Although new tests were added to version 1.2.4, only 2 covered enhancements in user administration

features. Thus, a total of 8 tests made up the final set of selected tests.
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In contrast, version pair 1.2.0 and 1.2.1 had fewer functional changes. Existing tests in version

1.2.0 did not have coverage for localization and webpage components that were modified in 1.2.1. The

tests selected (42) for 1.2.1 covered the security and API changes that did not change the def-use of many

variables in the affected paths. Thus, only 12 of the tests were obsolete leaving 30 in the final set of selected

regression tests that can be reused for 1.2.1.

Thus, it can be observed that the rate of savings is affected by factors such as the type of code

changes and the coverage of existing tests. Utilizing constraint reuse information enables test teams to filter

obsolete tests automatically, and thus identify a final set of regression tests that can be reused with existing

values.

5.2.4.3. Results for Mambo

On reviewing the source code for Mambo version 4.6.1, we found that this version was a feature

update that introduced new features and improved many existing ones. Between these two releases, there

were two release candidates of version 4.6. This caused substantial code churn to the point where 40% of

the source code files were modified between versions 4.5.6 and 4.6.1, resulting in 27 of the 76 tests being

selected. Given the type of code changes, the def-use of a few variables did not remain the same between

versions, causing 18 tests to become obsolete. Thus, the final set of selected tests included 9 tests.

A manual inspection of Mambo version 4.6.4 shows that this version introduced new security fea-

tures such as hardened security in ‘/includes/Cache/Lite/Output.php’, included fixes for several bugs, and

refactored code. These types of functional changes introduced new code paths, removed code paths that had

existed in earlier versions, and modified the def-use of common variables between the versions. Mambo

version 4.6.3 had 102 tests. PARTE’s test selection identified 23 tests that cover the affected paths. Given

the def-use changes, there were 17 obsolete tests, leaving only 6 in the final set of selected regression tests.

Version 4.6.5 had minor functional changes. Only 2% of the code base had undergone modifications,

and many of those were in non-executable code. However, the few functional changes that were made in

this version were in the code paths that influence common usage scenarios in Mambo. For example, a

definition of the variable ‘$link’ was removed from the ‘saveContent’ and ‘cancelContent’ functions in

‘components/com_contentcontent.php’. These types of changes caused 82 tests to be selected as regression

tests. The def-use of variables that were used in multiple existing tests was modified in the new version.

Hence, 72 of the 82 selected tests were obsolete, resulting in a final set of 10 regression tests that can be

reused with existing values to test version 4.6.5.
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Like Mantis, number of selected tests in Mambo was dependent not only on the number of code

changes but also on the component that was modified. As the number of tests increases, effectively selecting

tests and automatically detecting obsolete tests will minimize the manual verification needed to validate test

inputs. Thus, the proposed approach reduces the overall cost of regression testing.

5.2.4.4. Results for phpScheduleIt

phpScheduleIt is smaller than Mantis and Mambo. A manual inspection of version 1.1.0 showed

that some core components of the application had undergone modification. For example, in version 1.0.0,

a function that deletes a reservation does not verify if the current user has sufficient privileges to delete a

reservation [72]. This was fixed in 1.1.0, in which a condition was added to check if the current user has

sufficient access to delete a reservation. These types of changes affect the common use–case scenarios of

an application. Thus, all 40 tests in version 1.0.0 were selected as regression tests for 1.1.0. Code changes

modified the def-use of certain variables that 29 of the 40 tests depended on, causing these 29 tests to be

marked as obsolete, which left 8 tests in the final set of regression tests that can be reused for version 1.1.0.

In contrast, the changelog for version 1.2.12 showed fewer functional changes than the other two

version pairs. Hence, 34 of 52 tests were selected. Given that the def-use of a few variables changed, 18

tests were identified as obsolete, and the remaining 16 tests were in the final set of selected regression tests.

5.2.4.5. Results for log4php

log4php is the smallest of all the applications in this experiment, with around 12 KLOC. A review

of source code and changelog for version 2.1.0 reveals that several functional changes were made in the

‘LogConfigurator’ and ‘LogAppender’ modules. For version 2.0.0, it was reported [54] that connections to

the database were not closed correctly. A malicious user could trick the application into leaving multiple

open connections, thus making the database inaccessible to other users. A fix for this issue was made in

the destructor of ‘LoggerAppenderPDO’ class in version 2.1.0. Fixes in such critical areas caused 40 of

the existing 62 tests in version 2.0.0 to be selected as regression tests for 2.1.0. But the types of changes

modified the def-use of a few variables, causing 29 tests to become obsolete. Note that there were several

nonfunctional changes that had no effect on the number of tests selected. Thus, 11 tests finally remained in

the set of selected tests that can be reused to regression test version 2.1.0. A similar inspection of version

pair 2.2.0 and 2.3.0 showed relatively fewer functional changes. Hence, the number of obsolete tests was

lower, and the final count of regression tests selected was slightly higher for this pair.
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To investigate whether the difference we observed from the results of these applications is statis-

tically significant, we performed the paired t-test at a significance level of 0.05. The test results indicate

that there is a significant difference between techniques (p-value < 0.05), meaning that our approach was

significantly effective in reducing the number of test cases to be rerun.

5.2.4.6. RQ2 Analysis

RQ2 investigates whether the selected test cases have the same fault detection ability as the entire

test cases.

Table 5.5 summarizes the results of mutation testing experiment. In Table 5.5, “Number of Mutants

(M)” is the number of mutants generated for the newer version in the version pair. “Mutation Score with

T” is the mutation score obtained when all tests were executed against M. “Mutation Score with Ts” is the

mutation score obtained when selected tests Ts were executed against M.

From Table 5.5, we can observe that the fault detection ability of the selected tests is same as the

original test cases across all versions and applications. From this result, we can say that by selecting a subset

of test cases that is required for testing the modified version of the program, we were able to save time and

effort while providing the same fault detection ability as the entire test cases.

5.2.5. Threats to Validity

This section describes the internal and external threats to validity of this experiment. Also describes

the techniques that reduce the effect of these threats.

5.2.5.1. Internal Validity

Our experiments depend on PARTE tools; thus, any defects in the tools can affect experiment re-

sults. To control this threat, we validated our tools on several simple PHP programs, and we thoroughly

examined the tools and removed existing inconsistencies. Partial matching for statement values of a variable

sometimes becomes tricky for complex expressions. However, we examined different scenarios to avoid any

discrepancy with partial matching.

5.2.5.2. External Validity

Three issues limit the generalization of our results. The first issue is application representativeness.

Our experiments used open-source web applications, so the results we obtained might not be applicable to

industrial applications and other types of web applications. However, to reduce this threat, we used large,

actively used PHP web applications with multiple versions, and active support groups, and this threat can be

further addressed through additional experiments with wider populations of applications. The second issue
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is test case representativeness. We used unit tests in our experiment, but different types of test cases can

produce different results. While the use of a single type of test cases can be a threat to validity, unit tests

have been actively used by both open-source community (most of the applications we used came with unit

tests) and industry (e.g., I can confirm that the majority of Microsoft’s products have been tested using unit

tests), thus we believe that the type of test cases used in our experiment can be adopted in the industrial

practice. Nevertheless, to address this threat, further experiments with different types of test cases should

be performed. The third issue involves fault representativeness. We used mutation faults in our experiment,

and although there is some evidence that mutation faults can be representative of real faults for purposes

of experimental evaluation [4], the distribution of mutation faults used in our experiment may not match

distributions of faults found in practice. The additional experiments with different types of faults (e.g., real

faults) should be conducted to address this threat.

5.2.6. Discussions

Results from this experiment clearly demonstrated that our approach is effective not only in selecting

existing tests that cover the regression paths but also identifies reusable and obsolete tests. Thus, the manual

effort that goes into activities such as the selection of tests and ensuring that the input values of the selected

tests are applicable in the modified version, is eliminated or greatly minimized.

Table 5.4 shows that there are existing tests that can be reused to regression test the modified version

of an application. A few of the selected tests have reusable inputs, meaning the test covers the modified code

paths and no changes are needed to the input values of those tests. Also, it can be observed from the results

that each version pair resulted in a few obsolete tests. As can be inferred from Table 5.4, the percentage

of selected tests varied between 23% and 100%, the percentage of reusable tests ranged from 6% to 32%.

and the highest and lowest percentage of obsolete tests was 80% and 11%, respectively. Percentages were

computed relative to the total number of tests. Table 5.5 demonstrates the effectiveness of our test selection

approach. The ability to find a fault i.e., mutation score of the selected tests is same as that of all the tests.

This means the selected tests set is as effective as the entire test suite.

We learned that the number of tests selected for regression testing depends on three factors as listed

below.

1. The coverage of existing tests.

2. The type or the location in the source code where the change happened.
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3. The number of changes between the original and modified version.

4. Rate of reusable input values.

For example, consider the change between Mantis version 1.2.3 and 1.2.4. A simple change was

introduced in a core API, ‘account_update.php’. This path was covered by lot of existing tests. These tests

were selected as regression tests. However, the API change impacted the def-use of lot of variables. Due to

the changes to def-use the selected tests were not reusable. In contrast, there were several changes between

versions 1.2.0 and 1.2.1. However, these changes were made to support localization. Existing tests did not

cover localization and hence no test was selected. Changes unrelated to localization were covered by a few

existing tests, and those were selected as can be observed in Table 5.4.

In Mambo, the were significant (type and quantity) changes between versions 4.5.6 and 4.6.1. This

caused a fewer, compared to other version pairs, tests to be selected, and a smaller number of reusable tests.

In phpScheduleIt, a security fix was introduced in version 1.1.0. The most common use-case scenarios of

phpScheduleIt were affected by this fix. Though there were tests that cover the modified code path, the

changes to def-use of the variables made the tests obsolete. In log4php, the effect of the three factors i.e.,

test coverage, type and quantity of changes, can be observed across all version pairs.

From these observations, it is clear that there are existing tests that can be reused to regression test

the modified version of an application. The cost of generating new tests and input values can be avoided.

Review of literature showed us that this experiment is the first attempt to augment regression test

selection with reusable input values for regression testing of web applications. The results from the proposed

approach provided insights about how reusable input values can be utilized to improve the effectiveness of

regression test selection, and reduce the overall costs of regression testing of web applications.

Results of Experiment 1 and 2 greatly motivated us to further explore the benefits of reusability

of existing resources. Obsolete tests identified in Experiment 2 can be replaced by generating new tests.

However, generating a new test to replace the original test, is costly and the intent of the original test will

not be retained. Hence, we pursued our research on repairing the obsolete tests using two different test repair

approaches. In the next section we describe our experiment on evaluating our proposed test repair approach,

results of the experiment and the insights gained from analyzing those results.
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5.3. Experiment 3: Test Repair

We conducted an empirical study to assess the proposed approach of repairing obsolete tests. We

submitted this study to Elsevier’s Information and Software Technology [26]. The research question for this

experiment is as follows:

RQ: What percentage of obsolete tests can be repaired using our approach?

The experimental details including the objects of analysis, independent and dependent variables,

measures, design, setup, and the threats to validity are described in the following sections.

5.3.1. Objects of Analysis

In this experiment, we used five open-source PHP web applications that have multiple consecutive

versions and tests. Four of these five applications are the same as those used in Experiment 2. Details of

those four applications are shown in Table 5.3. A new application called Composer [15] was chosen for

this experiment. Composer is a dependency manager that enables developers to declare, manage, and install

dependencies for PHP web applications. The consecutive versions of Composer chosen for the experiment

have a large number of existing tests, changes between the versions addressed customer reported bugs and

included fixes for security issues. A few modified functions from the previous version were not covered by

the existing tests, so we manually created a few tests to fill such gaps. Details of Composer are shown in

Table 5.6.

Table 5.6. Additional Object of Analysis for Experiment 3.

Application Version Lines
of
Code

Number
of Files

Number
of Existing
Tests

Coverage
of Existing
Tests

Number
of New
Tests

Total
Number
of Tests

Total
Coverage
of Tests

Composer 1.0.0 42792 398 562 73% 19 581 76%
1.1.0 44039 409 570 71% 8 578 78%
1.2.0 45406 419 592 72% 11 603 76%
1.3.0 46783 429 624 68% 27 651 73%
1.4.0 47408 431 627 69% 4 631 73%
1.5.0 48290 434 652 67% 7 659 71%

5.3.2. Measures

To evaluate our approach, we measured the total number of tests that were repaired (Repaired), the

total number of obsolete tests (Obsolete), and the percentage of repairable tests (Repaired/Obsolete).
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5.3.3. Experiment Setup

This study was performed on a desktop machine running Ubuntu 16.04 operating system. PHP

version 5.6, PHC 0.3 and PHPUnit 5.3 was installed on the machine. Java was required on the machine

since PARTE and POTR are written in Java. To run the web-based applications, Apache HTTP Server

was installed and configured. For the application’s database requirement, MySQL was installed on the

machine. As described in Section 5.2.3, a Perl script, is used to generate ASTs, PDGs, slices, identify

reusable constraints, identify reusable and obsolete tests. To perform test repair through Test Repair, the

Perl script takes the paths to the folders containing the obsolete tests, the tests for the original version and

impact analysis results.

5.3.4. Data and Analysis

In this section, we present the experimental results and the data analysis considering our research

question. Table 5.7 summarizes the results from our experiment. In this table, the column header ‘Applica-

tion’ refers to the name of the application under test. ‘Version Pair’ is the two consecutive versions of the

application, ‘Unit Tests (Tt)’ is the total number of unit tests available in the first version of the version pair.

‘Obsolete Tests (To)’ is the total number of obsolete tests identified from unit tests (Tt) (tests that are not

applicable to the second version of the version pair). The obsolete tests were identified through the Reusable

Tests component. ‘Repaired Tests using MSA (Tm)’ and ‘Repaired Test using AA (Ta)’ is the total number

of obsolete tests repaired using Method Signature Analyzer and Assertion Analyzer, respectively. Finally,

the last column, ‘Percentage of Tests Repaired ((Tm + Ta)/To)’ is the percentage of obsolete tests repaired

using POTR. A visual representation of the results is shown in Figure 5.3.

From the results, we observed that all version pairs for all five applications contained obsolete tests.

The percentage of obsolete tests repaired using our approach ranged between 25% to 100% with an average

of around 70%. In particular, Composer produced relatively high repair rates across all version pairs (the

lowest and highest was 63% and 100%, respectively). The repair rate was also high in Mambo where the

average was 75%. One version pair in Mambo had a low repair rate due to the type of code changes that

happened between two versions. In Mantis and phpScheduleIt, the average rate of repair was around 70%.

In the case of log4php, the type of changes between the versions caused the repair rate to be the lowest

among the five applications. MSA could not find a suitable repair for changes such as addition of a new

65



parameter without default values and modification of a parameter’s data type in a method’s signature. Hence,

in log4php the average percentage of obsolete tests repaired was 38%.

The number of tests repaired using MSA is lower than AA, and this is partly due to the type of

changes that happened in the new versions. The changes to a method signature often involved introduction

of a new parameter where the new parameter was provided a default value. This type of change does not fail

an existing test. Whereas, a method signature change that involved removal of a parameter, modification of

the data type or ordering of a parameter, introduction of a new parameter with no default value will cause

test failures. We learned that such changes are few and are considered breaking [98] since the established

contract of the method no longer holds in the new version. Code changes within a method body are more

common and such changes can cause assertions in tests to fail, and such failures are repaired by AA. AA

had 100% success rate of fixing a failing assertion in an obsolete test. Whereas, the success rate MSA was

low due to the various challenges as will be described with the examples in the following paragraph.

Figure 5.3. Percentage of Obsolete Tests Repaired.

In Composer version 1.1.0, a fix was introduced to ignore ‘–no-dev’ option [18]. This fix removed

‘withDevReqs’, a parameter from ‘processDevPackages’ method. Two tests that invoked ‘processDevPack-

ages’ passing ‘true’ as the parameter value for ‘withDevReqs’, failed. MSA detected the change and repaired

the test by removing ‘withDevReqs’ parameter from the method invocation. In version 1.4.0 of Composer,
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Table 5.7. Results of Test Repair.

Application Version Pair Unit
Tests
(Tt)

Obsolete
Tests
(To)

Repaired
Tests using
MSA (Tm)

Repaired
Tests using
AA (Ta)

Percentage of
Tests Repaired
((Tm + Ta)/To)

Composer 1.0.0 & 1.1.0 581 23 6 13 83
1.1.0 & 1.2.0 578 17 3 11 82
1.2.0 & 1.3.0 603 8 2 3 62
1.3.0 & 1.4.0 651 19 8 7 79
1.4.0 & 1.5.0 631 7 2 5 100

Mantis 1.2.0 & 1.2.1 94 12 1 9 83
1.2.1 & 1.2.2 97 11 4 6 91
1.2.2 & 1.2.3 108 28 7 11 64
1.2.3 & 1.2.4 124 59 6 15 35

Mambo 4.5.5 & 4.5.6 65 9 0 7 78
4.5.6 & 4.6.1 76 18 1 13 78
4.6.1 & 4.6.2 83 24 0 21 87
4.6.2 & 4.6.3 90 25 1 22 92
4.6.3 & 4.6.4 102 17 1 14 88
4.6.4 & 4.6.5 105 72 3 16 26

phpScheduleIt 1.0.0 & 1.1.0 40 32 7 23 94
1.1.0 & 1.2.0 45 21 2 12 67
1.2.0 & 1.2.12 52 18 2 8 56

log4php 2.0.0 & 2.1.0 62 29 2 9 38
2.1.0 & 2.2.0 75 31 3 13 52
2.2.0 & 2.3.0 96 32 5 3 25

a parameter named ‘ignoreFilters’ was added in ‘archive’ [19] method causing an existing test to fail. Since

the type of the new parameter was not specified and MSA could not determine a value that should be passed

to this parameter, MSA failed to repair the test. Similarly, MSA was unable to fix existing tests that failed

due to the changes in Mambo version 4.5.6. In this version, security fixes were performed in ‘mod_login’

and ‘mod_template_chooser’. The fixes required adding new parameters to ‘getSelectedValue’ method in

‘mod_templatechooser.php’ file. A change of this kind is considered a breaking change since the change

breaks the backward compatibility [98].

In all other instances where a parameter was added, and a default value was assigned to the parame-

ter, MSA was able to correctly identify the new parameter and repair the test by including the new parameter

in the method invocation. A test can fail if the modified version of the method signature specifies the type

on a parameter. For example, between versions 2.1.0 and 2.2.0 of log4php, the method ‘log($priority, $mes-

sage, $caller = null)’ was changed to ‘log(LoggerLevel $level, $message, $throwable = null)’. Observe
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that the first parameter, was renamed to ‘$level’ and the type specified as ‘LoggerLevel’ in the new version.

Although the method body was not modified, a test in 2.1.0 failed since the input provided for the first

parameter was not strictly of type ‘LoggerLevel’. MSA repaired the test by passing an object of type ‘Log-

gerLevel’ created in the test setup method. A modification to the order of parameters in a method signature

is uncommon, but it did occur between version 1.2.3 and 1.2.4 of Mantis. MSA repaired the test by iden-

tifying the order of parameters that allowed the test to pass. Providing such repairs will reduce the manual

effort for debugging and identifying the change that caused a test to fail.

5.3.5. Threats to Validity

In this section, the internal and external threats to the validity of this study are explained. Also,

described are the precautions we took to limit the impact of the threat.

5.3.5.1. Internal Validity

We used PARTE tools for this experiment. A defect in those tools can affect the outcome of this

experiment. We thoroughly examined the tools, and manually validated that the test repairs for simple

programs were being performed correctly.

5.3.5.2. External Validity

We list three threats to external validity.

1. Application Representativeness: Applications used for our experiment do not represent all the avail-

able PHP web applications in terms of size, type, functionality, accessibility, user diversity etc. We

minimized this threat by using real-world, open source, non-trivial, web-based PHP applications. We

think this threat can be further mitigated when a larger variety including enterprise grade applications

are evaluated using our approach.

2. Test Representativeness: We used unit tests in this experiment. In my experience at Microsoft, I have

seen comparable quality of unit tests used to test commercial software. Though this improves the

confidence in our approach, we think a variety of tests such as performance, stress and accessibility

should be used to ensure high quality in an industrial software.

3. Fault Representativeness: We augmented real faults in the application with mutation faults. There

is evidence that for the purpose of empirical studies, mutation faults can be representative of real

faults [4, 69]. However, the distribution of the mutation faults may not be the same as real faults.

Hence, we think further experimentation with real faults is needed to address this threat.
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5.3.6. Discussions

Results of this experiment provided a strong evidence that the proposed approach can repair signif-

icant number of obsolete tests.

In Table 5.7, it can be observed that the highest and the lowest percentage of obsolete tests repaired

was 100% and 25%, respectively. A fourth of the identified obsolete tests were repaired automatically.

This means the manual effort that would have gone into debugging, locating and fixing the obsolete test is

eliminated using our proposed approach.

The changes to the parameters in a method signature, is the only factor that appeared to have an

effect on the percentage of obsolete tests repaired. We observed that when the reusable input value rate

is higher, then the number of reusable tests is likely to be higher. This would result in a lower number of

obsolete tests, which means there will be a fewer number of tests to repair. In Mambo version pair 4.5.5

and 4.5.6 input value reuse rate is 60% (refer to Table 5.2). The percentage of reusable tests relative to

the selected tests was 68%, which is the highest obtained among all the applications and versions evaluated

in the study. Percentage of obsolete tests repaired for this version pair was 78%, which is not the highest

obtained but is higher than the average.

A change to a web application, either motivated by a customer request or to address a security

concern, may require breaking the backward compatibility. A breaking change [98] can introduce a new

argument in an existing function. An existing test that covers this function will fail since the test does not

provide an input value for the new parameter. The scope of our test approach is limited to identifying the

new argument. The repaired version of the test will include a comment that helps the developer to identify

the change and determine an appropriate input value for the argument. In Composer version 1.4.0, a new

argument ‘ignoreFilters’ was introduced in the ‘archive’ method. Our approach identifies the new parameter

but the appropriate value i.e., ‘$true’ or ‘$false’ needs to be determined by the developer. Nevertheless, from

my experience, having tools that can automatically detect such changes, can greatly improve productivity

in an industrial setting. Additionally, automatically preparing a code submission so that the developers can

review the submission and either approve or reject the changes to the test, will greatly minimize the manual

effort and human errors.
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6. DISCUSSION

The results from the three experiments clearly demonstrate that the proposed techniques can reduce

the overall cost of regression testing of web applications. The results from the first experiment show that

all version pairs of the applications have several input values that can be reused. As presented in Table 5.4,

the highest number of reusable input values 19, 536, 708, 702 and 861, and the lowest number of reusable

input values were 15, 57, 195, 219 and 280 respectively for FAQForge, Mambo, Mantis, osCommerce and

phpScheduleIt. Compared to the control technique (baseline), which is the original PARTE approach, results

from the current experiment demonstrates that every version pair has values that are reusable. The results

from the second experiment show that utilizing existing test cases with input value reuse can produce further

cost savings for regression testing. Considering the number of obsolete tests filtered from the selected tests,

we believe that one can save a substantial amount of the human effort needed to manually inspect the tests

by finding them automatically. Further, our results also showed that we can achieve cost savings by selecting

a smaller set of test cases without sacrificing fault detection ability.

In the remainder of this section, we discuss the practical implications of these results and lessons

learned from our experiments.

6.1. Cost Effectiveness of Input Value Reuse

Typically, the test paths require actual inputs to create executable test cases; thus, incorporating the

input value reuse approach to PARTE that we introduced in our previous work can reduce the regression

testing effort substantially. For example, the number of regression test paths for Mantis version 1.2.0 is

2,802. The number of input values needed for these paths is 20,425. For those test paths, our previous

study [25] indicated that many constraints were not solvable by automatic resolvers. This means that many

input values had to be resolved manually, which typically would require a tremendous effort. By automati-

cally identifying the reusable input values for the modified versions, our approach can reduce a substantial

manual effort. Note that we must manually resolve the input values that are not reusable from the previous

versions or cannot be solved by automatic resolvers. This indicates that our approach can be beneficial for

the application versions that contain a high number of reusable input values. Further, as constraint values

remain applicable for multiple versions, our approach offers greater cost savings.
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6.2. Relationship between Reuse Rates and Changes between Versions

The amount of changes between versions and the type of change can affect the input value reuse

rate. For instance, Mantis version 1.2.0 underwent a major update that includes bug fixes and enhancements

such as bug monitoring. There were many functional changes that affected the def-use of variables when

compared to the earlier version 1.1.8. In the version pair, 1.1.7 and 1.1.8, there were many changes made to

support localization features, and most of these modifications were made in library files or in resource strings

needed for language translation. Typically, these types of changes do not affect the def-use of variables, and

thus number of reusable input values was higher.

The relationship between the reuse rate and the code changes between the version pairs can be

observed across all applications. For the version pair 1.3.0 and 1.3.1 in FAQForge, only one library file was

modified. Among the 25 input values that are required to execute 5 regression paths, 19 values were reusable.

A manual code inspection of Mambo version 4.6.1 showed that this version had several modifications such

as the integration of a new editor, security fixes, and a couple of feature upgrades. Because of these changes,

several input values could not be reused. In the two version pairs analyzed in osCommerce, 2.2MS2 had

more functional changes than 2.2MS2-060817. Therefore, the number of reusable input values for 2.2MS2

was relatively lower. phpScheduleIt version 1.2.12 had a minor update that added a couple of localization

features and bug fixes. Unlike this version, other two versions, 1.1.0 and 1.2.0, had major updates with

feature upgrades and customizations, which produced a lower input reuse rate than version 1.2.12.

From these results, we learned that application versions with fewer changes or with changes intro-

duced in small patches are more beneficial with respect to reducing test case generation costs than versions

with many changes. Further, we believe that, irrespective of the number of changes in program source code,

reusing constraints reduced the new test case generation effort by a substantial amount.

6.3. Relationship between Savings by Test Selection and Code Changes

The final number of tests selected in each version pair of an application depends on the coverage

of existing unit tests, and the number and type of code changes between the versions. For instance, Mantis

version 1.2.4 introduced major enhancements to a couple of features, and included fixes for various bugs

reported in version 1.2.3. More than half of the existing tests covered the code paths that had undergone

modifications and hence were selected as regression tests. However, given the type of code changes, the

def-use of some variables between the versions were modified. Existing tests that provided input values to
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such variables cannot be reused for regression testing, and hence these tests were marked as obsolete. Thus,

only 8 of the existing tests remained in the final set of selected regression tests.

Similarly, between Mambo versions 4.6.3 and 4.6.4, there was much code churn due to refactoring

and security bug fixes. Given the test coverage of existing tests in 4.6.3, the final number of tests selected

was lower than for the other version pairs of this application. In version pairs investigated for phpScheduleIt

and log4php, there were fewer changes, and most of those were non-functional. Thus, the final number of

tests selected remained relatively lower.

From these results, we learned that irrespective of existing test coverage, and the number or type

of changes between versions, regression test selection costs are further minimized when obsolete tests are

automatically detected. Although our selection approach is effective in reducing costs, we also understand

that there will be up-front costs of setting up the infrastructure to implement the test selection technique,

and automating the process in an industrial setting. However, once these are automated, the savings from

our approach will accrue over time.

To our knowledge, our studies are the first attempt to investigate the reusability of variable con-

straints and their input values, and to select tests such that obsolete tests are identified and automatically

repaired. The proposed approaches produced promising results and the findings from the studies provide in-

sight about how reusable constraint values can be utilized during the testing and regression testing process.

Additionally, our studies showed how the test selection process can be improved by identifying obsolete

tests using the constraint value reuse algorithm, and how the obsolete tests can be repaired automatically.
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7. CONCLUSIONS AND FUTURE WORK

7.1. Merit and Impact

This research is expected to provide two benefits. It provides guidance on how to reuse existing

resources in regression testing of a web application. It shows how to perform future research on improving

a currently available regressing test technique by augmenting the technique with information about existing

test artifacts. Researchers and software practitioners who follow our guidance can have a significant impact

on reducing the overall cost of regression testing of their web applications.

First, this research offers guidance in exploring cost-effective techniques for regression testing of

web applications. Our research demonstrates how existing resources i.e., tests and their input values can be

reused. It shows how obsolete tests can be repaired and reused effectively in reducing the costs of regression

testing of web applications.

Second, this research demonstrates how an existing cost-effective technique can be further improved

by augmenting it with information from other test techniques. We used the PARTE approach of minimizing

regression test paths as a foundation to build additional components such as Reusable Tests and Test Repair.

We demonstrated how these components can be used on real-world applications to reduce the costs of

regression testing by reusing existing resources. Our approach shows a path for researchers and software

practitioners to further explore cost-effective techniques for regression testing of web applications.

7.2. Future Directions

In this research, we presented an approach to reducing the effort required to conduct regression

testing of web applications, which consists of three techniques: reusable constraint value identification, test

selection and test repair. We performed three controlled experiments to evaluate the proposed approach.

Each experiment used non-trivial, open-source PHP web applications with multiple versions. Our results

indicate that the approach can save substantial effort when testing new versions of an application. The results

found that a large portion of constraint values can be reused, a small number of existing tests can be selected

to test new versions, and some of the obsolete tests among the selected tests can be repaired automatically.

Thus, we can significantly reduce the effort required to test new versions of an application by using these

three techniques. Further, the constraint values for variables may be reusable across several versions if the

definition and use relationships of the variables hold across the versions, and the maintenance overhead for
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test cases can be reduced by selecting a subset of test cases across several versions. This means that we can

expect greater savings as the applications evolve over time.

The results of our studies suggest several avenues for future work. First, we evaluated our approach

using several widely used open-source web applications with multiple versions. While the experiment re-

sults are promising, future studies should investigate whether our approach can be applied to an industrial

setting where there are many other constraints such as a larger number of tests per version, diverse testing

practices used by organizations and the development/testing environment. Further, the experiment results

we obtained in this study do not sufficiently capture the potential benefits and factors related to the long-

term utilization of our techniques. We believe that our approach would provide greater benefits if we were

to apply it over a long period of time. It would be interesting to examine whether certain variables are more

sustainable over several version changes and to investigate plausible reasons (e.g., certain usage patterns

associated with the variables) including measuring the human effort required for manually resolving input

constraint values.

For commercial web applications, fixing critical security bugs in a short span of time is crucial

because delaying patch releases can lead to a significant loss for companies. Thus, in addition to selecting a

smaller set of test cases with reusable values, identifying more important test cases (e.g., test cases covering

risky components or high-modification areas) early could shorten the regression testing time. Thus, we

plan to investigate hybrid techniques that combine test selection with test case prioritization to explore such

potentials.
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