
UNDERSTANDING CONTEXTUAL FACTORS IN REGRESSION TESTING TECHNIQUES

A Dissertation
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Jeffrey Ryan Anderson

In Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Major Department:
Computer Science

April 2016

Fargo, North Dakota

NORTH DAKOTA STATE UNIVERSITY
Graduate School

Title

UNDERSTANDING CONTEXTUAL FACTORS IN REGRESSION TESTING

TECHNIQUES

By

Jeffrey Ryan Anderson

The supervisory committee certifies that this dissertation complies with North Dakota State University’s

regulations and meets the accepted standards for the degree of

DOCTOR OF PHILOSOPHY

SUPERVISORY COMMITTEE:

Dr. Hyunsook Do
Co-Chair

Dr. Saeed Salem
Co-Chair

Dr. William Perrizo

Dr. Gary Goreham

Approved:
8 April 2016

Date

Dr. Brian Slator
Department Chair

ABSTRACT

The software regression testing techniques of test case reduction, selection, and prioritization are

widely used and well-researched in software development. They allow for more efficient utilization of

scarce testing resources in large projects, thereby increasing project quality at reduced costs. There are

many data sources and techniques that have been researched, leaving software practitioners with no good

way of choosing which data source or technique will be most appropriate for their project.

This dissertation addresses this limitation. First, we introduce a conceptual framework for examin-

ing this area of research. Then, we perform a literature review to understand the current state of the art. Next,

we performed a family of empirical studies to further investigate the thesis. Finally, we provide guidance to

practitioners and researchers.

In our first empirical study, we showed that advanced data mining techniques on an industrial prod-

uct can improve the effectiveness of regression testing techniques. In our next study, we expanded on that

research by learning a classification model. This research showed attributes such as complexity and histor-

ical failures were the most effective metrics due to a high occurrence of random test failures in the product

studied. Finally, we applied the learning from the initial research and the systematic literature survey to de-

velop novel regression testing techniques based on the attributes of an industrial product and showed these

new techniques to be effective. These novel approaches included predicting performance faults from test

data and customizing regression testing techniques based on usage telemetry. Further, we provide guidance

to practitioners and researchers based on the findings from our empirical studies and the literature survey.

This guidance will help practitioners and researchers more effectively employ and study regression testing

techniques.

iii

ACKNOWLEDGEMENTS

Many thanks go to my advisors, Hyunsook Do and Saeed Salem for their advice, guidance, and

continual support in my research. I would also like to thank William Perrizo and Gary Goreham for serving

on my advisory committee. I am grateful to the entire NDSU computer science department and the many

professors who have educated me over the years. I would also like to thank my wife, Jennifer, and my

children, Nate and Joe, for allowing me to embark on this large investment time for so long. I also thank

my parents, Kurt and Deb Anderson, for inspiring continued education throughout my life. Finally, I’d like

to thank my boss, Randy Gerhold, for supporting my pursuit of a degree while also continuing my career at

Microsoft.

iv

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

1. INTRODUCTION . 1

1.1. Goal of this Dissertation . 2

1.2. Approach to Meet this Goal . 2

1.3. Organization of this Dissertation . 3

2. BACKGROUND AND RELATED WORK . 4

2.1. Motivation . 4

2.2. Existing Research . 5

2.3. Regression Testing Techniques . 6

2.3.1. Reduction, Selection, and Prioritization . 6

2.3.2. Evaluation Metrics of Regression Testing Techniques 7

3. THE STATE OF THE ART OF REGRESSION TESTING TECHNIQUES 11

3.1. Measurement Techniques . 11

3.2. Object Programs . 11

3.3. Data Sources . 12

3.4. Techniques . 13

3.5. Baselines . 14

3.6. Trends . 15

4. APPROACH . 17

4.1. Conceptual Framework . 17

4.2. Advanced Data Mining Technique Applicability . 18

v

4.3. Determine Most Influential Attributes . 19

4.4. Application to Non-Functional Bugs . 19

4.5. Applying Regression Testing Techniques Based on Product Context 20

5. EMPIRICAL STUDIES . 21

5.1. Apply Advanced Data Mining Techniques to an Industrial Product 21

5.1.1. Approach . 22

5.1.2. Empirical Study . 25

5.1.3. Variables and Measures . 26

5.1.4. Experiment Process . 28

5.1.5. Data and Analysis . 29

5.1.6. Discussion and Implications . 31

5.1.7. Threats to Validity . 32

5.1.8. Conclusions . 32

5.2. Using Classification to Understand Attribute Importance in and Industrial Product 33

5.2.1. Approach . 34

5.2.2. Empirical Study . 35

5.2.3. Variables and Measures . 37

5.2.4. Data and Analysis . 38

5.2.5. Discussion and Implications . 41

5.2.6. Threats to Validity . 44

5.2.7. Conclusions . 44

5.3. Mining Test Results for Reasons Other Than Functional Correctness 45

5.3.1. Approach . 45

5.3.2. Empirical Study . 51

5.3.3. Variables and Measures . 51

5.3.4. Experimental Process . 52

vi

5.3.5. Data and Analysis . 55

5.3.6. Discussion and Implications . 60

5.3.7. Threats to Validity . 64

5.3.8. Conclusions . 64

5.4. Test Suite Prioritization Through Telemetry Fingerprinting 65

5.4.1. Approach . 66

5.4.2. Empirical Study . 71

5.4.3. Variables and Measures . 73

5.4.4. Experimental Process . 74

5.4.5. Data and Analysis . 79

5.4.6. Discussion and Implications . 83

5.4.7. Threats to Validity . 85

5.4.8. Conclusions . 85

6. GUIDANCE TO PRACTIONERS AND RESEARCHERS . 87

6.1. Data Sources . 87

6.2. Regression Testing Techniques . 87

6.3. Project Attributes . 88

6.4. Guidance to Practitioners . 89

6.5. Guidance to Researchers . 90

7. CONCLUSIONS AND FUTURE WORK . 91

7.1. Merit and Impact of This Research . 91

7.2. Future Directions . 91

REFERENCES . 93

APPENDIX. PAPER DETAILS . 103

vii

LIST OF TABLES

Table Page

2.1. Sample Regression Test Selection . 9

5.1. F-Measure by Independent Variable Combination . 38

5.2. AUC by Independent Variable for Each Experiment . 55

5.3. Example Pairwise Similarities . 70

5.4. Session Information by Dataset . 73

5.5. Fingerprint Scores by Algorithm . 80

5.6. AUC by Fingerprint Method . 81

viii

LIST OF FIGURES

Figure Page

2.1. Example of APFD taken from Do and Rothermel [21] . 10

3.1. Paper Subject(s) by Year . 15

3.2. Paper Technique(s) by Year . 16

4.1. Formalized Conceptual Framework for Regression Testing Techniques 18

5.1. Test Selection Process . 23

5.2. Experiment Process . 26

5.3. Effectiveness of ARM and Frequent Failures . 29

5.4. Overall Effectiveness of Prediction Approach . 30

5.5. Constructing Attributes for Tests . 35

5.6. Experimental Process . 36

5.7. Overall F-Measure by Attribute Category . 40

5.8. F-Measure of Churn vs Complexity . 41

5.9. Number of Failures by Test Run . 43

5.10. Sample Index Seek from Missing Index Fault . 48

5.11. Experimental Process . 53

5.12. Index Usage . 54

5.13. Test Ordering . 54

5.14. Fault Detection By Test With Idx5 Removed . 55

5.15. Example ROC Curve . 56

5.16. Base Data AUC with 95% Confidence Interval . 57

5.17. ROC Curves for Three Experiments . 59

5.18. ROC Curves for Percent Difference vs Volume Average . 60

5.19. Sample Interaction Session . 68

5.20. Experiment Process for RQ1 . 74

ix

5.21. Experiment Process for RQ2 . 75

5.22. Examples of Session Data . 76

5.23. Example Initial Emission Matrix . 77

5.24. Example Emission Matrix with Corrections . 78

5.25. AUC by Fingerprinting Score . 82

x

1. INTRODUCTION

Regression testing is one of the core activities employed in software projects to ensure quality and to

minimize risk when making software changes. Without regression testing, the maintenance cost in software

would rise dramatically. At the same time, regression testing itself is not without cost. The tests require

hardware resources such as computers to run on. Regression tests also have a personnel cost related to

analyzing and reacting to the results of regression test runs.

Numerous techniques and tools have been proposed and developed to reduce the costs of regression

testing and to aid regression testing processes, such as test suite reduction, test case prioritization, and

test case selection. Test suite reduction consists of removing unneeded or duplicated tests. Test selection

is the process of identifying which regression tests are applicable to a given software change. Test case

prioritization is the process of ordering those regression tests to either find faults earlier or to maximize the

number of faults found without running all the tests. Recent surveys on regression testing techniques [13, 28,

83] provide a comprehensive understanding of overall trends of the techniques and areas for improvement.

Because the underlying motivation for regresion testing techniques is to improve the cost effectiveness of

regression testing, research has also been done showing that proper thresholds and weightings must be used

in regression testing techniques in order to improve economic benefits [18].

In the field of regression testing techniques, a wide range of software metrics have been employed.

These range from static code attributes such as complexity and code coverage metrics, to more dynamic

metrics like code change (churn) and historical test results. Some techniques even consider metrics outside

of the software itself such as team metrics (e.g., full time or vendor resources), temporal attributes, and

requirements.

This wide ranging set of metrics has been analyzed in a variety of ways. Early research showed

that the use of simple attributes could be effective in improving regression testing techniques. For instance,

code complexity can effectively prioritize test cases and simple coverage information can help improve

regression test selection techniques [59]. More recently, increasingly complex and sophisticated data mining

techniques have been employed including regression analysis, association rule mining, and classification

techniques [6, 77]. As might be expected, each new publication of a combination of software metrics and

data mining techniques shows that it is more effective in selecting or prioritizing tests than a naı̈ve baseline.

1

A limitation of this body of research is a lack of a fundamental understanding of in which circum-

stances and environments each software metric and technique should be employed in order to improve re-

gression testing approaches. For instance, our recent research showed that code churn information was a far

less effective metric for test case prioritization than simple code complexity if the stability of test cases in a

given environment was high enough compared to the overall test failure rate [6]. Without this understanding

of how the environmental factor of test case stability impacts the effectiveness of the test case prioritization

technique, the previous research showing churn to be a good predictor in test case prioritization may have

been incorrectly applied to this software product.

1.1. Goal of this Dissertation

Our thesis is that the data mining and metrics employed in regression testing techniques must take

into account both internal and external contextual factors in order to be useful and effective in practice.

Failure to account for these influencing factors can lead to less effective application of regression

testing techniques and ultimately lose economic benefit. If this thesis is true, then researchers and practition-

ers in this area of research can understand how metrics and techniques interact with the internal and external

environmental factors in order to properly engage in regression testing techniques.

1.2. Approach to Meet this Goal

To address this thesis, we have proposed an approach that guides us to empirically investigate our

research problem. First, we introduce a conceptual framework for understanding and evaluating regression

testing techniques as described in Section 4.1. Next, we performed a literature survey to understand the state

of the art. Finally, we performed a family of empirical studies as described in Chapter 5.

In the first empirical study, we applied data mining techniques to an industrial software project using

test history metrics to verify that advanced data mining techniques can improve effectiveness over naı̈ve

baselines. We found advanced data mining techniques to improve effectiveness, though the improvement is

small and the cost of applying the techniques is significant. This research in Section 5.1 is based on research

published in the Proceedings of the Working Conference on Mining Software Repositories (MSR) in 2014[6].

Following that, we applied classification techniques to understand which metrics and techniques

yield the best results, and contrasted those findings with the existing regression testing techniques corpus.

We found that attributes such as complexity and historical failures were the most effective metrics due to

a high occurrence of random test failures in the product studied. We also found that the effectiveness of

various data sources varied throughout the product life cycle. The results of this research shows that our

2

thesis holds, and contextual factors of the product have a significant impact on the effectiveness of both data

sources and techniques. This research in Section 5.2 is based on research published in the Proceedings of

the 37th IEEE International Conference on Software Engineering (ICSE) in 2015[7].

Finally, we applied the learning from the initial research and the systematic literature survey to

develop novel regression testing techniques based on the attributes of an industrial product and showed these

new techniques to be effective. We were able to predict performance faults based on test response times.

This research in Section 5.3 is taken from research published in the Proceedings of the 26th International

Symposium on Software Reliability Engineering (ISSRE) in 2015[5]. We have also shown that telemetry

from software usage can be used to improve the effectiveness of regression techniques by customizing

regression testing based on software use. That research is pending publication at this time.

1.3. Organization of this Dissertation

The rest of this paper proceeds as follows. Chapter 2 discusses the background and related work.

Chapter 3 describes the current state of the art in the areas of research. Chapter 4 describes the approach

used in researching this dissertation, while Chapter 5 discusses the empirical studies performed to extend

the state of the art. Chapter 6 provides guidance to industry and researchers. Chapter 7 summarizes the

results and discusses avenues of future research.

3

2. BACKGROUND AND RELATED WORK

In this section, we discuss background and related work of regression testing techniques.

2.1. Motivation

This work was motivated by personal experience at Microsoft working on the Microsoft Dynamics

AX[60] product. This is a very large Enterprise Resource Planning (ERP) product that enterprises use to run

their business, including everything from accounting to retail to supply chain management capabilities. As

with any large software product many thousands of tests exist, and those tests take considerable amounts of

time and resources to run on a regular basis. Since research has shown the economic benefits of applying

regression testing techniques[20], we wish to effectively employ those techniques for our product.

There are two major classes of tests for this product, unit tests and integration tests. Unit tests focus

on a single class or piece of logic and usually take less than a second to execute. Integration tests test the

combination of multiple pieces of functionality and often take longer to execute. Many thousands of both

unit tests and integration tests are in active use in the product.

During each code submission, a subset of unit tests are run, consisting of tests marked as important

by developers, together with a subset of tests selected automatically by the checkin system based on changes

being made (also referred to as “churn”). The unit tests are run on every checkin so usually it is not possible

for a failing test to exist on the checked in version of code.

The integration tests take significantly longer to execute, and as such are only executed once every

few days, currently requiring multiple days to execute and spanning over 100 computers. Since many

changes have been made between any two integration test suite runs, all integration tests are run during

every regression test run. Since these tests are not run as part of the checkin process, it means it is also

possible (and common) for test failures to exist based on checked in code. It is these integration tests where

we wish to apply regression testing techniques to reduce costs and increase economic benefits.

The challenge is selecting which regression testing techniques to apply and what data to use. Many

different data sources and techniques have all been shown to be effective with varying levels of effectiveness.

Sometimes this research even appears contradictory. For instance, code coverage has been shown to be one

of the most effective techniques[62], but Tonella et al.[78] showed that in some situations, it is outperformed

by manual identification of important tests. In another example, Walcott et al.[80] showed that the cost of

4

applying regression techniques can be more costly than testing without them, while Do et al.[20] showed

economic benefits to applying regression testing techniques. Seemingly the only consistent message from

existing research is the only bad choice is to do nothing at all.

From this seemingly confused corpus, we need a way to determine which data sources and tech-

niques will be most effective for our particular product and environment. This gives rise to our thesis. We

need to be able to recognize the unique context of our product and how that context affects the suc-

cessful application of regression testing techniques. To research this thesis, we employ a combination of

literature review and empirical studies on the Microsoft Dynamics AX product.

2.2. Existing Research

Regression testing techniques are important areas of research in reducing the cost of quality activ-

ities in software projects [56]. Identifying test cases for elimination or prioritization can decrease the time

to finding and fixing bugs, as well as minimize the resources required to run test suites. A wide variety of

regression testing techniques have been studied, and an overview of many of these techniques is discussed

by Yoo and Harman [83], Engstrom et al. [28], and Catal and Mishra.[13]

The foundation for our work starts from the basic concepts on regression testing techniques and

their economic impacts from various researchers [10, 22, 17, 21, 19, 23]. This includes the foundational

research on the use of test prioritization [71], as well as the first empirical evidence that these techniques

were economically advantageous [21].

A study relevant to our work was done by Nagappan and Ball [63]. The proposed approach has

been used in many companies including Microsoft and is often referred to as churn based testing. It is the

act of correlating the code changes made in a given build with the tests that should be run on that build.

Another related area of study receiving attention is in the area of applying network analysis to software

defects. These techniques range from network analysis of dependency graphs [87] to applying dependency

graphs in determining testing strategies [50].

More advanced techniques have recently been evaluated, including linear programming [37, 42, 61],

genetic algorithms [81, 53], and advanced classification techniques [7]. Many of these techniques begin to

introduce more dynamic measures of churn [9, 19, 73, 70], an indication of which changes have been made

since a previous release.

Beyond the regression testing area, in the software engineering field, data mining has recently been

used to analyze the voluminous amounts of data generated from version control systems or fault reporting

5

systems [54, 64, 88]. Nagappan et al. [64] presented an approach to mining data to predict error-prone com-

ponents. To investigate their approach, they retrieved various software metrics and failure information from

the version control system for five software projects developed at Microsoft. Zimmermann et al. [88] pre-

sented an approach that applies data mining to provide information related to code changes to programmers,

such as suggestions or predictions of likely changes. Livshits and Zimmermann [54] presented an automatic

way to discover common error patterns that reside in software revision histories by combining data mining

with dynamic analysis techniques. All of the above approaches have shown that data mining could be useful

in finding patterns and relationships that can help various software engineering tasks from massive software

repositories.

Zimmermann and Nagappan have done a sizable amount of research about software dependency

metrics and their impact on defects [87, 89]. Their research shows that software defects may be accurately

predicted by looking at the interplay between software components. Further, Zimmermann et al. [88] have

shown that software repositories can be mined to obtain this information that can then be used for fault

prediction.

A recent literature review by Hall et al. [35] examined research on data mining software sources

where the results were used to predict fault locations, severities and quantities. Yoo and Harman [84]

performed a survey of techniques used in test selection and prioritization. Catal and Mishra[13] performed

a mapping study of test prioritization, focusing on which aspects have been studied and current trends.

Engstrom et al.[28] performed a survey of selection techniques along with qualitative analysis.

2.3. Regression Testing Techniques

In this section, we provide background information on three widely used regression testing tech-

niques.

2.3.1. Reduction, Selection, and Prioritization

Regression testing is an important aspect of software development projects, ensuring that the quality

of software remains high as changes are made and allowing developers to be confident about making those

changes. While important, there are various costs associated with regression testing. For example, the

regression tests may be costly to create, and false failures in the tests may involve costly analysis time.

However, most of the cost associated with regression testing in many projects is the amount of time the tests

themselves take to execute. In some situations, such as reported by Anderson et al. [7], this may involve

hundreds of computers over multiple days. Even in smaller projects in which regression tests take just

6

minutes to run, further reducing the time involved can be beneficial by allowing those tests to be run even

more frequently as changes are being made.

There are three primary techniques that seek to reduce the cost of regression testing.

• Test Suite Reduction: Test suite reduction seeks to identify tests that can be removed from the test

suite without reducing the quality of the test suite beyond some threshold. This technique finds test

cases that cannot be applied to a new version of the program any longer (obsolete test cases), or test

cases that produce the same coverage of the program as other test cases (redundant test cases) [38].

By removing these test cases, engineers can reduce the cost of exercising, validating, and managing

these test cases over time.

• Regression Test Selection: Regression test selection is similar, but does not permanently remove the

tests from the regression suite. Rather, test selection picks which tests should be rerun in any given

test suite execution. This is often based on information like “churn,” the code that has changed since

the last regression test suite run. This technique relies on the assumption that a test that was previously

passing should continue passing if no code executed by the test has been changed. Often, test selection

techniques will include support for executing tests again that have not been run for a longer period of

time as well.

• Test Case Prioritization: Test case prioritization offers an alternative approach to improving regres-

sion testing cost-effectiveness. Instead of selecting or removing test cases, prioritization provides

an ordering of tests in an attempt to execute more important tests earlier in the test suite. By doing

this, engineers can reveal faults early in testing, which allows them to begin debugging earlier. Al-

ternatively, if the regression suite run needs to be stopped due to time constraints, the most important

tests have been executed, lowering the number of faults that might otherwise be missed through less

appropriate runs of partial test suites.

2.3.2. Evaluation Metrics of Regression Testing Techniques

The primary goals of the three regression testing techniques are different from each other, and

therefore their effectiveness is evaluated using different metrics.

Test suite reduction techniques seek to reduce the size of the test suite; thus, the rate of test suite

reduction has been used to evaluate test suite reduction techniques. Because of the reduction in the size of

7

the test suite, fault detection ability or code coverage could be lost. Therefore, in addition to measuring the

rate of test suite reduction, fault detection rate and code coverage were used to evaluate test suite reduction

techniques.

Regression test selection techniques try to find a subset of test case to be rerun for the modified

version of the program. There are two classes of regression test selection techniques, safe and unsafe. Safe

techniques guarantee that test cases not selected could not have exposed faults in the modified program. For

safe techniques, typical evaluation metrics are the number of test cases selected, the test case reduction rate,

or the time required to execute the selected subset of the test suite.

For unsafe techniques, the unselected test cases might cause a loss in fault detection abilities, so

there are two aspects to selection that can be traded off. By increasing the number of tests selected, more

faults will be detected. But, increasing the number of tests selected reduces the execution cost savings.

Unsafe techniques have recently gained more popularity, as the benefits gained in further reducing the suite

size often make a slight decrease in fault detection a viable tradeoff.

When using unsafe selection techniques, frequently used measurements are precision and recall.

Precision measures the ratio of selected tests that yielded faults to selected tests that did not. So, an increase

in the number of tests selected will decrease precision. Recall measures the ratio of tests with faults that

were detected. So, an increase in the number of tests selected will increase recall. These two measurements

can be combined into a single value call the F-measurement or F-score, which is the harmonic mean of the

two values.

F −measure =
2× Precision×Recall

(Precision+Recall)

A good test selection technique is one that has a higher F-score, meaning that both precision and recall have

been improved without negatively impacting each other.

As an example, consider the set of tests shown in Table 2.1, and three different selection techniques.

Of these nine tests, five will find a fault in the current test suite run. Selection Technique A selects seven

tests to run, of which three detect faults. So the recall for technique A would be 3 / 5 = 0.600, and the

precision would be 3 / 7 = 0.429.

Selection Technique B selects three tests to run, of which two detect faults. This yields a precision

of 2 / 3 = 0.667 and a recall of 2 / 5 = 0.400. Comparing techniques A and B is difficult, since one has

better precision and the other better recall. By computing the F-score for each, we find that A has an F-score

8

Table 2.1. Sample Regression Test Selection

Test Name Finds Fault Selection
Technique A

Selection Tech-
nique B

Selection Tech-
nique C

T1 Yes Yes No Yes
T2 No Yes No No
T3 Yes Yes No Yes
T4 No Yes No No
T5 Yes No Yes No
T6 No Yes Yes No
T7 Yes No Yes Yes
T8 No Yes No Yes
T9 Yes Yes No Yes

of (2 * 0.600 * 0.429) / (0.600 + 0.429) = 0.500, while B has an F-score of (2 * 0.667 * 0.400) / (0.667

+ 0.400) = 0.500. This allows a direct comparison between the techniques and we can say that they are

roughly equivalent.

Extending this example, Technique C selects five tests, of which four find faults. The precision is

0.800 and the recall is 0.800, yielding an F-score of 0.800. Comparing this with Techniques A and B, we

see that C is clearly a better test selection technique as it maximizes both precision and recall.

The main goal of test case prioritization techniques is to increase the rate of fault detection of a

prioritized test suite. To measure the rate of fault detection, a metric called Average Percentage Faults

Detected (APFD) has been introduced [71]. APFD is a value ranging from 0 to 100, where higher numbers

imply faster (better) fault detection rates. Formally stated, let T be a test suite containing n test cases, and

let F be a set of m faults revealed by T. Let TFi be the first test case in ordering T′ of T, which reveals fault

i. The APFD value for test suite T′ is given by the equation:

APFD = 1− TF1 + TF2 + · · ·+ TFm

nm
+

1

2n

To illustrate an example of APFD, consider ten faults in a program that has a test suite of five test

cases, A through E. The fault detecting abilities of each test case are shown in Figure 2.1.A. In this example,

we order the test cases A–B–C–D–E to form prioritized test suite T1. Figure 2.1.B shows a graph of the

percentage of detected faults versus the fraction of T1 used. Test case A reveals two out of ten faults,

meaning that 20% of the faults have been detected after 0.2 of T1 has been executed. Test case B reveals

two more faults, meaning that 40% of the faults have been detected after 0.4 of T1 has been executed. The

9

Figure 2.1. Example of APFD taken from Do and Rothermel [21]

area under the curve (AUC) is then the weighted average of the percentage of faults detected over the life of

the test suite, referred to as APFD. In this particular example, the APFD is 50%.

Figure 2.1.C extends from this example with an alternate test case ordering of E–D–C–B–A. In this

case, the APFD measurement is 64%, meaning that this prioritization is faster at detecting faults than T1.

Figure 2.1.D shows another test suite T3 with a test case ordering C–E–B–A–D. This particular ordering

yields the earliest possible detection of faults, with an optimal APFD of 84%.

Some variations of APFD have been proposed. APFDc accounts for varying test case and fault

costs [27], and NAPFD [68] considers cases in which the rate of fault detection of different-sized test suites

is being compared.

10

3. THE STATE OF THE ART OF REGRESSION TESTING

TECHNIQUES

To investigate the state of the art of the use of data mining in regression testing techniques, we per-

formed a literature review of research papers from the years 2000 to 2015. This review includes an overview

of trends in research papers over these years, as well as an in-depth review of thirty three selected papers

from this period which discuss attributes of software projects and how they are related to the effectiveness

of regression testing techniques.

The results of this survey indicate that the only bad choice in selecting regression testing techniques

is to do nothing at all. Any technique will provide some benefit. Data sources which provide more variation

in values within the project are shown to be the most effective, as long as the data sources do not suffer from

biases such as excessive false failures.

3.1. Measurement Techniques

When evaluating test case prioritization techniques, the average percentage of faults detected (APFD)

score is the de facto standard. The APFD metric was first introduced in 1999 by Rothermel et al. [71] and

has since been used in the vast majority of prioritization evaluation. Of the twenty papers focusing on test

case prioritization we surveyed in detail, sixteen of them rely on APFD as the metric for determining the

efficacy of the heuristic. The remaining papers focused more on the costs and benefits of the prioritization.

In the areas of test case selection and reduction techniques, the results are analyzed in various ways.

Fault detection rate (FDR) is similar to APFD but involves a subset of tests as opposed to all the tests.

Precision and recall, as well as the combination of precision and recall (F-measure) are also popular. In all

of these cases, the rates of detection, precision, and recall are measured in terms of coverage data for the

test. There does not appear to be any overall trend in these techniques, as they are spread evenly across

papers.

3.2. Object Programs

The most widely used object programs for the empirical studies in the regression testing area are in

the Siemens Suite. These programs were assembled at Siemens Corporate Research by Monica Hutchins and

colleagues [43] These include TCAS, Schedule2, TotInfo, PrintTokens, and Replace. Other frequently used

11

programs are Space, JTopas, XmlSecurity, JMeter, and Ant. Of the thirty-four papers surveyed, just over

half (eighteen of them) relied primarily on programs from these suites. While the benefit of commonality

is the ability to directly compare techniques on the same applications, we find that very few papers directly

compare their techniques. This is discussed more later.

The concern with the use of common small programs is that the patterns observed in these programs

may not generalize. The programs are fairly small compared to industrial applications, with only a few hav-

ing thousands of lines of code. Considering that large industrial applications may have many millions of

lines of code with individual modules larger than these applications, the applicability may be questioned.

It should be noted that more recent studies have shown the applicability of these techniques in large indus-

trial applications as well [6, 73, 69]. However, the effectiveness of data and techniques has varied widely

depending on the types of applications [7].

The wide variation in effectiveness among programs in these suites is an important consideration.

For instance, data from Mei et al. [58] showed that the programs that benefited the most from their technique

(JUPTA) were the same programs that benefited the most from their baseline technique (prioritizing based

on coverage data). Similarly, data from Hao et al. [37] shows very large variation in effectiveness between

applications.

The implication of this variation in effectiveness is that some applications are just better suited

to prediction than others. Mirarab et al. [61] pointed out that how much a given variable varies between

applications appears to impact its effectiveness in prediction. For instance, techniques based on coverage

data will be more effective when the level of coverage varies widely between test cases for the application.

This is important when selecting both data sources and techniques to use for a given application.

3.3. Data Sources

Coverage is by far the most common data source for prediction techniques, used in twenty-eight of

the papers surveyed. This was seen equally across prioritization, reduction, and selection. After coverage,

churn is the second most common attribute, used in five of the papers, including a few in combination with

coverage. Complexity, test granularity, fault history, and a variety of others such as output uniqueness make

up the remainder of the data sources.

Coverage is popular, as it is easy to obtain in most applications. The coverage data for the Siemens

programs as well as other common applications is readily available. Standardized tools, available in most

12

languages including C++ and Java, allow for the collection of code coverage data in cases where it is not

initially available.

One aspect that is not well studied is how the data sources vary in effectiveness for a given appli-

cation. As previously mentioned, more variation in the values for a given data source is advantageous. But

Tonella et al. [79] showed that user knowledge of important tests significantly outperformed coverage-based

prioritization. Similarly, Anderson et al. [7] showed that churn (traditionally considered a good predictor)

performed poorly in environments with a high occurrence of flaky tests. Flaky tests are non-deterministic

tests which can fail for reasons other than regressions or bugs, and can fail even without changes to the

underlying code [55]. The impact of data sources on the effectiveness of predictions is an area that needs

additional research.

More recently, some researchers have begun using specifications, state models, and other software

artifacts to implement regression testing techniques. For example, Kim et al. [49] utilized reliable mapping

between the model element and the regression tests for that element to select which tests should be run.

Another example is Hemmati and Briand [40], who used similarity measures between models for test case

selection. In some situations, this is a manual mapping, or in the case of model-driven systems the mapping

may be directly available from the tooling that builds the system. In either case, the mapping must be reliable

to ensure that mapping errors do not negatively impact the effectiveness of the regression testing techniques.

3.4. Techniques

Techniques are tightly related to data sources because the techniques are reliant upon the data avail-

able. For instance, greedy-coverage-based ordering of tests is only applicable if coverage data is available as

a data source. However, the techniques are more diverse than data sources because for the same data sources,

many different algorithms can be applied. Again using the example of coverage data, greedy-coverage-based

ordering is a relatively simple algorithm. More complex examples include genetic algorithms and the use of

classification algorithms.

The most popular technique is also the most simple, ordering by coverage. This was used in fifteen

of the thirty-four papers surveyed. How the tests are ordered may vary slightly, such as selecting tests

to maximize coverage with each additional test selected (greedy) or to maximize the increase in covered

paths that are new (additional), as well as minor variations on these techniques. Generally, greedy coverage

algorithms have been shown to be among the best techniques, as shown by Mirarab et al. [61].

13

With simple techniques such as ordering by coverage being fairly effective, many researchers have

begun applying more advanced techniques such as linear programming [37, 42, 61], genetic algorithms [53,

80], and other techniques. A common theme in this research is more complex techniques yield a slight

improvement in the prediction, but often not enough to justify the cost of the technique.

The costs of data collection, data curating, algorithm execution, and result analysis must be consid-

ered when evaluating techniques. For instance, Walcott et al. [80] found that it was more expensive to run

the genetic algorithm in some cases than to run the full test suite, thereby negating the benefits of increased

predictive power. Similarly, Anderson et al. [6] saw an increase of only 4% in effectiveness at the cost of

very expensive computations for association rule mining. The collection of coverage data and the execution

time of ordering by coverage data is often less costly in terms of both human time and machine processing

time than more advanced data sources and techniques.

The implication from the results discussed in this section is that most benefits can be obtained with

relatively simple and low-cost prioritization, reduction, and selection techniques. More advanced techniques

may yield slight improvements but are often not worth the increased cost of applying the techniques. Often,

the variation in effectiveness between applications is greater than the increase in effectiveness of moving to

a more complex technique.

3.5. Baselines

The most common baseline used in evaluating regression testing techniques is random ordering or

random selection, followed by running all tests. Thirteen of the thirty-four papers only compared against

selection of random or all tests. Of those that did compare against less naı̈ve baselines, the most commonly

selected baseline was greedy coverage based. This appears to be a good baseline because, as previously

discussed, the greedy coverage technique is one of the most effective simple techniques.

An interesting result was seen by Do et al. [22] in which occasionally random selection was shown

to actually outperform untreated test prioritization. This is likely due to the way test suites grow over time.

The implication of this finding is that selecting test cases randomly should not be considered equivalent with

a project that has simply not performed selection, reduction, or prioritization of tests. In fact, sometimes

randomizing the test cases can even improve results.

The key message when evaluating baselines, as previously discussed, is that the vast majority of

benefits from prediction can be gained with relatively simple data sources and techniques. As such, a com-

14

parison against random ordering, retesting all or initial orderings is likely to always show an improvement,

regardless of the effectiveness of the data sources or techniques. Given that greedy coverage is an easy tech-

nique to apply, and that coverage data is almost universally available, we recommend using greedy coverage

as a standard baseline as new data sources and techniques are analyzed.

3.6. Trends

Because only thirty-four papers were selected for detailed review, not enough data is available to

perform statistical analysis on trends in the data. However, looking at the details of the papers over time

does yield some apparent trends in regression testing research. Figure 3.1 illustrates the object programs

of research by year. As can be seen, in the early 2000s, the Siemens Suite together with Space were the

primary object programs used in empirical studies. This is partially due to the strong working relationship

between the authors of the papers, and partly due to the availability of these applications together with tests

and other data sources for research. More recently, there has been a shift as more research is focusing on

industrial applications and other open source programs. The most widely used open source programs for

more recent studies include Ant, JMeter, XmlSecurity, and JTopas.

�

�

�

�

�

�

�

�

���� ���� ���� ���� ���� ���� ���� ���� ���	 ���
 ���� ���� ���� ���� ����

���������	�
���

������������ ��������� ����������������� �� ���

Figure 3.1. Paper Subject(s) by Year

Figure 3.2 illustrates another apparent shift over time in research. A decade ago, most research

focused on coverage-based techniques, including the “greedy” and “additional greedy” algorithms. More

recently, research has branched out to more varied and advanced techniques including linear programming,

genetic algorithms, and others.

From these trends, it appears that the field of test case selection, reduction, and prioritization is

maturing. Early research focused on a small number of applications with a small number of techniques.

15

�

�

�

�

�

�

�

�

���� ���� ���� ���� ���� ���� ���� ���� ���	 ���
 ���� ���� ���� ���� ����

���������	
�	���

������� ����������������� ������������������ ������������ !�"

Figure 3.2. Paper Technique(s) by Year

Research in this area has now expanded and become more advanced, and it is being applied in an industrial

setting. As these techniques start shifting out of research and into practice, it is important to understand

the interplay between applications, data sources, techniques, and other project aspects to ensure successful

technology transfer from academic research to industry.

16

4. APPROACH

This section describes the approach used in conducting the proposed research. Our motivation is

to determine how contextual factors affect the effectiveness of regression testing techniques. To do this,

we start by introducing a conceptual framework that provides a foundation for conducting our research.

Using that conceptual framework, we performed a literature review to understand the corpus in this area

as described in Chapter 3. We then performed empirical studies to understand the impact of internal and

external contextual factors on the regression testing techniques. In particular, we utilized a large industrial

application, Microsoft Dynamics AX, which involves several challenges that arise in testing. The following

list summaries the steps in our approach.

• Construct a conceptual framework with which to evaluate regression testing techniques

• Conduct a literature survey of the current state of the art

• Investigate whether advanced data mining techniques are applicable to this product

• Determine which product attributes are most important in employing regression testing techniques

• Investigate the applicability of these techniques for use in finding non-functional bugs

• Develop new ways of applying regression testing techniques based on the unique attributes of the

product

4.1. Conceptual Framework

This section describes a conceptual framework that provides guidelines about how the proposed

research and application of data mining in regression testing techniques can be conducted. This framework

is depicted in Figure 4.1. The first box in the figure is the source application. This is the software project for

which the regression testing techniques are being applied. Data sources from this application are obtained,

such as code coverage data or code churn information. A technique is applied to the data sources, such

as a greedy algorithm based on coverage, or a classification technique using all available data sources. The

output of the technique may be a recommended prioritization, or a selection of tests to remove from the suite,

or a selection of tests to execute. This output is then evaluated against some ground truth using measures

such as the average percentage of faults detected or the number of test cases to be rerun.

17

�������

�		
������

����

�������

�����������

���������
��	�� ���
�����

Figure 4.1. Formalized Conceptual Framework for Regression Testing Techniques

All of our research, as well as the guidance in Chapter 6, follows the conceptual framework in

Figure 4.1. While each step by itself is important in the process, regression testing techniques are most

successful when considerations are made of all steps in the framework.

4.2. Advanced Data Mining Technique Applicability

The first step in our approach is to determine whether advanced data mining techniques can be used

to more effectively employ regression testing techniques in a large industrial application such as Microsoft

Dynamics AX. We also need to determine if more advanced data mining techniques improve the effectiveness

of the regression testing techniques.

To do this, we used test result data from 64 full regression test suite runs spanning over a year of

development time. Using this data, we applied multiple test case prioritization techniques ranging from

naive to more advanced data mining-based.

• Random ordering (Very naive, but also current practice in this product)

• Order by most frequent failure (Simplistic technique)

• Order by association rule mining (Advanced data mining technique)

We performed this study in two ways: once with all data available, and again looking only at a

recent window of data. This additional dimension of the study allows us to determine if more advanced data

mining techniques involving temporal restrictions further improve the test prioritization.

This empirical study showed that regression techniques can be successfully applied to the Microsoft

Dynamics AX product to improve the effectiveness of test case prioritzation. Further, it showed that more

advanced data mining techniques such as association rule mining do improve the effectiveness of those

techniques. Also, the application of temporal constraints on data sources further enhance the regression

testing technique effectiveness.

Through qualitative analysis, we also learned why some of these techniques were so effective. For

instance, the temporal restrictions on source data were effective as different parts of the product development

life cycle yielded different patterns of regression test failures. Areas under active development were more

18

likely to see additional failures, while areas being stabilized saw fewer. From these qualitative discoveries,

we learned that even within a single product release, the effectiveness of different attributes varies over time.

A more detailed discussion of this empirical study is available in Section 5.1.

4.3. Determine Most Influential Attributes

Once we determined that advanced data mining and regression testing techniques could be used in

the product, our next step was to understand which attributes were the most influential. In our first study, the

attributes were limited to only test failure information. As described in Section 2, other research has shown

that many different software attributes can be used in regression testing techniques.

To investigate which attributes were most applicable in this case, we used the same data from the first

study with several additional attributes. These attributes include churn, organizational attributes, complexity

attributes, and historical results. Using these attributes, we learned a classification model and used it to again

prioritize test cases.

The results of this study were surprising, as we found many of the attributes traditionally considered

to be the most effective in prioritization, like churn, had very low predictive power. Other attributes not

normally considered as effective, like historical failure trends, were shown to be far more powerful. With

further investigation, we discovered this was due to specific contextual factors of the product, such as a high

incidence of false test failures. Similarly, the source control gate system and use of extensive testing during

code submission made churn less predictive.

From this study, we were able to show explicitly how contextual attributes of a product have a

significant impact on the effectiveness of different data sources and techniques in applying regression testing

techniques. More detailed information about this study is available in Section 5.2.

4.4. Application to Non-Functional Bugs

Next, we wished to see if the techniques and learning from the previous studies could be extended

to new applications. Traditionally, regression testing techniques such as test case prioritization are used

to order functional tests, looking for code defects. Many products, such as Microsoft Dynamics AX, have

a need for a more optimal way of finding non-functional faults, such as performance problems. To study

this, we used the same advanced data mining and prioritization techniques from the previous study to try to

predict performance tests that can detect missing index performance faults.

The results of this novel approach to using regression testing techniques proved effective, but it

was less useful than we hoped. While the techniques did properly prioritize performance tests, the costs of

19

obtaining the data sources for prioritization left the technique untenable for actual use. This is due to the

high configuration and execution costs necessary to obtain stable test execution timings on tests which take

just seconds to execute. From this study, we learn that not only context of the product, but also context of the

data sources themselves is important in effectively and efficiently applying regression testing techniques.

More detailed information about this study is available in Section 5.3.

4.5. Applying Regression Testing Techniques Based on Product Context

In this empirical study, we seek to apply the learning from previous empirical studies and develop

a novel approach to regression testing techniques based on the unique context of a product. Two unique

attributes of the Microsoft Dynamics AX product are the fact that it is delivered as a Software-as-a-Service

(SaaS), and the availability of pervasive telemetry on product usage.

Based on the findings from previous studies, we used highly-discriminative data sources which are

inexpensive to consume, specifically usage telemetry. Using these data sources, we compute highly-tailored

test case prioritizations for each software installation, something important in a SaaS environment where

downtime is measured in minutes. We applied multiple techniques ranging from simplistic to advanced data

mining techniques, measuring the effectiveness of the resulting prioritizations.

In this study, we were able to show that the selection of the data sources and processing techniques

based on the unique context of the product were effective in producing effective prioritizations.

More detailed information about this study is available in Section 5.4.

20

5. EMPIRICAL STUDIES

To investigate the approaches described in Section 4, we performed a family of empirical studies.

We describe each of them in the following subsections.

5.1. Apply Advanced Data Mining Techniques to an Industrial Product

In an empirical study on an industrial product, we seek to determine if advanced data mining tech-

niques for test case prioritization can improve results. This study provides interesting learning on the use of

association rule mining and sliding time windows in the area of test case prioritization and was presented at

MSR (Mining Software Repositories) of ICSE 2014. It also serves as a foundation for future research on this

product by demonstrating that data mining techniques can be successfully applied to this industrial prod-

uct to improve test case prioritization. Future research builds on this by examining the interplay between

different metrics and classification techniques.

While many current regression testing techniques focus on static analysis and explicit relationships

among tests and product elements, we believe that there are many additional relationships among software

artifacts (e.g., software code, test code and historical test results) that are not obvious or even not visible to

the owners of the software artifacts. If these underlying relationships about software systems are able to be

discovered, regression testing processes can be improved by selecting and running more important test cases

for failure detection.

To investigate this possibility, we apply a repository mining approach to several types of data com-

monly found in software repositories, or available by performing calculations on the contents of those repos-

itories. These data sets include software test coverage data, prior defect-revealing behavior related to test

cases, previous test results, build history information, and smoke tests.

Using these data sets, we propose and develop two techniques. The first approach is referred to as

most common failures in which test cases that failed the most previously are recommended as test cases that

are likely to fail in the future. The second approach is referred to as failure by association where failures in

certain subsets of tests are used to determine other subsets that are likely to fail. Both of these techniques

are then paired with an examination of age of data we refer to as windowing. The techniques are run once

using all historical data, and then again using only data from the most recent runs.

21

To investigate the effectiveness of the proposed techniques, we have designed and performed an em-

pirical study using an industrial product, Microsoft Dynamics AX that contains real failure information. Our

results show that using information about historical failures can better predict future failures. Specifically,

using techniques such as frequency of failures and failure by association based on a window of recent builds

outperforms the same techniques on the entire historical dataset.

5.1.1. Approach

The goal of this research is to select effective regression tests that are likely to detect failures and to

run them, giving development extra time to fix any issues discovered while the remaining tests are run. If a

more useful set of tests runs earlier, problems found by such tests can be fixed up to two days sooner based

on a three day test run.

Figure 5.1 demonstrates the mechanism by which test case selection occurs. At the start of any

test run, the test cases for that regression test run are selected. This is accomplished by running a selection

algorithm which reads from all test artifacts as well as historical test results from previous builds. The output

of that algorithm is a set of tests deemed more likely to fail in the current regression test run. That set of

tests runs first on the pool of test computers. Once execution of the selected tests completes and the test

machines are free again, then the remaining tests are executed.

A final note in Figure 5.1 is that a small random set of tests out of the pool of all tests are pre-

executed as part of the build process. These are referred to as “smoke tests” and are used to help determine

the general quality of the build and whether or not it can be used for a full regression test run. The selection

algorithm may also consider the results of those smoke tests in determining the selected tests deemed most

likely to fail for that test run.

This study can be described abstractly as follows. Consider a set of n regression tests labeled T1, T2

through Tn. We define Ai to be the set of all tests runs in the ith regression suite run: Ai = {Ti1, Ti2, ...Tin}

The union of all tests from all test runs is defined as A. Note that A differs from Ai since a given

test may or may not be run in a given regression test run due to infrastructure issues, time pressure, active

development causing the test to be temporarily disabled, or various other reasons.

Let Fi be the set of all failed tests in a given regression test run. So if m failures existed in regression

test run i, we would define: Fi = {Ti1, Ti2, ...Tim}

Only tests which were run in a given regression test run may actually fail, i.e., Fi ⊆ Ai.

22

���������

���	
����

������

���	�

��
��	���

���	�

���������

���	�

��������

����	
���

�	��������

��
��	����

�
����	��

���	�����
�

���	�

���
	�

���
	�

Figure 5.1. Test Selection Process

The goal of this study is to predict Fi as accurately as possible for a given regression test run. We will

therefore define the set of k predicted failures for regression test run i as Pi such that: Pi = {Ti1, Ti2, ...Tik}

Only tests that have failed in previous regression test runs can be predicted to fail in the current test

run. So, we have that: Pi ⊆
i−1⋃
j=1

Fj

There is however no guarantee that Pi and Fi overlap in any way. If we were able to perfectly predict

the failures in regression test run i, then we would have a case where Pi = Fi, but this perfect prediction is

likely not possible. We can define the set of correctly predicted test failures Ci as the intersection between

the predicted tests and the test that actually failed, i.e., Ci = Pi ∩ Fi.

Increasing the set of correctly predicted tests is important, as it will increase the bug finding abilities

of regression test run i. However, it should be noted that by increasing the size of Pi, the size of Ci can also

be increased, to the point where if Pi = Ai, then we would have Ci = Fi. While all failed tests would have

been correctly predicted, this is not a good situation, since |Pi| would be significantly larger than |Fi|. These

extra predicted failures that did not occur would require additional test resources to run, but would not find

any bugs. Therefore what we actually want to do is maximize |Ci| while minimizing |Pi|.

5.1.1.1. Most Frequent Failures

We refer to the first algorithm for predicting failures as Most Frequent Failures. In this approach, a

threshold is used, and any test which failed at least as many times as the threshold in previous test runs is

predicted to be likely to fail again.

5.1.1.2. Failure by Association

The second algorithm used in predicting likely failures is referred to as Failure by Association. In

this technique, we use concepts from association rule mining to predict failures. Association rule mining

23

is a technique by which a database of historical transactions is analyzed, and a set of rules are determined

which indicates associations between items in the transactions [2]. Association rules mined from previous

transactions can be utilized for predicting future associations. For simplicity we often refer to failure by

association by the acronym ARM, since it relies on association rule mining concepts.

Our failure by association approach is similar to standard association rule mining, with one major

difference. Instead of determining the association rules ahead of time, we run the rule mining algorithms

separately for each test run being analyzed. We did this for two reasons. First, the number of transactions

in our system is relatively small, being based on only 64 total regression test runs. So if a static database

were used such as starting at halfway through the project, this greatly reduces both the number of test runs

we can analyze as well as the number of transactions being considered in the rules. Also importantly,

association rule mining techniques are very computationally intensive. The running time of association rule

mining mainly depends on the number of items in the dataset and the minimum support and confidence. The

number of tests cases which correspond to the number of items in association rule mining is over 65,000 test

cases to analyze.

In Failure by Association, relationships between test failures are found and then used to predict

failures in a given regression test run. Unlike the most frequent failures approach in the previous section, the

Failure by Association approach requires some information from the current regression test run in addition

to historical data. Fortunately, this information is available in the form of smoke tests. As described by

Kaner et all [47], smoke tests are a small sample of tests that are run after each build to determine whether

or not the build is high enough quality to continue running additional tests. We define the set of failed smoke

tests in regression test run i as the set of regression tests which were run in i, but failed. We define Si as:

Si = {Ti1, Ti2, ...Tir}

The association rules are of the form LHS =⇒ RHS. The support of a rule is the number of

transactions in which the left hand side items appear along the right high side items. Support is used to filter

out weak rules that show the association in a very small number of transactions. The confidence of a rule is

the ratio of the number of times the right hand side items appear when the left side items appear. Confidence

is the likelihood that the right hand side items appear given that the left hand side items appear. Confidence

is used to filter out rules where there is not a strong correlation between the left and right hand side items

appearing. For a given dataset and support and confidence threshold, a set of ‘interesting’ rules is mined,

such that: Rules = {(LHS1 =⇒ RHS1), ...(LHSx =⇒ RHSx)}

24

The LHS is the left hand side of each rule, also referred to as the antecedent. Given the failed

tests in previous regression test runs, we can mine all the rules whose support and confidence exceed user-

specified thresholds. However, we only have a small set of tests for the regression test run for which we are

trying to predict the tests that are likely to fail. Therefore, we are not interested in all the rules that are valid

in the previous test runs. We are only interested in the rules in which the LHS tests are part of the smoke

tests, i.e., LHSj ⊆ Si.

To mine only the sought-after rules which are applicable for the current test run, we propose a

different method for mining these rules. For a given support threshold, minsup, we mine the frequent tests

in previous test runs. Only these frequent tests can be on the left hand side of any interesting rules since by

definition the tests in an interesting rule have to appear in at least minsup transactions. The transactions

that have at least one of these frequent tests are retained and other transactions are pruned.

The second step is to mine for associations between tests and the frequent smoke tests in these

transactions. Once all the antecedents have been determined based on support, the next step is to find

the associated RHS or right hand side of the rule, also referred to as the consequent. Similar to how a

support level is used in determining the frequent LHS itemsets, a threshold called the confidence is used

to determine which itemsets occur in the RHS. Unlike the LHS which examines all previous test runs

looking for when that test occurs, the RHS only looks at test runs in which the LHS also occurs.

5.1.1.3. Test Age

The final approach examined in this research is the applicability of test age on the accuracy of the

predictions. The age of a test is the number of test runs that have occurred since that test run until now. We

define a window of data to be the set of all test runs with age ≤ window.

5.1.2. Empirical Study

As stated in Section 5.1, in this research, we investigate whether the use of failure by association,

most frequent failures, and test result age can help better predict the likely test failures in a given test run.

These methods are applied to an industrial product. This section describes the empirical study performed.

In our study, we investigate the following research questions:

RQ1: Can learning from previous test runs improve the effectiveness of selecting tests in terms of fault

prediction?

RQ2: Can restricting the set of previous test runs based on age help increase the effectiveness of selecting

tests in terms of fault prediction?

25

5.1.3. Variables and Measures

���������	
�

�����
�
�
�

��������	
�
�
�

���� ��	
�

����
��	
�

����
��	
�

���� ��	
�

�

���� ��	
��

����
��	
��

������
��

���������

��	����

���������	
�

�����
�
�
�

��������	
�
�
�

���� ��	
�

����
��	
�

����
��	
�

���� ��	
�

�

���� ��	
��

����
��	
��

������
��

���������

��	����

��������
���
�

�������
��

�����
�
�
����

��������	
�
�
����

���������	
��

�����
�
�
��

��������	
�
�
��

���� ��	
�

����
��	
�

����
��	
�

���� ��	
�

�

���� ��	
��

����
��	
��

������
��

���������

���� ��	
�

����
��	
�

����
��	
�

���� ��	
�

�

���� ��	
��

����
��	
��

!"����
��������	
�

∑ ��������	

�

�
��

�
!"����
�����
�

∑ ������
�

�
��

�
										!"����
#$%�����
�

∑

�������	�

��

�

��

Figure 5.2. Experiment Process

5.1.3.1. Independent Variables

This study manipulated two independent variables: selection technique and test result age window.

We consider two control technique and four heuristic techniques as follows:

• Control: A random set of tests is selected out of the set of previously failing tests and used as the

prediction. When recommending the tests in the control method, the number of recommended failures

needs to be determined as well. In this study, we predicted the same number of failures as the average

number of failures seen in previous test runs.

– Trandom, full: This technique randomly selects a set of tests from the full set of previous

failure data.

– Trandom, recent: This technique randomly selects a set of tests from the most recent previous

failure data.

26

• Heuristics: We consider four heuristics representing the different combinations of failure by associa-

tion and data recency.

– Tfrequent, full: This technique predicts failures based on most frequent previous failures,

examining the full set of previous build data.

– Tfrequent, recent: This technique predicts failures based on most frequent previous failures,

examining only the most recent previous test runs.

– Tarm, full: This technique predicts failures based on failure by association of previous failures,

examining the full set of previous build data.

– Tarm, recent: This technique predicts failures based on failure by association of previous fail-

ures, examining only the most recent previous test runs.

5.1.3.2. Dependent Variables

We consider two dependent variables, the precision and recall of the predicted test failures. Precision

refers to the percentage of predicted failures that actually failed. Recall refers to the percentage of actual

failures that were predicted. To measure the overall effectiveness across both precision and recall, we also

compute the F-measure which is the harmonic mean of the precision and recall.

The formulas and more complete explanations of precision and recall are presented in Section 5.1.1.

27

5.1.4. Experiment Process

This experiment was performed on historical data from the Dynamics AX 2012 R2 release. As

previously mentioned, this release contained 64 regression test runs. The techniques being studied were

applied to each test run, simulating what would have happened if they had been applied during the actual

development cycle.

We started with regression test run 2 since the first regression test run had no historical data which

could be used for prediction. At the time regression test run two was about to begin, only regression test

run 1 had previously happened, so only data from regression test 1 could be used for prediction. Based on

that data, we predicted the failures for regression test run 2. Once those failures were predicted, we then

compared them with the actual results for regression test run 2 and calculated the precision and recall for

that regression test run, P2 and R2.

We then applied the same process to examine regression test run 3. Again, simulating the data

available at the time regression test run 3 was about to begin, we only had historical data from regression

test runs 1 and 2. So that data was used to predict the failures in test run 3. We then compared those predicted

failures from test run 3 against the actual failures in test run 3 and again calculated precision and recall, P3

and R3.

Following this same process, the failures for test run 4 were predicted based on the results of runs

1 through 3 and used to calculate P4 and R4. Test run 5 was predicted based on results of runs 1 through

4, yielding P5 and R5. This continued all the way up to predicting the failures in test run 64 based on the

results of test runs 1 through 63, yielding P64 and R64.

The only difference in this technique when applying test age to examine only a window of data was

only the most recent test runs were examined. So with a window size of 10, the predictions for test run 37

would be based on the results of test runs 27 through 36.

Once precision and recall had been calculated for each test run using each technique being studied,

the results were then averaged across the 63 results for each technique.Using the average precision and recall

for each technique, we then calculated the F-measure of the technique. (See the equations below.) Averaging

the precision, recall, and F-measure across all of the test runs is important, as there is high variability in the

precision and recall values found in each test run across the data set. Based on the average values, we can

determine if one technique is more effective than another in general, ignoring local variability.

28

5.1.5. Data and Analysis

5.1.5.1. Failure by Association and Frequent Failures

The first research question (RQ1) addressed was whether or not learning from previous test runs

can improve the effectiveness of test case selection in future runs. Figure 5.3 shows precision, recall and F-

measure for the control and heuristic techniques (failure by association (ARM) and frequent failures). Both

the frequent failures and ARM techniques are much more effective at predicting failures than the control

technique, the control having an F-measure of 0.179 and the frequent and ARM approaches at 0.441 and

0.460 respectively.

It is also of note that while the ARM approach yielded a better result than frequent failures, the

difference was negligible. Overall, it was only 0.04 more effective based on F-measure. Based on the

individual analysis of the association rules, it was found that very few rules contained more than a single

test on the RHS. This means that the confidence measure in failure by association becomes very similar

to the confidence measure in the frequent failures approach for determining predicted tests, leading to very

similar prediction effectiveness. In systems where there is higher coupling between tests, the size of the RHS

in the rules would be expected to increase, and therefore the effectiveness of the ARM approach should also

increase compared to that of the frequent failures approach.

�

���

���

���

���

���

���

	
��
� ������� ���

������
� ������ ��������

Figure 5.3. Effectiveness of ARM and Frequent Failures

29

5.1.5.2. Test Age and Analysis Windows

The second research question (RQ2) was whether restricting the set of previous test runs based on

age help increase the effectiveness of the techniques we investigated in RQ1.

Figure 5.4 shows precision, recall, and F-measure across all three approaches both with and without

restricting the set of previous test runs. It is clear from this data set that using recent test runs as opposed to

all historical test runs greatly increases the effectiveness of fault prediction of the identified tests. This even

applies in the case of the control, which randomly selected tests from any that had previously failed.

The cost of applying this windowed approach is also negligible. Unlike approaches such as failure

by association which required several data processing steps to make predictions, applying a window based

on age actually reduces the amount of data to be processed. The fact that reducing the amount of data sets

to be processed increases the effectiveness of the approach is important because it means this is a very valid

technique that can be applied with no additional cost to other methods.

�

���

���

���

���

���

���

��	

��

������������ ������������� ������������� ��������

�����

��������� ����������

�������� ������ ���������

Figure 5.4. Overall Effectiveness of Prediction Approach

30

5.1.6. Discussion and Implications

Our results indicate that the effectiveness of test case failure prediction can be improved through

the use of historical test results, together with an application of a concept of test result age. As shown in

Figures 5.3 and 5.4, the use of frequent failures and failure by association produced better precision and

recall values (between 0.38 and 0.56) compared to the control technique (less than 0.20) This essentially

doubles the effectiveness of prediction. Similarly, applying a concept of test age to use only the 25 most

recent test results showed increases in the effectiveness of not only the frequent failures and failure by

association approaches, but also in increasing the effectiveness of the control approach.

While the overall results show the effectiveness of the proposed approaches, there are additional

observations and implications, and we discuss these in the subsections.

5.1.6.1. Cost of Implementation

Implicit in this research but not yet discussed is the fact that performing analysis such as failure by

association or frequent failures to predict test failures is an engineering activity which in itself has a cost. As

discussed earlier in this section, spending cost on one quality activity in product development necessarily

takes away time and resources that could have been spent on other, potentially more important activities.

The cost of performing the research in this paper was not explicitly captured, so it will not be discussed

quantitatively. A qualitative discussion is still helpful however.

The two primary techniques used for predicting based on previous failures were the failure by asso-

ciation and frequent failures approaches. Between these two approaches, failure by association demonstrated

approximately a four percent benefit over that of frequent failures as shown in Figure 5.4. This does not nec-

essarily mean that failure by association is a better approach. One challenging task is how to efficiently mine

the applicable association rules for every test run. This is especially significant considering the fact that most

frequent itemset mining algorithms (e.g., Apriori [2], ECLAT [85], FP-growth [36]) enumerate the entire

extremely large frequent itemsets search tree.

This means that as the number of items in the itemsets increases, the cost of running these algorithms

increases dramatically. In our case, it was only after about a large amount of pruning and performance tuning

that the data and approach of failure by association were efficient enough to complete in a less than a few

days. One such performance tuning activity was searching only within test runs which contained the same

failures as occurred in the smoke tests.

31

Agrawal and Srikant [2] discuss many other association rule mining algorithms, many of which are

more efficient than Apriori. But compared to performing analysis of most frequent failures, all of these

algorithms are significantly more complex to write, as well as significantly more costly to execute on a

computer. The most frequent failures approach took only around a day to write and less than an hour to

execute.

Based on this experience and the fact that failure by association only yielded an improvement of

around four percent in effectiveness, we recommend applying a most frequent failures approach in industrial

application. The additional resource savings by using the frequent failures approach can be applied to other

quality activities during the software release cycle.

5.1.7. Threats to Validity

This study focuses on the relationships between different tests and their propensity to fail. Since the

amount of coupling or other inter-test relationships is purely based on the actions of the engineers building

those tests, other products built by other companies and other groups of developers may exhibit stronger or

weaker relationships than those observed in this study.

Similarly, the release cycle for this product was approximately one year. As discussed earlier, the

changes in development focus are believed to contribute significantly to the validity of relationships between

test failures. Thus, other products with different release cadences may experience different results.

As no test or product development environment is ideal, the set of tests which could be and were

run varied in each test run. This study ignores all tests that did not exist prior to a given test run, or which

stopped existing after that test run due to standard ongoing development during the release. Since a test

being added or removed from the test suite is not an indication of previous or future failures, it was ignored.

Because of this, not all test results were considered in the study. Exclusion of results for this reason may

have had an impact on the results of the study.

5.1.8. Conclusions

As shown in this research, there are hidden relationships between test failures which may be mined

to more accurately predict failures in future runs. It was also shown that the majority of these relationships

are simple frequency relationships as opposed to more complex interactions between groups of test failures.

This likely suggests that the tests themselves exhibit low coupling, which is advantageous. The tests are

intended to not overlap each other in functionality, and this research suggests that they largely do not.

32

The other interesting result of this research is the drastic increase in prediction abilities when using

a relatively small window of recent historical data, as opposed to full historical data. This suggests that not

only are more recent failures better predictors than less recent failures, it also suggests that using less recent

failures can be detrimental in prediction abilities. This is likely a result of different phases of development

focusing on different areas of the product. While an area is being actively developed, tests that exercise

that area are more likely to fail more often. When that development ceases, little variation in test failures is

expected.

The most important result of this study for our overall research is the knowledge that data mining

techniques can be used on this industrial product to improve test case prioritization. The next step of our

research is to get an understanding of how the different metrics available on this product interplay with each

other and the software environment. This is addressed in our next empirical study.

5.2. Using Classification to Understand Attribute Importance in and Industrial Product

While our previous research was shown to be promising, it, did not aggregate the various attributes

to understand the interactions between these factors. Do the attributes have a causal impact on each other?

Are they mutually exclusive in predicting test case failures? Are they indicative of larger, unseen forces in

the software project?

To investigate these questions, we propose a holistic approach to test failure prediction based on

heterogeneous multi-level data attributes. These attributes include historical test case pass and fail infor-

mation, organizational information, code complexity information, and code change information. We used

classification algorithms that learn a classification model from these input attributes, and using that model,

we predicted future test case failures based on the current attribute values. An additional benefit of using

classification model techniques is that the learned model is also a source of information. The model can be

examined to understand how the input attributes impact each other and how the attributes impact the failure

prediction results.

Classification techniques have been used with many problems and industries, such as image process-

ing or genome characterizing [11, 72]. These techniques have recently been applied to software engineering

areas, such as bug triage and predicting bug bounces [33, 67]. In this research, we apply similar classifica-

tion techniques to the area of test failure prediction and use the resulting models to understand the interplay

between various software attributes and the software project itself.

33

To evaluate our approach, we performed a case study for the release of an industrial product where

many attributes were available. We used multiple classification algorithms across differing attribute sets,

examining the effectiveness of the test failure predictions for each case. Our results indicate that, while each

attribute can help improve failure prediction as shown by other research, some attributes, such as historical

failure information, have much stronger prediction power. At the same time, other attributes, such as churn

information, which are usually considered good predictors of test failure were not as effective for this project.

By examining how these attributes impact each other in the classification models, we discovered that the

attributes’ effectiveness for prediction actually exposes problems with the software environment where the

testing occurred. One of the important findings from this study was that churn information that has been

considered to be the best predictor of failure prediction may actually be less helpful than other attributes such

as historical test results based on the testing environment for the project. The implication of this finding is

that much previous research on test case selection and prioritization may not be applicable in environments

with a relatively minor amount of test instability.

5.2.1. Approach

For this study we relied on the same data from our previous study, from Microsoft Dynamics AX

2012 R2. Figure 5.5 illustrates the inputs for the classification problem and how each set was derived. The

historical test result features are based on the pass/fail information for every test in each regression test run.

The churn-based information from the source control system provides multiple features. They are

split into two categories, churn measurements and organizational measurements. The churn measurements

specifically count how many elements touched by the test have been modified since the last test run. This

count is calculated by comparing the check in information with static code coverage data detailing which

tests call into which code elements. The total number of elements called by the tests with modifications are

then tallied to provide a numeric value.

The other aspect derived from churn-based information is organizational, specifically which teams

have made changes and whether the people making changes are vendors or full-time employees of the

company. These data are, again, cross referenced with static code coverage data to determine which team

made the most modifications to the code called by each test. Similarly, this information provides metrics for

whether any vendors made changes to the code covered by the test and how many changes they made.

The last measurement, complexity, is more traditional. It includes the number of lines of code in

the test, the number of references made from the test to other code (fan-out), and other similar metrics.

34

���� ������	
��� ����������
��������	
����

�� � � � � � � � � � � � � ����

�� � � � � � � � � � � � � 	�
�

�� � � � � � � � � � � � � 	�
�

� � � � � � � � � � � � � ����

� � � � � � � � � � � � � �

�������

���������

�������
����

���	���

�����������

������������

Figure 5.5. Constructing Attributes for Tests

Classification models take a set of training instances and learn a classification model [14]. The

classification model can then be applied to a new set of input attributes to make predictions as shown in

Figure 5.6. A wide variety of classification algorithms exist. Different classification models yield varying

levels of prediction accuracy depending on the data set and the input parameters chosen [44]. Therefore, we

also need to examine various classification algorithms, such as decision tree models and Bayesian models.

These data yield a large number of features that are grouped into the four categories of history,

churn, organization, and complexity so that we can analyze which feature type is the most important. We

can then analyze how combinations of these measurements impact the results.

For each regression test run performed during the Microsoft Dynamics AX 2012 R2 release, a classi-

fication model is built and is based on the information available at that point in time. For instance, if we are

examining regression test run 15, then we will consider historical results from runs 1 through 14, together

with the churn-based information that occurred between runs 14 and 15. This classification model then

predicts which tests are likely to fail in test run 15. The result of this prediction is compared against which

tests actually failed for test run 15 to determine the prediction’s effectiveness.

5.2.2. Empirical Study

In this study, we investigate the effectiveness of classification approaches to predict test case failures

when applied to an industrial product. In this study, we investigate the following research questions:

1. RQ1: Can a classification model be learned for predicting test failures from software attributes?

2. RQ2: Which attributes are the most important in predicting test failure?

35

5.2.2.1. Object of Analysis

The data sets for this study came from the internal check in, bug, regression test, and cross reference

databases associated with the release. The product itself contains approximately 5.5 million lines of code

and has around 65,000 regression tests that are run regularly.

The full regression test suite is run, on average, once every 3 days because it takes close to 3 days

for all 65,000 regression tests to run across the pool of available test computers. During the R2 release, there

were 64 full regression test suite runs, yielding approximately 3.5 million distinct test results.

On average, approximately 10 percent of the regression test suite failed in any given regression test

run. This statistic does not mean that 10 percent of tests found faults because many of the failures were due

to environmental issues, timeouts, test bugs, or other issues. For instance, of all the regression test failures,

fewer than half of them were related to bugs logged in the bug tracking system. Of those bugs logged, many

were associated with multiple test failures, or were simply infrastructure or test bugs.

The goal of this study is to accurately predict the roughly 10 percent of regression tests that will fail

in a given regression test suite run. We do not seek to place meaning on those failures beyond classifying

their state as passed or failed. Some failures will be due to infrastructure or other issues and may not be

due to underlying software faults. Even without fault or severity information, an accurate prediction about

which tests will fail is still valuable. By avoiding the time spent running tests which pass, failures can be

identified and analyzed more quickly.

��������

	��
���

����

����

���
���

	��������

���������

	�����������

���������������

����������

���
���

�
���������� �
��������
���

���������������
�

�

��������� ���
���

�

� �

Figure 5.6. Experimental Process

36

5.2.3. Variables and Measures

5.2.3.1. Independent Variables

This study manipulated two independent variables: input attribute and classification method.

For input attribute, we considered four categories of input attributes as we described in Section 5.2.1

(Figure 5.5): history, organization, churn, and complexity. Each category contains multiple individual at-

tributes as described in this section.

History attributes:

1. Last Run Status: Whether the test passed or failed the last time it ran

2. Passes in Last 10 Runs: How many times the test passed in the last 10 regression test runs

3. Bugs Found Last 10 Runs: From the failures in the last 10 runs, how many resulted in bugs being

logged

4. Bug Found Last Run: Whether a bug was logged from a failure in the last run

Organization attributes:

1. Primary Editing Team: Which product team made the most changes

2. Checkins by Vendors: The total number of changes made by vendors in this test run as opposed to

full time employees

Complexity attributes:

1. The total number of elements which are executed by the test case

Churn attributes:

1. The total number of files modified since the last run

2. The total number of checkins since the last run

3. The total number of checkins in code which the test executes since the last run

These attribute categories are used to generate classification models individually and in combina-

tion to determine their effectiveness. For instance, a model is generated and analyzed using all the history

attributes and nothing else. Another model uses all the organizational attributes and nothing else. A third

model uses both history and organizational attributes. Yet another model uses all attributes from all cate-

gories. This set of models yields 15 total combinations of attribute categories for which the research was

performed.

37

The second independent variable is classification method. There are many classifiers available, each

with many options and constraints for supported data types. It is not possible to test all classifiers. Instead,

we focus on two common classifiers: Bayesian and tree methods. Since the goal of the study is primarily

around examining the input attributes and not the classification mechanisms themselves, little classifier

discussion is provided beyond what is necessary to rule out classifier preference as skewing the results of

the primary independent variable.

5.2.3.2. Dependent Variables

We consider two dependent variables, the precision and recall of the predicted test failures. Precision

refers to the percentage of predicted failures that actually failed. Recall refers to the percentage of actual

failures that were predicted. To measure the overall effectiveness across both precision and recall, we also

compute the F-measure, the harmonic mean of the precision and recall.

There are four result classes possible based on the predictions made in this study.

1. True Positive: The test was predicted to fail and actually failed.

2. True Negative: The test was predicted to pass and actually passed.

3. False Positive: The test was predicted to fail and then actually passed.

4. False Negative: The test was predicted to pass and then actually failed.

To apply our approach, we need to collect the input attributes and from these input attributes, we

learn a model via a classification algorithm and use that model to predict the test failures for the current

regression test run. These predicted failures are compared against the actual failures for that run to determine

the prediction’s effectiveness. This approach is repeated for each regression test run as shown in Figure 5.6.

5.2.4. Data and Analysis

5.2.4.1. Overall Results

Table 5.1. F-Measure by Independent Variable Combination

Classifier/Attribute RepTree Naive Bayes
All Attributes 0.522 0.488
History 0.510 0.500
Churn 0.194 0.150
Complexity 0.231 0.216
Organizational 0.155 0.052

38

Table 5.1 shows the average F-measure for the failure predictions resulting from each combination

of independent variables. For all attribute sets, the RepTree method slightly outperforms the Naive Bayes

classification models. One benefit from a decision tree based model such as RepTree is that the resulting

model is easily understood by humans and can provide meaningful information about the role each attribute

plays in the predictions. For that reason, most analysis in this section is based on the RepTree classifier.

5.2.4.2. RQ1 Analysis

Research question one is whether a classification model can be learned for predicting test failure

from software attributes. The first step in analyzing this question is to determine a baseline. Without a

classification model, a naive baseline is just to randomly predict tests as failing. As previously discussed

in the Object of Analysis section, approximately 10 percent of tests fail for any given test run. If all tests

were predicted to fail, that result would yield a precision of 0.100, a recall of 1.000, and a corresponding

F-measure of 0.182. As the number of tests randomly predicted decreases, the precision would statistically

remain at 0.100. The recall would decrease, thus further lowering the F-measure.

Given a naive baseline of a 0.182 F-measure, at best, we see that the classification models learned

using all attributes and history were clearly much better at predicting test failures than the baseline, up to an

F-measure of 0.522 as shown in Table 5.1. Other measures, such as complexity, were also marginally better.

From this analysis, we can say the answer to RQ1 is yes; a classification model can be learned to predict test

failure from software attributes.

5.2.4.3. RQ2 Analysis

Research question two is about which attributes are most important to predict test failures. To

answer this question, we examine the F-measure achieved by various classification models built using the

different attribute categories.

Figure 5.7 shows the overall F-measure by attribute category across all test runs. While the F-

measure for any given run is not a continuous amount, the differences between aspects are most easily

visualized as a line chart because it makes the variation between runs more visible. The solid line represents

the F-measure for predictions made with all available data. This value averages 0.522 with a standard

deviation of 0.174. The history attributes alone average 0.510 with a standard deviation of 0.134, showing

that history data alone are nearly as predictive as all attributes put together and have slightly less variation.

Looking at the other attributes, churn, organization, and complexity, these averages are between

0.155 and 0.231, with a standard deviation around 0.09. Of interest to note is that the F-measure for these

39

�

���

���

���

���

���

���

��	

��

���

�

� � 	 � �� �� �� �	 �� �� �� �� �	 �� �� �� �� �
 �� �� �� �� �
 �� �� �� �� �
 �� �� ��

���������	
�	���������	�����
���	���

� ����� ��������� ������� ���

Figure 5.7. Overall F-Measure by Attribute Category

three attribute categories generally follows each other, with similar jumps in the F-measure for similar test

runs.

A very surprising result from this research is the lack of predictive power from the churn attributes.

Churn-based testing is generally considered to be one of the most accurate predictors for which test cases

are likely to fail in future runs. Remember that churn data are a dynamic predictor because the data are

specific to each run. Compare that dynamic data with complexity information, which is generally static.

The complexity of a given test case generally does not change run by run. Naturally, one would expect that

the dynamic churn data would be a much better predictor of failure because they are tied directly to which

tests have changed.

If we compare build-by-build we see a very high correlation between the results of these two predic-

tors, with the complexity attributed yielding a higher F-measure than the churn data. As shown in Figure 5.8,

the trends for the F-measure values are similar build-by-build, with a correlation coefficient of 0.580.

From these results, we see that the most important attribute for predicting test failures in this soft-

ware project is historical test failure attributes. Churn and complexity information is the next most important,

although they do not have nearly as high of predicting power.

It is also interesting to note that classifications are based on historical data and therefore as historical

data increases one would expect the prediction effectiveness to also increase. This would be represented as

an increasing F-measure in Figure 5.7. Instead, there is a somewhat downward trend throughout the project.

From this we conclude that lack of training data is not an issue. Rather it is weakness in the ability of the

40

�

���

���

���

���

���

���

��	

� �
 �� �� �� �� �� �	 �� �� �	 �� �� �� �
 �� �� �� �� ��

���������	
�	����	���	����������

���� ����������

Figure 5.8. F-Measure of Churn vs Complexity

training data to more accurately predict test failures that inhibits better results. So simply increasing the

volume of training data is not sufficient to increase effectiveness.

5.2.5. Discussion and Implications

5.2.5.1. Most Influential Attributes

There are two easy ways of determining which attributes are most influential in predicting regression

test failures. The first one is by examining the F-measure by attribute category as shown in Figure 5.7. As

shown in the graph, historical test data are a consistently better measure of future failure than any of the other

attributes. Churn, organizational, and complexity measures all have roughly the same predicting power and

are consistently less accurate than historical information.

The other way of determining influence is to examine the models generated by the classifier,. Clas-

sification models built as trees will contain the most selective attributes closer to the tree’s root, and the

less selective attributes at the leaves of the tree. In this case, all nodes in the top two levels of the tree are

history-based attributes, meaning that the most important classification attributes are history. Only at level

three and below do other attributes, primarily churn attributes, start to appear.

This result is very interesting for the Microsoft project because the development team normally

thinks of churn information as being the best predictor of failure. If a test is currently passing and no

changes are made to the test or any code it calls into, then one would expect the test to pass the next time it

is run. This expectation of continued passing when no changes are made is not supported by the models or

41

the results of this experiment. Based on these results, the prediction of future failures can be very effectively

done without looking at churn or other measures.

This finding raises a question about why churn-based information is not a good predictor of test case

failures. One possible conjecture is that environmental instability makes some tests more prone to random

failure even if the associated code does not have any faults. An easy way to test this conjecture is to see

if there are any tests which exhibit failures without any associated changes. Thus, we further examined

historical test results. We found that there were 494,064 test results which had no changes from the previous

test run. Of those results with no changes, 7,014 resulted in a test failure on the subsequent build after

passing in the previous build. These 7,014 test results must be the result of environment or test randomness

because code changes and associated defects cannot be the cause. This results in a random failure rate of

approximately 1.4 percent.

As a comparison, there were 1,745,241 results which contained one or more code changes. Of

them, 50,502 failed after having passed on the subsequent build, a rate of roughly 2.8 percent, telling us

that randomness in the tests and environmental instability in the test system are responsible for at least half

of the failures recorded during the project’s regression testing. The number might be higher because it is

possible that many failures which had code changes were still environmental in nature. At least half of the

test failures are due to that instability.

We believe these random failures are why code churn, while seemingly a great predictor of test

failure, ended up not being the best attribute. Because test environment instability caused so many failures,

tests that had previously failed and may be more susceptible to the instability have a much higher likelihood

of failing in the future.

5.2.5.2. Effectiveness over Time

In Figure 5.7, it is interesting to note that the F-measure for all attributes, except history, is very

stable through most of the release, but shows a large amount of variation near the beginning and end of the

release.

Figure 5.9 shows the number of tests that failed by test run. Notice that near the beginning of the

project, the number of failures is relatively low. Anecdotally, major development did not start until around

regression test run 20, where the majority of the development team started working on the project. Prior to

this point, many of the failures were due to random instability in the test system.

42

�

����

����

����

����

�����

�����

� �� �� �� �� �� �� 	�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

���������	�
���

Figure 5.9. Number of Failures by Test Run

This instability due to branching, coupled with a lack of historical test results and little actual de-

velopment at the time, seems to have led to some of the instability in the classification model’s prediction

capabilities. There are also some artificially low numbers for failures during some of the integration periods.

For instance, for test run number 10, there were close to 6,000 files integrated but only 37 test failures. This

result is likely due to the processes for branch integration.

5.2.5.3. Project Feedback

One obvious question arising from this study is about what parts are applicable to the Microsoft

Dynamics AX 2012 R2 development environment and what changes are being made because of this research.

The most important finding from this project is the large role that general test environment instability

has played in reducing the predicting power of classification algorithms. While the Microsoft development

team has always understood that false positives from test failures were a detriment to development, it was

always assumed that churn and other metrics were much more important in terms of predicting failure.

Indeed, many of the Microsoft development team’s internal practices for determining which tests should be

run prior to checkin are based on churn and other metrics.

What we find in this study is that churn is much less important than general test instability. If

the goal is simply to predict which tests are likely to fail as is often stated in development practices, then

identifying and tracking instability for tests is much more important than tracking churn. That being said,

simply testing based on environmental instability does not make much sense because the underlying goal of

testing is to detect defects, and environmental instability does not necessarily indicate underlying defects.

43

However, if the Microsoft development team wishes to improve upon our engineering systems and

more accurately predict which tests will fail to minimize test pass time and to decrease defect detection time,

we need to reduce the number of random failures for the tests. While they have historically used metrics

related to the overall failure numbers in this analysis, the classification models shown in this paper indicate

that test instability often occurs in blocks of time. Thus, when attempting to identify troublesome tests, it is

useful to look not only at total failures, but also the recency of failures within a given window of time.

5.2.6. Threats to Validity

The primary threat to validity in this research is the fact that the techniques have only been applied to

a single release of one application. As discussed extensively in the previous section, there are aspects about

test environment instability, branching, and integration to that particular product and release which may not

apply to other products or releases. These aspects may lead to different weightings for the classification

attributes.

The attributes used in the classification algorithms to generate classification models represent those

attributes which were tracked and available during this product release. Other products and other releases

may have more or different attributes from which to draw, which may yield different results when used in

classification.

A variety of classification algorithms were analyzed in this research, but many others exist and may

yield slightly different results. It is not believed that selection of the classification algorithm has skewed

the overall results because similar results were seen with each algorithm that was analyzed. There will be

minor differences depending on the classification algorithm selected and the settings used while executing

that algorithm.

5.2.7. Conclusions

We proposed classification-based test failure prediction approaches and presented a case study using

an industrial application. Our results showed that classification models based upon attributes can be used

to better understand the environment in which software is being developed and to identify shortcomings in

that environment that are causing extra cost. The results also indicated that the traditionally relied upon

measures, such as churn, may not be the best predictors of test case failure. Further, the results suggested

that using additional attributes for classification models can improve the ability to predict future test case

failures. We also learned that with the product release we utilized, some of those measures provided little

benefit.

44

5.3. Mining Test Results for Reasons Other Than Functional Correctness

The previous two studies show that data mining techniques can be applied to the Microsoft Dy-

namics AX product to successfully prioritize test cases. We then looked into whether these same traditional

techniques we had used to find functional issues could be applied in finding non-functional issues such as

performance faults. From this study we found that this technique was possible, and was presented at ISSRE

2015 (International Symposium on Software Reliability Engineering).

Current research on regression testing techniques, such as test case prioritization, focus on the de-

tection of functional issues in software. Functional issues are what is traditionally thought of as the most

common class of “bug”; a fault in software code which causes an incorrect output or result. An class of

non-functional issues also exists, and is just as important. Examples of non-functional issues include per-

formance problems, security vulnerabilities, and usability deficiencies. Even if the software is providing the

proper output, non-functional issues may render the software product unusable.

We theorize that many of the traditional regression testing techniques discussed earlier will be ap-

plicable in predicting non-functional software faults as well. These include commonly used data sources of

churn, complexity, and lines of code [29, 32, 65, 66], as well as more advanced techniques such as software

dependency graphs, historical defects, and performance data [57, 87, 16]. We focus these data sources and

techniques on predicting performance faults in an industrial product, Microsoft Dynamics AX.

5.3.1. Approach

In this section, we describe the approach used in performance fault prediction based on an industrial

product release currently under development, Microsoft Dynamics AX.

5.3.1.1. Current Performance Testing Practices

Performance is known to be a very important quality aspect of the Microsoft Dynamics AX prod-

uct because performance issues slow down the productivity of users of the product. The primary reason

customers purchase an ERP system is to increase productivity, so performance is very important to users.

Performance faults can lead to problems including increased hardware costs for customers who deploy the

software, decreased productivity for users, and in some cases, performance faults can even stop a business

process from being completed if the problem is bad enough. For these reasons, much focus is placed on

performance analysis and testing within this product.

As with any major product, one problem with performance testing is a very large number of con-

figuration options that can have significant impacts on the performance of processes. These thousands of

45

options in different combinations can yield different performance characteristics making for a virtually in-

finite number of configurations that obviously cannot all be individually tested. For example, in the act of

confirming a purchase order, one must consider whether taxes are being calculated, whether budgeting is

being checked, what level of financial detail is being tracked, whether encumbrance for public sector entities

needs to be considered, whether the purchase is for stocked or service items, and so on.

To deal with this untenable number of configurations, customer research is performed to determine

which configurations and data volumes are most common in certain industry segments (e.g., retail, public

sector, manufacturing, etc.). Then, targeted performance tests are built for these configurations in the busi-

ness processes known to be important for that industry segment. This yields a reasonable level of confidence

in the most important business processes.

As the limited performance testing resources are applied to targeted business processes and con-

figurations, some of the less important processes and configurations may have less than desirable levels of

performance testing coverage. Any performance faults in these less common areas will still be a major issue

for customers if that process is core to their business. Our research focuses on detecting performance faults

in these less common process and configurations that may otherwise not have extensive performance testing

coverage.

5.3.1.2. Missing Index Faults

The type of fault being predicted in this study is a missing index on a table that results in what will

be referred to as a “bad query plan”. Microsoft Dynamics AX is a multi-tier enterprise resource planning

product consisting of a client that connects to one or more servers that execute business logic. Those servers

then connect to a back-end database that contains the data. As Microsoft Dynamics AX is often deployed in

large companies, the number of rows in many of the database tables can be very large. It is not uncommon

to have tables containing over 100,000,000 rows.

A single business operation often requires reading and writing multiple times from multiple of these

tables. Scanning all the rows in the table would be exceedingly expensive, so databases rely on indexes to

quickly find only the rows necessary to serve a given query. Occasionally, a table will not have an index that

can support the query, and the database will need to revert to a scan of the entire table, which can be many

orders of magnitude slower. This impacts not only the current running operation, but all other operations on

that database as well, as it consumes CPU and IO capabilities that could otherwise be used by other queries.

46

There are also cases where an index does exist that can be used by a query, but it is not selective

enough. Database indexes are an ordered set of columns for which all values must be specified in the query

restriction. If a column is not specified in the query restriction, then all following index columns are ignored

and the database must revert to a scan of the rest of all the records in that range. For example, suppose

we have a table containing columns (Company, PurchaseOrderId,Quantity, UnitPrice). An index of

(Company,Quantity) exists on the table. When the system executes the following query:

SELECT UnitPrice

FROM PurchaseOrders

WHERE Company = ‘Contoso’ AND PurchaseOrderId = ‘1234’

Only the Company column of the index can be used for selectivity. If there are many companies in the

table, this may be highly selective. But if, in this installation, only a single company exists with millions of

purchase orders, then the index is no more useful than a table scan.

Figure 5.10 shows an example of a real index seek from a missing index fault that was found in the

product through manual inspection. In this case, the index seeks by [Partition, FinanizeAccountingEvent],

which may be selective in some cases. But, in some cases, a large number of AccountingDistribution

records (in some configurations) finalized as part of the same AccountingEvent. So this index seek may still

end up reading a large number of rows. When many records have the same value for both the Partition and

FinalizeAccountingEvent fields, many records will be returned by this index seek. In an installation with

millions of rows in the table, this would yield a significant performance issue for users who executed this

query.

As demonstrated by the example from Figure 5.10, the detection of bad query plans is largely a

manual effort, requiring the knowledge of an expert developer who understands the different data distribu-

tions expected in installations of software as well as expected data volumes in each table and expected uses.

One primary way of analyzing query plans is to take a trace of all the queries executed by some functionality

and then manually analyze each query plan. This is relatively expensive as the cost of analyzing all queries

executed by a single performance test may take 15 to 30 minutes for an expert developer.

5.3.1.3. Coverage Breadth Through Functional Tests

As previously mentioned, performance tests are often limited to the most highly-used portions of

product functionality and lack product breadth. To gain that product breadth while minimizing engineering

47

Figure 5.10. Sample Index Seek from Missing Index Fault

costs, we seek to use metrics from passing functional regression tests to predict functionality that is more

likely to contain a missing index, which will yield a bad query plan.

The primary metric used in this study is the execution time of the functional regression test. This is

under the assumption that bad query plans will cause functional tests to run slower than other tests without

missing index faults. However, the relationship between test response time and bad query plans is not that

simple. A bad query plan may make a query go from 5 milliseconds to 1500 milliseconds. But the test

executing this query may take 5000 milliseconds total. A 5000 millisecond test with a 1500 bad query

plan is not easily distinguishable from a 5500 millisecond test that does not invoke any bad query plans.

Slow tests do not necessarily mean a bad query plan has been encountered. Further, the test dataset used

by functional regression tests is very small in volume compared to a real customer deployment, as a real

deployment may be many terabytes in size making unit testing unwieldy. To differentiate between tests that

just take longer and tests that actually encounter bad query plans, we focus on the difference in execution

time between base and volume datasets.

48

5.3.1.4. Experiment Approach

In this experiment, we will execute a large number of functional regression tests for the product,

tracking the execution time of all the tests that pass. Only passing tests are evaluated, as a test failure leads

to database cleanup processes and thus is less reliable as a timing. We then order the tests by descending

execution time, expecting the tests with the higher execution time are more likely to have experience bad

query plans due to a missing index.

If this ordering of tests proves reliable as a predictor of missing index faults, then an engineer could

rank manual analysis tasks of the top tests for missing indexes. In this study, we analyze the effectiveness

of the reordered rank through ROC analysis. The ROC curve is a graphical representation of the relative

precision and recall as the number of selected items increases. The details about the experimental process

will be discussed in Section 5.3.2.

5.3.1.5. Ground Truth

In order to evaluate the results of the research, we must first know which functional regression tests

actually encounter bad query plans. As previously mentioned, manual analysis is exceedingly expensive and

would not yield a large dataset of results. To work around this, we utilized fault injection. Fault injection is a

standard technique in this area of research. The technique was originally described by Clark and Pradhan[15]

and is now in common use.

In this experiment, we injected faults by removing an existing index. Before doing that, we first

determined which indexes are used by each query of each test. This can be done in an automated way by

first capturing all the queries that were executed during the functional regression test, then querying the SQL

Server dynamic management views (DMV’s) to retrieve the query plan that was executed for each. DMV’s

are internal data structures that Microsoft SQL Server uses to track server aspects that can be queried by the

database administrator. From this process, we then have a list of all queries executed by each test, as well as

an XML description of the query plan that each test utilized.

Finally, an expert developer with deep product knowledge selected three very important indexes

to remove. The three index removals represent three independent experiment datasets. More could be

performed, but we limited the study to three based on time availability. Because similar results were seen

in all three experiment datasets, we feel confident that the results are generalizable across this particular

application. The indexes removed are on tables with high data volumes in normal installations, which

provide high selectivity and are highly used by queries. The three indexes selected are:

49

1. CustTrans.TransIdIdx [Partition, DataAreaId, InventTransId, InvoiceId, InvoiceDate]

2. PurchLine.SourceDocumentLineIdx [SourceDocumentLine, Partition, DataAreaId]

3. TaxTrans.SourceTableIdSourceRecIdVoucherIdx [Partition, DataAreaId, SourceTableId, SourceRe-

cId, Voucher]

Finally, the query and query plan data were queried to find all tests that contained at least one query

that relies on that index to the level of attributes that provides good selectivity. For instance, any query

plan using CustTrans.TransIdIdx would need to be constrained by at least three fields of the index as any

fewer would not provide enough selectivity to make this a proper index usage. DataAreaId in these indexes

corresponds to a legal entity in the installation, so a customer with a single legal entity but millions of in-

ventory transactions would see no selectivity from this index unless [Partition, DataAreaId, InventTransId]

were all provided. Once all three of these segments are provided, the remaining segments of [InvoiceId,

InvoiceDate] provide little if any additional selectivity.

Following this pattern, PurchLine is useful with a single segment (since SourceDocumentLine is a

unique Int64 value for each row in the table), and TaxTrans is useful after four segments. In TaxTrans, [Par-

tition, DataAreaId] filters to a single company, which is not selective. SourceTableId is also not selective.

Some customers will have all of their tax transactions in a single table, for instance if they are a distribution

company without direct sales. The SourceTableId value is only selective once SourceRecId is added along

with the three prefix segments.

5.3.1.6. Synthetic Volume

Another important aspect to consider when analyzing performance of database applications is the

amount of volume in the tables. As mentioned earlier, most functional tests are executed on a artificially

small dataset. One tool used in performance testing is synthetic volume, where a large number of rows is

added to “important” tables prior to test execution to simulate a more realistic volume in a real installation.

The Microsoft Dynamics AX application contains many thousands of tables, and the relationships between

these tables is extremely complex. So synthetic volume is dummy rows added only to a small number of

important tables. Further, this data is not used by any functional tests. It just expands the number of rows

in the tables so any bad query plans will show up as more degraded than they would have on base volume,

hopefully making them easier to find.

50

5.3.2. Empirical Study

In this study, we seek to understand whether metrics from passing functional regression tests can be

used for fault prediction of non-functional performance faults, specifically missing indexes that yield a bad

query plan. To investigate this research problem, we address the following research questions:

1. RQ1: Does ordering regression tests by execution time effectively predict which tests encounter a bad

query plan?

2. RQ2: Can environment perturbation by the introduction of synthetic volume improve the effectiveness

of that prediction?

3. RQ3: Can the effectiveness of the prediction be further improved by analyzing the differences in

results between baseline and synthetic volume datasets?

5.3.2.1. Object of Analysis

This study is based on a pre-release version of Microsoft Dynamics AX. This is the same product

that was used in the two previous studies, but is a new version currently under development. As part of

that development, the product is undergoing significant architectural change to enable new deployment

topologies, and as such the vast majority of functional and performance tests need to be migrated. In many

cases, the tests are being rewritten during the migration to make them faster, more stable and more targeted.

This provides a unique opportunity to use a set of very reliable and very fast functional tests with good

product breadth to predict performance issues on an otherwise relatively mature product. Specific metrics

for product size cannot be provided as the product is still in development. However, we are able to provide

high level ranges of metrics as discussed below.

The database schema for the product contains over 8,000 individual tables with over 19,000 indexes.

This is an average of just over two indexes per table. Some tables contain more than 20 indexes. The

indexes have been added over multiple versions, often as the result of detecting performance faults in either

performance tests or occasionally even in real customer environments.

5.3.3. Variables and Measures

5.3.3.1. Independent Variables

This study manipulates one independent variable in each of the three independent experiment

datasets. For each experiment dataset, one heuristic is used and compared against the control.

51

1. Ordering tests by descending response time on regular data (Heuristic for RQ1)

2. Ordering tests by descending response time on volume data (Heuristic for RQ2)

3. Ordering tests by descending net difference in response time between regular and volume data (Heuris-

tic for RQ3)

The control technique used is random ordering of tests (control for all RQs), as the research question

is attempting to determine if mining data from test metrics allows for faster detection of bad query plans.

While this may appear overly naive, this is effectively the currently used approach as no ordering of tests is

currently used when searching for missing index faults.

5.3.3.2. Dependent Variables

The dependent variable is the accuracy of the ordering of tests. An ideal ordering would rank all

tests that expose a bad query plan first, while the worst possible ordering would rank them last. A standard

technique of analyzing the accuracy of ranking is the use of an ROC curve. ROC stands for “receiver

operating characteristic”, and is a standard statistical measurement plotting the true positive rate against the

false positive rate. In an experiment such as this evaluating ranking, the ROC curve represents the precision

and recall of the number of bad query plans found as the number of tests analyzed is increased.

From the ROC curve, the AUC or “area under curve” can be computed. As the ranking improves,

the AUC is also increased. The measurement of AUC provides a value between 0 and 1 (with 1 being as

good as possible) that provides a numeric method of determining the benefit gained from an ordering. With

an AUC of 1, this would indicate that all tests that exposed a bad query plan were ranked first. Similarly, an

AUC of 0.5 would be generated by a random ordering of tests.

The use of ROC analysis also provides a standard method of computing the probability that the

difference between curves is due to random chance. Thus, this study seeks to maximize AUC from the ROC

curve using the heuristics specified, and to show the probability of random chance causing the difference is

sufficiently low.

5.3.4. Experimental Process

There are three separate experiment datasets used in this study. This is done by manually removing

one of three indexes, and then running all tests on both base and volume data as shown in Figure 5.11. These

three experiment datasets are independent from each other. The resulting datasets are then ordered based

on the control and heuristics methods explained in the previous section. For each ordering, an ROC curve

52

is generated and the AUC is computed. To evaluate the effectiveness of the heuristics, the ROC curves are

compared with each other to yield both a difference in AUC as well as a p-value.

Figure 5.11 illustrates the overall process used in this study. As shown in the top part of the figure,

the query plan data was captured with all existing indexes intact. Then, as shown in the lower part, one

important index (as decided by an expert developer) was removed and all tests were executed both on base

data and on volume data, capturing the response times of each. The results of this response time were then

compared against the ground truth of which tests encountered a missing index by querying the query and

query plan data. The index was then re-enabled and another index was disabled so the same process could

be repeated.

�������

�	��
��������

�����������

��	�����������

���������

�	��
��

��������	�

��������	���

�	��

��	�����������

�	���������

��	�����������

�	� ������

����

������������

�����	���

�����

���������!�������

�����	��������

��������	���	�"��

��	��������������

!�����������������

�������	#��	��

Figure 5.11. Experimental Process

The first step of the experiment process is determining which tests rely on which indexes. This step

is done by executing the test with all indexes enabled and then querying the Microsoft SQL Server Dynamic

Management Views to determine which indexes were used. A table is then created listing each test and the

set of all indexes it used. An example is shown in Figure 5.12. For example, test T1 executes queries that

rely on indexes 1, 7 and 10.

The next step is to remove an index. In this example, consider a removal of index Idx5 as shown

in Figure 5.12. This means that tests 4, 6 and 7 are missing an index when run, simulating a missing index

fault.

Within each experiment dataset where an index has been removed, the next step is to generate an

ordering of tests. Figure 5.13 illustrates how this is done. The test is run twice with the index removed: first

53

���� �������

�� ����������������	

�
 ����������������������	

� ����������

�� ����� ���
�����������������

�� ����������	

�� ���
������

�� ���������
������

Figure 5.12. Index Usage

on the base data and then again on a synthetic volume dataset. The response times for each are tracked and

used to also generate the net difference in response time and percentage difference in response time. The

net difference is volumetime− basetime and the percentage difference is volumetime/basetime.

This gives four different values for each test. The tests are then ordered by each of the values

individually producing four orderings, shown in Figure 5.13 as BD (base data), VD (volume data), ND (net

difference), and PD (percent difference).

���� ��������	�
��	

���	��

��������	�
��	

������	��

���

�
��������

�������	

�
��������

�� ����� ����� ��	� �
��

�	 ���
� �	�

 		��� 		��

�� 	��

 	��� ��� �
��

�� 	��� ��
 	�		 ����

� ���� ���
� ��	 �
	�

�� �	��� ����	 ����� 	
��

�� �	 ���	 ���
 �
��

���� ������	

�� �� �� ��

�� �� �� �	

�
 �� �	 ��

�� �
 �
 ��

�� �� �� �

� �	 � �

�	 � �� ��

�� �� �� ��

Figure 5.13. Test Ordering

Figure 5.14 illustrates how the ground truth information is applied to the test orderings from Fig-

ure 5.13. The ground truth was determined in the first step when all tests were run with all indexes applied.

By tracing the indexes used, we know which indexes should exist for a given test. When an individual index

is removed for an experiment dataset, Idx5 in this example, we can cross reference this with the tracing

information to determine which tests are now missing an index in that experiment dataset. As shown in

Figure 5.14, tests 4, 6 and 7 are known to have a missing index in this experiment dataset because these tests

exercise index Idx5. These faults are then marked in the test orderings.

54

���� ������	

�� ����� �� ����� 	� �����
� �����

�� �� � � ��

�� � � � �� � �

�� �� � �� � �� �

� � �� �� � �� �

�� �� �� ��

�� �� �� ��

�� � �� � �� ��

Figure 5.14. Fault Detection By Test With Idx5 Removed

From the data shown in Figure 5.14, an ROC curve can be computed. Consider the net difference

(ND) ordering with Idx5 removed. For the first ranked test, investigating this test leads to discovering a

fault, one of the three faults that exist. Therefore, sensitivity (true positive rate) is “discovered-faults/all-

faults”, 1/3, 0.33. Specificity (true negative rate) is 4/4, 1 since all tests that do not have faults were labeled

as not having faults, below the first rank. For the first ranking we get the [1,0.33] point as shown in the

figure.

For the top two rankings, sensitivity is 1/3, 0.33, since one true fault out of the three total was

discovered in the top two ranked tests. Specificity for the second point is 3/4, 0.75, since the second ranked

test was a false positive. So the second point in the ROC figure is [0.75, 0.33]. For the top three rankings,

sensitivity is 2/3, 0.66, and the specificity remains 0.75. So we get point [0.75, 0.66] in the ROC curve.

Graphing sensitivity (true positive rate) vs specificity for all the different rankings generates the ROC curve

shown in Figure 5.15 with an AUC of 0.833.

5.3.5. Data and Analysis

In this section, we present the results of this study as described in the previous section.

5.3.5.1. Overall Results

Table 5.2. AUC by Independent Variable for Each Experiment

Control Base Avg Volume Avg Net Diff
CustTrans 0.500 0.880 0.965 0.993
TaxTrans 0.500 0.882 0.900 0.906
PurchLine 0.500 0.948 0.967 0.988

55

Figure 5.15. Example ROC Curve

Table 5.2 shows the AUC for the control and each heuristic for the three experiment datasets. Be-

cause the control technique is random selection, the AUC for each is 0.500. Higher numbers for AUC are

better.

This data is based on three independent experiment datasets consisting of 950 tests for each. The

950 tests were the first 1000 executed by the test system with 50 removed that failed or showed extremely

high variability between runs. The same tests were used in all three experiment sets, only the removed index

was varied. For each heuristic in each experiment dataset, each test was executed a total of 6 times. The

high and low response time dropped and the remaining 4 times averaged to yield the response time used.

Standard deviation was calculated if the standard deviation was more than 25% of the average response time,

that test was removed from the result set due to excessive variation.

For all experiment datasets the heuristics showed much higher AUC compared to the control. There

were also slight improvements shown moving from base to volume data, and more slight improvements

using the net difference between the two. This provides support for the goal of this study that was to show

metrics obtained from passing test cases can be used in other quality activities. The remainder of this section

will explain in more detail each of the research questions and the associated data.

5.3.5.2. RQ1 Analysis

RQ1 seeks to determine whether or not ordering tests by execution time can improve the prediction

of tests that will invoke a bad query plan. The answer is yes: Ordering by execution time does effectively

predict which tests encounter bad query plans. This can be seen in the first two columns of Table 5.2. The

56

control for this research question is always 0.500, having an AUC of 0.500. The three index removals used

in this study with the first heuristic ranged in AUC from 0.880 to 0.948, showing a large improvement over

the naive baseline.

�����

�����

�����

�����

�����

�����

�����

��	��

��
��

�����

�����

�������� �������� ��������

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

	

������� ������ !

Figure 5.16. Base Data AUC with 95% Confidence Interval

Figure 5.16 illustrates the difference in AUC between the control and the heuristic of ordering by

descending execution time on base data. The 95% DeLong confidence interval is also shown by the vertical

bars on top of the “Base Avg” results. From this result, we can say with high confidence that the heuristic

does improve test ranking for detection of bad query plans.

5.3.5.3. RQ2 Analysis

After showing that the technique shown in RQ1 was effective, we now seek to improve that ranking

by gathering additional metrics. The answer for RQ2 is also yes: Additional metrics beyond response

time on base data do improve predictions. In this case, the heuristic is to order the test cases based on

their descending execution time when executed on a synthetic volume dataset. Because RQ2 is trying to

determine what improvement can be made over the heuristic from RQ1, we are no longer comparing against

random ranking and so raw AUC differences are not sufficient to determine if the technique has improved

predictions. Column three of Table 5.2 shows that AUC has been increased using this heuristic, but we must

determine if the improvement is due to chance or because of an actual improvement.

57

Using a null hypothesis that the difference in AUC is zero between the base average ordering and

the volume average ordering, we find p-values of 5.78 e-10, 0.007 and 0.068 for the CustTrans, TaxTrans,

and PurchLine experiment datasets, respectively. While the p-value for the PurchLine test does not meet

the traditional 95% level, the other two tests clearly show the null hypothesis can be rejected. The differ-

ence in p-value between the tests appears to be primarily due to the difference in the number of positive

values in each dataset. PurchLine has only 8 tests that exercise a bad query plan, while CustTrans has 50.

Comparisons between the ROC curves for order by base average and volume average times are shown in

Figure 5.17.

5.3.5.4. RQ3 Analysis

In RQ3, we seek to determine if more complex metrics can further improve the ranking of test cases.

The answer is yes: More complex metrics calculated based on multiple other metrics do further improve

predictions. The heuristic used here is the net difference in response time between base and volume test

runs. This data is the most complicated to capture, as switching between base and volume data requires

a redeployment of the software. During redeployment, a large percentage of disk space is impacted, thus

minor things like disk fragmentation, remaining disk free space and even various hard drive performance

metrics can have a noticeable impact on test response time. This research question then seeks to determine

if the extra data available in this more complex metric outweighs the implicit randomness introduced by the

increased complexity.

Figure 5.17 shows the overall ROC curves for all three experiment datasets. Sensitivity is the true

positive rate while specificity is the true negative rate. As shown in Table 5.2, the AUC for all three has

increased. Using the null hypothesis that the difference in AUC between ordering by volume average and

net difference is zero, we find p-values of 0.0001, 0.018 and 0.145 for CustTrans, TaxTrans and PurchLine,

respectively. We are unable to reject the null hypothesis for the PurchLine experiment dataset, but the

CustTrans and TaxTrans experiment datasets both conclusively show that more advanced metrics can be

mined to further improve the test case ranking.

The primary difference between these experiment datasets again appears to be due to the difference

in the number of tests that exercise the bad query plans. With only 8 out of 942 positive tests in the PurchLine

experiment dataset, there is not enough difference in the ranking to conclusively prove the results have been

improved.

58

Figure 5.17. ROC Curves for Three Experiments

59

5.3.5.5. Other Metrics

The three metrics presented in this study so far of base response time, volume response time and

net difference are obviously not the only metrics available. They were selected after manual analysis of

numerous metrics that showed these three provided the best results. For example, it is also possible to

calculate the percentage difference between the base average and volume average response times. However,

using this metric significantly decreases the effectiveness of the ranking. This is shown in Figure 5.18. This

and other less effective metrics thus show that the selection of proper metrics for use in ranking should be

carefully considered, as more complex attributes are not necessarily better.

Figure 5.18. ROC Curves for Percent Difference vs Volume Average

5.3.6. Discussion and Implications

In this section, we discuss the implications of the results presented. As previously mentioned, the

motivation for our research was a lack of testing resources to provide adequate non-functional test coverage

across the breadth of the application. We have shown through this study that functional test metrics can be

mined to better prioritize limited resources for performance analysis and performance testing, compared to

a naive baseline of random application.

5.3.6.1. Usefulness of Approach

With this study, we have demonstrated a new technique for locating non-functional faults in soft-

ware. As with any quality process, the usefulness is a factor of the benefits from using the technique, offset

by the costs of employing that technique. In all three research questions, we find that the the majority of

60

tests exposing the missing index faults occur within the first 30% of the tests run when ordered by any of

the heuristics. So given a project with missing indexes such as those used in our experiment, it would be a

useful technique in detecting these faults.

There are a number of caveats to this approach as described below. In order to get these results, the

missing indexes had to be important, had to occur in a table with artificial volume, and the tests had to be

run in a stable environment between versions.

In practice, we have found this technique difficult to use thus far. We attempted to find new, previ-

ously unknown faults with this technique, but were largely unable to for one primary reason. In the product

we used, the only tables that contain synthetic volume are the ones deemed most important, which are also

the same ones that have had extensive manual index analysis performed, and therefore are unlikely to have

missing index faults. This technique would be much more applicable to a database product earlier in its life

cycle before this extensive index analysis had been done. At that time, when more severe missing index

faults exist, we believe that the technique would be much more applicable.

We also believe this technique can be further improved by including many more factors in the

prediction model beyond just response time. Adding metrics to fault prediction models in functional testing

has been shown to be beneficial, so we believe it will be beneficial here as well. The remainder of this

section discusses the specific considerations that must be made when applying this approach in a software

development project.

5.3.6.2. Environmental Purity

One of the primary issues involved in response time measurement is ensuring the test environment

is identical in any comparison. Very minor environmental issues such as a difference in processor speed, a

difference in RAM available, or even a change in virus scan settings can have significant and appreciable

impacts on response time. Thus any response time numbers either must be performed on a highly controlled

environment to ensure repeatability, or must be averaged over a significant number of executions in order to

ensure environmental aspects are averaged out.

For this experiment, we used a single HyperV instance on the same physical hardware for all ex-

periment datasets. As the RAM, hard drive space, processors and other aspects are not changed between

tests, this reduces variability. Further, each test was executed multiple times in a row and the fastest and

slowest results are thrown out leaving only the stable runs in between in the result set. By doing this, most

test response times had a standard deviation of less than 5% of the average response time for that test.

61

Unfortunately, in order to switch experiment datasets, the software needed to be reinstalled between

each run. This involves the re-writing of many gigabytes of data on the hard drive, which does cause

variation in hard drive seek time and other aspects for different records. For this reason, we do still see

variation for the same test across two experiment datasets where bad query plans and backing data were not

changed between the two runs. This is similar to the issues faced in an industrial product where nightly

regression test runs will similarly exhibit random variation. Even with this variation, our results show that

the prioritization based on response time is still effective.

5.3.6.3. SQL Server Specifics

One particular challenge faced when examining the response time of workloads based on SQL

Server is the extremely complex data caching architecture used by SQL Server to optimize disk access. As

data is used, SQL Server moves data pages into RAM memory in very efficient ways that reduce future

physical disk access. Since disk access is orders of magnitude slower than RAM access, this means “warm”

queries that are able to pull data from RAM are often times orders of magnitude faster than “cold” queries

regardless of the goodness of the query plan. This means that the order in which tests are run can have a

significant impact on the observed response times.

To protect against this variation, two solutions were used in these experiment datasets. First and

most simplistically, each test was executed multiple times in a row and the slowest and fastest results were

ignored. This ensures that SQL has a chance to cache any required data pages prior to the execution. Sec-

ondly, the test framework was updated to call DBCC DROPCLEANBUFFERS between each test execution.

DROPCLEANBUFFERS is a special command that tells SQL Server to drop all clean buffers from the

buffer pool. This command is provided to allow simulating test queries on a cold buffer cache without

needing to restart SQL Server between test runs. While this does not guarantee equivalent execution time

between queries, it greatly reduces any impact that cold vs warm buffers have on the results.

The other SQL aspect that has a significant impact on query performance is the available memory

size. Many production servers for large enterprise resource planning products like Microsoft Dynamics AX

would have tens to hundreds of gigabytes of RAM available. In a system like this, the entire contents of

the synthetic dataset can easily be held in RAM. At the same time, a typical customer deployment for an

instance like this would have multiple terabytes of data. This makes it difficult to properly simulate the

required database paging necessary when an extremely large dataset does not fit in RAM and encounters a

bad query plan with a table scan.

62

To work around this issue, we used a configuration setting in SQL Server that allows a maximum

RAM size to be specified. For all experiment datasets, the maximum RAM size was set to 1 gigabyte of

memory. This is far lower than a customer environment would ever have. But it is large enough to still

be functional, while being small enough to exhibit slowness when bad query plans are encountered. In the

synthetic volume dataset used for expansion in this experiment, the top 10 tables each contain approximately

1 gigabyte of data. This forces any bad query plans on these tables to page in and out data.

5.3.6.4. Relative Time

An important aspect of this study is the fact that relative execution time between tests in a given

run is a fairly accurate measure to use for prioritization. Cross-run comparisons were shown to increase the

effectiveness of the prioritization somewhat, but the majority of the benefits compared to a naive baseline

were obtained without the need for cross-run data. This means the issues caused by different environments,

different installations, and different configurations can largely be ignored as the results are still significant

(beyond the 95% threshold) even when only looking at the relative differences in response time.

5.3.6.5. Test Data Volume by Table

When we originally started this study, the plan was to apply the different heuristics and then man-

ually analyze all query plans for the top one hundred or so tests from each heuristic, looking for bad query

plans. Unfortunately, after analyzing approximately 100 tests in this way, we had only found a total of two

bad query plans. We attribute this to the fact that the only around 40 (out of over 8,000 total) tables have

a large number of records in the synthetic volume dataset. Additionally, less than 10% of all the tables in

the system have at least 1,000 records even in the base dataset. In fact, over half of the tables in the system

have three or fewer records in both the base dataset and the synthetic volume dataset. Unfortunately, for

extremely small row counts, the execution time of a bad query plan that scans the table is roughly equivalent

to the execution time of a good query plan that hits an index. In fact, based on statistics SQL will sometimes

(properly) choose a query plan with a table scan if internal statistics indicate the table has a very small

number of records.

What this means is the only tables that have a sizable number of records are also the most important

tables in the system. For these tables, we have already done extensive index optimization and thus very few

missing index bugs are likely to exist. The goal of this research was to provide wide product coverage in

less important areas for which extensive performance testing has not been done, and thus more performance

risk exists.

63

From this study, we understand that synthetic volume is a valuable tool in increasing the detection

of bad query plans. An interesting extension to the research would be to artificially expand volume in the

90% of tables that have little or no existing data in the test datasets. With that synthetic data created, it would

then be interesting to do manual query analysis ordered by execution time to see if previously undiscovered

bad query plans could be diagnosed.

5.3.7. Threats to Validity

The primary threat to validity in this study is the manual selection of indexes to disable. Only three

indexes were chosen due to time constraints, as the repeated runs in multiple configurations made each

experiment dataset take approximately one week. Since we desired to collect all experiment datasets on the

same hardware, this limited the number of indexes we could disable. The indexes that were disabled were

also chosen based on the expert developer knowledge that they were heavily used throughout the system,

and thus were likely to be exposed by multiple tests. This was necessary as shown in the PurchLine results

because if an index is only exercised by a handful of tests the P-value of the experiment becomes too low to

be useful. Were indexes chosen randomly, or were we able to detect “naturally” missing indexes, the results

may be different. Unfortunately it was not possible to construct the experiment in this way.

Another threat is the variation in timing even when run on the same machine. If the running time of

the test is compared across two different runs, we see much larger deviation from the mean than we see in

repeated runs within the same installation. This is discussed earlier in the paper, but it adds to the possibility

that run variation has had an unintended impact on the results. The consistency of the results across multiple

indexes makes this less likely, but it is still a concern.

There is also a concern with the number of tests executed. 942 tests were executed, and were

selected by running the first 1,000 tests detected through code reflection to have a dependency on the test

dataset. 58 of these tests failed on one or more of the environmental deployments and were thus dropped

from all six results sets. More tests exist than just these 1,000, so it would be interesting to see if the same

results hold if the entire regression test suite were run. Unfortunately, this was prohibitively expensive in

these experiment datasets due to the excessive time involved in capturing all query plans from all queries

performed by all tests.

5.3.8. Conclusions

In this research, we have shown that the techniques normally applied in fault prediction and re-

gression testing have further applications beyond functional bugs and have presented a case study using an

64

industrial application. Non-functional fault classes, such as performance bugs, can be more accurately pre-

dicted by mining software metrics and applying similar analysis and ranking techniques. We have discussed

industrial situations in which test ranking is not only economically advantageous, but also necessary based

on project constraints to ensure proper non-functional quality. The major contribution of this research is

the demonstration of a new application for data mining in regression testing, as well as learning about the

considerations and constraints that must be taken into account when applying test ranking for predicting

non-functional faults.

5.4. Test Suite Prioritization Through Telemetry Fingerprinting

The previous studies showed advanced data mining techniques can be applied to the Microsoft

Dynamics AX product to improve regression test prioritization. We further were able to determine which

attributes were the most crucial, and that these same data sources and techniques could be used to find non-

functional faults as well. In this study we take those concepts forward into what we believe is the future of

test case prioritization, customized prioritization based on deep product telemetry.

Traditionally, regression testing techniques have been applied statically, such as by using code churn

to identify areas which most require testing. Two recent trends in software are a move to Software-as-a-

Service (SaaS) and pervasive telemetry. With SaaS, software is provided via the Internet and not installed

individually on a user’s own computer. With this shift in how software is delivered comes a shift in how

software issues are managed. When downtime occurs in traditional on-premises software, front line support

is provided by IT professionals on site, and software fixes from the software vendor are expected to take

some time to be implemented. With SaaS, the software vendor is expected to keep the software running

at much higher levels of reliability than traditional on-premises software. When downtime occurs, service

level agreements (SLAs) mean that the speed at which issues can be fixed can have major economic impacts

on the profitability of a service.

Pervasive telemetry means that much more execution data is now collected than ever before. This

is partially due to the move to SaaS, as execution logs can now be collected over the Internet as opposed to

being written to local log files. It is also due to the decrease in the cost of storage memory; the collection of

many gigabytes of data is now economically feasible for all products.

We feel that these two trends interact to provide a unique new opportunity in the area of test case

prioritization. When an issue is found in SaaS products, we believe that pervasive telemetry from those

65

products can be used to more accurately prioritize test cases based on actual usage. This will increase

quality and at the same time reduce testing and repair times, both of which have positive economic benefits.

Telemetry has been used in the area of software engineering research. For example, Brooks and

Memon used telemetry data to generate test cases for graphical user interfaces (GUIs) [12], and similarly,

Amalfitano et al. [4] used telemetry from rich Internet applications to generate test cases. Elbaum et al. [26]

have attempted to use profiling from deployed systems (telemetry data) in more traditional regression testing

techniques. Their research was limited by the available telemetry at the time. The research described above

has focused on regression testing for full product releases. In contrast, our research seeks to use pervasive

telemetry across all deployments in order to provide custom prioritization of regression tests tailored for a

single deployment when responding to critical situations requiring immediate patches.

In this study, we introduce the concept of telemetry fingerprinting. A telemetry fingerprint is an

algorithm that determines how similar one set of telemetry is to another. If good fingerprinting algorithms

can be identified, then test suites that closely match the telemetry fingerprint are known to be similar to the

usage of that particular service. We hypothesize that algorithms that yield a higher fingerprinting score will

be more effective at identifying test suites that are similar to the actual usage of the service. This allows for

efficiently testing the aspects of the service that will be of most importance to users.

The primary contribution of this research is the introduction of the concept of telemetry fingerprint-

ing for test suite prioritization. We apply this new concept to the same prerelease industrial product we

used in previous studies, Microsoft Dynamics AX. From our empirical study, the technique of fingerprinting

is shown to be effective in prioritizing test cases based on actual product usage. We also discuss issues

encountered while attempting to apply this technique, as well as proposed future avenues of research.

5.4.1. Approach

Much work has been done on the current prerelease version of Microsoft Dynamics AX to improve

regression testing. Thousands of tests that used to take minutes each to execute were rewritten to execute

in mere seconds. Systems and frameworks were fundamentally changed to allow extremely rapid repeated

execution of these tests, allowing for more tests to be run more often than ever before. Rather than running

full regression test suites every few days, now virtually all tests are run on every code check in.

While great strides have been made to optimize regression test execution, the execution of those

tests is still not without cost. Even at around one second per test, executing many tens of thousands of

tests still takes multiple hours. As the software moves to a Software-as-a-Service (SaaS) model, each hour

66

of delay during a site-down situation is now much more costly. When site uptime is measured to four- or

five-nines uptime (99.99% or 99.999%) reliability, each minute of outage has a dramatic impact on monthly

uptime measurements. Reliability of two-nines (99%) allows 7.2 hours of downtime per month. Going to

three-nines (99.9%) allows only 43.8 minutes of downtime. At five-nines (99.999%) only 25.9 seconds of

downtime is allowed per month.

In this environment, where reliability is measured such that minutes and even seconds matter, much

more rigor must be placed in the selection of regression tests to execute when responding to site-down issues.

An extra test suite that takes 5 minutes to run but does not find an issue can add significant cost depending

on service level agreements (SLAs). In this environment, we believe that our novel approach of customizing

regression test suite prioritization by deployment can yield significant cost benefits.

5.4.1.1. Proposed Approach

In this section, we describe the approach used in fingerprinting data processes and tests, and how

that fingerprinting is utilized in test prioritization. This research was done using a prerelease version of

Microsoft Dynamics AX. This version was installed and used in a live environment by multiple deployments.

Telemetry was collected from these installations.

In this research, we use the term telemetry fingerprint or just fingerprint to mean the unique teleme-

try signature from a given usage of the product. In all telemetry sessions, the product and version are both

the same, containing the same code. The difference is in the usage of that product in a given deployment.

For instance, a distribution company will have a very different pattern of usage from a financial services

company, focusing on very different areas of the product. We call these differences in usage fingerprints.

Figure 5.19 shows an example of the raw data. The first column is the session identifier, which iden-

tifies a single user navigating through the product. The second column is the set of distinct user interactions

the user performed that caused a call to the server. The syntax of the interactions is of the format (Form

name):(Control name):(Command name).

Using the example from Figure 5.19, the user performed the following steps:

• The user started on the default dashboard.

• The user clicked on the fixed assets form and launched it.

• While the fixed assets form was loading, a number of form parts loaded.

• The user clicked in the main grid on the fixed assets form.

67

Figure 5.19. Sample Interaction Session

A collection of sessions similar to the one shown in Figure 5.19 exists in telemetry for each de-

ployment. In this paper, we are trying to determine whether the collection of sessions provides a unique

fingerprint for that deployment. To determine if a fingerprint exists, we need a way of determining how

similar two sessions are. A variety of different session similarity functions are discussed later in this paper.

Let I = {i1, i2, · · · , in} denote the set of all possible actions that can be performed by a user, where

n is the number of the total actions. We then define a session S to be an ordered list of actions. A single

session comes from a single user and a single installation of the software product.

S = {s1, s2, · · · , sl}

where sj is an action and l is the length of the session, i.e., sj ∈ I for 1 ≤ j ≥ l.

We define a set of sessions G to be an unordered collection of sessions from the same installation

of the software product.

Gi = {S1, S2, ...Sm}

where Si is a session that belongs to the installation and m is the number of sessions in the installation. The

set of all sessions from all installations is denoted as D and is defined as follows:

D =

l⋃
i=1

Gi

To determine fingerprints, we introduce a similarity function O : D × D → R that measures the

similarity between two sessions.

For sessions in an installation, Gi, we introduce two fingerprint measurements, internal and external.

The internal similarity measures the average pairwise session similarity of all the sessions that belong to the

same installation.

68

Finternal(Gi) =
1

|Gi| × |Gi| − 1

∑
sj∈Gi

∑
sk∈Gi,k 6=j

O(sj , sk)

The external similarity measures the average similarity between the sessions in an installation and

all the sessions in the other installations.

Fexternal(Gi) =
1

|Gi| × |D \Gi|
∑
sj∈Gi

∑
sk∈D\Gi

O(sj , sk)

Finally, we produce a fingerprint score FP . The fingerprint score is the ratio of how similar sessions

from the same installation are compared to sessions from other installations for a given similarity algorithm

a.

FP (Gi) =
Finternal(Gi)

Fexternal(Gi)

In this research, we seek to find session comparison algorithms that will maximize the value of FP

for a dataset D. We hypothesize that similarity functions that yield a high FP value can be used to prioritize

test suites.

Prioritization of test suites from fingerprinting algorithms can be accomplished if test cases emit the

same telemetry events as those captured by interactive users. A test suite Ty yields a similar set of sessions

as to those in G.

Ty = {S1, S2, ...Sn}

The similarity function can be used to calculate the average similarity between sessions in an instal-

lation Gx and the sessions in a test suite, Ty. Out of the available test suites {T1, T2, ...Tn}, we order the

test suites from highest to lowest values of the similarity function P (Gx, Ty).

P (Gx, Ty) =
1

|Gx| × |Ty|
∑

sj∈Gx

∑
sk∈Ty

O(sj , sk)

We hypothesize that test suites Ty with the highest values of P (Gx, Ty) are the most similar to the interac-

tions performed regularly in installation Gx, and therefore should be prioritized first.

69

5.4.1.2. Example

This section provides an example of the computations explained in the previous section. For the

purpose of this example, suppose we have two deployment datasets G1 and G2.

D = G1 ∪G2

For each of these deployment datasets, we have three sessions of data, labeled G1 = {sa, sb, sc} and

G2 = {sd, se, sf}. This is a total of six sessions. Further suppose that the algorithm a being used for

fingerprinting yields the pairwise similarity measurements listed in Table 5.3.

Table 5.3. Example Pairwise Similarities

Session 1 Session 2 Pair-wise Similarity
sa sb 0.786
sa sc 0.627
sa sd 0.423
sa se 0.400
sa sf 0.128
sb sc 0.658
sb sd 0.351
sb se 0.109
sb sf 0.220
sc sd 0.423
sc se 0.726
sc sf 0.101
sd se 0.682
sd sf 0.841
se sf 0.773

In order to compute the Finternal score for G1, we average all the pairwise similarities from G1.

Finternal(G1) =
0.786 + 0.627 + 0.658

3
= 0.690

Similarly, we compute Finternal(G2).

Finternal(G2) =
0.682 + 0.841 + 0.773

3
= 0.765

70

The Fexternal score is computed the same way, only using all pairwise similarities from two different

deployments.

Fexternal(G1) =
0.423 + 0.400 + 0.128 + ...

9

Fexternal(G1) = 0.320

In this case, Fexternal(G2) is also 0.320 since the same nine pairwise similarities exist for G2. The

final fingerprint score for each is the ratio of internal to external score.

FPa(G1) =
0.690

0.320
= 2.156

FPa(G2) =
0.765

0.320
= 2.391

These fingerprint scores are averaged to find the total fingerprinting score for algorithm a.

FPa =
2.156 + 2.391

2
= 2.274

Specific examples of each fingerprinting algorithm used in this research are provided in Section 5.4.2.

5.4.2. Empirical Study

In this study, we seek to determine if a telemetry fingerprinting approach can be used to effectively

prioritize test cases. There are two aspects that must be studied. First, we construct a way of calculating fin-

gerprinting scores and determining their values. Once fingerprinting scores have been computed for various

fingerprinting algorithms, we then determine the effectiveness of the prioritization by each fingerprinting

algorithm. Our hypothesis is that a higher fingerprinting score will lead to a more effective prioritization.

To investigate this hypothesis, we consider the following three research questions.

• RQ1: Can stable high fingerprinting scores be computed for different algorithms?

• RQ2: Can fingerprinting algorithms produce an effective prioritization of test suites?

• RQ3: Are high fingerprinting scores positively correlated with highly effective test suite prioritiza-

tions?

When evaluating RQ1, the primary concern is the ratio of internal to external scores (the overall

fingerprinting score), because high-scoring algorithms must exist for this research to be applicable. A ran-

71

dom scoring would on average yield a fingerprint score of 1, so the higher the fingerprint score, the more

effective the algorithm.

In addition to the overall score, stability is also important. In order to be effectively employed in pri-

oritization, those fingerprinting scores must be stable with little variability when the dataset is randomized.

If the scores are not stable, then application of that algorithm in prioritization will have high randomness.

Similar to RQ1, in RQ2, we seek a stable prioritization effectiveness within a fingerprinting algo-

rithm. If one technique always provides an effective prioritization while another one does not, then we

can identify successful fingerprinting algorithms while discounting unsuccessful ones. The fingerprinting

algorithm is then used to prioritize test suites that yield the highest fingerprint score for a given software

installation.

Finally, in RQ3, we examine the core of our hypothesis. Algorithms that produce a high fingerprint-

ing score are hypothesized to be highly discriminating in identifying workload similarities, so they should

be effective in prioritizing test suites. We therefore expect a highly positive correlation where high average

fingerprinting scores yield a high average prioritization effectiveness.

5.4.2.1. Object of Analysis

For this research, we used telemetry from a prerelease version of the software product Microsoft

Dynamics AX. The newest version of this software product is deployed in a Software-as-a-Service (SaaS)

model. This means that the software is hosted on servers owned by Microsoft Azure, and the deployment

and management of the service is handled by Microsoft or other service providers.

As part of the monitoring of the software service to ensure availability, a standard set of telemetry

events is collected from the running service. One such event is the UserInteractionMarker event, which

indicates an action performed by a user. While the specifics of the action are not directly available for

analysis due to privacy concerns, a hashed value for each interaction is maintained. This means that unique

patterns of interaction with the application can be identified even if there is no way of determining what

those specific interactions were.

In this study, we utilized telemetry streams from four prerelease software deployments. Since we

are working closely with these four companies to validate the prerelease software version, we were able to

obtain more detailed telemetry than would otherwise be available to us. We will refer to these deployments

as “Installation A” through “Installation D”. Additionally, we used telemetry streams from two “bug bash”

72

events, where approximately fifty engineers from Microsoft used the software as a customer would over the

course of a testing event.

Table 5.4 describes the specific datasets. As described in Section 5.4.1, a session is an ordered

set of actions performed by a user. We do not have access to user information, so some users may have

performed only one session while other users may have performed many sessions. This data was gathered

from a fourteen-day period in November 2015.

Table 5.4. Session Information by Dataset

Dataset Number of Sessions Average Session Length
Installation A 864 24
Installation B 58 166
Installation C 931 27
Installation D 1739 40
Bug Bash 1 55 132
Bug Bash 2 245 23

5.4.3. Variables and Measures

5.4.3.1. Independent Variables

This study manipulates one independent variable, the fingerprinting algorithm. The fingerprinting

algorithm is simply a function that returns a score between zero and one, given two sets of sessions. A score

of zero indicates no similarity between the sets of sessions. Two random uncorrelated sets of sessions ideally

will return a fingerprinting score of zero. A score of one indicates the highest correlation between the sets

of sessions. Ideally, two sets of sessions from the same deployment will return a fingerprinting score of one.

In this study, we used five fingerprinting algorithms:

• By Length: A measure of the average ratio of short session length to long session length.

• By Form Match: A measure of the ratio of forms seen in both sessions to forms only seen in one of

the sessions.

• By Action Match: A measure of the ratio of actions seen in both sessions to actions only seen in one

of the sessions.

• By Markov Probability: The probability of seeing one set of sessions computed via Markov chains

with a correction from the other set of sessions.

73

• By Count of E: A ratio of the number of occurrences of the letter “E” in the action names from one

set of sessions to the other set of sessions.

5.4.3.2. Dependent Variables

There are two dependent variables in this study. For RQ1, we compute the fingerprinting score. We

determine both the average fingerprinting score and the standard deviation of those scores across repeated

random splitting of the data to evaluate the stability of the score. The mean of the scores is compared across

algorithms to determine the discriminatory abilities of the algorithm.

For RQ2, the dependent variable is the area under curve (AUC) for the receiver operating charac-

teristic (ROC) curve for prioritization by fingerprinting score. Again, the standard deviation and mean are

examined to determine the stability and effectiveness of each algorithm.

RQ3 relies on these two dependent variables to see if a highly positive correlation exists between

the first (fingerprinting score) and the second (AUC).

5.4.4. Experimental Process

�������������

	
�

����

���������

	�
�
�

����

���������

	
��
�
�

��������

�
��������

	�
�
�

��������

�������

��	�
�
�

��������

�
��������

	�
�
�

Figure 5.20. Experiment Process for RQ1

Figure 5.20 shows the process used for determining fingerprint scores for each similarity algorithm

a. The sessions for each installation Gi are used to compute the internal and external fingerprint scores,

from which the final FPi for that installation can be computed. The fingerprint scores are then averaged to

find the total fingerprinting score FPa.

Once the fingerprint scores are known, we then wish to see if fingerprinting scores can be used

to accurately prioritize test cases. Figure 5.21 shows how this process is performed. All combinations of

Gx and Ty are compared for each company. The test suites T for each company are then prioritized by

descending similarity score.

74

To obtain each test suite Ti, 20 percent of the sessions from Gx were selected as tests, then randomly

grouped into five test suites each. The result is that a random selection of roughly 4 percent of the sessions

from each installation were labeled as tests. The experiment was repeated thirty times to ensure that the

random selection did not skew the results.

�������������

	
�

����

���������

	�
�
�

�����

���������

	�
�
�

��������

�	�
�
���

�
��

�����������

������

�����������

����	�
�
���

�
��

	��������

�������������

 ! �"

#! ��

$! %

�!����&

���������	
��

��	��

Figure 5.21. Experiment Process for RQ2

We then computed the receiver operating characteristic (ROC) curve for this set of tests. A true

positive is a case in which a test came from the same original deployment dataset. A true negative is a case

in which the test came from a different deployment dataset. The area under curve (AUC) for the ROC curve

was then computed.

AUC is a good measurement of the performance of the prioritization, as it gives a score from zero to

one. One represents a perfect ordering, in which all the tests from the deployment dataset were prioritized

first. Zero is the worst possible ordering. A score of 0.5 represents a random ordering of tests.

A session comparison algorithm that provides a high FP score is theorized to also have a high

AUC when prioritizing tests. Similarly, a lower FP score should yield a lower AUC, and therefore a worse

prioritization.

5.4.4.1. Fingerprinting Algorithms

In this section, we describe the fingerprinting algorithms in detail using examples. In these exam-

ples, we will use the sample sessions shown in Figure 5.22.

In this example, session one shows a user starting from the main dashboard, launching the sales

order form, switching rows, filling in a field, then switching rows again. Similarly, session two shows a user

starting from the dashboard, going to the fixed assets form, opening the depreciation dialog, and clicking

“ok”. Session three starts from the dashboard, opens the purchase order form, and confirms a purchase

order. Session four again starts from the dashboard and opens the sales order form, but this time closes the

enhanced preview and then switches rows twice.

75

�����������	�

������������	��

������������	��

�������������������������

��������������������������

�������������������������

�������������	��

������������	��

����������������������	�����

�����������	�����!�" �����	�����

�����������	�

#������������	��

$����������	��

$�����������	%��������

&������������	��

������������	��

�����������'	�	���$��(���������

�������������������������

�������������������������

Figure 5.22. Examples of Session Data

5.4.4.2. By length

Fingerprinting by length is done by taking the length of the shorter session and dividing by the length

of the longer session. This value is averaged across all combinations in the two sets. So for this example,

session three is length 3 and session one is length 5, giving a ratio of 3/5 = 0.6. Sessions two and three

yield a ratio of 3/4 = 0.75. Sessions one and four yield 5/5 = 1. Sessions two and four yield 4/5 = 0.8.

Averaging across all four combinations gives a final fingerprint score of (0.6 + 0.75 + 1 + 0.8)/4 = 0.788.

5.4.4.3. By form match

Form match is the ratio of the number of times each form from the small session exists in the big

session. Using Figure 5.22 as an example, the length of session three is shorter than the length of session

one. The first form in session three is the Dashboard, which does exist in session one. The second is

PurchTable, which does not exist in session one. The third is again PurchTable, which does not exist in

session one. So the overall score for this is (1 + 0 + 0)/3 = 0.333.

Using the same technique for sessions one/four, two/three, and two/four, we get scores of 1, 0.333,

and 0.25, respectively. This yields an overall fingerprinting score of (0.333+1+0.333+0.25)/4 = 0.479.

5.4.4.4. By action match

Action match scoring is nearly identical to form match, only the full action is compared as opposed

to just the form name. When comparing sessions one and four by form match we compute a score of 1,

but action match only scores 0.8 because the SalesTable: ItemId:SetValue action is not found in session

four. Completing this example, the scores for combinations one/three, one/four, two/three, and two/four are

0.333, 0.8, 0.333, and 0.25, respectively, for a total score of (0.333 + 0.8 + 0.333 + 0.25)/4 = 0.429.

76

5.4.4.5. By Markov chain

The first step in computing the Markov chain probability is to generate a matrix of how many times

each navigation was observed in the base sessions. This matrix serves as the base emission matrix for the

Markov chains. Figure 5.23 shows this initial matrix.

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

	

�

�

�

�

�

���������	
�� � �

����������	
�� �

����������	����	�������� �

����������	
��
�	������� �

���������	
�� �

���������	�����������	����� �

�����������������	�� ���	�����

Figure 5.23. Example Initial Emission Matrix

A correction must be made to account for transitions that do not exist in the base sessions but do

exist in the test sessions. For example, the navigation from the Dashboard to PurchTable does not exist at all

in the base sessions, nor does the navigation to SalesTable:EnhancedPreview:Close. So without modifying

the emission matrix, the resulting probability would almost always be zero.

To account for these missing navigations, we apply a correction. This is illustrated in Figure 5.24.

A small value is added to the cell for the Dashboard:Init to PurchTable:Init navigation to avoid yielding a

zero probability. To avoid impacting the existing navigation ratios, that same value of 0.1 is also added to

the two other navigations. This same process is used for all missing navigations.

Once all necessary corrections have been made to the emission matrix, a probability can then be

computed. The probability of seeing session three given the emission matrix is the probability of each

navigation multiplied together. The probability of the Dashboard:Init to PurchTable:Init navigation is

0.1/(1.1 + 1.1 + 0.1) = 0.0435. The probability of PurchTable:Init to PurchTable:Confirm:Click is

77

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

!

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

"

�

�

�

�

�

�

�

�

�

#

�

�

�

	

�

�

�

�

�

���������	
�� ��� ��� ���

����������	
�� ��� ���

����������	����	�������� ��� ���

����������	
��
�	������� �

���������	
�� �

���������	�����������	����� �

���������������� 	!�"���	�����

#���������	
�� ���

#���������	���$���	�����

����������	%�������#��&���	����� ���

Figure 5.24. Example Emission Matrix with Corrections

0.1/0.1 = 1. So the total probability of seeing session three given the emission matrix is 0.0435 ∗ 1 =

0.0435.

The same technique is used to compute the probability of session four.

(1.1/(1.1 + 1.1 + .1)) ∗ (.1/(1.1 + .1)) ∗ (.1/.1) ∗ (.1/(1.1 + .1))

= 0.478 ∗ 0.083 ∗ 1 ∗ 0.083

= 0.00302

The average fingerprint score for these sets of sessions is therefore (0.0435+0.00302)/2 = 0.0233.

Note that the Markov chain scores are very small compared to other scores. But since both the internal and

external scores are similarly small, the resulting fingerprint ratio is still directly comparable with other

techniques.

78

5.4.4.6. By E count

The last technique is arguably very naı̈ve, but is included to show the power of this fingerprinting

approach. In this technique, the ratios of the number of occurrences of the letter E from one session to

another session are compared. In session one, the letter E occurs fourteen times (twice in SalesTable:Init,

four times in SalesTable:Grid:SelectRow and so on). It occurs eight times in session two, twice in session

three, and seventeen times in session four.

The ratio of smaller to larger count in each comparison of one/three, one/four, two/three, and

two/four yields a fingerprint score of:

((2/14) + (14/17) + (2/8) + (8/17))/4 = 0.422

While this technique may appear somewhat random, note that the number of times the letter E

occurs in a given session is somewhat related to which forms are in use in that session. SalesTable has two,

while PurchTable only has one. This means that even a silly technique like counting letters will encode

some information about whether or not the same forms are being used in two sessions.

5.4.5. Data and Analysis

In this section, we present the results of this study as described in the previous sections. As shown

in Tables 5.5 and 5.6, the standard deviation for both the fingerprinting score (Average FP) and the area

under curve for the receiver operating characteristic curve (Average AUC) demonstrate that the results had

little relative variance in repeated experiments with different random samplings.

From these results, we can see that the form name and action name fingerprinting methods were

clearly superior to the others. Recall that the fingerprinting score is a ratio of internal similarity to external

similarity, meaning these methods showed that sessions from the same dataset were seven times more similar

than sessions from different data sets.

This high measure of similarity translated well to the AUC measure when the test sessions were

prioritized by fingerprinting score. In the case of both form and action name algorithms, the resulting

prioritization was nearly perfect.

79

5.4.5.1. RQ1 Analysis

RQ1 seeks to find algorithms for which there is a high internal to external ratio, yielding a high

fingerprinting score. A purely random algorithm with no measure of similarity between sessions would

yield a fingerprinting score (ratio) averaging 1 across repeated experiments. There is an upper bound on

fingerprinting score as well, since not all sessions from the same deployment are identical. Theoretically, the

upper bound approaches infinity as internal scores approach 1 and external scores approach 0. Pragmatically,

however, this is not possible, unless internal sessions are nearly identical and external sessions are very

different. In practice, since customer deployments are all using the same software, there will be an upper

limit on any fingerprinting score. We do not have a quantification of that limit at this time.

Table 5.5. Fingerprint Scores by Algorithm

Fingerprint Method Avg FP Std Dev
By Session Length 1.131 0.021
By E Count 1.105 0.017
By Markov Chains 2.391 0.887
By Form Name 7.257 0.358
By Action Name 9.336 0.570

To determine the fingerprint scores, we compared 80 percent of the sessions from each installation

with 80 percent of the scores from each other installation. Using the previously described techniques to

compute internal and external scores, we determined the final average fingerprint. This experiment was

performed thirty times and averaged to ensure that the scores remained stable and were not negatively

impacted by anomalies in the data.

As shown in Table 5.5, all algorithms had a fingerprinting score greater than 1, meaning that all were

capable of providing useful information on whether two sessions came from the same deployment. Form

name and action name were clearly superior. We had expected Markov chains to be better than the data

shows, however. In looking at specific examples, it appears that the high occurrence of missing navigations

from the test sets led to greater variability in the scores and therefore decreased fingerprinting abilities. We

attempted to work around this by changing the penalty for missing navigations, but for this dataset a 0.1

penalty yielded the best results.

It is also interesting to note that while session length and E count are seemingly meaningless mea-

sures, they did provide some benefit in session identification. We believe this is because they do encode

80

some information about how similar two actions were. For instance, manually creating and posting a large

business document may take thousands of steps, while approving an auto-generated invoice may take fewer

than twenty steps. So, while the fingerprint score was not much above the minimum value of 1, we can see

from the standard deviation that it was still better than average.

Finally, RQ1 examines the stability of the fingerprinting scores. We see from the standard deviations

in Table 5.5 that the highest variability was seen with the Markov chains algorithm. Better stability was seen

in the algorithms using form and action names.

The answer to RQ1 is yes, high-scoring yet stable fingerprint algorithms can be found that distin-

guish between internal and external sessions.

5.4.5.2. RQ2 Analysis

RQ2 attempts to apply the fingerprinting algorithms in order to prioritize tests (for our case, ran-

domly selected sessions that are treated as tests). A perfect prioritization would order sessions from the

same dataset first, followed by sessions from all other datasets. This would yield an AUC for the ROC curve

of 1.0. A purely random ordering of sessions on the other hand would yield an AUC on average of 0.5. So

any ordering with an AUC above 0.5 is a better prioritization than random ordering. Random ordering is

commonly used in industry. As the AUC approaches 1.0, the prioritization increases in effectiveness.

Similar to RQ1, this was done as thirty separate experiments to avoid any impact of data anomalies.

Each installation was divided randomly into 80 percent of sessions marked as user sessions and 20 percent

marked as test sessions.

Table 5.6. AUC by Fingerprint Method

Fingerprint Method Avg AUC Std Dev
By Session Length 0.574 0.043
By E Count 0.597 0.039
By Markov Chains 0.655 0.049
By Form Name 0.972 0.011
By Action Name 0.973 0.012

Similar to the fingerprinting scores, Table 5.6 shows that order by form name and action name

yield a highly effective prioritization. This means that if we apply this technique to prioritize tests based on

fingerprinting, we would run the tests directly associated with that deployment customer’s business practices

ahead of all other tests.

81

Using Markov chains provided some benefit in prioritization, but not nearly as much as using form

and action names. The session length and E count techniques, while better than average prioritizations, were

not all that useful. As expected, these techniques would not be very useful in a production environment, as

we would expect that even manual prioritization would greatly outperform them.

The answer to RQ2 is yes, fingerprinting algorithms can be used to successfully prioritize test suites.

5.4.5.3. RQ3 Analysis

RQ3 examines the core of our hypothesis, that finding algorithms with a high fingerprinting score

will enable effective prioritization of test suites tailored to a given software installation. We evaluate this

research question by computing the Spearman Rank correlation coefficient [74] between the fingerprint

score and the AUC of the ROC curve for each fingerprinting method and installation dataset. This yields a

value between -1 and 1. Uncorrelated values will on average have a correlation coefficient of 0, while the

value approaches -1 or 1 as correlation increases.

�

���

���

���

���

���

���

��	

��

���

�

��� � � �
 �� �� ��

�

�

�

�����������	
����

Figure 5.25. AUC by Fingerprinting Score

Computing the value across these five methods and six data sets as shown in Figure 5.25, we find

a Spearman Rank correlation coefficient of 0.884, meaning that the fingerprinting score for an algorithm is

highly correlated to the prioritization ability of that algorithm.

The answer to RQ3 is yes, having a high fingerprinting score means that an algorithm is more

suitable to effective test suite prioritization.

82

5.4.6. Discussion and Implications

In this section, we discuss the implications of these results, as well as some of the considerations

that must be made in attempting to apply the techniques.

5.4.6.1. Application of Techniques

The first obvious question arising from this research is how these results can be applied in practice.

For this discussion, we will use Microsoft Dynamics AX as a canonical example.

Different installations of the software product will exhibit varying usage characteristics. For in-

stance, a manufacturing company may heavily use shop floor control functionality, while a financial ser-

vices company would not use it at all. That means that regressions in the shop floor control module would

have little to no impact on the financial services company, while they would cause significant harm to the

manufacturing company.

To apply this technique, we try to determine a usage pattern from an installation when testing critical

one-off software fixes. Any given installation of the Microsoft Dynamics AX product in the cloud may span

multiple servers, but it is marked by a single “tenant ID,” which is the unique identifier for that installation.

The source tenant is listed on each telemetry event, allowing a custom test prioritization to be created for

each installation.

In a business-down critical situation, the risk of a change introducing a new bug must be weighed

against the cost of remaining down, which in many cases may be tens to hundreds of thousands of dollars

per hour. In these situations it may make sense to perform preliminary testing, fix the service even though

regression testing is only partially complete, then complete the remainder of testing and analysis once the

service is back up.

To do this, fingerprinting algorithms that have been shown to produce high fingerprinting scores for

this product’s telemetry stream can be used to quickly prioritize regression test suites based on their known

telemetry stream. Those test suites with the highest resulting fingerprinting scores would be prioritized first,

thereby reducing overall risk to that company’s operations, since the tests match how that company actually

uses the software on a daily basis.

5.4.6.2. Specialization of Workloads

Fingerprinting is easiest when there are very specialized aspects to a telemetry stream that make

identification of similar sessions obvious. This is the case with two of the datasets examined in this study.

83

The company described as “Installation C” in Table 5.4 used the Microsoft Dynamics AX product as a

platform and built a completely custom application on top of it. That means that the forms seen in each

session never occurred in any sessions from other datasets. This makes the measures by form count and

action count highly selective.

Similarly, the company described as “Installation A” only used a small portion of the product, a

single module. So while these forms did occur in other datasets, they were a small subset of the forms seen

in those datasets, while they made up a majority of the forms for this company’s sessions. While this may

seem to discount the validity of this research at first, in practice this is how many companies use this product.

And if they are only using one of the many modules, a prioritization that extensively tests that module first

is valuable.

Because only a small number of datasets were available at the time of this research, we would like

to examine additional datasets in the future. Markov chains were not nearly as useful as simple form and

action name matching, but this was largely due to the high specialization of workloads. We believe that in

workloads performing different business processes using the same forms, techniques such as Markov chain

analysis would become much better than form and action name matching.

Because variation between datasets may significantly impact the effectiveness of fingerprinting tech-

niques on prioritization, it is important to be able to determine which will be most effective for a given

product. As we have shown through RQ3, the fingerprinting scores based on existing data can be computed

prior to doing prioritization. Those fingerprinting scores are highly accurate in predicting which algorithm

should best be used in prioritization.

5.4.6.3. Test Suite Size

When we first performed this research, we found much higher Markov chain fingerprint scores,

sometimes close to 20 or 25. But at the same time the AUC for the Markov chains was very poor, closer to

0.550. After analyzing specific instances, we determined that this was due to the high penalty for missing

navigations in a given test session. Two or three missing navigations would yield a minuscule fingerprint

score, even in cases where the rest of the session was clearly similar to the base sessions. This caused some

test sessions to be artificially prioritized last, leading to very low AUC scores.

To work around this issue, we grouped individual test sessions into suites of ten tests. The result

was that a few missing navigations in an individual test would not cause as much harm, as the other highly

similar tests increased the prioritization.

84

This is similar to what occurs in practice. Tests in this product are already grouped by area of focus

into test suites. Those suites are the smallest granularity at which test scheduling can be performed anyway.

Thus, the technique of test case grouping by suite mirrors how product development works.

5.4.7. Threats to Validity

The primary threat to validity in this study is the relatively small number of datasets available. Only

four came from real customer usage, with the other two coming from internal “bug bash” sessions performed

by the manufacturer of the product. The data available for each was also relatively small, as these customers

had only been live on the software for a short period of time when this research was performed. It is possible

that the usage of the software may change over time. If this is the case, a windowed approach to the data

may be necessary to maintain accuracy, as was shown by Anderson et al. [6].

Another threat is the reliance of this research on the ability to use actual form and action names.

These values were available in telemetry from the prerelease version of the software, but in a released

product they will likely be hashed to avoid storing any private or identifiable information. Hashing form

names would make algorithms such as the E count technique that rely on the specific names of forms and

actions not possible. Other techniques such as form name and action name matching would still be possible,

as the hashed values can be checked for equivalence.

A major risk to validity is the way in which the ground truth for prioritization capability was mea-

sured. We took random sessions from production data and labeled them as test sessions. Test sessions do

emit the same telemetry stream as production data. But there may be subtle differences in telemetry when

testing the system to telemetry in real environments that would change the measure of an ideal prioritization.

Unfortunately, there is no true ground truth that can be used in this case. Even if manual prioritization or

prioritization by requirements specifications were to be used, past research has shown that these measures

are not perfect either [1, 8, 30]. For this reason, we think that treating production sessions as analogous to

test sessions is the most accurate measure available.

5.4.8. Conclusions

In this study, we investigated whether the use of telemetry can improve test case prioritization. The

empirical results with an industrial application have shown that fingerprinting algorithms based on usage

telemetry can be effective in test case prioritization. Further, our results have shown that these same algo-

rithms can be employed to prioritize test cases to tailor test execution to how a given software installation

is being used. Finally, the results have shown that higher fingerprinting scores are more effective in priori-

85

tizing tests, thereby allowing evaluation and selection of fingerprinting methods prior to applying them in a

customer-down critical situation.

We believe that the proposed techniques are a promising way of applying traditional prioritization

techniques in a new software world of Software-as-a-Service in which telemetry is pervasive and downtime

is unacceptable. If software testing can be custom-fit to the usage in a particular installation, downtime costs

can be reduced while quality is retained. We also believe that this will become increasingly important as

software velocity continues to increase.

86

6. GUIDANCE TO PRACTIONERS AND RESEARCHERS

In this chapter, we discuss guidance to practitioners and researchers based on the findings from this

dissertation. The guidance is based both on the state of the art as determined through the literature survey,

and on the findings from the empirical studies we performed. Following this guidance will help practitioners

and researchers more effectively employ and study regression testing techniques.

6.1. Data Sources

First and most importantly, the data sources selected have greater influence on the outcomes of

regression testing techniques than other attributes. Studies have shown that measures that are more capable

of distinguishing among tests are more effective. For example, using code coverage as a data source is much

more effective when the code coverage levels vary widely among tests. When the coverage levels are very

similar, the effectiveness of the techniques suffers greatly.

Second, when examining data sources, it is advised to be aware that a strong false signal from one

data source can easily overwhelm other signals, thereby degrading the benefits of applying the techniques.

Examples include false failures due to “flaky tests” as described by Anderson et al. [7]. Sometimes these

false signals can be cleaned from the data as demonstrated by Herzig et al. [41] But the existence and levels

of false signals must be considered when identifying data sources.

6.2. Regression Testing Techniques

As discussed earlier, many studies have shown that relatively simple techniques can improve the

effectiveness of regression testing techniques. For example, in the case of test case reduction, when coverage

is used as a data source, multiple studies have shown that greedy algorithms (e.g., selecting test cases by the

number of additional blocks they cover) are generally the most effective. Similarly in prioritization, simply

ordering by tests with the highest levels of code coverage first yields good results. But this varies somewhat

depending on the programs being used for the experiment or the cost of applying the techniques. The results

obtained from these simple methods have been repeatedly shown to be nearly as effective as more complex

techniques.

The one primary case where more advanced techniques are required is when an explicit constraint

must be met, such as ensuring that the test run time is a specific duration, or ensuring coverage levels are

above a specific percentage. For example, if all tests must execute in less than one hour, then a simple

87

ordering by code coverage is less successful than a more advanced linear programming solution that opti-

mizes multiple variables at the same time. These constraint problems lend themselves well to the use of

linear programming as an optimization technique due to its ability to easily encode the constraints within

the problem.

Advanced data mining techniques such as classification, genetic algorithms, and others have been

shown to be slightly more effective than simple techniques. However, the increase in effectiveness is very

small, and empirical studies indicate that, typically, the cost of employing these techniques (i.e., implemen-

tation, data cleansing, model training, and selection) tends to be high. This means that in most cases the

benefits of moving to a more advanced regression testing technique do not outweigh the costs.

There is one situation in which these more advanced techniques are advantageous. As previously

discussed, often there is no way of knowing ahead of time which data sources should be considered for a

specific project. If historical data is available to learn a classification model, this technique can be used to

identify which data sources are effective for a project. Care must be exercised when using this approach

because as previously mentioned, different project phases will correlate with different performance charac-

teristics of data sources. This means that the training data used in classification and other machine learning

techniques should ideally come from a similar development phase of a similar project.

6.3. Project Attributes

A variety of project attributes make a project more likely to exhibit good results for regression

testing techniques. One attribute discussed in multiple research papers is the size of the program. Across

various techniques, it was often seen that performance breaks down for extremely small programs, such as

those under five hundred lines of code. This can be explained because for extremely small programs, most

tests exercise almost all code in the program. In most cases, a program must be large enough where different

tests execute different areas of functionality in order for regression testing techniques to be effective.

As discussed in the data sources section, the accuracy of the data source is also important. An

obvious issue exists when tests exhibit false failures due to environmental instability. Some studies have

also called out issues with accuracy around items like coverage data, in which obtaining full code coverage

data from test runs is so costly that it is only done once in a while. This means that coverage data may not

be accurate, particularly in the areas of higher churn, leading to a decrease in the effectiveness of regression

testing techniques.

88

Beyond the global aspects of a project, such as its size or environmental stability, the current phase

of a project must also be considered. Most of the literature we surveyed either considers empirical evalu-

ations of regression testing techniques based on an artificial set of changes and/or bugs, or considers only

changes between versions of a product. In many industrial applications, test suites are run many times

within a single version of the software. A project relying on a traditional waterfall development process

will exhibit significantly different results from different regression testing techniques at different project

points. For instance, during the planning phase, code churn is minor. During the coding phase, both churn

and architectural impacts are high. During the testing phase, churn may remain high, while the size and

architectural impact of changes decrease. Considering the previous guidance with respect to selecting data

sources with high variation, this may mean that churn is a better data source during the development phase

when software code changes are more often associated with differences in functionality compared to during

the planning phase when there is less variation between tests based on churn.

6.4. Guidance to Practitioners

From this survey, it appears that most of the benefits of test selection, reduction, and prioritization

are gained from the removal of less important tests, not from discrimination between equally important tests.

This is why doing something is usually better than doing nothing, even if naı̈ve data sources and techniques

are used. The implication to industry is that test selection, reduction, and prioritization can be effective

techniques, but they should not be overemphasized. Based on the literature surveyed, we recommend the

following steps to successfully employ the techniques of test selection, reduction, and prioritization.

• Start by determining which data sources are available in a given project. Common sources are churn

information (from source control), coverage data, and bug information.

• Exclude data sources that may be misleading. For instance, if a high percentage of test results are

known to be flaky, exclude historical test results as a data source.

• From these data sources, select data sources that have the highest variation between tests are the

easiest to collect and maintain.

• Determine the constraints of the environment in which the tests will execute. For instance, take into

account maximum run time or minimum required code coverage levels.

89

• Determine the attributes to focus on. This will often be coverage level but may also include identifi-

cation of test failures or enhancement of bug detection.

• Build up a simple heuristic model based on the data sources, constraints, and attributes. Simple

techniques will usually be the most effective when we account for the implementation cost. Linear

programming can be used to encode constraints.

• If the relationships among variables are not obvious and historical data is available, consider learning

a classification model to determine which data sources and heuristics yield the best results.

The research papers described in the previous section have shown that these steps will provide the

most benefit at the least cost. Improving the effectiveness of regression testing techniques further will add

greater cost, and will require attempting a wide range of expensive techniques on a wide range of data

sources to determine which technique works the best for a specific project during a specific phase. Also note

that the effectiveness of the data sources and techniques will also vary over the project life cycle.

6.5. Guidance to Researchers

The vast majority of research in the areas of test selection, reduction, and prioritization has used

naı̈ve baselines of test-all or random approaches. As each technique shows widely varying effectiveness

across applications, direct comparisons with other techniques have generally been avoided. This leaves

practitioners to try a variety of data sources and techniques on their own to find out what works for them.

Future research in regression testing techniques would better serve practitioners by focusing more heavily

on when a given data source or technique will prove more effective than other data sources or techniques.

This can be accomplished by determining why a given data source or technique is effective in the first place.

For example, if a technique detects and removes test cases that are largely redundant, then that technique

will be most effective in a project with a high occurrence of redundant test cases, while being less effective

in a project with low redundancy. By providing this deeper level of understanding, industrial practitioners

will be able to more easily select and apply the techniques described in the research.

90

7. CONCLUSIONS AND FUTURE WORK

In this dissertation, we have performed the following steps in pursuit of our thesis.

• We developed a conceptual framework for understanding and evaluating regression testing techniques

• We have surveyed existing literature to understand the current state of the art in regression testing

techniques.

• We have performed empirical studies to show that advanced data mining together with regression

testing techniques are applicable to the Microsoft Dynamics AX product.

• We have extended traditional regression testing techniques to novel applications within the Microsoft

Dynamics AX product.

• We have developed customized regression testing techniques based on the specific context of the

Microsoft Dynamics AX and shown empirically that they are effective.

7.1. Merit and Impact of This Research

This research provides two primary benefits. First, it provides practitioners, such as a Microsoft

Dynamics AX team, the first comprehensive understanding of how to choose and apply advanced data min-

ing and regression testing techniques based on their unique product context. This knowledge will enable

industrial applications to more effectively use these techniques and thereby improve economic benefits.

Second, this dissertation helps future researchers to better understand why and when various data

sources and approaches will be more effective in applying regression testing techniques. This will hopefully

provide more effective future research in this important area of study.

7.2. Future Directions

Similar to the merit and impact of this research, there are two primary future directions we will

pursue. For the industrial application Microsoft Dynamics AX, we will continue working to implement and

enhance regression testing techniques to improve our quality activities. Findings from this dissertation will

help improve regression testing processes with that application.

From a research perspective, we wish to further investigate the impact of context on other industrial

and open source products. With a more concrete understanding of how the contextual attributes of these

91

programs impact the effectiveness of regression testing techniques, we hope to further refine the application

of those techniques and improve regression testing approaches.

92

REFERENCES

[1] D. Aceituna, H. Do, and S. Lee. A human interactive approach to building requirements models. In

Proceedings of the International Symposium on Software Reliability Engineering, November 2010.

[2] R. Agrawal and R Srikant. Fast algorithms for mining association rules in large databases. In Pro-

ceedings of the 20th International Conference on Very Large Data Bases, pages 487–499, September

1994.

[3] Nadia Alshahwan and Mark Harman. Coverage and fault detection of the output-uniqueness test selec-

tion criteria. In Proceedings of the 2014 International Symposium on Software Testing and Analysis,

pages 181–192. ACM, 2014.

[4] Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana. Rich internet application testing

using execution trace data. In Third International Conference on Software Testing, Verification, and

Validation Workshops (ICSTW), pages 274–283. IEEE, 2010.

[5] Jeff Anderson, Hyunsook Do, and Saeed Salem. Experience report: Mining test results for reasons

other than functional correctness. In 2015 IEEE 26th International Symposium on Software Reliability

Engineering (ISSRE), pages 405–415. IEEE, 2015.

[6] Jeff Anderson, Saeed Salem, and Hyunsook Do. Improving the effectiveness of test suite through

mining historical data. In Proceedings of the Working Conference on Mining Software Repositories,

pages 142–151. ACM, 2014.

[7] Jeff Anderson, Saeed Salem, and Hyunsook Do. Striving for failure: An industrial case study about test

failure prediction. In Proceedings of the 37th IEEE International Conference on Software Engineering,

2015.

[8] Md Arafeen, Hyunsook Do, et al. Test case prioritization using requirements-based clustering. In

IEEE Sixth International Conference on Software Testing, Verification and Validation (ICST), 2013,

pages 312–321. IEEE, 2013.

93

[9] Árpád Beszédes, Tamás Gergely, Lajos Schrettner, Judit Jász, Laszlo Lango, and Tibor Gyimóthy.

Code coverage-based regression test selection and prioritization in webkit. In 28th IEEE International

Conference on Software Maintenance (ICSM), pages 46–55. IEEE, 2012.

[10] J. Bible, G. Rothermel, and D. Rosenblum. Coarse- and fine-grained safe regression test selection.

ACM Transactions on Software Engineering Methodology, 10(2):149–183, April 2001.

[11] Oren Boiman, Eli Shechtman, and Michal Irani. In defense of nearest-neighbor based image classi-

fication. In IEEE Conference on Computer Vision and Pattern Recognition, 2008, pages 1–8. IEEE,

2008.

[12] Penelope A Brooks and Atif M Memon. Automated gui testing guided by usage profiles. In Proceed-

ings of the twenty-second IEEE/ACM international conference on Automated software engineering,

pages 333–342. ACM, 2007.

[13] C. Catal and D. Mishra. Test case prioritization: A systematic mapping study. Software Quality

Journal, 21:445–478, 2013.

[14] Archana Chaudhary, Savita Kolhe, and Raj Kamal. Machine learning techniques for mobile intelligent

systems: A study. In 2012 Ninth International Conference on Wireless and Optical Communications

Networks (WOCN), pages 1–5. IEEE, 2012.

[15] Jeffrey A Clark and Dhiraj K Pradhan. Fault injection: A method for validating computer-system

dependability. Computer, 28(6):47–56, 1995.

[16] Jacek Czerwonka, Rajiv Das, Nachiappan Nagappan, Alex Tarvo, and Alex Teterev. Crane: Failure

prediction, change analysis and test prioritization in practice–experiences from windows. In IEEE

Fourth International Conference on Software Testing, Verification and Validation (ICST), pages 357–

366. IEEE, 2011.

[17] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimentation with testing techniques:

An infrastructure and its potential impact. International Journal on Empirical Software Engineering,

10(4):405–435, 2005.

94

[18] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel. An empirical study of the effect of time con-

straints on the cost-benefits of regression testing. In Proceedings of the ACM SIGSOFT Symposium on

Foundations of Software Engineering, pages 71–82, November 2008.

[19] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel. The effects of time constraints on test case

prioritization: A series of controlled experiments. IEEE Transactions on Software Engineering, 26(5),

September 2010.

[20] H. Do and G. Rothermel. An empirical study of regression testing techniques incorporating context and

lifecycle factors and improved cost-benefit models. In Proceedings of the ACM SIGSOFT Symposium

on Foundations of Software Engineering, November 2006.

[21] H. Do and G. Rothermel. On the use of mutation faults in empirical assessments of test case prioriti-

zation techniques. IEEE Transactions on Software Engineering, 32(9):733–752, September 2006.

[22] H. Do, G. Rothermel, and A. Kinneer. Empirical studies of test case prioritization in a JUnit testing

environment. In Proceedings of the International Symposium on Software Reliability Engineering,

pages 113–124, November 2004.

[23] S. Elbaum, A. Malishevsky, and G. Rothermel. Prioritizing test cases for regression testing. In Pro-

ceedings of the International Symposium on Software Testing and Analysis, pages 102–112, August

2000.

[24] S. Elbaum, A. Malishevsky, and G. Rothermel. Incorporating varying test costs and fault severities

into test case prioritization. In Proceedings of the International Conference on Software Engineering,

pages 329–338, May 2001.

[25] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case prioritization: A family of empirical

studies. IEEE Transactions on Software Engineering, 28(2):159–182, February 2002.

[26] Sebastian Elbaum and Madeline Diep. Profiling deployed software: Assessing strategies and testing

opportunities. IEEE Transactions on Software Engineering, 31(4):312–327, 2005.

[27] Sebastian Elbaum, Alexey Malishevsky, and Gregg Rothermel. Incorporating varying test costs and

fault severities into test case prioritization. In Proceedings of the 23rd International Conference on

Software Engineering, pages 329–338. IEEE Computer Society, 2001.

95

[28] E. Engstrom, P. Runeson, and M. Skoglund. A systematic review on regression test selection tech-

niques. Information and Software Technology, 52(1):14 – 30, 2010.

[29] Norman E Fenton and Martin Neil. A critique of software defect prediction models. IEEE Transactions

on Software Engineering, 25(5):675–689, 1999.

[30] Arnaud Gotlieb and Dusica Marijan. Flower: optimal test suite reduction as a network maximum

flow. In Proceedings of the 2014 International Symposium on Software Testing and Analysis, pages

171–180. ACM, 2014.

[31] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel. An empirical study of regression

test selection techniques. ACM Transactions on Software Engineering Methodology, 10(2):184–208,

April 2001.

[32] Todd L Graves, Alan F Karr, James S Marron, and Harvey Siy. Predicting fault incidence using

software change history. IEEE Transactions on Software Engineering, 26(7):653–661, 2000.

[33] Philip J Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Murphy. Not my bug! and

other reasons for software bug report reassignments. In Proceedings of the ACM 2011 conference on

Computer Supported Cooperative Work, pages 395–404. ACM, 2011.

[34] Shifa-e-Zehra Haidry and Ted Miller. Using dependency structures for prioritization of functional test

suites. IEEE Transactions on Software Engineering, 39(2):258–275, 2013.

[35] Tracy Hall, Sarah Beecham, David Bowes, David Gray, and Steve Counsell. A systematic literature

review on fault prediction performance in software engineering. IEEE Transactions on Software Engi-

neering, 38(6):1276–1304, 2012.

[36] J. Han, J. Pei, Y. Yin, and R Mao. Mining Frequent Patterns without Candidate Generation: A

Frequent-Pattern Tree Approach. In Data Mining and Knowledge Discovery, pages 53–87, January

2004.

[37] Dan Hao, Lu Zhang, Xingxia Wu, Hong Mei, and Gregg Rothermel. On-demand test suite reduction.

In Proceedings of the 34th International Conference on Software Engineering, pages 738–748. IEEE

Press, 2012.

96

[38] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology for controlling the size of a test suite. ACM

Transactions on Software Engineering and Methodology, 2(3):270–285, July 1993.

[39] M. J. Harrold, D. Rosenblum, G. Rothermel, and E. Weyuker. Empirical studies of a prediction model

for regression test selection. IEEE Transactions on Software Engineering, 27(3):248–263, March 2001.

[40] Hadi Hemmati and Lionel Briand. An industrial investigation of similarity measures for model-based

test case selection. In IEEE 21st International Symposium on Software Reliability Engineering (IS-

SRE), pages 141–150. IEEE, 2010.

[41] Kim Herzig and Nachiappan Nagappan. Empirically detecting false test alarms using association rules.

In Proceedings of the 37th International Conference on Software Engineering-Volume 2, pages 39–48.

IEEE Press, 2015.

[42] S. Hou, L. Zhang, T. Xie, and J. Sun. Quota-constrained test case prioritization for regression testing

of service-centric systems. In Proceedings of the International Conference on Software Maintenance,

pages 257–266, September 2008.

[43] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the effectiveness of dataflow- and

controlflow-based test adequacy criteria. In Proceedings of the International Conference on Software

Engineering, pages 191–200, May 1994.

[44] Pooja Jain, Jonathan M Garibaldi, and Jonathan D Hirst. Supervised machine learning algorithms for

protein structure classification. Computational Biology and Chemistry, 33(3):216–223, 2009.

[45] Dennis Jeffrey and Neelam Gupta. Improving fault detection capability by selectively retaining test

cases during test suite reduction. IEEE Transactions on Software Engineering, 33(2):108–123, 2007.

[46] J. Jones and M.J. Harrold. Test suite reduction and prioritization for modified condition/decision

coverage. IEEE Transactions on Software Engingeering, 29(3):193–209, 2003.

[47] Bach Kaner and pettichord. Lessons Learned in Software Testing. Wiley Computer Publishing, 2002.

[48] J. Kim and A. Porter. A history-based test prioritization technique for regression testing in resource

constrained environments. In Proceedings of the International Conference on Software Engineering,

pages 119–129, May 2002.

97

[49] Mijung Kim, Jake Cobb, Mary Jean Harrold, Tahsin Kurc, Alessandro Orso, Joel Saltz, Andrew Post,

Kunal Malhotra, and Shamkant B Navathe. Efficient regression testing of ontology-driven systems.

In Proceedings of the 2012 international symposium on software testing and analysis, pages 320–330.

ACM, 2012.

[50] B. Korel. The program dependence graph in static program testing. In Information Processing Letters,

volume 24, pages 103–108, 1987.

[51] B. Korel, G. Koutsogiannakis, and L. Tahat. Application of system models in regression test suite

prioritization. In Proceedings of the International Conference on Software Maintenance, pages 247–

256, September 2008.

[52] D. Leon and A. Podgurski. A comparison of coverage-based and distribution-based techniques for

filtering and prioritizing test cases. In Proceedings of the International Symposium on Software Relia-

bility Engineering, pages 442–453, November 2003.

[53] Z. Li, M. Harman, and R. Hierons. Search algorithms for regression test case prioritization. IEEE

Transactions on Software Engineering, 33(4):225–237, April 2007.

[54] B. Livshits and T. Zimmermann. DataMine: Finding common error patterns by mining software

revision histories. In International Symposium on Foundations of Software Engineering, pages 296–

305, September 2005.

[55] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. An empirical analysis of flaky

tests. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering, pages 643–653. ACM, 2014.

[56] M. J. Harrold and A. Orso. Retesting software during development and maintenance. In Proceedings

of the International Conference on Software Maintenance: Frontiers of Software Maintenance, pages

88–108, September 2008.

[57] Michael Mayo and Simon Spacey. Predicting regression test failures using genetic algorithm-selected

dynamic performance analysis metrics. In Search Based Software Engineering, pages 158–171.

Springer, 2013.

98

[58] Hong Mei, Dan Hao, Lingming Zhang, Lu Zhang, Ji Zhou, and Gregg Rothermel. A static approach

to prioritizing junit test cases. IEEE Transactions on Software Engineering, 38(6):1258–1275, 2012.

[59] Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code attributes to learn defect

predictors. IEEE Transactions on Software Engineering, 33(1):2–13, 2007.

[60] Microsoft. Microsoft Dynamics AX product description. https://www.microsoft.com/en-

us/dynamics/erp-ax-overview.aspx. Accessed: 2016-04-06.

[61] Siavash Mirarab, Soroush Akhlaghi, and Ladan Tahvildari. Size-constrained regression test case se-

lection using multicriteria optimization. IEEE Transactions on Software Engineering, 38(4):936–956,

2012.

[62] Siavash Mirarab and Ladan Tahvildari. A prioritization approach for software test cases based on

bayesian networks. In Fundamental Approaches to Software Engineering, pages 276–290. Springer,

2007.

[63] N. Nagappan and T. Ball. Using Software Dependencies and Churn Metrics to Predict Field Fail-

ures: An Empirical Case Study. In International Symposium on Empirical Software Engineering and

Measurement, pages 364–373, 2007.

[64] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict component failures. In Proceedings of

the International Conference on Software Engineering, May 2006.

[65] Nachiappan Nagappan and Thomas Ball. Using software dependencies and churn metrics to predict

field failures: An empirical case study. In First International Symposium on Empirical Software Engi-

neering and Measurement, pages 364–373. IEEE, 2007.

[66] Thomas J Ostrand, Elaine J Weyuker, and Robert M Bell. Where the bugs are. In ACM SIGSOFT

Software Engineering Notes, volume 29, pages 86–96. ACM, 2004.

[67] Andy Podgurski, David Leon, Patrick Francis, Wes Masri, Melinda Minch, Jiayang Sun, and Bin

Wang. Automated support for classifying software failure reports. In International Conference on

Software Engineering, pages 465–475. IEEE, 2003.

99

[68] X. Qu, M. Cohen, and G. Rothermel. Configuration-aware regression testing: An empirical study of

sampling and prioritization. In Proceedings of the International Conference on Software Testing and

Analysis, pages 75–86, July 2008.

[69] Xiao Qu, Mithun Acharya, and Brian Robinson. Impact analysis of configuration changes for test

case selection. In 22nd International Symposium on Software Reliability Engineering (ISSRE), pages

140–149. IEEE, 2011.

[70] G. Rothermel, S. Elbaum, A. G. Malishevsky, P. Kallakuri, and X. Qiu. On test suite composition

and cost-effective regression testing. ACM Transactions on Software Engineering Methodologies,

13(3):227–331, July 2004.

[71] Gregg Rothermel, Roland H Untch, Chengyun Chu, and Mary Jean Harrold. Test case prioritization:

An empirical study. In IEEE International Conference on Software Maintenance, pages 179–188.

IEEE, 1999.

[72] Rickard Sandberg, Gösta Winberg, Carl-Ivar Bränden, Alexander Kaske, Ingemar Ernberg, and Joakim

Cöster. Capturing whole-genome characteristics in short sequences using a naive bayesian classifier.

Genome Research, 11(8):1404–1409, 2001.

[73] M. Sherriff, M. Lake, and L. Williams. Prioritization of regression tests using singular value decom-

position with empirical change records. In Proceedings of the International Symposium on Software

Reliability Engineering, pages 81–90, November 2007.

[74] Charles Spearman. The proof and measurement of association between two things. The American

journal of psychology, 15(1):72–101, 1904.

[75] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests in development environment. In Pro-

ceedings of the International Symposium on Software Testing and Analysis, pages 97–106, July 2002.

[76] Matt Staats, Pablo Loyola, and Gregg Rothermel. Oracle-centric test case prioritization. In IEEE 23rd

International Symposium on Software Reliability Engineering (ISSRE), pages 311–320, 2012.

[77] Boya Sun, Andy Podgurski, and Soumya Ray. Improving the precision of dependence-based defect

mining by supervised learning of rule and violation graphs. In 2010 IEEE 21st International Sympo-

sium on Software Reliability Engineering (ISSRE), pages 1–10. IEEE, 2010.

100

[78] Paolo Tonella. Evolutionary testing of classes. In ACM SIGSOFT Software Engineering Notes, vol-

ume 29, pages 119–128. ACM, 2004.

[79] Paolo Tonella, Paolo Avesani, and Angelo Susi. Using the case-based ranking methodology for test

case prioritization. In 22nd IEEE International Conference on Software Maintenance, pages 123–133.

IEEE, 2006.

[80] A. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos. Time-aware test suite prioritization. In

Proceedings of the International Conference on Software Testing and Analysis, pages 1–12, July 2006.

[81] K. Walcott, G. Kapfhammer, R. Roos, and M. L. Soffa. Time-aware test suite prioritization. In

Proceedings of the International Symposium on Software Testing and Analysis, July 2006.

[82] S. Yoo and M. Harman. Pareto efficient multi-objective test case selection. In Proceedings of the

International Conference on Software Testing and Analysis, pages 140–150, July 2007.

[83] S. Yoo and M. Harman. Regression testing minimisation, selection and prioritisation : A survey.

Software Testing, Verification, and Reliability, March 2010.

[84] Shin Yoo and Mark Harman. Regression testing minimization, selection and prioritization: a survey.

Software Testing, Verification and Reliability, 22(2):67–120, 2012.

[85] M. Zaki and K. Gouda. Fast vertical mining using diffsets. In Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 326–335, 2003.

[86] Lingming Zhang, Dan Hao, Lu Zhang, Gregg Rothermel, and Hong Mei. Bridging the gap between

the total and additional test-case prioritization strategies. In 35th International Conference on Software

Engineering (ICSE), pages 192–201. IEEE, 2013.

[87] T. Zimmermann and N. Nagappan. Predicting defects using network analysis on dependency graphs.

In Proceedings of the International Conference on Software Engineering, pages 531–540, 2008.

[88] T. Zimmermann, P. Weibgerber, S. Diehl, and A. Zeller. Mining versions histories to guide software

changes. In Proceedings of the International Conference on Software Engineering, pages 563–572,

May 2004.

101

[89] Thomas Zimmermann and Nachiappan Nagappan. Predicting defects with program dependencies. In

Proceedings of the 3rd International Symposium on Empirical Software Engineering and Measure-

ment, pages 435–438. IEEE Computer Society, 2009.

102

APPENDIX. PAPER DETAILS

This section provides details of the literature survey. For ease of reading, the following abbreviations

are used in the table.

1. Study Goals: TS = Test Case Selection, TR = Test Case Reduction, TP = Test Case Prioritization

2. Subject(s): I = Industry, O = Open Source, P = Private

Paper Goal Measurement Subject Data Source Technique Baseline
Elbaum 00
[23]

TP APFD O: Siemens Suite + Space Coverage, Fault Exposing Po-
tential

Greedy Coverage, Additional
Coverage

Random, Optimal

Elbaum 01
[24]

TP APFD (Including
Fault Cost)

O: Space Coverage, Test Cost, Fault
Severity

Additional Coverage, Fault In-
dex Prioritization

Random

Srivastava 02
[75]

TP Similar to APFD I: Large Microsoft Office Pro-
ductivity Software

Churn, Coverage Maximize Coverage None (Tool Demonstration)

Elbaum 02
[25]

TP APFD O: Siemens Suite + Space,
Grep, Flex, QTB

Coverage, Fault Probability Order by Technique Random, Optimal

Do 04 [22] TP APFD O: Ant, XmlSec, JMeter,
JTopas

Coverage Greedy, Additional Coverage
(On Total, Block and Method)

Initial, Random, Optimal

Tonella 06
[79]

TP APFD O: Space User Manual Ranking Tuples Machine Learning Greedy, Additional Coverage,
Random

Walcott 06
[80]

TP APFD O: Gradebook, JDepend Execution Time, Coverage Genetic Algorithm Initial Ordering, Random

Li 07 [53] TP APFD O: Siemens Suite + Space Coverage 2-Optimal, Hill Climbing, Ge-
netic Algorithm

Greedy Algorithms

Sherriff 07
[73]

TP Percent Time Addi-
tional Selected Test
Found Bug

I: Three Releases of IBM Inter-
nal Tool

Churn Cluster Based on Churn None (Discussed Comparison
with Other Techniques)

Korel 08 [51] TP Similar to APFD I: ATM, Cruise Control, Fuel
Pump, TCP, ISDN, PrintTo-
kens

Coverage, Model to Coverage
Map

Order by Coverage Random, Prioritize Tests Exe-
cuting Marked Transition

Hou 08 [42] TP APFD P: Travel Agent Web Service
(Artificial Program)

Coverage Linear Programming Random, Total Branch, Addi-
tional Branch

Do 10 [19] TP Cost/Benefit O: Ant, JMeter, XmlSec,
NanoXml, Galileo

Coverage, Churn Order by Coverage, Bayesian
Network

Raw Cost/Benefit

Mei 12 [58] TP APFD O: JTopas, XmlSec, JMeter,
Ant

Static Coverage Order by Coverage Coverage of Seeded Faults and
Mutants

Staats 12 [76] TP APFD P: Altitude Switch, Wheel
Brake System, Flight Guid-
ance System (Simulink and
Java)

Data Flow Analysis (Def-Use) Order By Variables Checked Random, Which Order Killed
the Most Mutants Repeatedly

Zhang 13 [86] TP APFD O: JTopas, XmlSecurity, JMe-
ter, Ant

Coverage, Complexity, LOC Coverage Factoring in Bug
Probability

Coverage of Mutants

Haidry 13
[34]

TP APFD, Time to Find
All Faults

O: Elite, GSM, CRM, MET,
Bash

Dependency Weight, Height Order by Dependency Mea-
sures

Unordered, Random, Order by
Coverage

Jones 03 [46] TP,
TR

Runtime, Reduction
in Fault Detection

O: TCAS, Space Coverage Greedy, Greedy Additional None

Rothermel 04
[70]

TP,
TR,
TS

APFD, Execution
Time, Coverage

O: Emp-Server, Bash Granularity, Churn, Coverage Selection, Prioritization, Re-
duction

Test All

Leon 03 [52] TP,
TS

APFD O: GCC, Jikes JavaC Coverage Greedy Approximation, Clus-
ter Filtering, Failure Pursuit

Random

Beszedes 12
[9]

TP,
TS

Recall O: WebKit Coverage, Churn Order by Size, Coverage Random

Hao 12 [37] TR Size by Acceptable
Loss

O: Siemens Suite Coverage Linear Programming HGS Algorithm

Harrold 01
[39]

TS Coverage O: Siemens Suite Coverage DejaVu, TestTube Tools Random, Test All

Graves 01
[31]

TS Precision, Time Sav-
ings

O: Siemens Suite + Space,
Player

Coverage Minimization, Dataflow, Safe Random, Test All

Bible 01 [10] TS Precision, Time Sav-
ings

O: Siemens Suite + Space,
Player

Coverage Greedy Coverage Test All

Kim 02 [48] TS Test Run, Fault Age O: Siemens Suite + Space Coverage, Time since Last
Run

Coverage, with Boost for Time
since Last Run

Random, Test All

Yoo 07 [82] TS Coverage, Fault De-
tection History, Exe-
cution Cost

O: Siemens Suite + Space Coverage, Fault Detection His-
tory, Execution Cost

Pareto Genetic Algorithms Additional Greedy

Continued on next page

103

Paper Goal Measurement Subject(s) Data Source(s) Technique(s) Baseline(s)
Jeffrey 07
[45]

TS Size Reduction, Fault
Loss

O: Siemens Suite + Space Branch Coverage, All Uses
Coverage

Chose Best Additional Cover-
age, Add Back

Randomly Added Back

Hemmati 10
[40]

TS FDR I: SUT (C++ Safety Monitor-
ing Program)

Test Similarity Choose Most Diverse Random, Greedy, Coverage-
Based Genetic Algorithm,
STCS

Qu 11 [69] TS Percent of Impacted
Functions

I: Make, ABB1 (Industrial Ap-
plication)

Coverage Determine Configuration from
Coverage

Test All

Mirarab 12
[61]

TS FDR, APFD O: Ant, NanoXML, Galileo,
XmlSec, JMeter

Coverage Linear Programming Coverage, Bayesian Network,
Genetic Algorithm

Kim 12 [49] TS Precision, Recall O: I2B2, GO (Gene Ontology) Ontology Test Coverage Order by Coverage Test All
Gotlieb 14
[30]

TS Processing Time,
Optimum Result

P: Randomly Generate Test
Cases, Requirements

Requirement to Test Mapping Graph Search Other Graph Search Algo-
rithms and Linear Program-
ming

Alshahwan 14
[3]

TS Coverage, Spearman
Rank to Fault Oracle

O: FAQForge, Schoolmate,
Webchess, PHPSysInfo, Time-
clock, PHPBB2 (all PHP)

Output Uniqueness Order Maximizing Uniqueness Test all

104

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Goal of this Dissertation
	Approach to Meet this Goal
	Organization of this Dissertation

	Background and Related Work
	Motivation
	Existing Research
	Regression Testing Techniques
	Reduction, Selection, and Prioritization
	Evaluation Metrics of Regression Testing Techniques

	The State of the Art of Regression Testing Techniques
	Measurement Techniques
	Object Programs
	Data Sources
	Techniques
	Baselines
	Trends

	Approach
	Conceptual Framework
	Advanced Data Mining Technique Applicability
	Determine Most Influential Attributes
	Application to Non-Functional Bugs
	Applying Regression Testing Techniques Based on Product Context

	Empirical Studies
	Apply Advanced Data Mining Techniques to an Industrial Product
	Approach
	Empirical Study
	Variables and Measures
	Experiment Process
	Data and Analysis
	Discussion and Implications
	Threats to Validity
	Conclusions

	Using Classification to Understand Attribute Importance in and Industrial Product
	Approach
	Empirical Study
	Variables and Measures
	Data and Analysis
	Discussion and Implications
	Threats to Validity
	Conclusions

	Mining Test Results for Reasons Other Than Functional Correctness
	Approach
	Empirical Study
	Variables and Measures
	Experimental Process
	Data and Analysis
	Discussion and Implications
	Threats to Validity
	Conclusions

	Test Suite Prioritization Through Telemetry Fingerprinting
	Approach
	Empirical Study
	Variables and Measures
	Experimental Process
	Data and Analysis
	Discussion and Implications
	Threats to Validity
	Conclusions

	Guidance to Practioners and Researchers
	Data Sources
	Regression Testing Techniques
	Project Attributes
	Guidance to Practitioners
	Guidance to Researchers

	Conclusions and Future Work
	Merit and Impact of This Research
	Future Directions

	REFERENCES
	APPENDIX. PAPER DETAILS

