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SOIL MICROBIAL COMMUNITY DISTRIBUTIONS AND DISEASE SUPPRESSIVENESS IN THE 

COASTAL PLAIN OF GEORGIA. 

by 

MICHAEL J. SABULA 

(Under the advisement of Tiehang Wu) 

ABSTRACT 

This study compared the soil microbial communities of three vegetation types in 

the coastal plain of Georgia: 1. crop land actively in use for agricultural production, 2. 

transitional grassland in early stages of secondary succession, and 3. pristine 

unmanaged forest land. Microbial species diversity and quantities of microbial DNA 

were determined from each of these vegetation types at three separate locations near 

Statesboro, Georgia. Length heterogeneity PCR(LH-PCR) methods and subsequent 

analysis of fungal, bacterial, and metazoan communities by analysis of similarity 

(ANOSIM) revealed high within-group similarity by vegetation type, indicating land 

management intensity and vegetation cover is a strong determining factor in 

community similarity. Further analysis of fragments obtained by LH-PCR revealed that 

fungal and metazoan communities in crop soil included the highest number of common 

operational taxonomic units (OTUs) represented in all treatments, while forest soils 

contained the least number of common OTUs of animal and fungi. This trend is not 

observed in bacterial communities, and may be a function of organism size. Quantitative 

PCR (qPCR) detection of fungal and bacterial DNA revealed significantly higher 

concentrations of both fungal and bacterial DNA in forest soils than concentrations in 

both crop and transitional soils. Despite differences in microbial communities and DNA 

concentrations, these soils exhibited no significant difference in their suppression of the 

soil-borne pathogen Sclerotium rolfsii in the context of a greenhouse experiment. S. 

rolfsii inoculum was successfully detected through qPCR based methods, however, S. 

rolsfii DNA concentrations lack correlation with Southern Blight disease incidence. In 

conclusion, vegetation and land management intensity significantly affect soil microbial 

communities. Forest soils host a fewer number of common animal and fungal OTUs than 

crop soils. Bacteria had no difference in the occurrence of common OTUs between 

vegetation types. qPCR methods were successfully employed to detect S. rolfsii 

inoculum. Although S. rolfsii DNA concentrations lacked correlation with disease 

severity, these methods are capable of detecting the potential of soil-borne disease 

development.    

 

INDEX WORDS: Agriculture, Microbial communities, Sclerotium rolfsii, Quantitative PCR, Length 

heterogeneity PCR
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CHAPTER 1 – REVIEW OF LITERATURE 

 

Ecology is the study of organisms, their relationship with the environment, and their 

distributions through time and space. Microbial ecology examines these relationships with 

respect to microorganisms, including bacteria, fungi, algae, and microscopic invertebrate 

animals. It is important to understand and study these relationships of microbes and their 

environment because of the ubiquitous nature of microbes and the critical roles they play in 

biogeochemical processes. Microbes facilitate carbon sequestration and represent the largest 

known natural carbon reservoir. Microbial communities are also largely responsible for nitrogen 

fixation and inorganic nutrient cycling (Fenchel, 1998). 

One obstacle to studying the microbial world is choosing the appropriate scale at which 

to examine these communities. Long-standing contention exists as to whether most microbes 

are evenly and extensively distributed across the globe, or if communities are relatively 

endemic to specific regions. “Everything is everywhere, but environment selects” (Becking, 

1934) is often quoted to serve as a null assumption of microbial distribution. In modern 

ecology, this idea has found little support and much opposition (Green et al., 2004). It may be 

the case that some taxa are not bound to a defined biogeography and may indeed be present 

everywhere the environment allows. If nearly all microbes have a global distribution, choosing a 

scale for study is less of an issue: regardless of sampling area, diversity should remain constant 

on average. However, if bacteria are endemic to specific regions, diversity of a sample should 

increase with sample area size. 

Species area relationships (SAR) refer to the increase in number of taxa observed as the 

sample area increases. This biogeographical concept is often overlooked or ignored in microbial 
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ecology or microbial community assessment. Only recently has this type of research been in the 

context of SAR at the level of microbial communities, including algae (Smith et al., 2005), 

bacteria (Horner-Devine et al., 2004), and fungi (Green et al., 2004). These studies all observed 

a SAR and provide evidence that microbes have defined biogeography and microbes may be 

defined as endemic to a certain region. Other meta-analyses have also concluded that 

differences in microbial distribution can be observed and can be attributed to longstanding 

geographical isolation and speciation events and not some recent anthropological effect 

(Martiny et al., 2006). These relatively recent studies are contrary to Becking’s tenet of 

microbial ecology ‘everything is everywhere, but, the environment selects’. Applications of this 

new perspective on microbial distributions have demonstrated that fungi are affected by 

farming practice and soil alterations on both a local and regional scale (Van der Gast et al., 

2011), having major implications for the importance of these studies for agriculture. 

Another obstacle to the large-scale study of microorganisms is the methods of 

detection. Prior to the advent of modern molecular techniques, microbial ecology was reliant 

on culture-dependent techniques. These techniques lent to a chronic underestimate of 

microbial biodiversity, as such methods capture less than 10% of microbial diversity calculated 

by molecular techniques such as cloning and sequencing (Smith et al., 2001). The concept of 

metagenomics was developed as these modern genetic techniques became available. 

Metagenomics is defined as studying directly the genomes of all organisms within a community; 

effectively looking at the genome of an entire environment (Handelsman et al.,1998). The first 

major revelation of this new field was that, indeed, culture dependent methods had missed the 

vast majority of biodiversity at the microbial level (Hugenholz et al., 1998). The frontier of 
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metagenomic research relies on massively parallel pyrosequencing to thoroughly capture all 

genomes within an environment (Eisen, 2007). While next-generation sequencing does provide 

high resolution data, many other molecular techniques have been successfully employed to 

study community-level microbial ecology and infer details of community dynamics. Examples 

include quantitative PCR (Kim, 2014), Denaturation Gradient Gel Electrophoresis (DGGE) 

(Senechkin et al., 2014) and Length-heterogeneity PCR (LH-PCR) (Tiirola et al., 2003) 

With the recent emergence of high-throughput molecular methods have researchers 

been able to gain a community-level view of microbial populations. Particularly recent are 

studies which monitor changes in these communities over time, or monitor changes in 

microbial communities associated with changes in land usage (Wu et al., 2008). Some basic 

biogeograpical questions have yet to be addressed regarding the distributions of microbes in 

different soil environments. Categorizations of environments as either having cosmopolitan or 

endemic microbial distributions have yet to be firmly established. One aim of this study is to 

categorize forest soils, agricultural soils, and successional soils with respect to their microbial 

species diversity and evenness. It is hypothesized that forest soils will host more diverse and 

more even microbial communities than agricultural soils. This difference could be accounted for 

by the use of non-local soils used in the course of agricultural practices as well as the 

inoculation of farmlands with foreign microbes by farm equipment, transplanted crops, and 

seeds. Conversely, historically forested communities should have a more even distribution as 

they should be less likely to have been disrupted by foreign microbes. (Litchman, 2010). 

An additional aim of this study will be to examine a gradient of environments in 

transition from farmland back to a forested environment, or conversely a forested environment 
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cultivated into farmland. This will allow for the examination of whether microbial communities 

“recover” over time to resemble a pristine forest environment, or if any microbial succession 

patterns can be identified at all. It has been determined that microbial communities involved in 

decomposition and nutrient cycling have successional patterns and their community, 

particularly species richness, changes over time (Jackson, 2003). Similar successional waves of 

microbes may be present in soils transitioning from farmland back to a forested ecosystem, a 

process often referred to as afforestation.  

The role of some microbes in agriculture is well studied, including bacteria involving 

organic matter cycling, and nitrogen cycling and fixation (Bloem et al., 1995; Berthrong et al., 

2013). By these mechanisms, microbes directly benefit agriculture by increasing the availability 

of nitrogen-based nutrients.  Soil microorganisms, particularly fungi, can more indirectly 

influence plant health by forming complex biological relationships with crop plants. Mutualistic 

interactions of arbuscular mycorrizal fungi with crop plants enhances their water retention, 

nutrient up-take, and possibly disease resistance (Jefferies et al., 2003; Gosling et al., 2006). Soil 

conditions may vary widely across forested, grassland, and agroecosystems. Environmental 

factors such as pH, soil mafic quality, and inorganic nutrient availability are significant drivers of 

variance observed in microbial communities (Esperschutz et al., 2007). 

It has been shown that the soil microbial community shifts along with changes in land-

usage practices under a wide variety of circumstances including afforestation (Carson, 2010), 

and intensive agriculture (Jangid, 2008). However it is largely unknown how these shifts in soil 

microbial community associated with land-management may affect, or correlate with, the 

susceptibility of that environment to infection by pathogenic microbes. Previous studies have 
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found that changes in soil type and abiotic chemical differences associated with these various 

land management practices may affect community structures and also disease incidence 

(Wakelin, 2007). Many of these pathogenic microbes are host-dependent and suitable hosts 

may vary in prevalence within these environments. Lastly, ‘bio-control’ mechanisms may be a 

significant factor in preventing infection, where specific endemic microbial community 

members themselves may combat these pathogenic microbes through predation or 

competition. Bio-control is often praised for its low cost to the user and low impact on the 

environment (Baker, 1987). it has been shown that a variety of naturally occurring bacteria can 

be responsible for the control of fungal plant pathogens (Singh et al., 1998), (Duijff et al., 1999). 

The pathogenic southern blight fungi can be limited by a competitive antagonistic Trichoderma 

fungus (Mukherjee & Raghu, 1997). With understanding of the population size, richness and 

community structure of microbes potentially involved in bio-control mechanisms, methods may 

be developed to help promote community characteristics which inhibit the incidence of these 

crop pathogens. 

In the southeastern United States, a number of microbes negatively impact crop 

production, including the microbial nematode Melodogiyne incognita (southern root-knot 

nematode)(Sasser, 1977), along with the fungi Sclerotium rolfsii (Southern Blight) (Bowen et al., 

1992) and Fusarium oxysporum (Fusarium Wilt) (Williamson, 2012). Forest communities may 

also be at risk for invasion by the water mold Phytopthora ramorum (sudden oak death) (Oak et 

al., 2013). Due to their cryptic nature, these harmful microbial species are notoriously difficult 

to monitor and track compared to macroscopic plant and animal invaders. In recent years, 

methods involving indirect detection and molecular methods to rapidly assess the extent of 



16 

 

  

contamination in soils have been utilized. PCR-based detection techniques have successfully 

been developed for Sclerotium rolfsii (Jeeva et al., 2010), Fusarium spp. (Horevaj, 2011), 

Melodogiyne spp. (Min et al., 2011) and also Phytophthora spp. (Lees et al., 2012). Similar 

pathogens have been reported in Georgia soils (Gale et al., 2003), (Xu et al., 2006). The 

development and customization of molecular probes for the detection of these four plant 

pathogens and their novel application to south eastern Georgia soils would be a useful tool in 

the diagnosis of crop damage, particularly of tomato, Solanum lycopersicum and honeydew 

melon, Cucumis melo. Particularly, the novel development of sound methods which utilize 

Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR) would allow for rapid detection 

of these pathogens, as well as collection of data concerning the absolute amount of these 

pathogens in the soil. Applications of these methods could include diagnosis of disease in an 

agricultural setting, or the testing of imported foreign soil and substrate for ‘hitch-hiking’ alien, 

and potentially invasive, pathogens.  

It is hypothesized that bacterial, fungal, and microbial animal communities will exhibit 

differences in their structure and diversity in conventional farm soils compared to an 

uncultivated forest environment, and to an ecotome transitional grassland based on intensity 

of soil disturbance. It is also hypothesized that the differences in their structure and diversity of 

these communities may impart differing capacities to resist infection by microbial plant 

pathogens. 
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CHAPTER 2 – ASSESSMENT OF SOIL MICROBIAL DIVERSITY, MICROBIAL DNA 

CONCENTRATIONS, AND SOIL CHEMISTRY ACROSS THREE SOIL TYPES 

 

1. INTRODUCTION 

Ecological succession can be measured in many ways, including by changes in species 

diversity, energy flow, and metabolic processes across time (Würtz and Annila, 2010 ). 

Regardless of the metrics involved in its measurement, ecological succession can be described 

as:  (1) A directional process that is predictable, (2) community-controlled environmental 

change, and (3) a process that culminates in an ecosystem with maximum function, diversity, 

and biomass (Odum, 1969). The process of succession has long been studied in plants and may 

other macrorganisms (Clements, 1928; DeBruyn et al., 2011). Large-scale investigations of 

succession and its impacts on microorganisms, or rather the impact of microorganisms on 

succession, are less common. Microbial communities are essential to soil health in both 

agricultural and unmanaged ecosystems. Decompositional activity of bacteria is responsible for 

the formation of humus, which is nutritive to a variety of plants (Lysak, 2014). Phosphorus and 

nitrogen cycles are primarily driven by microbial action and make nutrients readily available for 

other organisms (Smith, 2014). Many species of microscopic fungi are capable of forming 

beneficial symbiotic relationships with plant hosts (Pirinc, 2014). Some studies have also found 

microbial action directly responsible for the breakdown and removal of environmental toxins 

from the soil (Garbeva et al. 2004). Ecological disturbance, in the form of land use and 

management, can have profound effects on the microbial communities of the soil. A wide 
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variety of agricultural methods including cover cropping, rotation, and fertilizer amendments 

can significantly alter microbial assemblages (Chellimi, 2012). Not only can these changes be 

rapid, but they can be long lasting as well. Some studies have found that even centuries later, 

past land management practices can be a strong predictor of soil bacteria community identity 

(Gutknecht, 2013). In addition to bacteria, fungi are also known to play an important role in 

various stages of succession. Studies have found an increase in the biomass of arbuscular 

mychorrizal fungi in the early and middle stages of succession is important for the 

establishment of grasslands (Nogueira et al., 2014). Microscopic nematode populations have 

also been identified to change in response to successional changes and ecological disturbance 

related to land management (McSorley, 2013). This study attempts to capture in general terms, 

and at one time point, the interaction of ecological succession and associated soil microbial 

communities. Three types of vegetation including crops, adjacent transitional grassland and 

forests were selected to be representative of different levels of ecosystem disturbance and 

succession. Microbial communities to be investigated include bacteria, fungi, and microscopic 

metazoa. 

 

2. METHODS 

2.1 Sampling design 

Three sampling locations were selected in Southeast Georgia. Each of the three 

sampling locations are comprised of three distinct sampling sites. At each test location, site one 

(1) is representative of operational, conventional tomato farmland. Site two (2) is a transitional 

soil, where a secondary successional event is occurring. Site three (3) is representative of a 
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recently undisturbed forest habitat, containing both deciduous hardwood and coniferous pine 

forests. At a location, sampling sites were no more than 100 meters apart. Test locations 

include “Peter’s Farm” (32°34.784, 082°32.313), “Honeydew Farm” (32°32.354, 081°50.053), 

and “Strickland Farm” (32°19.231, 081°41.554). One approximately 6 x 50 meter plot was 

randomly selected at each site. A grid with 30 centimeter intervals was established on each 

plot.  50 (x,y) coordinates were generated, and a stratified random sampling regime was used 

to collect soil cores. Fifty soil cores (3.4 cm diameter; 10 cm deep) were collected from the 

rhizosphere of each site with a core sampler and hand mixed in a single sterile plastic bag.  10 

soils cores were hand mixed into a single sample, each site yielding 5 samples. With three sites 

at each of the tree locations, a grand total of 45 samples (representative of 450 soil cores) were 

collected for this portion of the study. Physical and chemical soil properties were determined 

including organic carbon content, C:N ratio, P, K, Ca, Mn, Zn, Cu, Fe, S, B, soil pH, and cation-

exchange-capacity by Waters Agricultural Laboratories, inc. Camilla, GA.   

2.2 DNA extraction 

DNA was extracted from each sample using PowerMax® Soil DNA Isolation Kit (Mo Bio 

Laboratories, Inc., Carlsbad, CA) per suggested protocols. This Isolation kit was selected for its 

ability to purify very low concentrations of microbial DNA. Additionally, this preparation 

includes reagents which eliminate phenolic soil compounds such as humic acid, which are 

known to inhibit PCR. DNA was stored at -20°C. 

2.3 Assessing microbial community using length heterogeneity polymerase chain reaction (LH-

PCR)  
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Fragments of metazoan 18S rDNA gene were amplified from each sample using 

metazoan specific primers (Wu et al., 2009 & 2011). The forward primer 18S 11m (5’-

GTCAGAGGTTCGAAGRCG-3’) labeled with 6FAM corresponds to positions 1037-1054 of the 

human sequence (NR_003286 in GenBank) and to a region that is relatively constant among 

metazoans, but has positions that vary considerably in other eukaryotes.  The reverse primer 

18S0r (5’GGGCATCACAGACCTGTTATTGC-3′) corresponds to positions 1480-1502 of the human 

sequences.  The primers amplify approximately a 480 bp segment. Fragments of bacterial 16S 

rDNA gene were amplified from samples using bacteria-specific primers (forward primer 27F 5’-

AGAGTTTGATCMTGGCTCAG-3’ labeled with 6FAM and reverse primer 355R 5’-

GCTGCCTCCCGTAGGAGT-3’) as well as fungal specific primers targeting a section of the ITS 

region, also labeled with 6FAM (forward primer NSI1: 5’-GATTGAATGGCTTAGTGAGG-3’ and 

reverse primer 58A2R: 5’-CTGCGTTCTTCATCGAT-3’).  Length heterogeneity was assessed on an 

Applied Biosystems 3500 genetic analyzer (Applied Biosystems, Foster City, CA), in the 

Department of Biology at Georgia Southern University. The size of each fragment was assigned 

to operational taxonomic units (OTUs) using a ± 0.5 base pair (bp) criterion. Cluster analysis and 

multidimensional scaling (MDS) ordination was used to compare microbial metazoan, fungal, 

and bacterial communities in soil samples using PRIMER-E (Plymouth Marine Laboratory, UK) 

software. Comparisons of community metrics including richness, evenness, and Shannon 

diversity were completed in JMP statistical software (SAS Institute Inc.). 

2.4 Determining total fungal and bacterial DNA amounts using real-time quantitative PCR 

(qPCR) 
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 qPCR assays to quantify microbial fungal and bacterial DNA in each sample were 

conducted using the Mastercycler ep realplex real-time PCR system (Eppendorf North America, 

Inc., Hauppauge, NY) in the Department of Biology at Georgia Southern University. Primer pairs 

for Bacteria (27F, 355R) and Fungi (NSI1, 58A2R) along with the intercalating dye SYBR green 

were used to determine the quantity of bacterial and fungal genomes present in each soil 

sample. Three technical assay replicates were performed for each soil sample. Standard 

solutions for bacterial and fungal assays were created from DNA extracted from pure cultures 

of E. coli and S. rolfsii, respectively. A Nanodrop 2000 spectrophotometer (Thermo Fisher 

Scientific Inc.) was used for initial quantification of these DNA solutions. Serial dilution methods 

were used to create 6 standard solutions at 10 ng/µl, 1 ng/µl, 0.1 ng/µl, 0.01 ng/µl, 0.001 ng/µl 

and 0.0001 ng/µl. These standard solutions served as reference solutions for subsequent qPCR 

assays. Methods used were similar to quantitative PCR protocols outlined in previously 

published assessments of soil bacterial and fungal communities (Fierer et al., 2005). ANOVA, 

Kruskal-Wallace and Student’s t analyses of these assays were performed in JMP statistical 

software (SAS Institute Inc.). 

2.5 Statistical analysis of microbial biodiversity and community structure 

The frequency of each OTU was recorded and organized for diversity and community 

structure analysis.  Diversity indices included richness, evenness, and Shannon diversity using 

EcoSim (Gotelli and Entsminger, 2008). The microbial metazoan community was analyzed with 

non-parametric multivariate analysis procedures of multidimentional scaling (MDS), using 

PRIMER-E statistical software (Primer-E, Plymouth Marine Laboratory, UK).  PRIMER-E was used 

for an analysis of similarity (ANOSIMA) to calculate the significance of differences among 
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samples from different site and agricultural practices.  These methods are described in more 

detail in Wu et al. 2009. This software was also used to perform a similarity percentage 

(SIMPER) analysis, used to calculate variation in species abundance. LH-PCR data was used to 

identify and tally common OTUs, defined as fragments which were common to all treatments in 

at least one replicate. Contingency analysis was performed based on the frequency of 

occurrence of common species in each vegetation treatment. 

 

3. RESULTS 

3.1 Clustal and ANOSIM analysis of microbial communities 

Soil fungal communities showed distinct grouping pattern by vegetation cover (Fig. 2-1). 

Forest soils showed high separation from crop soils and transition soils R=0.54, P=0.0001. 

However, crop and transition soils are only weakly separated R=0.175, P=0.0004 (Table 2-1). 

Fragments obtained with 16S rRNA gene of bacterial primers displayed distinct grouping of 

forest, transitional, and agricultural soil bacterial communities (Fig. 2-2). Similar to soil fungi, 

soil bacteria in forest and crop soils were recorded to have the highest separation from each 

other R=0.73. P=0.0001. In the case of bacterial communities, forest and transition soils shared 

the most commonality R=0.496, P=0.0001 (Table 2-1). Grouping of soil microbial animals by 

vegetation type is less distinct than bacteria or fungi (Fig. 2-3). ANOSIM analysis of animal 

communities reveals a high degree of commonality between transition and forest R=0.231, 

P=0.0001, transition and crop R=0.222, P=0.0001. In a similar pattern to bacterial and fungal 

communities, the greatest difference in animal communities is observed between crop and 

forest treatments R=0.273 P=0.0001.  
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3.2 Environmental factors affecting microbial communities 

Bacterial community patterns were more strongly explained by environmental factors 

than fungi and animal communities, and had an average environmental factor correlation of 

0.545 (Table 2-2). Animal community patterns are explained less by chemical and soil factors 

than fungal or bacterial community patterns with an average 0.23 percent correlation for 

animal and 0.46 for fungi (Table 2-3 and 2-4). pH and cation exchange capacity were important 

influences on fungal, bacterial, and animal communities. NO3
-
 was an important factor for 

Bacteria and animal communities, however was relatively unimportant for fungal community 

correlations. Factors such as calcium and phosphorus ranked as low correlations for all bacteria, 

fungi, and animal community correlations (Table 2-2, 2-3, and 2- 4). In addition to being 

predictors of community similarity, some differences in the environmental nutrient levels 

between soil treatments were observed. Farm soils were significantly higher in Calcium with 

428.2 ppm (P=.0001), Potassium with 152.7ppm (P=.0341), and Phosphorous with 121.5 ppm 

(P=.0422) than both transition and forest soils (Fig. 2-4). Crop soils had significantly higher 

average pH 6.41, than forest or transitional soils with 4.94 and 6.12 respectively (P=.0001) (Fig. 

2-5). 

3.3 Effects of vegetation type on microbial diversity    

 Metazoan communities exhibited no difference in evenness between vegetation 

treatments. Crop soils exhibited higher degrees of metazoan community richness with an 

average index of 64.54 than forest soils with an average index of 49.47 (p=.0195), and also 

showed no difference in Shannon diversity or evenness (Table 2-5). In regards to bacterial 

community evenness, crop had an average index of 0.766 and transition displayed an average 
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index of 0.762, which both differed from forest treatments with an average index of 0.702 

(P=.0001, P=.0001 respectively). Conversely, in terms of community richness, forest displayed 

an average index of 0.978 and transition with an index of 0.928, which both differed from crop 

treatments with an index of 0.874 (P= .0441, P=.0441). In a similar pattern to evenness, 

bacterial diversity was similar between transition and crop with indices at 0.050 and 0.021 

respectively, which both differed from forest treatments with an index of 0.055 (P=0.0012, 

P=0.0094) (Table 2-6). No difference in fungal community evenness was observed between 

vegetation covers. Fungal richness did differ between crop treatments with an index of 84.53 

and forest treatments with an index of 68.40 (P=0.0183). No differences in fungal Shannon 

diversity were observed (Table 2-7). 

3.4 qPCR quantification of microbial DNA amounts 

Concentrations of forest fungal DNA detected at a mean concentration of 0.0674 ng/µl 

are significantly higher than both transitional soil concentrations at an average concentration of 

0.0183 ng/µl (P=<0.0001) and farm soil concentrations at an average concentration of 0.0274 

ng/µl (P=0.0011) (Fig 2-6). Forest bacteria were also detected in highest quantities at 0.881 

ng/µl and significantly higher than transitional soil concentrations at 0.507 ng/µl (P=0.0042), 

but not farm soil concentrations with an average concentration of 0.647 ng/µl (P=0.2652) (Fig 

2-7).  

3.5 SIMPER analysis of microbial Operational Taxonomic Units  

 In the top ten contributing taxonomic units for bacterial communities, two common 

fragments (fragments present occurring at least once in all three soil types), 315 and 317,  

together make up a high percentage of the total contribution for all treatments: 26.75% in 
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forest, 22.6% in transitional, and 23.31% in crop soils (Table 2-8). Animal communities display 

two common taxonomic units in the top ten contributing fragments as well, 381 and 457. These 

common fragments make up a moderate percentage of the total contribution for all 

treatments, averaging 6.79% (Table 2-9). For fungal communities, one common taxonomic unit, 

341, is represented in the top ten contributing units. Fragment 341 contributes a relatively low 

percentage, 5.27% on average overall compared to common animal and bacterial taxonomic 

units (Table 2-10).  

3.6 Contingency analysis of common species 

  A more thorough analysis of all common fragments (fragments present occurring 

at least once in all three soil types), was performed. Fungal and animal crop soil communities 

included the highest amount of common OTUs, with 1208 and 835 respectively. Forest soils 

contained the least number of common fungal and animal OTUs With 979 detected for fungi, 

and 667 detected for animal communities. While this trend is reversed in bacterial communities 

with 368 common units detected in crop soils and 391 in forest soils, the differences between 

treatments were far less (Table 11). Contingency analysis revealed that the number of these 

common OTUs is dependent on vegetation in the case of fungi (P=<0.0001) and animals 

(P=<0.0001) but not bacteria (P=0.4603). 

 

DISCUSSION 

The dissimilarity between forest fungal communities and those of crop and transitional 

soils may be due to a higher number of unique species in forest samples, or conversely, a fewer 

number of common species in forest soils compared to agricultural soils. Indeed, crop soils 
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contained a higher number of common species in the case of animal and fungal communities 

while forest soils contained the least number of common species. This idea supports the 

hypothesis that disturbed agricultural soils are home to more cosmopolitan and widely 

distributed microbes than forest soils, which may be sanctuaries for rare and less robust 

microbes (Litchman, 2010). The difference observed in common species between fungi, 

animals, and bacteria may be a function of organism size and rate of dispersion. Nematodes 

and fungi are orders of magnitude larger than bacteria, and this may affect how they are 

transported though the soil by hydrological effect (Finlay, 2002).  Bacteria being smaller in size 

may be more prone to dispersion, and therefore have no difference in the number of common 

species across relatively local geography. 

In regards to ANOSIM metrics, highest within-group similarity is observed in crop-forest 

comparisons of all three communities. This indicates that crop and forest soils have the most 

dissimilar communities out of all comparisons made. In the case of fungi, transitional 

communities bear more resemblance to crop soils. However bacterial communities in 

transitional soils share more similarity with forest soil communities. This pattern may indicate 

that while crop and forest soils are distinctly different, bacterial and fungal transitional 

communities may differ in the rate at which they regain forest community characteristics in the 

process of succession. Animal communities were relatively similar at all comparisons, which 

may suggest that these organisms are less impacted by the land management practices. Fungal 

and bacterial populations were more strongly affected by chemical soil conditions than animal 

populations, indicating that these populations are heavily driven and shaped mostly by a small 

number of environmental factors. Indeed, NO3
-
 is known to be a strong affecter of soil bacteria 
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populations (Fenchel, 1998).  Fungi are also known to be very sensitive to pH conditions 

(Esperschutz et al., 2007). pH was found to vary significantly between forest, crop, and 

transition soils. The combined findings of high pH and high calcium content in agricultural soil is 

very likely due to the application of agricultural lime (calcium carbonate) as a soil amendment. 

Fungal and animal communities both experienced higher species richness under crop 

vegetation treatment, but no other effects on either evenness or Shannon diversity. This 

indicates that fungi and animal both have a larger number of different species in crop soils than 

farm soils, which could be due to introduction of foreign microbes in fertilizers and other soil 

amendments (Santini et al., 2012). 

Regarding bacterial communities, a higher degree of species richness was measured in 

forest soil than in transitional and crop soils. However, crop and transitional soils displayed 

higher evenness and ultimately higher Shannon diversity. Higher Shannon diversity in crop soil 

is counter to the original hypothesis that forest soils would have higher Shannon diversity and 

evenness due to fewer disturbances (Jangid, 2008). 

Higher DNA concentrations of both bacteria and fungi in forested ecosystems compared 

to transitional and crop soils may be the result of higher rates of carbon-based nutrient input in 

the form or leaf or plant litter. Low levels of disturbance in forested ecosystems likely create a 

beneficial environment for fungi, which remain free from hyphae-damaging farm land 

managements, such as tillage (Alguacil et al., 2008). In an applied sense, agricultural practices 

could be modified to promote higher levels of microbial biomass as seen in forested 

environments by using organic plant litter as a soil amendment, thereby mimicking the types of 

inputs found in forest soils (Hartmann et al., 2014). 
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4. Conclusion 

 Length heterogeneity PCR methods and subsequent analysis of fungal, bacterial, and 

metazoan communities by analysis of similarity revealed high within-group similarity by 

vegetation type, indicating land management intensity and vegetation cover is a strong 

determining factor in community similarity. Further analysis of fragments obtained by LH-PCR 

revealed that fungal and metazoan communities in crop soil included the highest number of 

common operational taxonomic units (OTUs) represented in all treatments, while forest soils 

contained the least number of common OTUs of animal and fungi. This trend is not observed in 

bacterial communities, and may be a function of organism size. Quantitative PCR detection of 

fungal and bacterial DNA revealed significantly higher concentrations of both fungal and 

bacterial DNA in forest soils than concentrations in both crop and transitional soils. 
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Figure 2-1. Cluster analysis of LH-PCR fragments amplified with fungal 18s ITS targeted 

primers, arranged by vegetation type. Forest soil communities show the highest degree 

of dissimilarity from crop and transitional soils, while crop and transitional 

communities are more closely clustered. Comparisons are based on Bray-Curtis 

similarity. 
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Figure 2-2. Cluster analysis of LH-PCR fragments amplified with bacterial 16s rRNA 

gene targeted primers, arranged by vegetation type. Transitional and forest soil 

communities show a higher degree of similarity with each other than to crop soil 

communities. Comparisons are based on Bray-Curtis similarity. 
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Figure 2-3. Cluster analysis of LH-PCR fragments amplified with animal 18s rRNA gene 

targeted primers, arranged by vegetation type. Grouping of metazoan communities is 

much less distinct than fungi or bacteria communities. Comparisons of all three 

vegetation types bear approximately the same degree of similarity to each other. 

Comparisons are based on Bray-Curtis similarity. 
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Figure 2-4. Environmental chemical levels recorded in forest, crop, and transition soils. Values 

recorded in ppm, except for organic matter in kgha
-1

. Bars represent one standard deviation. 

Differing letters denote significant difference of means (P=<0.05). 
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Figure 2-5. Soil pH of forest, transition, and crop vegetation cover. Bars represent one standard 

deviation. Values over bars represent the arithmetic mean. Differing letters denote significant 

difference of means (P=<0.05). 
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Figure 2-6. Amount of targeted total fungal DNA in ng/µl, detected by qPCR across land 

management treatments. Bars represent one standard deviation. Values over bars represent 

the arithmetic mean. Differing letters denote significant difference of means (P=<0.05). 

 

 

 

 

 

 

 

 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Crop Transition Forest

D
N

A
 (

n
g

/u
l)

A 

B 
B 

0.0274 

0.01829 

0.0674 



35 

 

  

 

 

 

Figure 2-7. Amount of targeted total bacterial DNA in ng/µl, detected by qPCR across land 

management treatments. Bars represent one standard deviation. Values over bars represent 

the arithmetic mean.  Differing letters denote significant difference of means (P=<0.05). 
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Table 2-1.  ANOSIM results of bacteria , fungi, and animal communities with comparisons 

between vegetation types. High R values approaching 1 indicate high degree of within group 

similarity and lower similarity between groups. Conversely, low R values approaching 0 indicate 

less within group similarity and more similarities between groups compared.   

 

 

Comparisons R Statistic P Value 

Fungi 

Forest, Transition 0.459 0.0001 

Forest, Crop 0.54 0.0001 

Transition, Crop 0.175 0.0004 

    

Bacteria 

Forest, Transition 0.496 0.0001 

Forest, Crop 0.73 0.0001 

Transition, Crop 0.613 0.0001 

    

Animal 

Forest, Transition 0.231 0.0001 

Forest, Crop 0.273 0.0001 

Transition, Crop 0.222 0.0001 
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Table 2-2. Environmental factors with highest correlations to LH-PCR bacteria community 

analysis. Bacterial communities most correlate with levels of Mg, H, and NO3
-  

combined. 
 

BEST Analysis of Bacteria LH-PCR Fragments 

Number of Variables Percent Correlation Environmental Factors 

1 0.501  pH 

2 0.540  Mg, H 

3 0.559  Mg, H, NO
3

-   

4 0.563  Mg, H, NO
3

-  , Cation Exchange 

5 0.561  pH, Mg, H, NO
3

-  , Cation Exchange 

Average 0.545  
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Table 2-3. Environmental factors with highest correlations to LH-PCR animal community 

analysis. Animal communities best correlated with levels of organic matter, pH and NO3
-  

 

combined. 

 

BEST analysis of Animal LH-PCR fragments 

Number of Variables Percent Correlation Environmental Factors 

1 0.214 Organic Matter 

2 0.221 Organic Matter, pH 

3 0.241 Organic Matter, pH, NO
3

-   

4 0.242 Organic Matter, pH, NO
3

-  , Mg 

5 0.240 Organic Matter, pH, NO
3

-  , Mg, Cation Exchange Capacity 

Average 0.232  
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Table 2-4. Environmental factors with highest correlations to LH-PCR fungi community analysis.  

BEST Analysis of Fungi LH-PCR Fragments 

Number of Variables Percent Correlation Environmental Factors 

1 0.45 pH 

2 0.49 Organic Matter, pH 

3 0.468 Organic Matter, pH, Cation Exchange Capacity 

4 0.461 Organic Matter, pH, Cation Exchange Capacity, H 

5 0.452 Organic Matter, pH, Cation Exchange Capacity, H, Mg 

Average 0.464  
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Table 2-5.  Mean values of microbial animal community metrics richness, evenness, and 

Shannon diversity, arranged by vegetation type. 

 

 

 
Vegetation Mean  

 
Standard 

Error 

Tukey’s HSD 

significance 

level 

Richness (S) 

Crop 64.53 ± 4.367  A 

Transition 59.00 ± 4.587 AB 

Forest 49.47 ± 4.196 B 

   

 

 

 

Evenness (J) 

Crop 0.44 ± 0.023 A 

Transition 0.46 ± 0.037 A 

Forest 0.44 ± 0.024 A 

   

 

 

 

Shannon Diversity 

(H) 

Crop 1.82 ± 0.108 A 

Transition 1.71 ± 0.106 A 

Forest 1.73 ± 0.099 A 
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Table 2-6. Mean values of bacterial community metrics richness, evenness, and Shannon 

diversity, arranged by vegetation type. 

 

 
Vegetation Mean  

 
Standard 

Error 

Tukey’s HSD 

Significance 

level 

Richness (S) 

Crop 28.8 ± 0.874 B 

Transition 30.9 ± 0.928 A 

Forest 30.9 ± 0.978 A 

   

 

 

 

Evenness (J) 

Crop 0.766 ± 0.007 B 

Transition 0.762 ± 0.010 B 

Forest 0.703 ± 0.012 A 

   

 

 

 

Shannon Diversity (H) 

Crop 2.569 ± 0.021 B 

Transition 2.613 ± 0.050 B 

Forest 2.408 ± 0.055 A 
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Table 2-7.  Mean values of fungal community metrics richness, evenness, and Shannon 

diversity, arranged by vegetation type. 

 

 
Vegetation Mean  

 
Standard 

Error 

Tukey’s HSD  

Significance 

Level 

Richness (S) 

Crop 84.533 ± 2.765 A 

Transition 74.867 ± 5.469 A 

Forest 68.400 ± 5.060 A 

   

 

 

 

Evenness (J) 

Crop 0.736 ± 0.024 A 

Transition 0.789 ± 0.025 A 

Forest 0.783 ± 0.018 A 

   

 

 

 

Shannon Diversity (H) 

Crop 3.252 ± 0.089 A 

Transition 3.259 ± 0.169 A 

Forest 3.151 ± 0.157 A 
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Table 2-8. Top ten contributing bacterial OTUs per vegetation treatment. OTU number is the 

base-pair length of that particular LH-PCR amplicon.  

 

Bacterial Forest Transition Crop 

Species/OTU Contrib% Contrib% Contrib% 

311 3.75 - - 

312 - 4.99 7.42 

315 10.09 7.19 9.23 

317 16.66 15.46 14.08 

319 3.1 - - 

328 - 9.28 5.96 

329 8.29 - - 

333 - - 3.79 

339 7.75 - - 

340 - 3.59 - 

341 7.28 8.3 10.62 

343 - 4.15 6.62 

344 3.58 - - 

346 5.66 7.77 - 

348 - - 4.58 

355 - 5.36 - 

356 - - 4.52 

359 4.41 4.82 6.02 

                            Cumulative %              70.6                      70.9                        72.8 

 



44 

 

  

Table 2-9. Top ten contributing animal OTUs per vegetation treatment. OTU number is the 

base-pair length of that particular LH-PCR amplicon.  

 

Animal Forest Trans Crop 

Species/OTU Contrib% Contrib% Contrib% 

333 2.77 - - 

379 - - 1.71 

374 2.22 - - 

380 - 2.04 1.69 

381 3.42 4.01 2.43 

389 - 2.07 1.8 

408 - 2.19 - 

416 - 1.83 - 

456 16.56 11.3 - 

457 2.6 11.54 16.79 

458 2.23 - 7.24 

459 2.88 - 4.4 

460 3.63 8.38 - 

461 15.6 - 4.2 

462 - 2.75 2.65 

463 - - 2.66 

464 - 2.41 - 

466 2.31 - - 

                                 Cumulative %             54.2                     48.5                        45.6 
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Table 2-10. Top ten contributing bacterial OTUs per vegetation treatment. OTU number is the 

base-pair length of that particular LH-PCR amplicon.  

 

Fungi Forest Transition Crop 

Species/OTU Contrib% Contrib% Contrib% 

331 - 2.81 3.17 

334 - - 2.71 

335 - - 2.45 

340 - - 2.73 

341 2.68 8.18 4.97 

347 2.12 - 2.27 

351 - 2.64 - 

352 - 2.46 - 

353 2.3 - - 

354 2.39 2.18 - 

355 - 2.83 2.39 

358 2.88 2.63 - 

359 - 4.48 - 

365 2.73 2.08 - 

368 - - 2.03 

374 3.19 - - 

388 - - 2.09 

389 - 2.59 - 

391 2.91 - 2.04 

394 2.35 - - 

395 2.62 - - 

                               Cumulative %             26.2                      32.9                    26.8 
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Table 2-11. Contingency analysis of common fungal, bacterial, and animal OTU’s by vegetation 

type, weighted by abundance. Criterion for being designated as a common OTU included being 

present in all treatments in at least one sample replicate. 

 

 

  Vegetation 

Weighted Number of Common 

Taxonomic Units 

Chi Square 

P Value 

Crop 1208 
 

Fungi Transition 1047 
<.0001* 

Forest 979 
 

 

Crop 368 
 

Bacteria Transition 397 
0.4621 

Forest 391 
 

 

Crop 835 
 

Animal Transitional 764 
<0.0001* 

Forest 667 
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CHAPTER 3 – DISEASE INCIDENCE AND DETECTION OF SCLEROTIUM ROLFSII BY QUANTITATIVE 

PCR IN THREE SOIL TYPES 

1. INTRODUCTION 

Soil-borne phytopthogens are responsible for sizable reductions in crop yield annually 

(Duveiller  et al., 2007; Rovira, 1990). Species belonging to Rhizoctonia, Scelrotium, and 

Fusarium are notable examples of soil-borne pathogens which affect crop production in the 

southeastern United States (Franke et al., 1998). These fungal soil-borne pathogens are 

particularly destructive due in part to their ability to remain in soils even after treatment with 

pesticides (Neate, 1994 ). Instances of biologically-based control of these pathogens have been 

reported (Mazzola, 2004). It has been determined the microbiota of the rhizoshpere 

surrounding the plant in question may be a factor in the control of soil-borne pathogens, 

particularly soil-borne fungai (Roget, 1995). Generally, soils with high microbial diversity in their 

bacterial and fungal communities are better able to repel disease than soils with low microbial 

diversity (Gupta and Neate, 1999). It is possible that two separate mechanisms may work 

together to produce resistance to disease. First, pathogenic fungi may compete for resources 

and space with other fungi and bacteria and be indirectly limited in their growth . Secondly, 

certain species of the existing microbial community may directly act as antagonists to 

pathogenic fungi (Ristaino et al., 1991). 

Sclerotium rolfsii, also known as southern blight, is a fungal plant pathogen with an 

extensive range consisting of most warm and subtropical regions of the globe (Harlton et 

al.,1995) This soil-borne pathogen is capable of infecting a variety of important crop species 

(Pravi et al., 2014). S. rolfsii is particularly hard to be eradicated due to its ability to form 
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sclerotium which are dense protective structures and can serve as inoculum for further 

infections. In this manner, S. rolfsii populations can persist in the soil in very low concentrations 

for several seasons. Because of its impact on crop production and its difficulty of detection, 

sensitive molecular-based assays may be useful in identifying soils which harbor S. rolfsii to 

determine the appropriate management practices. 

This pilot study will attempt to answer the following questions: Can S. rolfsii innoculum 

be successfully detected by qPCR methods? What are the background levels of S. rolfsii across 

three different soil environments? Do crop, transitional, and forest soils exhibit differences in 

their resistance to inoculation? And lastly, is detection of S. rolfsii DNA by qPCR methods a good 

predictor of southern blight symptom severity? 

 

2. METHODS 

2.1 Sampling Design and Greenhouse Setup 

Soil was collected from three geographic locations: “Peter’s Farm” (32°34.784, 

082°32.313), “Honeydew Farm” (32°32.354, 081°50.053), and “Strickland Farm” (32°19.231, 

081°41.554). At each of these three sampling locations, about 25kg of soil was collected from 

three different environments representative of crop land actively in use for agricultural 

production, transitional grassland in early stages of secondary succession, and pristine 

unmanaged forest land. The 25kg of soil was divided and placed into 3L potting containers, for a 

total of 66 pots, 11 pots being assigned to each location and vegetation combination. Pots were 

arranged in the greenhouse in a completely randomized design. Better Boy F1 tomato seedlings 

were planted in each 5kg soil sample and placed in a climate controlled greenhouse at Georgia 
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Southern University under equal watering and light conditions for 6 weeks of maturation. After 

seedling maturation, 5 of the 11 pots in each location/treatment combination were inoculated 

with Sclerotium rolfsii. The remaining 6 uninoculated pots in each location/treatment 

combination served as controls. Sclerotium rolfsii was isolated from an infected tomato plant 

found at the Strickland Farm sampling location. S rolfsii was grown on approximately 300ml of 

soaked and autoclaved red wheat seed. S roflsii was allowed to develop for 2 weeks prior to 

inoculation at an incubation temperature of 37°C. Greenhouse soil was inoculated by placing 

three Sclerotium-infected red wheat seeds approximately 3 inches from the base of the tomato 

plant. Five 3-gram subsamples were taken from each pot at the end of eight weeks for analysis 

by qPCR. Visual assessment of disease progression was made on weekly intervals, along with 

tomato plant height, and leaf number. Dry above ground biomass was recorded at the data 

collection endpoint. 

2.2 DNA Extraction 

Total DNA was extracted from 0.75 grams of each soil sample using PowerMax® Soil 

DNA Isolation Kit (Mo Bio Laboratories, Inc., Carlsbad, CA). This Isolation kit was selected for its 

ability to purify very low concentrations of microbial DNA. Additionally, this preparation 

includes reagents which eliminate phenolic soil compounds such as humic acid, which are 

known to inhibit PCR. DNA was stored at -20°C. 

2.3 Determining total fungal and S. rolfsii DNA amounts using real-time quantitative PCR (qPCR) 

  qPCR assays to quantify total microbial fungi  and S. rolfsii DNA in each soil sample were 

conducted using the Mastercycler ep realplex real-time PCR system (Eppendorf North America, 

Inc., Hauppauge, NY). Primer pairs for Sclerotium rolfsii (SCR-F and SCR-R) and Fungi (NSI1, 
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58A2R) along with the intercalating dye SYBR green were used to determine the quantity of 

bacterial and fungal DNA present in each soil sample. Three technical assay replicates were 

performed for each soil sample. Standard solutions for total fungi and Sclerotium detection 

assays were created from DNA extracted from pure cultures of S. rolfsii. A Nanodrop 2000 

spectrophotometer (Thermo Fisher Scientific Inc.) was used for initial quantification of these 

standard DNA solutions. Serial dilution methods were used to create 6 standard solutions at 10, 

1, 0.1, 0.01, 0.001 and 0.0001 ng µl
-1

, diluted with ultrapure water. These DNA solutions served 

as standards for subsequent qPCR assays. Methods used were similar to quantitative PCR 

protocols outlined in previously published assessments of soil bacterial and fungal communities 

(Fierer et al. 2005). Statistical analyses including ANOVA, MANOVA, Spearman’s correlation, 

Kruskal-Wallis, and Student’s t analyses of these assays were performed in JMP statistical 

software (SAS Institute Inc.). 

2.4 Determining pathogenic fungi DNA amounts using real-time quantitative PCR (qPCR) 

The specific primer set of SCR-F(5'-CGTAGGTGAACCTGCGGA-3') and SCR-R (5'-

CATACAAGCTAGAATCCC-3') was used to amplify a 540-bp product which contains parts of the 

ITS1, ITS2 and the entire 5.8S rDNA subunit. This primer pair was designed and tested (Jeeva, 

2010) to amplify fragments unique to Sclerotium rolfsii. This primer pair was used in 

conjunction with qPCR methods outlined previously to quantify amounts of S. rolfsii DNA in all 

greenhouse samples. In addition to S. rolfsii, total fungi DNA fragments were also quantified 

using methods described in chapter 1. 

2.5. Disease assessment 
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Disease incidence and severity was determined qualitatively using a scale based on 

presenting symptoms in the host plant S. lycopersci. The scale ranged from 0 to 5, 0 being a 

plant with no symptoms of basal stem lesions or wilting leaves. Level 1 was classified as a plant 

with <20%  of leaves wilted, and/or <20% of basal stem with lesions. Level 2 included plants 

with 20-40% of leaves wilted and/or 20-40% of basal stem with lesions. Level 3 plants had 40-

60% of leaves wilted and/or 40-60% of basal stem with lesions. Plants determined to be level 4 

presented with 60-80% of leaves wilted and/or 60-80% of basal stem with lesions. Lastly, the 

most severely infected plants were designated as a 5 with >80% of leaves wilted and also 

included plants determined to be dead from disease. 

 

3. RESULTS 

3.1 Total fungal DNA Quantification 

Uninoculated forest fungal DNA concentration was significantly higher than all 

transitional and crop soils, irrespective of inoculation treatment P=0.0076 (Fig. 3-1). 

Additionally, Inoculation treatments did not differ significantly from their respective controls in 

any instance P=0.7895. 

3.2 Sclerotium DNA Quantification 

Significantly higher Sclerotium DNA concentrations were detected in the inoculated 

treatments of both forest and transition soils P=0.0003 (Fig 3-2). Higher concentrations of 

Sclerotium DNA were detected in inoculated crop soils compared to controls, though this 

difference was not significant. Background levels of Sclerotium detected in control plants did 

not differ significantly.  
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3.3 Solanum Lycopersicum growth  

Solanum lycopersicum growing in both inoculated and uninoculated crop soils had a 

significantly greater height increase during the study than plants potted in transitional or forest 

soils, P<0.0001 in all comparisons. Inoculation had no significant effect on plant height (Fig 3-3.) 

Further analysis by MANOVA revealed trends of significantly higher plant height in crop soils 

P=<.0001, and no significant effect on change in height from inoculation treatment P=0.1675 

and no interaction between vegetation type and inoculation treatment P=0.1623 (Fig. 3-4). 

Assessment of dry biomass at the conclusion of the study showed significantly higher biomass 

in both inoculated and uninoculated crop soils compared to all other treatment combinations 

P=<.0001, and no effect from inoculation treatment P=0.6638 or interaction of inoculation and 

vegetation type P=0.4897 (Fig. 3-5). 

3.4 Disease incidence 

Disease incidence of infection by S. rolfsii did not vary significantly between soil types 

P=.7916 (Table 3-1). No damage due to disease was observed in any of the control plants. 

Disease incidence level also displayed poor correlation with qPCR-detected DNA concentrations 

of S. rolfsii, Spearmans ρ= -0.2064, P=0.207 (Fig. 3-6). 

 

4. Discussion 

Uninoculated forest fungi DNA concentration was significantly higher than all fungal 

DNA concentrations of inoculated transitional and crop soils. This is congruent with qPCR data 

presented in chapter 2, which also found significantly higher fungal DNA concentrations in 

forest soils at the beginning of the field study. Inoculation treatment with S. rolfsii did not 
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significantly affect the total amount of fungal DNA detected in the soil. This indicates that the 

fungal inoculum is present in the soil at relatively minute quantities. 

As expected, significantly higher Sclerotium DNA concentrations were detected in the 

inoculated treatments of both forest and transition soils. Inoculated crop soils were found to 

have a higher mean Sclerotium DNA concentration than control crop soils, though this 

difference was not significant. Background levels of Sclerotium between control forest, 

transition, and crop soils did not differ significantly. These data support the proof of concept 

and methods by which the pathogen S. rolfsii may be detected by qPCR. However, no difference 

in the ability to suppress S. rolfsii was observed in any treatment. Previous studies involving 

container media soil in a greenhouse setting have successfully identified soils suppressive to S. 

rolfsii and other soil-borne pathogens (Gorodecki and Hadar, 1990), citing antagonistic 

microbial community members as the likely mechanism responsible for suppression. 

Both inoculated and uninoculated plants in crop soils grew significantly more than plants 

potted in transitional or forest soils. Likely this significantly higher growth in crop soils is due 

nutrient and fertilizer amendments.  Inoculation had no significant effect on plant height. This 

lack of inoculation effect on overall plant height may be due to the otherwise healthy and 

unstressed plants used in the study. 

Additionally, soil type did not significantly affect the level of southern blight symptom 

severity. In this case, no soil can be identified as being “suppressive” to S. rolfsii growth or 

southern blight disease progression. Despite differences in diversity and community identified 

in chapter 2, these soils display no difference in their ability to suppress soil borne pathogens. 

Other research has indicated that individual genera, not necessarily diversity metrics, may be 
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responsible for S. rolfsii suppression in soils. Microbes documented to be involved in S. rolfsii 

suppression include the bacteria Pseudomonas fluorescens (Ganesan and Gnanamanickam, 

1987) as well as the fungi Talaromyces flavus (Madi et al., 1997) and Trichoderma konigii 

(Tsahouridou and Thanassoulopoulos, 2002). Future study of the suppressive abilities of these 

soils may involve the simultaneous detection of a select number of these species know for their 

antagonistic action against S. rolfsii. 

Southern blight disease symptoms lack correlation with DNA concentrations of the 

causative pathogen, Sclerotium rolfsii in inoculated soils. Plants with low or no symptoms were 

associated with soils containing a wide range of S. rolfsii DNA concentrations. Plants with severe 

symptoms of southern blight had relatively low amounts of sclerotium DNA in their soils. An 

explanation for this lack of correlation may include patchy distributions of inoculum in the soil, 

leading to extreme variability in calculated DNA concentrations. Indeed, in agricultural context, 

distributions of these soil-borne pathogens, including  S. rolfsii, are highly clustered and not 

even distributed in the soil (Shew and Campbell, 1984). This spatial arrangement of S. rolfsii 

may be a significant obstacle to accurate detection of this soil-borne pathogen by molecular 

techniques. Other explanations may include strong, healthy plants, and a weak inoculum 

produced a situation where S. lycopercium had a broad range of responses to soil-borne 

disease. 

 

5. Conclusion 

It was determined that Sclerotium rolfsii can be appropriately detected in the soil by 

qPCR methods. Background levels of Sclerotium in control soils are low and do not differ 



55 

 

  

significantly between vegetation type. Crop, transitional, and forest soils did not vary in their 

ability to suppress a S. rolfsii inoculation. Sclerotium DNA concentrations lack correlation with 

southern blight disease incidence and severity. Although some plants were heavily infected 

with S. rolfsii and developed symptoms, overall inoculation treatment had little impact on plant 

growth. 
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Figure 3-1. Total fungal DNA concentrations between vegetation types and inoculation 

treatments. Bars represent one standard deviation. Values over bars represent the arithmetic 

mean. Differing letters denote significant difference of means (P=<0.05). 
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Figure 3-2. Sclerotium rolfsii DNA concentrations between vegetation types and inoculation 

treatments. Bars represent one standard deviation. Values over bars represent the arithmetic 

mean. Differing letters denote significant difference of means (P=<0.05). 
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Figure 3-3. Change in height of S. lycopersicum under different inoculation treatments and soil 

types. Bars represent one standard deviation. Values over bars represent the arithmetic mean.  

Differing letters denote significant difference of means (P=<0.05). 
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Figure 3-4. S. lycopersicum height in centimeters over time. S. lycopersicum height over seven 

weeks by mean crop, transition, and forest soil (A). S. lycopersicum height over seven weeks by 

inoculation treatment (B).  

  

 

 

 

 

 

A 

B 



60 

 

  

 

 

 

 

 

 

 

 

 
Figure 3-5. Dry-weight biomass measured at end time point. Bars represent standard deviation. 

Bars represent one standard deviation. Values over bars represent the arithmetic mean. 

Differing letters denote significant difference of means (P=<0.05). 
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Figure 3-6. Correlation of southern blight disease symptoms with DNA concentrations of the 

causative pathogen, Sclerotium rolfsii in inoculated soils.  
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Table 3-1. Average southern blight symptom severity of S. lycopersicum after inoculation with S. 

rolfsii. Symptom severity was determined qualitatively and recorded on a scale of zero to five.  

 

 

  

Disease incidence of un-

inoculated plants 

Disease incidence of inoculated 

plants  

Forest 0 1.27 

Transition 0 1.38 

Crop 0.3 0.86 
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