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ASSORTATIVE MATING IN IXODES SCAPULARIS (ACARI: IXODIDAE) TICKS? 
AND IXODES SCAPULARIS INFEST MALE DEER MORE OFTEN THAN FEMALE 

DEER AT SAVANNAH RIVER SITE, (AIKEN, SC) 
 

by 
 

JENNY DICKSON  
 

(Under the Direction of Lorenza Beati) 

ABSTRACT 

In this study we explored the hypothesis that the mitochondrial genetic diversity observed 

in Ixodes scapularis ticks in the Southeastern United States is maintained through 

assortative mating. The study of 319 couples of ticks collected in copula from deer at the 

Savannah River Site (Aiken, SC) showed that ticks assigned to mitochondrial (12SrDNA 

and d-loop genes) phylogenetic monophyletic clades do not chose their mating partner 

based on genetic similarity or genetic diversity. The genetic composition of couples did 

not differ significantly from random choice. Our data indicate that if genetic diversity is 

maintained in this tick population, this cannot be attributed to assortative mating. During 

this survey of the tick Ixodes scapularis collected from deer at the Savannah River Site 

(Aiken, SC) deer check stations, it became evident that this tick preferentially feeds on 

male deer. I. scapularis prevalence rates on male and female deer were compared and 

revealed that the sex bias was significant (p < 0.0001) and did not depend on deer weight 

(r2 = 0.143). Data also indicated that tick loads on deer were not directly related to tick 

density in the vegetation (r2 = 0.082), which is possibly due to the fact that specific sites 

where deer are killed during hunts do not always correspond to the normal deer range. 

INDEX WORDS: Assortative mating, Ixodes scapularis, male bias 
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CHAPTER 1 
 
 

Introduction: 

Ixodes scapularis, the blacklegged tick, is an obligate blood-sucking mite found 

throughout the eastern half of the United States (Brownstein et al., 2003). The tick is 

economically important as it is the vector of a number pathogenic organisms to humans 

and animals (Smith et al., 1974; Spielman et al., 1985; Steere et al., 2004; Telford et al., 

2011; Krause et al., 2013). I. scapularis adults can mate on the vegetation, but they 

mostly mate while feeding on host (Kiszewski et al. 2001). Population genetic studies of 

I. scapularis based on the analysis of mitochondrial gene sequences all concur in finding 

a genetically homogeneous population throughout the north-northeast of the tick 

distribution range (Norris et al., 1996; Qiu et al. 2002). In the Southeast, however, studies 

have revealed the occurrence of higher levels of genetic diversity. Recent studies showed 

that I. scapularis ticks are subdivided into five major clades: all are found in the 

Southeast (Southern I, II, and II and American I and II clades), and only one in the 

Northeast (American I clade) (Chan et al., unpublished data). 

The five clades can be found sympatrically in the same area (Norris et al, 1996; 

Qiu et al., 2002; Chan et al., unpublished data); therefore, the genetic differences cannot 

be accounted for by geographic separation.  Preliminary data on host-race formation, also 

show that specialization for different host-groups is not at the origin of genetic diversity 

(Griffin et al., unpublished data), as was demonstrated for other tick species (McCoy et 

al, 2005; De Meeûs et al, 2010). Among the most frequently evoked reasons for 
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maintenance of sympatric genetic structure (and also for sympatric speciation) is the 

occurrence of assortative mating (DeBarre, 2012). 

Assortative mating occurs when organisms with similar phenotypes or genotypes 

mate more often than would be expected under a model of random mating (Burley, 

1983).  For instance, similar size (Brown, 1993; McKaye, 1986; Pack et al; 2012), age 

range (Farrell et al. 2011), or vocalization (Moravec et al., 2006) can determine mate 

choice in a number of organisms.  Assortative mating can have a profound impact on 

populations’ genetics and demographics (Crespi 1989; Farrell et al. 2011; Pack et al. 

2012).  

A study conducted in Europe on Ixodes ricinus, a close relative of I. scapularis, 

found tick populations lacking heterozygosity (De Meeûs et al., 2002).  Heterozygous 

deficits can sometimes be explained by the occurrence of assortative mating in 

genetically similar individuals. If assortative mating takes place, it can create inbreeding 

in subpopulations (Wahlund effect). Kempf et al. (2009) detected a signal for assortative 

mating in the tick I. ricinus, a tick with life cycle, host association, and questing behavior 

similar to that of I. scapularis. In their study, assortative mating was found only in small 

foci within the distribution range of I. ricinus, but this focality could not be explained. 

In this study, we test the hypothesis that ticks belonging to the distinct 

mitochondrial clades mate assortatively in the southeastern United States, in order to 

establish if this could explain the important genetic diversity observed in this area. 
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Methods:  

Tick sample: 

 The Savannah River Site (SRS) Environmental Monitoring Section holds 

lottery deer hunts each October-December and we were allowed to collect ticks in 2010 

and 2011 from some of the killed deer. Each year, hunts took place in separate portions of 

the SRS compound. We had access to a total of 12 hunting events and a total of 118 deer 

(86 males and 32 females).  

Tick couples were removed from freshly killed deer by using forceps to grasp the 

tick as closely to the deer skin as possible and placing them into vials of 90% ethanol.  

In order to compare the genetic composition of the ticks collected from deer to the 

genetic composition of ticks found on the vegetation, adult I. scapularis were collected at 

each hunt site by dragging for one hour over an area of approximately 8100 m2. All ticks 

collected, both from deer and from vegetation, were identified according to taxonomic 

keys as I. scapularis (Keirans and Litwak, 1989). Tick sex and date of collection were 

recorded for each specimen. 

DNA extraction: 

A Qiagen Tissue Kit (Valencia, CA) with a 2-day DNA extraction protocol 

modified by Beati and Keirans (2001) were used to extract DNA.  On day one, ticks were 

placed in separate vials and vacuum dried for 10 minutes. A total of 180 µl of ATL buffer 

were added to each vial. Each tick was cut with a scalpel blade in such a way, that at least 

2/3 of the tick body was intact. Proteinase K (Roche Applied Science, Indianapolis, IN) 

(40 µl of a 14.3mg/ml solution) was added to each vial, which was rapidly vortexed. The 
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vials were incubated overnight at 55°-56°. On day two, 220 µl of AL buffer were added 

to each vial and vortexed. The vials were heated at 72°C for 10 minutes and 

supplemented with 250 µl of molecular grade ethanol. The cuticle of each tick was 

preserved in 70% ethanol as a morphological voucher specimen, while the lysis solution 

was transferred to a Qiagen column and centrifuged at 12,000 rpm for 1 min. Washing 

steps were performed according to the manufacturer’s instructions. DNA was eluted in 

100 µl of hot (72˜°C) molecular grade H2O and stored at 4°C until used. 

Polymerase chain reaction (PCR), and sequencing: 
All PCR were performed with 5-Prime PCR kits (Fisher Scientific, Pittsburgh, PA) in a 

Brinkman Eppendorf Master Cycler (Brinkmann Instruments, Westbury, NY). All PCR 

solutions contained 10.3µl of H2O, 2.5 µl of 10x Taq buffer (with 15mM Mg2+), 5µl of 5x 

Taq Master Enhancer, 1.5µl of 25mM Mg(OAc)2 , 0.2 µl of Taq polymerase (5U/µl), 

1.25µl of a 10pmol/µl solution of each primer, 0.5µl of a deoxinucleoside triphosphate 

mixture (10mM of each), and 2.5µl of tick DNA sample. A 350 bp fragment of the 

mitochondrial 12SrRNA of the ticks was amplified by using primers T1B and T2A (Beati 

and Keirans, 2001; Beati et al, 2012). For 12SrDNA amplification, an initial step of 

denaturation at 94°C for 5 minutes, was followed by 5 cycles of denaturation at 94°C for 

20 sec, annealing at 65°C  -2.5°C/cycle for 20 sec, and elongation at 72°C -0.8°C/cycle 

for 30 sec, and 35 cycles of denaturation at 94°C for 20 sec, annealing at 49°C for 45 sec, 

and elongation at 68°C for 30 sec. The program was completed by a 5-minute elongation 

at 68°C.  Only DNA samples positive in the 12SrRNA PCR, were used to amplify the 

mitochondrial control region (D-loop) of the same tick, by using primers DL3-IX and 
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DL4-IX (Beati et al., 2012). The amplification conditions were as follows: 94°C for 5 

minutes, followed by 30 cycles each consisting of 1 min denaturation at 94°C, 1 min 

annealing at 60°C, 1 min of extension at 72°C and a final 5 min extension at 72°C.   

The ticks showing positive results for 12SrRNA and D-loop were sent to the High 

Throughput Genomics Unit (Washington University, Seattle) for purification and 

sequencing. The two strands of each amplicon were and assembled by using Sequencher 

4.10.1 (Ann Arbor, MI).  Sequences representing the known I. scapularis clades were 

used for comparison (GenBank accession numbers not yet available). The reference 

sequences and our sequences were aligned by using MacClade 4.08 (Corvallis, OR). 

Fixed characters defining the 5 clades had previously been identified (Chan et al, 

unpublished data). These were used to assign ticks to either one of the 5 clades. In 

addition, we analyzed phylogenetically a concatenated dataset of DL and 12SrDNA gene 

fragments of the ticks collected from deer, in order to verify that the clade assignment 

was done correctly. Briefly, the DL and the 12SrDNA alignments were concatenated in 

MacClade. Identical sequences were identified in PAUP 4.0b10 (Swofford, 2000) and 

only one representative for each haplotype was kept in the data matrix. PAUP was used 

to generate a neighbor joining (NJ) tree, which was used as starting tree for a maximum 

likelihood search after a substitution model was estimated, also in PAUP. Homologous 

sequences of Ixodes affinis were used as outgroup for the analysis. 

Statistical analyses. A Wilcoxon (ranked sums) test was used to compare the 

genetic composition of ticks found in the vegetation to the genetic composition of ticks 

collected from deer. Number of female vs. male ticks in the 4 clades found questing on 

the vegetation were compared by !2 . Contingency tables were generated in Jmp v. 10, 
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(SAS, Cary, NC) and used to verify by the Pearson test if clade composition in questing 

ticks varied significantly between sites and to test if clade composition varied 

significantly by hunting event.  A contingency table listing the number of each possible 

clade combination (25 possibilities) and the Pearson test were used to verify if any of the 

combinations was significantly more frequent than others.  In order to verify whether 

assortative mating would become more evident after grouping southern ticks in a single 

cluster and American ticks in a second cluster, a contingency table with the number of 

couples matching each of the 4 possible combinations was similarly analyzed. 
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Results:  

Tick sample: 

A total of 160 (71 males and 89 females) ticks were collected from vegetation in 

the sites were deer were killed in 2010 (63 ticks; 29 males and 34 females) and 2011 (97 

ticks; 42 males and 55 females).  Deer collections, from 81 deer, yielded a total of 638 

ticks (319 couples), 199 couples in 2010 and 120 couples in 2011 (Table 1). 

Tick genotyping: After eliminating the ticks for which only one of the two genes 

could be amplified, our data matrix included 619 concatenated sequences. Identical 

sequences were eliminated resulting in a data matrix containing  230 total sequences. The 

–lnL score of the NJ tree was of 6687.55 whereas the score for the final ML tree was of 

6618.77. The tree confirmed that I. scapularis is subdivided in 5 distinct mitochondrial 

clades (shown with different colors in Fig. 1) and that the clade assignment, based on 

fixed characters of both genes was consistent and correct. Only three lineages did not fit 

in any of the clades but those corresponded to incomplete sequences.  

Of the 160 ticks collected on the vegetation, 56 (35.00%) were assigned to clade 

Am1, 20 (12.50%) to clade Am2, 23 (14.38%) to clade South1, 61 (38.13%) to clade 

South2, and 0 (0.00%) to clade South3 (Table I). Of the 638 ticks collected from deer, 

212 (33.23%) belonged to clade Am1, 42 (6.58%) to Am2, 88 (13.79%) to South1, 286 

(44.83%) to South2, and 10 (1.57%) to South 3. For both the questing and the feeding 

ticks, South2 and Am1 ticks were predominant, followed by South1 and Am2. South3 

ticks were not collected questing, and only a few of them (10 ticks) were collected from 

deer.  The percentage of the I. scapularis clades found on vegetation versus those found 

in deer hunts were comparable (Fig. 2). 
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Statistical tests: 

A !2 test showed that the numbers of male and female ticks in clades Am1, Am2, 

South1, and South2 were not significantly different (p = 0.136).  The Wilcoxon test 

showed that the genetic composition of ticks found on the vegetation did not differ 

significantly from the genetic composition of the tick sample collected from deer (p = 

0.406). The Pearson test showed no significant difference in the diversity of clades found 

at each sweep site (p =0.170), and no significant difference in the diversity of clades 

found on deer at each hunt site (p = 0.441).  

In order to determine if ticks were mating assortatively in the 2010/2011 hunt 

seasons, the observed number of couples from each possible clade combination (of a total 

of 25 possible pairs) were totaled (Fig. 3) and listed in a contingency table. The Pearson 

test showed that no combination was observed significantly more often than expected (p 

= 0.706), indicating that neither intra- nor inter-clade assortative mating were occurring.  

Another contingency table was created, after the American I and II ticks were 

clustered in a single group, as were the Southern I, II, and III (four possible clade 

pairings) (Fig. 4) to see if I. scapularis ticks were mating assortatively based on looser 

genetic similarities.  The Pearson test showed that there was no significant difference in 

the ways ticks paired (p = 0.120). 
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Discussion: 

Mitochondrial gene sequences have been used in the past, not only to investigate 

the evolutionary history (Black and Piesman, 1994; Beati & Keirans, 2001), but also to 

draw conclusions on the taxonomic status of ticks (Norris et al, 1996; Norris et al, 1997). 

In particular, Norris et al. (1996) concluded that I. scapularis was a single species based 

on 12S and 16SrDNA sequence analysis. Although there is now a large consensus in 

considering I. scapularis to be a single taxon, the fact that the genetic diversity of the tick 

is much higher in the southeastern portion of its distribution still needs to be fully 

explained. In particular, the occurrence of all known haplotypes of I. scapularis  in 

sympatry in many areas of the Southeast (Beati, unpublished data) indicates that present 

geographical isolation is not maintaining genetic diversity in the tick. Biogeographical 

hypotheses ascribing this genetic to ancient biogeographical events (glaciation in 

particular) (Qiu et al., 2002), which could have caused the tick to evolve for a long time 

in geographical refugia, are well founded. Nevertheless, genetic diversity could also be 

sustained by assortative mating.   

In this study we analyzed the genetic composition of mating couples of ticks 

collected on deer at SRS in order to investigate whether or not the observed genetic 

diversity could be ascribed to assortative mating. We also analyzed the genetic 

composition of ticks collected questing on the vegetation at approximately the same sites 

where deer were killed, in order to compare the genetic composition of the local 

population of ticks with that found feeding on deer.  Ticks were assigned to clearly 

identified mitochondrial clades based on results obtained by phylogenetic analysis of 

large samples of I. scapularis from its whole distribution range. 
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Our data indicate that the overall mitochondrial genetic structure in the local 

population of tick is fairly stable with two clades (Am1 and South2) being consistently 

predominant, followed by clades Am2 and South1 which are found in moderate numbers, 

while ticks belonging to clade South3 are only collected sporadically and, in our case, 

only from deer. The genetic composition of the populations of ticks collected from the 

vegetation at the different sites was not significantly different, nor was the composition of 

ticks collected from deer during the different hunts. However, tick densities at site J, for 

instance, was consistently lower than at other sites.  

Our data indicate that there is no evidence for assortative mating, whether with 

genetically similar or genetically different ticks in our tick couples. Mating with 

genetically similar was not more frequent than mating with genetically distinct ticks. 

Therefore, the choice of mates in I. scapularis does not appear to be genetically 

determined.  

Nevertheless, we are aware that by using mitochondrial genes for genetic 

differentiation, we are dealing with markers that are maternally transmitted and may not 

represent the whole evolutionary history and genetic structure of a diploid species. 

Mitochondrial genes are inherited maternally in a clonal fashion and are not subjected to 

recombination. They are excellent markers for the evolutionary study of 

phylogeographical or demographical events, but are not ideally suited for the study of 

taxonomic issues. Our samples should, therefore, also be studied with biparentally 

inherited makers such as nuclear genes and microsatellites, in order to further investigate 

the genetic structure of populations of I. scapularis. 
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We know that multiple paternity has been observed in other tick species (Cutullé 

et al., 2010; Ruiz-López et al, 2012) and in particular in Ixodes species (McCoy and 

Tirard, 2002; Hasle et al., 2008). If that is the case also for I. scapularis, the males we 

collected in copula from the deer may not be the only males which have mated with the 

corresponding female. If multiple mating can occur, one can imagine different possible 

outcomes: (a) only one male spermatophore succeeds in fertilizing eggs and the offspring 

has a single paternal genetic origin (sperm competition); (b) sperm from multiple males 

succeed in fertilizing eggs and the offspring is of mixed paternal origin. In the latter case, 

assortative selection can occur after mating if some eggs are more viable than others or if 

the offspring of one male has better fitness and survives through subsequent generations, 

while the offspring of a less suitable male may hatch from the eggs, but not survive. 

The possible occurrence of genetically mixed offspring from single females 

should also be investigated by using microsatellite markers. In addition, cross-mating 

experiments should be carried in order to compare the long term success of intra- versus 

inter-clade cross-breeding.  

The differences between clades and groups within clades possibly play a role in 

the ticks’ ability to carry certain pathogens (Lin et al 2005).   A prominent difference 

found between the I. scapularis in the Southeast and those in the Northeast is their 

capacity of carrying B. burgdorferi, as the northeastern region of the U.S. is responsible 

for over 80% of cases of Lyme disease in the United States (Qiu et al 2002). Therefore, 

the study of the genetic composition of tick populations and of their mating patterns can 

have an impact on our understanding of pathogen transmission mechanisms. 
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CHAPTER 2 

Introduction: 

Ixodes scapularis, commonly known as the blacklegged tick, is an economically  

important ectoparasite and vector of a number of pathogens (Smith et al., 1974; Spielman 

et al., 1985; Steere et al., 2004; Telford et al., 2011; Krause et al., 2013), including the 

causative agent of Lyme disease in the United States (Piesman and Gern, 2004; Steere et 

al., 2004).  The tick has a geographic range that extends throughout most of the eastern 

half of the United States (Keirans et al., 1996; Dennis et al., 1998; Diuk-Wasser et al., 

2006).   

In its two-year life cycle, I. scapularis goes from egg to larval, nymphal, and 

finally adult stages, with a single bloodmeal preceding each molting event. The life cycle 

can be shorter in the southeastern portion of the tick distribution, where it can be 

completed within a single year. Hosts in the Southeastern U.S. include mice, lizards, and 

birds for immatures (Bishopp and Trembley 1945; Clifford et al. 1961) and deer, cows, 

bobcats, hogs, and humans for adults (Anderson, 1989; Barbour and Fish 1993; Keirans, 

1996).  The availability of potential vertebrate hosts can have a profound impact on I. 

scapularis population densities (Oorebeek and Kleindorfer, 2008). One of the most 

prominent hosts for I. scapularis in the southeast is Odocoileus virginianus, the white-

tailed deer (Kellogg et al., 1971; Durden et al., 1991; Barbour and Fish, 1993), and the 

densities of tick populations are known to be closely related to the densities of 

populations of O. virginianus (Wilson et al. 1985, 1990). It has been shown that the 

removal of deer or acaricide treatment of deer can cause significant decrease in I. 
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scapularis population densities in nature (Wilson et al., 1988; Daniels et al. 2009; 

Stafford, 1993).  

While conducting a study on the population genetics of I. scapularis at the 

Savannah River Site (SRS) in Aiken (South Carolina), we collected and counted ticks on 

deer shot during the 2010/2011 deer hunting seasons. The hunts are organized on a yearly 

basis to control deer populations at SRS. In this study we report findings demonstrating 

that ticks in this area and in the October-December period infest preferentially male, and 

much less frequently female deer. Prevalence rates on deer were also compared to tick 

densities at the site where deer were killed. 
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Methods:  

Tick sample: 

The Savannah River Site Environmental Monitoring Section holds yearly lottery 

deer hunts during the October-December period. During the 2010-2011 hunting seasons 

we were allowed to collect ticks from some harvested deer at the SRS check stations. 

Each hunt took place in a separate portion of SRS. Records of sex, weight, killing site, 

and date were recorded by SRS personnel for each deer. 

Ticks were collected during a total of 5 hunts in 2010 and 7 hunts in 2011. 

Although our objective was to sample as many male as female deer, it became rapidly 

apparent that this would be impossible because of the marked preference for buck vs. doe 

trophies among hunters. Ticks were removed from freshly killed deer by closely 

inspecting the entire deer body and using forceps to grasp the tick as closely to the deer 

skin as possible and placing them into 90% ethanol. Date of collection, tick numbers and 

sex were recorded.  

In order to compare the density of tick populations in the vegetation with 

infestation prevalence on deer we went to each hunt site and collected ticks by dragging 

for one hour over the vegetation with a 1m2 flannel drag cloth over an area of approx. 

8100 m2. Ticks were immediately placed in vials containing 90% ethanol. All ticks 

collected, both from deer and from vegetation, were identified as I. scapularis male or 

female (Keirans and Litwak, 1989). 

Statistical methods: 

A !2 approximation was used to test whether there was a significant difference in the 

number of ticks by hunt-year. A contingency analysis of variance was conducted to 
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determine if there was a significant difference between the number of ticks found on 

female versus male deer (significance was evaluated with both the Pearson and a 

likelihood test).  In addition, in order to establish whether weight rather than sex was 

responsible for the observed differences in tick loads, the relationship between the 

number of ticks found on deer and the deer weight was evaluated through regression 

analysis. The relationship between tick prevalence on deer and tick density on the 

vegetation was also investigated by linear regression. 
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Results:  

Tick sampling: 

Collection data are listed in Table 2. A total of 118 deer, 86 males (72.9%) and 32 

females (27.1%), were inspected for the presence (prevalence) of I. scapularis. We 

collected a total of 1001 ticks of which 54.8% were females (n = 549), and 45.2% were 

males (n = 452). Of the 86 male deer, 81 (94.2%) carried ticks (showed prevalence), 

whereas only 17 of the 32 does (53.1%) showed prevalence for ticks. Of the 1001 ticks, 

964 (96.3%) were collected from male and 37 (3.7%) from female deer. The overall 

infestation intensities in males was of 11.9 ticks/deer carrying ticks (from 0 to 41 

ticks/deer), and in females of 2.2 ticks/deer carrying ticks (0 to 8 ticks/deer). Overall tick 

infestation intensities (deer not carrying ticks included) were of 13.0 ticks/buck, and 2.5 

ticks/doe in 2010, 10.1 ticks/buck and 0.9/doe in 2011, and 11.2 ticks/buck and 1.2 

ticks/doe for both years (Fig. 5).  A total of 232 ticks were collected from vegetation at 

the approximate sites were deer were killed in 2010 (63 ticks; 34 females and 29 males) 

and 2011 (169 ticks; 75 males and 94 females). The tick sex ratio in all collections was 

fairly constant and approached 1:1. Tick densities in the areas where the deer were killed 

are listed in Table 2. They varied from 0.12 to 8.27 ticks/1000m2 (average: 

2.39ticks/1000m2) depending on the collection site, with site D yielding in both years 

more ticks than any other site. 

Statistical analysis 

The !2 approximation indicated that the difference in the number of ticks collected 

in 2010 and 2011 was not statistically significant (p-value = 0.44).  The contingency 

analysis of variance revealed a significant difference between the number of ticks found 
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on female versus male deer (p-value < 0.0001 with both the Pearson and likelihood tests). 

A regression analysis showed that only ~14% of the number of ticks found on deer was 

directly related to deer weight (r2 = 0.143), thus indicating that the higher tick load found 

on male deer was not simply due to larger size and weight (Fig. 6). Linear regression also 

showed that only 2.4% (r2 = 0.024) of the number of ticks on deer was related to density 

of ticks on the vegetation. 
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Discussion: 

Our findings indicate that at SRS the tick infestation intensity on male deer in the 

October-December period is consistently more important than on female deer. Our data 

also indicate that tick infestation intensities are not simply related to deer size (weight), 

as larger males do not necessarily carry more ticks than smaller ones. In general, 

prevalence rates in our male deer sample (94.2%) is similar (74-100%) (French et al., 

1992) or slightly higher (71.3%) (Main et al, 1981) than that observed in some northern 

areas. The overall infestation prevalence in female deer was of 53.1%, which is consistent 

with data (45%) recorded in Connecticut by Main et al (1981), but lower than rates (20-

83.3%) recorded by French et al. (1992) in Wisconsin.  

Several hypotheses can be formulated in order to explain the differences in tick 

prevalence rates. First, male biases in parasitism of mammals has sometimes been shown 

to be related to the immune depression induced by male hormones (Schalk & Forbes, 

1997). Tick attachment certainly benefits from decreased host immune responses, as tick 

are also known to provoke immune depression through inoculation of a number of 

salivary immuno-modulatory molecules in order to facilitate their own feeding process 

(Wang and Nuttall, 1994; Gang et al., 2012).  Such a mechanism would, however, not 

explain why this male bias is mostly known in the southeastern states (Kollars et al., 

1997) and not in the Northeast. 

Ticks, in particular female ticks, are known to show arrestant response secretions 

produced by different groups of scent glands on the deer legs. Nevertheless, it has been 

shown that male or female deer are equally effective at eliciting this kairomonal response 

in ticks (Carroll et al. 1995; Carroll, 1998). A later study, showed that urine from 
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dominant reproductive bucks and does in oestrus elicited a similar response in ticks 

(Carroll 2000). Does, at SRS, are in oestrus in November (D’Angelo et al. 2004), a period 

which corresponds to our sampling season. As we did not record the reproductive status 

of the killed does, it is impossible for us to establish a posteriori if female deer in their 

reproductive phase were more likely to carry ticks. 

Another possible reason for finding more ticks on males versus female deer could 

be the gender-related differences in dispersal ranges.  Male deer roam further and more 

widely than female deer (Ishmael 1984; French et. al. 1992) particularly during the 

mating season.  When tick densities in the environment are moderate, it has been noted 

that more ticks are found on male deer and that this can be ascribed to their superior 

mobility (French et. al, 1992). Average adult tick density at SRS can certainly be 

considered to be low (2.39 ticks/1000m2) when compared to densities in most 

northeastern states were it can reach an average of 330 adult ticks/1000m2 (Daniels et al., 

2000). As our collection periods matched the reproductive season in deer, increased 

mobility in male deer and low tick density may account for sex biased parasitism.  

 The typical habitat of both I. scapularis and O. virginianus consists of wooded 

areas, both hardwood and pine, and areas densely covered with low-lying shrubs (Harlow 

1984; Daniels et al., 2009), making O. virginianus a readily available host in many tick 

habitats. I. scapularis, however, is known to prefer deciduous forests and to be less 

abundant in pine-dominated forests (McShea 2012). At SRS, the growth of shrub in pine 

forests is controlled through prescribed periodic burns. There is some evidence for 

variation in habitat selection in white-tailed deer being related to sexual segregation. In 

Minnesota, female deer appear to seek more open habitats during the winter months and 
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more protected habitats during the summer months (DePerno et al., 2003).  If this were 

the case at SRS, a pine-dominated forest would be perceived as an open habitat when 

compared to a undergrowth-rich deciduous forest. It would, therefore, be interesting to 

investigate whether does at SRS prefer to congregate in pine forests during the Fall-

Winter month at SRS. 

The lack of relationship between tick infestation prevalence and tick density in the 

vegetation is not surprising, as deer are often dislodged from their original home range 

during hunts even if for brief periods (Downing & McGinnes, 1976; D’Angelo et al. 

2003).  

In conclusion, I. scapularis appears to infest male deer more readily than female 

deer and this might be due a combination of factors: low tick densities, decrease in 

immune response in male deer during the mating season, wider roaming from the home 

range in males, or different preference of habitat in female deer (pine vs. deciduous 

forests). However, it must be noted, that we collected ticks from deer during a short 

period which corresponds only to the first part of the activity season of adult I. scapularis 

ticks and we can, therefore, not be sure that our data will apply to the whole seasonal 

activity peak of the tick which lasts usually until March. 
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Fig. 1 
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Figure 2. Percentages of clades making up I. scapularis populations in vegetation 
compared to percentages of clades making up the deer hunt populations.  
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Figure 3. The 319 tick couples found on deer, classified by clade. (The top represents the 
male and the bottom represents the female in each couple).  
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Figure 4. Couples grouped by American and Southern clade classifications. (The top 
represents the male and the bottom represents the female in each couple).  
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Figure 5. Average number of ticks per male vs. female deer 
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Figure 6. Regression analysis of number of ticks found on deer by deer weight. 
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