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Contact between a charged metal surface and an electrolyte implies a particular ion distribution near the charged surface,
i.e. the electrical double layer. In this mini review, different mean-field models of relative (effective) permittivity are
described within a simple lattice model, where the orientational ordering of water dipoles in the saturation regime is taken
into account. The Langevin–Poisson–Boltzmann (LPB) model of spatial variation of the relative permittivity for point-like
ions is described and compared to a more general Langevin–Bikerman (LB) model of spatial variation of permittivity for
finite-sized ions. The Bikerman model and the Poisson–Boltzmann model are derived as limiting cases. It is shown that near
the charged surface, the relative permittivity decreases due to depletion of water molecules (volume-excluded effect) and
orientational ordering of water dipoles (saturation effect). At the end, the LPB and LB models are generalised by also taking
into account the cavity field.

Keywords: charged metal surface; relative permittivity; electric double layer; finite element method; metallic electrode;
water ordering; finite-sized ions; saturation effect; excluded volume effect

1. Introduction

The functional activity of cells in contact with an implant is

determined by the physical properties of the cell membrane

(Boulbitch et al. 2001) and the material characteristics of

the implant (Gongadze et al. 2011b). The most widely used

implant material is titanium (Gongadze et al. 2011b),

because it is not rejected by the body. The interactions

between the charged metal implant surface and the

surrounding bone tissue are essential for the successful

integration of the bone implant. It was indicated recently

that the strength of interaction between a charged titanium

surface and osteoblast cells strongly depends on the

properties of the intermediate electrolyte (Teng et al. 2000;

Oghaki et al. 2001; Smith et al. 2004; Kabaso et al. 2011).

Contact between a charged metal implant or electrode

surface and an electrolyte implies a particular ion

distribution near the charged surface, i.e. the electrical

double layer (EDL) which is the subject of this work.

Helmholtz (1879) treated the double layer mathemat-

ically as a capacitor, based on a physical model in which a

layer of ions of opposite charge (counterions) with a single

shell of hydration around each ion (the so-called Helmholtz

layer) is adsorbed at the oppositely charged surface and

neutralises its charge. Gouy (1910) and Chapman (1913)

also considered the thermal motion of ions and pictured a

diffuse double layer composed of counterions attracted to

the surface and ions of the same charge (co-ions) repelled

by it, embedded in a dielectric continuum of constant

permittivity. Such a distribution of ions in the EDL can be

described within the mean-field Poisson–Boltzmann (PB)

theory (Gouy 1910; Chapman 1913; Stern 1924;

McLaughlin 1989; Safran 1994; Kralj-Iglič and Iglič

1996; Lamperski and Outhwaite 2002; Manciu and

Ruckenstein 2002; Bivas 2006; Bivas and Ermakov

2007; Bazant et al. 2009), expressing the competition

between electrostatic interactions and the configurational

entropy of ions in the solution. The Gouy–Chapman

diffuse double layer is more extended than the single

molecular Helmholtz layer.

Within the standard PB theory (Cevc 1990), the finite

size of ions is not taken into account (except by the Stern

distance of closest approach); therefore, the number

density of counterions at the charged surface may exceed

the upper value corresponding to their close packing.

Different attempts have been made to incorporate steric

effects into a modified PB theory in order to prevent the

prediction of an unrealistically high number densities of

counterions close to the charged surface.

The first attempt to include the finite size of ions in PB

theory was made by Stern (1924) who combined Helmholtz

(1879) and Gouy – Chapman models (Gouy 1910;

Chapman 1913). In its simplest version, the Stern model

considers only the finite size of the counterions whose

centres can approach the charged surface only to a certain
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distance, the so-called outer Helmholtz plane (Butt et al.

2003).

Later Bikerman (1942) proposed a modified PB model

(Bikerman model) to account for the finite size of ions and

solvent molecules. Bikerman’s modified PB equation and

the corresponding Fermi–Dirac-like distribution of ions has

been later derived and justified using other different

methods (Grimley and Mott 1947; Grimley 1950;

Freise 1952; Dutta and Sengupta 1954; Eigen and Wicke

1954; Wiegel and Strating 1993; Kralj-Iglič and Iglič 1996;

Lamperski and Outhwaite 2002). Among others,

Freise (1952) introduced the finite size of ions by a

pressure-dependent potential, while Eigen and Wicke

(1954) used a thermodynamic approach. More recently,

Bikerman’s predictions have been reformulated within the

PB theory based on a lattice statistics model and density

functional theory (Kralj-Iglič and Iglič 1996). The finite size

of ions has also been described by other density functional

approaches (Trizac and Raimbault 1999; Barbero et al.

2000) and by considering the ions and solvent molecules as

hard spheres (Lamperski and Outhwaite 2002; Biesheuvel

and van Soestbergen 2007). Also Monte Carlo simulations

are widely used in order to describe the finite-sized

counterions (Biesheuvel and van Soestbergen 2007;

Tresset 2008; Ibarra-Armenta et al. 2009; Zelko et al. 2010).

An oft-stated assumption in most PB models is that the

relative permittivity in the electrolyte is constant

(McLaughlin 1989; Cevc 1990; Hianik and Passechnik

1995; Lamperski and Outhwaite 2002; Butt et al. 2003).

But actually, close to the charged surface the water dipoles

cannot move as freely as further away from it. Besides, due

to accumulation of counterions near the charged metal

surface, the water molecules are partially depleted from

this region (see e.g. Gruen and Marčelja 1983; Butt et al.

2003; Iglič et al. 2010; Gongadze et al. 2011a, 2011c).

In addition, the dipole moment vectors of water molecules

at the charged metal surface are, due to the strong electric

field of the charged surface, partially oriented towards the

surface, while all orientations of water dipoles further

away from the charged surface are equally probable.

The water orientation near the charged membrane surface

is important for many biological processes such as binding

of ligands to active sites of enzymes, transport of ions

through channel proteins or adhesion of cells to an implant

surface (McLaughlin 1989; Cevc 1990; Israelachvili and

Wennerström 1996; Butt et al. 2003; Arsov et al. 2009;

Gongadze et al. 2011a, 2011b; Kabaso et al. 2011).

As shown in the past, the properties of the EDL may be

influenced by the ordering of water molecules in the region

of the EDL (Gruen and Marčelja 1983; Outhwaite 1983;

Cevc 1990; Coalson and Duncan 1996; Israelachvili and

Wennerström 1996; Butt et al. 2003; Manciu and

Ruckenstein 2004; Arsov et al. 2009) and the depletion

of water molecules (Gongadze et al. 2011a). Close to the

charged surface the orientation of water molecules may

result in spatial variation of permittivity (Outhwaite 1976;

Gongadze et al. 2011a, 2011b; Butt et al. 2003). However,

in the absence of an explicit consideration of the

orientational ordering of water molecules, the assumption

of constant permittivity is largely a consequence of the

constant number of water molecules in PB theory.

Considering this effect, Outhwaite developed a modified

PB theory of the EDL composed of a mixture of hard

spheres with point dipoles and finite size ions (Outhwaite

1976, 1983). The problem was also considered within

lattice statistics (Iglič et al. 2010; Gongadze et al. 2011a).

In this mini review, we describe the mean-field density

functional theory of spatial variation of permittivity of an

electrolyte solution in contact with a charged surface by

taking into account the orientational ordering of water

molecules within the lattice statistical mechanical

approach, assuming that ions and solvent molecules

occupy sites in a square lattice. In the model, the relative

permittivity is consistently related to the spatial distri-

bution of electric field strength and the distribution of ions.

The finite volume of ions and water molecules (Lamperski

and Outhwaite 2002; Iglič et al. 2010) in the electrolyte

solution is taken into account. Accordingly, the number

density of water is not constant in the whole electrolyte

solution (Iglič et al. 2010; Gongadze et al. 2011a).

In the present article, we compare the predictions of the

mean-field lattice EDL model considering the orientational

ordering of water molecules (Figure 1) in the Langevin–

Bikerman (LB) model for finite-sized ions and in the

Langevin–Poisson–Boltzmann (LPB) model for point-

like ions. The Bikerman model for finite-sized ions and

zero dipole moments of water molecules (Bikerman 1942)

is derived as a limiting case of the LB model. The interplay

Figure 1. Schematic figure of an EDL near a negatively charged
planar surface. The water dipoles in the vicinity of the charged
surface are partially oriented towards the surface.
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between water ordering and the volume-excluded effect in

the decrease of permittivity near the charged surface is

discussed. The dependence of the relative permittivity and

the electric potential on the distance from the charged

plane in the vicinity of charged surface is compared in

different models. Comparison between the predictions of

both Langevin models and the Stern model is discussed. In

the LB and LPB models (Iglič et al. 2010; Gongadze et al.

2011a), the cavity and reaction field as well as the

structural correlations between water dipoles (Onsager

1936; Kirkwood 1939; Booth 1951; Fröhlich 1964; Franks

1972) are not taken into account. Therefore, at the end of

the article, generalisation of the LPB and LB models by

taking into account the cavity field in the saturation regime

(Booth 1951) (i.e. at high values of electric field strength)

is presented within the Booth–Poisson–Boltzmann (BPB)

model for point-like ions and within the modified

Langevin–Bikerman (MLB) model for finite-sized ions

(Gongadze and Iglič 2012).

2. LB model considering the finite size of ions and

spatial variation of the relative permittivity

We consider a planar uniformly charged surface in contact

with a solution of monovalent ions (counterions and co-

ions) and water dipoles of finite size. The charged surface

bears a charge with a surface charge density s. The x-axis

of the Cartesian coordinate system points in a direction

from the charged plane to the bulk solution (Figure 1).

The water molecules are assumed to have non-zero dipole

moments (p). A lattice with an adjustable lattice site is

introduced in order to describe the system of water dipoles

and salt ions. All lattice sites are occupied by ions or water

dipoles. For the sake of simplicity, we assume that a single

lattice site is occupied by only one ion or water. No empty

lattice sites are allowed in the model. If the volume of one

lattice site is closer to the volume of a single water

molecule than to the volume of a single ion, this means that

we allow partial overlapping of the ions at number

densities which are close to the saturation densities of the

ions. Oppositely, if the volume of the lattice site is closer to

the volume of a single ion, this means the water dipole

describes a cluster of water molecules.

The free energy of the system (functional) F can be

written as

F

kT
¼

b10

2

ð
f0
� �2

dV

þ

ð
nþðxÞln

nþðxÞ

n0

þn2ðxÞln
n2ðxÞ

n0

þnwðxÞln
nwðxÞ

n0w

� �
dV

þ

ð
nwðxÞkPðvÞlnPðvÞlvdV

þ

ð
lðxÞ ns2nwðxÞ2nþðxÞ2n2ðxÞ

� �
dV ; ð1Þ

where the first term in Equation (1) corresponds to the

energy of the electrostatic field. Here, 10 is the

permittivity of free space, kT is the thermal energy,

b ¼ 1=kT , fðxÞ is the electric potential, n0 is the bulk

number density of ions, f0 is the first derivative of f with

respect to x, dV ¼ Adx is the volume element with

thickness dx, where A is the area of the charged surface.

The second line in Equation (1) accounts for the

contribution to the free energy due to configurational

entropy of the positive and negative salt ions (see

Appendix), nþ and n2 are the number densities of

positively and negatively charged ions, respectively

(taking into account nwðxÞ ¼ ns 2 nþðxÞ2 n2ðxÞ), nw is

the number density of water dipoles, ns is the number

density of lattice sites, n0 is the bulk number density of

positively and negatively charged ions, while n0w is the

bulk number density of water dipoles. We assume

fðx!1Þ ¼ 0. The third line of Equation (1) accounts

for the orientational contribution of water dipoles to the

free energy. PðxÞ is the probability that the water dipole

located at x is oriented at an angle v with respect to the

normal to the charged surface, i.e. v is the angle between

the dipole moment vector pðxÞ and the vector 7f=j7fj.
Here, averaging over all angles, v is defined as

kFðxÞlv ¼
1

4p

ð
Fðx;vÞdV; ð2Þ

where dV is the element of solid angle 2psinv dv.

The last line in Equation (1) is the constraint due to the

finite size of particles within lattice statistics (Kralj-Iglič

and Iglič 1996):

ns ¼ nwðxÞ þ nþðxÞ þ n2ðxÞ; ð3Þ

imposing the condition that each site of the lattice is

occupied by only one particle (co-ion, counterion or

water), lðxÞ is the local Lagrange parameter, ns ¼ 1=a3,

where a is the width of a single lattice site. In bulk

solution, Equation (3) transforms into:

ns ¼ n0w þ n0 þ n0; ð4Þ

where n0w is the bulk number density of water dipoles.

In the limit of small nþðxÞ, n2ðxÞ and n0, everywhere in the

solution the configurational entropy of ions (the second

line in Equation (1)) transforms into:

Fconf

kT
ø
ð

nþðxÞln
nþðxÞ

n0

þ n2ðxÞln
n2ðxÞ

n0

�

2ðnþðxÞ þ n2ðxÞÞ2 2n0

�
dV : ð5Þ

At any position x we require the normalisation condition:

kPðx;vÞlv ¼ 1 ð6Þ
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to be fulfilled. The above expression for the free energy

can be rewritten in the form:

F

kT
¼

b10

2

ð
f0
� �2

dV

þ

ð
nþðxÞln

nþðxÞ

n0

þ n2ðxÞln
n2ðxÞ

n0

� �
dV

þ

ð �
nðx;vÞln

nðx;vÞ

n0w

�
v

dV

þ

ð
lðxÞ ns 2 knðx;vÞlv 2 nþðxÞ2 n2ðxÞ

� �
dV ;

ð7Þ

where the distribution function of water dipoles nðx;vÞ is

defined as:

nðx;vÞ ¼ nwðxÞPðx;vÞ; ð8Þ

and where the validity of Equation (6) was taken into

account in the third line of Equation (7), as well as in the

fourth line of Equation (7) where

knðx;vÞlv ¼ knwðxÞPðx;vÞlv ¼ nwðxÞkPðx;vÞlv ¼ nwðxÞ:

ð9Þ

In most EDL models, the relative permittivity is

taken into account a priori rather than deriving it as in the

present work. For this purpose, the average micro-

scopic volume charge density rðxÞ should be considered

by including the contribution of the local net ion charges

and the dipole moments, presented by the polarisation P

(see e.g. Evans and Wennerström 1994; Jackson 1999):

rðxÞ ¼ e0ðnþðxÞ2 n2ðxÞÞ2
dP

dx
: ð10Þ

The polarisation PðxÞ is given by

PðxÞ ¼ nwðxÞkpðx;vÞlB; ð11Þ

where p is the water dipole moment, angle v describes the

orientation of the dipole moment vector with respect to

vector 7f=j7fj and kpðr;vÞlB is its average (at coordinate

x) over the angle distribution in thermal equilibrium. In

our case s , 0; therefore, the projection of polarisation

vector P on the x-axis points in the direction from the

bulk to the charged surface. Hence PðxÞ is considered

negative. According to the Boltzmann distribution law

(Safran 1994), the relative probability of finding a water

dipole in an element of solid angle dV ¼ 2psinv dv is

proportional to the Boltzmann factor exp ð2Wd=kTÞ,
where

Wd ¼ 2p�E ¼ p�7f ¼ p0jf
0jcosðvÞ; ð12Þ

is the energy of the water dipole p in the electric field

E ¼ 27f, p0 is the magnitude of the water dipole moment

and v is the angle between the dipole moment vector p and

the vector 7f=j7fj (i.e. the x-axis in our case of negative

s). Hence:

kpðx;vÞlB ¼

Ð p
0
p0 cosv exp ð2p0Eb cosðvÞÞdVÐ p

0
exp ð2p0Eb cosðvÞÞdV

¼ 2p0L p0Eb
� �

;

ð13Þ

where p0 is the magnitude of the water dipole moment and

E ¼ jf0j is the magnitude of the electric field strength. For

s , 0, it follows that E ¼ jf0j ¼ f0. The function

LðuÞ ¼ ðcothðuÞ2 1=u) is the Langevin function.

The Langevin function Lðp0EbÞ describes the average

magnitude of the water dipole moments for given EðxÞ.

In our derivation, we assume azimuthal symmetry, i.e. we

assume that for given v the dipole moment vector p orients

itself uniformly around the x-axis.

In thermal equilibrium F adopts a minimum with

respect to the functions nþðxÞ, n2ðxÞ and nðx;vÞ. The results

of the variational procedure are (Iglič et al. 2010):

nþðxÞ ¼ n0e2e0fbþlðxÞ; ð14Þ

n2ðxÞ ¼ n0ee0fbþlðxÞ; ð15Þ

nðx;vÞ ¼ n0we2p0EbcosvþlðxÞ: ð16Þ

Inserting Equations (14)–(16) into the constraint (3) and

taking into account nwðxÞ ¼ knðx;vÞlv (Equation (9))

yields the local Lagrange parameter lðxÞ:

elðxÞ ¼
ns

H ; ð17Þ

where the function H is related to the finite particle size:

Hðf;EÞ ¼ 2n0 cosh ðe0fbÞ þ
n0w

p0Eb
sinh ðp0EbÞ: ð18Þ

In the above derivation of lðxÞ we took into account:

ke2p0Eb cosvlv ¼
2p
Ð 0

p
dðcosvÞe2p0Eb cosv

4p

¼
1

p0Eb
sinh ðp0EbÞ:

ð19Þ

Using Equations (9) and (16), we get the following

expression for the number density of water dipoles

nwðxÞ:

nwðxÞ ¼ knðx;vÞlv ¼ n0welke2p0Eb cosvlv: ð20Þ
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Taking into account Equations (17)–(19) it follows

from Equations (14), (15) and (20) that:

nþðxÞ ¼ n0e2e0fb
ns

Hðf;EÞ
; ð21Þ

n2ðxÞ ¼ n0ee0fb
ns

Hðf;EÞ
; ð22Þ

nwðxÞ ¼
n0wns

Hðf;EÞ

1

p0Eb
sinh ðp0EbÞ: ð23Þ

Combining Equations (11), (13) and (23) yields the

polarisation:

PðxÞ ¼ nwðxÞkpðr;vÞlB

¼ 2
n0wns

Hðf;EÞ

1

Eb
sinh ðp0EbÞL p0Eb

� �
:

ð24Þ

Using the definition

F ðuÞ ¼ LðuÞ sinh u

u
: ð25Þ

Equation (24) can be rewritten as:

PðxÞ ¼ 2p0n0wns

F p0Eb
� �
Hðf;EÞ

: ð26Þ

Using Equation (26) and the distribution functions (21)

and (22), the expression for the average microscopic

volume charge density of electrolyte solution (Equation

(10)) reads:

rðxÞ ¼ 22e0n0ns

sinh e0fb

Hðf;EÞ
þ n0wp0ns

d

dx

F ðp0EbÞ

Hðf;EÞ

� �
:

ð27Þ

Inserting the volume charge density (27) into the

Poisson equation (Jackson 1999)

f00 ¼ 2
rðxÞ

10

; ð28Þ

where f00 is the second derivative of f with respect to

x, we get:

f00 ¼
2e0n0ns

10

sinh ðe0fbÞ

Hðf;EÞ
2

n0wnsp0

10

d

dx

F ðp0EbÞ

Hðf;EÞ

� �
:

ð29Þ

The differential equation (29) has two boundary

conditions, where the first is obtained by integration

of the differential equation (29):

f0ðx ¼ 0Þ ¼ 2
s

10

2
n0wnsp0

10

F ðp0EbÞ

Hðf;EÞ

				
x¼0

: ð30Þ

Here, the condition of electro-neutrality of the whole

system was taken into account. The second boundary

condition is:

f0ðx!1Þ ¼ 0: ð31Þ

Equations (29) and (30) can be rewritten in more

general form as (Iglič et al. 2010)

72fðrÞ ¼
2e0n0ns

10

sinh ðe0fbÞ

Hðf;EÞ
2

n0wnsp0

10

7� n
F ðp0EbÞ

Hðf;EÞ

� �
;

ð32Þ

7fjr¼rs
¼ 2

s

10

n2 n
n0wnsp0

10

F ðp0EbÞ

Hðf;EÞ

				
r¼rs

; ð33Þ

where n ¼ 7f=j7fj ¼ 7f=E. Equation (32) may be

further rearranged as:

7�½107fðrÞ� þ n0wnsp07� n
F ðp0EbÞ

Hðf;EÞ

� �

¼ 2e0n0ns

sinh ðe0fbÞ

Hðf;EÞ
;

ð34Þ

7� 10 1 þ
n0wnsp0

10

1

E

F ðp0EbÞ

Hðf;EÞ


 �
7fðrÞ

� �

¼ 2e0n0ns

sinh ðe0fbÞ

Hðf;EÞ
:

ð35Þ

The above Equation (35) can be finally written in the

LB form of the Poisson equation as (Gongadze et al.

2011a, 2011b)

7�½101rðrÞ7fðrÞ� ¼ 2rfreeðrÞ; ð36Þ

where rfreeðrÞ is the macroscopic (net) volume charge

density of co-ions and counterions (see also Equations

(21) and (22)):

rfreeðrÞ ¼ e0nþðrÞ2 e0n2ðrÞ ¼ 22e0nsn0

sinh ðe0fbÞ

Hðf;EÞ
;

ð37Þ

while 1rðrÞ is the relative permittivity of the electrolyte

solution in contact with the charged surface:

1rðrÞ ¼ 1 þ n0wns

p0

10

F ðp0EbÞ

EHðf;EÞ
: ð38Þ

The above expression for 1rðrÞ (Equation (38)) is

consistent with the usual definition of relative permittivity

(Gongadze et al. 2010, 2011a):

1rðrÞ ¼ 1 þ
jPj

10E
¼ 1 þ n0wns

p0

10

F ðp0EbÞ

EHðf;EÞ
; ð39Þ
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where P is the polarisation vector. Also the boundary

condition (33) can be further rearranged as follows:

7fjr¼rs
þn

n0wnsp0

10

F ðp0EbÞ

Hðf;EÞ

				
r¼rs

¼ 2
s

10

n; ð40Þ

7fjr¼rs
1 þ

n

7f

n0wnsp0

10

F ðp0EbÞ

Hðf;EÞ

				
r¼rs

" #
¼ 2

s

10

n;

ð41Þ

7fjr¼rs
1 þ n0wns

p0

10

F ðp0EbÞ

EHðf;EÞ

				
r¼rs

" #
¼ 2

s

10

n: ð42Þ

Using the definition of the relative permittivity (Equation

(38)), the above boundary condition can be finally

written as

7fjr¼rs
1rðr ¼ rsÞ ¼ 2

s

10

n ð43Þ

or

7fðr ¼ rsÞ ¼ 2
sn

101rðr ¼ rsÞ
: ð44Þ

The second boundary condition is:

fðr!1Þ ¼ 0: ð45Þ

In this paper, the LB Equation (37) was solved

numerically for planar geometry using the finite element

method (FEM) within the Comsol Multiphysics 3.5a

Software program package (COMSOL AB, Stockholm,

Sweden). The space dependence of 1rðrÞ (Equation (38))

in Equation (36) was taken into account in an iterative

procedure, where the initial value of 1rðrÞ is constant

equal to the permittivity of the bulk solution. The

boundary conditions (44) and (45) are taken into

account.

Figure 2 shows the calculated spatial dependence of

1rðrÞ for three values of the surface charge density s. The

decrease in 1rðrÞ towards the charged surface for larger

values of jsj is a consequence of the increased

orientational ordering of water dipoles (saturation effect)

and the increased depletion of water molecules (Figure 3)

near the charged surface due to accumulation of counter-

ions (Figure 3).

The distribution functions (21)–(23) can also be

derived without minimisation of the system free energy by

using only Boltzmann factors within lattice statistics

(Gongadze et al. 2011c). Here again the finite size of

molecules is considered by assuming that ions and water

dipoles are distributed in a lattice, where each lattice site is

occupied by only one of the three molecular species

(cations, co-ions and water molecules).

Since in the bulk solution, i.e. far away from the

charged surface, the number densities of water molecules

(n0w), counterions (n0) and co-ions (n0) are constant, their

number densities can be expressed in a simple way by

calculating the corresponding probabilities that a single

lattice site is occupied by one of the three particle types in

the electrolyte solution (counterions, co-ions and water

molecules):

nþðx!1Þ ¼ n2ðx!1Þ ¼ ns

n0

n0 þ n0 þ n0w

; ð46Þ

nwðx!1Þ ¼ ns

n0w

n0 þ n0 þ n0w

; ð47Þ

where ns ¼ 2n0 þ n0w as defined before (see Equation

(4)). Closer to the charged surface, the number densities of

ions and water molecules are influenced by the charged

surface so the probabilities that the single lattice site is

occupied by one of the three kinds of particles should be

corrected by the corresponding Boltzmann factors

(Gongadze et al. 2011c):

nþðxÞ ¼ ns

n0e2e0fb

n0ee0fb þ n0e2e0fb þ n0wke2p0E cosvblv
; ð48Þ

n2ðxÞ ¼ ns

n0ee0fb

n0ee0fb þ n0e2e0fv þ n0wke2p0E cosvblv
;

ð49Þ

nwðxÞ ¼ ns

n0wke2p0E cos ublv
n0ee0fb þ n0e2e0fv þ n0wke2p0E cosvblv

; ð50Þ
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Figure 2. Relative permittivity 1r (Equation (38)) as a function
of the distance from the charged surface x within the LB
model for finite-sized ions. Three values of surface charge
density were considered: s ¼ 20:1 As=m2, s ¼ 20:2 As=m2

and s ¼ 20:4 As=m2. Equation (36) was solved numerically as
described in the text. The dipole moment of water p0 ¼ 4:794 D,
bulk concentration of salt n0=NA ¼ 0:15 mol=l, bulk
concentration of water n0w=NA ¼ 55 mol=l, where NA is the
Avogadro number.
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where ke2p0E cosvblv (Equation (19)) is the dipole

Boltzmann factor after rotational averaging over all

possible angles v. Using the definition of H (Equation

(18)), we can rewrite Equations (48)–(50) in the form of

Equations (21)–(23).

3. Bikerman and PB models

In the limit of p0 ! 0, the particle distribution func-

tions (21) – (23) transform into Fermi – Dirac-like

distributions in the form (Bikerman 1942; Grimley and

Mott 1947; Grimley 1950; Freise 1952; Dutta and

Sengupta 1954; Eigen and Wicke 1954; Wiegel and

Strating 1993; Iglič and Kralj-Iglič 1994; Kralj-Iglič

and Iglič 1996):

nþðxÞ ¼
n0ns

n0w

e2e0fb

1 þ ð2n0=n0wÞ cosh ðe0fbÞ
; ð51Þ

n2ðxÞ ¼
n0ns

n0w

ee0fb

1 þ ð2n0=n0wÞ cosh ðe0fbÞ
; ð52Þ

nwðxÞ ¼
ns

1 þ ð2n0=n0wÞ cosh ðe0fbÞ
; ð53Þ

while the LB equation for finite-sized ions (Equation (29))

transforms into the Bikerman equation:

f00 ¼
2e0n0ns

1r10n0w

sinh ðe0fbÞ

1 þ ð2n0=n0wÞ cosh ðe0fbÞ
; ð54Þ

where we made the transformation 10 ! 1r10 with

1r ¼ 78:5. In the limit of small e0fb, where the finite

size of molecules can be neglected, the above Fermi–

Dirac-like distributions of ions and water molecules yield

Boltzmann distribution functions for ions and a constant

distribution for water molecules (Gouy 1910; Chapman

1913; McLaughlin 1989; Cevc 1990; Bivas 2006):

nþðxÞ ¼ n0e2e0fb; ð55Þ

n2ðxÞ ¼ n0ee0fb; ð56Þ

nwðxÞ ¼ n0w; ð57Þ

while Equation (54) transforms into the PB equation

(Gouy 1910; Chapman 1913; McLaughlin 1989):

f00 ¼
2e0n0

1r10

sinh ðe0fbÞ; ð58Þ

where we took into account n0 ,, ns and therefore

ns < n0w.

4. LPB model considering spatial variation of the

relative permittivity for point-like ions

In this section, we describe the LPB mean-field model of

the EDL for point-like ions, where the spatial variation

of permittivity (i.e. orientational ordering of water

dipoles) is taken into account. Again we consider a

planar-charged surface with surface charge density s in

contact with a water solution of monovalent ions

(counterions and co-ions). Unlike in Section 2, the finite

volume of ions and water in the electrolyte solution is

not taken into account. Accordingly, the volume density

of water is constant in the whole electrolyte solution

(Equation (57)) (Kralj-Iglič and Iglič 1996), while the

configurational entropy of the ions can be expressed by

Equation (5). Therefore, the free energy of the system F
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Figure 3. The relative number density of counter ions ðnþ=nsÞ and
water Langevin dipoles ðnw=nsÞ as a function of the distance
from the charged surface x (calculated using Equations (21)
and (23), respectively) within the LB model for finite-sized ions.
Three values of surface charge density were considered:
s ¼ 20:1 As=m2, s ¼ 20:2 As=m2 and s ¼ 20:3 As=m2.
Equation (36) was solved numerically as described in the
text. The other values of the model parameters are the same as in
Figure 2.
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can be written as (see also Equation (1))

F

kT
¼

b10

2

ð
f0
� �2

dV

þ

ð
nþðxÞln

nþðxÞ

n0

2 ðnþðxÞ2 n0Þ

�

þ n2ðxÞln
n2ðxÞ

n0

2 ðn2ðxÞ2 n0Þ

�
dV

þ

ð
n0wkPðx;vÞlnPðx;vÞlvdV

þ

ð
hðxÞn0w kPðx;vÞlv 2 1

� �� �
dV ;

ð59Þ

where n0w is the constant number density of water

dipoles. The first term in Equation (59) corresponds to

the energy of the electrostatic field. The second and the

third line in Equation (59) account for the free energy

contribution due to the configurational entropy of

counterions and co-ions (Equation (5)). Again we

assume fðx!1Þ ¼ 0. The fourth line in Equation

(59) accounts for the orientational contribution of water

dipoles to the free energy. Pðx;vÞ is the probability that

the water dipole located at x is oriented at an angle v

with respect to n ¼ 7f=j7fj. The last line is the local

constraint for the orientation of water dipoles valid at

any position x (Equation (6)). The results of the variation

of the above free energy give the Boltzmann

distributions for counterions and co-ions:

nþðxÞ ¼ n0 exp ð2e0fbÞ; ð60Þ

n2ðxÞ ¼ n0 exp ðe0fbÞ; ð61Þ

and the orientational probability density:

Pðx;vÞ ¼ LðxÞ exp ð2p0EbÞ; ð62Þ

where LðxÞ is a constant for given x. According to

Equation (62), the polarisation value (Equation (11)) can

be calculated as follows:

PðxÞ ¼ n0wkpðx;vÞlB ¼ n0w

Ð p
0
p0cosvPðx;vÞ2psinv dvÐ p

0
Pðx;vÞ2psinv dv

¼ 2n0wp0L p0Eb
� �

:

ð63Þ

The Langevin function Lðp0EbÞ describes the average

magnitude of the water dipole moments at given x. In

our derivation, we assumed an azimuthal symmetry.

Inserting the Boltzmann distribution functions of ions

(Equations (60) and (61)) and the expression for

polarisation (Equation (63)) into Equation (10), we get

the expression for the volume charge density in an

electrolyte solution:

rðxÞ ¼ 22e0n0 sinh e0fbþ n0wp0

d

dx
Lðp0EbÞ
� �

: ð64Þ

Inserting the above expression for volume charge density

rðxÞ (Equation (64)) into the Poisson Equation (Equation

(28)), we get the LPB equation for point-like ions

(Gongadze et al. 2010; Gongadze et al. 2011a):

f00 ¼
1

10

2e0n0 sinh e0fb2 n0wp0

d

dx
Lðp0EbÞ
� �
 �

:

ð65Þ

The LPB differential equation for point-like ions (65) is

subject to two boundary conditions. The first is obtained

by integrating the differential equation (65):

f0ðx ¼ 0Þ ¼ 2
s

10

2
n0wp0

10

Lðp0EbÞjx¼0: ð66Þ

The condition requiring electro-neutrality of the whole

system was taken into account in the derivation of

Equation (66). The second boundary condition is (31).

Similarly as we did in the case of the LB model for

finite-sized ions, also Equations (65) and (66) can be

rewritten in the more general form of the LPB equation

as

7�½101rðrÞ7fðrÞ� ¼ 2rfreeðrÞ; ð67Þ

where rfreeðrÞ is the macroscopic (net) volume charge

density of co-ions and counterions (see also Equations

(60) and (61)):

rfreeðrÞ ¼ 2e0nþðrÞ2 e0n2ðrÞ ¼ 22e0n0 sinh ðe0fbÞ;

ð68Þ

and 1rðrÞ is the relative permittivity of the electrolyte

solution in contact with the charged surface:

1rðrÞ ¼ 1 þ
n0wp0

10

Lðp0EbÞ

E
: ð69Þ

The corresponding boundary condition at the charged

surface is

7fðr ¼ rsÞ ¼ 2
s n

101rðr ¼ rsÞ
; ð70Þ

where the relative permittivity 1rðrÞ is defined by

Equation (69). The second boundary condition is

fðr!1Þ ¼ 0: ð71Þ

The above-defined relative permittivity 1rðrÞ is consistent

with the definition (Gongadze et al. 2010; Gongadze et al.

2011a):

1r ¼ 1 þ
jPj

10E
¼ 1 þ

n0wp0

10

Lðp0E=kTÞ

E
; ð72Þ

where P is the polarisation. Equation (69) describes the

dependence of the relative permittivity 1r on the

magnitude of the electric field strength E calculated
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within the presented LPB model which takes into

account the orientational ordering of water dipoles near

the charged surface (Figure 1). The finite size of ions is

not taken into account in Equation (69).

The LPB Equation (37) was solved numerically for

planar geometry using the FEM within the Comsol

Multiphysics 3.5a Software program package as already

described above. The space dependence of 1rðrÞ (Equation

(69)) in Equation (67) was taken into account in an

iterative procedure, where the initial value of 1rðrÞ is

constant and equal to the permittivity of the bulk solution.

The boundary conditions (70) and (71) are taken into

account.

Figure 4 shows the spatial dependence of 1rðrÞ

calculated within the LPB model for point-like ions

(Equation (69)) using two values of the surface charge

density s. The decrease in 1r towards the charged surface

is now a consequence of the increased orientational

ordering of water dipoles near the charged surface only.

Therefore, it is less pronounced than in the case of the LB

model for finite-sized ions (Figure 2), where the depletion

of water molecules near the charged surface additionally

decreases 1rðrÞ.

For p0Eb , 1, we can expand the Langevin function

in Equation (72) into a Taylor series up to the cubic term:

LðuÞ < u=3 2 u3=45 to get:

1r ø 1 þ
n0wp

2
0b

310

2
n0wp

2
0b

4510

p0Eb
� �2

: ð73Þ

It can be seen in Equation (73) that 1r decreases with

increasing magnitude of electric field strength E. Since the

value of E increases towards the charged surface (see e.g.

McLaughlin 1989), 1r decreases towards the charged

surface. It is therefore plausible that due to preferential

orientation of water dipoles in the close vicinity of the

charged surface, the relative permittivity of the electrolyte

1r near the charged surface is reduced relative to its bulk

value as shown in Figure 4.

In the approximation of a small electrostatic energy

and small energy of dipoles in the electric field compared

to thermal energy, i.e. small e0fb and small p0Eb, also the

relative permittivity within the LB model for finite-sized

ions (Equation (38)) can also be expanded into a Taylor

series to get:

1r ø 1 þ
nsp

2
0b

310

2
nsp

2
0b

4510

p0Eb
� �2

2
ns

n0w

n0p
2
0b

310

e0fb
� �2

:

ð74Þ

Assuming ns < n0w it follows from Equation (74) that:

1r ø 1 þ
n0wp

2
0b

310

2
n0wp

2
0b

4510

p0Eb
� �2

2
n0p

2
0b

310

e0fb
� �2

:

ð75Þ

In the limit of vanishing electric field strength (E! 0) and

zero potential (f! 0), Equations (73) and (75) predict:

1r ø 1 þ
n0wp

2
0b

310

: ð76Þ

5. Comparison of LPB and LB models

Comparison of the approximative expression for the

relative permittivity 1r, calculated within the LB model for

finite-sized ions (Equation (75)) and within LPB theory for

point-like ions (Equation (73)), we can see that the first

three terms in the expansions are equal in both models.

The third term represents the effect of orientation of water

molecules in the electric field near the charged membrane

surface. The fourth term in Equation (75) describes the

decrease in 1r near the charged membrane surface due to

depletion of water dipoles, because of the accumulation of

counterions. Based on Equations (75) and (73), it can be

concluded that the relative permittivity of the electrolyte

near the charged membrane surface is reduced relative to

its bulk value due to preferential orientation of water

molecules and due to depletion of water molecules in the

close vicinity of the charged surface.

Figure 5 shows the electric potential as a function of

the distance from the charged planar surface (x) calculated

within the LPB model and the LB model. It can be seen

that the potential drop near the charged surface is largest in

the LB model which takes into account the finite size of

ions, while in the LPB model for point-like ions the
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Figure 4. Relative dielectric permittivity 1r (Equation (69)) as a
function of the distance from the charged surface x within the
LPB model for point-like ions. Three values of surface charge
density were considered: s ¼ 20:1 As=m2, s ¼ 20.2 As/m2

and s ¼ 20:4 As=m2. The LPB equation (67) was solved
numerically as described in the text. The dipole moment of water
p0 ¼ 4:794 D, bulk concentration of salt n0=NA ¼ 0:15 mol=l,
bulk concentration of water n0w=NA ¼ 55 mol=l, where NA is the
Avogadro number.
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potential drop is smaller; this can be explained by the

larger value of 1rðrÞ near the charged surface for point-like

ions than for finite-sized ions, as shown in Figures 2 and 4.

6. Stern model and the distance of closest approach

6.1 Stern model

Within the Stern model (Stern 1924; Butt et al. 2003), the

concentration of charged ions obeys the Boltzmann

distribution law (Equations (55) and (56)), while the

electrostatic potential is determined by the PB equation

(Equation (58)). What makes the Stern model different

from the usual PB (Gouy–Chapman) theory for point-like

ions (Gouy 1910; Chapman 1913; McLaughlin 1989;

Safran 1994) is the distance of closest approach of ions (b)

to the charged surface, so the PB Equation (58) in the

simplest version of the Stern model is replaced by

7�½1rðrÞ107fðrÞ� ¼

0; rs # r , ðrs þ bÞ

2e0n0 sinh ðe0fðrÞbÞ; ðrs þ bÞ # r , 1
;

8<
: ð77Þ

where the relative dielectric permittivity 1rðrÞ:

1rðrÞ ¼ 78:5 ð78Þ

is constant over the whole space.

6.2 Stern–Langevin–Poisson–Boltzmann and Stern–
Langevin–Bikerman models

Generalisation of the above Stern model within LPB

theory for point-like ions includes the orientational

ordering of water dipoles, while the ions are still

considered as point-like particles as described in Section 4:

7�½1rðrÞ107fðrÞ� ¼

0; rs # r , ðrs þ bÞ

2e0n0 sinh ðe0fðrÞbÞ; ðrs þ bÞ # r , 1;

8<
: ð79Þ

where the relative permittivity 1rðrÞ is defined by Equation

(69):

1rðrÞ ¼ 1 þ
n0wp0

10

Lðp0EbÞ

E
: ð80Þ

Note that we assumed the validity of Equation (80) also for

r , ðrs þ bÞ.

A further generalisation of the Stern model is the

Stern–Langevin–Bikerman (SLB) model for finite-sized

ions (Section 2):

7�½1rðrÞ107fðrÞ� ¼

0; rs # r , ðrs þ bÞ

2e0nsn0
sinh ðe0fbÞ
Hðf;EÞ ; ðrs þ bÞ # r , 1

8<
: ;

ð81Þ

where the relative permittivity 1rðrÞ is defined by Equation

(38):

1rðrÞ ¼ 1 þ n0wns

p0

10

F ðp0EbÞ

EHðf;EÞ
: ð82Þ

Note that for the sake of simplicity, the validity of

Equation (82) is assumed also for r , ðrs þ bÞ.
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Figure 5. Electric potential f as a function of the distance from
the charged planar surface x within the LPB model for point-like
ions (upper figure) and within the LB model for finite-sized ions
(lower figure) for three values of the surface charge density;
s ¼ 20:2 As=m2, s ¼ 20:3 As=m2 and s ¼ 20:4 As=m2. The
dipole moment of water p0 ¼ 4:794 D, bulk concentration of
salt n0=NA ¼ 0:15 mol=l and bulk concentration of water
n0w=NA ¼ 55 mol=l.
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6.3 SLB model with a step function

In order to better capture the discrete character of the thin

layer of ordered water molecules at the charged surface,

the continuous dependence of relative permittivity 1rðrÞ

(Equation (82)) in the region rs # r , ðrs þ aÞ, where

a ¼ n
21=3
s is the width of a single lattice site, may be

described by a step function. Hence

7�½1rðrÞ107fðrÞ� ¼

0; rs # r , ðrs þ bÞ

2e0nsn0
sinh ðe0fbÞ
Hðf;EÞ ; ðrs þ bÞ # r , 1;

8<
: ð83Þ

where the relative permittivity 1rðrÞ is defined (based on

Equation (82)) as

1rðrÞ ¼
1r;LB; rs # r , ðrs þ aÞ

1r;bulk; ðrs þ aÞ # r , 1

(
; ð84Þ

1r;LB ¼ 1 þ n0wns

p0

10

F ðp0EbÞ

EHðf;EÞ
jr¼rsþc; ð85Þ

where 0 # c # a. The parameter a thus defines the region

of preferentially oriented water molecules (Figure 6).

6.4 Boundary conditions

As already shown above, the boundary conditions at the

charged surface r ¼ rs are consistent with the condition of

electro-neutrality of the whole system:

7fðr ¼ rsÞ ¼ 2
sn

101rðr ¼ rsÞ
: ð86Þ

The validity of Gauss’s law at r ¼ rs þ b is fulfilled by:

7fjðrsþbÞ2
¼ 7fjðrsþbÞþ

: ð87Þ

The electric potential should also be continuous at

r ¼ rs þ b:

fjðrsþbÞ2
¼ fjðrsþbÞþ

: ð88Þ

In the case of the SLB model, the validity of Gauss’s law

should be fulfilled not only at rs þ b but also at rs þ a:

7fjðrsþaÞ2
¼ 7fjðrsþaÞþ

; ð89Þ

where also

fjðrsþaÞ2
¼ fjðrsþaÞþ

: ð90Þ

Due to the screening effect of the negatively charged

surface caused by the accumulated cations, far away from

the charged metal surface the electric field strength tends

to zero, which means that the electric potential is constant.

As already taken into account in the above derivations (see

e.g. Equation (31)), we assume:

fðr!1Þ ¼ 0: ð91Þ

6.5 Spatial variation of electric potential in different
models

Figure 7 shows the electric potential as a function of the

distance from the charged planar surface (x) calculated

within the classical Stern model, the Stern–Langevin–PB

(SLPB) model, the SLB model and the SLB model with

the relative permittivity represented as a step function. The

potential drop near the charged surface is the smallest in

the Stern model where 1rðrÞ is constant everywhere in

solution and equal to its bulk value. As expected, the

electric potential changes linearly in the region 0 , x , b,

but then for x . b the slope (i.e. the electric field strength)

changes substantially (see Figure 7). The main reason for

such behaviour is that the electric field strength close to the

charged surface in the region 0 , x , b (where the free

ions are depleted) is determined by the boundary

condition at the charged metal surface (at x ¼ 0).

Therefore, in this region the electric field strength is

E ¼ 2f0 ¼ 2s=1rðx ¼ 0Þ10.

Figure 6. Charge distribution SLB model (Gongadze et al.
2011c), where in the interval 0 , x , a is the region of strong
water orientation and b is the distance of closest approach. The
surface charge density s ¼ seff incorporates the negatively
charged metallic surface, as well as the specifically bound
negatively charged ions (Butt et al. 2003).
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7. Cavity and reaction field

The effective dipole moment of the water molecule

should be known before a satisfactory statistical

mechanical study of water and aqueous solutions is

possible (Adams 1981). The dipole moment of a water

molecule in liquid water differs from that of the isolated

water molecule because each water molecule is further

polarised (i.e. the dipole moment is further increased) and

orientationally perturbed by the electric field of the

surrounding water molecules (Adams 1981). Accord-

ingly, in the above-described treatment of water ordering

close to the saturation limit at high electric field within

the LPB and LB models, the effective dipole moment of

water p0 ¼ 4:79 Debye ðDÞ is larger than the dipole

moment of an isolated water molecule ðp0 ¼ 1:85 DÞ.

However, it is also larger than the dipole moment of a

water molecule in clusters ðp0 ¼ 2:7 DÞ and the dipole

moment of an average water molecule in the bulk ðp0 ¼

2:4 2 2:6 DÞ (Dill and Bromberg 2003) since the cavity

and reaction fields as well as structural correlations

between water dipoles (Fröhlich 1964; Franks 1972) were

not explicitly taken into account in the LPB and LB

models.

In the past treatment of the cavity and reaction fields

and the correlations between water dipoles in the Onsager

(1936), Kirkwood (1939) and Fröhlich (1964) models

were limited to the case of small electric field strengths,

i.e. far away from saturation limit considered in the LB

model and also in the LPB model. Generalisation of the

Kirkwood–Onsager–Fröhlich theory in the saturation

regime was performed by Booth (1951). However,

Booth’s model does not consider the excluded volume

effect in an electrolyte solution near a charged surface as

described in the LB model and is therefore appropriate

only for the LPB model. Therefore in this section, first the

LPB model (Gongadze et al. 2011a) is generalised to take

into account the cavity field, as well as the structural

correlations between the water dipoles close to the

saturation regime by utilising the Booth expression for

relative permittivity. At the end, generalisation of LB

model is also given by taking into account the cavity field

(but not the structural correlations between water dipoles)

in the saturation regime important in consideration of an

electrolyte solution in contact with highly charged surface

(Gongadze and Iglič 2012).

7.1 BPB model

To take into account the cavity field, as well as structural

correlations between water dipoles within the LPB model,

the LPB equation for point-like ions (see Equations (67)

and (68)):

7�½101rðrÞ7fðrÞ� ¼ 2e0n0 sinh ðe0fbÞ ð92Þ

can be modified by taking into consideration (instead of

Equation (69)) the Booth expression for the relative

permittivity of pure water in the saturation regime

(Booth 1951):

1rðrÞ ¼ n2 þ
7n0wp0ðn

2 þ 2Þ

3
ffiffiffiffiffi
73

p
10

L
ffiffiffiffiffi
73

p
ðn2 þ 2Þp0Eb=6

� �
E

;

ð93Þ

which is also valid in the saturation regime of water

polarisation at high values of E. Here, LðuÞ is again the

Langevin function, n ¼ 1.33 is the optical refractive index
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Figure 7. Electric potential f as a function of the distance from
the charged planar surface x (rs ¼ 0) within the Stern model
(Equation (77)), the SLPB model for point-like ions (Equation
(79)), the SLB model for finite-sized ions (Equation (81)) and the
SLB model with a step function for finite-sized ions (Equation
(83)) for c ¼ 0, where in all four cases the distance of closest
approach b ¼ a=2 ¼ n

21=3
s =2 . 0:16 nm was taken into account.

The value of the surface charge density was considered to be:
s ¼ 20:2 As=m2 (upper figure) and s ¼ 20:4 As=m2 (lower
figure). The remaining parameters used are dipole moment
of water, p0 ¼ 4:794 D; bulk concentration of salt, n0=NA ¼
0:15 mol=l and bulk concentration of water, n0w=NA ¼ 55 mol=l,
where NA is Avogadro number.
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of water, p0 < 2 D (Booth 1951) is the water dipole

moment and n0w is the number density of water molecules.

In the approximation of small energy of dipoles in the

electric field compared to the thermal energy, the relative

permittivity within the BPB model for point-like sized ions

(Equation (93)) can be expanded in a Taylor series to get

1r øn2þ
7n0wp0ðn

2þ2Þ

3
ffiffiffiffiffi
73

p
10

 ffiffiffiffiffi
73

p
ðn2þ2Þp0Eb=6

3E

2

ffiffiffiffiffi
73

p
ðn2þ2Þp0Eb=6

� �3

45E

!
øn2þ

7ðn2þ2Þ2

18

n0wp
2
0b

310

2
7ðn2þ2Þ4

9

n0wp
2
0b

4510

p0Eb
� �2

:

ð94Þ

In the limit of zero electric field the above equation

transforms into:

1r ø n2 þ
7ðn2 þ 2Þ2n0wp

2
0b

5410

: ð95Þ

It follows from Equation (95) that the value of the dipole

moment of water p0 ¼ 2:03 predicts a bulk permittivity

1r ¼ 78:5 (see also Figure 8). The boundary condition at

the charged surface is:

7fðr ¼ rsÞ ¼ 2
sn

101rðr ¼ rsÞ
; ð96Þ

where the relative permittivity 1rðrÞ is now defined by

Equation (93). The second boundary condition is:

fðr!1Þ ¼ 0: ð97Þ

Figure 8 shows the relative permittivity 1r as a function

of the magnitude of the electric field strength (E) within

the LPB and Booth–Langevin–Poisson (BLP) models,

both for point-like ions. It can be seen that in the two

models 1r decreases with increasing E; however in the

BLP, it drops already at around 0:5V=nm to a half of its

bulk value. Obviously, including the cavity field and

structural correlations between water dipoles leads to a

stronger saturation of the relative permittivity than by only

considering the orientational ordering of water molecules.

7.2 MLB model

In the model, electronic polarisation is taken into account

by assuming that the point-like rigid (permanent) dipole

embedded in the centre of the sphere with a volume equal

to the average volume of a water molecule in the

electrolyte solution. The permittivity of the sphere is taken

to be n2, where n ¼ 1:33 is the optical refractive index of

water. The relative (effective) permittivity of the

electrolyte solution ð1rÞ can be then expressed as

1rðrÞ ¼ n2 þ
jPj

10E
; ð98Þ

where P is the polarisation vector due to net orientation of

permanent point-like water dipoles having dipole moment

p. The external dipole moment ðpeÞ of a point-like dipole

at the centre of the sphere with permittivity n2 can be then

expressed in the form (Fröhlich 1964):

pe ¼
3

2 þ n2
p; ð99Þ

whence it follows:

p ¼
2 þ n2

3
pe: ð100Þ

In our analysis, short-range interactions between point-like

rigid dipoles are neglected. The local electric field strength

at the centre of the sphere at the location of the permanent

(rigid) point-like dipole is (Fröhlich 1964):

Ec ¼
31r

21r þ n2
Eþ gp; ð101Þ

where the first term represents the field inside a spherical

cavity with dielectric permittivity n2 embedded in the

medium with permittivity 1r and the second term gp is the

reaction field acting on p (due to the dipole moment p of

the point-like dipole itself). In the following, Equation (101)
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Figure 8. Relative permittivity 1r as a function of the magnitude
of electric field strength (E) within the LPB model (Equation
(69)) and BLP model (Equation (93)) for point-like ions and
n0w=NA ¼ 55 mol=l, where NA is the Avogadro number. In the
case of the LPB model, the effective dipole moment of water
p0 ¼ 4:794 D, while in the BLP model the dipole moment of
water p0 ¼ 2:03 D and n ¼ 1:33.
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is simplified in the form (strictly valid for 1r .. n2 only):

Ec ¼
3

2
Eþ gp: ð102Þ

The energy of the point-like dipole p in the local field Ec

may be then written as

Wi ¼ 2p�Ec ¼ 2p�
3

2
Eþ gp


 �

¼ gp0E cosðvÞ2 gp2
0; ð103Þ

where p0 is the magnitude of the dipole moment pe, v is the

angle between the dipole moment vector p and the vector

2E and

g ¼
3

2

2 þ n2

3


 �
: ð104Þ

The polarisation PðrÞ is given by (see also Equation (11))

(Gongadze and Iglič 2012)

PðxÞ ¼ nwðxÞ
2 þ n2

3


 �
p0kcosðvÞÞlB

¼ 2nwðxÞ
2 þ n2

3


 �
p0L gp0Eb

� �
;

ð105Þ

where

kcosvlB ¼

Ð p
0

cosv exp ð2gp0Eb cosðvÞ þ bgp2
0ÞdVÐ p

0
exp ð2gp0Eb cosðvÞ þ bgp2

0ÞdV

¼ 2L gp0Eb
� �

;

ð106Þ

and dV ¼ 2psinv dv is an element of solid angle. Since

s , 0, the projection of polarisation vector P on the x-axis

points in the direction from the bulk to the charged surface

and PðxÞ is considered negative. A similar procedure as in

the case of the LB model (see Equations (48)–(50)) leads to

ion and water dipole distribution functions (Gongadze and

Iglič 2012):

nþðxÞ ¼ ns

n0e2e0fb

n0ee0fb þ n0e2e0fb þ n0wke2gp0EbcosðvÞþbgp2
0 lv

;

ð107Þ

n2ðxÞ ¼ ns

n0ee0fb

n0ee0fb þ n0e2e0fv þ n0wke2gp0EbcosðvÞþbgp2
0lv

;

ð108Þ

nwðxÞ ¼ ns

n0wke2gp0EbcosðvÞþbgp 2 lv
n0ee0fb þ n0e2e0fv þ n0wke2gp0EbcosðvÞþbgp2

0lv
:

ð109Þ

For simplicity we neglect bgp2
0:

ke2gp0EbcosðvÞþbgp 2

lv ¼
2p
Ð 0

p
dðcosvÞe2gp0EbcosðvÞ

4p

¼
sinh ðgp0EbÞ

gp0Eb

ð110Þ

is the dipole Boltzmann factor after rotational averaging

over all possible angles v. Equations (107)–(110) can be

rewritten as (Gongadze and Iglič 2012):

nþðxÞ ¼ n0e2e0fb
ns

Dðf;EÞ
; ð111Þ

n2ðxÞ ¼ n0ee0fb
ns

Dðf;EÞ
; ð112Þ

nwðxÞ ¼
n0wns

Dðf;EÞ

1

gp0Eb
sinh ðgp0EbÞ: ð113Þ

where:

Dðf;EÞ ¼ 2n0 cosh ðe0fbÞ þ
n0w

gp0Eb
sinh ðgp0EbÞ:

ð114Þ

Combining Equations (105) and (113) gives the polarisation

in the form:

PðxÞ¼2
2þn2

3


 �
p0n0wns

Dðf;EÞ

1

gp0Eb
sinhðgp0EbÞL gp0Eb

� �
:

ð115Þ

Using the definition of the function F ðuÞ (Equation (25)),

Equation (115) transforms to:

P ¼ 2p0n0wns

2 þ n2

3


 �F gp0Eb
� �
Dðf;EÞ

: ð116Þ

Combining Equations (98) and (116) yields the relative

(effective) permittivity (Gongadze and Iglič 2012):

1r ¼ n2 þ n0wns

p0

10

2 þ n2

3


 �F gp0Eb
� �
Dðf;EÞE

: ð117Þ

Following a similar procedure as in Section 2, we can then

write the MLB form of the Poisson equation as

7�½101rðrÞ7fðrÞ� ¼ 2rfreeðrÞ; ð118Þ

where rfreeðrÞ is the macroscopic (net) volume charge

density of co-ions and counterions (see also Equations (111)

and (112)):

rfreeðrÞ ¼ e0nþðrÞ2 e0n2ðrÞ ¼ 22e0nsn0

sinh ðe0fbÞ

Dðf;EÞ
;

ð119Þ
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while 1rðrÞ is defined by Equation (117). The boundary

conditions are:

7fðr ¼ rsÞ ¼ 2
sn

101rðr ¼ rsÞ
; ð120Þ

fðr!1Þ ¼ 0: ð121Þ

In the approximation of small electrostatic energy and

small energy of dipoles in the electric field compared to

thermal energy, i.e. small e0fb and small gp0Eb, the

relative permittivity within the MLB model for finite-sized

ions (Equation (117)) can be expanded into a Taylor series

(assuming ns < n0w) to get (Gongadze and Iglič 2012):

1r ø n2 þ
3

2

2 þ n2

3


 �2
n0wp

2
0b

310

2
27
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2 þ n2

3


 �4
n0wp

2
0b
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p0Eb
� �2
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n0p
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310

e0fb
� �2

:

ð122Þ

In the limit of vanishing electric field strength (E! 0) and

zero potential (f! 0), the above equations give the

Onsager expression for permittivity:

1r ø n2 þ
2 þ n2

3


 �2
n0wp

2
0b

210

: ð123Þ

In the above-derived expression for the relative (effective)

permittivity (Equation (117)), the value of the dipole

moment p0 ¼ 3:1 D predicts a bulk permittivity

1r ¼ 78:5. This value is considerably smaller than the

corresponding value in the LB model ðp0 ¼ 4:79 DÞ (see

Figure 2 and Equation (38)) which does not take into

account the cavity field.

The value p0 ¼ 3:1 D is also close to the experimen-

tal values of the effective dipole moment of water

molecules in clusters ðp0 ¼ 2:7 DÞ and in bulk solution

ðp0 ¼ 2:4 2 2:6 DÞ (Dill and Bromberg 2003). The MLB

model does not, however, neglect the main (qualitative)

predictions of the LB model where all the equations

(including the expression for the relative permittivity)

have a similar structure as in the MLB, only the effective

value of the water dipole moment ðp0Þ is larger.

Moreover, for g! 1 and n! 1, the equations of the

above described MLB model transform into equations of

LB model.

Figure 9 shows the calculated spatial dependence of

relative number density of counter ions ðnþ=nsÞ, water

dipoles ðnw=nsÞ and 1rðxÞ within MLB model in planar

geometry for two values of the surface charge density s.

The decrease in 1rðxÞ towards the charged surface is

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Distance x [nm]

0 0.2 0.4 0.6 0.8 1

Distance x [nm]

Io
n 

di
st

rib
ut

io
n 

n +
/n

s σ = –0.3 As/m2
σ = –0.2 As/m2

0.7

0.75

0.8

0.85

0.9

0.95

1

W
at

er
 d

is
tr

ib
ut

io
n 

n w
/n

s

σ = –0.3 As/m2
σ = –0.2 As/m2

0 0.5 1 1.5 2
Distance x [nm]

30

20

40

50

60

70

80

R
el

at
iv

e 
pe

rm
itt

iv
ity

 e
r σ = –0.2 As/m2

σ = –0.3 As/m2

Figure 9. The relative number density of counter ions ðnþ=nsÞ,
water dipoles ðnw=nsÞ (calculated using Equations (111) and
Equation (113) and relative permittivity 1r (Equation (117))
as a function of distance from a planar-charged surface x
(adapted from Gongadze and Iglič 2012). Two values of
surface charge density were considered: s ¼ 20:2 As=m2 and
s ¼ 20:3 As=m2. Equation (118) was solved numerically taking
into account the boundary conditions (120) and (121) as described
in the text. Values of parameters assumed are dipole moment of
water, p0 ¼ 3:1 D; bulk concentration of salt, n0=NA ¼
0:15 mol=l; optical refractive index, n ¼ 1:33; bulk
concentration of water, n0w=NA ¼ 55 mol=l, where NA is
Avogadro number.
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pronounced with increasing s and is a consequence of the

increased depletion of water molecules near the charged

surface (due to excluded volume effect as a consequence

of counterions accumulation near the charged surface) and

increased orientational ordering of water dipoles (satur-

ation effect). Comparison between the predictions of the

LB model and the presented MLB model shows the

stronger decrease in relative permittivity of the electrolyte

solution near the highly charged surface stronger in MLB

model.

8. Conclusions

To conclude, in this work we described different

modifications of the PB model of the EDL by introducing

the orientational ordering of water molecules (also close to

the saturation regime) and the finite size of molecules. The

corresponding LPB model for point-like ions and the LB

model and generalised Stern model for finite-sized ions

were derived. The Bikerman model is derived as the

limiting case of the LB model for finite-sized ions. It is

shown that due to the increased magnitude of the electric

field in the vicinity of the charged surface in contact with

the electrolyte solution, the relative permittivity of the

electrolyte solution in this region is decreased. The

predicted decrease in the relative permittivity relative to its

bulk value is the consequence of the orientational ordering

of water dipoles in the vicinity of the charged surface

(saturation effect). Due to accumulation of counterions

near the charged surface, the number density of water

molecules near the charged surface is decreased and as a

result the relative permittivity is additionally decreased

(excluded volume effect).

The electric field may influence the dipole moment of

the water in two ways. First, it perturbs the average

orientation of the water dipole, and second, it induces an

increase in the magnitude of the water dipole moment,

mainly by elastic displacement of the atomic electrons

relative to their respective nuclei (Fröhlich 1964). The

magnitude of the induced water dipole moment is

determined by the polarisability of the molecule, i.e. the

proportionality coefficient between the induced dipole

moment and 10Ec, where Ec is the local electric field

strength as defined above (Equation (101)).

In order to (partially) capture these two effects in our

theoretical description of the permittivity of water, we

applied the concept of the cavity field (Onsager 1936;

Fröhlich 1964) in the MLB (Gongadze–Iglič) model

(valid also in the saturation limit) by simultaneously taking

into account the volume-excluded effect. To our knowl-

edge this was done for the first time. The corresponding

analytical expression for the spatial dependence of the

relative (effective) permittivity of the electrolyte solution

near the charged surface was derived (Gongadze and

Iglič 2012).
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Iglič A, Gongadze E, Bohinc K. 2010. Excluded volume effect and
orientational ordering near charged surface in solution of ions
and Langevin dipoles. Bioelectrochemistry. 79(2):223–227.

Israelachvili JN, Wennerström H. 1996. Role of hydration and
water structure in biological and colloidal interactions.
Nature. 379(6562):219–225.

Jackson JD. 1999. Classical electrodynamics. New York:
Wiley and Sons, Inc.

Kabaso D, Gongadze E, Perutková Š, Kralj-Iglič V, Matsche-
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Appendix: Configurational entropy of electrolyte
solution

We consider the configurational entropy of the solution
composed of counterions and co-ions. Following the classical
well-known approach (Hill 1986), the finite sizes of ions
(macroions) are considered within the lattice model (Kralj-Iglič
and Iglič 1996). The system is divided into cells of equal volume
DV . In the particular cell chosen, there are Nþ counterions
and N2 co-ions. The number of spatial arrangements of non-
interacting counterions and co-ions in a small cell with M lattice
sites is (Hill 1986):

W ¼
MðM 2 1ÞðM 2 2Þ · · · ðM 2 ðN 2 1ÞÞ

Nþ!N2!
; ð124Þ

and can be rewritten into

W ¼
M!

Nþ!N2!ðM 2 NÞ!
; ð125Þ
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where

N ¼ Nþ þ N2: ð126Þ

The configurational (translational) entropy of the mixed system
of the single cell Scell is (Hill 1986):

Scell ¼ k lnW : ð127Þ

Using the Stirling’s approximation for large Ni : lnNi! .
Ni lnNi 2 Ni, i ¼ {þ;2}, the expression for lnW transforms
into (Hill 1986):

lnW ¼ 2Nþln
Nþ

M


 �
2 N2ln

N2

M


 �
2 ðM 2 NÞln 1 2

N

M


 �
:

ð128Þ

To take into account the excluded volume effect, we assume that
each lattice site with volume v0 can be occupied only by one ion.
The volume of the cell with M sites is given by DV ¼ Mv0: The
number density of counterions is defined as nþ ¼ Nþ=DV , while
the number density of co-ions is n2 ¼ N2=DV . The configura-
tional entropy of the whole system is obtained by integration over
all cells of the system:

S ¼

ð
Scell

dV

DV
; ð129Þ

where Scell is given by Equation (127). We insert Equation (128)
into Equation (127) to get:

S ¼ 2k

ð �
nþlnðnþv0Þ þ n2 lnðn2v0Þ

þ
1

v0

1 2 nþv0 2 n2v0

� �
ln 1 2 nþv0 2 n2v0

� ��
dV :

ð130Þ

Equation (130) takes into account the finite size of ions. In the
following, the entropic part of the free energy ~Fent ¼ 2TS is
calculated from the Equation (130):

~Fent ¼ kT

ð X
i¼þ;2

ni lnðniv0Þ

"

þ
1

v0

1 2
X
i¼þ;2

niv0

 !
ln 1 2

X
i¼þ;2

niv0

 !#
dV :

ð131Þ

We need to subtract the reference free energy (Kralj-Iglič
and Iglič 1996). The difference between the entropic part of the
free energy ~Fent and the reference entropic part of the free energy
Fref is:

~Fent 2 Fref ¼ kT

ð
dV

X
i¼þ;2

ni lnðniv0Þ2 2n0 lnðn0v0Þ

" #

þ kT

ð
dV

1

v0

1 2
X
i¼þ;2

niv0

 !
ln 1 2

X
i¼þ;2

niv0

 !

2 kT

ð
dV

1

v0

1 2 2n0v0ð Þln 1 2 2n0v0ð Þ;

ð132Þ

where n0 is the bulk number density of ions. Assuming

ð
dV 2n0 2

X
i¼þ;2

ni

" #
¼ 0; ð133Þ

and taking into account lnðn0v0Þ ¼ const. and lnð1 2 2n0v0Þ ¼
const. we obtain the entropic part of the free energy in the form:

Fent ¼ ~Fent 2 Fref ¼ þ kT

ð
dV
X
i¼þ;2

ni ln
ni

n0


 �

þ kT

ð
dV

1

v0

2
X
i¼þ;2

ni

 !
ln

ð1=v0Þ2
P

i¼þ;2

ni

ð1=v0Þ2 2n0

0
B@

1
CA:

ð134Þ

In our model, the number density of lattice sites
ns ¼ 1=v0 ¼ 1=a 3, where we define a as a lattice constant
(width of a single lattice site). All lattice sites are occupied by
either solvent molecules or macroions, therefore:

ns ¼ nw þ
X
j¼þ;2

nj; ð135Þ

where nw is the number density of lattice sites occupied by
solvent (water) molecules, nþ is the number density of
counterions and n2 is the number density of co-ions. By taking
into account Equation (135), we may rewrite Equation (134) in
the well known form (see for example Dill and Bromberg 2003):

Fent ¼ kT

ð
nþln

nþ

n0

þ n2ln
n2

n0

þ nw ln
nw

n0w

� �
dV ; ð136Þ

where n0w is the bulk number density of water.
If we assume that nþ ,, 1, n2 ,, 1, everywhere in the

solution, as well as n0 ,, 1, we can expand the third term in
Equation (136) up to quadratic terms to get (see for example
Kralj-Iglič and Iglič 1996):

Fent ¼ kT

ð
nþln

nþ

n0


 �
þ n2ln

n2

n0


 �
2 ðnþ þ n2Þ þ 2n0

� �
dV :

ð137Þ

Equation (137) describes the configurational entropy of
electrolyte solution where the excluded volume is not taken
into account.
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