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Layered water in crystal interfaces as source for bone viscoelasticity: arguments from
a multiscale approach

Lukas Eberhardsteinera, Christian Hellmichb* and Stefan Scheinerb

aInstitute for Transportation Science, Research Center for Road Engineering, Vienna University of Technology, Vienna, Austria;
bInstitute for Mechanics of Material and Structures, Vienna University of Technology, Vienna, Austria

(Received 22 September 2011; final version received 23 February 2012)

Extracellular bone material can be characterised as a nanocomposite where, in a liquid environment, nanometre-sized
hydroxyapatite crystals precipitate within as well as between long fibre-like collagen fibrils (with diameters in the 100 nm range),
as evidenced from neutron diffraction and transmission electron microscopy. Accordingly, these crystals are referred to as
‘interfibrillar mineral’ and ‘extrafibrillar mineral’, respectively. From a topological viewpoint, it is probable that the
mineralisations start on the surfaces of the collagen fibrils (‘mineral-encrusted fibrils’), from where the crystals grow both into
the fibril and into the extrafibrillar space. Since the mineral concentration depends on the pore spaces within the fibrils and
between the fibrils (there is more space between them), the majority of the crystals (but clearly not all of them) typically lie in the
extrafibrillar space. There, larger crystal agglomerations or clusters, spanning tens to hundreds of nanometers, develop in the
course of mineralisation, and the micromechanics community has identified the pivotal role, which this extrafibrillar mineral
plays for tissue elasticity. In such extrafibrillar crystal agglomerates, single crystals are stuck together, their surfaces being
covered with very thin water layers. Recently, the latter have caught our interest regarding strength properties (Fritsch et al. 2009
J Theor Biol. 260(2): 230–252) – we have identified these water layers as weak interfaces in the extrafibrillar mineral of bone.
Rate-independent gliding effects of crystals along the aforementioned interfaces, once an elastic threshold is surpassed, can be
related to overall elastoplastic material behaviour of the hierarchical material ‘bone’. Extending this idea, the present paper is
devoted to viscous gliding along these interfaces, expressing itself, at the macroscale, in the well-known experimentally
evidenced phenomenon of bone viscoelasticity. In this context, a multiscale homogenisation scheme is extended to
viscoelasticity, mineral-cluster-specific creep parameters are identified from three-point bending tests on hydrated bone samples,
and the model is validated by statistically and physically independent experiments on partially dried samples. We expect this
model to be relevant when it comes to prediction of time-dependent phenomena, e.g. in the context of bone remodelling.

Keywords: viscoelasticity; bone; multiscale; creep; relaxation; gliding event

1. Introduction

‘Bone’ relates to the key load-carrying material in

vertebrates: it is produced and resorbed by tens-of-

micrometres-sized biological cells (osteocytes, osteoblasts,

osteoclasts and their precursors; Buckwalter et al. 1995a,

1995b; Erlebacher et al. 1995; Filvaroff and Derynck 1998;

Bonucci 2009), but, as such, does not belong to them –

rather, at a scale of tens of micrometres, ‘bone’ appears as

extracellular material. This material can be characterised as

a nanocomposite where, in a liquid environment, nano-

metre-sized hydroxyapatite crystals precipitate within as

well as between long, fibre-like collagen fibrils (with

diameters in the 100 nm range), as evidenced from neutron

diffraction (Lees et al. 1984; Bonar et al. 1985; Lees 1987)

and transmission electron microscopy (Lees and Prostak

1988; Arsenault et al. 1991; Lees et al. 1994; Prostak and

Lees 1996). Accordingly, these crystals are referred to as

‘intrafibrillar mineral’ and ‘extrafibrillar mineral’, respect-

ively. The latter needs to be dissolved or rinsed off, as to see

the collagen fibrils in atomic force microscopy (Lees et al.

1994; Sasaki et al. 2002; Hassenkam et al. 2004; Bozec et al.

2005; Hassenkam et al. 2005). From a topological

viewpoint, it is probable that the mineralisation starts on

the surfaces of the collagen fibrils (‘mineral-encrusted

fibrils’), from where the crystals grow both into the fibril and

into the extrafibrillar space (Höhling 1967; Landis et al.

1996; Sasaki et al. 2002; Wiesmann et al. 2005). Since the

mineral concentration depends on the pore spaces within the

fibrils and between the fibrils (there is more space between

them), the majority of the crystals (but clearly not all of

them) typically lies in the extrafibrillar space (Lees 1987;

Hellmich and Ulm 2001; Sasaki et al. 2002). There, larger

crystal agglomerations or clusters (Su et al. 2003), spanning

tens to hundreds of nanometres, develop in the course of

mineralisation, and the micromechanics community has

identified the pivotal role, which this extrafibrillar mineral

plays for tissue elasticity (Crolet et al. 1993; Aoubiza et al.

1996; Pidaparti et al. 1996; Hellmich and Ulm 2002a,

2002b, 2005a, 2005b; Hellmich et al. 2004a; Hellmich et al.

2004b; Fritsch and Hellmich 2007; Nikolov and Raabe
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2008; Hamed et al. 2010; Martinez-Reina et al. 2010;

Reisinger et al. 2010; Sansalone et al. 2010). In such

extrafibrillar crystal agglomerates, single crystals are stuck

together, their surfaces being covered with very thin water

layers (Zahn and Hochrein 2003; deLeeuw 2004; Bhowmik

et al. 2007; Astala and Stott 2008; Bhowmik et al. 2009;

Corno et al. 2009). These layers exhibit a mass density,

which is higher than that of standard liquid water, they are

made of structured ‘ice-like’ water (Pan et al. 2007).

Recently, we have identified these water layers as

weak interfaces in the extrafibrillar mineral of bone

(Fritsch et al. 2009). In this line, rate-independent gliding

effects of crystals along the aforementioned interfaces,

once an elastic threshold is surpassed, can be related to

overall elastoplastic material behaviour of the hierarchical

material ‘bone’. Extending this idea, the present paper is

devoted to viscous gliding along these interfaces,

expressing itself, at the macroscale, in the well-known

experimentally evidenced phenomenon of bone viscoe-

lasticity. Based on both experimental and computational

studies, the idea that water layers at water–mineral

interfaces are the source of material creep is widely

accepted in geophysics (see, e.g. Morrow et al. (2000) for a

multitude of gouge minerals, Stipp et al. (2006) for

quartzite or Tullis and Yund (1991) for albite rock), as

well as in cement and concrete research (Kalinichev et al.

2007; Alizadeh et al. 2010). In cement pastes, the micro-

and nanostructures of calcium silicate hydrates

exhibit length dimensions similar to those found in

the extrafibrillar polycrystals of bone. However, the

precise local physicochemistry of water in very crowded

biological or chemical environments with a characteristic

length of nanometres seems to be still a matter of

discussion: the slowdown of the orientational dynamics of

the water molecules may be due to confined length scales

or interface interactions (Moilanen et al. 2009).

The remainder of the paper is organised as follows:

first, we extend the multistep homogenisation scheme of

Fritsch et al. (Fritsch and Hellmich 2007; Fritsch et al.

2009) from elasticity to viscoelasticity (Section 2). Then

we will first discuss experiments used for viscoelastic

parameter identification (Section 3), followed by statisti-

cally and physically independent experiments used for

model validation (Section 4). Finally, we will discuss

composition-dependent creep behaviour of bone (Section

5), before concluding the paper (Section 6).

2. Multiscale homogenisation theory for bone
viscoelasticity

2.1 Fundamentals of continuum micromechanics
(random homogenisation theory) – separation of scales

Continuum micromechanics (Hill 1963, 1965; Suquet

1997; Zaoui 1997, 2002; Scheiner and Hellmich 2009) is

based on the idea that a material is a microheterogeneous

body filling a macrohomogeneous representative volume

element (RVE) with characteristic length l; l @ d, where d

stands for the characteristic length of the inhomogeneities

within the RVE (see Figure 1), and l ! L, where L is the

characteristic lengths of geometry or loading of a structure

built up by the material defined on the RVE. Quasi-

homogeneous subdomains, the so-called material phases

(Suquet 1997; Zaoui 1997, 2002), with known physical

properties, e.g. volume fractions or elastic/viscoelastic

properties, are reasonably chosen, as to describe the

complicated microstructure within an RVE as simply as

possible, but not simpler than that. The elastic/viscoelastic

behaviour of these inhomogeneities within the RVE

(material phases), as well as the volume fractions, their

characteristic shapes and their interactions, are used to

estimate the correlation between homogeneous defor-

mations acting on the boundary of the RVE and resulting

(average) stresses, in other words, to estimate the

homogenised mechanical behaviour of the overall material.

If a single phase has a heterogeneous microstructure

itself, RVEs can be introduced within this phase in order to

estimate its mechanical behaviour. These RVEs have

dimensions, which fulfil l2 # d, and imply again smaller

inhomogeneities with characteristic length d2 ! l2, and so

on (see Figure 1). Such an approach is referred to as

multistep homogenisation and should, in the end, provide

access to ‘universal’ phase properties at sufficiently low

observation scales. For bone, we employ here a six-step

homogenisation scheme (see Figure 2).

2.2 Viscoelastic homogenisation of extrafibrillar space
(porous hydroxyapatite polycrystal)

2.2.1 Micromechanical representation

An RVE V̂ef of hydroxyapatite foam (see Figure 2(c)) has a

characteristic length between 100 and 500 nm. It is built up by

d

d3

d2

Figure 1. Multistep homogenisation (Fritsch and Hellmich
2007).
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hydroxyapatite needles,1 being oriented in all directions

(labelled by suffix ‘HA’), and spherical, water-filled pores,

called intercrystalline space (labelled by suffix ‘ic’).

Homogeneous (‘macroscopic’) time-dependent strains

EefðtÞ are imposed, in terms of displacements jðx; tÞ, at the

boundary of the RVEef , ›V̂ef , through

;x [ ›V̂ef : jðx; tÞ ¼ EefðtÞ�x; ð1Þ

Figure 2. Micromechanical representation of bone material by means of a six-step homogenization scheme (Fritsch et al. 2009).
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where x is the position vector inside and at the boundary of the

RVEef , and t is the time variable. These macroscopic strains

are identical to the spatial average of the resulting

kinematically compatible (‘microscopic’) strain field 1ðx; tÞ
across the volume of the RVE (Zaoui 2002). In our case, this

reads as

EefðtÞ ¼
1

V̂ef

ð
V̂ef

1ðx; tÞdV ¼ f1icðtÞ þ ð1 2 fÞ

ð2p

w¼0

ðp
q¼0

1HAðw;q; tÞ
sinqdwdq

4p
;

ð2Þ

where r [ ½HA; ic� and V̂ef are the volume of the RVEef,

porosity f is the volume fraction of the intercrystalline space,

1ic refers to the spatial average of microstrains over this

porosity, and 1HAðw;q; tÞ are the average strains in the

needle-shaped hydroxyapatite phase oriented in (w, q)-

direction, see Figure 3.

Analogously, homogeneous macroscopic stresses

SefðtÞ are identical to the spatial average of equilibrated

microstresses sðx; tÞ across the RVE,

SefðtÞ ¼
1

V̂ef

ð
V̂ef

sðtÞdV

¼ fsicðtÞ þ ð1 2 fÞ

ð2p

w¼0

ðp
q¼0

sHAðw;q; tÞ

�
sinqdwdq

4p
; ð3Þ

where sHAðw;q; tÞ is the average stresses in the

needle-shaped hydroxyapatite phase oriented in (w, q)-

direction, see Figure 3.

2.2.2 Viscoelasticity of material phases

Considering viscous interfaces of layered water2 within

the extrafibrillar clusters of hydroxyapatite, as stated in the

Introduction section, we assign linear viscoelastic

behaviour to all needle-shaped phases in RVEef , according

to

sHAðtÞ ¼

ðt
21

rHAðt2 tÞ : _1HAðtÞdt¼ rHA*1HA½ �ðtÞ; ð4Þ

where _1HA denotes the temporal derivative of the strain

tensor of the hydroxyapatite needles, rHAðt2 tÞ is the

fourth-order tensorial relaxation function, t is the

integration variable related to the time instant when _1HA

was imposed onto the needles, and * represents the Stieltjes

convolution operator. Thereby, rHAðt ¼ tÞ refers to

instantaneous elasticity, while rHAðt . tÞ refers to

viscoelastic deformations. The special case of rHA ¼

constant (›rHA=›t ¼ 0) refers to pure elasticity, i.e.

rHA ¼ cHA, where cHA is the fourth-order elastic stiffness

tensor of hydroxyapatite. For the subsequent developments,

it is convenient to represent Equation (4) in the Laplace–

Carson (LC) domain defined through ‘frequency’ variable

p, with the LC transformation given as (Donolato 2002)

f *ðpÞ ¼ C{f ðtÞ} ¼ pf̂ðpÞ ¼ p

ð1
0

f ðtÞe2ptdt; ð5Þ

where f *ðpÞ is the LC transform of the time-dependent

function f ðtÞ, and f̂ðpÞ is the Laplace transform of f ðtÞ.

Namely, the insertion of Equation (4) into (5) yields an

algebraic equation in the LC domain, given as

s*
HAðpÞ ¼ r*

HAðpÞ : 1*
HAðpÞ: ð6Þ

Given the disordered arrangement of needle-shaped

phases, it is sufficient (Fritsch et al. 2006) to assign isotropic

phase properties to them, so that their relaxation tensor

reads as

r*
HAðpÞ ¼ 3k*

HAðpÞIvol þ 2m*
HAðpÞIdev: ð7Þ

In Equation (7), Ivol is the volumetric part of the fourth-

order unit tensor I, Ivol,ijkl ¼ 1/3dijdkl, with Kronecker

delta dij (dij ¼ 1 if i ¼ j, and dij ¼ 0 if i – j), while Idev is

the deviatoric part of I, Idev ¼ I 2 Ivol; the components of I

are defined as Iijkl ¼ 1/2(dikdjl þ dildjk). Note that the bulk

modulus of hydroxyapatite is independent of p, and hence

identical to the elastic bulk modulus of hydroxyapatite (see

Table 1), k*
HAðpÞ ; kHA, since gliding along interfaces

does not result in any volume changes [compare also

Fritsch et al. (2007) for a micromechanical development

related to this statement]. For mHA, we here adopt, as a first

approximation, the well-known Burgers model (TerHaar

1950; Vandamme and Ulm 2006)

m*
HAðpÞ ¼

1

mHA;inst

þ
1

mHA;KV þ phHA;KV

þ
1

phHA;M

� �21

;

ð8Þ

wheremHA;inst is the elastic shear modulus of hydroxyapatite

(see Table 1) and mKV, hKV and hM are the creep parameters

of the Kelvin-Voigt and the Maxwell type, respectively.

Identification of tissue-independent creep properties of water

layer-penetrated hydroxyapatite clusters is the very focus ofFigure 3. Cylindrical HA-inclusion (Fritsch et al. 2009).
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the present paper. However, since direct experimental

determination seems to be out of reach for the moment, we

will back-analyse them from creep tests on macroscopic bone

samples in Section 3. Therefore, we need to proceed with the

homogenisation of creep behaviour defined by Equations (7)

and (8), up to the macroscopic level, as described below.

2.2.3 Homogenised viscoelastic behaviour

of extrafibrillar space

Constitutive Equation (6) is formally identical to linear

elasticity, so that the superposition principle is valid in the

LC domain, i.e. the LC-transformed macroscopic strain

E*
HAðpÞ is proportional to the LC-transformed microscopic

strains in the needle-shaped hydroxyapatite phases,

1*
HAðw;q; pÞ ¼ A*

HAðw;q; pÞ : E*
efðpÞ; ð9Þ

and to the (average) microscopic strains in the intercrystal-

line pores

1*
icðpÞ ¼ A*

icðpÞ : E*
efðpÞ; ð10Þ

where A*
HAðw;q; pÞ denotes the LC-transformed fourth-

order strain concentration tensor of the (w;q)-oriented

hydroxyapatite phase and A*
icðpÞ refers to the concentration

tensor of the intercrystalline space. Equation (9) expresses

the viscoelastic correspondence principle (Read 1950;

Sips 1951; Laws and McLaughlin 1978; Beurthey and

Zaoui 2000). Insertion of Equation (9) into the LC-

transformed constitutive relation Equation (6), and

averaging over all phases according to Equation (3) yields

S*
ef ðpÞ¼ fcH2O :AicðpÞþð12fÞ

ð2p

w¼0

ðp
q¼0

rHAðpÞ :AHAðw;q;pÞ

�

�
sinqdqdw

4p

�
:E*

efðpÞ¼R*
efðpÞ :E*

efðpÞ:

ð11Þ

Equation (11) defines the LC-transformed homogen-

ised relaxation tensor of the extrafibrillar space, R*
efðpÞ,

which is the inverse of the homogenised creep tensor in the

LC domain, J*
efðpÞ,

J*
efðpÞ ¼ ½R*

efðpÞ�
21: ð12Þ

The concentration tensors A*
HAðw;q; pÞ and A*

icðpÞ

are determined from formally elastic matrix-inclusion

problems of the Eshelby-Laws type (Eshelby 1957;

Laws 1977), i.e. the average strains in each material

phase are approximated by the homogeneous strains in an

ellipsoidal inclusion with the phase properties, sur-

rounded by an infinite matrix with the properties of the

overall extrafibrillar polycrystal (‘self-consistent’

approach), this matrix being subjected, at infinity, to

fictitious homogeneous strains E0. Accordingly, the phase

strains read as

1*
HAðw;q;pÞ ¼ IþP*;ef

cyl ðw;q;pÞ : r*
HAðpÞ2R*

efðpÞ
� �h i21

:E0; ð13Þ

1*
icðpÞ ¼ Iþ P*;ef

sph ðpÞ : cic 2 R*
efðpÞ

� �h i21

: E0; ð14Þ

where P*;ef
cyl is Hill’s shape tensor of a cylindrical

inclusion in the isotropic extrafibrillar matrix and P*;ef
sph is

the analogon for a spherical inclusion, see (Fritsch and

Hellmich 2007) for details. Also, the intercrystalline

space exhibits elasticity of water, cic ¼ 3kH2OIvol.

Insertion of Equations (13) and (14) into Equation (2)

yields an expression for E0, and re-insertion of this

expression into Equations (13) and (14), respectively,

yields, according to Equations (9) and (10), the sought

concentration tensors as

Table 1. Phase stiffness values of the elementary components of bone.

Phase Bulk modulus k [GPa] Shear modulus m [GPa] Experimental source

Hydroxyapatite kHA ¼ 82:6 mHA ¼ 44:9 (Katz and Ukraincik 1971)
Water containing
Non-collagenous
Organics or osteocytes kH2O ¼ 2:3 mH2O ¼ 0

cijkl [GPa] cijkl [GPa]

(Molecular) collagen ccol;3333 ¼ 17:9 ccol;1133 ¼ 7:1 (Cusack and Miller 1979)
ccol;1111 ¼ 11:7 ccol;1122 ¼ 5:1

ccol;1313 ¼ 3:3

A*
HA ¼ Iþ P*;ef

cyl ðw;q; pÞ : r*
HAðpÞ2 R*

efðpÞ
� �h i21

: f Iþ P
*;ef
sph ðpÞ : cic 2 R*

efðpÞ
� �h i21

�

þ ð1 2 fÞ

ð2p

w¼0

ðp
q¼0

Iþ P
*;ef
cyl ðw;q; pÞ : r*

HAðpÞ2 R*
efðpÞ

� �h i21 sinqdwdq

4p

�21 ð15Þ
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Insertion of Equations (15) and (16) into Equation (11)

yields an implicit expression for the determination of R*
ef .

The integrals in Equations (15) and (16) can be solved very

efficiently with the help of Stroud’s integration formula

(Stroud 1971; Pichler et al. 2009)

ð2p

w¼0

ðp
q¼0

Iþ P
*;ef
cyl ðpÞðq;wÞ : r*

HA 2 R
*;SCS
ef ðpÞ

	 
h i21

sinqdqdw

4p
¼

Xn
j¼0

vðqj;wjÞ Iþ P
*;ef
cyl ðpÞðqj;wjÞ :

h

r*
HA 2 R

*;SCS
ef ðpÞ

	 
i21

:

ð17Þ

The scalar weight vðqj;wjÞ and the orientations qj and

wj are defined in Table 2.

When summing up the tensors P
*;ef
cyl in Equation (17),

they all have to be given in the same base frame.

However, analytical expressions for Pef
cyl are standardly

available in a (local) base frame coinciding with the

principal axis of the ellipsoid, see the Appendix. When

using the ½6 £ 6� ‘Kelvin-Mandel’ matrix notation,

given as (Nadeau and Ferrari 1998; Helnwein 2001;

Cowin 2003)

P¼

P1111 P1122 P1133

ffiffiffi
2

p
P1123

ffiffiffi
2

p
P1131

ffiffiffi
2

p
P1112

P2211 P2222 P2233

ffiffiffi
2

p
P2223

ffiffiffi
2

p
P2231

ffiffiffi
2

p
P2212

P3311 P3322 P3333

ffiffiffi
2

p
P3323

ffiffiffi
2

p
P3331

ffiffiffi
2

p
P3312ffiffiffi

2
p

P2311

ffiffiffi
2

p
P2322

ffiffiffi
2

p
P2333 2P2323 2P2331 2P2312ffiffiffi

2
p

P3111

ffiffiffi
2

p
P3122

ffiffiffi
2

p
P3133 2P3123 2P3131 2P3112ffiffiffi

2
p

P1211

ffiffiffi
2

p
P1222

ffiffiffi
2

p
P1233 2P1223 2P1231 2P1212

2
666666666664

3
777777777775

ð18Þ

the corresponding component transformation from the

local frames into one global frame can be done very

efficiently through (Nadeau and Ferrari 1998)

Pef
cyl;globalðw;q; pÞ ¼ Qðw;qÞPef

cyl;localðpÞQ
tðw;qÞ; ð19Þ

whereby Qtðw;qÞ is the transpose of Qðw;qÞ,

A*
ic ¼ IþP

*;ef
sph ðpÞ : cic2R*

efðpÞ
� �h i21

: f IþP
*;ef
sph ðpÞ : cic2R*

efðpÞ
� �h i21

þ ð12fÞ

ð2p

w¼0

ðp
q¼0

IþP
*;ef
cyl ðw;q;pÞ : r*

HAðpÞ2R*
efðpÞ

� �h i21sinqdwdq

4p

� �21

ð16Þ

Qðw;qÞ ¼

q2
11 q2

12 q2
13

2ffiffi
2

p q12q13
2ffiffi
2

p q13q11
2ffiffi
2

p q11q12

q2
21 q2

22 q2
23

2ffiffi
2

p q22q23
2ffiffi
2

p q23q21
2ffiffi
2

p q21q22

q2
31 q2

32 q2
33

2ffiffi
2

p q32q33
2ffiffi
2

p q33q31
2ffiffi
2

p q31q32ffiffiffi
2

p
q21q31

ffiffiffi
2

p
q22q32

ffiffiffi
2

p
q23q33 q23q32 þ q33q22 q21q33 þ q31q23 q22q31 þ q32q21ffiffiffi

2
p

q31q11

ffiffiffi
2

p
q32q12

ffiffiffi
2

p
q33q13 q33q12 þ q13q32 q31q13 þ q11q33 q32q11 þ q12q31ffiffiffi

2
p

q11q21

ffiffiffi
2

p
q12q22

ffiffiffi
2

p
q13q23 q13q22 þ q23q12 q11q23 þ q21q13 q12q21 þ q22q11

2
6666666666664

3
7777777777775

ð20Þ

Table 2. Scalar weights vðqj;wjÞ and orientations qj and wj for Stroud’s integration (Pichler et al. 2009).

J 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

sinðqjÞcosðwjÞ þr þr 2r 2r þt þt 2t 2t þs þs 2s 2s 1 0 0
sinðqjÞsinðwjÞ þs 2s þs 2s þr 2r þr 2r þt 2t þt 2t 0 1 0
cosðqjÞ þt þt þt þt þs þs þs þs þr þr þr þr 0 0 1
vðqj;wjÞ 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15 1/15

r ¼ 1=2, s ¼ ð
ffiffiffi
5

p
þ 1Þ=4 and t ¼ ð

ffiffiffi
5

p
2 1Þ=4.
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and qij and i ¼ 1; . . . ; 3; j ¼ 1; . . . ; 3 are the elements of

matrix q,

q ¼ ½e1; e2; e3�; ð21Þ

e1 ¼

cosw cosq

sinw cosq

2sinw

2
664

3
775; e2 ¼

2sinw

cosw

0

2
664

3
775;

e3 ¼

cosw sinq

sinw sinq

cosw

2
664

3
775:

ð22Þ

2.3 Homogenisation up to the macrolevel

The viscoelastic behaviour of the remaining five

homogenisation steps up to the macrolevel follows from

an expression analogous to Equations (11), (15) and (16),

but for a finite number of phases (Laws and McLaughlin

1978; Benveniste 1987; Zaoui 2002)

R
*;estðpÞ ¼

X
r

f rr
*
r ðpÞ

: Iþ P*;0
r ðpÞ : r*

r ðpÞ2 R*;0ðpÞ
� �� 21

:
X
s

f s Iþ P*;0
s ðpÞ : r*

s ðpÞ2 R*;0ðpÞ
� �� 21

( )21

;

ð23Þ

where r*
r is the LC-transformed relaxation tensor of phase r,

f r is the volume fraction of phase r and P*;0
r is the LC-

transformed Hill’s morphology tensor of an ellipsoidal

inclusion representing the characteristic shape of phase r,

being embedded in a fictitious matrix with LC-transformed

relaxation tensor R*;0: choice of the latter defines the

morphological nature of the material: if R*;0 coincides with

one of the phase relaxation tensors, the latter phase is a

matrix, in which all other phases are embedded (Mori–

Tanaka scheme (Mori and Tanaka 1973)); ifR*;0 is identical

to R
*;est, then all phases are in mutual contact, as in a

polycrystal (self-consistent scheme (Hershey 1954; Laws

and McLaughlin 1978)). In this sense, an RVEV�wetcol of wet

collagen (Figure 2(a)) consists of a contiguous matrix of

cross-linked molecular collagen, in which cylindrical

intermolecular pores are embedded; an RVE V� fib of

mineralised fibrillar material (Figure 2(b)) consists of

mutually interpenetrating hydroxyapatite crystal agglom-

erations (of, on average, spherical shape) and cylindrical

microfibrils made up of wet collagen, modelled through a

self-consistent scheme; an RVE �Vexcel of extracellular bone

matrix (Figure 2(d)) consists of an extrafibrillar matrix with

fibrillar inclusions; an RVE ~Vexvas of extravascular material

(Figure 2(e)) consists of a matrix of extracellular matrix

with embedded lacunar pores (inhabited by one osteocyte

each; and being drained, i.e. exhibiting zero elastic stiffness)

and an RVE Vcort of cortical bone (Figure 2(f)) consists of a

matrix of extravascular material with embedded vascular

pores (i.e. Haversian canals populated, among others, by

osteoblasts, osteoclasts and blood vessels; being drained,

i.e. exhibiting zero elastic stiffness). Explicitly, cortical

bone obeys the following material behaviour

R*
cortðpÞ ¼ f exvasR

*
exvasðpÞ

� 

: f exvasIþ f vas IþP
*;exvas
cyl ðpÞ : 2R*

exvasðpÞ
� �h i21

� �21

:

ð24Þ

In Equation (24), f exvas denotes the volume fraction

and R*
exvas is the relaxation tensor of extravascular

material, f vas denotes the volume fraction of the vascular

pores and P
*;exvas
cyl denotes the Hill’s tensor, accounting for

cylindrical inclusions in a transversely isotropic matrix of

extravascular material, for mathematical details of the

used Hill’s tensors, we refer to (Hellmich et al. 2004b;

Fritsch and Hellmich 2007).

To be able to give the predicted relaxation functions of

cortical bone from Equation (24) in a physically relevant

format, we have to back-transform the LC-transformed

material function R*
cortðpÞ into the time domain. Therefore,

we employ the Gaver-Wynn-Rho algorithm (Abate and

Valkó 2004; Valkó and Abate 2004), as detailed in

Scheiner and Hellmich (2009). This results in a

constitutive law of the format

ScortðtÞ ¼

ðt
21

Rcortðt2 tÞ : _EcortðtÞdt

¼ Rcort*EHA½ �ðtÞ: ð25Þ

3. Creep parameter identification from three-point

bending test on fully hydrated specimens

We identify the creep characteristics of water interface-

penetrated hydroxyapatite clusters from three-point

bending test of Iyo et al. (2004): these researchers

deflected, by w ¼ 0:39 mm, the centre of a beam on two

supports, the beam’s geometrical dimensions being

l ¼ 32 mm length, h ¼ 1 mm height and b ¼ 5 mm

width. They recorded the relaxing force F expðtÞ necessary

for maintaining a constant deflection of the beam.

However, these force measurements are not explicitly

reported in the aforementioned paper. Instead, the authors

a priori assumed a fully linear viscoelastic behaviour of

the beam system, and reported a corresponding (assumed)

relaxation modulus R IyoðtÞ, in the format

R IyoðtÞ¼E0 A1exp 2
t

t1

� �b
" #

þð12A1Þexp 2
t

t2

� �g� �( )
;

ð26Þ
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see Table 3 for parameters E0;A1; t1; t2;b and g. From this

assumed relaxation modulus, the experimentally deter-

mined relaxation force F expðtÞ can be re-constructed,

according to Bernoulli’s beam theory

F expðtÞ ¼
4R IyoðtÞEIyoI

l £ ðh=2Þ
: ð27Þ

Equation (27) relates to the statically determinate structure

of a simply supported beam of length l, width b and height

h, exhibiting a moment of inertia I

I ¼
bh3

12
¼ 0:4167 mm4; ð28Þ

and with EIyo as the (assumed) maximum longitudinal

strain at the beam centre, EIyo ¼ 0:23% (Iyo et al. 2004).

The experimentally determined force relaxation is

depicted in Figure 4 – the initially applied force amounts

to 3.4 N. We reiterate that this force would result in

hypothetical elastic strain of EIyo ¼ 0:23% at the bottom

of the beam, below the load.

However, these strains clearly exceed those related to

purely elastic behaviour, amounting to about 0.045%, after

which elastoplastic deformations are expected in the

extrafibrillar foam (Fritsch et al. 2009). Hence, plastic

events are involved in the three-point bending test. They

can be quantified from a well-validated hierarchical

micromechanics representation of bone (Fritsch and

Hellmich 2007; Fritsch et al. 2009). When specified for

bovine tibial bone (out of which Iyo et al. (2004) produced

their beam samples, see Table 4 for corresponding volume

fractions), this model predicts a (uniaxial) stress – (triaxial)

strain behaviour as depicted in Figure 5, where Scort;33

refers to the uniaxial normal stress component (acting in the

beam direction, see Figure 6) and Ecort;33 denotes the strain

component measuring length changes in the same direction.

In tension, the material exhibits a purely elastic

behaviour below 11 MPa. Upon further increase of the

load, the crystals in the extrafibrillar space start to glide

along water layers, which results in an elastoplastic quasi-

linear stress–strain relationship. The latter relates to a

softer response than the one the material shows initially.

Given such a stress–strain relationship, the initial load at

the centre of the beam leads, according to Bernoulli’s

beam theory, to a linear total strain distribution Ecort;33ðx1Þ,

and to a bilinear stress distribution Scort;33ðx1Þ ¼

Scort;33ðx1Þe3^e3, with ^ standing for the dyadic product

(Salençon 2001), across the beam cross section at the beam

centre (x3 ¼ 0), as depicted in Figure 7. The stress

distribution can be transformed into a distribution of

elastic strains Eel
cortðx1; x3 ¼ 0Þ, through

Eel
cortðx1Þ ¼ R21

cortðt ¼ tÞ : Scort;33ðx1Þ; ð29Þ

with Eel
cortðx1Þ ¼ Eel

cort;11ðx1Þe1^e1 þ Eel
cort;22ðx1Þe2^e2þ

Eel
cort;33ðx1Þe3^e3. During the relaxation experiment, the

axial normal component of the total strain, Ecort;33, remains

constant, i.e. it is time invariant [the normal strain

components in one- and two-directions, though, do change

(i.e. decrease) in the course of the relaxation of the beam].

Due to the stress decrease in the beam sample during

relaxation, the plastic strains E
pl
cort remain unchanged, they

are also time invariant. Conclusively, also the initially

elastic axial normal strain component, Eel
cort;33, is time

Table 3. Parameters defining relaxation modulus assumed by
Iyo et al. (2004), denoted as R IyoðtÞ in Equation (26).

Direction
E0

[GPa]
A1

[-]
t1

[s]
t2

[£106 s]
b
[-]

g
[-]

Longitudinal 14.2 0.08 49 9.3 0.28 0.35
Transverse 11.6 0.11 50 6.4 0.26 0.37
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Figure 5. Macroscopic stress–strain diagram for bovine tibia.
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Figure 4. Time-dependent relaxation force F expðtÞ acting on
three-point beam bending system, re-constructed from data and
protocol given in Iyo et al. (2004).

Table 4. Volume fractions for bovine tibia (Lees et al. 1979);
(Fritsch and Hellmich 2007).

rwet f col fHA f fib f̂HA
�fHA

�fcol f vas f lac

1.99 0.29 0.46 0.51 0.65 0.28 9.41 0.05 0.02
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invariant, it plays the role of prescribed strain in a purely

viscoelastic experiment. In order to preserve the

mathematical format of small-strain Bernoulli beam

theory, it is useful to formulate the axial stress relaxation

in the LC domain

S*
cort;33ðp; x1Þ ¼

1

J*
cort;3333ðpÞ

£ E
*;el
cort;33ðx1Þ; ð30Þ

where J*
cort;3333 is the axial normal component of the

LC-transformed creep tensor J*
cortðpÞ ¼ R*;21

cort ðpÞ; in

Equation (30), we account for the fact that all time-

invariant quantities do not depend on the frequency

variable p either. Axial stresses S*
cort;33 result in a bending

moment around axis x2

M*
2ðpÞ ¼

ð
A

S*
cort;33 ðp; x1Þx1dA; ð31Þ

and the latter is related to the relaxing force acting in the

beam centre, according to the equilibrium conditions

F
*;modðpÞ ¼

4M*
2ðpÞ

l
: ð32Þ

Upon back-transformation from the LC domain to the

time domain, we obtain the model-predicted force

relaxation evolution FmodðtÞ, as a function of the (so far

unknown) Burgers creep parameters of crystal clusters

with wet interfaces. We can now determine the creep

parameters of the Burgers model, mKV, hKV and hM,

such that the difference between the experimental

relaxation force F expðtÞ and the model-predicted relaxation

force FmodðtÞ is minimised. More specifically, we

minimise, through a two-membered evolution strategy

(Schwefel 1977; Hellmich and Ulm 2002), the standar-

dised relative difference D, defined as

D ¼
1

N þ 1

X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FmodðtÞ2 F expðtÞ

F expðtÞ

� �2
s

; D! 0: ð33Þ

The resulting Burgers parameters are listed in Table 5.

4. Model validation by means of partially dried

specimens

In order to check the relevance of the Burgers creep

parameters of Table 5 (which were back-analysed from a

three-point bending test on a bovine tibial sample, as

described in Section 3), we use the viscoelastic multiscale

model of Figure 2 (with the stiffness characteristics of

Table 4 and the creep parameters in Table 5) in order to

predict the viscoelastic behaviour of additional bone

samples tested under conditions different from the

aforementioned bending test, and we then compare the

latter model predictions with corresponding experimental

results. In this context, we consider the cantilever bending

tests of (Sasaki et al. 1993; see Figure 8), where the beam

samples are cut out of the femur of a 36-month-old cow,

such that the beam axis coincides with the longitudinal

material direction of the bone tissue. For such an

experimental set up, Sasaki et al. (1993) examined two

different cases: (i) a specimen soaked in water (with a

water content of f ¼ 0:22 g water/g bone) and (ii) a

partially de-hydrated specimen (with a water content of

f ¼ 0:14 g water/g bone). Given the lack of more specific

information and the similarity of bone tissue from bovine

b=5 mml=32 mm

h=
1 

m
m

F

x1

x3

x2

F

x1
x2

x3

Figure 6. Specimen tested by Iyo et al. (2004).

–3 –2 –1

Ecort,33

0 1 2 3

x 10–3

–0.6(a) (b)

–0.4

–0.2

0

0.2

0.4

0.6

x 1
[m

m
]

–50 –40 –30 –20 –10 0 10 20 30 40

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

x 1
[m

m
]

Σcort,33 [MPa]

Ecort,33
total

Ecort,33
el

Figure 7. Initial stress and strain distribution over the beam height under the applied load: (a) axial normal strains (elastic and total) and
(b) axial normal stresses.
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femur and tibia, we again employ the volume fractions

given in Table 4.

At first, the cantilever bending tests with f ¼ 0:22 g

water/g bone were examined. The experimental relaxation

force and the initial distribution of the elastic strains in the

cross section under the load were determined for the

experimental data given in Sasaki et al. (1993) with the

help of viscoelastic beam theory. The divergence between

predictions and experiments is þ2:52 ^ 0:09% (see

Figure 9).

Upon drying, water is removed from the pore spaces in

bone material, starting with the largest pores, the vascular

pores in cortical bone (see Figure 2(f)), followed by the

lacunar pores (see Figure 2(e)), before the much smaller

intercrystalline pores (see Figure 2(c)) are affected. Only

after excessively long drying (such as under vacuum

conditions; Cusack and Miller 1979), the smallest

intermolecular pores are deprived of the water bound

tightly herein. The apparent mass density of water in the

intercrystalline pores, per volume of extrafibrillar

material, amounts to rH2O £ ð1 2 f̂HAÞ ¼ 0:35 g/cm3, and

the intercrystalline water concentration per volume of

cortical bone amounts to 0:35 £ ð1 2 0:51Þ £ ð1 2 0:02Þ £

ð1 2 0:05Þ ¼ 0:16 g/cm3. Consequently, a water loss from

0.22 to 0.14 g/cm3, i.e. amounting to a difference of

0.08 g/cm3, leads to emptying half of the intercrystalline

pore space. Hence, only half of the extrafibrillar crystals

are in contact with water, and only these are subject to

viscous sliding processes. In terms of our model

formulation, only half of the crystals show viscoelastic

shear behaviour, the rest behaving in a purely elastic

fashion. Accordingly, the partially dried sample creeps

less (see Figure 10), and our model predictions are not

only qualitatively correct, but also exhibit a satisfactorily

small error of þ1:6 ^ 0:04%.

5. Composition-dependent creep properties –

influence of extracellular mineral content and

vascular porosity

Due to biodiversity, there is a great variation in bone

microstructure. Because of the significant influence on

viscoelastic behaviour of bone materials, especially

vascular porosity and mineral content in the extracellular

matrix are interesting. Considering mammals, vascular

porosity in healthy cortical bone lies between 2% and 8%,

and could increase up to 27% in the case of osteoporosis

(Bousson et al. 2000; Fritsch et al. 2009). The chemical

composition within the extravascular matrix depends only

on the organ, the individual and the species, but do not vary

in space and time (Boivin and Meunier 2002; Akkus et al.

2003; Roschger et al. 2003; Bossy et al. 2004; Hellmich et al.

2008; Fritsch et al. 2009). The extracellular mineral content
�fHA reaches from 30%, typical for deer antler, up to 70% in

equine metacarpus (Fritsch et al. 2009).

Accordingly, we report studies where we vary the

vascular porosity between 2% and 30%, and where the

ultrastructural mineral volume is chosen between 30% and

Table 5. Burgers parameters.

mHA;KV 179:5262 GPa
hHA;KV 1:3430 £ 105 GPa s
hHA;M 1:2842 £ 107 GPa s

b=8 mml=40 mm

h=
0,
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F F
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Figure 8. Specimen tested by (Sasaki et al. 1993).
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Figure 9. Force relaxation in water-soaked cantilever made of
bovine femoral tissue: comparison of model predictions with
experimental data of (Sasaki et al. 1993).
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Figure 10. Force relaxation in partially dehydrated cantilever
made of bovine femoral tissue: comparison of model predictions
with experimental data of (Sasaki et al. 1993).
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55%; the lacunar volume fraction is kept at 2% (as in

Table 4), and all other volume fractions at all remaining

RVEs of Figure 2 follow from Eq. (29) to (49) of Fritsch

and Hellmich (2007). In Figure 11, the effect of increasing

extracellular mineral content �fHA, as well as of increasing

vascular porosity f vas on modulus of elasticity in

longitudinal (Figure 11(a)) and transverse directions

(Figure 11(b)), respectively, can be seen. Increasing �fHA

(with fvas kept constant) leads to an increasing Young’s

modulus, whereas increasing fvas (with �fHA kept constant)

leads to decreasing Young’s modulus. These results imply

that the mineral is responsible for the stiffness of bone

which is consistent with the findings of Currey (2004).

The variation of �fHA and f vas affects the relaxation modulus

1=J3333 in the same way (see Figure 12(a), (b)).

The plots seen in Figure 13 show the five independent

components of the creep tensor J as functions of time, for

different mineral content and different vascular porosities.

In addition to the effects discussed before, two further

phenomena can be observed: (i) an increase in �fHA leads to

a decrease in the creep compliances in both directions

(J1111 and J3333) and (ii) this decrease is more pronounced

in the transverse direction than in longitudinal direction.

The first effect can be explained by the distribution of load

to the hydroxyapatite needles. If the mineral content

grows, e.g. if there are more needles, the load applied to

one single needle reduces. Hence, the gliding of single

hydroxyapatite needles on the thin water layers between

them is less distinctive, and therefore the whole material

creeps less. This phenomenon is direction-independent.

The second effect can be explained by the fact that the

minerals in the transverse direction carry much more of an

overall macroscopic load than they do in longitudinal

direction, where the molecular collagen contributes more.

Therefore, higher mineral content expresses itself in a

stiffness gain (and creep loss), which is larger in transverse

and smaller in longitudinal directions. Higher contribution

in load carrying may lead to earlier (and more)

plastification.
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Figure 11. Model-predicted modulus of elasticity in (a) longitudinal direction and (b) transverse direction as function of �fHA for different
f vas.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 13. Plots for (a) J1111 for �fHA ¼ 0:43, (b) J1111 for f vas ¼ 2%, (c) J3333 for �fHA ¼ 0:43, (d) J3333 for f vas ¼ 2%, (e) J2323 for
�fHA ¼ 0:43, (f) J2323 for f vas ¼ 2%, (g) J1122 for �fHA ¼ 0:43, (h) J1122 for f vas ¼ 2%, (i) J1133 for �fHA ¼ 0:43 and (j) J1133 for f vas ¼ 2%.
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6. Summary and outlook

A first approach of predicting long-term creep and

relaxation functions for bone material considering a

multiscale micromechanics model has been proposed in

this manuscript. As to the knowledge of the authors, it was

the first time that the intercrystalline water layers between

hydroxyapatite needles appearing in the extrafibrillar

space were regarded as responsible for the viscoelastic

behaviour of cortical bone.

The Burgers model turned out to describe the creep

behaviour of bone very well. In the first step, the

parameters mHA;KV, hHA;KV and hHA;M were determined

using an evolution strategy. To validate this approach, the

predicted values were compared with the results of

different experimental tests. The fact that the mean values

of the relative error between experimental results and

model estimates are less than 3% for several tests, is a clear

indicator for the significance of this approach. Because of

the correlation between the overall water content and the

number of hydroxyapatite needles involved in gliding

events, the capability of our new model to predict

relaxation forces for varying water contents very well,

confirms the relevance of the proposition to assign the

viscoelastic properties of bone to intercrystalline water

layers between the needles.

Taking a multiscale model into account allowed us to

study the effects of varying extracellular mineral contents

and vascular porosities on viscoelastic behaviour of bone

material. As expected, enlarging the mineral content

resulted in an increase of the relaxation modulus,

enlarging the vascular porosity resulted in a decrease of

the relaxation modulus. The creep compliance reduced as

the mineral content increased, which could be explained

by the distribution of the applied load on the single

hydroxyapatite needles. An unequally fast decrease in the

creep compliance in longitudinal and transverse directions

could be attributed to the contribution of molecular

collagen to load transfer. The question could be raised

whether the few experimental results reported here could

not have been represented by a simpler model with fewer

homogenisations steps. While the answer is potentially

‘yes’, this was not the purpose of the work described

herein. We are interested in the general understanding of

the mechanical phenomena occurring in bone micro- and

nanostructures; and in the present work, we have tackled

the question whether the multiscale scheme for bone as

given in Figure 2, which has been successfully validated

by means of dehydration/demineralisation tests, diffrac-

tion tests, microscopic data and ultrasonic tests at different

frequencies, as well as by quasi-static tests for elasticity

and strength, see (Hellmich and Ulm 2003; Fritsch et al.

2007; Fritsch et al. 2009; Vuong and Hellmich 2011),

would also be valid for bone creep, by just introducing

tissue independent, ‘universal’ viscous properties related

to sliding along interfaces of layered water. The first

results shown here are affirmative.

Our work should also help to better understand, how

bone works mechanically in the course of time. Especially,

the ability of relaxation behaviour to reduce stress

concentrations, which occur at microcracks, bone fractures

or fixations of implants, for example, is of interest, in order

to optimise, e.g. the treatment after bone fractures or

fixation techniques. Another important area is that of

mechanobiology where the time dependent, viscoelastic

behaviour of bone potentially alters the characteristic times

of remodelling events significantly (Lemaire et al. 2004).

Because of lack of long-term experimental data, only

bovine tibia was examined in this work. Investigating the

viscoelastic behaviour inherent to other bones of other

species emerges as interesting task of further research. In

this context, enlargement of the very scarce experimental

data base should be a central issue, by expanding well-

designed experimental protocols both at the macroscale

(Brynk et al. 2011) and at the microscale (Han et al. 2011),

to creep and relaxation tests.
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Notes

1. Although sometimes referred to as ‘needles’ appearing in
electron microscopy (Lees and Prostak 1988; Arsenault et al.
1991; Lees et al. 1994; Prostak and Lees 1996; Benezra
Rosen et al. 2002; Rubin et al. 2003; Hong et al. 2009) there
is some consensus that these ‘needles’ could be rather
platelets seen ‘on-the-edge’ (Eppell et al. 2001; Su et al.
2003; Tong et al. 2003; Hassenkam et al. 2004); however,
these platelets are probable to be much longer than wide
(Landis et al. 1991; Moradian-Oldak et al. 1991). From a
micromechanical viewpoint, the effect of needle- versus
plate-shape on the overall mechanical behaviour of porous
polycrystals has been shown to be a minor one (Fritsch et al.
2010).

2. Spreading over considerable crystal surfaces, while being
negligible in terms of volume fractions.
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Appendix Fourth-order Hill tensor, Pef
cyl, for cylindrical

inclusions in an isotropic material

The fourth-order Hill tensor, Pef
cyl, for cylindrical inclusions in an

isotropic material can be obtained from

Pef
cyl ¼ SEsh;ef

cyl : C21
ef ; ðA1Þ

where the Eshelby tensor, S
Esh;ef
cyl , is standardly defined in a local

coordinate system attached to individual solid needles (as
depicted in Figure 3). The corresponding non-zero components
read as follows (Eshelby 1957)

Sesh
cyl;1111 ¼ Sesh

cyl;2222 ¼
5 2 4nef

8½1 2 nef�
;

Sesh
cyl;1122 ¼ Sesh

cyl;2211 ¼
21 þ 4nef

8½1 2 nef�
;

Sesh
cyl;1133 ¼ Sesh

cyl;2233 ¼
nef

2½1 2 nef�
;

Sesh
cyl;2323 ¼ Sesh

cyl;3232 ¼ Sesh
cyl;3223 ¼ Sesh

cyl;2332 ¼

Sesh
cyl;3131 ¼ Sesh

cyl;1313 ¼ Sesh
cyl;1331 ¼ Sesh

cyl;3113 ¼
1

4
;

Sesh
cyl;1212 ¼ Sesh

cyl;2121 ¼
3 2 4nef

8½1 2 nef�
;

Sesh
cyl;2112 ¼ Sesh

cyl;1221 ¼
3 2 4nef

8½1 2 nef�
; ðA2Þ

with the Poisson’s ratio reading as

nef ¼
3kef 2 2mef

6kef þ 2mef

; ðA3Þ

where kef and mef are the bulk and shear moduli of the
extrafibrillar material.
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