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ABSTRACT
This paper considers the dynamics of nonlinear semelparous Leslie
matrix models. First, a class of semelparous Leslie matrix models is
shown to be dynamically consistent with a certain system of Kol-
mogorovdifferenceequationswith cyclic symmetry. Then, theglobal
dynamics of a special class of the latter is fully determined. Combin-
ing together, we obtain a special class of semelparous Leslie matrix
models which possesses generically either a globally asymptotically
stable positive equilibrium or a globally asymptotically stable cycle.
The result shows that the periodic behaviour observed in periodical
insects can occur as a globally stable phenomenon.
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1. Introduction

A periodical insectmeans an insect whose life cycle has a fixed length of n years (n>1) and
where adults only appear every nth year. Periodical cicadas are one of the most famous
examples of periodical insects. To understand the mechanism that produces the periodic
behaviour in periodical insects, Bulmer [4] studied a special case of the following system
of difference equations:

u1(t + 1) = snσn(u1(t), u2(t), . . . , un(t))un(t),

u2(t + 1) = s1σ1(u1(t), u2(t), . . . , un(t))u1(t),

...

un(t + 1) = sn−1σn−1(u1(t), u2(t), . . . , un(t))un−1(t), (1)

where t ∈ Z+ = {0, 1, 2, . . .}. This system is a nonlinear semelparous Leslie matrix model
and describes the dynamics of an age-structured population divided into n age-classes.
The variable ui(t), 1 ≤ i ≤ n, denotes the number of age-i individuals at time t. For 1 ≤
i ≤ n − 1, the product of the constant si and the function σi(u) represents the probability
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that an age-i individual survives a unit of time. The product of the constant sn and the func-
tion σn(u) represents the fertility of an age-n individual. Here, we set all σi(0) = 1. Thus,
system (1) assumes that only the last age-class is reproductive. That is only un(t) repre-
sents the number of adult individuals. In this sense, system (1) describes the population
dynamics of semelparous species such as cicadas and beetles.

With σi(u) = exp(−∑1≤j≤n aijuj) in system (1), Bulmer [4] gave a sufficient condition
for such a system to have a locally stable cycle and reached the conclusion that periodic
behaviour results if competition ismore severe between age-classes thanwithin age-classes.
Tomathematically verify this claim, system (1) has been studied inmany papers. For exam-
ple, Cushing and Li [11] studied bifurcations that occur around the extinction equilibrium
of (1) with n = 2 and classified the stability of bifurcating positive equilibria and 2-cycles.
This study was extended by Cushing [9] to the case n = 3; see also [8, 10, 19]. It was found
that a heteroclinic cycle connecting three periodic points of a 3-cycle can also bifurcate
from the extinction equilibrium. Besides these bifurcation studies, Davydova et al. [13]
examined the asymptotic behaviour of (1) mathematically and numerically for the spe-
cial case n = 2 and σi(u1, u2) = exp(−ai(c1u1 + c2u2)), i = 1, 2. In addition, given that
the coordinate axes include every cycle associated with the periodic behaviour in period-
ical insects, the attractivity of the coordinate axes was studied by Mjølhus et al. [25], Kon
[18], Kon and Iwasa [20] and Diekmann and Planqué [14]. All these studies only reveal
the local behaviour around equilibria, cycles or the coordinate axes (but see [14] for an
example of (1) where the coordinate axes attract a large set of initial conditions).

This paper aims at the global behaviour of system (1). We first try to find a certain class
of (1) that is dynamically consistent with the following system of difference equations:

x1(t + 1) = g(x1(t), x2(t), . . . , xn(t))x1(t),

x2(t + 1) = g(x2(t), x3(t), . . . , x1(t))x2(t),

...

xn(t + 1) = g(xn(t), x1(t), . . . , xn−1(t))xn(t). (2)

That is xi(t + 1) = g(P−i+1x(t))xi(t) for 1 ≤ i ≤ n with

P =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞
⎟⎟⎟⎟⎟⎠ and x(t) =

⎛
⎜⎜⎜⎝
x1(t)
x2(t)
...

xn(t)

⎞
⎟⎟⎟⎠ . (3)

Here, xi(t) and g(P−i+1x(t)) are, respectively, the population size and the growth rate of
species i at time t.

System (2) is a special system of Kolmogorov difference equations which have been
used to study the population dynamics of n interacting species. There are many works
on systems of Kolmogorov difference equations. See, for instance, [2, 3, 7, 17, 23, 31].
Some specific examples of system (2) with n = 2 and 3 are reported in [16, 26–29]. In
Theorem 2.2, it is shown that under some conditions on system (1), there exists a sequence
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of non-singular matricesAt with period n such that any solutions u(t) of (1) and x(t) of (2)
satisfy

u(t) = Atx(t) for all t ∈ Z+ as long as u(0) = A0x(0). (4)

This means systems (1) and (2) are dynamically consistent.
The next step is to determine the global dynamics of (2). For a general system, this is

not an easy task. Inspired by the Leslie–Gower competition model [22], we are led to some
simplified versions of (2) like the following

xi(t + 1) = xi(t)h

⎛
⎝xi(t) + c

∑
j�=i

xj(t)

⎞
⎠ , 1 ≤ i ≤ n, (5)

where the constant cmeans all interspecific competition coefficients are the same and the
growth rate function h is assumed to be positive, continuous, strictly decreasing on [0,∞)

with h(0) > 1 > h(∞). Furthermore, xh(x) is assumed to be strictly increasing. Using
some elementary comparison methods, we obtain in Sections 3 and 4 that depending on
whether c<1 or not, system (5) and its analogues have, generically, either a globally asymp-
totically stable positive equilibrium or a globally asymptotically stable set of single-species
equilibria.

Via the dynamical consistency relation (4), we finally get in Theorem 5.1 the global
dynamics of semelparous Leslie matrix models (1) in which

σi(u1, u2, . . . , un) = (s1s2 · · · sn)−(1/n)h

⎛
⎝ui
di

+ c
∑
j�=i

uj
dj

⎞
⎠ . (6)

Because of the periodicity of At in (4), we will find that the set of single-species equilibria
of (5) corresponds to a single-class n-cycle in system (1). Thus, we obtain that depending
on whether c<1 or not, system (1) has, generically, either a globally asymptotically stable
positive equilibrium or a globally asymptotically stable single-class n-cycle. In particular,
the case c>1 verifies Blumer’s claim that periodic behaviour observed in periodical insects
can occur as a globally stable cycle. Note that in (6), (d1, d2, . . . , dn) is a positive eigen-
vector of the linearized system of (1) at the origin and (s1s2 · · · sn)1/n the corresponding
eigenvalue which is greater than 1 as σi(0) = 1 < h(0) by assumption.

This paper is organized as follows. In Section 2, we derive a condition under which
(4) holds, thus determining a certain class of semelparous Leslie matrix models (1) which
is dynamically consistent with the Kolmogorov difference equations (2). In Sections 3
and 4, we consider a special class of Kolmogorov difference equations that include (5)
and completely determine its global dynamics together with the asymptotic stability of
the equilibria. Combining together the results in Sections 2–4, we obtain in Section 5 the
global dynamics of those semelparous Leslie matrix models whose survival functions are
given in (6). Finally, some conclusions are given in Section 6.
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2. Dynamical consistency between systems (1) and (2)

In this section, we derive a condition under which the semelparous Leslie matrix model
(1) is dynamically consistent with the Kolmogorov difference Equation (2). Note that sys-
tem (2) has cyclic symmetry in the sense that if x(t) is a solution of (2), then so is Px(t). In
fact, we have

(Px(t + 1))i = xi−1(t + 1) = g(xi−1(t), xi(t), . . . , xi+n−2(t))xi−1(t)

= g(P−i+1Px(t))(Px(t))i,

where the subscripts of xi are counted mod n and (Px)i denotes the ith component of the
vector Px.

Let R
n+ = {x ∈ R

n : xi ≥ 0 for all i} and intRn+ = {x ∈ R
n : xi > 0 for all i}. Assume

that

(H1) si > 0 and σi : Rn+ → (0,∞) with σi(0) = 1 for 1 ≤ i ≤ n.

It is clear that bothR
n+ and intRn+ are forward invariant under (1). If each σi is differen-

tiable, then the linearization of system (1) at the origin yields the linear difference equation
u(t + 1) = Uu(t), where

U =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 sn
s1 0 · · · 0 0
0 s2 · · · 0 0
...

...
. . .

...
...

0 0 · · · sn−1 0

⎞
⎟⎟⎟⎟⎟⎠ and u(t) =

⎛
⎜⎜⎜⎝
u1(t)
u2(t)
...

un(t)

⎞
⎟⎟⎟⎠ .

Being a non-negative irreducible matrix, Perron–Frobenius Theorem ensures thatU has a
dominant eigenvalue λ0 > 0 and a positive eigenvector, say, d = (d1, d2, . . . , dn)� associ-
ated with λ0. It is straightforward to show that λ0 = R1/n

0 , whereR0 = s1s2 · · · sn is called
the basic reproduction number and represents the number of offspring reproduced by an
individual in its lifetime when the density effects are ignored and {di} satisfy

dn
d1

sn = d1
d2

s1 = · · · = dn−1

dn
sn−1 = R1/n

0 , (7)

which implies that once d1 is fixed, d2, d2, . . . , dn are uniquely determined by

di = si−1si−2 · · · s1
R(i−1)/n

0

d1, 2 ≤ i ≤ n.

Because U is the Jacobian matrix of system (1) evaluated at the origin, the origin of (1)
is asymptotically stable if R0 < 1 and unstable if R0 > 1. Moreover, Ud = λ0d implies
that the vector (1/

∑n
i=1 di)d gives a stationary age-distribution for the linearized system

u(t + 1) = Uu(t). In fact, if the initial population u(0) is proportional to d, then so is u(t)
for each t ∈ Z+. This motivates us to consider the following normalized population:

yi(t) = ui(t)/di for 1 ≤ i ≤ n, i.e., Dy(t) = u(t), (8)

whereD is the diagonal matrix whose diagonal entries are d1, d2, . . . , dn. We will see below
how the desired dynamical consistency is obtained via y(t). Using (7) and (8), it is easy to
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check that (1) becomes

y1(t + 1) = R1/n
0 σn(d1y1(t), d2y2(t), . . . , dnyn(t))yn(t),

y2(t + 1) = R1/n
0 σ1(d1y1(t), d2y2(t), . . . , dnyn(t))y1(t),

...

yn(t + 1) = R1/n
0 σn−1(d1y1(t), d2y2(t), . . . , dnyn(t))yn−1(t). (9)

We introduce the following assumption on the survival probabilities above:

(H2) R1/n
0 σi(Dx) = g(P−i+1x) for all x ∈ R

n+ and 1 ≤ i ≤ n.

Here, matrices P andD are given in (3) and (8), respectively. Under this assumption, (9)
is equivalent to

yi(t + 1) = g(yi−1(t), yi(t), . . . , yi−2(t))yi−1(t) for 1 ≤ i ≤ n, (10)

which would be the same as system (2) if the subscripts of all y terms on the right-hand
side are shifted forward by one.

Denote by F and G the maps defined by (2) and (9), respectively. Similarly, the
t-fold compositions of F and G with themselves are denoted by Ft and Gt , respectively.
By definition, both F0 and G0 mean the identity map.

Lemma 2.1: Assume that (H1) and (H2) hold. Then F and G are maps from R
n+ to itself

and

Gt(x) = PtFt(x) for all x ∈ R
n
+ and t ∈ Z+. (11)

In particular, Gnk(x) = Fnk(x) for all x ∈ R
n+ and k ∈ Z+.

Proof: Clearly, F and G are maps from R
n+ to itself. Since F0 and G0 are the identity

map, (11) holds trivially for t = 0. We show now that it holds for t = 1, so that we may
use mathematical induction. The cyclic symmetry of (2) implies that

PF(x) = F(Px) for all x ∈ R
n
+. (12)

Then assumption (H2) ensures that for all x ∈ R
n+,

G(x) =

⎛
⎜⎜⎜⎜⎝

R1/n
0 σn(Dx)xn

R1/n
0 σ1(Dx)x1

...
R1/n

0 σn−1(Dx)xn−1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

g(P−n+1x)xn
g(x)x1

...
g(P−n+2x)xn−1

⎞
⎟⎟⎟⎠ = PF(x). (13)

That verifies (11) for t = 1. Suppose Gt(x) = PtFt(x) holds for some t ≥ 1. Then

Gt+1(x) = G(Gt(x)) = G(PtFt(x)) = PF(PtFt(x)),
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where (13) was used for the last equality above. Applying (12) repeatedly, we obtain
PF(PtFt(x)) = Pt+1Ft+1(x) and thus

Gt+1(x) = Pt+1Ft+1(x).

This completes the proof of (11) by mathematical induction. The final assertion follows
from the fact that Pnk is the identity matrix for any k ∈ Z+. �

The desired dynamical consistency relation (4) withAt = DPt follows from Lemma 2.1.

Theorem 2.2: Assume (H1) and (H2) hold. Let u(t) and x(t) be solutions of (1) and (2),
respectively. Then u(t) = DPtx(t) for all t ∈ Z+ whenever u(0) = Dx(0). Here, matrices P
and D are given in (3) and (8), respectively.

Proof: By (8), the assumption u(0) = Dx(0) implies y(0) = x(0). Thus, by Lemma 2.1,
Gt(y(0)) = PtFt(x(0)) holds for all t ∈ Z+. This implies that y(t) = Ptx(t) for all t ∈ Z+.
By (8), we finally obtain that u(t) = DPtx(t) for all t ∈ Z+. �

3. Global dynamics of Kolmogorov difference equations

As shown in [16], system (2) can have a rich dynamics even under the cyclic symmetry
restriction. In order to obtain some results on the global dynamics, we will study in this
section the following special case of (2): For 1 ≤ i ≤ n and t ∈ Z+ = {0, 1, 2, . . .},

xi(t + 1) = xi(t)
m∏

�=1

h�

⎛
⎝xi(t) + c�

∑
j�=i

xj(t)

⎞
⎠ , (14)

where all c� ≥ 0. Equation (14)means that the effect of the other species on the growth rate
of species i is determined by their total population size

∑
j�=i xj(t). We study system (14)

under the assumptions that for 1 ≤ � ≤ m,

(A1) h�(x) are positive, continuous and strictly decreasing functions on [0,∞),
(A2) there are positive constants α� with

∑m
�=1 α� = 1 such that xα�h�(x) are increasing

functions on [0,∞),
(A3)

∏m
�=1 h�(0) > 1 > limx→∞

∏m
�=1 h�(x). In particular,

there exist L > 0 and λ ∈ (0, 1) such that
m∏

�=1

h�(x) < λ for all x ≥ L. (15)

Whenm = 1, (14) is reduced to (5). Assumptions (A1)–(A3) above then become

(A1)′ h(x) is positive, continuous and strictly decreasing on [0,∞),
(A2)′ xh(x) is increasing on [0,∞),
(A3)′ h(0) > 1 > limx→∞ h(x).
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It is straightforward to show that the functions

h�(x) =
(

β� + a�

1 + x

)α�

, 1 ≤ � ≤ m, (16)

satisfy (A1)–(A3) if all β�, a� and α� are positive constants with
∑m

�=1 α� = 1 and∏m
�=1(β� + a�)

α� > 1 >
∏m

�=1 β�
α� . Thus, the following system is an example of (14)

satisfying (A1)–(A3): For 1 ≤ i ≤ n and t ∈ Z+ = {0, 1, 2, . . .},

xi(t + 1) = xi(t)
m∏

�=1

(
β� + a�

1 + xi(t) + c�
∑

j�=i xj(t)

)α�

. (17)

Whenm = 1, β1 = 0, a1 = a > 1, and c1 = c ≥ 0, system (17) becomes

xi(t + 1) = axi(t)
1 + xi(t) + c

∑
j�=i xj(t)

, 1 ≤ i ≤ n, (18)

which satisfies (A1)′ –(A3)′ and is a special case of the Leslie–Gower model [22]:

xi(t + 1) = λixi(t)
1 + xi(t) +∑

j�=i cijxj(t)
, 1 ≤ i ≤ n. (19)

Here, we may assume without loss of generality that the carrying capacities λi − 1 are
positive and strictly decreasing in i. For n = 2, Cushing et al. [7] determined the asymp-
totic behaviours of all solutions as the theory of planar competitive maps guarantees that
every positive solution converges, see, e.g. Liu and Elaydi [23] and Smith [31]. For n ≥ 3,
there are only some partial results. For instance, Ruiz-Herrera [30], Chow and Hsieh [5]
and Ackleh et al. [1] show that in the competitive Leslie–Gower model, the competitive
exclusion principle holds if only one species has the largest carrying capacity. So every
solution converges to a boundary equilibrium which is globally stable. Recently, Balreira
et al. [3] gave a general result on higher dimensional monotone maps that guarantees the
global asymptotic stability of an interior equilibrium of system (19) with n = 3 and all
cij = c < (λ3 − 1)/(λ1 + λ2 − λ3 − 1). Chow and Palmer [6] showed that when n = 3
and cij = c 
 1, the unique interior equilibrium of system (19), if exists, is a saddle with
one dimensional stable manifold. They conjectured that every positive solution converges.
We are thus motivated to find some special systems like (14) and (18) such that this
conjecture holds.

It is clear that assumption (A1) implies both R
n+ and intRn+ are forward invariant for

system (14). The following lemma shows that any solution of system (14) converges to
neither 0 nor infinity under assumption (A3).

Lemma 3.1: Assume that (A1) and (A3) hold. Then for any x ∈ R
n+\{0}, the omega-limit

set ω(x) of system (14) is a compact subset of Rn+\{0}.
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Proof: Let Ki = {x ∈ R
n+ : xi ≤ L}, 1 ≤ i ≤ n and x(t) be a solution of (14). Remember L

and λ < 1 are defined in (15). Suppose that x(t) ∈ R
n+\Ki. Then

xi(t) + c�
∑
j�=i

xj(t) ≥ xi(t) > L

holds for all 1 ≤ � ≤ m. By (15) and (14), we have

m∏
�=1

h�

⎛
⎝xi(t) + c�

∑
j�=i

xj(t)

⎞
⎠ < λ < 1 and then xi(t + 1) ≤ λxi(t).

Thus, the solution x(t) eventually enters
⋂n

i=1 Ki. Since the right-hand side of (14) is a
continuous function of x(t) and

⋂n
i=1 Ki is compact, the solution x(t) is bounded. Thus,

ω(x(0)) is compact. Similarly, the first inequality in (A3) implies x(t) with x(0) ∈ R
n+\{0}

eventually enters the compact setK = ⋂n
i=1 Ki ∩ {x ∈ R

n+ : ε ≤ ∑n
i=1 xi}with sufficiently

small ε > 0. Since the right-hand side of (14) is a continuous function of x(t) and all h� > 0
by (A1), we can conclude that ω(x(0)) ⊂ R+\{0}. �

Based on assumptions (A1) and (A2), we first show a preliminary lemma.

Lemma 3.2: Assume (A1) and (A2) hold. Then for any b� > 0 and 1 ≤ � ≤ m, both
x
∏m

�=1 h�(x + b�) and x
∏m

�=1 h�(b�x) are increasing for x ∈ [0,∞).

Proof: Let 0 < α� < 1 be given in (A2). Then (x + b�)
α� − xα� is positive, decreasing in

x as
d
dx

((x + b�)
α� − xα�) = α�((x + b�)

α�−1 − xα�−1) ≤ 0.

By (A2) and (A1), (x + b�)
α�h�(x + b�) increases and h�(x + b�) decreases in x. Hence,

0 ≤ xα�h�(x + b�) = (x + b�)
α�h�(x + b�) − ((x + b�)

α� − xα�)h�(x + b�)

is increasing in x. Using
∑m

�=1 α� = 1, the first claim follows from

x
m∏

�=1

h�(x + b�) =
m∏

�=1

(
xα�h�(x + b�)

)
.

Similarly, (b�x)α�h�(b�x) increases in x by (A2). The remaining claim follows from multi-
plying these functions together and using

∑m
�=1 α� = 1 again. �

Define c = (c1, c2, . . . , cm)� and 1 = (1, 1, . . . , 1)�. Using Lemmas 3.1 and 3.2, we now
show the following result on global dynamics of system (14).

Theorem 3.3: Assume that (A1)–(A3) hold and x(t) is a solution of system (14) with
x(0) ∈ intRn+. Let M = max1≤i≤n xi(0) and J = {i : xi(0) = M}.

(a) If all c� ∈ [0, 1] and c �= 1, then limt→∞ x(t) = η1, where η is uniquely determined by∏m
�=1 h�((1 + c�(n − 1))η) = 1.
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(b) If all c� ≥ 1 and c �= 1, then limt→∞ x(t) = η
∑

j∈J ej, where η is uniquely deter-
mined by

∏m
�=1 h�((1 + c�(|J| − 1))η) = 1 and ej is the jth unit vector. In particular,

limt→∞ xi(t) = 0 for i /∈ J.
(c) If all c� = 1, then limt→∞ x(t) = ηx(0), where η is uniquely determined by∏m

�=1 h�(η
∑n

j=1 xj(0)) = 1.

Proof: Note that the existence and uniqueness of η in (a) –(c) is due to assumptions (A1)
and (A3). Define Si(t) = ∑

j�=i xj(t). By symmetry, we may assume x1(0) = M.
Part (a). We show by induction on t ∈ Z+ = {0, 1, 2, . . .} that for 2 ≤ i ≤ n,

xi(t)
x1(t)

≤ 1 and is increasing in t. Thus lim
t→∞

xi(t)
x1(t)

= ri ∈ (0, 1] exists. (20)

Assume that all xi(t) ≤ x1(t) hold for some t ∈ Z+. Note that all xi(0) ≤ M = x1(0) by
assumption. Then certainly Si(t) ≥ S1(t). Using (14) and the first claim in Lemma 3.2, we
obtain xi(t + 1)/x1(t + 1) ≤ 1 as follows:

xi(t + 1) = xi(t)
m∏

�=1

h�(xi(t) + c�Si(t)) ≤ x1(t)
m∏

�=1

h�(x1(t) + c�Si(t))

≤ x1(t)
m∏

�=1

h�(x1(t) + c�S1(t)) = x1(t + 1),

where in the last inequality (A1) and Si(t) ≥ S1(t) are used.
Since all c� ≤ 1, xi(t) + c�Si(t) ≤ x1(t) + c�S1(t) can be verified as follows:

(xi(t) + c�Si(t)) − (x1(t) + c�S1(t)) = (1 − c�)(xi(t) − x1(t)) ≤ 0. (21)

Using (14), (21) and (A1) again, we obtain

xi(t + 1)
xi(t)

=
m∏

�=1

h�(xi(t) + c�Si(t)) ≥
m∏

�=1

h�(x1(t) + c�S1(t)) = x1(t + 1)
x1(t)

. (22)

Thus xi(t)/x1(t) ≤ xi(t + 1)/x1(t + 1) and (20) is verified by induction.
Equation (20) and Lemma 3.1 imply that ω(x(0)) ⊆ {x = s(r1, r2, r3, . . . , rn)� : s ∈

(0,∞)} = Y , where r1 = 1 so that (20) is valid for i = 1 as well. On the half-line Y,
system (14) is reduced to n one-dimensional equations:

xi(t + 1) = xi(t)
m∏

�=1

h�

⎛
⎝xi(t)

⎛
⎝1 + c�

ri

∑
j�=i

rj

⎞
⎠
⎞
⎠ . (23)

Note that, by Lemma 3.2 and (A1), every solution on Y converges to the point
(η1, η2, . . . , ηn)�, whereηi > 0 is uniquely determined by

∏m
�=1 h�(ηi(1 + (c�/ri)

∑
j�=i rj))

= 1. Since ω(x(0)) ⊆ R
n+\{0} is compact by Lemma 3.1, x(t) is bounded for t ≥ 0. The

boundedness ensures that ω(x(0)) is also nonempty and invariantly connected (e.g. see
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Theorem 5.2, LaSalle [21]). Since {(η1, η2, . . . , ηn)�} is a unique nonempty invariantly
connected set in Y, we can conclude that ω(x(0)) = {(η1, η2, . . . , ηn)�}, i.e. for 1 ≤ i ≤ n,

lim
t→∞ xi(t) = ηi. (24)

We will see below that ri and thus ηi are independent of the initial condition.
Write η1 = η. Then ηi = riη by (20). Remember r1 = 1. The defining equations for η1

and ηi above can be rewritten as

m∏
�=1

h�

⎛
⎝η

⎛
⎝r1 + c�

∑
j�=1

rj

⎞
⎠
⎞
⎠ = 1 and

m∏
�=1

h�

⎛
⎝η

⎛
⎝ri + c�

∑
j�=i

rj

⎞
⎠
⎞
⎠ = 1. (25)

Since all c� ≤ 1 by assumption and ri ≤ 1 = r1 by (20), we find that

(r1 + c�
∑
j�=1

rj) − (ri + c�
∑
j�=i

rj) = (1 − c�)(r1 − ri) ≥ 0 for all � ≤ m, i ≤ n. (26)

Because each h� is strictly decreasing by (A1), equality in (26) holds by (25). Then all
ri = r1 = 1 and thus, all ηi = η as some c� < 1 by assumption.We conclude from (24) and
(25) that limt→∞ xi(t) = η for 1 ≤ i ≤ n and η is uniquely determined by

∏m
�=1 h�(η(1 +

c�(n − 1))) = 1. This verifies the assertion in (a).
Part (b). Since x1(0) = M by assumption, we have xi(0) = x1(0) for i ∈ J and xi(0) <

x1(0) for i �∈ J. As was done to show (20), we show by induction on t that for 2 ≤ i ≤ n,

xi(t)
x1(t)

≤ 1 and is decreasing in t with
xi(t)
x1(t)

= 1 for i ∈ J. (27)

As a consequence, there exist constants ri ∈ [0, 1] with r1 = 1 such that

lim
t→∞

xi(t)
x1(t)

= ri and ri = 1 if and only if i ∈ J. (28)

Assume that all xi(t) ≤ x1(t) hold for some t ∈ Z+ with equality held for i ∈ J. The
inequality xi(t + 1) ≤ x1(t + 1) can be verified exactly as in the formula before (21). Since
c� ≥ 1, the inequality in (21) is reversed with equality held for i ∈ J. So is the inequal-
ity in (22). Hence, xi(t + 1)/x1(t + 1) ≤ xi(t)/x1(t) with equality held for i ∈ J. This
proves (27) by induction and thus (28) is verified.

Following the same arguments in the proof of Part (a), we have ω(x(0)) ⊆ {x =
s(r1, r2, r3, . . . , rn)� : s ∈ (0,∞)}. Let K = {i �∈ J : ri > 0}. On the half-line above, sys-
tem (14) is reduced to

xi(t + 1) = xi(t)
m∏

�=1

h�

⎛
⎝xi(t)

⎛
⎝1 + c�

ri

∑
j�=i

rj

⎞
⎠
⎞
⎠ for i ∈ J ∪ K,

and lim xi(t) = 0 for i /∈ J ∪ K as x(t) is bounded by Lemma 3.1 and ri = 0 for i /∈ J ∪ K.
Similar to (24), we can get from Lemma 3.2 and (28) that

lim
t→∞ xi(t) = ηi for 1 ≤ i ≤ n. (29)
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Here, ηi = η for i ∈ J, ηi = riη < η for i ∈ K and ηi = 0 for i /∈ J ∪ K. Moreover, the
defining equations for η1 = η and ηi = ηri, i ∈ K are given by

m∏
�=1

h�

⎛
⎝η

⎛
⎝r1 + c�

∑
j�=1

rj

⎞
⎠
⎞
⎠ = 1 and

m∏
�=1

h�

⎛
⎝η

⎛
⎝ri + c�

∑
j�=i

rj

⎞
⎠
⎞
⎠ = 1. (30)

We claim K = ∅. Then the conclusion in Part (b) follows from (29) with η uniquely
determined by

∏m
�=1 h�(η(1 + c�(|J| − 1))) = 1 as shown in the first equality in (31).

Suppose the contrary that K �= ∅. Using rj = r1 = 1 for j ∈ J and rj = 0 for j /∈ J ∪ K,
we may rewrite (30) as

1 =
m∏

�=1

h�

⎛
⎝η

⎛
⎝1 + c�(|J| − 1 +

∑
j∈K

rj)

⎞
⎠
⎞
⎠ =

m∏
�=1

h�

⎛
⎜⎜⎝η

⎛
⎜⎜⎝ri + c�(|J| +

∑
j�=i
j∈K

rj)

⎞
⎟⎟⎠
⎞
⎟⎟⎠ .

(31)
Since all c� ≥ 1 by assumption and ri < 1 = r1 for i ∈ K by (28),

⎛
⎝1 + c�

⎛
⎝|J| − 1 +

∑
j∈K

rj

⎞
⎠
⎞
⎠−

⎛
⎜⎜⎝ri + c�

⎛
⎜⎜⎝|J| +

∑
j�=i
j∈K

rj

⎞
⎟⎟⎠
⎞
⎟⎟⎠ = (1 − c�)(1 − ri) ≤ 0

(32)
for all 1 ≤ � ≤ m. Because all h� decreases strictly by (A1), the equality in (32) holds
by (31). This leads to a contradiction as c �= 1 by assumption and ri < 1 for i ∈ K.

Part (c). When all c� = 1, all xi(t) + c�Si(t) equal
∑n

j=1 xj(t). The inequalities in
both (21) and (22) become equalities. So we have

xi(t + 1)
x1(t + 1)

= xi(t)
x1(t)

= xi(t − 1)
x1(t − 1)

= · · · = xi(0)
x1(0)

.

That is,

xj(t) = x1(t)
xj(0)
x1(0)

for all 2 ≤ j ≤ n and t ≥ 0. (33)

Therefore, system (14) for i = 1 can be written as

x1(t + 1) = x1(t)
m∏

�=1

h�

(
x1(t)

∑
1≤j≤n xj(0)

x1(0)

)
. (34)

Then limt→∞ x1(t) = ηx1(0)with η uniquely determined by
∏m

�=1 h�(η
∑n

j=1 xj(0)) = 1.
By (33), limt→∞ xi(t) = ηxi(0) for 2 ≤ i ≤ n as claimed. The proof is complete. �

As a consequence, we have the following result for system (5).

Corollary 3.4: Assume h satisfies (A1)′-(A3)′ and x(t) is a solution of (5) with x(0) ∈
intRn+. Let M = max1≤i≤n xi(0) and J = {i : xi(0) = M}.
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(a) For 0 ≤ c < 1, limt→∞ x(t) = η1 with η uniquely determined by h((1 + c(n −
1))η) = 1.

(b) For c>1, limt→∞ x(t) = η
∑

j∈J ej with η uniquely determined by h((1 + c(|J| −
1))η) = 1. In particular, limt→∞ xi(t) = 0 for i �∈ J.

(c) For c = 1, limt→∞ x(t) = ηx(0) with η uniquely determined by h(η
∑n

j=1 xj(0)) = 1.

We remark that since xi(0) = 0 implies xi(t) = 0 for all t ∈ Z+, the results above can
be easily extended to x(0) ∈ R

n+. Depending on c<1, c = 1 or c>1, the asymptotic
behaviour of system (5) is quite different. Yet, both Theorem 3.3 and Corollary 3.4 show
that every positive solution converges to some equilibrium.

4. Asymptotic stability of Kolmogorov difference equations

We discuss in this section the local asymptotic stability of some equilibria in system (14).
For this purpose, we have to assume that besides (A1)–(A3), all h� in system (14) are dif-
ferentiable. Note that h′

� ≤ 0 by assumption (A1). Theorem 3.3 (a) says that E∗ = η∗1 is
the unique interior equilibrium with η∗ uniquely determined by

m∏
�=1

h�(N�) = 1, where N� = (1 + c�(n − 1))η∗. (35)

Furthermore, Theorem 3.3(b) says that if xi(0) > maxi�=j xj(0), then |J| = 1 and the solu-
tion x(t) of (14) converges to the single-species equilibrium Ei = ηei, where η is uniquely
determined by

m∏
�=1

h� (η) = 1. (36)

Concerning the local asymptotic stability of these equilibria, we have the following result.

Theorem 4.1: Besides (A1) –(A3), we assume all h′
� < 0 on (0,∞).

(a) If all c� ∈ [0, 1] and c �= 1, then E∗ = η∗1 is locally asymptotically stable.
(b) If all c� ≥ 1 and c �= 1, then each Ei = ηei, 1 ≤ i ≤ n, is locally asymptotically stable.

Proof: Part (a). Let B(x) be the Jacobian matrix of system (14) evaluated at x. Using (35),
B(E∗) is an n × nmatrix whose diagonal and off-diagonal entries are, respectively, given by

1 + η∗
m∑
k=1

∏
��=k

h�(N�)h′
k(Nk) and η∗

m∑
k=1

∏
��=k

h�(N�)h′
k(Nk)ck,

where N� are defined in (35). Being a circulant matrix [12], its eigenvalues are

λp = 1 + η∗
m∑
k=1

∏
��=k

h�(N�)h′
k(Nk) + η∗

m∑
k=1

∏
��=k

h�(N�)h′
k(Nk)ck

n−1∑
j=1

e(2π i/n)jp
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for 0 ≤ p ≤ n − 1. Using (1 + ck(n − 1))η∗ = Nk and all h� > 0, h′
� < 0, we get

λ0 = 1 +
m∑
k=1

∏
��=k

h�(N�)h′
k(Nk)Nk < 1. (37)

Because all c� ∈ [0, 1] with some c� < 1 by assumption and
∑n−1

j=1 e(2π i/n)jp = −1
for p ≥ 1,

λp = 1 +
m∑
k=1

∏
��=k

h�(N�)h′
k(Nk)(1 − ck)η∗ < 1 for 1 ≤ p ≤ n − 1. (38)

We claim that for 1 ≤ p ≤ n − 1,

λp ≥ λ0 ≥ 0. (39)

Together with (37) and (38), we then have all λp ∈ [0, 1) and thus E∗ is asymptotically
stable. Using Nk = (1 + ck(n − 1))η∗, the first inequality above follows easily as:

λp − λ0 = −
m∑
k=1

∏
��=k

h�(N�)h′
k(Nk)cknη∗ ≥ 0 for p ≥ 1.

It remains to show λ0 ≥ 0. By assumption (A2),

0 ≤ d
dx
(
xαkhk(x)

) ∣∣∣
x=Nk

= αkN
αk−1
k hk(Nk) + Nαk

k h′
k(Nk),

which yields h′
k(Nk)Nk ≥ −αkhk(Nk). Applying this inequality to (37), we get

λ0 ≥ 1 +
m∑
k=1

∏
��=k

h�(N�)(−αk)hk(Nk) = 1 +
m∑
k=1

(−αk)

m∏
�=1

h�(N�) = 0

as
∏m

�=1 h�(N�) = 1 by (35) and
∑m

k=1 αk = 1 by (A3).
Part (b). By symmetry, it suffices to consider E1 = ηe1. It is straightforward to show that

B(E1) = (bij) satisfies bij = 0 for j �= i ≥ 2. Moreover, (36) implies that

b11 = 1 + η

m∑
k=1

∏
��=k

h�(η)h′
k(η) and bii =

m∏
�=1

h�(c�η) for 2 ≤ i ≤ n. (40)

Being an upper triangular matrix, {bii : 1 ≤ i ≤ n} are eigenvalues of B(E1). Because all
c� ≥ 1 with some c� > 1 and 0 < h� decreases strictly by (A1), we get from (36) that

0 ≤
m∏

�=1

h�(c�η) <

m∏
�=1

h�(η) = 1. (41)

By Lemma 3.2, x
∏m

�=1 h�(x) is increasing. Therefore,

0 ≤ d
dx

(
x

m∏
�=1

h�(x)

) ∣∣∣
x=η

= 1 + η

m∑
k=1

∏
��=k

h�(η)h′
k(η) < 1, (42)
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where we have used (36) and the assumption that all h� > 0, h′
� < 0. Combining together

(40)–(42), we obtain that all eigenvalues bii lie in [0, 1). The assertion that E1 = ηe1 is
asymptotically stable is verified. �

Note that functions h� defined in (16) satisfy all the assumptions in Theorem 4.1. By
combining Theorem 4.1 with Theorem 3.3, we can conclude that, under the assump-
tions (A1) –(A3) and all h′

� < 0, the interior equilibrium E∗ of system (14) is globally
asymptotically stable in intRn+ if all c� ∈ [0, 1] and c �= 1. Furthermore, every single-
species equilibrium Ei = ηei, 1 ≤ i ≤ n, is globally asymptotically stable in {x ∈ intRn+ :
xi > maxj�=i xj} if all c� ≥ 1 and c �= 1.

5. Global dynamics of semelparous Leslie matrix models

While assumptions (H1) and (H2) are sufficient for the dynamical consistency relation
shown in Theorem 2.2, they are too weak to get any global results for system (1). We need
to impose some extra conditions on the growth rate function g in system (2):

(H3) g(x) = h(x1 + c
∑

j�=1 xj) with function h satisfying (A1)′–(A3)′.

Then, Corollary 3.4 can be applied to system (2) and global dynamics of system (1)
follows immediately from Theorem 2.2.

Before stating the results, we note that σi(0) = 1 by (H1) and h(0) > 1 by (A3)′. Then
(H2) and (H3) imply that

σi(u) = R−(1/n)
0 h

⎛
⎝ui
di

+ c
∑
j�=i

uj
dj

⎞
⎠ , (43)

where function h satisfies (A1)′–(A3)′ and h(0) = R1/n
0 = (s1s2 · · · sn)1/n > 1. For j �= i,

the constant c above measures the effect that the normalized density uj/dj of age-class
j has on the survival of age-class i. Thus competition intensities between age-classes are
independent of age if the density effect is measured by the normalized population vector
(u1/d1, u2/d2, . . . , un/dn)�. For example, if σi and g are given by

σi(u) = 1
1 + ui

di + c
∑

j�=i
uj
dj

and g(x) = R1/n
0

1 + x1 + c
∑

j�=1 xj
,

then (H2) and (H3) are satisfied with h(x) = R1/n
0 /(1 + x).WithR0 = s1s2 · · · sn, wemay

use (43) to rewrite system (1) as

u1(t + 1) = snR−(1/n)
0 h

⎛
⎝un(t)

dn
+ c

∑
j�=n

uj(t)
dj

⎞
⎠ un(t),
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u2(t + 1) = s1R−(1/n)
0 h

⎛
⎝u1(t)

d1
+ c

∑
j�=1

uj(t)
dj

⎞
⎠ u1(t),

...

un(t + 1) = sn−1R−(1/n)
0 h

⎛
⎝un−1(t)

dn−1
+ c

∑
j�=n−1

uj(t)
dj

⎞
⎠ un−1(t). (44)

Remember that matrices P and D are defined in (3) and (8), respectively.

Theorem 5.1: Assume si > 0 for 1 ≤ i ≤ n and h satisfies (A1)′ –(A3)′ with
h(0) = R1/n

0 > 1. Let u(t) be a solution of (44) with u(0) ∈ intRn+. Define M =
max1≤i≤n ui(0)/di and J = {i : ui(0)/di = M}.

(a) If 0 ≤ c < 1, then limt→∞ u(t) = Ê, where Ê = ηD1 with η uniquely determined by
h((1 + c(n − 1))η) = 1.

(b) If c>1, then u(t) converges to a cycle as t → ∞, i.e.ω(u(0)) = {p1, p2, . . . , pn}, where
pi = η

∑
j∈J DPi−1ej for 1 ≤ i ≤ n and η is uniquely determined by h((1 + c(|J| −

1))η) = 1. In particular, u(t) converges to the n-cycle

P∗ def=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

ηd1
0
...
0

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝

0
ηd2
...
0

⎞
⎟⎟⎟⎠ , . . . ,

⎛
⎜⎜⎜⎝

0
0
...

ηdn

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

as t → ∞ if |J| = 1, i.e. u(0) ∈ ⋃n
i=1 Vi, where Vi = {u ∈ intRn+ : ui/di >

maxj�=i uj/dj}.
(c) If c = 1, then u(t) converges to a cycle as t → ∞, i.e. ω(u(0)) = {p1, p2, . . . , pn},

where pi = ηDPi−1D−1u(0) for 1 ≤ i ≤ n and η is uniquely determined by
h((
∑n

j=1 uj(0)/dj)η) = 1.

If h is also differentiable, then Ê is globally asymptotically stable in intRn+ if 0 ≤ c < 1 and
P∗ is globally asymptotically stable in

⋃n
i=1 Vi if c>1.

Proof: Let x(0) = D−1u(0) and x(t) be the solution of system (5) with the initial vector
x(0). Note that x(0) is positive.

Part (a). By Corollary 3.4, x(t) converges to η1 as t → ∞. Then, Theorem 2.2 implies
that u(nk) → ηD1 as k → ∞. Since it holds for any positive u(0), we conclude that u(t) →
ηD1 as t → ∞.

Part (b).Note thatM = max{x1(0), x2(0), . . . , xn(0)} and J = {i : xi(0) = M}. As above,
we get from Corollary 3.4 that x(t) → η

∑
j∈J ej as t → ∞. By Theorem 2.2, u(nk +

m) → η
∑

j∈J DPmej as k → ∞ for every 0 ≤ m ≤ n − 1. Thus u(t) converges to the cycle
{η∑j∈J Dej, η

∑
j∈J DPej, , . . . , η

∑
j∈J DPn−1ej}.

Part (c). By Corollary 3.4, x(t) converges to ηx(0) as t → ∞. Using Theorem 2.2,
u(nk + m) → ηDPmx(0) = ηDPmD−1u(0) as k → ∞ for every 0 ≤ m ≤ n − 1. Thus
u(t) converges to the cycle {ηu(0), ηDPD−1u(0), . . . , ηDPn−1D−1u(0)}.
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The assertion on the asymptotic stability follows from Theorem 4.1. �

Note that the set intRn+\⋃n
i=1 Vi has measure zero as it is a subset of

⋃
1≤i�=j≤n Wij,

where

Wij =
{
u ∈ R

n
+ :

ui
di

= uj
dj

}
for 1 ≤ i �= j ≤ n.

Therefore, we find that generic solutions of (1) converge to the n-cycle P∗ if c>1.

6. Concluding remarks

This paper provides a class of semelparous Leslie matrix models that are dynamically con-
sistent with a certain system of Kolmogorov difference equations with cyclic symmetry.
For some special class of the latter, we can determine its global dynamics. Then using the
dynamical consistency established above, we obtain in Theorem 5.1 a class of semelparous
Leslie matrix models that has, generically, either a globally asymptotically stable positive
equilibrium or a globally asymptotically stable n-cycle. In Theorem 5.1, a strong assump-
tion is imposed on the survival probabilities of the models. For instance, it is required
that the competition intensities between age-classes are independent of age when the den-
sity effect is measured by suitably normalized population densities. It is shown that if the
competition intensity between-age-class is larger than that of within-age-class, i.e. the case
c>1 in Theorem 5.1, then the n-cycle associated with the periodic behaviour in periodical
insects are globally asymptotically stable. It is also shown that if the situation is reversed, i.e.
the case c<1 in Theorem 5.1, then the positive equilibrium, at which a constant number
of adult insects emerge every year, is globally asymptotically stable. These results are con-
sistent with Bulmer’s conclusion that periodical behaviour results if competition is more
severe between age-classes than within age-classes.

In order to show the dynamical consistency mentioned above, we have assumed in
Theorem 2.2 that the competition intensity between age-classes depends only on their
unidirectional age-distance. This assumption fails if there are some age-specific density
effects. Such could take place when predators attack only adult individuals as observed in
periodical cicadas. Therefore, our results seem not applicable directly to the case of peri-
odical cicadas, which are one of the most famous examples of periodical insects ; see, e.g.
[14, 15, 24]. However, the assumptionmight be fulfilled for other periodical insects such as
May beetles and the northern oak eggar since the possibility that intraspecific competition
is a dominant factor maintaining their periodical behaviour is not denied [4].

As said above, we have imposed some strong assumption on the survival probabilities
of our models. However, as far as we know, it is the first result on the global stability of
nonlinear semelparous Leslie matrix models. Although a recent study by Diekamann and
Planqué [14] shows a class of semelparous Leslie matrix models that periodical behaviour
results for a large set of initial conditions, the possibility of bistability is not excluded in
their models.
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