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ABSTRACT
We propose an algorithm, which we call ‘Fast Value Iteration’ (FVI),
to compute the value function of a deterministic infinite-horizon
dynamic programming problem in discrete time. FVI is an efficient
algorithm applicable to a class of multidimensional dynamic pro-
gramming problems with concave return (or convex cost) functions
and linear constraints. In this algorithm, a sequence of functions is
generated starting from the zero function by repeatedly applying a
simple algebraic rule involving the Legendre-Fenchel transform of
the return function. The resulting sequence is guaranteed to con-
verge, and the Legendre-Fenchel transform of the limiting function
coincides with the value function.
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1. Introduction

It has been known since Bellman and Karush [3–6] that Legendre-Fenchel (LF) duality
[9] can be utilized to solve finite-horizon dynamic programming (DP) problems in dis-
crete time. Although there have been subsequent applications of Legendre-Fenchel (LF)
duality to DP (e.g. [2,8,17,18,20]), to our knowledge there has been no serious attempt to
exploit Legendre-Fenchel (LF) duality to develop an algorithm to solve infinite-horizon
DP problems.

In this paperwe propose an algorithm,whichwe call ‘Fast Value Iteration’ (FVI), to com-
pute the value function of a deterministic infinite-horizon DP problem in discrete time.
FVI is an efficient algorithm applicable to a class of multidimensional DP problems with
concave return functions (or convex cost functions) and linear constraints.

The FVI algorithm is an implementation of what we call the ‘dual Bellman operator’,
which is a simple algebraic rule involving the Legendre-Fenchel (LF) transform of the
return function. A sequence of functions generated by repeated application of the dual
Bellman operator is guaranteed to converge, and the Legendre-Fenchel (LF) transform of
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the limiting function coincideswith the value function. Involving no optimization, the dual
Bellman operator offers a dramatic computational advantage over standard computational
methods such as value iteration and policy iteration (e.g. [22]). We prove that the con-
vergence properties of the iteration of the dual Bellman operator are identical to those of
value iteration when applied to a DP problem with a continuous, bounded, concave return
function and a linear constraint.

The rest of the paper is organized as follows. In Section 2 we review some basic con-
cepts from convex analysis and show some preliminary results. In Section 3 we present the
general DP framework used in our analysis. In Section 4 we apply Legendre-Fenchel (LF)
dulaity to a DP problem with a continuous, bounded, concave return function and a linear
constraint. In Section 5 we present our numerical algorithm and compare its performance
with that of modified policy iteration. In Section 7 we offer some concluding comments.

2. Preliminaries I: convex analysis

In this section we review some basic concepts from convex analysis and state some well-
known results. We also establish some preliminary results.

Let N ∈ N. Let R denote the extended real line; i.e. R = [−∞,∞]. For f : RN → R,
we define f∗, f ∗ : RN → R̄ by

f∗(p) = inf
x∈RN

{pᵀx − f (x)}, ∀ p ∈ R
N , (1)

f ∗(p) = sup
x∈RN

{pᵀx − f (x)}, ∀ p ∈ R
N , (2)

where p and x are N × 1 vectors, and pᵀ is the transpose of p. The functions f∗ and f ∗ are
called the concave conjugate and convex conjugate of f, respectively.

It follows from (1) and (2) that for any functions f , g : RN+ → R, we have

f = −g ⇒ ∀ p ∈ R
N , f∗(p) = −g∗(−p) = −(−f )∗(−p). (3)

This allows us to translate any statement about g and g∗ to the corresponding statement
about −g and (−g)∗; this is useful since most results in convex analysis deal with convex
functions and convex conjugates. In what follows we focus on concave functions and con-
cave conjugates, and by ‘conjugate’, we always mean ‘concave conjugate’. The biconjugate
f∗∗ of f is defined by

f∗∗ = (f∗)∗. (4)

A concave function f : RN → R is called proper if f (x) < ∞ for all x ∈ RN and f (x) >

−∞ for at least one x ∈ RN .1 The effective domain of f is defined as

dom f = {x ∈ R
N : f (x) > −∞}. (5)

Let F be the set of proper, concave, upper semicontinuous functions from RN to R. For
f , g : RN → R ∪ {−∞}, the sup-convolution of f and g is defined as

(f #g)(x) = sup
y∈RN

{f (y) + g(x − y)}. (6)

The following two lemmas collect the basic properties of conjugates we need later.
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Lemma 2.1 (Rockafellar andWets [23], Theorems 11.1, 11.23): (a) For any f ∈ F, we
have f∗ ∈ F and f∗∗ = f .

(b) For any f , g ∈ F, we have (f #g)∗ = f∗ + g∗.
(c) Let N′ ∈ N and u : RN′ → R. Let L be an N × N′ matrix. Define (Lu) : RN → R by

(Lu)(x) = sup
c∈RN′

{u(c) : Lc = x}, ∀ x ∈ R
N . (7)

Then

(Lu)∗(p) = u∗(Lᵀp), ∀ p ∈ R
N . (8)

Lemma 2.2 (Hiriart-Urruty [10], p. 484): Let f , g ∈ F be such that dom f = domg = R
N+.

Suppose that both f and g are bounded on R
N+. Then domf ∗ = domg∗ = R

N+, and

sup
x∈R

N+
|f (x) − g(x)| = sup

p∈R
N+

|f∗(p) − g∗(p)|. (9)

The following result is proved in the Appendix.

Lemma 2.3: Let A be an invertible N × N matrix. Let β ∈ R++ and S = A−1/β. Let f , v :
RN → R be such that f (x) = βv(Ax) for all x ∈ RN. Then

f∗(p) = βv∗(Sᵀp). (10)

3. Preliminaries II: dynamic programming

In this section we present the general framework for dynamic programming used in our
analysis, and show a standard result based on the contraction mapping theorem. Our
exposition here is based on Stokey and Lucas [24] and Kamihigashi [13,14].

Let N ∈ N and X ⊂ RN . Let x ∈ X. We need the following definitions from Stokey and
Lucas [24, pp. 56–57]. A correspondence � : X → 2X is called lower hemi-continuous at x
if �(x) �= ∅ and if for any y ∈ �(x) and sequence {xn}∞n=0 with limn↑∞ xn = x, there exist
N ∈ N and a sequence {yn}∞n=N such that limn↑∞ yn = y and yn ∈ �(xn) for all n ≥ N. A
correspondence � : X → 2X is called upper hemi-continuous at x if �(x) �= ∅ and if for
any sequence {xn}∞n=0 with limn↑∞ xn = x and sequence {yn}∞n=0 with yn ∈ �(xn) for all
n ∈ Z+, there exists a subsequence {yni}∞i=0 of {yn} with limi↑∞ yni ∈ �(x).

A correspondence � : X → 2X is called continuous at x if it is both lower hemi-
continuous and upper hemi-continuous at x. It is called continuous if it is continuous at
each x ∈ X.

Consider the following problem:

sup
{xt+1}∞t=0

∞∑
t=0

β tr(xt , xt+1) (11)

s.t. x0 ∈ X given, (12)

∀ t ∈ Z+, xt+1 ∈ �(xt). (13)

In this section we maintain the following assumption.
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Assumption 3.1: (i) β ∈ (0, 1). (ii) � : X → 2X is a nonempty, compact-valued, con-
tinuous correspondence. (iii) X and gph� are convex sets, where gph� is the graph
of �:

gph� = {(x, y) ∈ R
N × R

N : y ∈ �(x)}. (14)

(iv) r : gph� → R is continuous, bounded, and concave.

Let v̂ : X → R be the value function of the problem (11)–(13); i.e. for x0 ∈ X we define

v̂(x0) = sup
{xt+1}∞t=0

∞∑
t=0

β tr(xt , xt+1) s.t. (13). (15)

It is well-known that v̂ satisfies the optimality equation (see [12,14]):

v̂(x) = sup
y∈�(x)

{r(x, y) + β v̂(y)}, ∀ x ∈ X. (16)

Thus v̂ is a fixed point of the Bellman operator B defined by

(Bv)(x) = sup
y∈�(x)

{r(x, y) + βv(y)}, ∀ x ∈ X. (17)

LetC (X) be the space of continuous, bounded, concave functions fromX toR equipped
with the sup norm ‖ · ‖. The following result is proved using standard arguments in
the Appendix. We claim no originality and state it here as a theorem only for reference
purposes.

Theorem 3.1: Under Assumption 3.1, the following statements hold:

(a) The Bellman operator B is a contraction on C (X) with modulus β ; i.e. B maps C (X)

into itself, and for any v,w ∈ C (X) we have

‖Bv − Bw‖ ≤ β‖v − w‖. (18)

(b) B has a unique fixed point ṽ in C (X). Furthermore, for any v ∈ C (X),

∀ i ∈ N, ‖Biv − ṽ‖ ≤ β i‖v − ṽ‖. (19)

(c) We have ṽ = v̂, where v̂ is defined by (15).

Recent results on convergence and uniqueness that require neither continuity nor
concavity can be found in Kamihigashi [14] and Kamihigashi et al. [15].

4. The dual Bellman operator

In this section we introduce the ‘dual Bellman operator’, which traces the iterates of the
Bellman operator in a dual space for a special case of (11)–(13). In particular we consider
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the following problem:

max
{ct ,xt+1}∞t=0

∞∑
t=0

β tu(ct) (20)

s.t. x0 ∈ R
N
+ given, (21)

∀ t ∈ Z+, xt+1 = Axt − Dct , (22)

ct ∈ R
N′
+ , xt+1 ∈ R

N
+, (23)

where A is anN × N matrix,D is anN × N ′ matrix withN′ ∈ N, and ct is aN′ × 1 vector.
Throughout this section we maintain the following assumption.

Assumption 4.1: (i) β ∈ (0, 1). (ii) u : RN′
+ → R is continuous, bounded, and concave.

(iii) A is a nonnegative monotone matrix (i.e. Ax ∈ R
N+ ⇒ x ∈ R

N+). (iv) D is a nonzero
nonnegative matrix.

It is well-known (e.g. [7, p. 137]) that a square matrix is monotone if and only if it
is invertible and its inverse is nonnegative. Furthermore, a nonnegative square matrix is
monotone if and only if it has exactly one nonzero element in each row and in each col-
umn [16]. Thus the latter property is equivalent to part (iii) above. See Subsection 6.1 for
a simple economic model satisfying this and other properties.

UnderAssumption 4.1, the optimization problem (20)–(23) is a special case of (11)–(13)
with

X = R
N
+, (24)

�(x) = {y ∈ R
N
+ : ∃c ∈ R

N′
+ , y = Ax − Dc}, ∀ x ∈ X, (25)

r(x, y) = max
c∈R

N′
+

{u(c) : y = Ax − Dc}, ∀ (x, y) ∈ gph�. (26)

It is easy to see that Assumption 3.1 holds under Assumption 4.1 and (24)–(26).
Before proceeding, we introduce a standard convention for extending a function defined

on a subset of Rn to the entire Rn. Given any function g : E → R with E ⊂ Rn, we extend
g to Rn by setting

g(x) = −∞, ∀ x ∈ R
n \ E. (27)

Note that in general, for any extended real-valued function f defined on a subset of Rn, we
have

sup
x∈Rn

f (x) = sup
x∈domf

f (x), (28)

where the function f on the left-hand side is the version of f extended according to (27).
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Letting L = A−1D, we can express (22) as

Lct = xt − A−1xt+1. (29)

In view of this and (26), we have

r(x, y) = max
c∈R

N′
+

{u(c) : Lc = x − A−1y}, ∀ (x, y) ∈ gph�. (30)

By Assumption 4.1 and (24)–(27), the Bellman operator B defined by (17) can be
written as

(Bv)(x) = sup
z∈RN

{(Lu)(x − z) + βv(Az)}, ∀ x ∈ X, (31)

where Lu is defined by (7) and (30) with z = A−1y. The constraint y ∈ �(x) in (17) is
implicitly imposed in (31) by the effective domains of u and v, which require, respectively,
that there exist c ∈ R

N′
+ with Lc = x−z and that y = Az ∈ X. Following the conven-

tion (27), we set

(Bv)(x) = −∞, ∀ x ∈ R
N \ X. (32)

For any f : RN → Rwith domf = R
N+, we write f ∈ C (X) if f is continuous, bounded,

and concave on X. Since u is bounded, (Bv)(x) is well-defined for any x ∈ RN and v : X →
R. In particular, for any v ∈ C (X), we have Bv ∈ C (X) by Theorem 3.1. The following
result shows that the Bellman operator B becomes a simple algebraic rule in the ‘dual’ space
of conjugates.

Lemma 4.1: Let S = A−1/β. For any v ∈ C (X) we have

(Bv)∗(p) = u∗(Lᵀp) + βv∗(Sᵀp), ∀ p ∈ R
N . (33)

Proof: Let f (z) = βv(Az) for all z ∈ RN . Let g = Lu. We claim that

Bv = f #g. (34)

It follows from (31) that (Bv)(x) = (f #g)(x) for all x ∈ X. It remains to show that
(Bv)(x) = (f #g)(x) for all x ∈ RN \ X or, equivalently, (f #g)(x) > −∞ ⇒ x ∈ X. Let x ∈
RN with (f #g)(x) > −∞. Then there exists z ∈ RN with g(x − z) + f (z) = (Lu)(x − z) +
βv(Az) > −∞; i.e.

x − z ∈ dom(Lu), Az ∈ domv. (35)

Since A−1 and D are nonnegative by Assumption 4.1, L is nonnegative; thus dom(Lu) ⊂
R
N+. Hence x − z ≥ 0 and Az ≥ 0 by (35). Since the latter inequality implies that z ≥ 0 by

monotonicity of A, it follows that x ≥ z ≥ 0; i.e. x ∈ X. We have verified (34).
By Lemma 2.1 we have (Bv)∗ = (f #g)∗ = f∗ + g∗. Thus for any p ∈ R

N+,

(Bv)∗(p) = f∗(p) + g∗(p) = βv∗(Sᵀp) + u∗(Lᵀp), (36)

where the second equality uses Lemmas 2.3 and 2.1. Now (33) follows. �
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We call the mapping from v∗ to (Bv)∗ defined by (33) the dual Bellman operator B∗;
more precisely, for any f : RN → R, we define B∗f by

(B∗f )(p) = u∗(Lᵀp) + βf (Sᵀp), ∀ p ∈ R
N . (37)

Using the dual Bellman operator B∗, (33) can be written simply as

(Bv)∗ = B∗v∗, ∀ v ∈ C (X). (38)

According to the convention (27), the domain (rather than the effective domain) of a
function f defined on R

N+ can always be taken to be the entire RN . Although this results
in no ambiguity when we evaluate supx f (x) (recall (28)), it causes ambiguity when we
evaluate ‖f ‖. For this reason we specify the definition of ‖ · ‖ as follows:

‖f ‖ = sup
x∈R

N+
‖f (x)‖. (39)

We use this definition of ‖ · ‖ for the rest of the paper. The following result establishes the
basic properties of the dual Bellman operator B∗.

Theorem 4.1: For any v ∈ C (X), the following statements hold:

(a) For any i ∈ N we have

(Biv)∗ = Bi∗v∗, (40)

Biv = (Bi∗v∗)∗, (41)

Bi∗v∗ ∈ C (X), (42)

where Bi∗ = (B∗)i.
(b) The sequence {Bi∗v∗}i∈N converges uniformly to v̂∗ (the conjugate of the value function

v̂); in particular, for any i ∈ N we have

‖Bi∗v∗ − v̂∗‖ = ‖Biv − v̂‖ ≤ β i‖v − v̂‖ = β i‖v∗ − v̂∗‖. (43)

(c) We have v̂ = (v̂∗)∗.

Proof: (a)We first note that (40) implies (42) by Lemma 2.1 and Theorem 3.1(a).We show
by induction that (40) holds for all i ∈ N.

Note that for i = 1, (40) hods by (38). Suppose that (40) holds for i = n − 1 ∈ N:

(Bn−1v)∗ = Bn−1
∗ v∗. (44)

Let us consider the case i = n. We have Bn−1v ∈ C (X) by Theorem 3.1. Thus using (38)
and (44), we obtain

(Bnv)∗ = (BBn−1v)∗ = B∗(Bn−1v)∗ = B∗Bn−1
∗ v∗ = Bn∗v∗. (45)

Hence (40) holds for i = n. Now by induction, (40) holds for all i ∈ N.
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Figure 1. Bellman operator B and dual Bellman operator B∗.

To see (41), let i ∈ N. Since Biv ∈ C (X) by Theorem 3.1, we have Biv = (Biv)∗∗ by
Lemma 2.1. Recalling (4), we have Biv = ((Biv)∗)∗ = (Bi∗v∗)∗, where the second equality
uses (40). We have verified (41).

(b) By Lemma 2.2 and (39), for any i ∈ N we have

‖Biv − v̂‖ = ‖(Biv)∗ − v̂∗‖ = ‖Bi∗v∗ − v̂∗‖, (46)

where the second equality uses (40). Thus the first equality in (43) follows; the second
equality follows similiarly. By Theorem 3.1 the inequality in (43) holds. As a consequence,
{Bi∗v∗}i∈N converges uniformly to v̂∗.

(c) Since v̂ ∈ C (X) by Theorem 3.1, we have v̂ = v̂∗∗ = (v̂∗)∗ by Lemma 2.1. This
completes the proof of Theorem 4.1. �

Figure 1 summarizes the results of Theorem 4.1. The vertical bidirectional arrows
between Bv and B∗v∗, B2v and B2∗v∗, etc, indicate that any intermediate result obtained
by the Bellman operator B can be recovered through conjugacy from the corresponding
result obtained by the dual Bellman operator B∗, and vice versa. This is formally expressed
by statement (a) of Theorem 4.1. Statement (b) shows that both iterates {Biv} and {Bi∗v∗}
converge exactly the same way. In fact, as shown by Lemma 2.2, conjugacy preserves the
sup norm between any pair of functions in F whose effective domains are R

N+. The right-
most vertical arrow in Figure 1 indicates that the value function v̂ can be obtained as the
conjugate of the limit of {Bi∗v∗}, as shown in statement (c) of Theorem 4.1.

5. Fast value iteration

We exploit the relations expressed in Figure 1 to construct a numerical algorithm. The
upper horizontal arrows in Figure 1 illustrate the standard value iteration algorithm, which
approximates the value function v̂ by successively computing Bv,B2v,B3v, . . . until con-
vergence. The same result can be obtained by successively computing B∗v∗,B2∗v∗,B3∗v∗, . . .
until convergence and by computing the conjugate of the last iterate. Theorem 4.1(b) sug-
gests that this alternative method can achieve convergence in the same number of steps as
value iteration, but it is considerably faster since each step is a simple algebraic rule without
optimization; recall (37).

Algorithm1, whichwe call ‘Fast Value Iteration’, implements this procedurewith a finite
number of grid points, using nearest-grid-point interpolation to approximate points not
on the grid. To be precise, we take n grid points p1, . . . , pn in R

N+ as given, and index them
by j ∈ J ≡ {1, . . . , n}. Recall from (42) that it suffices to consider the behaviour of Bi∗v∗
on X = R

N+. We also take as given a function ρ : RN+ → {p1, . . . , pn} that maps each point
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Algorithm 1: Fast Value Iteration
let n grid points in R

N+ be given by p1, . . . , pn ∈ R
N+

initialize a, b,w : J → R (i.e. ∀ j ∈ J, a(j), b(j),w(j) ∈ R)
initialize g : J → J (i.e. ∀ j ∈ J, g(j) ∈ J)
compute u∗ on Lᵀp1, . . . , Lᵀpn
for j = 1, . . . , n

b(j) = 0
w(j) = u∗(Lᵀpj)
g(j) = λ(Sᵀpj)

fix ε > 0
d = 2ε
while d > ε

a = b
for j = 1, . . . , n

b(j) = w(j) + βa(g(j))
d = maxj∈J{|a(j) − b(j)|}

compute b∗
return b∗

p ∈ R
N+ to a nearest grid point.We define λ : RN+ → J by ρ(p) = pλ(p); i.e. λ(p) is the index

of the grid point corresponding to p.
Algorithm 1 requires us to compute the conjugate of the return function u at the begin-

ning as well as the conjugate of the final iterate at the end. To compute these conjugates, we
employ the linear-time algorithm (linear in the number of grid points) presented in Lucet
[19], which computes the conjugate of a concave function on a box grid. Since the rate of
convergence for {Bi∗v∗} is determined by β (as shown in Theorem 4.1(b)) and the number
of algebraic operations required for each grid point in each iteration of the ‘while’ loop in
Algorithm 1 is independent of the number of grid points, it follows that FVI is a linear-time
algorithm.

6. Numerical examples

6.1. The AKmodel

As a simple example satisfying all our assumptions, consider the ‘AK model’ of economic
growth used in macroeconomics (e.g. [1]):

max
{ct}∞t=0

∞∑
t=0

β tu(ct) (47)

s.t. x0 ≥ 0 given, (48)

∀ t ∈ Z+, ct + xt+1 = Axt , (49)

ct , xt ≥ 0, (50)
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Figure 2. FVI vs. value iteration for the AK model.

where ct is the consumption in period t, u(ct) is the utility derived from consumption, xt is
the capital stock at the beginning of period t, and A>0 is a constant. We assume that the
utility function is given by

u(c) = cq

q
, q ∈ (0, 1). (51)

In Figure 2 we compare the solutions computed by FVI and value iteration using a log-
spaced grid of 500 points from 10−6 to 1000, and a convergence tolerance of 10−6. The
parameter values used are β = 0.9, q = 0.2, and A = 0.9. For both algorithms, the initial
guess for the value function is u(x). As expected from our theoretical results, the solutions
produced by the two methods appear to be reasonably close to each other. Our experience
suggests that accuracy can be improved with a larger number of grid points and a larger
domain for u(c). We make a more serious comparison in the next subsection.

6.2. Numerical comparison

To illustrate the efficiency of FVI, we compare the performance of FVI with that of mod-
ified policy iteration (MPI), which is a standard method to accelerate value iteration [22,
Ch. 6.5]. In what follows, we assume the following in (20)–(23):

u(c1, c2) = −(c1 − 10)2 − (c2 − 10)2, β = 0.9, D =
[
1 0
0 1

]
. (52)

Although u above is not bounded, it is bounded on any bounded region that contains
Lᵀp1, . . . , Lᵀpn; thus we can treat u as a bounded function for our purposes. Concerning
the matrix A, we consider two cases:

(a) A =
[
1 0
0 1

]
, (b) A =

[
0 1.1
1 0

]
. (53)

The grid points forMPI are evenly spread over [0, 20] × [0, 20]. For FVI, the same number
of grid points are evenly spread over a sufficiently large bounding box in the dual space.
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We implement both FVI and MPI in Python, using the Scipy 0.13.3 package on a
2.40GHz i7-3630QM Intel CPU. ForMPI, we utilize C++ to find a policy that achieves the
maximum of the right-hand side of the Bellman equation (31) by brute-force grid search.
We use brute-force grid search because a discretized version of a concave function need
not be concave (see [21]); we utilize C++ because brute-force grid search is unacceptably
slow in Python. The resulting policy is used to update the approximate value function 100
times, and the resulting approximate value function is used to find a new policy.

Table 1. Number of iterations to convergence, time to convergence in seconds, maximum relative
difference, and average relative difference for FVI and MPI algorithms.

grid size 40 × 40 80 × 80 120 × 120 160 × 160 200 × 200 240 × 240 280 × 280

(a) FVI iterations 120 141 178 191 209 203 219
CPU time 0.045 0.139 0.299 0.587 0.954 1.398 2.086

MPI iterations 7 7 8 8 8 8 8
CPU time 1.636 7.964 34.901 93.305 214.673 434.626 764.269

diff max 3.72E−03 3.36E−03 2.31E−03 2.29E−03 1.84E−03 1.79E−03 1.98E−03
mean 1.20E−03 1.27E−03 8.77E−04 6.91E−04 5.44E−04 7.20E−04 6.34E−04

(b) FVI iterations 131 193 192 190 205 214 207
CPU time 0.048 0.184 0.311 0.536 0.943 1.446 1.977

MPI iterations 8 8 8 8 8 8 8
CPU time 1.888 9.690 35.887 96.848 220.004 448.523 796.127

diff max 7.95E−03 5.62E−03 5.01E−03 4.74E−03 4.60E−03 4.52E−03 4.46E−03
mean 2.63E−03 1.19E−03 1.02E−03 1.40E−03 1.19E−03 1.07E−03 1.19E−03

Notes: Case (a) assumes (52) and (53)(a), while case (b) assumes (52) and (53)(b).

Figure 3. Time to convergence in seconds vs. number of grid points. Panels (a) & (a’) assume (52)
& (53)(a), while panels (b) & (b’) assume (52) & (53)(b).
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Table 1 shows the number of iterations and total CPU time for FVI andMPI to converge
to a tolerance of 10−5. For each grid size, the final approximate value functions from FVI
andMPI are compared by computing, at each grid point, the absolute difference divided by
the largest absolute value of the MPI value function; we report the maximum and average
values of this difference over all grid points.

Panels (a) and (b) in Figure 3 plot the time to convergence of FVI and MPI against the
number of grid points using the data in Table 1. Panels (a’) and (b’) show the performance of
FVI for an extended range of grid point sizes. These plots indicate that FVI is a linear-time
algorithm, as discussed above. In terms of CPU time, FVI clearly has a dramatic advantage.

7. Concluding comments

In this paper we proposed an algorithm called ‘Fast Value Iteration’ (FVI) to compute the
value function of a deterministic infinite-horizon dynamic programming problem in dis-
crete time. FVI is an efficient algorithm that offers a dramatic computational advantage for
a class of problems with concave return (or convex cost) functions and linear constraints.

The algorithm we presented is based on the theoretical results shown for continuous
state problems, but in practice, numerical errors are introduced through discretization
and computation of conjugates. Although precise error estimates are yet to be established,
our numerical experiments suggest that the difference between the approximate value
functions computed using FVI and MPI, respectively, is rather insignificant.

In practice, one can combine FVI with other numerical methods to achieve a desired
combination of speed and accuracy. For example, to obtain essentially the same MPI
value function while economizing on time, one can apply FVI until convergence first and
then switch to MPI. As in this algorithm, FVI can be used to quickly compute a good
approximation of the value function.

In conclusion, we should point out that the theoretical results shown in Section 4 can be
extended to problemswithmore general and nonlinear constraints using a general formula
for the conjugate of a composite function [11]. New algorithms based on such an extension
are left for future research.

Notes

1. This is a different concept from proper maps in topological spaces. For example, the function
f : R → R defined by f (x) = −x−1 for x> 0 and f (x) = −∞ for x ≤ 0 is proper as a concave
function but not proper in the topological sense.
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Appendix

A.1 Proof of Lemma 2.3

Let p ∈ RN . Note that f∗(p) = infx∈RN {pᵀx − βv(Ax)}. Letting y = Ax and noticing that x = A−1y,
we have

f∗(p) = inf
y∈RN

{pᵀ(A−1y) − βv(y)} (A1)

= β inf
y∈RN

{(pᵀA−1/β)y − v(y)} (A2)

= β inf
y∈RN

{(A−1/β)ᵀp)ᵀy − v(y)}. (A3)

Now (10) follows.

A.2 Proof of Theorem 3.1

LetC(X) be the space of continuous bounded functions fromX toR equipped with the sup norm ‖ ·
‖. Then statement (a) holds with C(X) replacingC (X) by Stokey and Lucas [24, Theorem 4.6]. Thus
if v ∈ C (X) ⊂ C(X), then Bv ∈ C(X); furthermore, Bv is concave by a standard argument (e.g. [24,
p. 81]). Thus BmapsC (X) into itself. Hence statement (a) holds. It is easy to see thatC (X) equipped
with the sup norm ‖ · ‖ is a complete metric space; thus statement (b) follows by the contraction
mapping theorem [24, p. 50]. Finally, statement (c) holds by Stokey and Lucas [24, Theorem 4.3].
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