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Abstract

The use of spatially non-uniform electric fields for the contact-free assembly of structures from

colloidal building blocks is explored in this thesis. Specifically, the use of dielectrophoretic

forces (electric field-induced dipole force) and electrohydrodynamic forces (electric field force

on a fluid body) for assembling larger structures, with the goal of having both an electric-

field defined shape as well as imparting order to the resulting structure. These types of

colloidal structures have applications as photonic materials, sensing materials, templates for

materials with enhanced functionality such as surface enhanced Raman spectroscopy or tis-

sue engineering scaffolds, etc.

In this thesis, three specific research contributions to the use of non-uniform electric field

driven colloidal assembly are described. The first relates to experimental work using di-

electrophoretic and electrohydrodynamic forces (electroosmosis) to shape three-dimensional

colloidal structures. Formation and stabilization of close-packed three-dimensional struc-

tures from colloidal silica was demonstrated, using gelation of pluronic F-127 to preserve

medium structure against suspension evaporation. Stabilization of ordered structures was

shown to be a significant challenge, with many of the conventional techniques for immobi-

lizing colloidal crystals being ineffective. Secondly, the significance of electrohydrodynamic

flows resulting from electric and particle concentration (entropic) gradients during the as-

sembly process was demonstrated using numerical simulations based on a thermodynamic

framework. These simulations, as well as experimental validation of assembly and the pres-

ence of fluid flows, showed that assuming equilibrium behavior (stationary fluid flow), a

common assumption for most modelling work to date in these systems, is inappropriate at

all but the most dilute concentration cases. Finally, the relevance of multiparticle effects on

electric-field induced phase transitions of dielectric colloids was demonstrated. The effect of

multiparticle/multiscattering effects on the suspension permittivity were accounted for us-

ing semi-empirical continuum permittivity formulations which have been previously shown
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to describe a wide variety of solid packing structures, including face-centered cubic and other

colloidal crystal structures. It was shown that multiparticle effects have a significant impact

on both the coexistence (slow phase separation) and spinodal (fast phase separation) behav-

ior of dielectric suspensions, which has not been demonstrated to date using a continuum

framework.
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Chapter 1: Introduction

The assembly of colloidal particles into ordered structures of larger characteristic dimensions

(for example, on micron or larger scale) is a promising route for the creation of novel mate-

rials or imparting enhanced functionality to existing materials. These ordered materials are

analogous in lattice structure to atomic crystals but are on a vastly larger scale, giving rise to

very different properties. Applications of colloidal crystals range from as photonic materials

(PBG), sensors, microelectronics, dye sensitized solar cells, scaffolds for tissue engineering

applications to templates for surface-enhanced Raman spectroscopy [1–9]. Numerous tech-

niques exist in order to facilitate the creation of ordered colloidal structures, ranging from

self-assembly, template-assisted assembly (topological/geometric assisted assembly) and ex-

ternal field assisted assembly (gravitational, electric or magnetic fields) [10–14]. These tech-

niques vary in complexity and in scale of assembly, that is in the final characteristic dimension

of the useable device/material.

Self-assembled monolayers can be used in order to direct the placement of colloidal and

other micro/nanoscale materials to specific substrate locations, such as carbon nanotubes

or gold nanoparticles [12]. Template-assisted assembly can be considered as complementary

to all the other listed techniques. For example, self-assembly of colloidal structures can

be achieved by providing physical confinement for colloidal particles in order to force the

particles to form an ordered structure within the confining geometry. The templated struc-

tures can then be used as templates to create larger structures, for example the formation

of three-dimensional porous structures based on a 2d colloidal crystal array [1]. Sedimenta-

tion/gravitational control is highly sensitive to the size of particles, as the buoyancy force is

proportional to particle volume, which scales poorly with size [15] and can take weeks to ac-

complish complete sedimentation of submicron particles [1]. However, the technique is often

used to create 3d structures of larger colloidal particles (> 0.5µm) which have a high density

difference between solid and medium (ex. silica-water), although there is little control of

1
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the surface morphology or number of particle layers [1]. Electric and magnetic fields offer

more control forces versus relying primarily on gravity, however, magnetic fields require very

strong magnets/electromagnets as well as the use of magnetic materials which limits their

application. For electric fields, high electric field intensities possible using microfabrication

techniques (i.e. small characteristic dimensions) and application requires only a difference

between particle and medium electrical properties [16].

Electric-field assisted techniques are quite useful for the rapid assembly of materials with

characteristic dimensions many orders of magnitude larger than the dimensions of the assem-

bly blocks (i.e particles). This technique is controllable through many parameters, including

applied voltage, frequency (AC fields), electrode geometry and medium physical properties

(dielectric constant, viscosity, conductivity, etc.) [16–18]. The use of electric fields for con-

trol forces is also complementary with gravitational or geometric templating of structures.

Application of an electric field on a colloidal suspension will induce an electrical dipole (and

higher order moments) around particles as long as the medium electrical properties vary

from that of the suspended particle. A non-uniform electric field will then give rise to a

net translational force on particles, arising from action of the electric field on this induced

dipole. This phenomena is known as dielectrophoresis. Similarly, a non-uniform electric

field will impose a volume force on the suspending medium which can give rise to fluid flows.

These types of fluid flows are referred to as electrohydrodynamic flows. These two types of

phenomena are examples of a larger class of control forces, known as electrokinetic forces.

AC electrokinetic forces have been widely used to construct structures of varying size, order

and geometry from colloidal building blocks, ranging from two-dimensional colloidal crystals

to larger three dimensional close packed structures [19, 20]. To date, there has been limited

progress towards electric-field assembled three-dimensional ordered colloidal structures, that

is structures with a distinct shape, size and order arising from an applied electric field.



CHAPTER 1. INTRODUCTION 3

It was the goal of this thesis research to examine the use of electric-field assisted assembly

for creation of materials with novel properties and potential anisotropies. The focus is on

studying the use of AC electrokinetic forces (dielectrophoresis and electroosmosis) resulting

from non-uniform electric fields for constructing structures of varying size, order and geom-

etry from colloidal building blocks. This was accomplished experimentally, through using

non-uniform electric fields for assembling various colloidal suspensions into larger structures,

as well as theoretically, through the use of simulations of the assembly process. The contri-

butions to the existing knowledge on non-uniform electric field driven colloidal assembly are

summarized in the next section.

1.1 Research Contributions

Three major contributions to this research area are outlined in this thesis, found in Chapters

4, 5 and 6 respectively.

Chapter 4: Assembly of Colloidal Structures using AC Electrokinetic Forces from Non-

Uniform Electric Fields

The first contribution relates to experimental work using spatially non-uniform electric fields

generated with quadrupolar planar microelectrodes for assembling colloidal particles in sus-

pension into larger structures. A number of particle-medium combinations were studied for

different properties, and a large amount of shapes and sizes of structures were possible using

a single microelectrode geometry. Near-refractive index matching of suspensions was found

to encourage ordered-type structures. It was also found that medium evaporation was highly

destructive to any formed assembly and consequently a stabilization method was required.

Out of the methods studied, gelation using pluronic F-127 was found to be the most effective

at preserving the overall shape and size of an assembly but also inhibited formation of any
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kind of ordered structure. This experimental work also demonstrated that a number of con-

ventional techniques for immobilizing colloidal crystal arrays were ineffective for preserving

assemblies of this nature.

Chapter 5: AC Electrokinetic Templating of Colloidal Particle Assemblies: Effect of Elec-

trohydrodynamic Flows

The second is simulation work based on a thermodynamic framework for describing non-

uniform electric field driven assembly of structures from colloidal particles. In this work

the-called “equilibrium” case, where fluid flow is stationary (~uf = 0), was compared to the

“non-equilibrium” case, where the fluid is non-stationary (~uf 6= 0). The equilibrium state

is often employed when describing assembly processes but its validity outside of the very

dilute particle case has not be explored. Simulations for colloids of varying size and ini-

tial concentration over a range of voltages showed that excepting the most dilute cases, the

steady-state equilibrium solution deviates significantly from the non-equilibrium solution for

particle volume fraction. This occurred due to the large impact of fluid flows arising from

electrical and entropic forces. For all but the largest particles at the most dilute particle

concentrations, the dielectrophoretic force was dominated by the electrohydrodynamic flows

in the system. Predictions of particle volume fraction based on a 2d approximation were

shown to be in qualitative agreement with experimental results. These types of fluid flows

have been experimentally demonstrated previously, but to date had not been explained satis-

factorily. This work clearly illustrates the importance of accounting for the fluid flows which

will result for colloidal suspensions under non-uniform electric fields.

Chapter 6: Electric-Field Induced Phase Transitions of Dielectric Colloids

The third contribution was in examining the influence of multiscattering effects on electric
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field induced phase transitions of dielectric colloids. These effects were accounted for us-

ing effective permittivity models which were capable of describing different solid packings

(RCP, FCC, BCC) and high concentration region effects on permittivity. These effective

permittivity models are continuum based, allowing for straightforward comparison to results

from assuming Maxwell-Garnett permittivity. Model suspensions of silica-DMSO and silica-

iPrOH were used as test cases to examine the effect of changing medium permittivity as well

as particle-medium contrast. It was found that for larger dielectric contrast between medium

and particle accounting for multiscattering effects had a larger impact and caused a signif-

icant shift in the phase diagrams. The effect on the phase diagrams also depended on the

curvature of permittivity vs. volume fraction. This work represents a preliminary account-

ing for multiscattering effects, the case of conductive/lossy suspensions needs to be explored

but clearly indicated that severe deviations from Maxwell-Garnett type behavior exist for

both coexistence and the spinodal lines of suspension under an electric field. This has large

and potentially useful implications in systems of physical interest, such as electrorheological

fluids and structures of assemblies resulting from non-uniform electric fields.



Chapter 2: Theoretical Background

2.1 Electric Fields

2.1.1 Conductors and Dielectrics

The response of materials to electrical potentials/fields can be broken into two categories:

conductors and dielectrics. Conductors are materials with an excess of free charge, which can

move throughout the material freely under the influence of an external applied potential. In

metals, free charge is the result of electrons with high mobility, and in aqueous electrolytes,

the free charge is the caused by motion of dissociated ions. The flow of free charge is

referred to as current and the process is known as electrical conduction. The degree of flow

is determined by the electrical conductivity/resistivity of the material. Low conductivity

(high resistivity) means the material is a poor conductor, high conductivity (low resistivity)

means it is a good conductor. The relationship between the applied potential, ∆V and the

current flow, I, through a material with a linear response for conductivity, σ, and thickness

ℓ is given by Ohm’s Law [21]:

∆V =
I

σℓ
(2.1)

Dielectrics (or insulators) are materials which are either devoid of free charges or contain

charges with limited mobility. Charges within the material are able to reposition at the

atomic/molecular scale, allowing dipoles to re-orient under the influence of an applied po-

tential (polarize). The ability of a dielectric to accumulate charges at the outer surface is

termed capacitance, C and this is related to the permittivity of the material, ε, by the rela-

tionship C = εA/d where A is the area and d is distance over which the potential is applied,

so that the relationship between the applied potential and the charges, Q, which accumulate

on the dielectric surfaces is [21]:

∆V =
Q

C
=

Q

εA/d
(2.2)

6
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2.1.2 Gauss’ Law

For an inhomogeneous dielectric there is a non-zero volume charge density arising from the

polarization of the medium. Starting from Gauss’ Law we can derive a final expression which

determines the potential profile within the medium, with no external charges1 [22]:

∇ · ~E = ρ (2.3)

ρ = −∇ · ~P (2.4)

~P = ε0(εm − 1) ~E (2.5)

where ~E is the electric field, ρ is the charge density, ~P is the polarization vector of the

medium, εm is the relative permittivity of the medium and ε0 is the permittivity of vacuum.

Simplifying by making use of divergence identities for gradients2, one obtains the final sim-

plified form of Gauss’ law:

∇ · (εm ~E) = 0 (2.6)

The electric field can also be defined in terms of the gradient of a scalar quantity, the potential

φ, as follows [22]:

~E = −∇φ (2.7)

Substituting in eqn. 2.7 into eqn. 2.6, one obtains a final form for calculating the electric

potential profile within a spatially inhomogeneous dielectric with a linear electric induction3

1 There are induced charges from the polarization of the medium, which is what ρ refers to, but the equation
is generally re-written in terms of permittivity so that this term is not explicitly calculated [22]

2 ∇ · a~b = ∇a ·~b+ a∇ ·~b [23]
3 strictly speaking, ~D, the electric induction, and ~E do not vanish simultaneously when the medium has

spatially inhomogeneous properties. This was the assumption implicit in the derivation of the final form
of Gauss’ law. However, the effect of the inhomogeneous terms is negligible. See [22] for details
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[22]:

∇ · (εm∇φ) = 0 (2.8)

This equation reduces to Laplace’s equation for a spatially homogeneous dielectric (constant

εm).

2.1.3 Ohmic Heating

The application of an electric field to a conducting medium will cause current to flow, with

Ohm’s law being a linear response between current and electric field. This current will also

cause a temperature rise in the medium. If the field is spatially non-uniform, this will mean

that a temperature gradient will also arise. This temperature gradient is significant in that it

will cause gradients in electrical properties and give rise to additional forces on the medium,

as will be seen in section 2.3.2 [16].

The power density, W , from application of the electric field (for a conductor that follows

Ohm’s law) is given by:

W = σ| ~E|2 (2.9)

Organic materials and distilled/deionized water have negligible temperature rises from Ohmic

heating due to low conductivity, however, aqueous electrolytes can have significant temper-

ature rises.

2.2 Dielectrophoretic Forces

In the presence of an electric field, a polarizable particle will experience an induced dipole.

In a non-uniform field, this will result in a net translational force on the particle as the

force on either side of the pole is not equal. The resulting force on the particle is termed

the dielectrophoretic force and the motion due to this force is known as dielectrophoresis [24].
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Figure 2.1: Induced Dipoles
a) εp < εm, b) εp > εm Adapted from [16]

The application of an electric field will cause charges to accumulate at either side of the

interface between a particle and a medium. The degree of charge building up depends on the

polarizability of the medium, which is a measure of both the ability of a material to respond

to a field (conductive response) and the ability to produce charges at an interface (dielectric

response). If a particle has a much lower polarizability than the suspending medium, there

will be a larger amount of charges on the medium side of the particle-medium interface, as

is the case in Fig. 2.1a). This gives rise to an induced dipole across the particle, which is

aligned opposite to the electric field. If the particle has a much larger polarizability than the

medium suspending it, there will be a larger amount of charges on the particle side of the

particle-medium interface, as is the case in Fig. 2.1b). This gives rise to an induced dipole

across the particle, which is aligned with the electric field. If the particle and medium are

equally polarizable, there will be no induced dipole [16].

For a particle with an induced dipole, if the applied electric field is uniform there will be an

equal and opposing force on each pole and there will be no net motion of the particle. If the
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field is non-uniform one side of the particle will experience a larger force than the other and

there will be a net translational motion. This motion is termed dielectrophoresis (DEP),

the di corresponding to dipole. DEP can exist for both DC and AC electric fields, the only

requirement is spatially non-uniform electric fields [16].

If the particle is less polarizable than the medium, the electric field within the particle is

high, the external field lines will bend around the particle as if it was an insulator and the

particle will move towards regions of electric field minima. This case, which corresponds

to Fig. 2.1a), is known as negative dielectrophoresis (negative DEP). If a particle is much

more polarizable than the medium, than the electric field within the particle is nearly zero,

the external field lines will bend towards the particle and the particle will move towards

regions of electric field maxima (i.e. electrode edges). This case, which corresponds to

Fig. 2.1b), is known as positive dielectrophoresis (positive DEP). The dielectrophoretic

force is proportional to particle volume, meaning that for colloidal particles (dp < 1µm)

a characteristic field strength on the order of 106 V/m or larger is needed to move them

[16]. This is achieved using reasonably low voltages by making using of electrodes with

characteristic gap spacings on the order of microns or smaller.

2.2.1 Effective Dipole Moment Method

The dipole moment of a particle can be written as the magnitude of charge at the pole

(or effective magnitude) (Q) multiplied by distance vector between the poles (~d), result-

ing in ~p = Q~d . A schematic of a dipole in a spatially non-uniform electric field is given in

Fig. 2.2 [25]. As long as ~E(~r+ ~d) 6= ~E(~r), there will be a net Coulombic force on the particle.

In order to develop the expression for the dielectrophoretic force on a spherical particle one

can use a Taylor series expansion on the Coulomb force acting on the dipole shown in Fig.

2.2. After neglecting higher order terms (valid if |~d| ≪ ℓc), the final expression for the DEP
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Figure 2.2: Dipole in a Spatially Non-Uniform Electric Field

Adapted from [25]

force is derived as4 [25]:

~FDEP = (~p · ∇) ~E (2.10)

From this expression, it is clear there is only a net force on the particle if there is a spatially

varying electric field (non-uniform). For spherical particles, the effective dipole moment can

be written as [25]:

~p = 4πǫm

(

ε̃p − ε̃m
ε̃p + 2ǫ̃m

)

r3p
~E (2.11)

In eqn. 2.11, ε̃ refers to the complex permittivity of either the particle (p) or medium (m).

The complex permittivity of a material is defined as ε̃ = ε − iσ/ω, and is a measure of

the “effective” capacitance of a lossy dielectric. Substituting eqn. 2.11) into eqn. 2.10) and

time-averaging, one arrives at:

〈~FDEP 〉 = 2πεmr
3
pRe

[

ε̃p − ε̃m
ε̃p + 2ǫ̃m

]

∇| ~Erms|
2 (2.12)

4 See [25] for details



CHAPTER 2. THEORETICAL BACKGROUND 12

The expression
ε̃p − ε̃m
ε̃p + 2ǫ̃m

is known as the Clausius-Mossotti factor, fcm. This factor de-

scribes the frequency dependent behaviour of polarization. At low frequencies polarization

depends solely on conductivity and at high frequencies polarization depends solely on per-

mittivity. This frequency-tunable response leads to the ability to shift from positive DEP to

negative DEP and vice versa or change the intensity of the DEP force purely by changing

the frequency of the applied electric field. An equivalent Clausius-Mossotti expression for

ellipsoids, which is of relevance when considering nanotubes or other cylindrical shapes, is

also available [16, 25]. For nanocolloids the validity of using the Clausius-Mossotti expression

has been debated as the ratio of surface to bulk atoms is such that the material properties

may not be continuous but in the absence of an alternative approach, the Clausius-Mossotti

approach remains the best way to deal with the polarizability of a material within a medium

[26].

For spherical particles with a characteristic dimension much less than that of the character-

istic dimension of the electric field (dp ≪ ℓc), the dipole approximation works well. This is

to be expected from the nature of developing a first order Taylor series in order to describe

the dielectrophoretic force. For rod shape particles (particular when close to electrodes)

or spheres close in size to the characteristic field dimension, then the effective multipole

method or Maxwell Stress Tensor approach should be used as the dipole approximation has

been shown to give inaccurate force predictions [27]. In most cases for this research, the

characteristic field dimension will be on the order of 100 µm, meaning that the dp ≪ ℓc and

for spherical colloids the dipole approximation will be suitable to estimate the DEP force on

an isolated particle.
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2.2.2 Effective Multipole Moment Expansion

Calculation of the force can also be accomplished using higher order moments than just the

dipole, this approach was explored in depth by Jones and Washizu (1996) [28]. The multipole

moments were formulated in terms of dyadic tensors and expanded into generalized equations

for each order of moment (dipole, quadrupole, octupole, etc.). Simplified expressions in terms

of vector indices are provided as well, which are easier to implement for calculations. The

generalized multipole moment expression for the force on the nth moment gives the following

equation [28, 29]:

~F (n) =
p(n)[·](n)(∇)(n) ~E

n!
(2.13)

The nth moment induced on a spherical particle from a sinusoidal AC field is given by:

p(n) =
4πεmR

2n+1n

(2n− 1)!!
K̃(n)(∇)(n−1) ~Eeiωt (2.14)

with K̃(n) being the nth equivalent Clausius-Mossotti factor, calculated as:

K̃(n) =
ε̃p − ε̃m

nε̃p + (n+ 1)ε̃m
(2.15)

Substitution of equation 2.14 into 2.13 and time-averaging results in the expressions for each

component of the total DEP force5:

〈~F (n)〉 =
2πεmr

2n+1
p

(n− 1)!(2n− 1)!!
Re

[

K̃(n)(∇)(n−1) ~Erms[·]
(n) (∇)(n) ~E∗

rms

]

(2.16)

This equation is the general expression for the calculation of the electric field force on the

particle from the nth moment (similar expressions exist for the torque and can also be found in

[28]). Simpler expressions that reduce the calculations to vector indices (easier to implement

calculations) can also be obtained. For a spherical particle, the expressions for the dipole

5 (2n− 1)!! = (2n− 1)(2n− 3)(2n− 5) · · · (5)(3)(1) [29]
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(n=1), quadrupole (n=2) and octupole (n=3) contributions to the DEP force6 are:

〈~F (1)〉 = 2πεmr
3
pRe

[

K̃(1)Em,rms
∂

∂xm
E∗

i,rms

]

(2.17)

〈~F (2)〉 =
2

3
πεmr

5
pRe

[

K̃(2)∂En,rms

∂xm

∂2E∗
i,rms

∂xn∂xm

]

(2.18)

〈~F (3)〉 =
1

15
πεmr

7
pRe

[

K̃(3)∂
2En,rms

∂xl∂xm

∂3E∗
i,rms

∂xn∂xm∂xl

]

(2.19)

The equation form for higher order moments can be deduced from these expressions, with

increasing order of sums7.

2.2.3 Maxwell Stress Tensor Approach

The force acting on a body suspended in a dielectric medium can also be evaluated using

the Maxwell Stress Tensor (MST). The MST, T , for a body within a dielectric medium is

given by [21]:

T = ε ~E ~E −
1

2
ε( ~E · ~E)I (2.20)

The force is determined by integrating the stress-tensor over the surface area of the body

(or divergence over the volume):

~FMST =

∫

V

(∇ ·T)dV =

∫

S

(~n ·T)dS =

∫

S

(T · ~n)dS (2.21)

6 The di- in dielectrophoretic force technically refers to the force from the dipole but often in papers the
force of all moments accounted for or calculated by the MST method is referred to as the DEP force

7 All terms are expressed according to the Einstein summation convention, meaning that sums are taken
over repeated indices [28]
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Switching the order of the normal and tensor in eqn. 2.21 is possible as the stress tensor

is symmetric. Now, substituting in eqn. 2.20 and time-averaging, we arrive at a final time-

averaged value of the electric field force:

〈~FMST 〉 =

∫

S

([

ε ~Erms
~Erms −

1

2
ε( ~Erms · ~Erms)I

]

· ~n

)

dS (2.22)

The Maxwell Stress Tensor approach is the most rigorous approach to calculate the electric

force on a suspended body in a dielectric/conducting medium. This rigour comes with

increased complexity in numerical evaluation as the electric field profile accounting for the

particle perturbation must be solved but for the case of non-spherical particles, it has been

shown to be necessary to obtain accurate results in many cases [27].

2.2.4 Mutual Dielectrophoretic Forces

The induced dipole on a particle from the presence of an electric field can be acted upon by

the external electric field and if this field is spatially non-uniform the resulting particle mo-

tion is termed dielectrophoresis. An induced dipole can also interact with another induced

dipole and this interaction force is termed mutual dielectrophoresis (mutual DEP).

The following expression for the mutual DEP force between two dipoles can be derived using

the point dipole approximation [30]:

~Fmutual DEP =
1

4πεm

3

r5
[

~rij(~pi · ~pj) + (~rij · ~pj)~pi −
5

r2
~rij(~pi · ~rij)(~pj · ~rij)

]

(2.23)

In eqn. 2.23 ~rij is the relative distance vector between particle i and j (~rij = ~ri − ~rj)

where ~r represents the position vector. ~pi is the dipole moment vector of particle i, given by
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equation 2.11 in section 2.2.1 for a spherical particle under the point dipole approximation8.

This expression has been put to use in a number of DEP applications involving chaining of

particles together by the mutual DEP force [30–32]. The inverse proportionality to distance

between two particles is of the 4th power, indicating that the mutual DEP effect is negligible

beyond a few particle diameters but can be quite large for small intraparticle distances.

Jones (1995) determined that for calculations of mutual DEP forces between particle chains

and clusters, the N = 2 (i.e. two-particle interaction) case deviated by at most a factor of 2

from the experimentally determined value [25]. This is an indication of why this simplified

approach to describe the mutual DEP effect has been successful in previously performed

studies.

2.3 Electrohydrodynamics

Electrohydrodynamics is the study of fluid behaviour under the influence of electric fields.

In terms of AC electric fields there are two effects of interest, electroosmotic flow and elec-

trothermal flow. Both of these effects can be used to manipulate colloidal-size particles and

in the case of nanometer scale particles the flow effects can be significantly stronger than

that of DEP.

2.3.1 Electroosmotic Flow

AC electroosmotic flow is the flow induced by the action of the electric field on the ionic

double layer within the medium, which forms above the electrodes9 [24]. The charge of the

ions above the electrodes will flip with the applied field, meaning that there will still be a

8 Although the mutual DEP expression in eqn. 2.23 is derived for a point dipole approximation, the dipole
moment vector can be calculated using the effective multipole moment if a higher degree of accuracy is
desired

9 This varies from DC electroosmosis where the primary response is due to surface charges from the
substrate
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net time-averaged force. More details on the double layer are provided in section 2.5.3.The

mechanism behind AC electroosmosis is illustrated in Figure 2.3 [17]

Figure 2.3: AC Electroosmosis Mechanism
Adapted from [17]

Ordinarily at a boundary, the velocity will be zero (no-slip condition) however, in the case

with a double layer the application of an electric field will cause the charges in the double

layer to move and pull the fluid along tangentially [16]. An expression for the time-averaged

electroosmotic velocity can be given by [18]:

〈Uslip〉 = −
1

4

εm
µ
Λ
∂

∂l
|∆φDL|

2 (2.24)

In eqn. 2.24, µ is the viscosity, Λ is a factor relating to the Stern layer (see section 2.5.3)

which is generally agreed upon as being 1/4 and ∆φDL is the potential drop across the double

layer. In order to solve this equation, an expression for |∆φDL|
2 is required. The double layer

can be modelled as a distributed capacitor, with φDL−
σ

iωC
∂φDL

∂n
[18]. For very low frequencies,

the applied voltage drops primarily across the double layer, the electric field outside of the
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double layer is very small and there is then a very small electroosmotic slip velocity. For very

high frequencies, the applied voltage is dropped primarily across the electrolyte and the sur-

face charge of the double layer is small, resulting in a very small or negligible electroosmotic

velocity [33]. The effective result is that AC electroosmosis is a relevant effect in a frequency

range between 10 Hz and 100 kHz and becomes negligible outside of this frequency range [16]

Using eqn. 2.24 to determine the electroosmotic velocity eliminates the need to thoroughly

model the double layer effects. The alternative to this approach is to solve the Poisson-

Boltzmann equation (eqn. 2.52 in section 2.5.3) in order to determine the free charge den-

sity. Then determing the electric field force on the fluid due to this free charge density in the

double layer, one can determine the electroosmotic velocity profile [21]. This adds a great

deal to the complexity of equations being solved and may not be practical for more compli-

cated simulations involving MD approaches or suspension free energy but a comparison of

the electroosmotic velocity calculated using eqn. 2.24 and this approach for a particle free

system will be carried out to determine if there is sufficient cause to use it when dealing with

EO phenomena in multi-particle simulations.

AC electroosmosis is a very useful technique for microfluidic applications. It is the most

common choice for pumping of materials in microfluidic devices, since it involves no moving

parts [34]. Velocities on the order of mm/s can be achieved using this technique, which is

quite significant considering the µm scale of these devices, and numerous practical examples

exist within the literature [35–38].

2.3.2 Electrothermal Flow

The application of an electric potential across a conducting medium will cause the generation

of heat due to flow of current (Ohmic heating) (see section 2.1.3). In the case of non-uniform

electric fields, this heating causes a temperature gradient. Since the physical properties of
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the medium are generally temperature dependent, this means gradient will arise in these

properties as well. Using microelectrodes means that the gradients generated can be quite

large and the impact of these gradients is profound. Temperature gradients will cause gradi-

ents in permittivity and conductivity of the fluid medium. Gradients in these parameters will

cause variations in the charge density throughout the medium, resulting in an electric force

on the fluid. To derive the equation for the electric force due to ohmic heating, an energy

balance for the medium is the first step. Writing the energy balance for an incompressible

liquid [23]:

ρmCp
∂T

∂t
+ ρmCp~u · ∇T = ∇(k · ∇T ) + σ| ~E|2 (2.25)

Based on order of magnitude analysis , the convective component of heat transfer is gen-

erally negligible, since for typical dimensions/velocities ρmCpuℓ

k
≪ 1. In addition, due to

the identity ∂
∂t

= iω , at frequencies greater than 1 kHz the medium will essentially be in

instantaneous equilibrium with the field (i.e. steady-state operation) [17].

This simplifies the equation to:

∇(k · ∇T ) + σ| ~E|2 = 0

which can be converted to a time-averaged value for temperature based on a sinusoidal

applied potential10:

∇(k · ∇T ) + σ| ~Erms|
2 = 0 (2.26)

With the temperature and potential spatial profile known, the electrothermal force can be

10 In [17] and many other references for calculating temperature rise in DEP/EHD systems the thermal
conductivity is taken as a constant and removed from the gradient operator, which is only valid for small
temperature rises generally as gradients in thermal conductivity can be significant
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calculated. The electrical body force generally on a medium is given by [17]:

~felec = ρ ~E −
1

2
| ~E|2∇ε+

1

2
∇

(

ρm

(

∂ε

∂ρm

)

T

| ~E|2

)

(2.27)

The first term is the Coulomb force, the second is the dielectric force and the last term is the

electrorestriction pressure. For incompressible fluids, the contribution of electrorestriction

pressure is zero. The expression for this force can be developed using the perturbation of the

electric field due to the gradients of permittivity and conductivity, ~E = ~E0+ ~E1 with ~E1 being

the perturbation field and | ~E1| ≪ | ~E0|. Starting with Gauss’ Law (see equation 2.6 in section

2.1.2) for an inhomogeneous medium11, 12, and noting that ∇ · ~E0 ≃ 0 [17] an expression for

the charge density, ρ, in terms of the divergence of the perturbation field and gradients of

permittivity and conductivity can be developed. In order to eliminate the perturbation field

term in the charge density in favour of quantities in permittivity and conductivity, the charge

conservation equation can be used and much as for the energy balance the convection current

is neglected and conduction (from Ohm’s law) dominates. After numerous substitutions and

simplifications (see [23] for details) the time-averaged electric body force on the fluid is

arrived at as [23]:

〈~felec〉 = Re

[(

(σ∇ε− ε∇σ) · ~E0,rms

σ + iωε

)

~E∗
0,rms −

1

2
| ~E0,rms|

2∇ε

]

(2.28)

Finally, if the change of conductivity and permittivity with temperature is known, the entire

equation can be posed in terms of temperature gradients by re-writing gradients in per-

mittivity and conductivity as gradients in temperature ∇ε = α∇T and ∇σ = β∇T , with

α = 1
ε
∂ε
∂T

and β = 1
σ

∂σ
∂T

. This results in the final equation for the electric body force due to

11 ∇ · a~b = ∇a ·~b+ a∇ ·~b and ∇ · (~a+~b) = ∇ · ~a+∇ ·~b [23]
12 Note that ρ is taken as non-zero here as we are interested in calculating the induced charge density due

to the perturbation, if the equation is written for ~E0 then the form will be identical to eqn. 2.6)
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thermal effects [24]:

〈~felec〉 = Re

[

(α− β)

σ + iωε
(∇T · ~E0,rms) ~E

∗
0,rms −

1

2
εα| ~E0,rms|

2∇T

]

(2.29)

The first term of the electrothermal force equation is the Coulomb force, which dominates

at low frequencies, and the second term is the dielectric force, which dominates at high

frequencies. These forces are generally in opposite directions, with the low frequency limit

of the Coulomb force being approximately 10 times larger than the high frequency limit of

the dielectric force [24]. AC electrothermal flow becomes the dominant electrohydrodynamic

flow at frequencies above 100 kHz, at frequencies below this AC electroosmosis is dominant

[16].

With the known electrothermal force (volumetric force), a momentum balance can be per-

formed on the fluid in order to solve for the velocity and pressure profile. The effect of

temperature on the mass density of the medium is generally negligible but on viscosity the

effect can be quite profound so the variation of viscosity with temperature generally must be

accounted for in systems with significant electrothermal flow. Similar to the heat balance,

based on frequency the velocity essentially reaches instantaneous steady-state. Writing the

momentum balance for an incompressible fluid at steady-state, the following equation is ar-

rived at:

−∇p+∇µ ·
(

∇~u+∇~u†
)

+ ~felec = ~u · ∇~u (2.30)

∇ · ~u = 0 (2.31)

Based on order of magnitude analysis, the inertial term in the Navier-Stokes equation (eqn.

2.30) can often be neglected and the momentum balance reduces to Stokes’ equation.
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2.4 Brownian and Gravitational Forces

2.4.1 Brownian Forces

Particles in suspension will experience a random force due to the thermal energy of the

molecules in the suspension. For a single colloidal particle in a dilute suspension, the diffusion

coefficient D is given by:

D0 =
kBT

6πηfrp
(2.32)

where kB is the Boltzmann constant, T is the temperature, ηf is the viscosity of the sus-

pending fluid and rp is the radius of suspended particles. For a concentrated suspension of

hard spheres with volume fraction c , the diffusion coefficient (D) is given by [39]:

D = (1− c)2
kBT

6πηsrp

d(cZ)

dc
(2.33)

where D0 is the diffusion coefficient of a single, isolated particle (eqn. 2.32), ηs is the

suspension viscosity and Z is the compressibility factor of the suspension . The force on an

isolated Brownian particle can be described by [40]:

~Fbrownian =

(

2kBTf

τ

)1/2

~ξ (2.34)

In eqn. 2.34, the characteristic time, τ , is generally taken as the time-step for integration

and ξ is a gaussian-distributed random normal vector . The magnitude of the brownian force

is proportional to particle size to the power of 1/2, arising from the appearance of the friction

factor in eqn. 2.34. Since the volume of a particle is generally speaking proportional to the

cube of particle size and most of the other forces involve scale either with volume (DEP) or

directly with particle size (viscous drag), this means that the relative effect of brownian mo-

tion increases as particle size decreases (also evident from examining the diffusion coefficient,

which is inversely proportional to particle size). For micron-sized particles undergoing DEP
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or EHD, the effect of brownian motion can generally be neglected but for submicron-sized

particles the effects can be quite significant, depending on the relative intensities of the DEP

and EHD effects.

2.4.2 Gravitational Forces

The gravitational force on colloidal particles is generally negligible compared to other forces

in electrokinetic systems, although it becomes more relevant for larger particles and for

weaker electric field strengths. The buoyancy force experienced by a spherical particle is

given by:

~Fbuoyancy,p =
4

3
πr3p(ρm,p − ρm,m)~g (2.35)

For the fluid, due to the localized heating effect (Joule heating), there is a change in mass

density13. This change in fluid density will result in natural convection of the fluid, with

hotter (i.e. lighter) fluid elements rising and colder (i.e. heavier) fluid elements sinking. This

buoyancy force on the fluid is described by:

~fbuoyancy,m = ∆ρm~g (2.36)

Typically the buoyancy force is insignificant compared to electrical forces in the area near

the electrodes, although given the dependence of electrical forces on frequency there can be

cases where this is not true. Depending on the characteristic length of the system, buoyancy

can start to play a larger role. Castellanos et al. (2003) found that in a system they

studied, a characteristic system length larger than 300 µm resulted in the buoyancy force

exceeding the electrothermal flow force [18]. For concentrated suspensions, this gravitational

(sedimentation) effect can also be quite significant.

13 Generally, this change is fairly insignificant and is ignored, with the fluid assumed to be incompressible
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2.5 Colloidal Interactions

2.5.1 Lifshitz-van der Waals Forces

van der Waals or Lifshitz-van der Waals (LW) forces are composed of three closely related

but different phenomena: i. randomly orienting dipole-dipole interactions (orientation inter-

actions), ii. randomly orienting dipole-induced dipole interactions (induction interactions)

and iii. fluctuating dipole-induced dipole interactions (dispersion interactions). For macro-

scopic bodies in condensed systems only dispersion interactions are relevant but all of these

forces can be described by the same basic set of equations [39, 41].

Hamaker developed an approach for calculating the interaction between two materials in a

vacuum at short distances relying on the calculation of a constant A, known as the Hamaker

constant . The Hamaker constant of a material interacting with the same material, Aii, can

be used to calculate the constant of a material interacting with a different material, Aij, as

Aij =
√

AiiAjj. The combining rule for 3 body interactions is A132 = A12+A33−A13−A23
14.

The relationship between the Gibbs free energy of interaction of a material with itself at a

distance ℓ and the Hamaker constant Aii can be expressed as:

∆Gii(ℓ) = −
Aii

12πℓ2
(2.37)

The surface tension (LW component) can be found through the Hamaker constant by the

final definition :

γLWi = −
∆Gii

2
= −

Aii

24πℓ2
(2.38)

14 This follows from the following “reaction” scheme for the material, namely 1○ 3○+ 2○ 3○←→ 1○ 2○+ 3○ 3○
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For the interaction energy between two materials, the following combining rule (Good-

Girifalco-Fowkes) applies:

γLWij =
(

√

γLWi −
√

γLWj

)2 (2.39)

The Gibbs free energy of interaction (in vacuo) can also be determined, based on eqn. 2.38

(the resulting equation is referred to as the Dupré equation):

∆GLW
ij = γLWij − γ

LW
i − γLWj (2.40)

The interaction between one material, i, immersed in a second material, j, is (as a conse-

quence of the Hamaker combining rule):

∆GLW
iji = −2γLWij (2.41)

For the purpose of this research, most experiments are done using spherical particles so flat

plate-sphere (particle-substrate) and sphere-sphere (particle-particle) interactions are the

most relevant. The interaction energies (and related forces) vs. distance (ℓ) for the relevant

configurations are [41]:

∆GLW
ℓ =



























2πℓ20R∆G
LW
ℓ0

ℓ
sphere of radius R and a semi-infinite flat plate

πℓ20R∆G
LW
ℓ0

ℓ
two spheres of radius R

(2.42)

FLW
ℓ =











































−
2πℓ20R∆G

LW
ℓ0

ℓ2
sphere of radius R and a semi-infinite flat plate

−
πℓ20R∆G

LW
ℓ0

ℓ2
two spheres of radius R

(2.43)
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In equations 2.42 and 2.43 ℓ0 represents the minimum equilibrium distance. This value is not

strictly speaking equal for all materials but the deviation is generally quite low compared to

the average value of 1.57 Å (standard deviation is 0.09 Å). This spacing is also not strictly

speaking the “true” equilibrium spacing but rather determined from using a known rela-

tionship for Hamaker constants in terms of ℓ0, with the Hamaker constants independently

determined from spectroscopy or permittivity data, meaning that the relationship can be

considered to be semi-empirical [41].

These expressions are valid for unretarded Lifshitz-van der Waals forces. In the time it takes

the electric field of one atom to reach another and for the induced dipole to return to the

first atom, the configuration of electrons will have changed to a significant degree and the

dipoles will have a smaller attractive force. At distances approaching 100 Å the value of the

Hamaker constant can be a great deal smaller than half of the unretarded value. Fortunately,

due to the presence of other forces (DEP, EHD, etc.) being much larger than the LW force at

these larger distances, the relevance of this retardation is debateable for simulation purposes

[41].

2.5.2 Acid/Base Forces

The Lifshitz-van der Waals forces are apolar interactions, which can be treated in the manner

described in section (2.5.1) All other interactions, excluding electrostatic (see section (2.5.3))

and metallic, are considered to be “polar”. This methodology was worked in to a framework

by van Oss, Chaudhury and Good [42, 43] who treat all polar interactions under a unified

“acid-base” formalism. Specifically, polar interactions are defined as electron acceptor and

electron donor interactions (Lewis acid-base) and considered to be an additive component

of overall interfacial interaction energy, hence they are denoted by the superscript AB.

The overall form of the AB interactions are taken as an asymmetric relationship, allowing for
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the fact that the electron donator and acceptor properties of a substance are not equal and

that the effect of one parameter will not be felt unless the materials can interact reciprocally

(i.e. acceptor of i and donator of j or donator of i and acceptor of j). The following

relationship was proposed, on the basis of previous work done with electrostatic interactions

between two different materials [41]:

∆GAB
ij = −2

√

γ⊕i γ
⊖
j − 2

√

γ⊖i γ
⊕
j (2.44)

where in eqn. 2.44 γ⊕i represents the electron acceptor (Lewis Acid) and γ⊖i the electron

donor (Lewis Base) interfacial tension component of species i. Based on the definition of

interfacial tension, which is independent of what the type of interaction is, the AB interfacial

tension can be defined as:

γAB
i = 2

√

γ⊕i γ
⊖
i (2.45)

Writing the Dupré equation, eqn. 2.40, for these types of interactions and substituting in

eqn. 2.44 the following relationship is achieved:

γAB
ij = 2

(

√

γ⊕i −
√

γ⊖j
)(

√

γ⊖i −
√

γ⊕j
)

(2.46)

This relationship is significant since it allows for the AB interfacial tension to be negative,

that is for a positive acid-base Gibbs free energy of interaction. The overall meaning of

this is that for a material immersed in a medium, it is now possible to achieve an overall

repulsive interaction, i.e. for a material to be suspended. Without this asymmetry between

the electron donor and electron acceptor, there would be by necessity a positive interfacial

tension component and a negative Gibbs free energy (always attractive) [41].

In terms of rate of decay with distance of interaction energy/force, the following relationships
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have been proposed for the geometries most of interest to this work [41]:

∆GAB
ℓ =































2πRλ∆GAB
ℓ0

exp

[

ℓ0 − ℓ

λ

]

sphere of radius R and a semi-infinite flat plate

πRλ∆GAB
ℓ0

exp

[

ℓ0 − ℓ

λ

]

two spheres of radius R

(2.47)

FAB
ℓ =











































−2πR∆GAB
ℓ0

exp

[

ℓ0 − ℓ

λ

]

sphere of radius R and a semi-infinite flat plate

−πR∆GAB
ℓ0

exp

[

ℓ0 − ℓ

λ

]

two spheres of radius R

(2.48)

In equations 2.47 and 2.48 ℓ0 is the minimum equilibrium distance, which is also used in eqn.

2.42 and λ is the decay or correlation length of molecules within the liquid medium. λ for

pure water has been determined at 0.2 nm but in practice tends to be closer to 1 nm due to

clustering of molecules and can even be much higher in certain cases [41].

One limitation of this approach is that to date there has been no ability to independently

determine γ⊕i /γ
⊖
i and all current tabulated values are in fact based on a ratio with an as-

sumed value for water. Calculation of the LW component of interfacial tension for water at

20◦C (based on dielectric permittivity relationships available in [41]) gives a value of 21.8

mJ/m2, while water has an overall interfacial tension of 72.8 mJ/m2. This implies that the

AB interfacial tension component of water at 20◦C is 51 mJ/m2. The ratio of the electron

acceptor to electron donor components of water was chosen as unity15 and from eqn. 2.45

the values for water can be determined as γ⊕H2O
= γ⊖H2O

= 25.5 mJ/m2.

15 for simplicity of calculation and since a relative scale system versus water yields the same results inde-
pendent of the choice of ratio [41–43]
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Another limitation of this approach is that the value of λ is treated as independent of

the material interacting with the medium, which is almost certainly not universally true,

and as the relationship is exponential this factor is exceedingly important in determining the

magnitude of interactions. For systems other than water, this factor is not well characterized

either and the entire approach of treating all polar interactions as being described by a

decaying exponential relationship with a single decay parameter is semi-empirical at best

[44]. However, the approach is fairly robust, particularly in terms of dealing with aqueous

media and as this will be the predominant choice (at least initially) in this work, the van

Oss framework is well suited to this research.

2.5.3 Electrostatic Forces

Electrostatic interactions (EL) comprise the remainder of the classic colloidal interactions,

along with LW and AB interactions. Interfaces between solids and solutions acquire charges

by one of the following mechanisms [39]:

1. Differences in electron affinities between the two phases

2. Differences in ionic affinities between the two phases

3. Ionization of surface groups of one phase

4. Entrapment of ions in a lattice where substitution of one ion for another confers a

charge

In order to maintain electroneutrality the fluid near this solid will contain opposing charges.

The surface charge is maintained in a region known as the Stern layer where ions are im-

mobile and the opposing charges are contained in the diffuse layer, where they are free to

move under the influence of electrical and thermal forces. The application of an electric field
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tangential to the double layer gives rise to electroosmotic flow, from the motion of the ions

in the diffuse portion of the double layer (see section 2.3.1). The Stern layer is hypothesized

to be the size of one hydrated ion radius, while the diffuse layer is generally taken as being

equal to the Debye length. The two layers, Stern and diffuse, compromise the electrical

double layer [21, 39]. A schematic of the double layer is provided in Fig. (2.4).

Figure 2.4: Double Layer Schematic
a) Charged Surface, b) Stern Plane, c) Shear Plane

Adapted from [21]

The electrostatic potential must satisfy Poisson’s relationship:

ε∇2φ = −ρf (2.49)
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The free charge density arising from the charges in solution is determined by recognizing that

the diffuse region is in equilibrium so that the gradient of chemical potential must vanish,

resulting in the Boltzmann distribution for ions in solution[39]:

nk = nk
b exp

[

−ezkφ

kBT

]

(2.50)

The free charge density from the ionic species is then [39]:

ρf =
N
∑

1

ezknk (2.51)

Combining equations 2.49, 2.50 and 2.51 gives rise to the Poisson-Boltzmann equation for

electrostatic potential [39]:

ε∇2φ = −e
N
∑

1

zknk
b exp

[

−ezkφ

kBT

]

(2.52)

This equation is the core of the Poisson-Boltzmann model for the diffuse double layer. The

primary assumptions are the electrolyte being an ideal solution with uniform dielectric prop-

erties16, ions are point charges and the ionic distribution is governed by the Boltzmann

relationship [39].

All expressions for determining electrostatic interactions depend on using the Poisson-Boltzmann

model in some manner, whether through analytical simplifications (such as linearization) or

numerical simulations. van Oss (2006) provides analytical expressions for a symmetric 1:1

electrolyte, derived using the Derjaguin approximation but these are valid only at very low

16 Even in the case of temperature rise due to ohmic heating, there is unlikely to be a significant effect over
the region defined by the double layer so that temperature may be safely assumed to be a constant value
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surface potential (< 25-50 mV depending on double layer thickness)17 [41]. The expressions

will be provided here for the sake of completeness but they will not be used unless zeta

potential measurements show that the approximations are appropriate.
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(2.54)

In equations 2.53 and 2.54 κ refers to the Debye parameter and Ψ0 to the surface (or zeta)

potential, where for two different materials A and B the value is calculated as Ψ0 =
√

ΨA
0 Ψ

B
0 .

The inverse of the Debye parameter is κ−1 and this is the Debye length, which is the effective

thickness of the diffuse double layer [41]. The zeta potential is defined as the potential at

which the no-slip condition is assumed to apply, which is one-half of the Debye length away

from the Stern layer. The “true” surface potential, that at the Stern layer, is approximately

the same as the zeta potential and is generally indistinguishable experimentally so zeta po-

tential measurements are used to determine Ψ0 [21, 41]. The Debye length can be calculated

for a symmetric electrolyte in water as [21]:

κ−1 =

√

εkBT

2e2z2nb

(2.55)

17 The given force expression in van Oss (2006) is not correct, as can be plainly seen from differentiating
the energy expression w.r.t. distance. The corrected version is used here and matches that of Russel et
al. (1989), except in sign convention [39]



CHAPTER 2. THEORETICAL BACKGROUND 33

For the case of non-aqueous media, the Debye length can be calculated as [45]:

κ−1 =

√

εkBT

2e2n
(2.56)

where the ionic concentration, n, is estimated as n =
σF

eΛ0

, with σ being the liquid conduc-

tivity, F is Faraday’s constant and Λ0 the equivalent conductance of the suspension which

is determined by Walden’s law, Λ0,aqµaq = Λ0,non−aqµnon−aq [45]. In the case where the zeta

potential is not low (eζ/kBT > 2), but the double layer is thin (κrp ≫ 1) the following

expression can be used to evaluate electrostatic interaction between particles [39]:

FEL
ℓ = −32πε

(

kBT

ze

)2

κrp tanh(
1

4
Ψ0) exp(−κℓ) (2.57)

Construction of a total force (or energy) vs. distance plot using all three types of interactions

(LW, AB and EL) is helpful in determining the existence of maxima (or minima in the case

of energy), indicating that particles will no longer be suspended in the medium but aggregate

together if they are brought to a certain distance. However, this is limited in that it does

not consider interactions of more than 2 particles or even the summation of interactions over

all particle pairs. To extend to this effect, more complicated approaches are required and

one such approach is described in the next section.

2.6 Free Energy of Suspension Under Electric Field

To describe the phase separation of a colloidal suspension under the influence of non-uniform

electric field effects, Kumar et al. (2007) developed an expression suitable for high concen-

tration suspensions which required no fitting parameters [46]. This approach consisted of

a thermodynamic approach to describing the colloidal suspension, modified from previous

work by Khusid and Acrivos (1995, 1996, 1999), which allowed for calculation of osmotic

pressure and chemical potential and then used equilibrium conditions in order to elucidate
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where phase separation took place and the effect of colloidal flux on the fluid [47–49]. In this

approach, colloidal interactions are treated using a hard-sphere approach (Carnahan-Starling

compressibility factor), as the electric field effects are presumed to dominate at larger intra-

particle distances (DEP/mutual DEP effects). Consequently, this model will likely work well

for colloidal systems where the hard-sphere approach is well suited (colloidal latex in water

for example) but may possibly break down for more complicated systems. In this research to

date, colloidal latex/silica in water have been used as the model systems and consequently

the hard-sphere approximation has been suitable as a first attempt at describing assemblies.

The time-averaged chemical potential and osmotic pressure of a colloidal suspension under-

going negative dielectrophoresis are given by eqn. 2.58 and 2.59 respectively [46]:

µp =
kBT

vp

df0
dc
−

(

∂εs
∂c

)

ωtc

| ~Erms|
2 where f0 = c ln

c

e
+ c

∫ c

0

Z(c)− 1

c
dc (2.58)

Πp =
kBT

vp
cZ +

[

εs − c

(

∂εs
∂c

)

ωtc

]

| ~Erms|
2 (2.59)

where kBT is thermal energy, c is particle volume fraction, Z is suspension compressibility

factor, εs is the real part of suspension permittivity and
(

∂εs
∂c

)

ωtc

is the derivative of the real

part of the suspension permittivity with respect to particle volume fraction. The suspension

compressibility factor can be calculated using the Carnahan-Starling equation (eqn. 2.60)

and the suspension permittivity from the Maxwell-Wagner expression (eqn. 2.61) [46]:
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ε̃s = ε̃m
1 + 2cK̃e

1− cK̃e

(2.61)

where in eqn. 2.61 ε̃i is the complex permittivity of the suspension and medium (subscript

s and m respectively) and K̃e is the Clausius-Mossotti factor defined in section 2.2.1.

Along the coexistence curve for the single phase region of the suspension vs. a two-phase

region induced by the electric field effects, the value of chemical potential and osmotic

pressure of each phase are equal. The volume fraction of particles in each phase is denoted

by c1 and c2 where 1 refers to the low solids concentration phase and 2 to the high solids

concentration phase respectively [46]:

µp(c1) = µp(c2) and Πp(c1) = Πp(c2) (2.62)

The electric field profile of the suspension can be determined using Gauss’ law with the

permittivity described by eqn. 2.61 [46]:

∇ · [εs(c)∇φ] = 0 and ~E = −∇φ (2.63)

The electrohydrodynamics are governed by the Navier-Stokes (or Stokes equation if the

inertial term is shown to be negligible by order of magnitude analysis) with a volume force

due to the motion of colloidal particles18 [46]:

ρ(c)

(

∂~u

∂t
+~u·∇~u

)

= −∇p+∇·[ηs(c)(∇~u+∇~u
†)]+c(ρp−ρf )~g−c∇µp and ∇·~u = 0 (2.64)

The momentum balance is no longer taken at steady-state since the volume force due to the

motion of the colloidal particles has a much slower response time vs. that of the electric

field, hence it is not necessarily appropriate to use the steady-state approximation used in

18 electroosmotic or electrothermal flow effects can be treated by adding either a slip-velocity boundary
condition or an additional volume force as described in sections 2.3.1 and 2.3.2 respectively



CHAPTER 2. THEORETICAL BACKGROUND 36

section 2.3. The particle concentration is determined using a continuity equation, eqn. 2.65.

In the original model of Kumar et al. (2007), the effect of diffusion was either ignored or

treated as the dilute particle case, but this is not necessarily appropriate given the particle

sizes and concentrations used for assembling structures.

∂c

∂t
+∇ · (−D∇c+ c~u+~jp) = 0 where ~jp =

c(1− c)2vp
6πrpη(c)

[

−∇µp + (ρp − ρf )~g
]

(2.65)

in equations 2.64 and 2.65 η(c) is the suspension viscosity, which is determined by the rela-

tionship η(c) = ηm
(

1− c/0.68
)−2 for hard spheres. The suspension is treated as Newtonian

with a concentration dependent viscosity, ignoring the possible formation of a yield stress

(electrorheological effects) due to permittivity of medium and applied frequency [46, 50]. In

eqn. 2.64 ρ(c) is the suspension density which can be roughly estimated by volume averag-

ing as ρ(c) = cρp + (1 − c)ρm. D is the diffusion coefficient, accounting for particle effects,

which can be determined by eqn. 2.33 for a concentrated suspension of hard spheres. The

effects of sedimentation are captured by the terms c(ρp − ρf )~g in the momentum balance

and (ρp − ρf )~g in the particle flux equation. The volume fraction of the high solids phase

(ψ) can be determined by the lever rule c2ψ + c1(1 − ψ) = c where c is the total particle

concentration. As an approximation, the viscosity and permittivity may be determined using

the bulk concentration c [46], based on assuming phase separation happens on a much faster

scale compared to the hydrodynamics.



Chapter 3: Survey of Existing Literature

3.1 Ordered Structures and Colloidal Crystal Applica-

tions

3.1.1 Recent Colloidal Crystallization Advances

A number of popular techniques for forming 3d ordered, crystalline structures from colloidal

particles exist. These colloidal crystals are on a much larger scale compared with atomic

crystals but can form similar types of lattice structures, for example face-centered-cubic

(FCC), body centered cubic (BCC), etc. Sedimentation is one option for forming ordered

colloidal structures, with the process being governed by a complicated interplay between

gravitational, brownian and nucleation forces and tending to form FCC type lattices [1].

However, this approach yields poor control over the topology of the surface layer and on the

overall number of layers deposited as well as taking a large amount of time to completely set-

tle (between weeks and months for submicron sized particles) [1]. Minimizing electrostatic

repulsion, which can be controlled by changing the colloid volume fraction or the Debye

length of the medium, can lead to a change from a disordered suspension to an ordered crys-

talline phase [39]. This method is, however, very sensitive to temperature, monodispersity of

particles, surface charge density and counterion density in the medium. The use of shear flow

to induce a translational ordering over large distances is generally needed [1]. Self-assembly

under geometric confinement is another possibility for formation of a 3d crystalline structure

from colloidal particles. In this approach, packing cells are constructed and used to form 3d

crystalline structures, generally with a cubic close-packed (ccp) lattice structure, requiring

continuous sonication of the cell in order to achieve a crystalline lattice. This approach is

quick and suitable for large scale templating but is limited in that packing cells are fragile

and are generally suitable for a single-use only [51].

37
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Another potential route for obtaining colloidal crystals is through solvent evaporation. This

approach has been used recently by Fernández-Nieves to construct 3d arrays of liquid crystal

drops and Kuncicky and Velev who used substrates of controlled contact angle to manipulate

the air-water interface of a droplet to allow the creation of 3d crystalline structures of various

geometries during evaporation [52, 53]. These types of structures, as mentioned previously,

have numerous applications, ranging from templating the formation of other structures, such

as photonics, scaffolds, membranes or sensors [54–56, 56].

3.1.2 Photonic Bandgap Applications

Mayers et al. used replica moulding in order to produce a cell for the formation of 3d colloidal

structures which displayed opalescence [51]. This method was able to produce photonic lat-

tices of the cm2 scale area using monodisperse latex (polystyrene) spheres (dp = 255 nm and

467 nm). The crystals had two troughs in the transmittance spectra, one at 614 nm which

corresponded to the bandgap of the crystal (first-order Bragg diffraction) and one at 300

nm which was attributed to a combination of second-order Bragg diffraction and absorption.

The technique of using replica molding (physical confinement) was able to provide a large

degree of control over the number of monolayers but was limited in that the packing cells

had low durability and were suitable for one use only [51].

In order to create crystals that have a bandgap of 1.3 µm or 1.5 µm, which are two of the

more technically useful wavelengths for optoelectronic applications, a particle diameter of

∼ 0.8µm is required [57, 58]. Vlasov et al. describe the creation of a 3d crystalline silica

structure (FCC lattice) which is suitable for templating an inverse photonic crystal that has

a bandgap of 1.3 µm [58]. Using sedimentation solely to crystallize silica was described as

ineffective due to a large number of defects in the crystal which fill in the bandgap, so an

evaporating meniscus effect was used in order to provide convective control of the crystal-

lization process. This approach was able to yield crystals up to 20 layers thick that coated a
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cm2 area, with an FCC structure that was believed to be due to shear forces from the evap-

orating meniscus [58]. The prepared crystals were then used as templates for the formation

of inverse opals, with silicon used as the infiltration medium (nrefractive = 3.5, which is higher

than the necessary value of 2.85 needed to form a complete bandgap). Silicon was deposited

by using a low-pressure chemical vapour deposition process at 550◦C followed by annealing

at 600◦C for 8 hours in order to convert amorphous Si into polycrystalline Si. This process

was characterized by a very low number of point defects and stacking faults, which fill the

bandgap, compared with using sedimentation alone [58].

Waterhouse and Waterland used sedimentation, centrifugation and a flow-controlled deposi-

tion process to facilitate the self-assembly of latex (PMMA) spheres between 280 and 415 nm

in diameter into 3d photonic crystals and used silica, titania or ceria to form inverse opals

[59]. They observed no discernable difference in crystal quality between methods, somewhat

contradicting the results of Vlasov et al. who found that sedimentation was more prone to

defects. One possible explanation of this discrepancy is that the work of Waterhouse and

Waterland focused on the creation of pseudo photonic crystals, as the materials used (silica,

titania, ceria) do not possess a sufficiently high refractive index in order to form a complete

bandgap, so that the frequency of light allowed to propagate through the crystal would vary

with the angle of incidence of the directed light. Therefore, the characteristic faults/defects

in the crystal present in sedimentation may have had a lesser effect compared to the work

of Vlasov et al., who were focused on constructing crystals with a complete bandgap (no de-

pendence of bandgap on incident angle). These photonic crystals were found to have pseudo

bandgaps in the visible and near-IR regions of the light spectrum, with possible applications

as solar cells [59].

Another potential application of electric field templated ordered structures is as microde-

vices. For example, microgears are often fabricated using lithographic techniques (formation
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of micromoulds for example). [60, 61]. These structures can be used as components in

larger microsystem devices, such as micropumps [62, 63]. The formation of an optically

controlled microgear suitable for use in micropumps has been demonstrated . This device

achieved rotation via the transfer of spin momentum from the light to the gear as a result

of optical birefringence, which was due to a 1d photonic lattice embedded in the gear [63].

As an alternative, electric field effects (DEP/EHD) could be used in order to assemble a

3d microgear-type geometric structure which possibly, depending on the conditions of the

assembly, would be a photonic bandgap material and thus suitable for optically controlled

rotation.

3.1.3 Scaffolding Applications

3d colloidal crystals have also been used for templating inverse macroporous structures for

use as tissue engineering scaffolds, using polystyrene latex to form the crystal and sodium

silicate sol to form the inverse material, which is a gel (sol-gel process) [64]. Optimal growth

of carcinoma and human bone marrow cell cultures was achieved using a 75 µm spherical

latex particles to template the inverse scaffold. The scaffolds had a larger degree of internal

order than is generally used in tissue engineering studies and were suitable for use in studies

of cell interactions and motility during the growth phase. This is another example of a

potential application of the colloidal crystals formed during the course of this work, as our

group is interested in development of electrokinetically assembled scaffolding materials and

have demonstrated the use of DEP to assemble aligned MWCNT surfaces for growth of

tissues [65].

3.1.4 SERS Applications

Surface enhanced Raman spectroscopy is the enhancement of a Raman signal found when a

metallic thin film (generally, gold or silver) is used as the substrate for the material being
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studied by Raman spectroscopy [9]. This enhancement is generally attributed to two mech-

anisms: i) electromagnetic enhancement, due to high localized fields from the generation of

a surface plasmon resonance (SPR) and ii) chemical enhancement due to a resonance inter-

action between substrate and absorbate [66]. Specifically, 2d and 3d crystalline structures

or ordered films (inverse structures) of gold or silver are very useful for enhancement of the

Raman signal and a number of demonstrations of this has been provided in the literature

[9, 67, 68]. Lu et al. (2005) demonstrated the use of a multilayer polyelectrolyte crystalline

structure which is gold coated and used for SERS applications [68]. .

3.2 General Electrokinetic Papers

A variety of general review papers to various electrokinetic phenomena exist. A comprehen-

sive review of the behaviour of the forces in AC electrokinetic systems was performed by

Ramos et al. and Green et al., dealing primarily with forces on the medium and on colloidal

particles respectively [17, 24]. In terms of dealing with electrohydrodynamic effects, a num-

ber of general reviews exist on the effects of voltage, frequency, ionic conductivity, etc. on

observed experimental systems and numerical simulations [33, 35, 69, 70]. Castellanos et al.

derived a general scaling law for EHD behaviour in microsystems, which is useful for esti-

mating magnitudes of electrothermal and electroosmotic velocities, as well as the frequencies

and conductivities where they are relevant [18].

3.3 DEP Assembly

A comprehensive review of the use of dielectrophoresis for colloidal assembly was written by

Velev and Bhatt [71]. Dielectrophoresis has been employed to create 1d, 2d and 3d colloidal

assemblies from a variety of materials, including carbon black, carbon nanotubes, silica and

gold. Hermanson et al. achieved the first demonstrated microwire from colloidal particles
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using dielectrophoresis [72]. In this work, the authors used gold nanoparticles ranging in

size between 15 and 30 nm and achieved wires as long as 5 mm. The pattern of the formed

wires was highly sensitive to applied voltage, frequency and particle size, with a fractal-type

branching pattern observed during wire formation [72]. This work was followed up in by

Tang et al. who created 1d nanotube wires using single-walled carbon nanotubes and by

Lumsdon and Scott who achieved a similar microwire, this time grown from carbon black

nanoparticles (dp = 30 nm) and carbon nanotubes of diameter between 15 to 50 nm [73, 74].

The authors of the latter noted the same branching-growth pattern and achieved wires of a

comparable length to the work of Hermanson et al. (3 mm vs. 5 mm).

Evoy et al. used DEP assembled rhodium nanorods as nanosensors based on integration

with CMOS circuitry [75]. Li et al. used AC dielectrophoresis to selectively position sin-

gle wall carbon nanotubes for field effect transistors, achieving a relatively high degree of

success in forming functional transistors (∼ 60% success rate) [76]. Sun et al. report the

chaining of gold/polymeric aniline particles into 1d nanostructures, demonstrating that in-

homogeneous particle pairs can be assembled into chains under dielectrophoresis [77]. Seo

et al. constructed bundles of single-walled carbon nanotubes using dielectrophoresis and

were able to achieve controlled positioning of the nanotubes by designing the microelectrode

system used for alignment [78]. More recently, Papadakis et al. used dielectrophoresis to

control the formation of metallic nanowires of silver and gold nanoparticles, being able to

achieve the formation of vertically aligned nanowire arrays which are suitable for integration

with CMOS and MEMS devices [79]. Ranjan et al. constructed 1d palladium nanowires

using dielectrophoretic effects in an aqueous palladium salt solution, achieving wires with

a thickness of 5 - 10 nm [80]. They observed that the DEP directed assembly follows the

universal pattern of diffusion-limited aggregation, as has been observed by other authors

in this area (branching pattern growth) [80, 81]. Barsotti et al. achieved the assembly of

gold nanoparticles into nanowires (consisting of as few as 10 particles), dp = 20 nm, using
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dielectrophoresis with planar nanoelectrodes having a gap spacing ranging from 15 to 150

nm [82].

The use of continuous flow systems which utilize DEP effects in order to pattern colloidal

particles into defined positions has also been demonstrated [83, 84]. Dürr et al. used a mi-

crodevice with 3d arrays of microelectrodes in order to provide DEP trapping of polystyrene

latex particles between 250 nm and 12 µm in aqueous buffer solutions (PBS). The au-

thors were primarily interested in the behaviour of particles and electrodes, in particle the

impedance of the electrodes. No attempts were made to model the effects of the EHD flows

which were certainly generated under these conditions (conductivity in some experiments

was 170 mS/m) [83]. In a more recent article a peristaltic pump (rather than EHD effects)

were used to provide fluid motion for a continuous flow device with a DEP trap. A DEP trap

was established and latex beads could be trapped in defined positions within an agarose gel.

The proposed application of the device is to use with living cells and create tissue-like mate-

rials (with mammalian cells) or for example use bacteria and create a biofilm, with a defined

particle structure [84]. One interesting aspect of this work is that the medium conductivity

effect was mentioned in terms of simulations done on the device performance, in terms of the

effect on the Clausius-Mossotti factor, but not in terms of the possibly electrothermal flow

effects arising from Ohmic heating of a conducting medium. This may play a very significant

role, particularly in the bioapplications proposed by the authors, and was also the case in

the work of Dürr et al., indicating that this particular branch of DEP based traps is in a

preliminary state of model development [83].

In terms of two-dimensional assemblies with dielectrophoresis, the field is considerably less

developed. Lumsdon et al. described the assembly of 2d photonic crystals from colloidal

latex and silica [85]. The crystals achieved an area of up to ∼ 25mm2 in a template-free envi-

ronment. Lattice spacing could be controlled by modulating electrostatic repulsion through
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the addition of electrolytic salts to the medium, which increases the screening effect of the

electrical double layer (double layer decreases in size but is more substantial in mitigating

electrostatic interactions) [41, 85]. The effect of viscosity was examined as well, and was

determined to play a significant role in determining if crystal formation would occur. This

work was followed up by the same group and it was postulated that the viscosity may play a

role in inhibiting particle growth by suppressing counterion mobility, thereby altering DEP

and mutual DEP effects [86]. In this work, colloidal latex and silica (dp between 0.7 and 1.4

µm) were assembled using coplanar electrodes under the influence of an AC field. In addition

to dipole-field interactions (dielectrophoresis) there were dipole-dipole interactions between

particles (mutual dielectrophoresis). The electrode gap spacing was adjustable between 2

and 10mm and the applied voltage ranged from 40 to 100 V and frequency from 0.2 to 20

kHz. The combination of these two effects led to the rapid assembly of one-dimensional

chains (2 seconds) and two-dimensional crystals (within 4 seconds) for latex.

A possible mechanism for this assembly process was outlined after examining diffraction

patterns observed during the assembly. Particles will form 1d chains due to the mutual DEP

force while the DEP force from the electrodes will drive these chains towards the electrode

surface. The chains will then crystallize to form hexagonally packed crystals (under the

conditions studied here), aligned by the influence of the external field. An optical shift was

observed depending on the state of the crystalline lattice, specifically for the one-dimensional

chains if light is applied perpendicular to the field then there would be no observed colour but

if applied parallel, a bright colour pattern was observed. In the case of the two-dimensional

crystal, this pattern was observed no matter what direction light was applied [86].

For three-dimensional assemblies using dielectrophoresis alone, there are even fewer exam-

ples demonstrated in the literature. Docoslis and Alexandridis demonstrated the first use of

dielectrophoresis to generate three-dimensional structures using a quadrupolar electrode set
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with silica and latex particles [87]. In this paper, latex particles (4.4 µm), silica particles (2.1

µm) and graphite particles (5 µm) in water were assembled into 1d, 2d and 3d structures

using a hyperbolic electrode set with a gap spacing of 300 µm. Pyramid-type structures with

a width of close to 270 µm and a height between 75 to 100 µm were created with silica parti-

cles. The structure assembled within a few minutes but would collapse almost immediately

upon cancellation of the electric field . In order to maintain the structure for imaging after

experiments, pluronic F-105 was added to water in order to cause gelation upon evaporation

of the water. Pluronic is a tri-block copolymer of poly(ethylene oxide) and poly(propylene

oxide) and will undergo transition to a gel state above the critical micellization concentra-

tion. The gel was then removed in the area of interest by burning using an electron beam

before SEM was performed [88]. An alternative and possibly more practical method is to

first dry the gel in an oven and then use UV/Ozone to degrade the pluronic. This technique

has been used to remove pluronic gels from surfactant-templated thin films [89, 90].

The technique of using hyperbolic electrodes for collection and assembly of multilayer struc-

tures was repeated by Abe et al. who used 2 , 5 and 10 µm latex particles (polystyrene) with

a set of electrodes having a 400 µm gap spacing, achieving a similar structure to the work

of Docoslis and Alexandridis, as observed under optical microscopy [91]. This paper was

not concerned with maintaining or investigating the structure under SEM, so no attempts

were made at physical stabilization (cross-linking or gelation).This work was successful in

achieving a colloidal aggregate but no crystalline phase was demonstrated, possibly due to

disruption of the structure during medium evaporation or to the use of distilled water as

opposed to an ionic solution which mitigates electrostatic repulsion via the diffuse double

layer. They observed that upon lowering the frequency of the applied field to 100 kHz any

formed structure would be disrupted but did not attribute any cause to this. One strong

possibility is that the onset of electroosmotic flows, which becomes relevant at frequencies of

approximately 100 kHz, caused the disruption of the DEP trap at the center of the electrodes
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and broke up the assembled structure [16].

Khanduja et al. reported the construction of a three-dimensional gold nanoparticle bridge

between two microelectrodes [92]. The particle size is 50 nm, which is quite small when using

DEP only, however, the characteristic gap spacing between the electrodes was 0.7 µm. The

methodology in this technique is to deposit the electrodes in a such a manner that the gap

between them is in fact in the vertical direction. A thin layer of gold is applied to a silicon

dioxide layer on a wafer, then a layer of parylene is added and another layer of gold is placed

on top of the parylene (incomplete coverage). The parylene not covered in gold is then

etched using plasma and a set of microelectrodes with a thin gap (0.7 µm) is created. By

using only applied voltages up to 2 V , they were able to bridge the gap between electrodes

and have an average resistance of 40 ∼ Ω [92]. However, this technique is limited to causing

significant growth in one-direction (vertical in this case), with a small growth in the radial

direction.

3.4 EHD Assembly

The study of the effects of an electric field on a fluid medium is known as electrohydrody-

namics. This is primarily broken down into two areas for electric field induced flow, known

as electroosmosis (action of tangential component of electric field on electrical double layer

causing flow) or electrothermal flow (gradient in permittivity and conductivity due to tem-

perature gradients causing flow). The description of these effects and analysis of each is

provided in numerous references, for example Ramos et al. and Gonzalez et al. [33, 35].

Electrohydrodynamic (EHD) effects have been used by numerous authors for to create col-

loidal assemblies or assist dielectrophoretic driven assembly, as reviewed in Velev and Bhatt

[71].
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Trau et al. used electrohydrodynamic flow to assemble electrophoretically deposited col-

loidal polystyrene particles into 2-dimensional crystals. Flows are induced due to particle

deposition near the electrodes altering the electric field profile, leading to charge imbalances

and a net fluid flow. These flows induce lateral attractions between colloidal particles and

lead to a transition from a suspended state to a 2d crystal [93]. This work was followed up

later with a detailed mathematical model determining the flow induced by perturbation of

the field due to the presence of particles was used in order to justify the hypothesis that

lateral attractions between particles were in fact the work of electrohydrodynamic flows [94].

This flow is similar in nature to electroosmotic flow, explaining the dependence on frequency

(i.e. at high frequencies, flow becomes negligible). Gong et al. used an applied electric field

between two parallel plates to incite crystallization of polystyrene using a similar manner to

that described by Trau et al. [95]. The difference being in this work the gap spacing was

12.5 µm compared to the 200 µm used by Trau et al. for their work. Three dimensional

polycrystallite structures from polystyrene were achieved under the influence of dipole-dipole

interactions and electrohydrodynamic flows induced by the presence of colloidal particles.

Ristenpart et al. developed a scaling law to describe the aggregation of colloidal particles

under the influence of electrohydrodynamic effects. The basic methodology was to deter-

mine a balance between the electric and viscous stresses on an isolated particle, determine

the electric field perturbation due to the dipole of this particle and using the Helmholtz-

Smoluchowski expression for EO velocity determine an expression for the rate of aggregation

of particles [96]. The overall expression was proportional to the square of the applied po-

tential and to the Debye length of the medium and inversely proportional to the applied

frequency and medium viscosity. This shows the strong dependence on the double layer of

the assembly process (debye length and frequency effect). This result may help to explain

the behaviour noted by Lumsdon et al. (discussed in sec. 3.3) with regards to lateral flows

inducing 2d crystal formation and the relevance of viscosity and frequency to this process [86].
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Electroosmotic flow has been coupled with DEP in order to assemble rod-shaped multiwall

carbon nanotubes (MWCNTs) into 1d nanowires [97]. Due to the small size of the particles,

the DEP force from electrodes only becomes significant when the particles are within a few

microns of the electrodes. In order to compensate for this effect, a DC bias was combined with

an AC signal to provide both electroosmotic flow (DC) and dielectrophoretic effects (AC).

The end result was that MWCNTs could bridge an electrode array in an aligned manner

with ∼ 90% yield, with the array consisting of 100 electrode gaps. The electroosmotic flow

was used to guide the initial deposition on the device and DEP was used in order to align

and direct the final bridging between electrode gaps. The process is desirable in that it is

straightforward to use to create large scale devices [97].

3.5 Current Modeling Work

For modeling of DEP/EHD systems, most work to date has focused on particle free or dilute

particle cases. That is, most authors focus on solving the electric field, temperature and ve-

locity profile (as needed) of the medium, unperturbed by the presence of particles, and then

calculate the dielectrophoretic force on an isolated particle and compare this in magnitude

to drag force or calculate the overall particle velocity and determine particle trajectory in

the area near the electrodes in regards to the effectiveness of a DEP trap (force described

by eq. 2.12, sec. 2.2.2) [98–103].

In terms of dealing with systems with particles, a few innovative approaches have been

demonstrated recently. Lin (2006) used a molecular dynamics (MD) type approach to de-

scribe the motion of yeast cells under the influence of DEP force. This approach is fairly

simple to implement, with the interaction force between particles described using the point

dipole approximation and brownian forces can be added as necessary. The disadvantages are



CHAPTER 3. SURVEY OF EXISTING LITERATURE 49

two-fold: i) the computational intensity scales poorly with number of particles, as an DxN

ODEs are needed to described the motion of N particles in D dimensions (2xDxN if velocity

needs to be explicitly solved for in the time-integration scheme) and ii) evaluating the effect

of the particles on the electric field is also difficult numerically, with the usual approach be-

ing to ignore this effect. Kadaksham et al. demonstrated the use of a distributed Lagrange

multiplier (DLM) method in order to treat the motion of a group colloidal particles (down

to nanoscale) suspended in a medium [31, 104]. In this approach, hydrodynamic forces are

accounted for using a distributed Lagrange multiplier and the solid is solved within the fluid-

solid domain with motion inside the particle forced to be that of a rigid body based on the

lagrange multiplier. The motion of 100 nanoparticles undergoing negative dielectrophoresis

was modelled successfully using this technique but it becomes computationally prohibitive

for larger numbers of particles as it amounts to having to solve the motion of each individual

particle, as in the MD-type approach [104]. This approach is essentially the same as that of

a MD-type approach with the additional complication of having to solve the hydrodynamic

equation for the fluid and not treating the particle as a point dipole for the purposes of flow.

In terms of modeling the suspension as a continuum, there has been interesting work done

in treating the system in terms of phase separation kinetics. Johnson et al. [105] treat the

phase separation of a colloidal particle suspension as being governed by the thermodynamics,

where the free energy is calculated as function of the applied field and particle concentration.

This approach used a Cahn-Hilliard type equation to govern the evolution of an electric field

induced pattern. The effects of the particle on the dielectric constant of the suspension

were treated in an empirical manner and the effects of fluid flow were ignored. Similarly,

Kumar et al. developed a model for the electric field, velocity and particle concentration

profiles, based on a driving force derived from chemical potential (described in sec. 2.6).

This approach is also similar in form to a Cahn-Hilliard type equation, meaning it inherits

the numerically instabilities associated with attempting to solve for the time-evolution of
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concentration [46, 106]. As such, the authors have mostly limited solution to steady-state

cases, with a stationary fluid and used a simplified geometry to describe the electric field

profile analytically, choosing to focus on the phase diagram of particles under the influence

of the electric field [46].



Chapter 4: Assembly of Colloidal Structures

using AC Electrokinetic Forces from

Non-Uniform Electric Fields

Abstract

The use of AC electrokinetic forces from spatially non-uniform electric fields for the

assembly of colloidal structures is considered. Spatially non-uniform electric fields are gener-

ated using 100µm gap quadrupolar planar microelectrodes. The application of these electric

fields gives rise to dielectrophoretic (DEP) and electroosmotic (EO) forces which can be

used to manipulate individual colloids into larger structures in a contact-free manner. A

number of different particle and medium combinations were explored, silica-water, silica-

DMSO, PMMA-water, etc. It was found that near-refractive index matching of suspensions

encouraged ordered-type structures, as was evident from aligned groups of particle chains

visible under optical microscopy. All assemblies showed significant distortion and damage

upon medium evaporation, leading to the investigation of various stabilization techniques

to maintain structures. Out of the methods studied, medium gelation using pluronic F-127

was found to be the most effective at preserving the overall shape and size of an assembly

but use of a surfactant inhibited the disorder-order transition. Use of pluronic F-127 allowed

for preserving structures which shifted significantly with voltage, from an “inverse” four hole

structure corresponding to the minimum gap spacing between electrodes to a large “diamond”

type structure at higher voltages. More conventional polymer immobilization techniques for

colloidal crystals, such as using PEGMA/PEGDMA or ETPTA, were ineffective for the

assemblies in this work.

51
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4.1 Introduction

Colloidal crystals and ordered colloidal structures have recently found many applications

in emerging research fields. Applications of colloidal crystals range from use as photonic

materials (PBG), sensors, microelectronics, dye sensitized solar cells, scaffolds for tissue en-

gineering applications to templates for surface-enhanced Raman spectroscopy [1–9]. Numer-

ous techniques are available for fabricating these types of structures, including self-assembly,

template-assisted assembly and assembly driven by an external field such as gravitational,

electrical or magnetic [10–14]. Electric fields in particular offer a number of advantages, they

provide a large number of control parameters (voltage, medium and particle electrical prop-

erties) and can be scaled to very large intensities at low power by reducing the characteristic

gap between electrodes, while not being restricted to ferromaterials as magnetic fields are.

Additionally, the action of an applied electric field can lead to fluid motion, further adding

to potential control forces for assembly. The collective action of direct electrical forces and

induced fluid forces for an AC electric field are known as AC electrokinetics.

AC electrokinetics has been widely used to construct structures of varying size, order

and geometry from colloids. Docoslis and Alexandridis demonstrated the first use of di-

electrophoresis for the assembly of three-dimensional colloidal structures, using 100µm gap

quadrupolar planar microelectrodes to assemble silica and latex colloids [20]. Abe et al.

utilized a 400 µm gap hyperbolic electrode set for assembly of polystyrene (PS) colloids (2-

10µm) and were able to achieve single or multiple layer structures by using a combination of

AC and DC fields [107]. Lumsdon and Scott formed 2d colloidal crystals from polystyrene

colloids using applied electric fields which were field reversible [19, 74]. Reversible 2d col-

loidal crystals have been demonstrated by many additional works [93, 108–110]. Large-scale

colloidal crystals 200µm in size have been formed without significant grain-boundaries by

successive application and relaxation of an applied electric field in a hexapolar electrode

system [111]. Three-dimensional structures of varying complexity has been demonstrated
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using a combination of dielectrophoresis and induced-charge electroosmotic flows [112]. For

a comprehensive overview of the use of AC electrokinetic forces for colloidal assembly, and

for colloidal assembly in general, see the articles of Velev and Bhatt and Velev and Gupta

[71, 113].

To date, there exists a dearth of experimental work aimed directly at forming three-

dimensional colloidal crystals which have an ordered structure as well as an overall geometry

structure determined by spatially non-uniform electric fields. The work of Docoslis and

Alexandridis (2002) and Abe et al. (2004) represents the current state of the art as to

using AC electrokinetic forces arising from non-uniform electric fields for controlling the

shape, size and structure of assemblies of colloidal particles. To that end, in this work

we exploit the following AC electrokinetic forces to attempt to control colloidal assembly.

Dielectrophoresis, the force on a particle due to the action of a non-uniform electric field on

an induced dipole, and electroosmotic flow, the fluid flow that arise from electric field action

on the ionic double layer which will form between electrodes and fluid [16]. In addition to

direct assembly under these forces, the use of various stabilization/immobilization techniques

is considered for preserving assembled structures for further analysis and manipulation.

4.2 Materials and Methods

4.2.1 Colloids and Suspending Liquids

Silica colloids of various diameter (0.32µm to 2µm) were obtained from Bangs Laboratories

(Fisher, IN, USA). Hydrophilic silica (-OH surface functionality) was used for the bulk of this

work, with amino (-NH
2
) functionalized silica particles used for certain specific chemistries in

attempts at stabilizing assemblies. Similarly, polystyrene (PS) and polymethyl methacrylate

(PMMA) colloids (0.2µm to 2µm diameter) were also purchased from Bangs Laboratories

for use in experiments. All colloids were obtained in the form of aqueous suspensions, with
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a volume fraction of approximately 10wt% solids in water. PS and PMMA suspensions con-

tained small amounts of surfactant to stabilize aqueous suspensions. Suspensions were either

used directly as concentrated stocks to be diluted, or centrifuged and repeatedly washed as

required. Dowex beads (Sigma Aldrich) were used as ion exchange media for deionizing

suspensions by removing impurity ions. Ion exchange could take place by placing a desired

amount of resin in a microfuge tube and adding the liquid suspension to be deionized. Bead

size was sufficiently large (∼mm) so that separation was possible by decanting the liquid

suspension using a micropipette. Deionized (DI) water was obtained using a Millipore pro-

cess (18MΩ·m), while dimethyl sulphoxide (DMSO) and dimethylformamide (DMF) were

obtained from Sigma Aldrich (Mississauga, ON, Canada). DMSO is a near index match-

ing fluid for both silica and PMMA, allowing for suppression of van der Waals forces and

potentially aiding crystallization.

4.2.2 Microelectrodes

Non-uniform AC electric fields were generated by using gold microelectrodes (200nm thick)

fabricated via photolithography on a SiO
2

surface (0.5 µm thick) deposited on top of a

silicon wafer (500µm thick). The microelectrode geometry most utilized in this work is a

100µm maximum-gap spacing set of four quadrupolar electrodes. For spreading liquids (such

as DMSO on silica), a simple circular cross-sectioned well was constructed on top of the

microchips using a double-sided press to seal adhesive film with a covering of parafilm. Well

cross-sections were fabricated by attaching the double-sided adhesive to a strip of parafilm,

followed by punching a circular hole using a 1/8” (3.177mm) hole punch. The well acts to

provide a barrier beyond which a spreading liquid cannot pass. Complete coverage of the

well could be achieved using liquid volumes of approximately 0.25µL. Similar cross-section

liquid wells were constructed out of 5mm thick polyisoprene sheet, with the well adhered

to the chip surface again using a double-sided adhesive film. Electrical connections were

made by using 4 brass connectors, held in place with screws, which were placed in contact
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with each of the 4 quadrupolar microelectrodes. Alligator clips could then be attached to

the brass connectors, connecting the microelectrode set to the function generator. Electrical

resistance when the connectors are in good contact with the pads was on the order of 2-

3Ω. Power to the microelectrodes was supplied by a signal generator (BK Precision 4040A).

The microelectrodes were connected to the source in an alternating fashion (180◦ phase

difference between adjacent electrodes). The value of the applied voltage (V , peak-to-peak)

and applied frequency (f), were monitored by an oscilloscope (Tektronix 1002B). A schematic

of the experimental setup is provided in Figure 4.1, with a zoomed in optical microscopy

image of microelectrode set shown in Figure 4.2 and an illustrative digital camera capture

of this microelectrode set with well in Figure 4.2b).

Figure 4.1: Schematic of Experimental Setup

Microchip + microwell shown connected to 4-brass connectors with an applied AC signal from a function

generator applied 180◦ out of phase across each opposing pair of electrode pads, with voltage and frequency

monitored via an attached oscilloscope
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Figure 4.2: Microelectrode Images
a) Optical Microscopy image of Microelectrode Set [Scalebar is 100µm], b) Microelectrodes with well on

electrode stage

4.2.3 Microscopy

Observations of the assemblies in a droplet and after evaporation were performed using an

Olympus BHM Microscope, with a Sony DSC-S650 Cyber-shot for digital capture of images.

For SEM images of assemblies after medium evaporation, a JEOL JSM-6400 SEM system

and a Hitachi S-2300 SEM system were used at various times. Samples were sufficiently

conductive to obtain clear images without gold coating.

4.2.4 Zeta Potential Characterization

Zeta potential was measured using the Malvern Zetasizer Nano ZS system (Malvern In-

struments Ltd.), which uses laser Doppler velocimetry and phase angle light scattering in

order to determine the electrophoretic mobility of colloidal particles in suspension. From the

acquired mobility data, the zeta potential (ζ) of particles in suspension can be determined.
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where in eqn. 4.1, Uelectrophoretic is the electrophoretic velocity of the particle, E∞ is the

magnitude of the external electric field, εm is the medium permittivity, µm is the medium

viscosity, κ is the inverse Debye length and rp is the particle radius. f is Henry’s func-

tion/correction factor, shown in eqn. 4.2, which reduces to the asymptotic values of 1 and

3/2 for the Hückel (κrp ≪ 1) and Smoluchowski (κrp ≫ 1) regions respectively.
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3
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−

1
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(4.2)

4.2.5 Stabilization Approaches

Cinnamoyl Chloride Linkages

Functionalized silica particles suitable for UV-crosslinking based on radical linking with cin-

namoyl chloride were produced. Silica spheres, dp=1µm, from Bangs Laboratories (Fisher,

IN, USA) in water were centrifuged out at 2,500 g for 3 minutes, and re-dispersed in water,

centrifuged out again. The procedure was repeated three times to remove as much of the

surfactant the supplier uses to suspend particles with as possible. The sample was dried at

60◦C under vacuum over night. Pyridine was refluxed with CaH2 over night to remove any

residual moisture content. The silica spheres were dispersed in freshly distilled dry pyridine.

The reaction was shown as the Figure 4.3. The surface modified silica spheres were subse-

quently settled down by centrifugation and the sample was purified by repeated dispersed

in DMF and centrifugation. Finally, the sample can be either dried under vacuum or kept

in DMF. The photocrosslinking mechanism for this functionalization is shown in Figure 4.4,
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with the UV source being a Jvon Horiba LabRAM system.

Figure 4.3: Surface Functionalization with Cinnamoyl Chloride

Figure 4.4: UV Crosslinking Mechanism

Streptavidin-Biotin Linkages

Functionalized silica with biotin, for use in a streptavidin-biotin linkage reaction, was synthe-

sized. 1 µm diameter amino functionalized silica particles were obtained from Bangs (Fisher,

IN, USA) and were biotin-functionalized through reaction with biotin N-hydroxysuccinimide

ester in DMF (2x excess), along the lines of the procedure of Costanzo et al. (2006) [114].

The reaction was carried out for 24 hours before particles were washed twice in DMF through

centrifugation (3000 RPM for 15 minutes) and decanting of the supernatant. A concentrated

solution of streptavidin (8.7 mg/µL) was prepared by dissolving streptavidin powder (Sigma

Aldrich Canada) in DI (millipore) water for use in linkage experiments.

Pluronic F-127 and PVA Gelation

Stock solutions of Pluronic F-127 in DMSO and DI water (10 to 20 wt%) and DMSO-water

mixtures were prepared for thermal and concentration-driven gelation experiments. Solid
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F-127 was obtained by donation from the BASF Corporation and dissolved in DMSO and

water through use of a ultrasonicating bath at room temperature for 1 hour, followed by

refrigeration (-4◦C). As pluronic has temperature inverse solubility in water and DMSO (tri-

block co-polymer of PEO-PPO-PEO), placing the solution under refrigeration increases the

solubility of F127 and facilitates dissolution of the material in the case of water. For DMSO,

refrigeration was impractical as DMSO has a freezing point just below room temperature and

DMSO-pluronic mixtures would similarly freeze upon sufficient cooling. Solid suspensions of

particles at desired volume fractions of particles and pluronic could then be achieved through

dilution of stock pluronic solutions and stock solids as required. For aqueous suspensions,

sodium hydroxide NaOH was used to alter pH and adsorption properties of pluronic on silica.

Gelation at room temperature takes place when pluronic concentration is approximately 30%

(v/v), and can therefore be driven by medium evaporation [115].

Stock solutions of poly(vinyl alcohol) in DMSO and DI water (10 to 20 wt%) were

prepared for thermal and concentration-driven gelation experiments. PVA was obtained

from Sigma Aldrich and dissolved in DMSO and water through use of a ultrasonicating bath

at 70◦C for 12 hours. Solid suspensions of particles at desired volume fractions of particles

and PVA could then be achieved through dilution of stock PVA solutions and stock solids

as required. Refractive index matching solutions of DMSO-water were not suitable for PVA,

as it has been demonstrated to have cononsolvency in water-DMSO mixtures but is soluble

in each individual liquid [116, 117].

Photopolymerization with ETPTA and PEGMA/PEGDMA

Ethoxylated trimethylolpropane triacrylate (ETPTA) monomer with MN=428 was pur-

chased from Sigma Aldrich, Mississauga, ON, Canada along with the photoinitiator 2-

hydroxy-2-methylpropiophenone (HMPP). ETPTA was added to silica-water and silica-

DMSO suspensions and then the entire suspension re-sonicated for mixing. HMPP was

added immediately prior to experimentation to limit the degree of photopolymerization from
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ambient light.

Poly(ethylene glycol) methacrylate (PEGMA) with MN=360 and poly(ethylene glycol)

dimethacrylate (PEGDMA) with MN=550 were purchased from Sigma Aldrich, Mississauga,

ON, Canada along with the photoinitiator 2,2-diethoxyacetophenone (DEAP). Mixtures of

PEGMA and PEGDMA in desired monomer (PEGMA) to crosslinker (PEGDMA) ratios

and then added to stock colloidal suspensions (silica-DMSO, silica-water, PMMA-DMSO

and PMMA-water) and then sonicated in an ultrasonicating bath for mixing. DEAP was

added immediately prior to experimentation to limit the degree of photopolymerization from

ambient light.

4.3 Results and discussion

DEP assembly of particles was carried out under a variety of conditions, exploring the role

of various parameters on the assembly. As expected from the Clausius-Mossotti factor cal-

culations, for all frequencies of interest during experiments (0.1 to 2 MHz), the particles

experienced negative dielectrophoresis (assembled at local electric field minima). Depend-

ing on the particle and electrolyte concentration, particle formation would be either electric

field reversible (complete destruction of structure upon cancellation of field) or electric field

irreversible (structure remains intact upon field cancellation). A key problem for DEP exper-

iments was in maintaining the assembled structure upon evaporation of the medium, as the

convective forces of the meniscus drying were sufficient to disrupt the assembled structures

to a large degree, even if the structure would maintain upon cancellation of the electric field

(irreversible formation). Consequently, a number of approaches were attempted in order to

overcome this difficulty. Specifically, UV-crosslinking of cinnamoyl chloride functionalized

silica, avidin-biotin linkages between biotin functionalized silica, gelation of silica colloids

in pluronic F-127 and PVA, photopolymerization of PEGMA and TMPTA for immobilizing

silica and chemical crosslinking of PMMA-co-AA colloids were all examined.
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4.3.1 DEP Assembly

The assembly of colloidal silica in water was considered first. Building on previous work

done at lower concentrations with similar sized silica in water, 1.5µm diameter silica spheres

were suspended in water at relatively high concentrations (8.6wt% solids) and low (0.06wt%

solids) and assembled using dielectrophoretic forces. Interestingly, it was found that the

addition of a moderate amount of the polymeric surfactant pluronic F-127 did not appear

to have an impact on the overall shape or size of the resulting assemblies. In Figure 4.5,

the resulting images of structures for these particles are shown as a function of various

voltages. As can be seen, very large assemblies can be achieved; on the order of the electrode

gap spacing (100µm). For 5V, 8.6wt% solids, Figure 4.5 a), the structure formed is of an

“inverse” nature. Particles are pushed away from the electrode edges only at the minimum

gap spacing between electrodes, creating four symmetric “wells”. These types of structures

could be used as templates or stamps for replicating patterns. As voltage increases, more

particles are collected in the center between electrodes forming a more rounded shape at 10V,

Figure 4.5 b), and becoming a more “diamond” like pattern at 20V, Figure 4.5 c). Assembly

time was on the order of minutes, which allowed for sufficient assembly time as a 2 - 5 µL

droplet at room temperature evaporated in approximately 1 hour. Upon evaporation, the

assembled structure would collapse.

As an explanation as to why colloidal assemblies are so vulnerable to evaporation, consider

the following. The elastic constant of colloidal crystals is on the order of 10 dyne cm−2

compared with atomic crystals where it is on the order of 1010 dyne cm−2, meaning colloidal

crystals are typically 109 times softer then atomic crystals [118]. This means colloidal crystals

are more easily susceptible to defects and distortions, but also explains why the force of the

evaporating medium coupled with loss of dielectrophoretic force leads to destruction of an

assembled structure.

The use of refractive index matching, or near refractive index matching, for crystallization

is well known. By matching refractive indices of particle and medium, van der Waals forces
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Figure 4.5: DEP Assembly of 1.5µm Silica in aq. pluronic F-127 (4wt%)
a) 5V, 8.6wt% solids b) 10V, 8.6wt% solids c) 20V, 8.6wt% solids and d) 20V, 0.06wt% solids [scalebar is

100µm]

are suppressed. This methodology is well known for producing colloidal crystals in other

methods and has been applied to the colloidal crystallization by electric fields generated by

parallel electrodes [119]. Silica and DMSO are near index matched materials, with sufficient

contrast between particle and medium to still allow for visualization by optical microscopy.

The results for the DEP assembly 0.1vol% silica in DMSO are shown in Figure 4.6.

As can be seen, changing the voltage leads to a large change in the assembly shape and

size. Shifting from 2.5V to 20V yields shapes ranging from “square”-like, rounded inwards

along the edges, to a rounded “diamond” like structure. Beyond 2.5V, all structures formed

were multilayered, which makes direct determination of the structure outside of the assembly
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Figure 4.6: DEP Assembly of 2µm Silica in DMSO at 1MHz, c0=0.1 vol.%, 0.5µL droplet
a) 2.5V, b) 5V, c) 10V, d) 15V and e) 20V [scalebar is 50µm]

edges difficult. From examining the assembly edges it is clear that the particles have chained

and these chains have aligned themselves into groups as part of the overall structure. The

chaining force arises from induced dipole-induced dipole interactions, with the translational

force being dielectrophoresis. The effect of solids content was also examined by reducing the

volume of pipetted droplet. This was done by pipetting a thin layer to cover the well area,

through pipetting a 0.5µL droplet and then re-uptaking material so that only a thin film of

liquid remained behind. As can be seen from comparing Figure 4.6 to Figure 4.7, there is a

shift in the shape and size behavior at different voltages. For the smaller droplet volume, the

structures formed are more rounded compared with the results from larger droplets (at the

same voltage). Additionally there are fewer particle layers which result, although they are
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still multilayered structures. Visualizing structures in the smaller volume case, Figure 4.7, is

also more difficult and was not possible at voltages less than 5V. Reproducing the liquid level

for these experiments was challenging, but not impossible. Structures again show evidence of

being composed of 1d chains of particles which have combined under the influence of induced

dipole-induced dipole forces (mutual DEP) and been shaped by induced dipole-electric field

forces (DEP), although optical microscopy images at the edges of structures to examine this

are less clear for the larger droplet case due to the presence of additional particle layers.

Based on zeta potential measurements of silica and polystyrene spheres in water, with

the conditions shown in Table 4.1 and results in Table 4.2, the coexistence line for disorder-

ordered transition without an applied electric field was calculated as per the hard-sphere

perturbation method described in Russel et al. (1991) at different salt concentrations [39]

(code for this methodology is provided in Appendix 1).

Run dp (µm) φ cKCl (M) wt.%F-127 κ−1 (nm) fHenry

Silica A 1.5 3.0x10−3 0 0 1000 1.05
Latex A 1.98 3.4x10−3 1x10−5 0 96.5 1.25
Latex B 1.98 3.4x10−3 1x10−5 10−3 96.5 1.25
Latex C 1.98 3.4x10−2 5x10−5 10−2 43.2 1.36

Table 4.1: Particle Zeta Potential Measurements: Conditions

Run ηelec (
µm cm

V s
) ζ (mV)

Silica A -2.97±0.05 -62.3±0.9
Latex A -3.51±0.30 -59.2±5.0
Latex B -1.65±0.07 -27.9±1.1
Latex C -1.2±0.1 -18.6±0.7

Table 4.2: Particle Zeta Potential Measurements: Results

For 1.98µm PS beads at 5x10−7M KCl, the critical volume fraction of transition was

1.7x10−3 and for 1x10−6M was 5.3x10−2. Suspensions at these salt concentrations and volume

fractions were then prepared so that even without the presence of an electric field, the system



CHAPTER 4. COLLOIDAL ASSEMBLY WITH AC ELECTROKINETICS 65

Figure 4.7: DEP Assembly of 2µm Silica in DMSO at 1MHz, c0=0.1 vol.%, min. well volume
a) 2.5V, b) 5V, c) 10V, d) 15V and e) 20V [scalebar is 50µm]

(a white outline around the structure is provided for visualization purposes)

would be on the verge of a phase transition/two-phase equilibrium. Salt concentrations were

chosen at very dilute values to attempt to mitigate the influence of electrothermal flows on

assembly structure. The results from PS experiments are shown as representative results of

all tests done based on choosing the initial volume fraction at the onset of a phase transition.
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Figure 4.8: 1.98 µm Latex Assembled at 20 V, 1 MHz
a) 5x10−7M KCl, 0.17 vol.% solids b) 1x10−6M, 5.3 vol.% solids [scalebar is 100µm]

In Figure 4.8 the results for both low salt, low solid, and higher salt, higher solid, cases are

shown after medium evaporation. In both cases, even the small concentration of salt did

lead to some degree of electrothermal flows based on observation of particles moving in fluid

rolls near electrode edges. The structure maintained a large degree of stability after field

cancellation but after contact with the meniscus the structure was shattered and spread

out into the resulting collapsed structure shown in Figure 4.8. Work with smaller particles

(320nm) yielded similar results in terms of stability of assemblies, with the additional result

of red-shifting of incident white light from the microscope due to the colloid size and ordering

before and after evaporation. Based on these results, the need for immobilizing the structure

through either “freezing” the medium or linking assembled particles is clear.

4.3.2 DEP + EO Assembly

The influence of tuning frequency on the assembly shape and size was examined by reduc-

ing applied frequency from 1MHz to 100kHz. This has a negligible impact on the dielec-

trophoretic forces based on analysis of the Clausius-Mossotti factor (dipole coefficient) but
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does introduce the electroosmotic flows to the system. Examining at analogous conditions to

DEP-only driven assembly cases in silica-DMSO, the results are shown for a 0.5µL droplet

and the “min” volume case in Figures 4.9 and 4.10 respectively, the influence of electroos-

motic flows is clear. For both droplet sizes, the presence of electroosmotic flows causes

assembled structures to be more “diamond” like at earlier voltages, with the effect becom-

ing more pronounced as voltage is increased. For dielectrophoretic assembly at 10V (1MHz

case), the assemblies formed are circular/rounded shapes as seen in Figures 4.6c) and 4.7c).

For dielectrophoretic and electroosmotic assembly at 10V (100kHz case), the assemblies are

clearly “diamond” shaped for both volumes as can be seen in Figures 4.9 and 4.10c). Even for

the 5V case, b) in all representative figures, the 100kHz cases shown evidence that flows are

causing the structure to “bow” inwards, beginning to show formation of the more diamond-

like structures, compared to the more rounded structures found at 1MHz. For all cases, the

presence of chained particles is clear from examining the edges of assembled structures. The

mechanism of electric-field induced assembly is well known to begin with particles chaining

together under the influence of induced dipole-induced dipole forces, with chains then being

attracted to each other and forming larger structures. In this case, chains are attracted

to each other through electric field-induced dipole interaction forces (dielectrophoresis) and

electroosmotic flows driving the chains towards the electrode center, where they form the

larger structures shown in Figures 4.9 and 4.10.
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Figure 4.9: DEP Assembly of 2µm Silica in DMSO at 100 kHz, c0=0.1 vol.%, 0.5µL droplet
a) 2.5V, b) 5V, c) 10V, d) 15V and e) 20V [scalebar is 50µm]
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Figure 4.10: DEP Assembly of 2µm Silica in DMSO at 100kHz, c0=0.1 vol.%, min. well
volume

a) 2.5V, b) 5V, c) 10V, d) 15V and e) 20V [scalebar is 50µm]
(a white outline around the structure is provided for visualization purposes)
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Use of lower frequencies also allows more direct visualization of the formation of particle

chains as they travel toward the dielectrophoretic trapping center, although chains of particles

are still visible on the edges of the previously shown assembled structures. As an illustration

of this, the assembly of 1.5µm PMMA colloids in DMSO at 7V and 1kHz is shown in Figure

4.11. The presence of chains transitioning into a larger structure is quite clear from exam-

ining this figure. This is possible as fluid flows help to induce chain formation at locations

farther away from the center of the electrode system compared to using dielectrophoresis

alone. Although the chaining phenomena is itself a result of induced dipole-induced dipole

interactions between particles (so-called mutual dielectrophoresis), electroosmotic flows tend

to transport particles in a manner to promote formation of these chains at a greater dis-

tance from the electrode center. Formation of chains and these chains integrating into larger

structures (2d crystals or 3d aggregates) is a well known phenomena of electric-field induced

assembly of colloids into structures and has been observed previously in the assembly of

colloidal aggregates, 2d colloidal crystals, electrorheological fluids and magnetorheological

fluids [13, 31, 40, 86, 96, 110, 120–125]. These cases mainly involve parallel spaced planar

electrodes (or magnetic equivalents) but the underlying physics is identical.

Similar to the results of using pure dielectrophoresis for assembly, without some additional

modification of the system (salt or DC bias for example), all assemblies were electric field

reversible. That is, upon cancellation of the field structures would break apart via diffusion,

although depending on how concentrated the assembly was this could be a slow process.

Similar to the 1MHz case, upon contact with the meniscus during medium evaporation, any

resulting structures would be destroyed. As such the use of various stabilization techniques

to maintain structures upon medium evaporation for further manipulation and analysis, by

SEM for example, was considered.
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Figure 4.11: DEP Assembly of 1.5µm PMMA in DMSO at 7V, 1kHz
[scalebar is 50µm]

4.3.3 UV-Crosslinking of Structures

DEP assembly of cinnamoyl chloride functionalized silica particles was attempted at a variety

of voltages (2 to 20 V) and frequencies (0.1 to 1 MHz) for particles suspended in DMF

and in water. In the case of DMF, assemblies would not hold upon cancellation of the

field irrespective of the UV exposure time. After subsequent analysis, it was found that

DMF absorbs UV in the range of interest for this reaction (230 - 290 nm). For water,

the structure was roughly retained upon removal of the field, but with a distinct degree of

collapse. Dispersion of the functionalized silica particles in water was difficult, suspensions

would begin to aggregate rapidly although experiments could be run over the time-scale

of dielectrophoretic assembly (minutes). DMSO/water and THF/water mixtures were also

tried as suspending liquids (at 50/50 v/v ratios) and in both cases the particles dispersed well

based on optical microscopy observations but showed no significant crosslinking or retention

of the structure after medium evaporation. Some representative SEM images of the remaining



CHAPTER 4. COLLOIDAL ASSEMBLY WITH AC ELECTROKINETICS 72

structures are shown in Figure 4.12.

Figure 4.12: Representative SEM images of 1.5µm cinnamoyl chloride functionalized silica
DEP Assembly

[scalebar is 20µm]

It is postulated that UV light can only really penetrate to the surface layer of particles,

and this proved insufficient for maintaining any formed structures as is evident from ex-

amination of SEM images for 1.5 µm silica assembled using DEP at 20V, 1 MHz and 0.06

wt% solids concentration in distilled water. Even for these assemblies which are at most 3

or 4 particle layers thick at reaching steady-state after applying the electric field, UV di-

rect crosslinking of particles using particles functionalized with cinnamoyl chloride was not

successful for stabilizing any structures in this work.

4.3.4 Stabilization with Biotin-Streptavidin Linkages

As a control test, the biotin functionalized silica particles were assembled using the 100

µm quadrupolar microelectrodes shown previously at 20 V (peak-to-peak) and frequencies

ranging from 0.1 to 1 MHz. At 100 kHz, the particles formed a structure which would retain

at least partial coherence after cancellation of the electric field, indicating that the particles

had at least aggregated. After the evaporation of the medium, the structure broke apart and
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was not retained so merely functionalizing with biotin would not be effective for stabilizing

a structure. No structure was formed at higher frequencies, indicating that the effect of

electroosmosis (EO) dominated versus dielectrophoresis since 100 kHz is the cutoff frequency

below which EO flow becomes significant. As another control, the effect of different ways

of adding streptavidin to the particle suspension was investigated (no electric field effects).

Two different types of approaches were attempted for avidin addition: i) mixing streptavidin

solution and particle suspension and then applying an electric field to assemble particles;

and ii) allowing the particles to assemble under the influence of the field and then pipetting

streptavidin solution into the droplet to try to form linkages. The first approach had small,

irregular clusters of particles forming, an indication of some linkages or aggregation occurring

while the second approach yielded very large irregular structures. After these results, it was

clear that the first approach was more practical for linkages, as adding an extra volume of

fluid to the existing droplet caused large gradients in velocity which were very disruptive,

although both were attempted for DEP assembly. Although the biotin-avidin linkage has

been demonstrated successfully for linking a number of nanoparticles, it was found to be

unsuitable when attempting to take advantage of electrokinetic effects for assembly based

on this work [114, 126].

4.3.5 Gelation using Pluronic F-127 and PVA

After the failures of using either UV-crosslinking or biotin-avidin linkages to stabilize struc-

tures, the use of pluronic F-127 as a gelation agent was tried. This system undergoes reverse

thermal gelation, meaning that it will gel as temperature increases due to aggregation of

micelles, and at weight fractions of approximately 30% this transition will occur at room

temperature [115]. Since the gelation will occur naturally as the droplet evaporates, this ap-

proach was deemed ideal for increasing the medium viscosity for minimizing meniscus driven

flow effects during evaporation, “freezing” a structure in place upon gel formation. After

gelation, pluronic could be removed by use of UV-ozone (4 to 5 hour treatment) without



CHAPTER 4. COLLOIDAL ASSEMBLY WITH AC ELECTROKINETICS 74

effect on the assembled structure (as assessed by optical microscopy). Removal of the sur-

factant via annealing (8 hours in an oven at 400◦C, with a 10◦/min ramp up and down) was

also investigated, although found to be more disruptive for structures compared to UV-ozone

treatment.

The optimum F-127 concentration is system specific, in that a minimum gel height is

needed to completely encapsulate the structure but addition of more pluronic will change

the medium viscosity and interfacial parameters so the size of structure can change with

surfactant concentration. After performing DEP experiments ranging from 2 to 20 V and

0.3 to 5 MHz in varying solids concentration suspensions of silica (0.06 to 8.6 wt%), it was

found that a pluronic concentration of between 3 to 4 wt% initially was sufficient in order to

maintain the overall geometric structure of an assembly. 5 - 20 µL droplets were pipetted,

with no real effect of droplet volume on the assembly process observed when using pluronic

to gel. SEM images of representative assemblies of 1.5 µm silica are shown in Figures 4.13,

4.14 and 4.15, which show the overall assembly, a zoomed view of assemblies on a 45◦ tilt and

a representative snapshot of the assembly microstructure respectively. As mentioned, optical

microscopy images of assemblies before and after gelation were fairly indistinguishable (see

Figure 4.5).

As can be seen from the displayed figures, a number of interesting overall assembly ge-

ometries are possible even at a single operating frequency just by changing either solids

concentration or applied voltage. The use of pluronic as a gelation agent to freeze struc-

tures was very effective, as is evidenced by optical microscopy pictures and SEM images.

However, the disadvantage of using pluronic is also evidenced from these images. While

the assembly obtained an overall geometric shape and this shape was retained during the

medium evaporation, the use of such a large surfactant concentration in the medium in-

hibited the disorder-order transition and no crystalline lattices were formed in any of the

performed experiments. Lowering the concentration of pluronic would also mean that the

size of structure which could be protected during the evaporation would be decreased and
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Figure 4.13: SEM images of DEP Assembly of 1.5µm Silica in aq. pluronic F-127 (4wt%)
a) 5V, 8.6wt% solids b) 10V, 8.6wt% solids c) 20V, 8.6wt% solids and d) 20V, 0.06wt% solids [scalebar is

100µm]

based on zeta potential measurements, there is a strong indication that even extremely low

pluronic concentrations will have a very large effect on the colloidal forces involved in the

crystallization process (decreased magnitude of zeta potential/electrophoretic mobility by a

factor of 4 at 0.1wt% pluronic).

To attempt to remedy the surfactant adsorption on the surface of silica particles and its

possible inhibition of forming structures possessing a larger degree of colloidal ordering, the

use of sodium hydroxide in aqueous solutions of pluronic was considered. Concentrations

of NaOH on the order of 10−3M have been shown in previous experiments to reduce the

degree of adsorption of pluronic on silica drastically and consequently this was done to see



CHAPTER 4. COLLOIDAL ASSEMBLY WITH AC ELECTROKINETICS 76

Figure 4.14: Zoomed SEM images of DEP Assembly of 1.5µm Silica in aq. pluronic F-127
(4wt%)

a) 10V, 8.6wt% solids and b) 20V, 8.6wt% solids [scalebar is 50µm]

Figure 4.15: Microstructures for DEP Assembly of 1.5µm Silica in aq. pluronic F-127 (4wt%)
a) 10V, 8.6wt% solids and b) 20V, 8.6wt% solids [scalebar is 10µm]

what effect it would have on the resulting assembled structures [127]. Both UV-ozone and

annealing were considered with and without salt for silica assembly of 0.1% (by vol.) silica in

4 wt% aq. pluronic with and without 1x10−3M NaOH. The resulting structures after drying

and medium removal are shown in Figure 4.16.
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Figure 4.16: DEP Assembly of 1.5µm silica in aq. pluronic F-127 at 15V, 1MHz
a) UV-ozone, no NaOH, b) UV-ozone, 10−3M NaOH, c) Thermal Annealing, no NaOH, d) Thermal

Annealing, 10−3M NaOH [scalebar is 50µm]

As can be seen from Figure 4.16, UV-ozone was less damaging to the overall structure,

there was no noticeable deviation before gelation to final SEM imaging while for heat treat-

ment removal of the film there was a shift. Further optimization of the heat treatment

procedure could possibly eliminate this but the simplicity of using UV-ozone outweighed

any further investigation. Using sodium hydroxide in solution did not lead to any shift in

the colloidal ordering of the structure, in fact it led to the creation of more randomly shaped

structures (even before gelation). Based on the observed experimental results, it is concluded
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that the following happened: increasing the salt concentration increased the electrical con-

ductivity of the medium significantly, to the point where electrothermal flows were significant.

These flows were significant in comparison with the magnitude of dielectrophoretic forces and

increased as water evaporated during the assembly process, which continually increased the

effective concentration of ions in the system, leading to larger temperature gradients and

still larger fluid flows. Due to the sharp dependence on the evaporation profile, the resulting

structures were fairly random when compared with each other, owing to small differences

in initial pipetted volume or ambient humidity having a larger impact on the evaporation

rate/ion concentration versus time. Working at more dilute NaOH concentrations initially

did not appear to improve the quality of the resulting assemblies or eliminate any random-

ness, which is similar to the result found from using KCl with polystyrene colloids shown

previously. Work done without added NaOH however was quite reproducible, with very

small deviations (order of 1-2 particles thickness) discerned from SEM images, although

the pluronic solution does possess a low conductivity resulting from ionic impurities in the

surfactant (σm ∼ 5mS/m).

Overall, pluronic is an exceptionally effective means of gelling/freezing an assembled

structure in place while having minimal disruption compared with the case of assembly

in pluronic-free liquid. Starting from a a desired low pluronic concentration, an electric

field is applied and assembly occurs. Evaporation of droplets proceeds on a much slower

time frame or can be eliminated using a covered-well. As the medium evaporates, the

pluronic concentration in solution rises until it eventually surpasses the critical micellization

concentration and the suspension will gel. The ability to retain structures of various sizes

can be tuned by changing the initial pluronic concentration, through temperature control or

direct control of evaporation rate. Removing pluronic films to obtain an assembly can be

readily accomplished using UV-ozone treatment, although for the case of polymeric colloids

this may not be a viable option due to potential UV-ozone degradation of particles. Based on

cleaning studies attempting to remove PS and PMMA spheres from the surface of chips, the
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degradation time of polymer colloids is much greater than that of pluronic F-127. Therefore

this method may be potentially effective even when considering the case of polymeric colloids,

but this has not yet been tested experimentally.

PVA immobilization was attempted using a similar methodology to that of pluronic F-

127. Immobilization proved far less effective at similar or higher weight fractions of PVA

in water (or DMSO) compared pluronic. One possible explanation for this was the high

electrical conductivity of PVA solutions, leading to disruptive electrothermal fluid flows, but

treatment using ion exchange resins did not eliminate these difficulties. PVA has been suc-

cessfully used for immobilizing two-dimensional structures in combination with avidin-biotin

linkages so it is possible that combining PVA immobilization with some other stabilization

technique would be effective, however this was not explored during this work [128].

4.3.6 Stabilization by Photopolymerization

As pluronic F127 was successful at stabilizing structures but inhibited formation of an or-

dered phase in assemblies, the use of other polymeric monomers that would allow for ordered

assemblies to occur was investigated. In previous experimental work, it has been possible

to immobilize large colloidal crystal arrays within a hydrogel formed from photocrosslinking

PEGMA/PEGDMA or ETPTA [129–134]. These colloidal crystal arrays demonstrate pho-

tonic properties which can be shifted with additional treatment (swelling agents, thermal

treatment, etc.). Consequently, the use of these compounds for immobilizing the assemblies

in this work was explored.

1µm silica was suspended in a water-PEGMA-PEGDMA mixture at various concentra-

tions of PEGMA/PEGDMA in water, ranging from 5wt% PEGMA in water to closer to

40wt%. Aggregation of silica suspensions was an issue and PMMA, which is hydrophobic

versus the hydrophillic silica used in this work, also showed some aggregation issues. Ion

exchange was attempted for crystallization purposes, but lead to rapid aggregation of sus-

pensions possibly due to loss of stabilizing electrostatic repulsion forces. Silica-DMSO and
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PMMA-DMSO systems were also used for photopolymerization experiments. In all prepared

suspensions, stabilizing a final structure proved challenging and only a partial structure was

retained upon final completion of the UV polymerization. In cases where aggregation was

minimized, the initial assembled structure resembled that found in aqueous suspensions or

that of aqueous pluronic suspensions for a given voltage. After photopolymerization, this

was not the case. A possible explanation for this is the intensity of the polymerization front

(and loss of dielectric contrast between medium and particle with polymerization) was suffi-

cient to significantly distort any assembly. Specifically, the direct force of the polymerization

front, temperature gradients associated with the front inducing fluid flows and the chaotic

nature of the front itself causing electric field gradients could have all combined to lead to

the observed distortion in the assembly [135]. These types of effects would be mitigated in

colloidal crystal arrays as they are much larger assemblies (immobilized crystals in hydrogels

up to cm-2 in area) and for using gravity as the primary motive force for driving colloid mo-

tion. UV-ozone treatment of films was not practical, annealing was required. As mentioned

in the previous discussion on pluronic F-127 gelation, annealing is more disruptive versus

UV-ozone or at least was at the treatment conditions used. However, in this case significant

damage to assemblies was done before heat treatment.

When using ETPTA, mixed with either water or DMSO, an emulsion seemed to form in

the presence of particles. This is possibly a pickering emulsion, although it may just be that

adding particles increased the optical contrast in the system and made it easier to visually

identify the “oil” phase of the emulsion. This emulsion made stabilizing particles (silica or

PMMA) difficult but depending on the amount of ETPTA, suspensions could be stable for

up to 30 minutes. Stabilization using ETPTA was unsuccessful, as for PEGMA/PEGDMA.

The reasoning behind this is likely similar to that postulated for PEGMA/PEGDMA, with

the added effect that the “oil” phase of the emulsion has a very similar permittivity to that

of silica or PMMA and therefore will experience a similar dielectrophoretic force moving it

towards the center of the electrodes. Upon reaching this center, the “oil” phase is now the
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medium which trapped particles are suspended in and given the lack of dielectric contrast,

particles would diffuse away and any assembled structure would be destroyed. This was

visually observed by optical microscopy for ETPTA-water and ETPTA-DMSO systems, with

a representative SEM of ETPTA stabilization experiments at 20V, 1MHz for 1µm silica in

DMSO provided in Figure 4.17. Once again, for larger colloidal crystal arrays assembled by

gravity/sedimentation, this phenomena would not be relevant. Heat treatment was required

to remove ETPTA for SEM imaging, as was the case for PEGMA/PEGDMA, and again the

disruption/lack of structure occurred prior to heat treatment.

Figure 4.17: SEM of DEP Assembly of 1µm silica in 95/5 (v/v) DMSO/ETPTA at 20V,
1MHz

a) 60◦ tilt Overview [scalebar is 50µm, b) Top-Down Zoomed View of Local Microstructure [scalebar is
10µm]

4.4 Conclusions

The use of non-uniform electric fields to shape assemblies of colloidal particles was explored

using quadrupolar planar microelectodes. The AC electrokinetic (dielectrophoretic and di-

electrophoretic + electroosmotic) assembly of colloidal silica and latex (primarily PMMA) in
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various media was studied. Dielectrophoretic (field-induced dipole) and electroosmotic (field-

double layer) forces acted to transport particles towards the electrode center, while mutual

dielectrophoretic (induced dipole-induced dipole) forces led to colloids forming chains and

these chains interacting with each other to form larger structures. A wide variety of shapes

and sizes of assemblies were possible to generate using a single microelectrode geometry by

tuning the voltage, frequency, medium/particle permittivity contrast, particle concentration

and droplet volume.

For silica in water and silica in water-pluronic, very large structures were easily fabri-

cated using moderate voltages (5 to 20V). Symmetric structures up to 150µm in cross-section

were created using 1.5µm silica at moderate initial solids content (8.6wt.%/4.4vol.% solids).

The shape of these structures could be tuned from being an “inverse” structure at 5V, com-

posed of four particle-free “wells” near the minimum gap spacing between electrodes to a

large curved “diamond” structure at 20V. Assemblies using a near-refractive index match-

ing medium (DMSO) showed clear shifts in shape and size with changing voltage, as well

as frequency. By introducing electroosmotic flows to the system the assemblies took on a

more compacted, diamond shape compared to the more rounded, larger DEP assemblies. In

both cases, the refractive index matched assemblies showed clearly the presence of particle

chains and these chains aligning together to form larger structures. These chains and groups

of aligned chains are clear from optical microscopy images, particularly when examining

the edges of assembled structures. The overall order of structures could not be determined

from optical microscopy images available. Upon medium evaporation, structures would ei-

ther be completely or partially collapsed by the force of the moving meniscus and loss of

dielectrophoretic trapping force.

The destruction of assemblies by medium evaporation necessitated investigation of meth-

ods of stabilizing or immobilizing assemblies in-situ. A number of approaches were studied,

including: biotin-avidin linkages, UV crosslinking of cinnamoyl chloride functionalized silica,

gelation with pluronic F-127, gelation with PVA, photopolymerization of PEGMA/PEGDMA,
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photopolymerization of ETPTA and chemical crosslinking with epichlorohydrin. Gelation

with pluronic F-127 was the most effective method found in this work for maintaining over-

all assembly shape and structure, with no significant deviation observed between optical

microscopy images before and after medium gelation. Pluronic films could be removed via

UV-ozone treatment or heat treatment, with the latter being more disruptive to assembly

structure than the former at the (arbitrarily) chosen heating rate parameters. The use of

base, sodium hydroxide specifically, to reduce the amount of pluronic adsorption on silica to

attempt to achieve a more ordered structure was attempted but found to lead to strong elec-

trothermal flows which increased in intensity as the medium evaporated and led to medium

destruction. Photopolymerization with either PEGMA/PEGDMA or ETPTA is a popular

technique for immobilizing colloidal crystal arrays, but this approach failed to maintain the

assemblies in this work. This failure was attributed to electrothermal flows arising from tem-

perature gradients at the polymerization front, as well as destabilization of suspensions and

a loss of dielectric contrast between particle and medium. Crosslinking with epichlorohydrin

is a more promising technique that eliminates the difficulties encountered with photopoly-

merization. Epichlorohydrin is highly soluble in both DMSO and water and is required in

small quantities to be able to fix colloidal crystals in place. Additionally, epichlorohydrin

directly crosslinks particles, meaning that UV-ozone, heat or some other treatment method

to remove a hydrogel or polymer film is not required. The downside is the need to work with

polymeric colloids (PS) or colloids with some acrylate surface functionality, PMMA-co-AA

as in this work. The challenges of medium stabilization go beyond the need for SEM analy-

sis, for photonic materials it is desirable to have air as the alternative medium in a periodic

structure for larger permittivity contrast. To produce inverse colloidal crystals, polymeric

colloids will have to be stabilized, impregnated with some filler material and then removed

(solvent or heat treatment). These types of crystals can then be used for surface enhanced

raman spectroscopy, as scaffolds for tissue engineering platforms and so on. Solving the

stabilization problem for colloidal assemblies on this scale is not a trivial problem and can
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be quite system specific currently, so developing a general tool set for maintaining assemblies

after medium evaporation and manipulating them is of great importance.



Chapter 5: AC Electrokinetic Templating of

Colloidal Particle Assemblies: Effect of

Electrohydrodynamic Flows

Abstract

The use of spatially non-uniform electric fields for the contact-free colloidal particle as-

sembly into ordered structures of various length scales is a research area of great interest.

It has already been shown that even microelectrode arrays of relatively simple design are

capable of driving the electrokinetic assembly of micro- and nanoparticles inside tunable

electric field templates. In the present work, numerical simulations are undertaken in order

to advance our understanding of the physical mechanisms that govern this colloidal assembly

process and their relation to the electric field characteristics and colloidal system properties.

More specifically, the electric-field driven assembly of colloidal particles in a quadrupolar

planar microelectrode array with a 100µm gap was studied numerically by means of a con-

tinuum thermodynamic approach with numerical solution provided by the finite element

method. Two-dimensional assembly at the surface of the microelectrodes was considered

to simplify the numerical complexity of the problem. The assembly of colloidal silica (dp

= 0.32µm and 2µm) in DMSO, a near index matching fluid, at initial volume fractions of

0.1% and 1% solids was examined over a range of voltages and the equilibrium (~uf = 0) and

non-equilibrium (~uf 6= 0) cases were compared to determine whether fluid motion had an

effect on the shape and size of assemblies. It was found that the non-equilibrium case was

substantially different compared to the equilibrium case, in both size and shape of the assem-

bled structure. This dependence was related to the relative magnitudes of the electric-field

driven convective motion of particles versus the fluid velocity, which was non-negligible at all

studied parameters. In all but the lowest voltages and initial volume fractions of particles the

fluid velocity was larger than the dielectrophoretic velocity, which has important implications

85



CHAPTER 5. AC ELECTROKINETIC TEMPLATING OF ASSEMBLIES 86

for predicting assemblies. Fluid velocity magnitudes on the order of mm/s were predicted

for 0.32µm particles at 1% initial solids content, and the induced fluid velocity was found to

be larger at the same voltage/initial volume fraction as the particle size decreased, owing to

a larger contribution from entropic forces. Fluid rolls near the center of the microelectrode

system were found which were consistent with previously experimentally observed flows.

Experimental observations of an attempted equivalent to the simulations also showed that

even small fluid droplets with a spreading liquid had significant z-component based effects.

Despite their limitations, the 2d simulations employed herein proved capable of providing a

qualitative prediction of the experimentally observed particle assembly profiles.

5.1 Introduction

The assembly of colloidal particles into ordered structures of larger characteristic dimen-

sions (for example, on micro or larger scale) is an active topic of research for the creation

of novel materials or materials with enhanced functionality, such as photonic bandgap crys-

tals (PBG), high sensitivity sensors or microelectronics [1]. Numerous techniques exist in

order to facilitate the creation of ordered colloidal structures, ranging from self-assembly,

template-assisted assembly (topological/geometric assisted assembly) and external field as-

sisted assembly (gravitational, electric or magnetic fields) [11, 12, 136]. These techniques

vary in complexity and in scale of assembly, that is in the final characteristic dimension of

the usable device/material. Self-assembled monolayers can be used in order to direct the

placement of colloidal and other micro/nanoscale materials to specific substrate locations,

such as carbon nanotubes or gold nanoparticles [12]. Template-assisted assembly can be

considered as complementary to all the other listed techniques. Electric and magnetic fields

offer a wider variety of control forces rather than relying primarily on gravity and can be

integrated with template-assisted assembly. These types of fields are typically generated

using planar microelectrodes made by microfabrication techniques (i.e. small characteristic
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dimensions) to generate very high field intensities [16–18].

Specifically, the use of dielectrophoresis (force on a particle due to induced dipole in a spa-

tially non-uniform electric field) to construct structures of varying size, order and geometry

from micron and nano-sized building blocks is of significant research interest. This is due to

the large degree of control parameters available for determining the final assembled structure,

such as applied voltage, frequency, choice of medium and particle electrical property contrast

and overall electrode geometry [16–18]. Docoslis and Alexandridis first demonstrated the use

of dielectrophoresis for the assembly of three-dimensional colloidal structures, using 100µm

gap quadrupolar electrodes to assemble silica and latex colloids [20]. Abe et al. examined

the use of 400 µm gap hyperbolic electrodes for assembly of large polystyrene (PS) colloids

(2-10µm) and were able to achieve single or multiple layer structures by applying an AC

and DC field simultaneously[107]. Lumsdon and Scott and Lumsdon et al. formed reversible

2d colloidal crystals of monodisperse polystyrene using applied electric fields generated by

coplanar electrodes, with the assemblies diffracting light parallel, perpendicular or both to

the assembly depending on the assembly time [19, 74]. Reversible 2d colloidal crystals fabri-

cated by electric fields have also been shown by numerous authors [93, 108–110]. Similarly,

binary PS colloidal crystals and aggregates have been formed using application of DC and

AC sources respectively across a simple coplanar electrode structures [137, 138]. Large-scale

colloidal crystals 200µm in size have been formed without significant grain-boundaries by

successive application and relaxation of an applied electric field in a hexapolar electrode

system [111]. More recently, three-dimensional structures of varying complexity have been

demonstrated using dielectrophoresis and induced-charge electroosmotic flows [112]. For a

comprehensive overview of the use of dielectrophoresis for colloidal assembly, and for colloidal

assembly in general, the articles of Velev and Bhatt and Velev and Gupta are recommended

[71, 113].

In terms of simulations, most of the work to date in describing the assembly/patterning

of colloids with dielectrophoresis has focused on the force on an isolated particle to determine
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trajectories, assuming no interparticle electric field interactions and generally relying on the

point-dipole or series expansion of multipoles to account for particle perturbation of the

local electric field [16, 98, 139, 140]. Some more involved numerical methods, such as using

distributed Lagrange multipliers (DLM) have also been used, but also often rely on simplified

electrical interaction equations and have been limited to date to solving the case with a

small number of particles [31, 104, 139]. More recently, Juarez et al. showed that inverse

Monte Carlo (MC) based simulations could be used to reconstruct colloidal density profiles

in non-uniform electric fields, specifically 2d assembly in finger electrodes and 3d assembly

in quadrupolar electrodes [141, 142]. This approach is not predictive, the experimental

radial distribution functions of an assembled colloidal structure were measured via confocal

microscopy and used for updating a series of MC steps to obtain a fitted frequency correction

factor. However, this approach was able to reconstruct, very accurately, assemblies of large

colloidal particles (1.5µm for the 3d case) under the action of applied non-uniform electric

fields, as well as crystallinity. The question of how well this approach will be able to capture

other phenomena of interest, such as distortions to the electric field by particles, change in

the dipole-coefficient due to multiparticle effects, etc. is yet to be explored, although overall

it does represent a very interesting framework. The effect of persistent fluid flows was not

considered in this work, as the authors were interested in an equilibrium solution. For smaller

particles, which will experience higher relative diffusional fluxes as well as smaller electric

field induced convective motion, the contribution of fluid flows may not be negligible. The

effect of fluid flow in non-uniform electric field driven colloidal assembly has generally not

been particularly discussed in literature to date and is generally assumed to be negligible

compared to field-dipole and dipole-dipole interactions on particles, or assumed dominated

by an externally driven-flow field [143]. Given the difference in characteristic time-scales for

diffusion and convective (electric field, gravity, etc.) driven motion, the influence of fluid flow

on the resulting structure may not be negligible, that is potentially different structures may

be arrived at by, for example, allowing particles to settle and then applying an electric field.
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In the equilibrium case, no difference (other than any potential numerical approximations)

would be expected for allowing particles to settle compared to applying the field directly, as

the chemical potential gradient of the system is zero for the equilibrium case.

In this paper, the simulation of electric-field induced colloidal pattern formation by

quadrupolar electrodes was considered, specifically for the case of silica particles (dP =0.32µm

and 2µm) in DMSO, a near index-matching fluid. As a theoretical basis, the continuum ther-

modynamic approach for describing the free energy of a colloidal suspension subjected to an

electric field developed by Khusid and Acrivos was chosen [144, 145]. With this approach,

the free energy, as well as electric field and physical transport properties of the suspension,

are treated as functions of volume fraction. This framework accounts for interparticle in-

teractions, is more numerically tractable in the sense of solving a single PDE for volume

fraction instead of multiple ODEs for individual particles and has been successfully applied

to predict the formation of electric field driven volume fraction fronts [143, 146]. The pri-

mary aim of this work was to examine the influence of fluid flow resulting from particle

motion on electric-field induced assembly of monodisperse colloids into structures of various

shapes/sizes, specifically to look at the “equilibrium” or quiescent fluid flow case (~uf = 0)

versus the “non-equilibrium” or non-quiescent fluid flow case (~uf 6= 0). As mentioned, the

effect of any potential fluid flows in this type of system have been generally either neglected

or not considered in previous simulation work to date and therefore quantifying any impact

on electric-field induced assemblies is quite important. Including the influence of fluid flow

is particularly straightforward in this framework, as the fluid is treated as an incompressible

liquid with volume fraction dependent viscosity and density that experiences a volumetric

force directly proportional to the gradient of chemical potential. Simulations of the influence

of particle size, voltage and initial volume fraction on the predictions of the shape and size

of the resulting colloidal assembly were performed with comparison between the equilibrium

and non-equilibrium case. Some validation by comparison to experimental data in the form

of optical microscopy images was also attempted.
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5.2 Theoretical Background

The framework developed by Khusid and Acrivos has been used by these same authors in

later work to describe electric field induced formation of volume fraction fronts quite success-

fully as a predictive model with no fitting parameters [143, 146]. To describe the motion of

particles, the chemical potential of the suspension is developed by adopting a hard-sphere ap-

proach, where entropic contributions to chemical potential are given by classical hard sphere

results and the electrical contributions are derived from a cell model (which corresponds to

Maxwell-Wagner type polarization)[144]. The attractive part of the potential is assumed to

be dominated by electric-field induced interactions. In this work a similar approach is used,

with some modification to account for additional volume fraction-dependent effects (diffu-

sion coefficient), for describing the assembly process of monodisperse silica colloids with a

non-uniform electric field generated by quadrupolar microelectrodes with a gap spacing of

100 µm. We also considered that the fluid flows resulting from particle motion are not nec-

essarily negligible at the conditions studied for this framework, with the idea of testing this

assumption through comparison of the equilibrium and non-equilibrium cases. The time-

averaged chemical potential (µp) and osmotic pressure (Πp) of a colloidal suspension under

the influence of an external electric field at high frequencies are given by eqns. 5.1 and 5.3

respectively [146]

µp =
kBT

vp

df0
dc
−
ε0
2

(

dεs
dc

)

〈| ~E|2〉 (5.1)

f0 = c ln
c

e
+ c

∫ c

0

Z(c)− 1

c
dc (5.2)

Πp =
kBT

vp
cZ +

ε0
2

[

εs − c

(

dεs
dc

)]

〈| ~E|2〉 (5.3)
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where kBT is thermal energy, c is particle volume fraction, Z is the suspension compress-

ibility factor, εs is the real part of suspension permittivity and
(

dεs
dc

)

is the derivative of the

real part of suspension permittivity with respect to particle volume fraction. f0 represents

the entropic contributions to the free energy of the system and is determined via an equa-

tion of state. The imaginary component of complex permittivity is negligibly small compared

with the real part at the frequencies of interest in this work (MHz range), and this high fre-

quency will minimize the influence of conductivity on the polarizability of the particle. The

suspension compressibility factor can be calculated using the Carnahan-Starling equation,

with the diverging volume fraction chosen as that of a random close-packed suspension, eqn.

5.4, and the suspension permittivity from the Maxwell-Wagner expression, eqn. 5.5 [146]:
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(5.4)

εs = εm

[

1 + 2cβ

1− cβ

]

β =
εp − εm
εp + 2εm

(5.5)

where in eqn. 5.5, εi is the permittivity of the suspension, medium or particle (subscript s,

m or p respectively) and β is the real part of the Clausius-Mossotti factor. More complicated

models accounting for volume fraction-dependent effects on polarization could be used, such

as the model proposed by Sihvola and Kong (1988), but Maxwell-Wagner type polarization

was assumed for simplicity, as the interest in this work was in testing the influence of fluid

flows resulting from the chemical potential gradients arising in the system [147].

Along the coexistence curve for the single phase region of the suspension versus a two-

phase region induced by the electric field effects, the value of chemical potential and osmotic

pressure of each phase are equal. The volume fraction of particles in each phase is denoted
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by c1 and c2, where 1 refers to the low solids volume fraction phase and 2 to the high solids

volume fraction phase respectively, as shown in eqn. 5.6 [144]:

µp(c1) = µp(c2) and Πp(c1) = Πp(c2) (5.6)

For electric-field induced aggregation the value of the spinodal composition, that is the

metastable limit of the system, can also be useful for illustrating pattern formation. The

spinodal composition is found from solutions to eqn. 5.7:

Z + c

(

dZ

dc

)

− c

(

vp
kBT

ε0
2

)(

d2εs
dc2

)

〈| ~E|2〉 = 0 (5.7)

The solution of eqns. 5.6 and 5.7 allow for the phase diagram (coexistence and spinodal

curves) of volume fraction versus applied field strength to be determined for a given particle-

medium combination and the critical point common to both indicates the minimum value

of electric field strength required to drive particle aggregation.

The electric field profile of the suspension can be determined using Gauss’ law, with the

permittivity described by eqn. 5.5:

∇ · [εs(c)∇φ] = 0 and ~E = −∇φ (5.8)

The particle volume fraction profile evolves according to eqn. 5.9

∂c

∂t
+∇ ·

[

c~uf +~jp
]

= 0 and ~jp =
c(1− c)2

6πrpηs(c)

[

−∇µp

]

(5.9)

where ~uf is the fluid velocity and ~jp represents particle flux.

Eqn. 5.9 can be re-written in terms of the electrical and entropic (diffusional) contribu-

tions, specifically as:
∂c

∂t
+∇ ·

[

−D∇c+ (~uf + ~uelec)c
]

= 0 (5.10)
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where the diffusivity, D, and electric-field induced velocity, ~uelec, are given by eqns. 5.11

and5.12,

D =
kBT (1− c)

2

6πrpηs(c)

d(cZ)

dc
(5.11)

~uelec =
(1− c)2vp
6πrpηs(c)

ε0
2
∇

[(

dεs
dc

)

〈| ~E|2〉

]

(5.12)

The factor (1−c)2 is referred to as the hindrance function and combined with the particle

volume fraction dependent viscosity, is taken to account for all hydrodynamic interactions of

particles in the suspension. The suspension viscosity is treated using the Leighton-Acrivos

equation.[146]:

ηs(c) = ηm
(

1− c/cmax

)−2.5cmax (5.13)

Finally, a momentum balance on the fluid yields:

ρs

(

∂~uf
∂t

+ ~uf · ∇~uf

)

= −∇p+∇ · [∇~uf +∇~u
T
f ]− c∇µp and ∇ · ~uf = 0 (5.14)

The Navier-Stokes form of the momentum balance was chosen initially as although the

expected Reynolds number is quite low, inertial effects were not necessarily negligible due to

the large gradients that can potentially arise in this system. Subsequent simulations showed

in fact that the inertial term was negligible and Stokes’ flow can be assumed. Solution of

eqns. 5.8, 5.9 and 5.14 allows for the time-evolution profile of particle volume fraction within

the system to be determined. Examination of the force term in eqn. 5.14 shows that in the

limit of dilute suspensions (c → 0) the fluid velocity becomes zero and the steady-state

solution will be equal to the equilibrium solution.
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5.3 Materials and Methods

5.3.1 Simulation Details

Numerical solution of the volume fraction, velocity and electric field profiles was achieved

through solving the time-dependent PDEs described previously using FEM techniques in

Comsol Multiphysics (Burlington, MA, USA). A 2d representation of the electrode geometry

was drawn, with the system solved using a one-eighth symmetry in terms of the mirror image

about the 45◦ line extending from the origin, as is illustrated in Figure 5.1. Quadrilateral ele-

ments were used for improving resolution of the nonlinearities present in the system of PDEs,

which arise due to volume fraction-dependence of physical properties of the suspension. as

well as to improve time-stepping stability [148]. The electric field solution was obtained

through solving for potential, with the potential treated using quadratic Lagrange elements.

For the fluid velocity, the Navier-Stokes equations were solved using quadratic Lagrange

elements for the velocity components and linear elements for pressure, while the volume

fraction utilized linear Lagrange elements to handle the sharp gradients/discontinuities in

volume fraction and for better stability in terms of time-stepping. Numerical stabilization of

the particle volume fraction profile was achieved through the use of artificial diffusion, in the

form of an O(h2) isotropic stabilization. Artificial diffusion was required for solution of this

convection-dominated PDE, particularly in the case of larger particle sizes/higher applied

voltages, to avoid spurious oscillations and non-physical results [149]. Mesh-independence

tests were performed to insure decoupling of the solution with mesh quality and addition-

ally mass conservation in the suspension versus time was also considered and found to be

negligible (less than 1e-10 percent relative deviation from initial to final integration time for

conditions studied).
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Figure 5.1: Simulation Geometry
Left: Top-Down System View Divided into Eighths, Right: Expanded One-Eighth View

5.3.2 Experimental Details

Aqueous suspensions of silica particles (dP = 0.32µm, 1µm and 2µm) were purchased from

Bangs Laboratories (Fishers, IN). These suspensions were directly diluted to desired volume

fractions using DMSO (Sigma Aldrich, Canada) and contained small amounts of water (<2

vol% maximum). DMSO is a near-index matching solvent for silica, which will allow for min-

imizing the van der Waals interactions, and also will result in negligible acid-base (polar)

interactions between particles as determined by calculations using XDLVO theory [119, 150].

DMSO also is a spreading liquid, meaning it is a very good candidate as a suspending fluid

for silica particles due to the thin liquid, flat liquid films which will spread on the electrode

surface which will minimize settling effects and any surface tension driven flows. Use of

DMSO, a high boiling point solvent, allowed for a very thin, non-evaporating film of liquid

to be placed on a chip (500µm thick silicon with a 0.5µm layer of SiO
2

separating the sub-

strate from the microelectrodes). The suspension is not perfectly index matched in order to

allow for sufficient contrast for observation by optical microscopy. As DMSO is a spreading

liquid on silica surfaces, a 1/8” (3.175 mm) diameter circular well was constructed using a
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double-sided press to seal adhesive with parafilm on top. This circular edge acted to constrain

any droplet on the chip. 0.5µL aliquots of suspension were pipetted for each experimental

run. Non-uniform AC electric fields were generated by using gold microelectrodes (200nm

thick) fabricated by photolithography on a SiO
2

surface (0.5 µm thick) deposited on top of

a silicon wafer as previously mentioned. The frequency of all experiments was chosen as

1MHz, to eliminate the conductivity effects on particle polarization. The tip-to-tip distance

between opposite electrodes (ℓc) was 100 µm. Power to the microelectrodes was supplied by

a signal generator (BK Precision 4040A). Microelectrodes were connected to the source in

an alternating fashion (180◦ phase difference between adjacent electrodes). The value of the

applied voltage (V , peak-to-peak) and applied frequency (f), were monitored by an oscillo-

scope (Tektronix 1002B). A top-down optical microscopy image of the electrodes is provided

in Figure 5.2. Optical microscopy was performed using an Olympus BHM microscope, with

a digital camera for image capture, to observe the suspension behavior upon application of

an electric field.

Figure 5.2: Top-Down View of 100µm gap spacing hyperbolic microelectrode chip
[Scalebar is 100µm]
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5.4 Results and discussion

To determine the effectiveness of using the Khusid-Acrivos framework for predicting shape

and size of electric field induced structures, a number of simulation conditions were chosen

and compared with experimental counterparts. The behavior of silica particles of 0.32µm

and 2µm diameter at an initial (uniform) suspension of 0.1 and 1% particles by volume

respectively were simulated at various voltages, ranging from 5 to 20V (peak to peak) for

0.32µm and 0.5 to 5V for 2µm, by solving for volume fraction, velocity and electric field

profiles simultaneously versus time for 2 hours (0.32µm) and 10 minutes (2µm). 2µm and

0.32µm were chosen as particle sizes in order to examine the influences of entropic and elec-

trical contributions on the final assembly profile (volume fraction of particles), as well as on

the dielectrophoretic and fluid velocity profiles in the system. Higher voltages for 2µm sim-

ulations were not considered due to experimental results showing that multilayer structures

clearly arose well before 20V. Based on order of magnitude estimates for transit and aggre-

gation time of particles under the influence of electric fields and at the field strengths chosen,

2 hours for 0.32µm and 10 minutes for 2µm represents a more than sufficient time for the

system to be at ∼steady-state [144]. This was confirmed by observing that the final shape of

the simulated volume fraction profile ceased to change well before the final simulation time

was reached, as well as through optical microscopy observations of experimental equivalents

where possible. Both the quiescent (equilibrium) and non-quiescent (non-equilibrium) cases

were solved at each voltage, initial volume fraction and particle size in order to determine

what impact the fluid flows resulting from electrical and diffusional driven particle fluxes

have on the steady-state particle volume fraction (c) profile.

Visualization of the resulting volume fraction profiles was focused on a 100µm x 100µm

box at the center between electrodes, shown in Figure 5.3 as region A, while fluid and

dielectrophoretic velocity profiles are visualized on a one-quarter cutout of the entire plane

in Figure 5.3 bounded by the dotted-line. A representative electric field profile at t=0, i.e.
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Figure 5.3: Visualization Planes for Simulation
[scalebar is 100µm]

uniform volume fraction, with 20V applied peak to peak is shown in Figure 5.4. At uniform

volume fraction, the suspension permittivity is constant throughout the system and eq. 5.8

becomes the linear Laplace equation. The electric field maximum occurs at the smallest gap

spacing between adjacent electrodes, which is approximately at the location labeled B in Fig.

5.3. The maximum electric field intensity in the system is approximately constant versus

time at the volume fractions studied, as particles are pushed away from region B meaning

the suspension permittivity is essentially constant in the gap between electrodes. For 0.32µm

particles, the simulated volume fraction profiles after 7200s are shown in Fig. 5.5 (c0 =0.1

vol. %) and Fig. 5.6 (c0 =1 vol. %) for both the equilibrium and non-equilibrium cases

at 5, 10, 15 and 20V. As can be seen from comparing the equilibrium to non-equilibrium

cases, at both initial volume fractions there is an impact on the final volume fraction profile

obtained. For c0 =0.1 vol. %, as voltage increases the shape of the evolved structures for both

equilibrium and non-equilibrium becomes similar, with the non-equilibrium case assemblies

being slightly larger (for example, at the 20V case, ∼ 24µm vs. ∼ 20µm). Additionally, the
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Figure 5.4: Electric Field Strength at Vapplied = 20V peak-to-peak at t=0
[scalebar is 100µm]

equilibrium case simulations achieve a more “diamond” shape at earlier voltages, while the

non-equilibrium case remains more rounded until 15V, Fig. 5.5f). The maximum volume

fraction in the system is also higher in the equilibrium case vs. the non-equilibrium until

the system reaches 20V. For the c0 =1 vol. % case there is a more dramatic impact on the

assembly profile, as can be seen from comparing equilibrium to non-equilibrium cases in Fig.

5.6. Comparing the equilibrium and non-equilibrium case at c0 =1 vol. %, the former yields a

much larger predicted assembly which tends from circular shape at lower voltages to a more

rounded diamond at higher voltages, while the latter is far smaller in size and maximum

volume fraction as well as progressing from more inwardly-rounded diamond/hyperbola-like

shapes to a diamond as voltage is increased. At the higher initial volume fraction in the

system, there is somewhat counter-intuitively a smaller steady-state assembly and lower

maximum volume fraction versus the c0 =0.1 vol. % case when the influence of fluid flow is

considered. However, examination of the electrical and fluid velocities for 0.32µm particles

at the given volume fractions and voltages helps to explain this effect.
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Equilibrium Case (~uf = 0) Non-Equilibrium Case (~uf 6= 0)

Figure 5.5: Particle Volume Fractions with and without fluid flow for dP = 0.32µm in DMSO,
c0 =0.1 vol. %

a) 5V equilibrium case, b) 5V with fluid flow, c) 10V equilibrium case, d) 10V with fluid flow, e) 15V
equilibrium case, f) 15V with fluid flow, g) 20V equilibrium case, h) 20V with fluid flow, note differences in

volume fraction scale between equilibrium and non-equilibrium cases [scalebar is 50µm]
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Equilibrium Case (~uf = 0) Non-Equilibrium Case (~uf 6= 0)

Figure 5.6: Particle Volume Fractions with and without fluid flow of dP = 0.32µm silica in
DMSO, c0 =1 vol. %

a) 5V equilibrium case, b) 5V with fluid flow, c) 10V equilibrium case, d) 10V with fluid flow, e) 15V
equilibrium case, f) 15V with fluid flow, g) 20V equilibrium case, h) 20V with fluid flow, note differences in

volume fraction scale between equilibrium and non-equilibrium cases [scalebar is 50µm]
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Figure 5.7 depicts the dielectrophoretic and fluid velocity profiles for 0.32µm silica for

both c0 =0.1 vol. % and 1 vol. % at 5V in a one-quarter cutout of the visualization

plane, Fig. 5.3. Even at lower voltages, the fluid velocity is substantially larger compared

to the dielectrophoretic velocity at both initial volume fractions and this trend continues

throughout all voltages studied. The fluid velocity is several orders of magnitude larger than

the dielectrophoretic velocity. As well, from examining both figures, a re-circulation zone

or roll can be seen in the bottom-left corner of the figures, that is near the center of the

system, significant fluid rolls are predicted. These fluid rolls are responsible for the shift in

shape and size of the structures between the equilibrium and non-equilibrium cases, with this

effect more pronounced at higher initial solids volume fraction as the fluid velocity increases

while the dielectrophoretic velocity is slightly decreased. Increasing the initial solids volume

fraction also leaves the dielectrophoretic and fluid velocity spatial profiles nearly unchanged,

that is the maxima/minima occur at nearly the same locations. For c0 =1 vol.% and 5V,

the fluid velocity maximum is approximately two orders of magnitude greater than the

dielectrophoretic maximum, whereas it is closer to one order of magnitude at c0 =0.1 vol.%,

and a similar result is obtained at higher voltages. This dominance of fluid flow and the

resulting change in the assembly profile illustrates the importance of accounting for fluid

flow effects for smaller particles, for which electric-field driven convection effects on particles

are weaker. For 0.32µm particles at the voltages studied, the maximum fluid velocity in all

simulation cases was found to be on the order of mm/s (20V, c0 =1 vol.%), but even the

smallest value was on the order of ∼ 10µm/s, which is significantly higher than ∼ 0.1µm/s

to 1µm/s range for the dielectrophoretic velocity.

The 2µm silica case is shown in Figures 5.8 (c0 =0.1 vol. %) and 5.9 (c0 =1 vol. %)

after an assembly time of 600s, for both the equilibrium and non-equilibrium cases at 0.5,

2.5 and 5V. For the 0.1 vol.% c0 case, simulations show that fluid flow has an influence on

both shape and size of assembled volume fraction profiles and that as for 0.32µm particles,

this effect is more pronounced at larger initial volume fractions. Unlike 0.32µm particles,
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Figure 5.7: Dielectrophoretic and Fluid Velocities (m/s) for 0.32µm silica in DMSO at 5V
a) DEP velocity, c0 =0.1 vol.%, b) DEP velocity, c0 =1 vol. %, c) Fluid velocity, c0 =1 vol. %, d) Fluid
velocity, c0 =1 vol.% [scalebar is 50µm]

the non-equilibrium case for 2µm particles also has higher volume fractions within the as-

sembly as well as a larger assembled size versus the equilibrium case and the increase in size

is also more drastic (∼ 18µm vs. ∼ 10µm diameter at 5V). Increasing solids volume frac-

tion for 2µm particles also increases the size of the assembly and maximum volume fraction

for both the equilibrium and non-equilibrium cases, which is unlike the results for 0.32µm
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particles where increasing solids volume fraction led to a decrease in both size and maxi-

mum volume fraction. These results are attributed again to the interplay between fluid and

dielectrophoretic convection, and to the smaller influence of diffusion for 2µm compared to

0.32µm particles. 5.10 show the dielectrophoretic and fluid velocity profiles of 2µm silica for

5V. At 0.5V, the dielectrophoretic velocity of the c0 =0.1 vol.% case is larger than that of

the fluid velocity, and this holds true as the voltage is increased up to 5V. For the 1 vol.%

c0 case, the fluid velocity is larger at any voltage versus the dielectrophoretic velocity but

this difference is closer to a factor of 4X, which is much less than the contrast that was

observed for 0.32µm particles (closer to 100X). This reduction is due to the fluid velocity at

the same voltage/initial volume fraction being lower for 2µm particles compared to 0.32µm,

as illustrated by comparing the 5V cases for both particles sizes, Fig. 5.7d) with 5.10d).

For 2µm particles at 5V, the dielectrophoretic velocity is larger vs. fluid velocity at 0.1%

while the fluid velocity becomes larger at 1 vol.% initial solids loading. 0.32µm particle

simulations are attributed to have a larger fluid velocity at similar conditions compared to

2µm due to increased entropic contributions to the chemical potential (increases as parti-

cle size decreases) dominating over decreased electrical contributions. The fluid velocity for

2µm particles was on the order of 0.01µm/s to 100µm/s and the dielectrophoretic velocity

∼ 0.1µm/s to ∼ 10µm/s, although over a smaller voltage range versus the studied 0.32µm

conditions.

The maximum values of electrically-driven (DEP) and fluid velocity magnitudes vs. volt-

age at 0.1 and 1% by vol. for both 0.32µm and 2µm particles are shown in Figures 5.11

(0.32µm) and 5.12 respectively. Both fluid velocity and DEP (electrically driven) velocity

follow near quadratic dependence on voltage with respect to maximum intensity, with the

magnitude of DEP velocity slightly affected by volume fraction (more so for the 2µm case

vs. the 0.32µm) and the changes in fluid velocity magnitude nearly linearly proportional to

changes in initial volume fraction. This quadratic dependence on voltage for both fluid and

DEP velocities is expected based on the nature of the chemical potential and matches the
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Equilibrium Case (~uf = 0) Non-Equilibrium Case (~uf 6= 0)

Figure 5.8: Particle Volume Fractions with and without fluid flow of dP = 2µm silica in
DMSO, c0 =0.1 vol.%
a) 0.5V equilibrium case, b) 0.5V with fluid flow, c) 2.5V equilibrium case, d) 2.5 V with fluid flow, e) 5V
equilibrium case, f) 5V with fluid flow, note differences in volume fraction scale between equilibrium and

non-equilibrium cases [scalebar is 50µm]
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Equilibrium Case (~uf = 0) Non-Equilibrium Case (~uf 6= 0)

Figure 5.9: Particle Volume Fractions with and without fluid flow of dP = 2µm silica in
DMSO, c0 =1 vol.%
a) 0.5V equilibrium case, b) 0.5V with fluid flow, c) 2.5V equilibrium case, d) 2.5 V with fluid flow, e) 5V
equilibrium case, f) 5V with fluid flow, note differences in volume fraction scale between equilibrium and

non-equilibrium cases [scalebar is 50 µm]
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Figure 5.10: Dielectrophoretic and Fluid Velocities (m/s) for 2µm silica in DMSO at 5V
a) DEP velocity, c0 =0. vol.1%, b) DEP velocity, c0 =1 vol.%, c) Fluid velocity, c0 =1 vol.%, d) Fluid

velocity, c0 =1 vol.% [scalebar is 50µm]
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dilute-case/point-dipole result for the dielectrophoretic force, which depends on the gradient

of the electric field intensity squared. Unlike electrothermal flows induced by Joule heat-

ing, where the voltage-dependence is near-quartic, in this case any permittivity gradients in

the suspension are caused by volume fraction gradients and there is no direct dependence

on applied voltage [98]. The expression for calculating the force on the fluid is exact and

given the laminar nature of the flow profile is very likely to be physically accurate. The

slight decrease in dielectrophoretic maximum velocity with increasing initial volume fraction

is also expected, as can be seen by examining eq. 5.15 for the dielectrophoretic force on a

single particle, correcting for particle volume fraction, derived previously using the chemical

potential approach taken in this work [143]. This equation reduces to the classic case of the

dielectrophoretic force in the limit of zero volume fraction but for non-zero volume fraction

and a negative value of β (negative dielectrophoresis), increasing volume fraction will lead

to a decrease in the dielectrophoretic force a particle experiences. Viscosity effects from in-

creasing maximum volume fraction and assembly size (2µm case) will also cause a decrease

in the dielectrophoretic velocity, and additionally perturbations of the electric field near the

minimum gap between electrodes/electrode edges (location of maximum DEP force) could

also contribute to this change although this would only be an issue for the larger assembly

sizes.. The change in fluid velocity with initial volume fraction (order of magnitude increase

in initial volume fraction led to order of magnitude increase in fluid velocity) is also ex-

pected to be nearly linearly-dependent, as the force on the fluid is proportional to particle

volume fraction. These trends are also present for 2µm particles, although fewer voltages

were studied for that case. The volume fraction proportionality of maximum fluid velocity

is still linear, although with a higher constant of proportionality. This can be attributed to

the large size of the assembled structure at c0 =1 vol.% and high volume fraction within the

assembly significantly affecting the viscosity of the suspension over a large area, illustrated

quite clearly in the 5V case in Fig. 5.10d).
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~FDEP =
ε0vp
2

(

dεs
dc

)

∇〈| ~E|2〉 =
2πr3pε0εmβ

(1− cβ)2
∇〈| ~E|2〉 (5.15)

For 0.32µm particles at any initial volume fraction in DMSO, no clear structure could

be discerned using optical microscopy during assembly, although the larger accumulation of

materials near the center of the microelectrodes after medium evaporation indicated that in

fact there was some degree of assembly. This is attributed to the small size of particles, low

refractive index contrast and low overall volume fraction of particles in the region of interest.

The 2µm particle case in DMSO was observable however, and onset of electric field induced

aggregation was observed when switching between 0.25V and 0.5V, which is consistent with

the predicted critical electric field strength required for aggregation as calculated with the

Khusid/Acrivos framework. The experimental results for a 0.5µL droplet with c0 =0.1

vol. % in DMSO are shown in Fig.5.13, for 0.5, 2.5, 5 and 20V. As can be seen from

this figure, the experimentally obtained assemblies are all larger than the simulated results

for c0 =0.1 vol.%, (Fig. 5.8) and are in fact closer size-wise to the results obtained from

assuming an initial volume fraction of 1% (Fig. 5.9), although this still under predicts the

size of the assembled structure. Furthermore, looking at the 5V case for 2µm particles, Fig.

5.13c), it can be observed that there are in fact multiple layers of particles stacked in the

assembly. Even at lower voltages, the only confirmed monolayer-sized assembly happened

in the 0.5V case Fig. 5.13a), beyond this voltage the assembly would always be at least

a few layers thick. The overall structure transitioned from a more square shape (2.5V) to

more rounded shapes (5V-10V) and finally to a diamond (20V). These experimental results

were similar to previous results obtained in our group for 1µm particles in DI water at larger

volume fractions and droplet sizes, shown in Fig. 5.14, and where the structures are more

clearly observable over a wider range of conditions and again match with the simulations,

Fig. 5.15, in terms of overall possible shapes but not size. 2d simulations of 1µm silica

particles in water showed similar behavior to that of larger DMSO particles, in that fluid
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flows played a significant role in the steady-state c profile but were of a closer order of

magnitude to the dielectrophoretic/electrically-induced velocity. The DI water suspension

optical microscopy images are far clearer but also show that there are multiple particle layers

even for small droplets. These results are a clear indication that sedimentation is a relevant

force in the system, as well as that the z-component of the electric field force also plays

a role in shaping the assembly (gz, Ez). Both of these effects are neglected when dealing

with a 2d assembly process assumed to take place on the microelectrode surface. In spite of

the very low suspending liquid volume and spreading nature of DMSO this system cannot

be accurately represented by a two-dimensional approximation. However, the relevance of

induced fluid flows on the assembly process that were determined by these simulations is

clear even from a 2d approximation. The effect of gravity would be the introduction of an

additional convective force, which could potentially mitigate some of the impact on assembly

shape that diffusion/fluid flow has leading to a result closer to that found for larger particles

where the impact is larger on the assembly size compared to the shape.

Experimental confirmation of the fluid velocities and presence of rolls in a refractive-index

matching medium are challenging as visualizing individual particles is also difficult, however,

these types of rolls are consistent with previous experimental data collected by Docoslis and

Alexandridis [151]. Upon activation of an applied electric field, fast swirling motions of

particles can be observed for 1.5µm silica in water. Videos of these experiments are available

on the authors website [151]. The need for accounting for flow effects and dealing with

fully 3d systems is illustrated by the assembly results shown in Figures 5.16 - 5.18, which

are optical microscopy and SEM images of 1.5µm silica particles immobilized by using a

water-pluronic F-127 medium and allowing the droplet to evaporate beyond the gelation

concentration after reaching a steady-state assembly. These structures, shown in Fig. 5.16

clearly perturb the electric field significantly at all applied voltages, with the exception over

the very dilute case. There are multiple layers and assemblies show distortions at the edge

of structures and at the center of the interelectrode channel that are likely the result of fluid
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Figure 5.13: Electric Field Induced Assembly Profiles for 2µm silica in DMSO, c0 =0.1 vol.%
a) 0.5V, b) 2.5V, c) 5V, d) 10V, e) 20V [scalebar: a) is 100µm, b) through e) 50µm]
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Figure 5.14: Electric Field Induced Assembly Profiles for dP = 1µm silica in H
2
O, c0 =vol.

1%
a) 2V, b) 4V, c) 8V, d) 10 V [scalebar is 50 µm]



CHAPTER 5. AC ELECTROKINETIC TEMPLATING OF ASSEMBLIES 115

Figure 5.15: Particle Volume Fractions, Non-equilibrium Case, for dP = 1µm silica in H
2
O,

c0 =1 vol.%
a) 2V, b) 4V, c) 6V, d) 8 V [scalebar is 50 µm]
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flows. A two-dimensional approximation is only able to provide qualitative information on

the overall shape of assemblies, but is illustrative as to the relative influence of entropic and

electrical and the induced fluid flows that result from these forces.

Figure 5.16: Electric Field Induced Assembly Profiles for dP = 1.5µm silica in H
2
O-3.8vol.%

Pluronic F-127
a) 5V, c0=4.4 vol.% b) 10V, c0=4.4 vol.% c) 20V, c0=4.4 vol.% d) 20 V, c0=0.03 vol.% [scalebar is 100µm]
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Figure 5.17: SEM Images for dP = 1.5µm silica in H
2
O-3.8vol.% Pluronic F127

a) 5V, c0=4.4 vol.% b) 10V, c0=4.4 vol.% c) 20V, c0=4.4 vol.% d) 20 V c0=0.03 vol.% [scalebar: a)
through c) 100µm, d) 20µm]
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Figure 5.18: Zoomed SEM of 1.5µm silica in H
2
O with 3.8vol.% Pluronic F-127

a) 10V, c0=4.4 vol.% b) 20V, c0=4.4 vol.% [scalebar is 50µm]
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5.5 Conclusions

The non-uniform electric field (dielectrophoretic) driven assembly of colloidal particles using

a quadrupolar microelectrode geometry was explored by simulations based on a thermo-

dynamic framework. In this framework forces on the particles and fluid are calculated in

terms of a chemical potential gradient, where electrical (based on assuming Maxwell-Wagner

polarization) and entropic (based on assuming hard-sphere contributions calculated using

the Carnahan-Starling equation of state) terms are assumed to be the two primary contribu-

tions. Simulations of the behavior of two different sizes of silica particles (0.32µm and 2µm) in

DMSO, a near-index matching medium, were undertaken using the finite-element based soft-

ware package Comsol Multiphysics™. The stationary fluid or equilibrium case was compared

with the non-stationary or non-equilibrium case and it was found that the non-equilibrium

solution is substantively different in both shape and size. Analysis of the magnitudes and

spatial profile of the dielectrophoretic and fluid velocities indicated that at all but the very

lowest of initial volume fractions and voltages the fluid velocity dominates. The numerical

solution indicated that the fluid velocity induced by electrical and entropic forces could be

up to the order of mm/s, which is substantial for microelectrode and particle scale. The

velocity profile of the fluid contained rolls or vortexes near the center of the space between

microelectrodes which played an important roll in shaping the assembly. Interestingly, these

flows were generated purely based on the electrical and entropic contributions of particles in

an applied electric field, versus some external flows to the system. The fluid flow behavior

within the system can be taken as analogous to electrothermal flows, without the need for

electric field induced heating of an electrically conductive medium to generate temperature

and thereby, permittivity and conductivity gradients.

It was also found based on optical microscopy observation of experiments that using both

a small liquid volume and spreading liquid to create a thin liquid film were not sufficient to

eliminate z-component based effects. It was observed for 2µm particles in DMSO by optical
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microscopy that at low initial volume fractions multiple particle layers would form even at

lower applied voltages. It was also found that 0.32µm silica particles were not observable in

our system, even at the highest voltages/largest theoretical assemblies, as the refractive index

contrast was too low for effective visualization. Preliminary 3d simulations, performed at

uniform particle concentration/volume fraction, show that there is a significant electric-field

induced fluid velocity component in the z-direction for both particle sizes studied, with the

relative influence compared to the direct dielectrophoretic force diminishing as the particle

size increased.

The important conclusion from this work is that the influence of fluid flow can be impor-

tant over a wide range of conditions, affecting primarily size of assemblies when electrically-

driven convection forces dominated (larger particles/voltages) and both the shape and size

of assemblies when entropic diffusive forces dominated (smaller particles/voltages). These

fluid flows have been observed by previous experiments and given the nature of microfluidic

flows (very low Reynolds number), the order of magnitude of the prediction should be very

accurate. This has important implications for understanding the dynamics of the assembly

process, as well as for predicting the steady-state colloid profile for using dielectrophoresis to

shape colloidal structures. In particular, the maximum fluid velocity in the system was found

to be approximately linearly proportional to the initial volume fraction of particles for both

sets of particles, with a closer to 1:1 correspondence at smaller particles and a higher ratio

for larger particles which was attributed to the larger size of assembly and higher volume

fractions achieved using equivalent voltages for these particles. The framework presented

in this paper shows great promise for being able to enhance understanding of the inter-

play between entropic, electrical and fluids forces during non-uniform electric field driven

assembly. Future work is planned in regards to expanding the simulation framework into

three-dimensions, which will greatly increase the numerical complexity of the problem and

may necessitate the use of more sophisticated numerical techniques compared to FEM for

solving the time-dependent PDEs.



Chapter 6: Electric-Field Induced Phase

Transitions of Dielectric Colloids

Abstract

The thermodynamic framework for predicting the electric-field induced fluid like-solid like

phase transition of dielectric colloids developed by Khusid and Acrivos (1996) is extended to

examine the impact of multiscattering/multiparticle effects on the resulting phase diagrams.

This was accomplished using effective permittivity models suitable both over the entire

composition region for hard spheres (0 ≤ c < cmax) and for multiple types of solid packing

structures (RCP, FCC, BCC). The Sihvola-Kong model and the self-consistent permittivity

model of Sen et al. were used to generate the coexistence (slow phase transition) and spinodal

(rapid phase transition) boundaries for the system and compared to assuming Maxwell-

Garnett permittivity. It was found that for larger dielectric contrasts between medium and

particle that the impact of accounting for multiscattering effects increased and that there

was a significant shift in the resulting phase diagrams. Results obtained for model colloidal

systems of silica-DMSO and silica-isopropanol showed that critical electric field strength

required for phase transitions could rise by up to approximately 20% when considering

multiparticle effects versus the isolated dipole case. The impact on the phase diagrams

was not limited purely to the direct effect of volume fraction on permittivity and particle

dipoles but also on the curvature of the volume fraction dependence. This work stresses

the importance of accounting for particle effects on the polarization of colloidal suspensions,

which has large implications for predicting the behavior of electrorheological fluids and other

electric-field driven phenomena.

121
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6.1 Introduction

The phenomena of electric field induced phase transitions of colloidal suspensions is a well-

established field, with many interesting applications. Electric fields have been used to

drive colloidal crystal formation with lattice structures not normally obtainable via other

methods for templating colloidal crystals and other transitions of interest. These lattice

structures include colloidal martensite (body-centered tetragonal lattice) from refractive in-

dex matched silica-DMSO-water suspensions, large scale polystyrene colloidal crystals in

aqueous suspension and drive the phase transition and aligned block copolymer micelles

[86, 95, 119, 152, 153]. Additionally, these types of phase transitions also govern electrorhe-

ological (ER) fluids, where the phase transition of the suspended solid phase into a more

concentrated form causes a large shift in the rheological behavior (viscosity) [154]. More

specifically, particles in the suspension can align into chains (1d analog of 2d colloidal crys-

tals) and this chaining behavior can significantly impact the viscosity in a system.

To predict the phase transition, a number of different frameworks have been approached

from continuum mechanics, molecular/brownian dynamics type approach to solve for the

motion of individual particles to treating the pattern formation in terms of the classic

Ginzburg-Landau function and solving for concentration profiles by variational principles

[105, 155, 156]. Of particular interest is the thermodynamic framework first developed by

Khusid and Acrivos and extended to account for interparticle interactions and a wide range

of frequency-dependent behavior [144, 145, 157]. In this approach, the properties of the

overall suspension, along with any electric-field induced phases, are treated in a continuum

manner. Using Maxwell-type polarization, the authors were able to explore the phase be-

havior over a wide range of possible particle and medium combinations. With the theory

developed, the authors were able to calculate the spinodal and coexistence boundaries for a

given particle-medium combination, as well as conditions where aggregation is inhibited by

interparticle interactions. This approach has been utilized by a number of authors for phase
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transitions specifically related to ER fluids, as well as for examining suspension behavior in

cases with external fluid flows and electric fields [146, 158–162]. This framework was also

the basis for predicting pattern formation in non-uniform electric fields that we have used in

previous work.

In this work, we propose to examine the influence of multiscattering/multiple particle

effects on the overall phase transitions of dielectric particles in a non-conducting suspension.

The original derivation is based on assuming that the Maxwell-Garnett model holds over the

entire composition range and for any type of resulting “solid” phase structure, which is to

say it assumes that the dipole coefficient of a particle in the mixture is equal to that of a

single isolated dipole. This type of assumption has been shown to perform very poorly for

concentrated suspensions and it is worth examining the validity of it due to the importance

of being able to accurately predict electric-field driven colloidal phase transitions. To accom-

plish this we utilize two effective permittivity models, the model of Sihvola and Kong (1988)

and Sen et al. (1981), which have been shown experimentally to describe permittivity (and

conductivity) behavior over a wide range of compositions and for different types of solids-

packings (face centered cubic, body centered cubic, simple cubic, random close packed, etc.)

with the overall framework proposed by Khusid and Acrivos to calculate the resulting phase

diagrams. The effect of permittivity model and the degree of change of dipole coefficient with

particle packing are examined on the coexistence (slow phase transition/aggregation region)

and spinodal (fast phase transition/aggregation region) lines for a hard sphere suspension,

with the diverging region of high concentration treated as a random close-packed structure

(RCP).

6.2 Theoretical Background

For a suspension of dielectric (non-conducting) particles the average electrical energy density,

Welec, can be derived as [145]:
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Welec(c, 〈| ~E
2|〉) =

1

2
εs(c)〈| ~E

2|〉 (6.1)

where εs(c) is the dielectric constant of the suspension and 〈| ~E2|〉 is the time-averaged

magnitude of the electric field norm.

The Helmholtz free energy of the suspension is taken as a combination of entropic and

electrical contributions:

F =
kBT

vp
f0V −WelecV (6.2)

where in eqn. 6.2 f0 represents the entropic contribution to the free energy which is a

function of the volume fraction, c, and is determined by:

f0 = c ln
(c

e

)

+ c

∫ c

0

(

Z − 1

c
dc

)

(6.3)

From the free energy, the osmotic pressure, Π, and chemical potential, µ, of the suspension

can be derived:

Π =
kBT

vp
cZ +Welec − c

(

dWelec

dc

)

(6.4)

µ =
kBT

vp

(

df0
dc

)

−

(

dWelec

dc

)

(6.5)

Substituting eqn. 6.1 into eqns. 6.4 and 6.5 results in state equations for the suspension

depending on volume fraction, c, and the time-averaged electrical field norm, 〈| ~E2|〉 [144,

145, 157]:

µ =
kBT

vp

df0
dc
−

1

2

(

dεs
dc

)

〈| ~E|2〉 (6.6)
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Π =
kBT

vp
cZ +

[

εs −
1

2
c

(

dεs
dc

)]

〈| ~E|2〉 (6.7)

The entropic contributions can be determined from an equation of state (EOS) for hard-

spheres. As with the work of Khusid and Acrivos, we choose the Carnahan-Starling EOS with

the diverging region packing chosen for randomly closed packed (RCP) structures (cmax =

0.64).
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(6.8)

The coexistence line, or two-phase region, is described by equating the chemical and

osmotic pressure of each phase, as in eqn. 6.9

µ(c1) = µ(c2) and Π(c1) = Π(c2) (6.9)

The spinodal line, or region beyond which a random suspension of particles becomes

unstable, is determined from setting the derivative of osmotic pressure with respect to volume

fraction equal to zero. This represents the series of (c, E) points where the free energy shifts

from convex to concave [157]. Expanding out this derivative in terms of the previously

defined terms yields eqn. 6.10:

Z + c

(

dZ

dc

)

−
1

2
c

(

vp
kBT

)(

d2εs
dc2

)

〈| ~E|2〉 = 0 (6.10)

The critical point, common to both the spinodal and coexistence curves, is determined by

the inflection point of Π with respect to volume fraction, meaning the critical concentration

(ccr) and field strength (〈| ~Ecr|〉) can be determined from the solution of eqns. 6.10 and 6.11:
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〈| ~E|2〉 = 0 (6.11)

In their previous work, Khusid and Acrivos considered the suspension permittivity to be

described by the Maxwell-Garnett equation directly or derived an equivalent result using a

cell model, with the expression shown in eqn. 6.12.

εs = εm +
3c(εp − εm)εm

εp + 2εm − c(εp − εm)
(6.12)

By using this expression, the authors were able to explore the effect of numerous combi-

nations of particle, εp, and medium permittivity, εm, on the coexistence and spinodal lines

of the suspension. The results are non-dimensional, that is could be scaled in terms of crit-

ical applied field, and only depend on the dielectric contrast between medium and particle

(Clausius-Mossotti factor). However, using Maxwell or Maxwell-Garnet type polarization

treats the dipole coefficient of particles as being independent of particle concentration (vol-

ume fraction) meaning the dipole coefficient of the mixture is that of an isolated particle.

This is a tenuous assumption for higher volume fractions and for a system where there are

potentially phase changes (“fluid” to “solid”). It has been shown that the dipole approxima-

tion can be accurate even for spheres in contact when 2/5 < εp/εm < 4, however this implies

using a particle-medium combination with an extremely small permittivity difference which

is not necessarily the case for many systems of interest such as silica-DMSO or silica-water

[163]. Fortunately, a number of alternative expressions for suspension permittivity exist

which account for these effects. For our work we chose the semi-empirical model derived

by Sihvola and Kong, eqn. 6.13, as well as the model of Sen et al., eqn. 6.14, both of

which have been used previously for correlating permittivity (and conductivity) at high solid

volume fractions with various solid packing structures for monodisperse and polydisperse

suspensions [147, 164–166].
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εs = εm +
3c(εp − εm)[εm + a(εs − εm)]

3εm + 3a(εs − εm) + (1− c)(εp − εm)
(6.13)

(

εp − εs
εp − εm

)(

εm
εs

)(1/3)

= 1− c (6.14)

The Sihvola-Kong formulation introduces an empirical parameter, a , representing con-

centration effects on the dipole coefficient, allowing for multibody/particle effects to be

accounted for. Choosing the value of a as zero reduces the Sihvola-Kong model to Maxwell-

Garnett type mixing, while for random close packed structures over a wide range of volume

fractions it has been found that a value of a = 0.2 describes experimental data well [165, 166].

For other cubic lattice types (FCC, BCC), measured permittivity values fall somewhere be-

tween a = 0.2 and being described by the Sen et al. model. For increasing values of hard

sphere packing fraction (c), the dielectric behavior for RCP structures also approaches that

described by eqn. 6.14. The Sen et al. model is a self-consistent effective permittivity model

and has been demonstrated experimentally to form the lower limit of permittivity versus

volume fraction behavior for any type of emergent solid packing [165]. More complicated

expressions involving multiple calculated or fitted parameters have been derived and used to

very accurately describe the concentration dependence of suspension permittivity for FCC,

BCC and other lattice structures, but for our purposes solving for the permittivity case

falling between Maxwell-Garnett and Sen et al. is sufficient for examining the validity of

the isolated dipole approximation compared with accounting for multiscattering effects on

overall electric field driven aggregation behavior.
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6.3 Results and discussion

6.3.1 Suspension Permittivity and Derivatives

In order to examine the influence of high volume fraction polarization effects on the result-

ing phase diagrams of electric-field induced aggregation, two model colloidal systems were

considered. The first is silica-DMSO, which is a near-refractive index matched suspension

suitable for colloidal crystallization. Refractive index matching eliminates attractive van

der Waals interactions between particles, which can promote crystallization/phase change

in either the presence or absence of an applied electric field and has been used for silica-

DMSO and silica-DMSO/DMF and silica-DMSO/H2O suspensions under the influence of

an applied electric field to induce phase transitions [112, 119, 152, 167]. The resulting solid

structure type has been identified as a body-centered tetragonal (BCT) crystal, but for our

purposes we are interested primarily in demonstrating the influence of high volume frac-

tion/solid structure effects versus specific lattice structure and will treat the suspension as

a hard sphere suspension with the diverging region being that of a random close packed

structure. Based on previous experimental work for cubic lattice types, the permittivity

model of Sen et al. or Sihvola-Kong with a parameter between 0.2 and 0.3 is able to describe

the observed behavior over the entire physical concentration range [165, 166]. To use the

equations listed in the previous section for phase equilibrium, conductivity effects must be

neglected. DMSO is well known to be an approximately non-conducting liquid over a wide

frequency range (σelec = 3x10−3mS/m), while for silica at 1MHz we can neglect any conduc-

tivity effects on the overall polarizability [20, 168]. At higher frequencies (MHz and above),

the dielectric constant (relative permittivity) of silica can be taken as approximately 4.5 [20].

For the second system, silica-isopropanol (iPrOH) was considered in order to examine the

impact of dielectric contrast between particle and medium on the resulting phase diagrams

calculated assuming either Sihvola-Kong or Sen et al. permittivity behavior. Isopropanol

has a smaller dielectric constant compared to DMSO and therefore has a smaller dielectric
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contrast with silica and is also an insulating liquid (σelec = 3x10−4mS/m) [169]. The relative

permittivity of DMSO was taken as 46.8, while the value for isopropanol used was approxi-

mately 18 [170–172]. Given these particle and suspending liquid combinations the real part

of the Clausius-Mossotti factor, β = (εp − εm)/(εp + 2εm), can be determined as −0.43 and

−0.33 respectively.

To explore the entire range of physically possible behavior for permittivity versus volume

fraction, as well as comparison with using the Maxwell-Garnett approximation, the model of

Sihvola and Kong was used with the adjustable parameter, a, having values of 0, 0.1, 0.2 and

0.3 as well as the model of Sen et al. As previously discussed, Sen et al. should form the lower

limit to permittivity versus volume fraction curves and Maxwell-Garnett the upper limit so

the entire range of physical behavior for the system is captured. Plots of permittivity versus

volume fraction for silica-DMSO are given in Fig. 6.1 and for isopropanol Fig. 6.2 for the

entire physical volume fraction range (0 ≤ c < 0.64). As can be seen from these plots, the

permittivity values are bounded between Maxwell-Garnett type behavior (a = 0) and values

predicted using the model of Sen et al. which is the expected result. The absolute contrast

between permittivity values is lesser in the case of silica-isopropanol versus silica-DMSO,

which is also to be expected, and indeed the overall deviation between different models is

much smaller in the case of isopropanol compared to DMSO [165]. However, the relevance of

multiscattering/higher volume fraction effects on polarization are not limited purely to the

value of the permittivity but to its curvature/rate of change with respect to c. Going back to

eqns. 6.9, 6.10 and 6.11 for calculating the coexistence line, spinodal line and critical point

respectively it can be seen that these equations depend not just on suspension permittivity

but also on the first, second and third order derivatives with respect to volume fraction. In

their original derivation based on Maxwell type polarization, Khusid and Acrivos noted that

the signs of the permittivity derivatives plays a large role in determining the stability and

behavior of electric-field induced phase transitions.
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Figure 6.1: Suspension Permittivity versus Volume Fraction for Silica-DMSO

Figure 6.2: Suspension Permittivity versus Volume Fraction for Silica-iPrOH
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The plots of dεs/dc versus c for silica-DMSO and silica-iPrOH for the Sihvola-Kong and

Sen et al. permittivity models are shown in Figures 6.3 and 6.4. For the entire composition

range the values are negative for all chosen permittivity models, which is to be expected

as each permittivity model predicts a monotonically decreasing permittivity for the case

where the medium permittivity is greater than that of particle permittivity. The smallest

magnitude versus particle volume fraction (upper most curves in Figures 6.3 and 6.4) rep-

resents Maxwell-Garnett type polarization, while the largest magnitude (lowest curves in

Figures 6.3 and 6.4) is given by the model of Sen et al. The curves shift downwards with

increasing value of the a parameter to account for volume-fraction related polarization ef-

fects. From examining eqns. 6.6 and 6.7, dεs/dc impacts the osmotic pressure and chemical

potential of the suspension directly, and the suspension permittivity will effect osmotic pres-

sure. Changing the a parameter from 0 to 0.3 and Sen et al. shifts both the permittivity

and first derivative of permittivity curves downwards , which will have competing effects

on the magnitude of the osmotic pressure as decreasing suspension permittivity decreases

osmotic pressure (↓ εs, ↓ Π) and decreasing the first derivative of suspension permittivity

increases osmotic pressure (↓ dεs/dc, ↑ Π). These changes will also shift the chemical poten-

tial curve upwards, as decreasing the first derivative of suspension permittivity will increase

the chemical potential (↓ dεs/dc, ↑ µ). For the spinodal transition to exist over the entire

range of volume fractions, d2W/dc2 > 0, which is guaranteed explicitly by the nature of the

Maxwell-Garnett permittivity model. In the case of Sihvola-Kong and Sen et al., for DMSO

and iPrOH this also holds, although the trend with respect to volume fraction is inverted,

as is illustrated in Figures 6.5 and 6.6 respectively. That is, for Maxwell-Garnett d2εs/dc2

monotonically decreases over the entire range of c, while for increasing values of a this trend

ceases to hold. In the case of a = 0.1 the second derivative decreases over the entire range of

c but the concavity is changed compared to a = 0, for a = 0.2 initially the second derivative

increases slightly before decreasing and this is also the case for a = 0.3 while for Sen et

al. d2εs/dc
2 monotonically increases in value. The value of d2εs/dc2 for both DMSO and
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iPrOH, and therefore d2W/dc2. were positive over the entire range of compositions for all

permittivity models studied, but the behavior versus c was still quite different compared

with assuming Maxwell-Garnett type polarization. This shift in behavior will also effect

the location of the critical point, as will the behavior of the third derivative. The third

derivatives for silica-DMSO and silica-iPrOH are shown in Figures 6.7 and 6.8 respectively.

The behavior of d3εs/dc3 varies considerably with the choice of permittivity model, from be-

ing a negative function which monotonically increases over the entire composition range for

Maxwell-Garnett (a = 0), to being an almost constant negative value for a = 0.1, starting as

a positive value and decreasing monotonically over the entire composition range for a = 0.2

and 0.3 while for the model of Sen et al. the third derivative is a positive, monotonically

increasing function. This holds for both silica-DMSO and silica-iPrOH, although the shift in

silica-iPrOH is relatively less than that of silica-DMSO, which holds for all derivatives. All

of these results indicate that a shift in the coexistence and spinodal lines, and the critical

point common to the onset of aggregation, should occur with accounting for c effects on εs.

6.3.2 Critical Point for Silica-DMSO and Silica-iPrOH

As a first measure of the influence of particle/multiscattering effects on permittivity and

the subsequent impact on electric-field induced phase transitions, we examined how the

critical point for these suspensions shifted with the different permittivity models as well as

for different particle sizes. Previously, we have examined the use of the Khusid and Acrivos

framework to predict the electric-field induced assembly of colloidal particles into larger

structures of various shapes and sizes (Ch. 5), with the suspension permittivity described

by Maxwell-Garnett polarization as in the original framework [144, 145, 157]. In that work,

silica particles of 0.32µm and 2µm in DMSO were taken as the system of interest and the

permittivity behavior of the system was assumed to be described by the Maxwell-Garnett

model. This approximation was done in the interest of examining the influence of any fluid

flows which arise due to gradients in chemical potential. However, it is now of interest for us
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Figure 6.3: First Derivative of Suspension Permittivity with respect to Volume Fraction vs.
Volume Fraction for Silica-DMSO

Figure 6.4: First Derivative of Suspension Permittivity with respect to Volume Fraction vs.
Volume Fraction for Silica-iPrOH
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Figure 6.5: Second Derivative of Suspension Permittivity with respect to Volume Fraction
vs. Volume Fraction for Silica-DMSO

Figure 6.6: Second Derivative of Suspension Permittivity with respect to Volume Fraction
vs. Volume Fraction for Silica-iPrOH
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Figure 6.7: Third Derivative of Suspension Permittivity with respect to Volume Fraction vs.
Volume Fraction for Silica-DMSO

Figure 6.8: Third Derivative of Suspension Permittivity with respect to Volume Fraction vs.
Volume Fraction for Silica-iPrOH
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to explore the validity of that hypothesis at least in terms of examining the influence on phase

transitions. The critical point, ccr and Ecr for silica-DMSO and silica-iPrOH suspensions

with particle diameters of 0.32µm and 2µm were determined for each of the permittivity

models described previously by solving eqns. 6.10 and 6.11 to determine the inflection point

of the spinodal line. The results for each system, permittivity model and particle size are

shown in Table 6.1.

dp εs(c) ccr Ecr

(µm) (V/m)

Silica-DMSO

0.32

a = 0 0.1121 1.59x105

a = 0.1 0.1201 1.64x105

a = 0.2 0.1299 1.70x105

a = 0.3 0.1424 1.78x105

Sen et al. 0.1401 1.89x105

2.00

a = 0 0.1121 1.02x104

a = 0.1 0.1201 1.05x104

a = 0.2 0.1299 1.09x104

a = 0.3 0.1424 1.14x104

Sen et al. 0.1401 1.21x104

Silica-iPrOH

0.32

a = 0 0.1157 3.26x105

a = 0.1 0.1217 3.34x105

a = 0.2 0.1286 3.44x105

a = 0.3 0.1368 3.56x105

Sen et al. 0.1367 3.67x105

2.00

a = 0 0.1157 2.09x104

a = 0.1 0.1217 2.14x104

a = 0.2 0.1286 2.20x104

a = 0.3 0.1368 2.28x104

Sen et al. 0.1367 2.35x104

Table 6.1: ccr and Ecr for Silica-DMSO and Silica-iPrOH

As was expected from the generated permittivity and permittivity derivative data for

these systems, there is indeed a large impact of the polarization model on both the critical

volume fraction and critical electric field strength. For DMSO the critical volume fraction

shifts from 0.1121 to 0.1424 with changing from Maxwell-Garnett to Sihvola-Kong with
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a = 0.3, with the value for using the permittivity equation of Sen et al. being 0.1401. The

critical volume fraction does not change with particle size, which was the case for the previous

work of Khusid and Acrivos using the Maxwell-Garnett model (ccr was only a function of β).

For isopropanol, the ccr also increases with increasing value of the Sihvola-Kong parameter

but the Sen et al. result is much closer to that of a = 0.3 compared to the case of DMSO

(0.1367 vs. 0.1368). The critical electric field strength increases with increasing value of a

while Sen et al. has the largest value for all systems studied. This increase in the electric

field strength required for the onset of phase transition is to be expected with accounting

for multiscattering effects, as these will lessen the overall interparticle force. The critical

field strength at the same particle size is higher for silica-iPrOH versus silica-DMSO, which

is also expected as the permittivity of silica-iPrOH is lower than that of silica-DMSO. Of

interest is that for a = 0.3 and the Sen et al. model, the critical volume fraction is higher for

a = 0.3 while the critical field strength is higher for Sen et al. This can be explained from

examining the second derivatives (Figures 6.5 and 6.6) and third derivatives (Figures 6.7 and

6.8) between these two models. For the second derivatives, the values are positive for both

permittivity models and the case of a = 0.3 is larger than that of Sen et al. for compositions

up to approximately 0.5 (DMSO) and 0.45 (iPrOH). In the case of the third derivative, for

Sen et al. the function is positive over the entire composition range and also larger than the

value for a = 0.3 which starts off as a lower positive value and eventually becomes negative.

Since eqn. 6.10 depends on the second derivative of permittivity and eqn. 6.11 depends on

both the second and third derivative, the interplay between these values gives rise to the

interesting shift in critical volume fraction. The impact is smaller for isopropanol compared

to DMSO, as the derivative values for Sen et al. and Sihvola-Kong a = 0.3 are closer in that

case.
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6.3.3 Coexistence and Spinodal Lines for Silica-DMSO and Silica-

iPrOH

To continue the study of the influence of composition related polarization effects, the coexis-

tence and spinodal lines for silica-DMSO and silica-iPrOH were constructed for 0.32µm and

2µm diameter particles. The spinodal line is determined through solution of eqn. 6.10, for

electric field intensities ranging from near to the critical field strength (Ecr) to field intensities

much higher than the critical value. More specifically, the spinodal compositions in the range

of dimensionless electric field strength (E/Ecr) from 1 to 7 were calculated by solving eqn.

6.10 for each permittivity model. After obtaining these values, the spinodal compositions

were used as an initial guess for solving for the coexistence line, eqn. 6.9, at the same range

of dimensionless field strengths. The resulting phase diagrams are shown for silica-DMSO

in Fig. 6.9, where volume fraction has been normalized against the critical volume frac-

tion (c/ccr). As can be seen from examining this figure, the Maxwell-Garnett polarization

model occupies a larger dimensionless space compared with other permittivity models and

the spacing between the spinodal and coexistence line is also larger. With increasing values

of the Sihvola-Kong parameter, the spinodal and coexistence lines shift to the left and the

distance between them decreases. The spinodal and coexistence lines for Sen et al. are to the

right of a = 0.3, which results from the large difference in critical volume fraction between

Sen et al. and a = 0.3, where Sen et al. has a lower value, shifting the normalized curve

to the right. Additionally, there is a slight kink/discontinuity which arises when the volume

fraction becomes higher than 0.5 corresponding to the particle entering the diverging region

of compressibility (Z and it’s derivatives are continuous at c = 0.5). For silica-isopropanol,

the result is similar but with a few important differences, as seen in Fig. 6.10. Once again,

the Maxwell-Garnett model result occupies the largest amount of dimensionless space and

this region decreases with increasing values of the Sihvola-Kong parameter. Sen et al. is still

to the right of a = 0.3 but in this case, the results are much closer together. In particular, the
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coexistence lines are virtually overlapping each other. This is due to the critical composition

for Sen et al. being virtually identical to that obtained by assuming the suspension follows

the Sihvola-Kong model with a = 0.3, which as explained previously results from the lower

permittivity contrast between silica and isopropanol compared to silica and DMSO.

These results indicate the importance of moving beyond using the Maxwell-Garnett

framework and accounting for both concentrated suspension and structural effects on per-

mittivity behavior. However, use of the electrical energy expression that is the basis for

calculating the spinodal and coexistence behavior of suspensions in this work (eqn. 6.1) is

limited to the case of dielectric colloids in a non-conducting suspension. Extending for con-

ductivity effects would allow for a larger class of suspensions to be treated in this framework,

with a wider variety of behavior.

It has been observed for so-called ‘leaky-dielectric’ suspensions, that is for suspensions

with both a dielectric and conductive component, that the sign of the 2nd derivative of

the real part of permittivity can change as volume fraction increases. This change can

actually lead to conducting suspensions to be unable to aggregate under certain conditions

[157]. For purely dielectric particles in our work and for the results previously obtained

using Maxwell-type polarization, this phenomena is not possible. An extension to account

for weak conductivity effects is possible by utilizing the Brillouin equation, which can be

derived from macroscopic continuum electrodynamics, but only applies for a weakly lossy

material and when the time-variations of the field are of a far longer time scale compared

to the relaxation of the suspension. This limits use of the Brillouin equation to weakly

conducting suspensions at very low frequencies, ωts ≪ 1 where ts is the dielectric relaxation

time, although it does reduce to the electrical energy of a non-conducting suspension, eqn.

6.1, if no frequency dependence is assumed. This means the results from this work and

from an extension using the Brillouin equation could be potentially combined to use for

the very low frequency and high frequency case. Khusid and Acrivos extended their theory

to account for conductivity effects using both a statistical mechanics approach based on
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Figure 6.9: Dimensionless Coexistence and Spinodal Lines for Silica-DMSO

Figure 6.10: Dimensionless Coexistence and Spinodal Lines for Silica-iPrOH
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assuming a cell-type model and were able to describe systems over the range of frequency

behavior presuming that dielectric and conductive properties for the particle and medium

combination are known. However, in the limit of a non-conducting suspension, the equation

they derived based on this cell-type approach for electrical energy density yields that of

eqn. 6.1 with suspension permittivity described by the Maxwell-Garnett model. From this

work, we can conclude that the Maxwell-Garnett approximation yields very different results

compared with accounting for multiparticle effects and structural changes in the solid-phase,

so finding a way to extend this framework to account for conductivity effects would be

quite valuable. Additionally it indicates that use of the Maxwell-Garnett approximation for

simulating pattern formation using electric fields, as we have previous done, is limited to

situations where the maximum concentration in the system is less than approximately 0.3,

which restricts its applicability and usefulness as a quantitative model. Incorporating these

expressions in a cell-model framework is not necessarily tractable. However, a similar result

to the cell-model was derived by the previous authors using a statistical mechanics approach

based on assuming a random microstructure and this may be a more useful approach to

using existing permittivity models which have shown good predictive ability for hard sphere

suspensions over a wide range of compositions and solid-phase structure types [157].

6.4 Conclusions

Electric-field induced phase transitions of dielectric colloids were predicted using an extension

of a thermodynamic framework previously developed by Khusid and Acrivos. This frame-

work treats the free energy of a suspension as having two primary contributions, entropic and

electric. Entropic contributions are treated in a hard-sphere manner, with the suspension

compressibility assumed to follow the Carnahan-Starling equation of state. Electrical contri-

butions are accounted for using the average electrical energy of a non-conducting suspension

from continuum electrodynamics. The influence of multiscattering (volume fraction) effects
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on the resulting coexistence and spinodal lines of non-conducting suspensions was exam-

ined through use of two effective permittivity models, the Sihvola-Kong formulation and the

self-consistent permittivity model of Sen et al. The Sihvola-Kong model is a semi-empirical

model which contains an adjustable parameter, a, to account for volume fraction effects

on the dipole coefficient allowing the model to shift from the isolated dipole approximation

(a = 0) while the self-consistent permittivity model of Sen et al. is a predictive model. It has

been demonstrated from experimental dielectric (and conductivity) measurements that these

models are capable of describing the behavior of mixtures of various solids packing types and

lattice structures (RCP, FCC, BCC) over the entire composition region for hard spheres. It

has also been shown that the Maxwell-Garnett and Sen et al. model form an upper and

lower bound respectively on the suspension permittivity of mixtures undergoing these types

of phase transitions, and that a Sihvola-Kong parameter value of 0.2 describes random close

packed structures from 0 ≤ c < cmax. Use of these models should allow for the influence of

nature of the electric-field induced phase transition (lattice type) to also be explored, in terms

of shift in coexistence and spinodal lines. Model colloidal systems were considered, that of

silica-DMSO and silica-isopropanol, which represent non-conducting suspensions of dielectric

particles in the frequency ranges of interest (MHz). The resulting coexistence and spinodal

lines for these systems experienced a substantial change upon accounting for multiscattering

effects, with DMSO experiencing a more dramatic change versus isopropanol owing to the

larger dielectric contrast between silica and DMSO versus silica and isopropanol.

Accounting for multiparticle effects on suspension permittivity causes a significant shift

in the behavior of the derivatives of permittivity with respect to volume fraction. This

shift leads to large changes in the chemical potential and osmotic pressure, which leads to

shifts in the coexistence and spinodal lines and the critical concentration and field strength

for electric-field induced phase transitions. More specifically, increasing the value of the

Sihvola-Kong parameter from 0 (Maxwell-Garnett model) leads to an increase in the critical

concentration and field strength for aggregation, as well as a decrease in the overall region
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of coexistence and spinodal transitions. The behavior of the different permittivity models

was not completely 1:1 with their respective magnitudes in permittivity, the derivatives of

these functions played a large role in determining the magnitude of coexistence and spin-

odal line shifts. The Sen et al. self-consistent permittivity model was found to predict a

positive, monotonically increasing value for d3εs/dc3 while the values obtained when using

the Sihvola-Kong model with a = 0.3 are monotonically decreasing, starting off positive

but becoming negative at higher volume fractions. This leads to the interesting shift in the

critical concentration versus critical electric field strength between these two models, where

the Sihvola-Kong predicts a higher critical concentration but a lower critical electric field

strength. Similarily, d2εs/dc2 is found to be positive and monotonically decreasing when us-

ing the Maxwell-Garnett formulation but is positive and monotonically increasing for the Sen

et al. model, while it is not necessarily monotonic depending on the choice of Sihvola-Kong

parameter. This affects the resulting spinodal lines, determining the boundary between slow

and fast aggregation. This framework is not limited to the permittivity models chosen for

this work but is generally applicable to use with any effective permittivity model, as long

as the suspension is non-conducting. Extension to include conductivity effects along with

volume-fraction dependence of permittivity (and conductivity) is desirable as it would be

suitable for predicting properties of interest in colloidal phase transition studies, as well as

electrorheology work, and this is the subject of ongoing investigations.



Chapter 7: Summary and Future

Recommendations

7.1 Summary

Non-uniform electric fields represent a versatile method for assembling structures of various

shape, size and order from colloidal particles. With a single microelectrode geometry, a

wide range of structures can be generated by changing various parameters such as applied

voltage, frequency, particle size, initial solids concentration and even droplet volume. These

structures can be close-packed or more ordered colloidal structures and used in various appli-

cations, such as photonic materials or templates for forming inverse structures. In this thesis

the use of non-uniform electric field forces, specifically dielectrophoresis and electroosmosis,

were explored experimentally for creation of structures with a tailored shape, size and order

and theoretically for describing the assembly process and resulting phase-transitions.

Three significant contributions to the existing research in this area are detailed:

1. Experimental demonstration of the formation and stabilization of three-dimensional

close-packed structures from colloidal silica using non-uniform electric fields.

The use of pluronic F-127, a triblock co-polymer, allowed for preserving large struc-

tures (100+µm) which shifted in shape significantly with the applied voltage. Pluronic,

which is a surfactant, also inhibited formation of structures with any degree of colloidal

ordering. It was also found that near-refractive index matching of suspensions encour-

aged ordered-type structures, as was evident from aligned groups of particle chains

visible through optical microscopy. All assemblies showed significant distortion and

damage upon medium evaporation, leading to the investigation of various techniques

144
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to maintain structures. Typically used polymers or monomers for immobilizing col-

loidal crystals, such as PEGMA/PEGDMA or ETPTA, were not effective at preserving

the assemblies formed in this work.

2. Demonstration of the importance of electrohydrodynamic flows in colloidal assembly.

The influence of electrohydrodynamic flows on the assembly of colloidal particles into

larger structures was demonstrated through the use of numerical simulations. These

simulations were carried out in 2d for numerical simplicity and are based on a con-

tinuum thermodynamic framework. Electrohydrodynamic flows resulting solely from

the presence of a non-uniform electric field, as opposed to resulting from temperature

gradients (electrothermal flows) or field action on the electrode double layer (electroos-

mosis), were shown to be dominant compared to dielectrophoretic forces over a wide

range of conditions. This fluid flow effect became more dominant for smaller parti-

cles, due to entropic contributions to the resulting fluid flow increasing coupled with

a decrease in the magnitude of dielectrophoretic forces. Experimental validation was

carried out for a number of model colloidal systems and it was shown that the 2d

simulations were only able to provide qualitative predictions of shape even for small

droplet volumes. The presence of fluid flows has been noted previously experimentally

but had as of yet been unexplained.

3. Demonstration of the impact of multiscattering/multiparticle effects on electric-field

induced phase transitions of dielectric colloids.

The same thermodynamic framework previously used for 2d simulations of the as-

sembly process is here modified to account for multiscattering/multiparticle effects on
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suspension permittivity and the impact this has on the resulting electric field driven

phase transition of colloids. In order to directly make use of the electrical energy

density term available from continuum electrodynamics, a dielectric (non-conducting)

suspension was considered as a preliminary case. Multiparticle effects were accounted

for by examining the use of two continuum permittivity models which have been shown

to accurately describe high concentration regions and different types of solid packing

structures, the models of Sihvola and Kong and Sen et al., and compared with the

isolated dipole result of Maxwell-Garnett type polarization. It was shown that ac-

counting for multiparticle effects had a large impact on the resulting spinodal (fast

aggregation/phase change region) and coexistence (slow aggregation/phase change re-

gion) lines of the suspension. This result occurred due to shifts in both the permittivity

versus solids packing fraction relationship as well as the curvature (derivatives) of this

relationship. The results from this work are potentially useful in predictions of the be-

havior of a number of physical systems, such as electrorheological fluids, and also show

that these multiparticle effects should be explored for potential impact on electric-field

induced assemblies.

7.2 Future Recommendations

1. Continue to pursue stabilization using epichlorohydrin.

This was the most promising stabilization approach for preserving three-dimensional

structures while allowing for ordered-structures to occur found in this work, with pre-

liminary experiments carried out using PMMA-co-AA colloids synthesized by Dr. Niels

Smeets. To pursue this methodology will require optimization of the chemistry for

functionalization of acrylic acid surface groups, allowing for control the density of

these groups, and find a balance between suspension stability and sufficient reactivity
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for stabilization. The technique can be used with additional polymeric stabilization as

is required.

2. Explore fabrication of microelectrodes on transparent substrates and pursue more ad-

vanced microscopy techniques.

The inability to directly visualize particles upon concentration into a assembly repre-

sented a significant barrier to this research, compounded by the difficulty in stabilizing

assemblies. Fabricating the microelectrodes on a transparent substrate (glass) would

allow for use of both transmittance and reflectance modes for conventional optical

microscopy setups present in our research group, as well as allow for use of confocal

microscopy. The confocal microscopy systems available were not suitable for this work,

as they rely on transmitted light and our current substrates are non-transparent sili-

con/silicon dioxide.

3. Extension of the simulation framework demonstrated in this thesis to three-dimensional

systems.

This is a crucial extension for testing the ability of this framework to provide fully pre-

dictive models for electric-field driven assembly of structures from colloidal particles.

It will also not be a trivial numerical extension, the three-dimensional case has signifi-

cantly higher tolerance requirements and poorer time-stepping performance. It is likely

that a more complicated numerical method compared to the finite element method in

Comsol will be required. The use of more advanced finite-difference based techniques,

such as operator splitting, or polynomial collocation methods, such as Chebyshev poly-

nomials, is recommended.
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4. Extension of the existing phase diagram work to include conducting systems, as well

as calculation of the impact of multiscattering effects on particle trajectories.

The results for purely dielectric suspensions indicated a large impact on the result-

ing phase diagrams (coexistence and spinodal regions) for electric-field induced phase

transitions. This result should be extended to include conducting suspensions, either

through accounting for weakly conducting suspensions using Brillouin’s formula or ex-

tension over the entire range of frequencies using a statistical mechanics type approach.

Additionally, the impact of accounting for multiscattering effects on the resulting parti-

cle concentration trajectories in a non-uniform electric field should be considered. This

work has been performed by Khusid and Acrivos (1999) based on the isolated dipole

approach, but the result of extending for multiparticle/multiscattering effects should

be considered.
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Appendix A: MATLAB Codes

A.1 Clausius-Mossotti Factor Calculation

% values are for water and carbon black currently

%\cite{RamanSpecExplan} can be altered accordingly

% Particle

eps_vacuum = 8.854e-12; % permittivity of a vacuum, F/m

epsSolid = 5; % relative permittivity of particle

sigmaSolid = 1e5; % conductivity of particle, S/m

% Medium

eps0 = 78.4; % permittivity of medium

epsInf = 5.2; % permittivity at infinite frequency

tau = 8.28e-12; % time constant of medium

sigmaMedium = 15.5e-3; % conductivity medium

epsMedium = 78.4; % permittivity of medium

omega=2*pi*logspace(-1,9); % angular frequency

% complex permittivity of solid and medium

epsilonP = epsSolid*eps_vacuum - i*sigmaSolid./omega;

epsilonM = epsInf + (eps0-epsInf)./(1+i*(omega*tau));

epsilonM = epsilonM*eps_vacuum;

% Clausius-Mossotti factor

Ke = (epsilonP-epsilonM)./(epsilonP+2*epsilonM);

% Maxwell-Wagner time constant

tau0 = (epsSolid - epsMedium)*

eps_vacuum/(sigmaSolid - sigmaMedium);

tauMW = (epsSolid + 2*epsMedium)

*eps_vacuum/(sigmaSolid + 2*sigmaMedium);

semilogx(omega,real(Ke),’o-’)

163



APPENDIX A. MATLAB CODES 164

A.2 Phase Equilibrium Model for Zero Electric Field

function phaseEqModel()

clear all;

clc;

T = 298; % temperature, K

% medium parameters

epsilon = 78; % relative permittivity

z = 1; % ion valence

% particle parameters

Zeta = -62*10^-3; % zeta potential, V

dP = 330e-9; % particle diameter, m

conc = logspace(-6,-1); % conc. of ionic species, mol/L

initialPhi = zeros(1,length(conc));

initialD = ones(1,length(conc));

initialq = zeros(1,length(conc));

initialValues = [[initialPhi];[initialD];[initialq]]

options = optimset(’MaxIter’,10000,’MaxFunEvals’,100000)

AnsDisorder = fsolve(@phaseModel,initialValues,options,

conc,epsilon,z,Zeta,dP,T,0.5);

PhiDisorder = AnsDisorder(1,:);

AnsOrder = fsolve(@phaseModel,initialValues,options,

conc,epsilon,z,Zeta,dP,T,0.55);

PhiOrder = AnsOrder(1,:);

semilogx(conc,AnsDisorder(1,:),conc,AnsOrder(1,:));

disp([conc]’)

function F = phaseModel(X,conc,epsilon,z,Zeta,dP,T,

LowOrHighFactor)

rP = 1/2*dP; % particle radius

kB = 1.38*10^-23; % Boltzmann constant, J/K

N_A = 6.022*10^23; % Avogadro’s number

e = 1.6*10^-19; % charge of an electron, C
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epsilon0 = 8.85*10^-12; % permittivity of a vacuum, F/m

phiS = e*z*Zeta/(kB*T); % dimensionless surface potential

nB = conc*N_A/(1/1000); % number of ions in bulk, #/m^3

phi = X(1,:); % volume fraction

d_HS_dimensionless = X(2,:); % dimensionless hard sphere diameter

q_dimensionless = X(3,:); % dimensionless surface charge

% Debye parameter of particle free suspension

kappa0 = sqrt(e^2/(epsilon*epsilon0*kB*T)*(2*z^2*nB));

% charge of a single, isolated particle in medium

q0 = epsilon*epsilon0*kB*T/(e*z)*kappa0.*(2*sinh(1/2*phiS)

+4./(kappa0*rP)*tanh(1/4*phiS));

kappaSq = e^2/(epsilon*epsilon0*kB*T)*

(2*z^2*nB-3*q_dimensionless.*q0*z/(rP*e))./(1-phi);

% Debye parameter with particle effects

kappa = sqrt(kappaSq);

% alpha factor

alpha = 4*pi*epsilon*epsilon0*Zeta^2*rP^2*kappa.*

exp(2*rP*kappa)/(kB*T);

F(1,:) = kappa.*d_HS_dimensionless*dP -

alpha.*exp(-kappa.*d_HS_dimensionless*dP);

F(2,:) = phi - LowOrHighFactor*(1./d_HS_dimensionless).^3;

F(3,:) = q_dimensionless./q0 - epsilon*epsilon0*kB*T/(e*z)

*kappa.*(2*sinh(1/2*phiS)+4./(kappa*rP)*tanh(1/4*phiS));

A.3 Permittivity and Derivative Fits

function F = PermPropertyGen()

epsP = 4.5;

epsF = 78;

M = 200;
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c = linspace(0,0.64,M);

c = transpose(c);

delta_c = c(2)-c(1);

epsSval = zeros(M,1);

epsGuess = epsF;

options = optimset(’MaxFunEvals’,5000,’MaxIter’,5000,

’TolX’,1e-7,’TolFun’,1e-7);

% a = 0.1;

for i = 1:length(c)

epsSval(i) = fsolve(@(epsSusp) @epsSuspFind(epsSusp,c(i),0.1,epsP,epsF)

,epsGuess,options);

epsGuess = epsSval(i);

end

epsDev = epsSval - epsF;

A = [c c.^2 c.^3 c.^4 c.^5];

Atrans = transpose(A);

Parm_a_point1 = inv(Atrans*A)*Atrans*epsDev

% a = 0.2;

for i = 1:length(c)

epsSval(i) = fsolve(@(epsSusp) @epsSuspFind(epsSusp,c(i),0.2,epsP,epsF)

,epsGuess,options);

epsGuess = epsSval(i);

end

epsDev = epsSval - epsF;

A = [c c.^2 c.^3 c.^4 c.^5];

Atrans = transpose(A);

Parm_a_point2 = inv(Atrans*A)*Atrans*epsDev

% a = 0.3;

for i = 1:length(c)

epsSval(i) = fsolve(@(epsSusp) @epsSuspFind(epsSusp,c(i),0.3,epsP,epsF)

,epsGuess,options);

epsGuess = epsSval(i);

end

epsDev = epsSval - epsF;

A = [c c.^2 c.^3 c.^4 c.^5];
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Atrans = transpose(A);

Parm_a_point3 = inv(Atrans*A)*Atrans*epsDev

% Sen et al.

for i = 1:length(c)

epsSval(i) = fsolve(@(epsSusp) @epsSuspFindSen(epsSusp,c(i),epsP,epsF)

,epsGuess,options);

epsGuess = epsSval(i);

end

epsDev = epsSval - epsF;

A = [c c.^2 c.^3 c.^4 c.^5];

Atrans = transpose(A);

Parm_Sen = inv(Atrans*A)*Atrans*epsDev

function F = epsSuspFind(epsSusp,c,a,epsP,epsF)

epsA= epsF+a*(epsSusp-epsF);

F_LHS = epsSusp;

F_RHS = epsF

+ 3*c*(epsP-epsF)*(epsA)/(3*epsA+(1-c)*(epsP-epsF));

F = F_LHS-F_RHS;

function F = epsSuspFindSen(epsSusp,c,epsP,epsF)

F = (epsF/epsSusp)^(1/3) - (epsP-epsF)/(epsP-epsSusp)*(1-c);

A.4 Coexistence and Spinodal Calculation with Electric

Field

function phaseEqModel_a_point3()

clc;

% Constants

kB = 1.38e-23; % Boltzmann Constant, J/K

eps0 = 8.85e-12; % Vacuum Permittivity, F/m

% Physical Properties

dP = 2e-6; % diameter, m

T = 293; % Temp, K
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epsF = 46.8; % rel. permittivity DMSO

epsP = 4.5; % rel. permittivity Silica

A = 1.85; % Carnahan-Starling Constant

cMax = 0.64; % Max Packing Fraction

l0 = 100e-6; % Electrode Gap Spacing

Vapplied = [0.5 2.5 5 7.5 10 12.5 15 17.5 20]/sqrt(2); % applied voltages, RMS

p = [epsF -60.53663 15.91887 5.00645 -1.88532 -0.89375];

% Derived Properties

vP = 4/3*pi*(dP/2)^3;

ReKe = (epsP-epsF)/(epsP+2*epsF);

Eapplied = Vapplied/l0;

options = optimset(’MaxFunEvals’,5000,’MaxIter’,5000,

’TolX’,1e-7,’TolFun’,1e-6);

Parm = fsolve(@(Parm) @crPropCalc(Parm,epsF,eps0,

ReKe,vP,kB,T,cMax,A,p),[1 7],options);

cCr = cMax/2*(tanh(Parm(1))+1)

Ecr = 10^Parm(2)

vPover_kBT = vP/(kB*T);

LambdaCr = vP*Ecr^2/(kB*T)*d2epsdc2(cCr,p);

Eval = [linspace(1.075,2,100) linspace(2.1,7,25)];

E = Ecr*Eval;

lowX_spin = zeros(size(E));

highX_spin = zeros(size(E));

options = optimset(’MaxFunEvals’,5000,’MaxIter’,5000,’TolX’,1e-7,’TolFun’,1e-6);

Xlow = -5;

Xhigh = 3;

% Spinodal compositions

for i = 1:length(E)

i

lowX_spin(i) = fsolve(@(X) @spinodal(X,E(i),epsF,eps0,

ReKe,A,cMax,kB,T,vP,p),Xlow,options);

highX_spin(i) = fsolve(@(X) @spinodal(X,E(i),epsF,eps0,

ReKe,A,cMax,kB,T,vP,p),Xhigh,options);

Xlow = lowX_spin(i);

Xhigh = highX_spin(i);

end

cLow_spin = cMax/2*(tanh(real(lowX_spin))+1);
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cHigh_spin =cMax/2*(tanh(real(highX_spin))+1);

% Coexistence compositions

cLow_coex = zeros(size(E));

cHigh_coex = zeros(size(E));

options = optimset(’MaxFunEvals’,5000,’MaxIter’,5000,

’TolX’,1e-7,’TolFun’,1e-6);

lowX_guess = lowX_spin(1);

highX_guess = highX_spin(1);

for i = 1:length(E)

i

X_coex = fsolve(@(X) @coexistence(X,E(i),epsF,eps0,

ReKe,A,cMax,kB,T,vP,p),[lowX_guess highX_guess],options);

cLow_coex(i) = cMax/2*(tanh(real(X_coex(1)))+1);

cHigh_coex(i) =cMax/2*(tanh(real(X_coex(2)))+1);

lowX_guess = X_coex(1);

highX_guess = X_coex(2);

end

cLow_coex = fliplr(cLow_coex);

E_Low = fliplr(E);

cLow_spin = fliplr(cLow_spin);

Ecr

cCr

c_coex = [cLow_coex cCr cHigh_coex];

c_spin = [cLow_spin cCr cHigh_spin];

E_overall = [E_Low Ecr E];

c_coex = transpose(c_coex);

c_spin = transpose(c_spin);

E_overall = transpose(E_overall);

EoverEcr = E_overall/Ecr;

c_coexDim = c_coex/0.64;

c_spinDim = c_spin/0.64;

disp([EoverEcr c_coexDim c_spinDim ])

save phaseData_a_point3.mat c_coexDim c_spinDim EoverEcr Ecr cCr

plot(cCr,Ecr,’ok’,cLow_spin,E,’--k’,cHigh_spin,

E,’--k’,cLow_coex,E,’ok’,cHigh_coex,E,’ok’)
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function F = coexistence(X,E,epsF,eps0,ReKe,A,cMax,kB,T,vP,p)

cLow = cMax/2*(tanh(real(X(1)))+1);

cHigh =cMax/2*(tanh(real(X(2)))+1);

vPover_kBT = vP/(kB*T);

lambda = 1/2*eps0*epsF*E^2*vPover_kBT;

Zlow = Zfinder(cLow,A,cMax);

Zhigh = Zfinder(cHigh,A,cMax);

df0dc_low = df0dc(cLow);

df0dc_high = df0dc(cHigh);

epsSusp_high = epsSusp(cHigh,p);

epsSusp_low = epsSusp(cLow,p);

depsdc_high = depsdc(cHigh,p);

depsdc_low = depsdc(cLow,p);

mu_int = (depsdc_high-depsdc_low)/epsF;

os_int = ((epsSusp_high-cHigh*depsdc_high)

-(epsSusp_low-cLow*depsdc_low))/epsF;

F(1) = log10(abs(df0dc_high-df0dc_low))-log10(abs(lambda*mu_int));

F(2) = log10(cHigh*Zhigh-cLow*Zlow)-log10(lambda*os_int);

function F = spinodal(X,E,epsF,eps0,ReKe,A,cMax,kB,T,vP,p)

c = cMax/2*(tanh(real(X))+1);

Z = Zfinder(c,A,cMax);

dZdc = dZdcFinder(c,A,cMax);

d2Wdc2 = eps0*d2epsdc2(c,p)*E^2/2;

vPover_kBT = vP/(kB*T);

F =log10(abs(Z+c*dZdc))-log10(abs(c*vPover_kBT*d2Wdc2));

function F = crPropCalc(Parm,epsF,eps0,ReKe,vP,kB,T,cMax,A,p)

c = cMax/2*(tanh(real(Parm(1)))+1);

E = 10^Parm(2);

Z = Zfinder(c,A,cMax);

dZdc = dZdcFinder(c,A,cMax);

d2Zdc2 = d2Zdc2Finder(c,A,cMax);

vPover_kBT = vP/(kB*T);

d2Wdc2 = eps0*d2epsdc2(c,p)*E^2/2;
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d3Wdc3 = eps0*d3epsdc3(c,p)*E^2/2;

F(1) = Z + c*dZdc-c*vPover_kBT*d2Wdc2;

F(2) = 2*dZdc+c*d2Zdc2-vPover_kBT*(d2Wdc2+c*d3Wdc3);

function F = epsSusp(c,p)

F=p(1)+p(2)*c+p(3)*c^2+p(4)*c^3+p(5)*c^4+p(6)*c^5;

function F = depsdc(c,p)

F=p(2)+2*p(3)*c+3*p(4)*c^2+4*p(5)*c^3+5*p(6)*c^4;

function F = d2epsdc2(c,p)

F =2*p(3)+3*2*p(4)*c+4*3*p(5)*c^2+5*4*p(6)*c^3;

function F = d3epsdc3(c,p)

F =3*2*p(4)+4*3*2*p(5)*c+5*4*3*p(6)*c^2;

function F = Zfinder(c,A,cMax)

F = (1+c+c.^2-c.^3)./(1-c).^3.*(c>=0).*(c<0.5)

+A./(cMax-c).*(c>=0.5).*(c<0.64);

function F = dZdcFinder(c,A,cMax)

F = ((1+2*c-3*c.^2)./(1-c).^3+3*(1+c+c.^2-c.^3)./(1-c).^4).*(c>=0).*(c<0.5)

+A./(cMax-c).^2.*(c>=0.5).*(c<0.64);

function F = d2Zdc2Finder(c,A,cMax)

F = ((2-6*c)./(1-c).^3+3*(1+2*c-3*c.^2)./(1-c).^4

+3*(1+2*c-3*c.^2)./(1-c).^4

+12*(1+c+c.^2-c.^3)./(1-c).^5).*(c>=0).*(c<0.5)

+2*A./(cMax-c).^3.*(c>=0.5).*(c<0.64);

function F = df0dc(c)
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df0_lowRange = log((c+1e-13)/exp(1))+1

-2*c*(3*c-4)/(c-1)^2-3*c^2/(c-1)^2+2*c^2*(3*c-4)/(c-1)^3;

df0_highRange = log((c+1e-13)/exp(1))+10.932+1.891*log(c+1e-13)

-2.891*log(16-25*c)+1.891+72.268*c/(16-25*c);

F = df0_lowRange*(c>=0)*(c<0.5)+df0_highRange*(c>=0.5)*(c<0.64);



Appendix B: Finite Element Method

The Finite Element Method (FEM) is a powerful numerical technique for solving partial

differential equations (PDEs). The basic idea behind FEM is to re-state a given set of

differential-algebraic equations (DAEs) from the strong form into the weak form. The strong

form of a set of DAEs is the familiar set of PDEs, called the strong form since variables are

required to be continuous and to have continuous derivatives to the order of the equation.

The weak form is the integral form of the DAE system, the only requirement is that discon-

tinuities have to be integrable [173].

As an example, consider a stationary PDE in three spatial dimensions on the domain Ω:

∇ · ~Γ(u) = F (u) (B.1)

Now, converting this equation to the weak form (integral equation). Taking eq. (B.1),

multiplying by an arbitrary function v which is defined on Ω we obtain:

∫

Ω

v∇ · ~Γ(u)dV =

∫

Ω

vF (u)dV (B.2)

Now, applying the divergence theorem1:

∫

∂Ω

v~Γ(u) · ~ndS −

∫

Ω

∇v · ~Γ(u)dV =

∫

Ω

vF (u)dV (B.3)

To deal with boundary conditions, depends on the nature of boundary, either Dirichlet or

Neumann [173]:

u = f on ∂Ω (B.4)

1 v∇ · ~Γ(u) = ∇ · (v~Γ(u))−∇(u) · ~Γ(u) and
∫

∂Ω
(~F · ~n)dS =

∫

Ω
(∇ · ~F )dV [23, 174]

173
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− ~n ·
∂u

∂~n
= g on ∂Ω (B.5)

When a PDE is constrained by eq. (B.5), Neumann BC, the boundary term in eq. (B.3)

disappears, making the Neumann boundary condition the natural boundary condition for

the weak form. In order to deal with Neumann boundary conditions (which lead to a sin-

gular matrix when attempting to solve as there is no unique solution), lagrange multipliers

are used to write the boundary integrals as constraints. The overall solution procedure is

described below.

First, the function u is decomposed into a series of functions:

u =
∑

i

uiφi (B.6)

In general, basis functions can be any function defined on the domain Ω. For sines and

cosines, the function is approximated by a Fourier series (spectral basis). As an alternative,

one could use Chebyshev polynomials and obtain an approximation based on pseudospectral

basis functions. For FEM, basis functions are chosen to be local functions, i.e. they are

only defined on one volume element, and are generally interpolating polynomials, such as

Lagrangian or Hermitian polynomials. This is both the strength and weakness of FEM [173].

The test function, v, is generally chosen to be equivalent to basis functions for u, with this

method known as the Galerkin approach (vi = φi). Substituting the expressions for u and

v into eq. (B.3) obtains a (k + 1)N system of equations for U the vector of unknown ui,

with k being the order of the element interpolating polynomial and N being the number of

elements. Linearizing this equation, the following result is arrived at:

L(U) = 0 L(U0) = −
∂L

∂U
(U0)(U − U0) (B.7)
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The value of L at the linearization point U0, L(U0) is referred to as the load vector and the

value of the negative Jacobian of L at the linearization point, − ∂L
∂U

(U0) is called the stiffness

matrix, K(U0). This is the canonical case for FEM, with Neumann BCs. However, this

setup gives a singular (non-invertable) stiffness matrix. In order to overcome this Lagrange

multipliers are used. Starting from writing the BCs in terms of the basis functions [173]:

M(U) = 0 M(U0) = −
∂M

∂U
(U0)(U − U0) (B.8)

where M(U) = 0 is the system of boundary equations (not necessarily N as not all basis

functions contribute to the BCs) and N = −∂M
∂U

(U0).

The stiffness matrix equation, eq. (B.7) is then supplemented by adding a vector of unknown

Lagrange multipliers, Λ [173]:

K(U0)(U − U0) +N(U0)
TΛ = L(U0) (B.9)

If eq. (B.8) is satisfied then eq. (B.9) will have a vector of unique Lagrange multipliers.

This approach can be used to impose any sort of constraint which can be expressed in the

weak form.

The following is a methodology for obtaining numerically accurate resolution of the PDEs

involved in the simulations of Ch. 5:

1. Draw the system geometry while making use of all available symmetry planes for model

reduction. Use of symmetry planes vastly reduces the computational task involved,

allowing for a higher mesh resolution to be obtainabe in the reduced model.

2. Generate an initial mesh with the highest element density near the areas of highest
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flux, i.e. near the electrode edges and the dielectrophoretic trap. The mesh needs to

be fairly fine everywhere but in particular these areas.

3. Input the desired physics coefficient terms for the electric field, fluid velocity profile

and concentration profile. The work presented in this thesis has shown that although

there are large gradients present, the inertial terms in the Navier-Stokes equations are

indeed negligible and therefore transient Stokes-flow should be considered. The flow

profile is not stationary with time, unlike the nearly static electric field profile and this

should be accounted for.

4. Since this is a highly convection dominated PDE system, numerical stabilization is re-

quired to achieve physical results as well as to improve time-stepping properties. There

are a number of methods available for artificial diffusion/viscosity, but implementation

in Comsol is somewhat limited due to limited geometric information about the mesh

being available. An O(h2) isotropic artificial diffusion worked well for stabilizing simu-

lations in the work carried out in this thesis but more advanced numerical techniques

will likely be required to extend to three-spatial dimensions and time.

5. Solve for the initial electric field profile (stationary) using the initial concentration

(volume fraction) and zero fluid flow. This is a linear, symmetric PDE, as there are no

permittivity gradients without concentration gradients. As such, a stationary solver

that takes advantage of these symmetries should be employed (ex. PARDISO).

6. Using the calculated initial electric field profile, calculate the initial fluid flow profile.

This is also a linear symmetric PDE (Stokes’ flow) so a solver which takes advantage

of equation symmetries should be utilized.

7. Using the calculated electric field and fluid flow profiles as the initial conditions, along

with the initial volume fraction, use a time-stepping algorithm to solve for the desired
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time-span. This time-span can be estimated from order of magnitude estimates, ex-

perimental observations of the system of interest, or the system can be continuously

run until steady-state is achieved. Time-stepping can be a very slow process for these

types of systems, the nonlinearities impose the requirement of very fine meshes for

resolution but this decreases the size of stable time steps for integration.

8. After achieving the desired steady-state (or whatever time profile is desired), the mesh

should be increased in resolution and the process re-run in a loop until the steady-

state solution ceases to change from iteration to iteration. Monitoring the solution for

changes can be done visually (observe max/min values in a quantity, value of gradients,

etc.) or more formally through computing the average deviation profile by storing the

solution at each iteration.

The relevant boundary conditions for the system are as follows:

Geometric Symmetry Boundaries −→ V =
Vmax − Vmin

2
+ Vmin, ~n · [−D∇c + ~uc] = 0 and

~uf,normal = 0

Outer Droplet/Well Boundary −→ ~n · ~E = 0, ~n · [−D∇c+ ~uc] = 0, ~uf = 0 and p = 0. Plac-

ing the pressure at the surface at a reference value of zero is acceptable as this it is a scalar

potential value, using a value of zero is superior as a reference compared with atmospheric

pressure for the numerical scaling of variables.

Electrode Surface/Edge (3d/2d) −→ V = Vapp., only holds when ω is high enough to neglect

potential drop across the double layer. Continuity conditions hold for all other variables.


