
Measurement System Design for Chemical Processes

by

Michael Joseph Liba

A thesis submitted to the Department of Chemical Engineering

in conformity with the requirements for the degree of Master of Applied Science

Queen’s University

Kingston, Ontario, Canada

June 2011

Copyright c© Michael Joseph Liba, 2011



Abstract

The problem of measurement system design for stochastic linear systems, a popular model-
ing strategy for chemical processes, is addressed. A multi-objective optimization approach
is used. The design metrics are the capital cost of measurement equipment and a weighted
uncertainty in terms of the Kalman filter state estimation error covariance matrix. The
Pareto optimal set of measurement systems is identified by any of the following applica-
ble techniques: an exhaustive combinatorial search, sequential sensor addition/removal,
and branch-and-bound with semi-definite programs (BnB/SDP) solved at each node. The
decision-making process involves the use of simulation experiments as a means to map
Pareto optimal measurement systems to a dollar cost of operation. The closed-loop perfor-
mance of Pareto optimal measurement systems are then simulated under a joint Kalman
filter and robust profit-maximizing model predictive control strategy.

The design methodology is applied to two example problems. The first involves a low-
dimensionality fluid handling network where a number of stream flow rates, a tank level,
and a leak stream describe the dynamics. The design variables are the process outputs
and the precision with which they are measured. It is observed that the sequential and
BnB/SDP techniques are able to approximate the true Pareto optimal set very well, with
improved performance in the latter case attainable through trial and error. The second
example problem involves a high-dimensionality thermal network model of a one-floor office
building. The impact of zero and nonzero state noise covariance structures on the results of
the proposed design procedure is investigated. It is shown that measurement importance is
placed on the disturbance variables in the deterministic case, whereas importance is placed
on the controlled variables when model uncertainty is assumed. Closed-loop simulations in-
corporating MPC and Kalman filtering are then performed to generate expected operational
cost data. The measurement system that minimizes the overall cost of capital investment
and operation over the expected lifespan of the measurement is chosen as the final design.
It is shown that the combination of measured variables which minimizes the overall cost is
those of the three largest bodies of air that are to be controlled.
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Chapter 1

Introduction

1.1 Motivation for Measurement System Design

In any control system, the availability and quality of measurements will inevitably affect

closed-loop performance. For many systems, however, it is unreasonable to measure all

candidate variables due to the unavailability of sensors or ceilings on funds available for

capital investment. It is natural then to ask: “which variables are the most important to

measure?”

The answer to this question has proven to be elusive, even when attention is restricted to

linear systems, whose properties have been investigated extensively (see, for example [Brock-

ett, 1970; Kwakernaak and Sivan, 1972; Dullerud and Paganini, 2000]). Among the many

possible reasons for this elusiveness is the general inability of researchers to pose an optimal-

ity criterion on measurement systems which completely captures the quality of their design.

This is not surprising, since deciding on which variables to measure without knowledge of ex-

actly how information will be manipulated and used by the control system clearly introduces

subjectivity into the design procedure. This non-consideration of subsequent information

usage prompted researchers to initially pose measurement system design as a maximization

1



CHAPTER 1. INTRODUCTION 2

of certain scalar values related to a linear system’s observability gramian [Müller and We-

ber, 1972]. The idea with these analyses being that “more observable” systems should, in

some general sense, perform better in closed-loop than those which are “less observable”.

In the field of process control, the influence of measurement system design on process eco-

nomics is of particular interest due to the bottom-line oriented nature of profit-maximizing

firms and their various technical support subdivisions. As such, it is desirable to consider

the selection of measured variables from a process economics point of view. To do so, logical

connections between: (1) the selection of measured variables and their measurement devices;

(2) data processing (i.e. state estimation/filtering); and (3) usage by the control system

are required to fully analyze the performance of measurement system design on closed-loop

performance. Life cycle analysis via simulations can then be performed in order to justify

the allocation of capital towards the purchase and installation of measurement equipment.

1.2 Organization of the Thesis

Chapter 2: Chapter 2 is divided into two parts. First, the technical preliminaries re-

quired to develop the measurement system design methodology proposed in Chapter 3 are

introduced. The topics include observability/detectability, Kalman filtering, and model

predictive control. The second section contains a review of the early and more recent works

in the field of measurement system design for deterministic and stochastic linear systems.

Chapter 3: In this chapter, measurement system design is posed as a multi-objective op-

timization problem where the quality of all candidate measurement systems are quantified

based on their Kalman filtering state estimation uncertainty and purchased and installed

cost of measurement equipment. A number of potential approximate solution strategies are

developed for a range of problems whose state space dimensionalities and number of avail-

able sensors types are variable. A standardized decision-making process based on model
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predictive control is then used to decide on a final measurement system design.

Chapter 4: A low state space dimensionality fluid handling network is considered in

Chapter 4 as a means to showcase the effectiveness of the multi-objective optimization solu-

tion techniques presented in Chapter 3. All three techniques are applied to investigate their

relative performances. Controller design and simulation experiments are not considered,

since they are the focus of the next chapter.

Chapter 5: The second example problem, which is characterized by a large state space

dimensionality, is discussed in detail. A full measurement system design is performed by

first approximating the solution to the multi-objective optimization problem and then by

employing simulation experiments as a means to map Pareto optimal designs to a dollar

cost of operation. Chapter 5 concludes with a measurement equipment lifecycle analysis

that selects a single measurement system design from the 1023 theoretically possible sensor

configurations.

Chapter 6: A summary of the design procedure developed in Chapter 3 is provided

followed by a discussion concerning its strengths and weaknesses. The design procedure’s

contingency on the applicability of the proposed control, state estimation, and optimization

techniques is addressed, and suggestions for future work is provided.



Chapter 2

Literature Review

The measurement system design methodology developed in this work is largely synthetic,

relying on concepts from the fields of linear systems, state estimation, model predictive

control, and optimization. In the first part of this chapter, these concepts are introduced,

and their relevance is identified. Detailed discussion regarding the interrelationships be-

tween components is left to the next chapter. The second part of this chapter summarizes

the early and more recent works by researchers active in measurement system design and

identifies where the approach considered here fits in.

2.1 Technical Preliminaries

2.1.1 Observability & Detectability

Consider a discrete-time linear system of the form

xk+1 = Axk +Buk, (2.1a)

yk = Cxk, (2.1b)

4



CHAPTER 2. LITERATURE REVIEW 5

where x ∈ Rnx is the state vector, u ∈ Rnu is the control input, y ∈ Rny are the system

outputs, and matrices A, B, and C are of appropriate dimension. Observability and de-

tectability are properties of such a dynamical system, first introduced by Kalman [1960].

These properties are meant to express the availability of measurement data with respect

to one’s ability to reconstruct or make inferences regarding the values of unmeasured state

variables.

Observability

Definition 2.1.1. [Simon, 2006]: A linear discrete-time system given by Eq. (2.1a) and

(2.1b) is “observable” (or (C,A) is an “observable pair”) if for any initial state x0 and

some final time t the initial state x0 can be uniquely determined by knowledge of the inputs

uk and outputs yk for all k ∈ [0, t].

If a system is observable, then its initial state can be determined. If the initial state is known,

then values of the state at any time k ∈ [0, t] can be calculated. Hence, observability implies

that values of the state at all times k ∈ [0, t] are fully reconstructible as long as the inputs

and outputs are known exactly.

Observability can be checked by a matrix rank test performed on either the system’s ob-

servability gramian or observability matrix :

Theorem 2.1.1. The discrete LTI system (2.1) is observable if and only if the observability

gramian defined by

MO ,
t∑

k=0

(
AT
)k
CTCAk

has rank nx for some t ∈ (0,∞).

Theorem 2.1.2. The discrete LTI system (2.1) is observable if and only if the observability

matrix defined by

O(C,A) ,
[
CT , (CA)T , · · · , (CAnx−1)T

]T
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is of rank nx.

A LTI system can also be said to be observable if it contains no unobservable modes. A

system’s modes can be identified by applying the similarity transformation z = V x to Eq.

(2.1)

zk+1 = V −1AV zk + V −1Buk,

yk = CV zk,

that results in the matrix (V −1AV ) having Jordan normal form. The ith mode is then de-

fined as the state (or group of states) that correspond to the ith Jordan block of (V −1AV ).

The ith mode of a transformed system is said to be unobservable if the ith column of V is

orthogonal to every row of C. If this is the case, then the ith column of the matrix CV

will contain only zeros. Consequently, the ith column of the observability matrix defined by

O(CV, V −1AV ) will also only contain zeros, which implies that rank
[
O(CV, V −1AV )

]
< nx.

Since observability is unaffected by similarity transformations, the presence of an unobserv-

able mode is indicative of system unobservability.

Detectability

Definition 2.1.2. [Dullerud and Paganini, 2000]: A linear system is “detectable” if for a

non-observable system, after a state transformation T such that

TAT−1 =



Ã11 0

Ã21 Ã22


 , CT−1 =

[
C̃1, 0

]

where
(
C̃1, Ã11

)
is an observable pair; the eigenvalues of Ã22 all have magnitude < 1.

Note that due to the structure of CT−1 the states corresponding to Ã22 are all completely

unobservable. However, since the eigenvalues of the matrix Ã22 all have magnitude < 1,
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then under no control input, convergence of these states to zero is guaranteed.

Similarly, a LTI system can also be said to be detectable if and only if all of its unobservable

modes are stable (i.e. ‖λi‖ < 1 where λi is the ith eigenvalue of A that corresponds to an

unobservable mode).

The concepts of observability and detectability are central to the design of state observers

and state estimators, which are discussed in the next section.

2.1.2 State Observers and Kalman Filtering

In control theory, a state observer is a dynamical system whose outputs are the estimates

of the state variables of the system [Dullerud and Paganini, 2000]. The main criterion that

observers must satisfy is that the estimation error ek = (xk − x̂k) tends to zero as k →∞

where x̂k is the estimate of the state xk at sample time k. If the dynamics of the plant give

rise to a linear time-invariant system, then there exists an estimator of the form

x̂k+1 = Ax̂k + L(yk − ŷk) +Buk, (2.2a)

ŷk = Cx̂k +Duk, (2.2b)

which guarantees convergence of the state estimation error to zero, provided that the plant

is detectable. The observer given by Eqs. (2.2a) and (2.2b) is referred to as a Luenberger

observer [Dullerud and Paganini, 2000]. The matrix L is designed so that the eigenvalues

of (A − LC) all have magnitude < 1, which ensures the stability of the observer’s error

dynamics.
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The Kalman Filter for Stochastic Linear Systems

In this work we consider a Kalman filter (KF) that is designed to act as a state observer

for linear systems whose state evolution and outputs are corrupted by noise:

xk+1 = Akxk +Bkuk + wk+1,

yk = Ckxk + vk,

where wk ∼ N (0, Qk) and vk ∼ N (0, Rk) are Gaussian white noise sequences.

Assuming that the linear system is also time-invariant, the KF estimate of the state given

all information up to and including time k (referred to as the a posteriori estimate), x̂k|k is

given by

x̂k|k = (I −KkC)(Ax̂k−1|k−1 +Buk−1) +Kkyk, (2.3)

where Kk is referred to as the “Kalman gain matrix”. Note that the most recent estimate

x̂k|k in Eq. (2.3) depends on the previous a posteriori estimate x̂k−1|k−1. As such, the

Kalman filter is a recursive state estimation strategy where new information in the form of

measurements is combined with knowledge of the system’s dynamics and statistical param-

eters to produce an optimal estimate. Optimality is defined based on the KF’s minimization

of the objective measure

JKF = tr
(
E{(xk − x̂k|k)(xk − x̂k|k)T }

)
, (2.4)

where tr(·) and E{·} denote the matrix trace and expected value operators, respectively.

That is, the Kalman filter is designed to minimize the total variance of the state estimates

at all sampling instants.

Assuming a full characterization of the process’ dynamics and statistical parameters are
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available, the recursive KF equations are:

x̂k|k = (I −KkC)(Ax̂k−1|k−1 +Buk−1) +Kkyk, (2.5a)

Kk = (P−k C
T )(CP−k C

T +R)−1, (2.5b)

P−k = AP−k−1A
T −A(P−k−1C

T )(CP−k−1C
T +R)−1(CP−k−1)AT +Q, (2.5c)

P+
k = (I −KkC)P−k (I −KkC)T +KkRK

T
k , (2.5d)

where P− and P+ are the a priori and a posteriori estimation error covariance matrices:

P−k , E
{

(xk − x̂k|k−1)(xk − x̂k|k−1)T
}
, P+

k , E
{

(xk − x̂k|k)(xk − x̂k|k)T
}
,

where x̂k|k−1 is the estimate of xk given all information up to and including sampling

instant k − 1. To ensure acceptable performance of the Kalman filter, it may be necessary

to occasionally estimate the entries of the process and output noise covariance matrices Q

and R, respectively. The recent techniques which attempt to achieve this rely on the use of a

set of historic process data in conjunction with the minimization of a least-squares objective

function based on predicted and observed process and output noise autocorrelation [Odelson

et al., 2006]. Other recent works include the addition of positive definiteness constraints

on the Q and R matrices in the least-squares optimization problem formulation, leading

to a semi-definite program [Rajamani and Rawlings, 2009]. Most recently, a covariance

estimation technique for systems described by nonlinear dynamics was proposed by Lima

and Rawlings [2011] as one of the components of a full state estimator design procedure.

Some state estimation applications may not require the recursive calculations of the Kalman

filter gain and covariance matrices. Instead, it may only be necessary to consider their

steady-state values during on-line operation, which would reduce the computational bur-

den. Such a state estimation strategy is referred to as “steady-state filtering”, and is pos-

sible contingent on the existence of the converged solution to the discrete algebraic riccati
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equation (DARE) Eq. (2.5c). The following are the necessary and sufficient conditions that

ensure convergence of the Kalman filter covariance matrices and gain matrix to steady-state

values.

Theorem 2.1.3. [Simon, 2006]: The DARE has at least one positive definite solution P−∞

if and only if both of the following conditions hold.

1. The pair (A,C) is detectable.

2. The pair (A,B) is controllable.∗

Furthermore, exactly one of the positive definite DARE solutions results in a stable steady-

state Kalman filter.

When the controllability condition is relaxed, the following result is obtained.

Theorem 2.1.4. [Simon, 2006]: The discrete algebraic riccati equation (DARE) (3.8c)

has a unique positive semidefinite solution P−∞ if and only if both of the following conditions

hold.

1. The pair (A,C) is detectable.

2. The pair (A,B) is stabilizable.

Furthermore, the corresponding steady-state Kalman filter is stable. That is, the eigenvalues

of [(I −K∞C)A] have magnitude < 1.

These results clearly specify the conditions on which the design of measurement systems

rely. These theorems will be used to justify the subsequent measurement system design

procedure in the next chapter.

∗The duals of observability and detectability: controllability and stabilizability, are omitted from this
chapter. See any linear systems text for a detailed discussion.
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2.1.3 Model Predictive Control

Model predictive control (MPC), known as “receding horizon control” (RHC), is a control

strategy that explicitly utilizes a process model to generate a sequence of control inputs

which minimizes some user-specified objective function [Camacho and Bordons, 2007].

One of the main advantages of MPC over other “optimal control” strategies such as the

linear-quadratic regulator (LQR) is its ability to enforce constraints on both the state vari-

ables and control inputs. This differs from so-called unconstrained optimal control strate-

gies. The ability of MPC to enforce state and input constraints is crucial for real application

since it is not difficult to imagine cases where states of physical importance (temperatures

or pressures, for example) must be maintained within prescribed limits for safety reasons.

Constraints on inputs typically arise from the physical limitations of actuators (for example,

control valves cannot be opened more than 100%).

In general, the optimization problem solved at each controller execution is of the form

min
uNpr

JMPC =

Npr,1∑

i=0

Jci (xk+i, uk+i) + Jf (xk+Npr,1),

subject to:





xk+i ∈ Xi ∀ i = {1, · · · , Npr,1},

uk+i ∈ Ui ∀ i = {0, · · · , Npr,2},

xk+1 = Axk +Buk + wk+1,

(2.6)

where uNpr = [uTk , u
T
k+1, · · · , uTk+Npr,2

]T is a vector that contains the control inputs for the

current sampling instant and the next Npr,2 number of samples into the future. The cost

function JMPC , is composed of stage costs Jci and a terminal cost Jf . The sets, X and U,

are the admissible sets for the state and control input, respectively. The scalars Npr,1 and

Npr,2 are referred to as the prediction and control input horizons, respectively, where (in

general) Npr,1 ≥ Npr,2. The final defining feature of MPC is that only the first calculated

control input uk is actually used. The entire optimization problem is re-solved at the next
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controller execution using any new information that has become available. A schematic

of MPC’s operation is given in Figure 2.1, where a particular control sequence uNpr is

considered, but will be abandoned due to a predicted violation of the state constraints.

One of the earliest MPC formulations for single-input/single-output (SISO) systems, known

as Dynamic Matrix Control (DMC), considers a step response model in conjunction with

an objective function representing the sum of future squared output errors [Bequette, 2003].

Under this unconstrained MPC formulation, an analytical solution for the minimizing con-

trol input sequence exists, and computational burden is placed mostly on matrix inversion.

It is possible, however, that the combination of objective function and constraints may re-

sult in a more complex optimization problem such as a linear/quadratic program (LP/QP),

semi-definite program (SDP), etc. Under these scenarios, computational power may very

well be the limiting factor for the applicability of MPC’s on-line use. In distributed con-

trol systems where older processing units are still being used, even LPs and QPs may lead

to computational intractability when a long control input horizon is necessary to achieve

acceptable performance [Morari and Lee, 1999].

Model predictive control offers the control system engineer a flexible and powerful tool by

which to achieve a variety of control objectives. Surprisingly, though, theoretical results

regarding stability, the primary control objective for any control system, were only obtained

after years of practical implementation of MPC.

Stability analysis is performed by treating the MPC objective function JMPC as a Lyapunov

function. Conditions under which the cost functional of the MPC controller becomes a

Lyapunov function for the closed-loop have been derived by many authors. Of these, the

so-called dual mode configuration is of particular interest (it is applied in the example

problem of Chapter 5). Under this formulation, closed-loop stability can be theoretically

guaranteed by imposing the constraint that x must be contained within a terminal set Xf
at the end of the prediction horizon. The control inputs following uk+Npr,2 are assumed

to be produced by a separate, terminal control law uf (x) which is designed to ensure that
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Figure 2.1: A schematic of a single-state system under MPC with Npr,1 = Npr,2. The past
and current values of x and u (•) are known, and the future state (⊗) under a candidate
control sequence (◦) is prediced. At the current execution, a potential control sequence
uNpr is considered, but is predicted to result in 2 state constraint violations.
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xNpr,1+i ∈ Xf ∀i = {1, · · · ,∞} (i.e. Xf is positively invariant under uf ).

When stability analysis is performed by regarding JMPC as a Lyapunov function, each

technique specifies Xf , Jc, Jf , and uf to satisfy the (sufficient) conditions for closed-loop

stability which are conveniently summarized in the survey paper by Mayne et al. [2000]:

C1: Xf ⊂ X, Xf closed, 0 ∈ Xf (state constraints are satisfied in the terminal region Xf ),

C2: uf (x) ∈ U ∀x ∈ Xf (terminal control inputs are admissible),

C3:
[
Ax+Buf (x)

]
∈ Xf ∀x ∈ Xf (Xf is positively invariant under uf (·)),

C4: (Jf (x+)− Jf (x)) + Js(x, u
f (x)) ≤ 0 ∀x ∈ Xf where x+ = Ax + Buf (x) (Jf (·) is a

local Lyapunov function),

along with the implicit condition that the optimization problem Eq. (2.6) be feasible. In

cases where the terminal set Xf is small, it may be necessary to increase the prediction and

control horizons Npr,1 and Npr,2 to ensure feasibility. However, such a reformulation may

lead to on-line computational intractability. Though this is a critical concern, a general

discussion regarding practical implementation issues for MPC is lengthy. The reader is

directed to [Camacho and Bordons, 2007, Ch. 7] and references therein where a number of

techniques and modifications to ensure feasibility in a variety of MPC contexts is discussed.

2.2 Measurement System Design

When a process model is known to be reliable, it may be possible to make inferences

regarding the values of several variables without directly measuring them by using state

observers as discussed in section 2.1.2. When these so-called observer-based strategies are

employed, the choice of measured variables becomes a fundamental design consideration. If

attention is restricted to either stochastic or deterministic linear systems, a logical starting

point is to consider the connection between the choice of measured variables and their effect

on various scalar measures linked to observability, detectability and state observer design.
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Early attempts at quantifying the observability of linear systems was performed by Müller

and Weber [1972], who considered the maximum eigenvalue, trace, and determinant of

the system’s inverse observability gramian. Since a system is either observable or not,

these measures could be interpreted as the “degree” of observability. Given observability’s

physically motivated definition, it is natural to expect that “more observable” systems

should in some broad sense outperform those whose observability measures are less. Similar

measures were considered in the control of a tubular reactor by Waldraff et al. [1998], and

for nonlinear systems by Singh and Hahn [2004] who considered empirical gramians [Lall

et al., 2002].

Uncertainty metrics have also been used to design measurement systems. In particular, the

more recent works in this field rely on some scalar measure of the state estimation error

covariance matrix to guide the placement of sensors. In [Harris et al., 1980], the authors

consider the trace and determinant of the state prediction error covariance matrix for LQG

control of a tubular reactor. In [Musulin et al., 2005], optimal sensor placement in the

context of system parameter identification via Kalman filtering is discussed.

The problem of economically optimal measurement system design was considered by Muske

and Georgakis [2003], who explicitly took the capital cost of sensors into consideration.

A multi-objective optimization problem [Steuer, 1986; Branke et al., 2008] was formulated

where measurement systems were categorized solely by their cost of measurement equipment

and uncertainty in terms of a weighted state estimation error covariance matrix. Muske

and Georgakis [2003] then constructed the Pareto optimal set of measured variables by

considering every possible combination of sensor arrangements that resulted in system ob-

servability, but omitted the decision-making process from their analysis. Though a fully

exhaustive search may be useful for illustration purposes, such a computationally expensive

method of locating the Pareto optimal measurement system configurations is realistic only

when the number of potential measurement system configurations is low.
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One possible alternative to this exhaustive search technique is to apply the branch-and-

bound (BnB) algorithm. This is possible through the work by Chmielewski et al. [2002],

who have expressed measurement system design as a binary integer program (BIP) subject

to linear matrix inequality (LMI) constraints. A BIP of this type can then be solved via BnB,

with semi-definite programs (SDPs) being solved at each node. The key feature of this design

technique is that the construction of the Pareto optimal set for high-dimensional systems

may in fact be tractable since the BnB algorithm either explicitly or implicitly examines

all possible measurement system configurations. As such, it is possible that a significant

number of these configurations can be ruled out of consideration by the bounding of the

objective function that occurs at each node [Edgar et al., 2001].

High state-space dimensionality is a potential consequence of the discretization of heat

transfer models, such as in the building system temperature control example problem of

Chapter 5. Discretized heat transfer models, known as “thermal networks” have proven

effective in building system control research due to their relative simplicity and ability to

accurately describe temperature dynamics [Wang and Xu, 2006; Zhang and Hanby, 2006; Xu

and Wang, 2008; Lee and Braun, 2008; O’Neill et al., 2010]. Under this modeling strategy,

entities of physical significance, called “nodes” (walls, masses of air, etc.) are assumed to

have uniform temperature, and heat transfer between nodes is modeled as due to relevant

heat transfer phenomena [Çengel, 2006].

For thermal network models which consider several individual rooms rather than macro-scale

zones (entire floors, whole buildings), the total number of walls, floor surfaces, and air masses

available for temperature measurement can become very large. If the temperature control

of individual rooms (for occupant comfort reasons) is the primary concern, measuring the

temperature at each node is impractical and intuitively unnecessary since, for example, heat

transferred from small surfaces will have little impact on the temperature dynamics of large

masses of air. Hence, the location of the most important measurements for the optimal

control of such systems is a challenging problem whose results may find use in practical
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application.

A brief history and some of the current active research related to measurement system

design has been discussed. The approach to measurement system design in this work can

be thought of as a combined application of the previous work by Muske and Georgakis

[2003] and Chmielewski et al. [2002]. Furthermore, a decision-making process involving

model predictive control as a means to map candidate measurement systems to a cost of

operation is introduced to complete the multi-objective optimization procedure initiated by

Muske and Georgakis [2003].



Chapter 3

Measurement System Design

Methodology

In this chapter, the various topics introduced in Chapter 2 are assembled under a multi-

objective optimization framework to produce the measurement system design procedure.

A number of strategies by which to approximate or exactly solve the multi-objective opti-

mization problem are presented to ensure that the procedure is applicable to wide range of

systems.

3.1 System Representation & Basic Components

3.1.1 System Representation

We consider a stochastic linear discrete-time systems of the form

xk+1 = Axk +Buk + Fdk + ak+1, (3.1)

where x ∈ Rnx is the state vector of the plant, u ∈ Rnu is the control input, d ∈ Rnd is

the vector of disturbances, and a ∼ N (0, Qa) is a vector of zero-mean normally distributed

18
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white noise sequences with covariance matrix Qa. Matrices A, B, and F are of appropriate

dimension, and assumed to be time-invariant. The disturbance variables are modeled as

autoregressive time series

dk+1 = Φdk + vk+1, (3.2)

where Φ is the disturbance state transition matrix, and v ∼ N (0, Qv) is the vector of driving

white noise sequences. Combining Eqs. (3.1) and (3.2), we obtain



xk+1

dk+1


 =



A F

0 Φ






xk

dk


+



B

0


uk +



Ix 0

0 Id






ak+1

vk+1


 , (3.3)

where Ix and Id are (nx × nx) and (nd × nd) identity matrices, and 0 are zero-matrices of

appropriate dimensions. The output variables used for feedback control are

yk =



C1 0

0 C2






xk

dk


+ wk, (3.4)

where y ∈ Rny , C1 and C2 are matrices that specify which of the variables belonging to

the plant and disturbance model, respectively, are to be measured, and w ∼ N (0, R) are

normally distributed additive output measurement noise not correlated to a. To simplify

notation, we consider only system (3.3) with state variable zk =
[
xTk , d

T
k

]T
, driving white

noise sequence νk =
[
aTk , v

T
k

]T
, and redefine the output matrix in Eq. (3.4) as H to read

zk+1 = Azk + Buk + νk+1,

yk = Hzk + wk,

(3.5)
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where matrices A and B follow from Eq. (3.3):

A =



A F

0 Φ


 , B =



B

0


 . (3.6)

For inputs u which are known to be bounded by upper and lower limits, the guarantee

of stability for open-loop unstable systems can not made. Since these bounds are usually

present in the constraints of the MPC formulation, the guarantee for stability is restricted

to systems whose matrix A has all of its eigenvalues inside the unit circle. Given the fact

that stability is the primary concern for any control system, we state the following technical

assumption to make clear the applicability of the design procedure in this thesis:

Assumption 3.1.1. The eigenvalues of the combined state transition matrix A in Eq. (3.3)

are all contained inside the unit circle.

3.1.2 Control System Components

To simplify notation, we define a measurement system M as a pair M = (H, R). The

matrix H specifies the variables that are measured while R indicates the level of precision

with which they are measured. Note that for any practical problem, the number of rows and

non-zero entries of H along with the allowable variances in R must be known. Restrictions

on H may result from physical limitations or accessibility hindrances, while the diagonal

entries of R may be limited by the availability of sensors. For example, thermistors, resistive

thermal devices (RTDs), and thermocouples can all measure a temperature state, but the

precision with which temperature measurements are made varies amongst the three sensor

types (as does the capital cost).

The objective is to find the economically optimal measurement system configuration for

stochastic linear systems. From dynamic programming and Bellman’s principle of optimal-

ity, the optimization of a stage-wise process is initiated by optimizing the final stage n over
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all possible inputs (outputs from stage n−1). Once stage n has been optimized, stage n−1

is treated as the new final stage, and the optimization is performed again until the entire

process has been optimized. This idea, in the context of the present work, is depicted in

Figure 3.1 where the progression from measured variable selection to closed loop perfor-

mance over the expected lifespan of the measurement equipment is sketched. In this thesis,

we design the first stage (measured variable selection and sensor specification) based on a

filtering and control strategy which are known in advance, and are designed to be optimal

during their operation.

• Control Strategy: The control strategy is chosen to be model predictive control

(MPC) due to its optimization-based nature and ability to enforce constraints on both

the state x and control inputs u. With the proper selection of internal objective func-

tion and constraints formulation, it may be possible to design the control algorithm to

produce economically optimal control inputs at each execution, subject to the quality

of the state estimate supplied.

• State Estimator: The proposed state estimator is the Kalman filter (KF) due

not only to its popularity and flexibility, but more importantly due to its inherently

optimal design. The KF equations are constructed in such a way that a minimum

variance estimate of the state is produced for any measurement system M (subject

to structural conditions on the system such as detectability).

This central idea is very similar to the problem considered by Mellefont and Sargent [1977]

and Harris et al. [1980], where measurement system design was considered in a pre-specified

Kalman filter/linear-quadratic-Gaussian control context. In what follows, the details neces-

sary to synthesize a full connection between the selection of measured variables and process

economics are developed.
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Figure 3.1: A conceptualization of measurement system design’s affect on life cycle cost. The
measurement system M (specified once) affects economics through the internal connection
between the plant, state estimator (Kalman filter), and controller.

3.2 Controller Synthesis

3.2.1 General Form

Since process economics is a major concern, the control system is designed such that at

each execution, the control input administered to the plant results in an optimal economic

behaviour. We also wish to ensure that the state be contained in the admissible region

X, which may be time-dependent. Constraints on the inputs must also be included in the

formulation due to the physical limitations that the actuators may possess.
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For simplicity, we will restrict ourselves to the case where Npr,1 = Npr,2 = Npr. The most

general form of our model predictive controller is as follows:

max
uNpr

JMPC ,

subject to:





Pr(X
¯ i
≤ xk+i ≤ X̄i) ≥ 1− αi ∀ i = {1, · · · , Npr},

Ui
¯
≤ uk+i ≤ Ūi ∀ i = {0, · · · , Npr − 1},

xk+1 = Axk +Buk + Fdk + wk+1,

dk+1 = Φdk + vk+1,

(3.7)

where JMPC is the expected revenue generated by operation over the prediction horizon,

uNpr =
[
uTk , u

T
k+1, · · · , uTk+Npr−1

]T
contains each control input for the next Npr number of

samples into the future, X
¯ i

and X̄i are the lower and upper state constraints for the next

i-number of sampling instants into the future, and Ui
¯

and Ūi are the lower and upper

constraints on the input vector for the next i-number of sampling instants into the future.

The inequalities in Eq. (3.7) are understood to apply element-wise. Under this formulation,

the admissible sets Xi introduced in Eq. (2.6) are orthotopes∗, which we denote by Oi.

Note that the exact form of the objective function JMPC is yet to be specified, since it

depends on the particular application. Also, constraints on the state have necessarily been

posed probabilistically, since the evolution of the state is subject to the influence of random

variables.

It is desirable to convert the probabilistic constraints on the state xk+i in Eq. (3.7) into

deterministic ones which can be written solely in terms of the decision variable uNpr . If this

can be done, it is possible that the optimization problem might be able to be rewritten in

some standard form (such as a linear program (LP), quadratic program (QP), etc.). This

conversion is the subject of the next section.

∗An orthotope is the generalization of a rectangle for higher dimensions. In the present context, an
orthotope defines the set of interval constraints on the elements of the state vector.
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3.2.2 Conversion to a Deterministic Problem

In this section, the probabilistic constraint on the state vector x in Eq. (3.7) is converted

into a deterministic constraint expressed solely in terms of the MPC decision variable uNpr .

The conversion follows directly from the work by Yan and Bitmead [2005]; van Hessem and

Bosgra [2002] and references therein. As will be shown, the conversion leads to a linear

constraint on the decision variable. This is desirable, since LPs and QPs, among other

optimization problem types, are both characterized by linear inequality constraints.

At each controller execution, an estimate of the combined state vector given all information

up to and including time k, ẑk|k, is required to predict the future values of the constrained

state x. A Kalman filter (KF) is used to supply this state estimate:

ẑk|k = (I −K∞H)(Aẑk−1|k−1 + Buk−1) +K∞yk, (3.8a)

K∞ = (P−∞HT )(HP−∞HT +R)−1, (3.8b)

P−∞ = −A(P−∞HT )(HP−∞HT +R)−1(HP−∞)AT + AP−∞AT + Q, (3.8c)

P+
∞ = (I −K∞H)P−∞(I −K∞H)T +K∞RK

T
∞, (3.8d)

where P−∞ and P+
∞ are the converged a priori and a posteriori estimation error covariance

matrices, respectively, K∞ is the converged KF gain matrix, and Q has the form:

Q =



Qa 0

0 Qv


 . (3.9)

The KF equations can be modified to handle so-called “coloured” noise processes, which

exhibit autocorrelation. For simplicity, however, we consider only white noise processes. A

comprehensive discussion on the KF, and many references, can be found in [Simon, 2006].

Even if the state variable z is subject to normally distributed random inputs, under a

constrained MPC control law the control u depends on ẑ and z in a nonlinear fashion, and
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so the state variables themselves are not normally distributed. However, it can be said

that the state estimation error z̃k|k = (zk − ẑk|k) is zero-mean normally distributed with

covariance matrix P+
∞ (see [Yan and Bitmead, 2005] and references therein). The ith-step-

ahead prediction error covariance matrix is given by

Pi = AiP+
∞AiT +

i−1∑

j=0

AjQAjT , (3.10)

and the probabilistic constraint Pr(xk+i ∈ Oi) ≥ 1− αi ∀i can be rewritten as

1√
(2π)nxdet(Pi)

∫

Oi
e−

1
2

(xk+i−x̂k+i|k)TP−1
i (xk+i−x̂k+i|k)dxk+i ≥ 1− αi, (3.11)

which expresses the constraint on x in terms of x̂, whose future values can be determined

exactly. For the purposes of this investigation, the ellipsoidal approximation of the prob-

ability constraint in question, as suggested by Yan and Bitmead [2005] is employed. The

ellipsoidal approximation for constraint enforcement involves defining confidence ellipsoids

Ei around the prediction of the state x̂k+i|k such that Pr (xk+i ∈ Ei) ≥ 1− αi:

Ei = {xk+i :
(
xk+i − x̂k+i|k

)T
(P

1/2
i P

1/2
i )−1

(
xk+i − x̂k+i|k

)
≤ r2

i }, (3.12)

where P
1/2
i P

1/2
i = Pi and ri is chosen so that

1− αi =
1

2nxΓ(nx/2)

∫ r2i

0
χ
nx
2
−1e−

χ
2 dχ, (3.13)

since the probability that xk+i ∈ Ei has χ2-distribution with nx degrees of freedom. Because

the prediction error is zero-mean, the ellipsoid in Eq. (3.12) is centered at x̂k+i|k, with size

and shape determined by entries in Pi and r2
i (through αi), as depicted in Figure 3.2.

It is unlikely that the allowed probability of violation αi can vary over the course of the

prediction horizon, and so the subscript “i” from αi, r
2
i , Ei, and Oi is dropped. Finally, the
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condition that E ⊂ O, and hence that Pr (xk+i ∈ O) ≥ 1− α is guaranteed as long as the

following constraints are satisfied (the derivation of this is given in Appendix A):

r
√
eTj Piej + eTj x̂k+i|k ≤ eTj X̄i, (3.14)

and

r
√
eTj Piej − eTj x̂k+i|k ≥ eTj X¯ i, (3.15)

for all j = {1, · · · , nx} where ej are the standard basis vectors. The probability constraints

in the MPC formulation Eq. (3.7) can therefore be written as

eTj X¯ i
+ r
√
eTj Piej ≤ eTj x̂k+i|k ≤ eTj X̄i − r

√
eTj Piej , (3.16)

which must hold for all j = {1, · · · , nx} and i = {1, · · · , Npr}.

Replacing the probabilistic constraints in Eq. (3.7) with those derived above, the MPC
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optimization problem can be written as

max
uNpr

JMPC ,

subject to:





eTj x̂k+i|k ≤ eTj X̄i − r
√
eTj Piej ,

eTj x̂k+i|k ≥ eTj X¯ i + r
√
eTj Piej ,

U
¯ i
≤ uk+i ≤ Ūi,

ẑk|k = (I −K∞H)(Aẑk−1|k−1 + Buk−1) +K∞yk,

K∞ = (P−∞HT )(HP−∞HT +R)−1,

P−∞ = −A(P−∞HT )(HP−∞HT +R)−1(HP−∞)AT

+ AP−∞AT + Q,

Pi = AiP+
∞AiT +

i−1∑

j=0

AjQAjT ,

P+
∞ = (I −K∞H)P−∞(I −K∞H)T +K∞RK

T
∞,

(3.17)

In the derivation of Eq. (3.17), the state constraints have been defined with respect to the

entire state vector. Such a constraint formulation only makes sense when, for example, the

constraint violation of a single element of x is as undesirable as the simultaneous constraint

violations of several elements of x. Formulation of performance constraints on linear combi-

nations of one or several sub-vectors of the plant’s state follows in a straightforward manner

(see Appendix A), in which case additional probabilistic constraints in Eq. (3.7) will be

required.

Note that the choice of measurement systemM = (H, R) affects the cost of operation first

through the Kalman filter equations, then through multi-step-ahead state prediction error

covariance matrix, and finally affects the max/min constraints on the states (Eqs. (3.8),

(3.10), and (3.16), respectively). The loss of information (availability or quality) results in

a reduced search region during MPC’s operation, which limits the process’s performance.
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Figure 3.2: A 2-D sketch showing a feasible region defined by the upper and lower constraints
X̄j and X

¯
j , j = {1, 2} for variables x1 and x2. Also shown is a confidence ellipsoid centered

at x̂k+i|k.

Feasibility of the Optimization Problem

As is discussed by Camacho and Bordons [2007], it is possible that as the prediction horizon

increases, the growing uncertainty region around the expected values of future states might

grow so large that they preclude the existence of a solution to the optimization problem Eq.

(3.17). Even if the problem remains feasible, excessively conservative performance might

be encountered. The problem stems from the fact that when the controller is executed,

a prediction is made for the entire prediction horizon without taking into account in any

way the fact that additional information in the form of measurements will be available in

the future. The concept of “closed-loop covariances” introduced and discussed by Yan and

Bitmead [2005] is employed here to prevent infeasibility problems associated with these

growing uncertainty regions around state trajectories. The closed-loop covariance strategy

involves only the one-step-ahead prediction error covariance matrix to build a confidence

interval around all state trajectories for each of the Npr number of steps into the future.

Only the one-step-ahead prediction error covariance matrix is used since the implemented
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version of MPC only relies on one-step-ahead prediction error uncertainties because only the

first control input calculated by the optimization routine is actually used at each sampling

time.

Complete Model Predictive Control Problem

Using the closed-loop covariance strategy, the MPC optimization problem is rewritten as:

max
uNpr

JMPC ,

subject to:





eTj x̂k+i|k ≤ eTj X̄i − r
√
eTj P1ej ,

eTj x̂k+i|k ≥ eTj X¯ i + r
√
eTj P1ej ,

U
¯ i
≤ uk+i ≤ Ūi,

ẑk|k = (I −K∞H)(Aẑk−1|k−1 + Buk−1) +K∞yk,

K∞ = (P−∞HT )(HP−∞HT +R)−1,

P−∞ = −A(P−∞HT )(HP−∞HT +R)−1(HP−∞)AT

+ AP−∞AT + Q,

P1 = AP+
∞AT + Q,

P+
∞ = (I −K∞H)P−∞(I −K∞H)T +K∞RK

T
∞,

(3.18)

for all i = {1, · · · , Npr} for constraints on x̂k+i|k, for all i = {0, · · · , Npr − 1} for constraints

on uk+i, and for all j = {1, · · · , nx}. Specification of the objective function JMPC is the

final component required to fully construct the model predictive controller.

In process control, revenues generated through operation are typically described by “price-

times-quantity” terms, that can be written as a linear combination of state and input

variables:

JMPC = β(k)T x̂Npr + δ(k)TuNpr , (3.19)
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where x̂Npr =
[
x̂Tk+1, · · · , x̂Tk+Npr

]T
is a vector which contains the expected values of the

state x for all future sampling instants i = {1, · · · , Npr}. The vectors β and δ contain

price factors which convert the entries of x̂Npr and uNpr to units of currency. The time

argument on β and δ indicates that the entries of these vectors may depend on the “real”

time of operation. An example of time varying prices are those imposed by electric utility

companies in order to reflect the change in demand during on- and off-peak hours.

If JMPC can be written as in Eq. (3.19), then Eq. (3.18) becomes a linear program (LP).

From an implementation point of view, this is desirable since LPs are convex problems whose

globally optimal solutions can be calculated via the simplex or interior-point algorithms in

a relatively low amount of time [Nash and Sofer, 1996]. On-line implementation can become

an issue when other algorithms are required to solve more difficult optimization problems.

Under the proposed control strategy, only the two parameters α and Npr are required

to tune the controller. In addition to the low number of parameters, another attractive

feature of this MPC formulation is the fact that the two parameters are both physically

meaningful. As such, a priori knowledge of the statistical parameters (Q and R) and process

heuristics can be used to design α and Npr. Increasingly conservative performance can be

achieved by lowering the value of α (or increasing r), which tightens the admissible region

for x̂ in Eq. (3.18). Economic improvements to operation can be achieved by increasing

Npr, which might allow the controller to exploit time-dependent prices or costs (β(k) and

δ(k), respectively). Of course, the disadvantage with manipulating the parameters in these

directions is the possibility of an infeasible or computationally demanding optimization

problem.

3.3 Multi-objective Optimization Procedure

It is clear from the controller’s formulation that uncertainty in the future value of the state

will affect economics in an undesirable way, though exactly how severe this degradation in
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performance will be remains to be estimated. In this study, various measures of uncertainty

and capital cost are assumed to be the primary measures of quality for any candidate mea-

surement system. The structural condition of observability is not assumed to be necessary

a priori.

An appropriate capital cost of the measurement system Jmeas is given by

Jmeas ,
∑

i

∑

j

cjqi,j , (3.20)

where cj is the expected purchased and installed cost of sensor type j, and qi,j = {0, 1}

specifies if variable i is measured by sensor type j.

Additionally, consider the single amalgamated uncertainty measure

Juncert , tr{WP1}, (3.21)

where W is a weighting matrix whose entries are assigned based on engineering judge-

ment. The above measure is motivated by the closed-loop covariances discussion and final

MPC formulation. Other measures of uncertainty could be used, such as those considered

by Harris et al. [1980]; Muske and Georgakis [2003] and Musulin et al. [2005], however the

measure presented above is more representative of the uncertainty considering MPC’s ex-

plicit dependency on the entries of the one-step-ahead prediction error covariance matrix.

The weighting matrix W allows one to assign relative importance to the prediction quality

of the individual states xi. Therefore, in this thesis Juncert alone is used to describe the

uncertainty aspect of all candidate measurement systems.

Through the design of a measurement system M, we wish to minimize both entries of the

multi-objective vector

J = [Jmeas, Juncert]
T , (3.22)

though to do so is clearly not possible. For example, consider a given measurement system
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M = (H, R). If an additional measurement is added, we expect the value of Juncert to

decrease. However, the capital cost of the measurement system Jmeas has increased due to

the additional equipment that must be purchased.

Consider the equivalent measurement system description M̄ = (Hfull, R̄), where Hfull cor-

responds to an output matrix H which measures every possible entry of the combined

state vector z. Under this reformulation, all sensors are assumed to be physically present,

though the structure of R is modified so that its diagonal elements may take on extremely

large values (in order to mimic the absence of a sensor). The (i,i)th entry of the modified

measurement noise covariance matrix R̄ is therefore parameterized as

R̄i,i =
(
σ2
i,1 · qi,1 + σ2

i,2 · qi,2 + · · ·+ σ2
i,Ns,i · qi,Ns,i + σ2

large · qi,Ns,i+1

)
, (3.23)

where σ2
i,j is the measurement variance of sensor type j on variable i, Ns,i is the number of

sensor types available for the measurement of variable i, σ2
large is a relatively large number

used to mimic the absence of a sensor, and the binary variable qi,j is the same as in Eq.

(3.20). For a practical design, it is likely that only one of {qi,1, qi,2, · · · , qi,Ns,i} for any i can

be non-zero.

With this structural modification, a measurement system’s design can be expressed solely

in terms of the binary decision variables qi,j . A multi-objective optimization problem can
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therefore be formulated:

min
qi,j

J = [Jmeas, Juncert]
T ,

subject to:





Jmeas =
∑

i

∑

j

cjqi,j ,

Juncert = tr{WP1},

P1 = AP+
∞AT + Q,

P+
∞ =

(
I −K∞Hfull

)
P−∞

(
I −K∞Hfull

)T
+K∞R̄K

T
∞,

K∞ = (P−∞(Hfull)T )(HfullP−∞(Hfull)T + R̄)−1,

P−∞ = −A(P−∞(Hfull)T )(HfullP−∞(Hfull)T + R̄)−1(HfullP−∞)AT

+ AP−∞AT + Q,

R̄i,i =
(
σ2
i,1 · qi,1 + σ2

i,2 · qi,2 + · · ·+ σ2
i,Ns,i · qi,Ns,i + σ2

large · qi,Ns,i+1

)
,

qi,j = {0, 1},

cNs,i = 0,

(3.24)

for all i = {1, · · · , nmv} where nmv is the number of variables available for measurement

(which is not necessarily equal to nx + nd), and where the final constraint cNs,i = 0 reflects

the fact that not measuring variable i results in no increase of the capital cost Jmeas. Note

that if observability is a requirement, it is possible to obtain a theoretical lower bound on

the number of sensors that must be installed. The discussion on observability in Chapter

2 indicates that the minimum number of sensors required to ensure observability is equal

to the number of independent modes of the system. In this thesis, however, the condition

of observability, which corresponds to full state reconstructability, is not assumed to be

necessary. Instead, the weighting matrix W is introduced as a design parameter that allows

the designer to directly place relative estimation importance on the individual states.
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The solution to a multi-objective optimization problem whose decision variables are binary

is a finite set of points termed the Pareto optimal set, also referred to as the Pareto frontier

[Branke et al., 2008; Steuer, 1986]. Three potential strategies by which to exactly solve or

approximate the multi-objective optimization problem in Eq. (3.24) are presented next.

3.3.1 Identifying the Pareto Optimal Set

In [Muske and Georgakis, 2003] a Pareto optimal set was constructed for a continuously

stirred tank reactor (CSTR) process by considering every possible combination of nine

state variables whose measurements resulted in an observable system. If a state space

formulation is small enough to accommodate this approach, construction of the Pareto

optimal set is tractable. However, if the problem contains many potential measurements, an

approximation is required due to the combinatorial explosion associated with the increasing

number of variables available for measurement. For example, a system with 30 variables

available for measurement by one type of sensor results in 230 ≈ 109 potential measured

variable combinations.

The construction of the Pareto optimal set corresponds to a significant reduction in the

number of measurement system configurations that need to be considered. This is because

non-Pareto optimal points can be completely ruled out from the design procedure, since we

know that there exists a measurement system with the same capital cost and has a lower

measure of uncertainty. This idea is depicted visually in Figure 3.3.

How one chooses to identify the Pareto optimal set depends on several factors including the

dimensionality of the state space representation, the number of viable sensor types, and the

computing power available. In the discussion that follows, three possible methods by which

to approximate or exactly determine the Pareto optimal set are presented.
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Juncert

Jmeas

Figure 3.3: A sketch of a Pareto optimal set which considers J = [Jmeas, Juncert]
T . Pareto

optimal measurement systems are deonted by (�) and sub-optimal points are denoted by
(×).

Branch-and-bound with Semi-definite Programming (BnB/SDP)

The work by Chmielewski et al. [2002] forms a basis for a means by which to construct

the Pareto optimal set via binary integer programming. The idea behind this approach is

that an optimization problem with Jmeas as the objective function subject to constraints

on individual state estimation error variances can be posed as a binary integer program

(BIP) subject to linear matrix inequality (LMI) constraints. In what follows, the important

results reported by Chmielewski et al. [2002] are first presented and then modified slightly

to suit our specific needs.

Theorem 3.3.1. [Chmielewski et al., 2002]: Let R̄ > 0, Q > 0, A−1 exist, and the pair

(A,Q1/2) be stabilizable. Then there exists P+
∞ > 0 such that tr{UTP+

∞U} < γ2 and Eq.

(3.8d) is satisfied if and only if there exists X > 0 such that

tr{UT (ATXA)−1U} < γ2, (3.25)
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and



X −ATXA + (Hfull)T R̄−1Hfull X

X X + Q−1


 > 0. (3.26)

The inequality on a generic matrix Z means Z > 0⇔ vTZv > 0 ∀v 6= 0, i.e. Z is positive

definite. If individual state estimate precision constraints are considered (U = hTi , where

hi is the ith row of Hfull), application of the Schur complement theorem on Eq. (3.25) leads

to the positive definiteness requirement



γ2
i hi

hTi ATXA


 > 0. (3.27)

Using the results of Theorem 3.3.1, the identification of Pareto optimal measurement sys-

tems can be performed by solving

min
qi,j ,X

Jmeas =
∑

i

∑

j

cjqi,j ,

subject to:







X −ATXA + (Hfull)T R̄−1Hfull X

X X + Q−1


 > 0,



γ2
i hi

hTi ATXA


 > 0,

X > 0,

A−1 exists,

R̄i,i =
(
σ2
i,1 · qi,1 + · · ·+ σ2

i,Ns,i · qi,Ns,i + σ2
large · qi,Ns,i+1

)
,

qi,j = {0, 1}.

(3.28)
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An optimization problem such as Eq. (3.28) can be solved via the branch-and-bound al-

gorithm, where at each node a semi-definite program (SDP) is solved (as opposed to the

usual linear programs for mixed integer linear programming problems). Details on the

branch-and-bound algorithm can be found in [Edgar et al., 2001].

Note that the precision constraints considered by Chmielewski et al. [2002] are defined in

terms of the 0-step ahead prediction error covariances. Due to the dependence of Juncert

on 1-step ahead prediction error covariances, a reformulation to reflect this dependence is

desired. Conversion of the precision constraints in Eq. (3.28) to constraints expressed in

terms of the 1-step ahead prediction error covariances is given in the following proposition.

Proposition 3.3.1. Individual precision constraints γi in Eq. (3.28) can be expressed

in terms of the 1-step ahead prediction uncertainties by replacing the positive definiteness

constraint given by Eq. (3.27) with



γ̃2
i hi

hTi X


 > 0. (3.29)

To show this, consider the precision constraint in terms of the 1-step ahead prediction

uncertainty

tr{UTP1U} < γ2, (3.30)

keeping in mind that U will be set to U = hTi . Eq. (3.30) is equivalent to the inequality

tr{UT (AP0A
T + Q)U} < γ2,

which implies

tr{UTAP0A
TU}+ tr{UTQU} < γ2,

or

tr{UTAP0A
TU} < γ̃2,
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where γ̃2 =
(
γ2 − tr{UTQU}

)
.

Since the matrix U is arbitrary, define ŪT = UTA to obtain

tr{UTP1U} < γ2 ⇔ tr{ŪTP0Ū} < γ̃2.

By Theorem 3.3.1, the constraint tr{ŪTP0Ū} < γ̃2 is satisfied if and only if there exists

X > 0 such that

tr{ŪT (ATXA)−1Ū} = tr{UTX−1U} < γ̃2,

where A is assumed invertible. Substituting UT = hi to represent individual precision

constraints and applying the Schur complement theorem, we arrive at the expression given

by Eq. (3.29).

The equivalent optimization problem in terms of 1-step ahead prediction uncertainty is

therefore given by:

min
qi,j ,X

Jmeas =
∑

i

∑

j

zjqi,j ,

subject to:







X −ATXA + (Hfull)T R̄−1Hfull X

X X + Q−1


 > 0,



γ2
i − hiQhTi hi

hTi X


 > 0,

X > 0,

A−1 exists,

R̄i,i =
(
σ2
i,1 · qi,1 + · · ·+ σ2

i,Ns,i · qi,Ns,i + σ2
large · qi,Ns,i+1

)
,

qi,j = {0, 1}.

(3.31)

Exact Pareto optimal points can be found by adjusting values of γ2
i near a point which
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corresponds to a measurement system known in advance to be nearly Pareto optimal. Such

approximately optimal M may be located by the following approximation technique.

Sequential Sensor Addition and Removal

This strategy is a heuristic way of locating Pareto optimal measurement systems which

works by turning “on” or “off” the decision variables qi,j in an order that is determined by

a series of local evaluations of the two objective measures Jmeas and Juncert. The process is

analogous to a gradient-based optimization procedure for functions of continuous variables.

The proposed approximation strategy via sequential sensor removal is as follows (the addi-

tion procedure follows naturally):

1. Construction of the Pareto optimal set is initialized by the full-state measurement

and highest precision sensors point M? = (Hfull, Rhigh), which corresponds to the

Pareto optimum characterized by both the highest measurement cost Jmeas and lowest

uncertainty Juncert.

2. A high-quality sensor is replaced by its next lowest quality option (which might cor-

respond to sensor absence) based on which replacement has the least impact on the

scalar measure

Jr =
Juncert(Mnext)− Juncert(M?)

Jmeas(M?)− Jmeas(Mnext)
, (3.32)

where Mnext is the measurement system similar to M? but with one sensor of lower

quality (or absent). The incremental measure Jr is used since at each step it is

desirable to have a small uncertainty increase and large cost decrease.

3. Step 2 is repeated until all sensors have been removed.
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Exhaustive Search

The third and final technique, known as “exhaustive search”, is the simplest to perform

(when possible). The exhaustive search technique involves evaluating Jmeas and Juncert for

every combination of measured variables and sensors types available. This technique is only

feasible when the total number of possible M is low. The advantage, of course, is that all

Pareto optimal points can be identified exactly.

It should be noted that unlike the work by Muske and Georgakis [2003], we do not limit our

search to observable systems, since for controllable or stabilizable systems only the weaker

condition of detectability is required for the existence of the steady-state solutions to the

KF equations (see Chapter 2).

3.3.2 Decision-making Process

The final step of the measurement system design procedure requires a decision maker

[Branke et al., 2008; Steuer, 1986] to select one from the potentially several Pareto op-

timal measurement system configurations. In this thesis, simulation experiments are the

proposed means to generate data (process economics in particular) over a sample-length

duration of typical operation. Only the exact or best approximate Pareto optimal sensor

configurations located by the above strategies need to be considered. Process economics

data can then be scaled up to the expected lifespan of the measurement equipment and

combined with the purchased and installed cost of measurement equipment to generate a

final total measurement system cost:

Jtotal = Jmeas + tscale · Jop (3.33)

where Jtotal is the total cost incurred by the choice of measurement systemM, and tscale is

a dimensionless scaling which converts the cost of a sample-length operation Jop to the ex-

pected lifespan of the measurement equipment. The measurement system which minimizes
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the total cost is then chosen as the overall optimum.

For the simulation experiments, the MPC strategy given by Eq. (3.18) is used to design the

controller since its formulation provides a direct way of maximizing revenue while satisfying

safety and product quality constraints. If a different control strategy is known to be nec-

essary a priori, it can be used for decision-making purposes, but closed-loop performance

results are likely to be plagued by trade-offs between constraint violations and economics.

3.3.3 Summary

In this chapter, measurement system design for stochastic linear systems has been posed

as a multi-objective optimization problem in order to preserve the characteristic objective

measures of a measurement system design’s quality. Minimization of the two objective mea-

sures – capital cost and uncertainty – is desired, but is not possible due to their conflicting

nature. Three methods have been proposed by which the Pareto optimal set of measure-

ment systems can be identified, either exactly or approximately, with the applicability of

each strategy contingent on the number of decision variables involved. For decision-making

purposes, model predictive control is the control strategy of choice. A controller whose

operation maximizes process revenue subject to constraints on the inputs and state vari-

ables has been designed. Data from closed-loop simulation experiments can then be used

to map approximate or exact Pareto optimal measurement systems to a cost of operation

over an expected lifespan of the measurement equipment. The measurement system which

minimizes the combined cost of capital investment and operation over the predicted lifespan

is then chosen as the optimum design.

The next two chapters contain illustrative examples which showcase the various compo-

nents of the full measurement system design procedure presented in this chapter. The

first example problem involves a low-dimensionality fluid handling network, on which the

three multi-objective optimization solution techniques are applied in order to investigate

their relative performances. The second example problem considers a high-dimensionality
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thermal-network description of a one-floor office building whose air temperatures are to be

controlled at minimum cost. The focus of this example problem is the performance of the

model predictive controller and subsequent decision-making strategy.



Chapter 4

Application to a Fluid Handling

Network

The purpose of this chapter is to investigate the performance of each of the three multi-

objective optimization solution techniques on a low-dimensionality state space model. The

application of MPC as a decision-making aide is the focus of the next chapter. The problem

is taken from [Chmielewski et al., 2002], and is of low enough dimensionality to include

the exhaustive search technique as a potential Pareto optimal set identification strategy.

Clearly, if the exhaustive search is possible, then the Pareto optimal set can be identified

exactly, and BnB/SDP and sequential techniques are not required. The latter techniques

are included in this chapter to assess their performance in comparison to the true Pareto

optimal set identified by an exhaustive search method.

4.1 System Description

The flow diagram for this example problem is shown in Figure 4.1. Node 2 is a storage tank

whose mass at time k is denoted by m(k). The tank has a leak stream, denoted by l(k),

that cannot be measured directly. A disturbance model is not known, and so an augmented

43
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NODE 1
NODE 2

x1

x2

x3 x4

l

Figure 4.1: Flow diagram of the example problem given in [Chmielewski et al., 2002]. The
flow rates xi can be measured, but the leak stream l cannot.

state-space representation such as Eq. (3.5) is not possible. The mass balances equations

for this system are

x1(k) = x2(k) + x3(k),

m(k + 1) = m(k) + x3(k)− x4(k)− l(k),

where xi(k) is the mass of fluid passed through stream i between sampling instants. Re-

call that the applicability of the BnB/SDP strategy is contingent on the invertibility of

the discrete dynamics’ A matrix. To ensure that A−1 exists, one considers a set of pri-

mary variables xp(k) = [x2(k) x3(k) x4(k) m(k) l(k)]T , whose dynamics are given by

xp(k + 1) = Axp(k). For analysis purposes, measurement systems of the type M̄ = (Hfull, R̄)

are considered, as defined in Chapter 3, and whose outputs y(k) = Cxp(k) correspond to

the entire state. In this case, Hfull = C, with the A and C matrices given by

A =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 −1 1 −1
0 0 0 0 1



, C =




1 1 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 1 −1 1 −1
0 0 0 0 1



. (4.1)
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Sensor Precision 1 Precision 2 Precision 3 Precision 4 Precision 5 Cost
Type (σ1,j) (σ2,j) (σ3,j) (σ4,j) (σ5,j) ($)

1 28.5 9.9 18.5 18.5 – 2,500
2 57.0 19.8 37.1 37.1 – 1,500
3 85.4 29.8 55.7 55.7 – 800
4 – – – – 16 2,600
5 – – – – 64 500

Table 4.1: Precision and costs for the five sensor types available for measurement system
design in the current example problem.

It is also assumed that flow during a given time period is subject to noise of a known

covariance structure:

xp(k + 1) = Axp(k) + Fw(k), (4.2)

where w(k) is normally distributed white noise with covariance matrix Q, and F is given as

F =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 1



. (4.3)

It is assumed that the amount of correlation between xi(k) and xi(k + 1), i = {2, 3, 4} is

small when ∆t is large. Therefore the covariance matrix Q is defined via Q−1 = diag{[10−6

10−6 10−6 1/(2.15)2]}∗, where the entries 10−6 indicate a large variance on the first three

components of w(k).

A number of different measurement devices exist for the various state variables, each with

their own capital cost and measurement precision. The precision (in terms of standard

deviation values) as well as purchased and installed costs of the sensors are given in Table

4.1.

∗In [Chmielewski et al., 2002], Q is defined via Q−1 = diag{[0 0 0 1/(2.15)2]}, which, as the authors
argue, is sufficient given that Q does not need to be evaluated at any point during the BnB/SDP analysis.



CHAPTER 4. APPLICATION TO A FLUID HANDLING NETWORK 46

4.2 Procedure

4.2.1 Sequential Addition and Removal

The sequential addition and removal techniques as outlined in section 3.3.1 are applied to

generate an approximate Pareto optimal set. A slightly modified version of the uncertainty

given by Eq. (3.21) is used. It is given by:

Juncert = tr{WP+
∞}, (4.4)

since no model predictive control is to be applied to this problem, and hence 1-step ahead

prediction error covariances do not need to be considered. The above uncertainty measure

is calculated by weighting the individual estimation error uncertainties of states 1 (inlet

flow), 4 (tank mass), and 6 (leak stream) a factor of 100,000 times higher than those of

the remaining states. This is chosen following suggestions reported by Chmielewski et al.

[2002] that these states are the most crucial for estimation. Specifically, diagonal entries

W (1, 1) = W (4, 4) = W (6, 6) = 1000 while remaining diagonal entries were set to 0.01. For

eachM considered during the sequential techniques, the estimation error covariance matrix

P+
∞ is calculated recursively using the following form of the a posteriori error covariance

matrix:

P+
∞ =

[(
AP+
∞A

T + FQF T
)−1

+ CT R̄−1C
]−1

(4.5)

where R̄ has the form given by Eq. (3.23). The recursion is initialized at P+
∞(0) = 1000 · I

where I ∈ R5×5 is the identity matrix. Recursion is terminated after the following termina-

tion criterion is reached:

‖P+
∞(i)− P+

∞(i− 1)‖F < ε = 1× 10−6 (4.6)

where P+
∞(i) is the ith iteration of P+

∞ and ‖ · ‖F denotes the matrix Frobenius norm.
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4.2.2 BnB with Semi-definite Programming

A number of approximate Pareto optimal measurement systems can be generated by follow-

ing the procedure outlined in the previous section. Following this, a select number of the

resulting estimation variances P+
∞(1, 1), P+

∞(4, 4), and P+
∞(6, 6) can then be relaxed slightly

to form upper bound precision constraints γ2
i in Eq. (3.28). In this thesis, the MATLABTM

optimization package YALMIP [Löfberg, 2004] is used to solve binary integer programming

problems and semi-definite programs. By defining a total of 19 binary decision variables

(one for each of the 4 sensor options on states 1-4 and 3 sensor options on state 5) plus

positive-definiteness constraints on the matrices in Eq. (3.28), the branch-and-bound algo-

rithm can then be executed. The branch-and-bound algorithm used is contained in the file

bnb.m of the YALMIP optimization package. The semi-definite programs at each node are

solved using the semi-definite programming solver named “SeDuMi” [Pólik, 2009]. The fea-

sibility tolerance of the branch-and-bound algorithm is set to 0 to ensure that the precision

constraints γ2
i are not violated.

4.2.3 Exhaustive Search

In this problem, 5 states available for direct measurement with the possibility of 4 dif-

ferent types of sensors on states 1-4, and 3 different sensor types on state 5. The total

number of measurement system configurations is 768. Consequently, the individual cal-

culations of Jmeas and Juncert as given by Eqs. (3.20) and (4.4), respectively, can be rea-

sonably performed. These calculations can be performed by executing the MATLABTM

file Chmielewski_2b_Exhaustive.m, which calculates every Jmeas and Juncert for the 768

possible measurement system designs in a straightforward manner.



CHAPTER 4. APPLICATION TO A FLUID HANDLING NETWORK 48

4.3 Results & Discussion

The results obtained by the sequential addition/removal strategies and exhaustive search

technique are shown in Figure 4.2. The vertical axis displays the natural logarithm of

Juncert. The results demonstrate that both the sequential addition and removal techniques

locate measurement systems characterized by comparable uncertainty and capital costs.

Some differences in the quality of the approximate Pareto optimal points are seen in the

interior region of Figure 4.2, and especially at the low number of sensors region. This

is due to the nature of the sequential techniques, which are merely a heuristic way of

locating approximately Pareto optimal points. As their operations progress, a further de-

parture from true Pareto optimal points is increasingly more likely to occur because at

stage n a removal/addition decision is made based on decisions that were made at all stages

{n− 1, · · · , 1}, where the optimality of stage n was not of concern. Once the sequential

removal technique has begun approximating Pareto optimal points at the low number of

sensors region, this effect of sub-optimal optimization has been felt to a greater extent than

by the sequential addition’s operation at the same region, which has only just started to

locate Pareto optimal points. These differences in approximation quality at the high and

low number of sensor regions suggests that one should use the sequential techniques in con-

junction – rather than one or the other exclusively – to approximate the Pareto optimal

set. Figure 4.3 displays nearly the same results as Figure 4.2, the difference being that

the results of the exhaustive search have been removed, and the results of the BnB/SDP

strategy have been colour-coded. Examination of the interior region of Figure 4.3 reveals

the result that the BnB/SDP strategy is able to locate points that found by the sequential

techniques (for example, the green star near $9000), as well as points that were not. The

quality of the unique points that BnB/SDP is able to find is variable. Table 4.2 shows

two particular cases: one where BnB/SDP outperforms the sequential techniques, and one

where the BnB/SDP strategy falls short. The upper half of Table 4.2 shows the results of
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Figure 4.2: The results of the sequential addition and removal strategies (4 and �, re-
spectively), BnB/SDP (F), and exhaustive search (·) superimposed for visual comparison.
Three sample measurement system configurations are shown to emphasize that many poor
combinations of measured variables and sensor types exist.
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Figure 4.3: Pareto frontier generated via sequential removal (�) and sequential addition
(4). Also shown are the Pareto optimal points generated by semi-definite programming
(F). Dashed horizontal lines correspond to maximum uncertainty values used to construct
stars of corresponding colour (for cleanliness, only a select 4 are shown).

a particular BnB/SDP run which produced a measurement system with the same capital

cost as one located by the sequential addition technique (Jmeas = $7800). In this case, the

sequential technique was able to find a better approximate Pareto optimal point than the

BnB/SDP approach, as seen by the two differing values of the uncertainty measure Juncert.

The opposite result is also possible. An example of this is given in the lower half of Table

4.2, where BnB/SDP outperforms the sequential addition strategy by the same arguments

as above.

The reason for the identification of sub-optimal Pareto points by BnB/SDP stems from

the slight incompatibility between the uncertainty (precision) constraints formulation of
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Location Method P+
∞(1, 1) P+

∞(4, 4) P+
∞(6, 6) loge(Juncert) Jmeas

BnB/SDP 652.48 325 61.75 13.85 $7,800
Upper Limit γ2

i 700 550 80 – –

Sequential Addition 580 326.2 75.5 13.80 X $7,800

BnB/SDP 812.1 1376.2 266.98 14.7153 X $4,800
Upper Limit γ2

i 820 1400 290 – –

Sequential Addition 812.1 1376.2 267.08 14.7201 $4,800

Table 4.2: Precision and costs for the five sensor types available for measurement system
design in the current example problem.

Eq. (3.31) and the Pareto uncertainty measure used to categorize measurement systems

given by Eq. (4.4). The remedy for this incompatibility is to simply pose the first stage

of the multi-objective optimization procedure as a multi-objective optimization problem

characterized by several independent objective function uncertainty measures (one for each

state estimate uncertainty). The advantage of this is a more direct method of locating

Pareto optimal points. However, it is likely that many more Pareto optimal measurement

systems may then need to be individually considered during the subsequent decision-making

process.

Despite the possibility that BnB/SDP can converge to sub-optimal Pareto points, it is

clear from Figure 4.2, which contains the results from the exhaustive search technique,

that BnB/SDP is successful at finding very good measurement system configurations (their

proximity to the Pareto optimal set is very low). It is easily seen that the sequential

techniques are also quite successful at finding nearly or exactly Pareto optimal points,

though a number of exact Pareto optimal points are missed along the way.

4.4 Summary

In this chapter, the three multi-objective optimization solution strategies presented in Chap-

ter 3 were applied to a low-dimensionality fluid handling network. The results suggest that
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the combined use of the sequential and BnB/SDP strategies can result in a high quality

approximation of the true Pareto optimal set. This can be achieved since: 1) the sequen-

tial addition and removal strategies can identify high quality approximate Pareto optimal

points at the low and high number of sensors region, respectively, and 2) the BnB/SDP is

capable of finding high quality Pareto optimal points in the interior region by adjusting the

precision constraints of the SDP.



Chapter 5

Application to a Thermal Network

In this chapter, the measurement system design procedure of Chapter 3 is applied to a ther-

mal network description of a building system model. Due to the high dimensionality of the

state space model, only the sequential addition/removal techniques are used to approximate

the Pareto optimal set. Decision-making via simulation experiments is performed using the

steady-state Kalman filtering and profit maximizing MPC strategies.

5.1 Example Problem Description

We consider the temperature control of a one-floor office building represented by a thermal

network model, a popular approach for modeling heat transfer in the building systems

literature [Wang and Xu, 2006; Zhang and Hanby, 2006; Xu and Wang, 2008; Lee and

Braun, 2008; O’Neill et al., 2010]. The purpose of this example problem is to apply the

techniques developed in Chapter 3 to design an economically optimal measurement system

whose expected lifespan is 10 years.

The building system, whose floor plan is shown in Figure 5.1, contains seven zones that are

defined based on the availability of local actuators. In this example, it is assumed that the

office is subject to a warm climate. As a result, only air conditioning (cooling) is required

53



CHAPTER 5. APPLICATION TO A THERMAL NETWORK 54

to maintain a comfortable atmosphere for the building’s occupants. Air conditioning in

each zone is accomplished via fan coil units (FCUs), which supply cool air to the zones.

The white, unlabeled spaces in Figure 5.1, are uncontrolled areas whose temperatures are

considered to be disturbances. Surrounding the building is a corridor whose temperature

is also uncontrolled. Further disturbances include the ground temperature, ceiling tem-

perature, and internal load (which is due to occupants, lights, etc.). Under the thermal

network formulation, each surface (wall, floor, ceiling) and mass of air is assigned a uniform

temperature whose dynamic behaviour is modeled as due to conductive or convective heat

transfer [Çengel, 2006]. Hence, for a reasonably complex model, many temperatures are

available for measurement.

The objective of indoor temperature control is to keep the temperatures of each zone within

their user-specified upper and lower limits, while minimizing the cost of operation. This

problem, also in the context of model predictive control is considered in [Lute and van

Paassen, 1994], though the MPC objective function considered is of a mixed type, includ-

ing terms which correspond to dollar-valued operation cost and occupant comfort. Model

predictive controllers whose objective functions include terms corresponding to various per-

formance measures have been successfully applied in industry (such as quadratic dynamic

matrix control (QDMC) [Bequette, 2003]). However, a drawback with such control strate-

gies is that even if the controller parameters can be tuned to achieve acceptable performance,

the analysis of closed-loop operation is likely to be complicated by tradeoffs involving the

multiple performance criteria.

This problem is well suited to illustrate the application of the techniques proposed in this

thesis since:

• a large number (> 100) of physically interpretable variables are candidates for mea-

surement,

• the controlled variables are subject to several stochastic disturbance inputs,
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Figure 5.1: A floor plan of the one-floor office building considered in this chapter. Zones
are defined based on the availability of an actuator. White spaces and the area surrounding
the figure are uncontrolled areas whose temperature is considered a disturbance.

• comfort constraints (max/min room temperatures) are crucial to enforce.

5.2 Procedure

5.2.1 Modeling Indoor Temperature and Disturbance Dynamics

Indoor Temperature Dynamics

The reduced order model of the temperature dynamics is based on mass and energy bal-

ances around the entire building envelope and around each zone. Under the thermal-network

framework, an effective modeling technique is the “3R2C” approximation. The “3R” com-

ponent refers to the three resistances to heat transfer between adjacent zones. Resistances

1) and 2) are due to the combined effects of two convective heat transfer stages between

surfaces and air, and resistance 3) originates from the conductive heat transfer through

solid surfaces. The term “2C” refers to the discretization of walls and other surfaces into
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two separate entities, each with its own uniform temperature and thermal capacitance.

Neglecting water evaporation, exogenous air infiltration, and interzone air mixing, an energy

balance around zone j is given by:

Mair,jCp,air
dTzone,j
dt

= ṁsaCp,air(Tsa − Tzone,j) +Qint,j +

Nsurf,j∑

i=1

Qsurf,i, (5.1)

where Tzone,j (K) and Mair,j (kg) are zone j’s air temperature and mass of air, Cp,air ( J
kg·K )

is the specific heat capacity of air (assumed constant), ṁsa (kg/s) and Tsa (K) are the mass

flow rate and temperature of air supplied by the FCU, Qint,j (W ) is zone j’s internal load,

Qsurf,i (W ) is the heat exchanged to/from the room via the various surfaces (walls, ceiling,

ground), and Nsurf,j is the number of surfaces adjacent to zone j’s air mass. For a surface

adjacent to zone j, the rate of change of its temperature is given by

Cs,i
dT insurf,i
dt

= hjAs,i(Tzone,j − T insurf,i) +
T outsurf,i − T insurf,i

Rcon,i
, (5.2)

where T insurf,i (K) is the ith surface adjacent to zone j’s mass of air. The temperature T outsurf,i

(K), is that of the surface adjacent to the ith surface, hj
(

W
m2·K

)
is the convective heat

transfer coefficient between the surface and zone j’s air (assumed constant), Rcon,i (K/W )

is the conductive resistance between two adjacent surfaces, and As,i (m2) is the area of the

surface. The thermal resistance and capacitance are defined by

Rcon,i =
wi

kiAs,i
, Cs,i =

ρiCp,iwiAs,i
2

, (5.3)

where wi (m), and ki
(
W
m·K

)
are the thickness and thermal conductivity of surface i respec-

tively, ρi (kg/m3) is the density of the surface’s material, and Cp,i

(
J

kg·K

)
is the specific heat

capacity of the surface’s material. The thermal-network parameters used are based on those

determined during on-line estimation by the control systems research group at the United
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Technologies Research Center (UTRC) for the particular building that is considered in this

chapter, all of which are contained at the top level of the MATLABTM file makeSS_D.m

The FCU is assumed to have local level controls that regulate both the air flowrate ṁsa and

temperature of air delivered to the zone, Tsa. If the method of feedback linearization [Khalil,

2002] is employed, all seven ṁsaCp,air(Tsa − Tzone,j) terms in Eq. (5.1) can be grouped into

one control input vector, uk, whose entries at time k represent the power removed (for

cooling) from each room. Note that Tzone,j is a state variable whose value at any sampling

instant is not known exactly. If the zone temperature Tzone,j in the proposed expression

for u is replaced by an estimate, the result is a stochastic control variable, which renders

the applicability of the Kalman filter in Chapter 3 invalid. To ensure that uk can be

known exactly at all future sampling instants, it is assumed that measurement of the mass

flow rate and temperatures at the inlet and outlet of each FCU’s cool water stream are

available to the local level controllers. A straightforward energy balance over time-span dt

can then be performed to calculate Tzone,j , since it is assumed that all heat removed from a

zone’s air is gained by the cool water stream passing through the FCU’s cooling coil. It is

unknown if FCUs with a hardware arrangement such as this currently exist. As such, it is

recognized that this assumption may be a critical factor governing the applicability of the

MPC control strategy. Nevertheless, in this thesis the standard technical assumption that

the control input is known exactly at all sampling instants is made to keep the focus on the

topics at hand.

Disturbances

The disturbances that affect the indoor temperature of the office building consist of:

• a corridor temperature, Tcorr (surrounding the building and in the white space of

Figure 5.1),

• a ground temperature, Tgr,
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• a ceiling temperature, Tceil,

• internal loads Qint,j , j = {1, · · · , 7}.

Since the disturbances, Di are periodic in nature, they can be modeled as the discrete-time

version of an under-damped second order continuous-time system with very low damping

ratio (ζ = 0.005)

Di
k+1 = φi1D

i
k + φi2D

i
k−1 + vik+1. (5.4)

The under-damped second order systems of Eq. (5.4) are zero mean, and so the introduction

of additional components is required. The actual disturbance variables which affect the plant

include the periodic component given by Eq. (5.4) combined with an additional noise term

v̄i (perfectly correlated with vi). A bias bi is also added to introduce additional uncertainty

phenomenon and move the expected value to a user-defined average daily temperature. As

a result, the model takes the form:

D̄i
k+1 = Di

k + v̄ik+1 + bi, (5.5)

where D̄i, i = {1, · · · , 4} are the actual values of the disturbances that affect the plant,

v̄i ∼ N (0, σ2
v̄,i) are additive white noise sequences and bi are constant bias terms. In matrix

notation, the ith disturbance variable is modeled as follows:




D̄i
k+1

Di
k+1

Di
k

bik+1


 =




0 1 0 1
0 φi1 φi2 0
0 1 0 0
0 0 0 1







D̄i
k

Di
k

Di
k−1

bik


+




σv̄,i
σv,i
0
0


 v

i
k+1, (5.6)

which can be conveniently rewritten as:

dik+1 = Φidik + vik+1, (5.7)

where dik+1 =
[
D̄i
k+1 D

i
k+1 D

i
k b

i
k+1

]T
, and
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Φi =




0 1 0 1
0 φi1 φi2 0
0 1 0 0
0 0 0 1


 . (5.8)

For this example problem, the entire disturbance vector d as given by Eq. (3.2) has the

form dk =
[
d1
k
T
, d2
k
T
, d3
k
T
, d4
k
T
]T

. The dynamics of the disturbance variables are therefore

modeled as

dk+1 = Φdk + vk+1, (5.9)

where vk =
[
v1
k
T
, v2
k
T
, v3
k
T
, v4
k
T
]T

. The block diagonal disturbance state transition matrix

Φ is given by

Φ =




Φ1 0 0 0
0 Φ2 0 0
0 0 Φ3 0
0 0 0 Φ4


 , (5.10)

where Φi are defined by Eq. (5.8) and 0 are zero matrices of appropriate dimension. The

maximum daily temperature/internal load variation (i.e. amplitude) is then adjustable by

appropriately specifying the initial condition d0.

Full State-space Description

A full description of the indoor temperature dynamics results in a system of 99 continuous-

time deterministic linear ordinary differential equations:

ẋ = Acx+Bcu+ Fcd, (5.11)

with the dynamics governing d to be included later. The subscript “c” on the A, B, and F

matrices in Eq. (5.11) indicates that these matrices describe the continuous-time dynamics.

The approach taken to integrate Eq. (5.11) in this thesis is by invoking the MATLABTM

command c2d with the zero-order hold option on a state space object defined by Ac and Bc
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in the MATLABTM environment. The output is the formation of a new discrete state space

object containing the matrices A, B, and F of Eq. (3.1). The dynamics of the discrete

state space model are therefore described by the linear difference equations

xk+1 = Axk +Buk + Fdk,

to which a stochastic component used to simulate plant/model mismatch a ∼ N (0, Qa) is

added. The resulting model of the building system’s state evolution is therefore given by

xk+1 = Axk +Buk + Fdk + ak+1. (5.12)

Combining Eqs. (5.12) and (5.9), we arrive at the augmented description of the dynam-

ics with state variable zk =
[
xTk , d

T
k

]T
and driving white noise sequence νk =

[
aTk , v

T
k

]T

∼ N (0,Q):

zk+1 = Azk + Buk + νk+1,

yk = Hzk + wk,

(5.13)

where w ∼ N (0, R), and matrices A and B are given by

A =



A F

0 Φ


 , B =



B

0


 , (5.14)

where “0” denote zero matrices of appropriate dimensions. The output matrix H takes the

block diagonal form

H =



C1 0

0 C2


 , (5.15)

where matrices C1 and C2 specify which of the plant and disturbance variables, respectively,

are to be measured, and “0” again denote zero matrices of appropriate dimensions. Note

that the notation used to represent the dynamics of the combined plant/disturbance model
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is exactly the same as the notation used in Chapter 3.

A full characterization of the heat transfer between all internal temperature and disturbance

states results in a system of 115 difference equations (99 internal states, 16 disturbance

states) with 7 control inputs. For measurement system design, the output matrix Hfull as

defined in Chapter 3 corresponds to the measurement of all 99 internal states plus all D̄i and

all bi. It is understood, however, that the internal load disturbance state cannot actually

be measured since it is an amalgamation of many variables. It is included to determine its

relative importance in the description of the building system’s dynamics.

5.2.2 Controller Design

In this section, a suitable model predictive controller is designed to minimize the cost

of temperature regulation subject to user-specified max/min zone temperature constraints.

Numerical implementation details and tuning parameter selection is left for the later section

which discusses the simulation experiments in detail.

The control objective is to maintain a comfortable atmosphere for the building’s occupants

while incurring as little operational cost as possible. As such, the model predictive controller

is designed in such a way that its operation minimizes the cost of electricity usage subject

to input constraints (due to limits on actuator capabilities) and constraints on the states

corresponding to zone air temperatures.

For this control problem, the expected cost of operation is given by price-times-input terms

where the input u in Watts is multiplied by time-dependent price values that reflect the

differences in demand during peak- and off-peak hours. The cost of control is performed as-

suming a 1:1 direct conversion between cooling power and electricity consumption. For more

detailed analysis, the conversion can be accomplished via the Air Conditioning, Heating,

and Refrigeration Institute’s “Seasonal Energy Efficiency Ratio”, or SEER.∗

∗A cooling unit’s SEER rating is defined as the ratio between the cooling power delivered by the appliance
and its electrical power input [Air-Conditioning, Heating, & Refrigeration Institute, 2008].
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Maximum and minimum constraints on the zone air temperatures are assumed to be time-

dependent, with the tighter constraints imposed during occupied office hours (8:00 am -

6:00 pm). This operating policy allows off-peak hour “pre-cooling”, where thermal storage

through the use of the building’s thermal mass is exploited. Since the temperature control

of individual zones is the primary concern in this problem, it is more appropriate to pose

the constraints in the MPC formulation on a zone-by-zone basis, specifying the allowed

probability of violation for each zone (as opposed to the entire state vector). As such, r

in Eq. (3.18) is replaced by Zj , the standard normal value corresponding to a maximum

violation probability of 1 − αj for zones j = {1, · · · , 7}. The optimization problem solved

at each controller execution is given by

min
uNpr

JMPC = δT (k)uNpr

subject to:





eTj x̂k+i|k ≤ eTj X̄i − Zj
√
eTj P1ej ,

eTj x̂k+i|k ≥ eTj X¯ i + Zj

√
eTj P1ej ,

U
¯ i
≤ uk+i ≤ Ūi,

ẑk|k = (I −K∞H)(Aẑk−1|k−1 + Buk−1) +K∞yk,

K∞ = (P−∞HT )(HP−∞HT +R)−1,

P−∞ = −A(P−∞HT )(HP−∞HT +R)−1(HP−∞)AT

+ AP−∞AT + Q,

P1 = AP+
∞AT + Q,

P+
∞ = (I −K∞H)P−∞(I −K∞H)T +K∞RK

T
∞,

(5.16)

for all i = {1, · · · , Npr} and i = {0, · · · , Npr − 1} for constraints on x̂k+i|k and uk+i, re-

spectively and for all j indexed appropriately to enforce constraints on the states which

represent the seven zone air temperatures. The entries of vector δ(k) are time-dependent

power-to-dollar conversion coefficients.



CHAPTER 5. APPLICATION TO A THERMAL NETWORK 63

Since an output reference signal is not involved in the MPC formulation Eq. (5.16), closed-

loop stability under MPC can be ensured by directly following the dual mode MPC con-

figuration guidelines presented in Chapter 2. Because the augmented system is open-loop

stable, by assigning the terminal region Xf = Rnx+nd , terminal control policy uf = 0, and

stage costs following the prediction horizon Js(x, 0) = 0 ∀x ∈ Xf , we ensure that conditions

C1 through C4 are met (C4 being met with equality). Of course, the terminal control

policy uf = 0 is not actually be implemented, since convergence of the plant’s state x to

the origin is not one of the control objectives.

5.2.3 Measurement System Design

As stated previously, the objective of this example problem is to design the most economi-

cally optimal measurement system by completing the two-stage multi-objective optimization

procedure of Chapter 3. The first stage involves the determination of the Pareto optimal

set, and the second stage relies on simulation experiments as a means to map Pareto opti-

mal measurement configurations to a cost of operation. The cost values generated by the

simulation experiments designed to emulate typical working conditions are then scaled up

to the expected lifespan of the measurement equipment. The measurement system that

minimizes the combined cost of capital investment and scaled-up operation is chosen as the

optimum.

Construction of the Pareto Optimal Set

Given the dimensionality of the state-space model used to describe the temperature dynam-

ics, an exhaustive search was not possible. Therefore, only the sequential addition/removal

and branch-and-bound/semi-definite programming techniques were attempted.

For the sequential techniques, two cases are examined. The first assumes that the ef-

fect of unmodeled dynamics on the plant were negligible (Qa = 0), while the second case

acknowledges the effect of unmodeled dynamics whose covariance structure (Qa 6= 0) is
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known exactly. It is reasonable to assume that some amount of model inaccuracy exists

since the thermal network model assumes that a number of parameters (heat transfer co-

efficients, heat capacities, resistances, etc.) are temperature-independent. In reality, these

parameters do exhibit a slight temperature dependence. In addition to parameter-based

simplifications, other unmodeled mass and heat transfer phenomena cause a discrepancy

between the control model’s predictions and observed behaviour.

To simulate the effect of these unmodeled phenomena, Qa is assumed to be diagonal with the

ith diagonal entry Qa(i, i) = σ2
a = 0.05. Variances on the random component of the measure-

ments are modeled by assigning R as a diagonal matrix with R(i, i) = σ2
R = 0.005. That is,

all available temperature measurements are assumed to be reliable, with most of the predic-

tion uncertainty originating from the unmodeled dynamics of the plant. The approximate

Pareto optimal sets are constructed by following the sequential sensor addition/removal

procedures of section 3.3.1. Numerically, the sequential techniques can be performed by

executing the MATLABTM files RemoveSensors1.m and RemoveSensors1_reverse.m (cor-

responding to the sequential removal and addition strategies, respectively).

In all cases, the measure of uncertainty from Eq. (3.21) is used, since the one-step-ahead

prediction error covariances are used by the model predictive controller. To assign rep-

resentative weighting on the importance of the prediction of various states, the weighting

matrix W is made diagonal with zero weights on non-zone temperature states and weights

of 500 · Vj on zone temperature states where Vj is the volume of zone j.

The branch-and-bound/semi-definite programming strategy is applied on the case where

Qa 6= 0 by again using the optimization package YALMIP with MATLABTM. Both the

SeDuMi semi-definite programming solver (already introduced in Chapter 4) as well as the

MATLABTM Robust Control Toolbox’s “LMILAB” solver are employed to solve the relaxed

problems at each node. Before the branch-and-bound algorithm is executed, feasibility tests

for a combination of precision constraints and measured variables, known to lead to a feasible

solution performed to obtain estimates of the time-to-completion of the branch-and-bound
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algorithm. The BnB/SDP strategies can be initiated by executing the MATLABTM files

ParetoExact.m and LMISetup.m. The YALMIP command solvesdp can then be executed

to begin the branch-and-bound procedure.

Simulation-based Experiments

Only the measured variable combinations resulting from sequential and BnB/SDP strate-

gies which were closest to Pareto optimal are considered. Furthermore, only the unmodeled

dynamics case Qa 6= 0 is considered, since it is the most representative of real operation.

Reliable measurements, as given by R defined previously are used. For these measurement

systems, three days of typical operation are simulated in the MATLABTM/Simulink envi-

ronment as a means to generate operational cost data for use in the final decision-making

process.

The response of the plant (along with the Kalman filter and controller) is simulated in

Simulink using the “Discrete State Space” block. This block collects the components of

a “discrete state space” object constructed through the conversion of the continuous-time

ordinary differential equations of Eq. (5.2) to discrete-time form through the MATLABTM

command c2d. Conversion of the ODEs to matrix form takes place in the file named

makeSS_D.m, while the disturbance transition matrices of Eq. (5.6) are augmented after-

wards in the file RunSim.m to produce the A, B, and H matrices of Eq. (3.5).

The update/sampling interval for the plant is set to 15 minutes, a reasonable length of time

since the relatively slow temperature dynamics of building systems results in appreciable

temperature changes occurring on the order of minutes (as opposed to seconds or mil-

liseconds). To standardize the results, all noise added to the plant’s states is generated in

advance via the MATLABTM command randn and stored in the MAT file state_noise.mat

which is called upon by Simulink during simulation via a “From File” block. Noise asso-

ciated with the disturbance variables originate through “Random Number” blocks whose

constant seed value of 0 ensures reproducibility of the results.



CHAPTER 5. APPLICATION TO A THERMAL NETWORK 66

The Kalman filter operates in nearly the same manner as the Plant. Since the KF is simply

a discrete-time dynamical system itself, its operation can be simulated by another “Discrete

State Space” block (in conjunction with other math operation blocks) whose arguments fol-

low from the KF equations (3.8a) and (3.8b). Because conditions that represent typical

operation are to be simulated, the steady-state filtering strategy is used over the entire

course of the 3 day simulations. This experimental design detail is equivalent to the as-

sumption that convergence of P−k , P+
k , and Kk to P−∞, P+

∞, and K∞, respectively, occurs

quickly relative to the expected lifespan of the measurement equipment. Numerically, this

is accomplished by using only the converged matrices in Eq. (3.8) and initializing ẑ0|0 = z0.

The solution to the DARE in Eq. (3.8c) can be calculated by invoking the MATLABTM

command dare.† Further numerical implementation details regarding the KF’s operation

are available in the subsystem KALMAN FILTER contained in Simulink file BuildingSim.mdl.

The optimization problem given by Eq. (5.16) is a linear program that lends itself to solu-

tion by either the interior-point or simplex algorithms. Preliminary investigations showed

that the simplex algorithm that comes standard with the MATLABTM optimization tool-

box (executed by invoking the command linprog) is more reliable than the interior-point

algorithm supplied in the same software package. In a small number of instances where the

interior-point algorithm was used to solve Eq. (5.16), optimization was terminated prema-

turely for no clearly identifiable reason. For this reason, the simplex algorithm was chosen

to solve Eq. (5.16) at each controller execution for all simulation experiments.

Interaction between linprog and the remaining simulation components is made possible

through the introduction of the “MATLAB-S-Function” block named MPC_LinProg.m. Con-

version of the MPC equations in Eq. (5.16) into the form required by linprog occurs in

this file during a call to an internal function named ieq_output_constraint_gen. The

controller is set to execute every 30 minutes to calculate a new uNpr whose first entry is

supplied under a zero-order hold to the plant. The prediction horizon Npr is set to 12 hours

†Execution of this command requires that the MATLABTM Control System Toolbox be installed.
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to allow enough time for the controller to utilize the relatively slow dynamics of the plant to

store cooling energy in the building’s walls, floor, ceiling, and bodies of air. In addition to

returning control inputs, MPC_LinProg.m also returns a diagnostic variable called exitflag,

whose values at each controller execution indicate whether or not convergence to a feasi-

ble optimal solution is achieved. Knowledge of this diagnostic is critical to ensure that all

simulation experiments are equivalent in terms of the controller’s successful operation. For

example, faulty linear programming operation can lead to excessive constraint violations

and unrepresentative cost function values if control inputs corresponding to zero cooling

energy are erroneously being administered to the plant.

A number of “To Workspace” blocks are utilized in the Simulink model file whose outputs

are first stored in the MATLABTM workspace and then saved to the hard disk as a MAT file

under a representative file name. When multiple simulations are run, the file RunSims.m

is executed. This file automatically changes the parameters of interest between successive

simulation experiments, and automatically stores data upon completion.

Post-simulation processing occurs through execution of the file Performance.m once the

desired simulation results (stored in a MAT file) are loaded to the MATLABTM workspace.

This file plots the response of one or all of the seven zone air temperatures on one panel

and the control inputs at each sample time on the lower panel. This file also calculates the

percentage of simulation time where all seven zone temperatures violated upper and lower

temperature constraint values.

A number of operating conditions used in the simulations are given in Table 5.1. Other

parameters which are less critical for this discussion are clearly marked at the top level of

the source code file RunSim.m.

Final Design

The operating cost data generated by the three day long simulations was scaled up to ten

years, which was assumed to be the life expectancy of the measurement equipment. Each
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Parameter Type
Variable

Description Name Value (units)

Building Properties

Wall thermal resistance Rcon 0.43 (◦C/W)
Wall thermal capacitance Cs 42000 (J/◦C)
Occupied hours toc 7:00 am - 6:00 pm
Zone Temp. Max. (all hours) X̄ 25 (◦C)
Zone Temp. Min. (occupied hrs.) X

¯ o
22 (◦C)

Zone Temp. Min. (unoccupied hrs.) X
¯ u

17 (◦C)

Disturbances

Ground temperature (avg.) T̄gr 18 (◦C)
Ground temperature (amplitude) Tgr,A 1 (◦C)
Ceiling temperature (avg.) T̄ce 30 (◦C)
Ceiling temperature (amplitude) Tce,A 3 (◦C)
Corridor temperature (avg.) T̄co 25 (◦C)
Corridor temperature (amplitude) Tco,A 2 (◦C)

MPC Parameters

Controller execution period Tc 30 (min)
Prediction horizon Npr 48 (samples)
Probability of constraint violation for
a zone

1− α 0.05

Other Parameters
Electricity high-price ehigh 0.099 ($/kWh)
Electricity low-price elow 0.051 ($/kWh)
Electricity high-price time te,h 7:00 am - 6:00 pm

Table 5.1: Some of the parameters used in closed-loop MPC simulations of the one-floor
office building described by a thermal network.
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sensor was assigned a price tag of $200, which is understood to be low, but is useful for

illustration purposes. The final cost of the measurement system is then calculated by

Jtotal = Jmeas + tscale · Jop, (5.17)

where Jmeas is the capital cost of measurement equipment (defined in Eq. (3.20)), tscale is a

dimensionless scaling factor that converts the cost of three days of simulation to the 10 year

expected lifespan of the measurement equipment, and Jop is the cost of operation relative

to the full state measurement case:

Jop = δ̄T (u(M)− u(M?)) , (5.18)

where the vector δ̄ contains power-to-dollar conversion coefficients for the entire length of

a three day simulation, u(M) is a vector containing the control inputs over the course

of the simulation run with measurement system M, and M? =
(
Hfull, Rhigh

)
. As such,

Jop represents the opportunity cost of not measuring every possible state variable with the

highest precision.

The exact or approximate Pareto optimal measurement system, M that minimizes Eq.

(5.17) is chosen as the overall optimum.

5.3 Results and Discussion

The results of the investigations described above are presented in this section. Addition-

ally, an account of the attempts at applying the BnB/SDP technique are provided. The

BnB/SDP technique is not considered as a candidate Pareto optimal set identification strat-

egy due primarily to the computational infeasibility of the semi-definite programs when a

large state space model is considered. An account of several attempts at applying the

BnB/SDP strategy is provided.
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Figure 5.2: Approximate Pareto optimal sets generated via sequential addition (4) and
removal (�) strategies for Qa 6= 0.

5.3.1 Approximate Pareto Optimal Set

Sequential Addition/Removal

Figure 5.2 shows the approximate Pareto optimal set produced by the sequential addi-

tion/removal strategies for the case where Qa 6= 0. Figure 5.3 shows the same information

but at the low number of sensors range (which is the region of interest) for the case where

Qa = 0. In both cases, a dramatic decrease in uncertainty is observed after a relatively

small number of sensors have been included. Further purchase and installation of measure-

ment equipment results in very modest reductions in uncertainty. It is also observed the

sequential addition technique is able to locate measured variable configurations closer to

the true Pareto optimal than the sequential removal technique at the low number of sensors

region. The explanation for the sequential addition strategy’s superior performance in this

region is the same as the one already given in Chapter 4.
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Figure 5.3: Approximate Pareto optimal sets generated via sequential addition (4) and
removal (�) strategies for Qa = 0. Only the low number of sensors region is shown.

The states of the augmented model whose measurements result in the dramatic uncertainty

decrease at the low number of sensors range are given in Table 5.2 (sequential removal) and

Table 5.3 (sequential addition). The clear difference between the two unmodeled dynamics

cases is that when Qa 6= 0, greater importance is placed on states whose heat transfer

mechanism is in direct contact with the constrained highly-weighted states (recall that the

weighting matrix W in Eq. (3.21) resulted in heavy weighting of the zone states) or the

constrained states themselves. This is in opposition to importance being placed on the

disturbances (which is the case when Qa = 0), whose future effect on air temperature states

are relatively less certain due to the assumed model uncertainty. Similar physically intuitive

results, though in a gramian-based observability context, have been reported by Brewer et al.

[2007] for a distillation process.
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Sequential Sensor Removal

No Unmodeled Dynamics Unmodeled Dynamics

State Rank State Description State Description

1 Zone 1 air temperature Zone 5 inner floor temperature
2 Disturbance (ceiling temp.) Zone 1 inner floor temperature
3 Disturbance (internal load) Zone 3 inner floor temperature
4 Disturbance (corridor temp.) Zone 4 inner floor temperature
5 Zone 5 air temperature Zone 2 inner floor temperature
6 Zone 3 air temperature Disturbance (ceiling temp.)
7 Disturbance (ground temp.) Zone 5 inner wall temperature

Table 5.2: The final 7 measurements removed during the sequential removal process.

Sequential Sensor Addition

No Unmodeled Dynamics Unmodeled Dynamics

Variable Rank Variable Description Variable Description

1 Zone 5 air temperature Zone 5 air temperature
2 Disturbance (ceiling temp.) Zone 1 air temperature
3 Disturbance (internal load) Zone 3 air temperature
4 Disturbance (corridor temp.) Zone 4 air temperature
5 Zone 1 air temperature Zone 2 air temperature
6 Zone 3 air temperature Zone 7 air temperature
7 Disturbance (ground temp.) Zone 6 air temperature

Table 5.3: The first 7 measurements added during the sequential addition process.
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Branch-and-bound/Semi-definite Programming

The results of the branch-and-bound/semi-definite programming strategy as applied to this

example problem are unavailable due to the following complications. Firstly, re-examination

of Theorem 3.3.1 shows that existence of A−1 is necessary. It may not always be a simple

task to ensure the invertibility of A by expressing the evolution of states in terms of an

invertible basis, as was performed in the low-dimensional example of Chapter 4. Luckily,

the non-invertibility issue arises not from the dynamical equations describing the evolution

of the internal states, but rather from the ad-hoc modeling of the temperature dynamics.

It is clear from Eqs. (5.6) and (5.10), that the disturbance state transition matrix Φ is

non-invertible. Re-modeling (purely for BnB/SDP purposes, not closed-loop simulation) is

considered by adding a small constant to the 4th row/1st column element of the four Φi

matrices given by Eq. (5.8) to render the block matrix Φ invertible. This simple procedure

effectively improves the condition number of Φ, though the exact physical motivation for

this is dubious.

Despite this, the dimensionality of the state-space description remains a critical factor. The

necessary calculations performed at one node is prohibitively slow (taking on the order of

hours to complete). This is unacceptable in this case, since several hundred nodes would

be required to fully explore all of the nodes corresponding to the large number of measured

variable combinations (either explicitly or implicitly).

To reduce the size of the state space, model reduction is performed by combining the two

isothermal halves of each wall, floor, and ceiling, into one isothermal entity. The resulting

ODEs are available in the file makeSS_D_red2.m. Simulation experiments are performed

where the outputs of the original full-state model and newly reduced model subject to a

variety of inputs are compared. A noticeable discrepancy in the outputs of the two models is

observed, with a maximum temperature difference of approximately 1.0 - 1.5 ◦C occurring

during mid-day. The length of time required for a one-node evaluation was significantly
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decreased to approximately 12 minutes.

Despite this successful reduction, it was decided that the new model, with reduced number

of states and modified disturbance transition matrix, is in many ways overly simplistic. Any

BnB/SDP analysis arising from such a model may be of limited use in practice. Additionally,

the time associated with a total enumeration via branch-and-bound to produce just one

approximate Pareto optimal point is uncertain and potentially prohibitive for a complete

analysis of the system. For these reasons, the BnB/SDP strategy is not considered as a

Pareto optimum identification strategy for this example problem.

5.3.2 Simulation Experiments

Closed-loop Response of the Building System

The top portion of Figure 5.4 shows the closed-loop behaviour of zone number two’s air

temperature over the course of three days of operation when unmodeled dynamics are

present. The controlled response under both full-state-measurement (dashed lines) and the

three most important sensors as determined during the sequential addition construction

of the approximate Pareto frontier (solid line) are shown. Also included are the constant

upper temperature and time-varying lower temperature limits. The lower panel displays

the control input at each sample time for the three-sensor case.

By design, the controller searches for the most cost effective means of maintaining the

zone temperatures between their upper and lower limits. The off-peak electricity price is

taken advantage of by pre-cooling the building in anticipation of higher priced mid-day

electricity and peak disturbance temperatures. The model predictive controller effectively

solves a thermal storage allocation problem, such as in [Zhou et al., 2005], although in a

slightly different context. During mid-day, the economic incentive is to operate as close

to the upper limit as possible, without violating the constraints. The benefit of additional

information in the full-state-measurement case is physically realized by the controller’s
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Figure 5.4: Upper panel: zone number two’s temperature over the course of a three
day long simulation subject to M? (dashed line) and the three-sensor approximate Pareto
optimal measurement system (solid line). Lower panel: control inputs at each controller
execution for the three-sensor approximate Pareto configuration.
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ability to 1) operate closer to the upper constraint limit during mid-day and 2) achieve a

lower pre-cooling temperature during off-peak hours. Hence, the availability of additional

information leads to a reduction in operating cost, but this benefit is heavily out-weighed by

the large capital investment associated with the measurement of every temperature node.

In all cases, the violation of the constraints on the zone temperatures remains within

the allowable frequency. Inspection of the elements of the linear programming diagnostic

exitflag shows that only a small number of simulations experienced optimization issues

during execution. The cases where errors are reported correspond to the sub-optimal mea-

surement systems in Figure 5.2 whose results are not required for the remainder of the

design procedure.

Economic Analysis

Figure 5.5 shows values of Jop as defined by Eq. (5.18) for the best measured variable

combinations found during the sequential addition/removal techniques. The decrease in

operating cost follows a similar trend as the reduction in uncertainty at the low number of

sensors range. This trend is reasonable given the strong relationship between information

availability and closed-loop control.

The additional cost of capital investment is then added to Jmeas to produce the total dollar

costs Jtotal displayed in Figure 5.6. The point marked by “F” is the overall optimum. For

this example problem, the optimum number of measured variables is three; the specific

states are the air temperatures of zones 5, 1, and 3. They are, in that order, the three

largest in terms of volume.

5.3.3 Summary

The design procedure of Chapter 3 clearly identified one measurement system design out of

a theoretical maximum 2107 ≈ 1023 configurations. Of course, there is no guarantee that the

three-sensor configuration is the true optimum since only an approximation of the Pareto
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Figure 5.5: The opportunity cost of not using a full state/high precision measurement
system over the course of 10 years of operation.

optimal set was possible. Despite this, the likelihood of a good approximation of the Pareto

optimal set at the low number of sensors region, combined with engineering judgement gives

us confidence that the three-sensor design is at least nearly optimal, if not exactly.
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Chapter 6

Conclusions and Future Work

A measurement system design strategy for stochastic linear systems under the framework of

a multi-objective optimization problem has been developed. The first stage – identification

of the Pareto optimal set – is performed by using any of three applicable techniques: 1)

exhaustive search, 2) sequential sensor addition/removal, and 3) branch-and-bound with

semi-definite programming. The second stage – decision-making – utilized closed-loop sim-

ulations with a pre-specified state estimation strategy (Kalman filter) and optimal control

policy (model predictive control) whose objective function and constraints formulation is

designed to achieve economically optimal operation subject to user-specified constraints on

the state and input variables.

The design methodology is applied to two simulation example problems: a low-dimensional

fluid flow network problem and a high-dimensional thermal network model of a building.

In the low-dimensional problem, all three Pareto optimal set identification strategies are

applied, since the exhaustive search technique was applicable and hence a discussion regard-

ing the quality of the sequential and BnB/SDP strategies was possible. For this example

problem, the approximating sequential techniques are shown to identify measurement sys-

tems that are nearly Pareto optimal. One drawback of these strategies are their inability

to identify a detailed (containing many elements) approximate Pareto optimal set. The

79
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BnB/SDP procedure for the low-dimensional system also performs reasonably well, even

though the semi-definite programming problem formulation is not exactly compatible with

measurement system design’s multi-objective optimization problem formulation.

The high-dimensional building system example problem limits the number of applicable

strategies to determine the Pareto optimal set. Since the theoretical number of possi-

ble measurement system configurations is high (2107), only the sequential and BnB/SDP

strategies are believed to be applicable. The latter strategy results in severe numerical

complications stemming from the size of the underlying process model. As such, its ap-

plicability to specific problems depends primarily on the computational power available.

The sequential techniques yield measurement systems whose configurations corresponded

to measurement importance being placed on state variables in a physically intuitive hierar-

chy. Since direct comparison with a known Pareto optimal set was not possible, heuristics

and engineering judgement were the only tools available for commenting on the sequential

strategy’s effectiveness. When the process model is assumed to be reliable, measurement

of the disturbance variables is assigned high importance, since the outdoor environment

and building’s occupants completely dictate the thermal dynamics of the interior. Con-

versely, when the process model is assumed to be unreliable, measurement importance is

placed on the variables that are to be kept within their upper and lower limits. These

logical designs indicate that the sequential techniques may be an effective means to solve

the multi-objective optimization problem.

Model predictive control is assumed to be an appropriate control strategy for the high-

dimensional example problem based on the results of a number of simulation-based ex-

periments. The controller’s operation results in economically optimal performance that

successfully enforces constraints on the state and input variables. Another attractive fea-

ture of the model predictive controller is the minimal tuning required to ensure acceptable

closed-loop performance. This relative ease is due to the low number of tuning parameters

which are all physically meaningful in this case. It is recognized, however, that real on-line
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feasibility is variable, and depends on many control system design and implementation fac-

tors. Specifically, when air handling actuators in building systems are considered, it may be

difficult to identify an objective function whose minimization ensures economically optimal

performance if certain hardware conditions are not satisfied. Several simulation experi-

ments on a sample of approximate Pareto optimal measurement system configurations are

performed to map the design of measurement systems to a cost of operation, which is then

scaled up to the expected ten year lifespan of the hardware.

The particular set of economic design parameters used are somewhat unrealistic, but useful

for illustration purposes. When economic analysis is performed with these parameters, the

optimal measurement system called for the measurements of three states whose estimation

error variances were deemed important to minimize. These three states correspond to the

temperatures of the three largest bodies of air. Given the nature of the problem, it is safe to

conclude that the resulting measurement system design is reasonable from an engineering

point of view.

Economics, in terms of capital investment and future pay-back, has been the underlying

theme throughout the course of the design procedure. However, there may be other factors

to consider during the design of a measurement system, such as measurement redundancy

in the case of unexpected sensor failures. Incorporation of these considerations is crucial to

develop a robust design strategy. Nevertheless, the procedure in this thesis provides a good

starting point.

An extension to nonlinear systems is also possible as long as the scalar uncertainty measures

associated with relevant state estimation techniques are applicable as design parameters.

One likely complication may be that the internal optimization procedures of the resulting

cost-minimizing MPC strategy results in significant increases in computational demand,

putting on-line and even simulation-based experimental feasibility into question.

For any real control system, the selection of measured variables and the degree of precision

with which they are measured is a key design parameter. This decision is typically made



CHAPTER 6. CONCLUSIONS AND FUTURE WORK 82

on a case-by-case basis, however, in order for firms to remain cost-competitive, process

economics should be considered at every stage during a process’s design phase, including

the design of the measurement system. It makes sense, then, to consider the purchase of

measurement equipment as an investment that provides some form of return. Measurement

system design in the context of linear systems has been the starting point for this type of

design philosophy, likely due to the success of linearized dynamical equations as a modeling

strategy and the tractability of solutions to problems relying on their properties. However,

a concrete design procedure for measurement systems where capital investment and process

economics are primary concerns is still far from complete. Their design – as a field of

research – remains wide open.
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Appendix A

Derivation of Eqs. (3.14) and

(3.15)

In what follows, we consider constraints on the one-step ahead value of the state xk+1 and a
more general (polytopic) representation of the admissible set X. Constraints on multi-step
ahead values of x for an orthotopic admissible set follow in a straightforward way.

The polytope P defines the allowable region for future state xk+1 ∈ Rnx ,

P = {xk+1 : Axk+1 ≤ g}. (A.1)

Our requirement is that the probability that xk+1 ∈ P must be larger than the user-specified
value 1− α

Pr(xk+1 ∈ P) ≥ 1− α. (A.2)

Eq. (A.2) is equivalent to the following integral constraint:

1√
(2π)nxdet(Z)

∫

P
e−

1
2

(xk+1−x̂k+1|k)TZ−1(xk+1−x̂k+1|k)dxk+1 ≥ 1− α. (A.3)

where x̂k+1|k is the conditional expectation of xk+1 given all available information up to
and including sample time k.
Define the ellipsoid Er:

Er = {xk+1 : x̃Tk+1|kZ
−1x̃k+1|k ≤ r2} (A.4)
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where x̃k+1|k =
(
xk+1 − x̂k+1|k

)
. Since the scalar variable (x̃Tk+1|kZ

−1x̃k+1|k) has χ2 distri-
bution with nx d.o.f., the constraint

Pr(x̃Tk+1|kZ
−1x̃k+1|k ≤ r2) = 1− α, (A.5)

is equivalent to

1

2nx/2Γ(nx/2)

∫ r2

0
χnx/2−1e−χ/2dχ = 1− α. (A.6)

Hence, through proper specification of r2 it is possible to ensure that Pr (xk+1 ∈ Er) = 1− α.
With the size and shape of Er now known, we wish to establish conditions on the ellipsoid’s
center x̂k+1|k to guarantee that Er ⊂ P and therefore that inequality (A.2) holds.
Note that the ellipsoid Er can also be defined by

Er = {xk+1 : xk+1 = x̂k+1|k + r · Z1/2s, ‖s‖ ≤ 1}, (A.7)

with ‖s‖ = 1 defining the edge. From the definition of the constraints (A.1), the ellipsoid
Er is contained entirely in P if and only if:

sup
‖s‖=1

{
aTi (x̂k+1|k + r · Z1/2s)

}
≤ gi (A.8)

for all i where aTi is the ith row of A, and gi is the ith entry of g. To find this supremal
element, we use the method of Lagrange multipliers:

max f(s) = r · aTi Z1/2s

s.t. g(s) = c

where g(s) = sT s = 1 since the solution will occur on the edge of the ellipsoid.
Define the Lagrange function

L(s, λ) = f(s) + λ · (g(s)− c).

Solving ∇s,λL(s, λ) = 0 we obtain:

∂L

∂s
= r · Z1/2ai + 2λs,

∂L

∂λ
= sT s− 1.

We then have

s =
−r
2λ
Z1/2ai, sT s = 1, λ = r · ±‖Z

1/2ai‖
2

,

for which

s =
Z1/2ai

‖Z1/2ai‖
is the maximizer. Substituting the above expression into Eq. (A.8), we arrive at the
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following condition on x̂k+1|k:

aTi x̂k+1|k +
r · aTi Z1/2Z1/2ai

‖Z1/2ai‖
≤ gi,

which is equivalent to the result reported by van Hessem and Bosgra [2002]:

aTi x̂k+1|k + r ·
√
aTi Zai ≤ gi.


