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Abstract

The actualization of real-time economically optimal process operation requires proper

integration of real-time optimization (RTO) and dynamic control. This dissertation

addresses the integration problem and provides a formal design technique that prop-

erly integrates RTO and model predictive control (MPC) under parametric uncer-

tainties. The task is posed as an adaptive extremum-seeking control (ESC) problem

in which the controller is required to steer the system to an unknown setpoint that

optimizes a user-specified objective function.

The integration task is first solved for linear uncertain systems. Then a method

of determining appropriate excitation conditions for nonlinear systems with uncer-

tain reference setpoint is provided. Since the identification of the true cost surface

is paramount to the success of the integration scheme, novel parameter estimation

techniques with better convergence properties are developed. The estimation routine

allows exact reconstruction of the system’s unknown parameters in finite-time. The

applicability of the identifier to improve upon the performance of existing adaptive

controllers is demonstrated.

Adaptive nonlinear model predictive controllers are developed for a class of con-

strained uncertain nonlinear systems. Rather than relying on the inherent robustness

of nominal MPC, robustness features are incorporated in the MPC framework to ac-

count for the effect of the model uncertainty. The numerical complexity and/or the

conservatism of the resulting adaptive controller reduces as more information becomes

available and a better uncertainty description is obtained.

Finally, the finite-time identification procedure and the adaptive MPC are com-

bined to achieve the integration task. The proposed design solves the economic op-

timization and control problem at the same frequency. This eliminates the ensuing

interval of “no-feedback” that occurs between economic optimization interval, thereby

improving disturbance attenuation.
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Chapter 1

Introduction

Optimization has become a key area in control theory due to the increasing need to

optimize plant operations. The optimization criterion could be to reduce operating

cost or maximize profit while at the same time meeting product specifications. Con-

sequently, the control engineer is faced with the tasks of designing a good controller,

and also making sure the plant operates at an optimum. With the advent of better

controllers (that guarantee good plant control), the focus has now shifted to the regu-

lation of processes about conditions that provide maximum profitability. Such a task

is usually tackled using a supervisory control technique. One such technique that

has received considerable attention in the process industry is real-time optimization

(RTO) [1, 2].

In the traditional hierarchical control (Figure 1.1), an upper optimization layer

uses a steady-state rigorous model of the plant to compute economic target values

that optimize a given objective function at regular intervals, say in a period of a

few hours to a few days. The steady-state optimal operational points are passed

to a lower layer called advanced process control (APC) for implementation. The

APC, usually a predictive controller, uses a dynamic process model to ensure that

the plant operates within the desired limits or near optimum efficiency. In the two-
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Unit Local Real Time Optimization
(RTO)

Advanced Process control
(APC)

Plant-Wide Optimization and Scheduling

Regulatory Control and
Instrumentation

 Plant

Figure 1.1: Layered structure of control hierarchy

layer approach, the RTO only calculates new set-points when the plant is stabilized.

Hence, during the period between the optimizer executions, the presence of varying

external disturbances can cause the optimal values to shift thereby rendering the

plant operation suboptimal. Also, the fact that the two layers usually employ different

process models may generate a conflict between the reference values and the controller

predictions.

To avoid these shortcomings and thereby obtain improved economic benefits, the

steady-state RTO in the aforementioned hierarchical structure could be replaced with

a dynamic real-time optimization [3, 4]. Another solution would be to combine the

two separate layers, i.e., to solve the steady-state optimization and control problem

together [5, 6]. Despite the fact that the two layers consist of well established tech-
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nologies, their full integration remains a non-trivial task. The solution of the resulting

optimization problem and the stability analysis of the system in closed-loop becomes

complicated.

Since modelling uncertainty inevitably exists in industrial problems, our interest

is on the optimization and optimal control of processes under parametric uncertainty.

The objectives of this thesis are to

1. provide a formal scheme that integrates real-time optimization and model pre-

dictive control by solving an adaptive extremum seeking control problem,

2. develop a parameter adaptation algorithm that guarantees online identification

of the true objective function with minimal variability.

Model predictive control (MPC) is the most widely used advanced control strategy

in the process industry [7]. Its popularity is largely due to its ability to handle

constraints and multivariable interactions. MPC optimizes a given objective function

by using process model to predict system’s evolution and compute a sequence of

optimal control actions. The combination of RTO and MPC results in an extremum

seeking control (ESC) algorithm, that adjusts plant parameters so as to optimize

some performance criteria.

Extremum-seeking control (ESC) can be viewed as a dual control methodology,

having optimum seeking and control features. ESC provides a way of implementing

on-line optimization in a control system. The technique is very useful when an uncer-

tain performance function is to be optimized to determine optimal process set-points.

The performance function can be the output of a plant or an economic function of

the system’s variables. This thesis is focused on adaptive (model-based) extremum

seeking techniques. In particular, we consider the class of ESC problems introduced

in [8] where the structure of the objective function is employed in the design. In

contrast to black-box approaches (see [9] for example), no direct measurement of the
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objective function is available but must be inferred through the measurements of

the state variables and the estimation of model parameters. Examples of this type

of problem arise when the objective function reflects profit or cost estimates which

are seldom available for measurement. Such a function normally involves economic

prices such as operating costs and values of products aside from the system states

and unknown parameters.

In ESC, the magnitude of the gradient of the performance function is controlled

to a setpoint of zero, which results in a local minimum (or maximum) of the func-

tion under the condition that the objective function is locally convex (or concave).

However, the uncertainty associated with the function makes it necessary to use some

sort of adaptation and perturbation to search for the optimum. Since the efficiency

of any ESC algorithm depends on its ability to generate sufficient information about

the process during the adaptation procedure, this thesis provides techniques for pre-

dicting the optimal operating conditions and simultaneously steering the system to

them in an optimum fashion.

1.1 Thesis Outline

This thesis is structured as follows. A review of the current literature that is relevant

to the proposed research work is presented in Chapter 2.

Chapter 3 presents a control algorithm that incorporates RTO and MPC tech-

niques to solve an output feedback extremum seeking control problem for a linear

unknown system. The development of the controller consist of two steps. First, the

optimum setpoint that minimizes a given performance function is obtained via an

update law and secondly, the control input that drives the system to the optimum is

computed. State estimation filters and a parameter update law are used at each itera-

tion step, to update the unknown states and parameters in the optimization scheme.
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The resulting controller is able to drive the system states to the desired unknown

optimum by requiring a Lyapunov restriction and a satisfaction of a persistency of

excitation condition.

Chapter 4 addresses the problem of parameter convergence in adaptive extremum

seeking control design. An alternate version of the popular persistence of excitation

condition is proposed for a class of nonlinear systems with parametric uncertainties.

The condition is translated to an asymptotic sufficient richness condition on the ref-

erence setpoint. Since the desired optimal setpoint is not known a priori in ESC

problems, the proposed method includes a technique for generating perturbation sig-

nal that satisfies this condition in closed-loop. The method guarantees parameter

convergence with minimal but sufficient level of perturbation.

Chapter 5 presents a parameter estimation routine that allows exact reconstruc-

tion of the unknown parameters in finite-time provided a given excitation condition

is satisfied. The robustness of the routine to unknown bounded disturbances or mod-

eling error is also shown. The result is independent of the control and identifier

structures employed. The true parameter value is obtained without requiring the

measurement or computation of the velocity state vector. Moreover, the technique

provides a direct solution to the problem of removing auxiliary perturbation signals

when parameter convergence is achieved.

Chapter 6 wraps up the result on closed-loop identification by exploiting the finite-

time identification procedure to improve upon the overall performance of existing

adaptive control algorithms. This is achieved by modifying standard stabilizing adap-

tation laws to guarantee exponential stability of closed-loop system provided the PE

condition is satisfied. The convergence rate of the algorithm depends linearly on the

adaptation gain and a measure of the system’s excitation.

Chapter 7 focuses on the control aspect of the proposed integration task. A

method is proposed for the adaptive model predictive control of constrained nonlinear
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system. Rather than relying on the inherent robustness properties of standard NMPC,

the developed techniques explicitly account for the transient effect of parametric es-

timation error by combining a parameter adjustment mechanism with robust MPC

algorithms. The parameter estimation routine employed guarantees non-increase of

the estimation error vector. This means that the controller employs a process model

which approaches that of the true system over time. These estimates are used to

update the parameter uncertainty set at every time step, resulting in a gradual re-

duction in the conservative and/or computational effects of the incorporated robust

features.

The extension of the adaptive MPC design to systems subject to exogeneous

disturbances, in addition to parametric uncertainties is presented in Chapter 8. To

avoid the undesirable behaviours such as poor transient performance and burstiness

associated with adaptive controllers under external disturbance input, the parameter

estimates are only updated when an improved value is obtained.

Based on the results in Chapters 5 to 7, the full integration procedure for con-

strained uncertain nonlinear systems is demonstrated in Chapter 9. Both a single-

layer and a two-layer approaches are presented. A setpoint update law that converges

to the optimum of the constrained RTO problem is developed by the use of interior

point barrier functions and Newton’s method. Robust adaptive MPC strategies based

on finite-time identification are employed for the controller calculations.

Finally, Chapter 10 summarizes the contributions made by this thesis and outlines

directions for future research.
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Chapter 2

Literature Review

The relevant literature for this thesis is briefly reviewed in this section. Special

attention is paid to model predictive control, extremum seeking control and closed-

loop identification.

2.1 Real-time Optimization

One of the key challenges in the process industry is how to best operate the plant

under different conditions such as feed compositions, production rates, energy avail-

ability, feed and product prices that changes all the time. Real-time optimization

(RTO), which refers to the online economic optimization of a process plant, is a

widely employed technology to meet this challenge. RTO attempts to optimize pro-

cess performance (usually measured in terms of profit or operating cost) thereby

enabling companies to push the profitability of their processes to their true potential

as operating conditions change.

The popular RTO is based on the assumption that model and disturbance tran-

sients can be neglected if the optimization execution time interval is long enough

to allow the process to reach and maintain steady-state. A typical RTO system in-

cludes components for steady-state detection, data acquisition and validation, process
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model updating, optimization calculations and optimal operating policies transfer to

advanced controllers.

2.2 Model Predictive Control

Model predictive control (MPC) or receding horizon control (RHC) is a family of

control that utilizes a process model along with cost factors and optimum target

operating point to calculate process control moves that drives the plant to the most

economic constraints while ensuring stable operation. The control technique has

proven to be extremely successful in the process industry. Linear (and nonlinear)

model predictive control remains the industry standard with increasing number of

reported applications and significant improvements in technical capability [10, 11, 7].

Consider the time-invariant nonlinear system of the form

ẋ(t) = f(x(t), u(t)) (2.1)

subject to the pointwise state and input constraints x(t) ∈ X ⊆ Rnx and u(t) ∈ U ⊆

Rnu respectively. The vector field f : Rnx × Rnu → Rnx satisfies f(0, 0) = 0, the set

U is compact, X is connected and (0, 0) ∈ (X, U).

MPC algorithms optimize the future plant behaviour and satisfy the given con-

straints by solving the following finite horizon open loop optimal control problem:

min
up

J =

∫ t+T

t

L( xp(τ), up(τ) )dτ +W (xp(t+ T ))

such that ẋp(τ) = f( xp(τ), up(τ) ), xp(t) = xt

xp(τ) ∈ X, up(τ) ∈ U

xp(t+ T ) ∈ Xf (2.2)

where (.)p denotes the predicted variables (internal to the controller). The stage cost
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L(xp, up) is a semi-definite positive function. The terminal penalty W (xp(t+T )) and

terminal constraint xp(t+ T ) ∈ Xf are included for stability considerations.

At each time step, the solution to the optimal control problem (2.2) is found over

a certain prediction horizon, T , using the current state of the plant or its estimate as

the initial state. The optimization yields an optimal control sequence and the first

control action is implemented on the plant until the results of the next update are

available.

Model predictive control is part of the multi-level hierarchy of control structure.

Using a numerical optimization scheme as an integral part of the structure allows

great flexibility, especially concerning the incorporation of constraints. Though such

optimization over a finite horizon does not guarantee stability and performance, con-

siderable research has been devoted to address these shortcomings. Linear MPC

theory and related issues such as closed-loop stability and online computation have

been well studied and characterized [12, 13]. Over the past few years, nonlinear

model predictive control (NMPC) schemes with some favorable properties have been

developed. The theory related to stability of state and output feedback NMPC have

reached a point of relative maturity, see for example [14, 15] and [16, 17] for review.

2.2.1 Closed-loop Stability of NMPC Based on Nominal Model

A general sufficient condition for closed-loop stability of MPC based on nominal

models is given below [16].

Criterion 2.1 The terminal penalty function W : Xf → R≥0 and terminal set Xf

are such that there exists a local feedback kf : Xf → U satisfying

1. 0 ∈ Xf ⊆ X, Xf closed

2. W (x) is positive semi-definite and continuous with respect to x ∈ Rnx

3. kf(x) ∈ U, ∀x ∈ Xf

9



4. Xf is positively invariant under kf

5. L(x, kf(x)) + ∂W
∂x
f(x, kf(x)) ≤ 0, ∀x ∈ Xf .

The conditions are primarily concerned with the selection of terminal region Xf

and terminal penalty term W (.). Condition 5 requires W (.) to be a control Lyapunov

function, over the (local) domain Xf , and dissipates energy at a rate L(x, kf (.)).

This criterion, which is able to re-cast many of the available MPC frameworks with

guaranteed stability [18], provides a means of checking whether a given MPC scheme

guarantees stability a-priori. Stability is proven by showing strict decrease of the

optimal cost function J∗, which is a Lyapunov function for the closed-loop system.

The domain of attraction for the controller is the set where the optimization problem

is feasible.

2.2.2 Efficient Computational Techniques

Computational efficiency is a critical issue in NMPC design because the real-time

implementation of the algorithm requires the completion of a non-convex nonlinear

optimization procedure within the time constraints dictated by the sampling period

of an application. Increasing research efforts are now directed to developing compu-

tationally efficient algorithms for NMPC implementation [19,20,21]. It is not the aim

of this thesis to focus on computation issues, however, its importance in practical

implementation is recognized.

2.2.3 NMPC for Uncertain Systems

The quality of the model used in MPC is crucial to the performance of the controller.

The assumption that the prediction model is identical to the actual model is unre-

alistic. Although, due to the receding horizon policy, a standard implementation of

MPC using a nominal model of the system dynamics exhibits nominal robustness to
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sufficiently small disturbances [22, 23], such marginal robustness guarantee may be

unacceptable in practical applications. Present model/plant mismatch and distur-

bances must be accounted for in the computation of the control law to achieve robust

stability.

One way to cope with uncertainty in the system model is to employ robust MPC

methods, which explicitly account for system’s uncertainties. Since robust controllers

(in general) cannot learn changes in the plant, their performance is limited by the

quality of the model plus the uncertainty description initially available. On the other

hand, adaptive control has the potential to improve system performance as it updates

the model online based on measurement data. However, practical applications of

adaptive controllers are limited by the conflicting objective of parameter estimation

and control. This could lead to a worse transient performance than a non-adaptive

controller when poor estimates are used. Moreover, the controller may induce large

transient oscillations in an effort to improve the estimation quality.

Robust Model Predictive Control

Robust techniques have been employed in MPC designs to reduce the sensitivity of

the controller to uncertainty. Consider the following uncertain system

ẋ = f(x, u, ϑ) (2.3)

where ϑ(t) ∈ D represents any arbitrary bounded uncertainty or disturbance signal.

Many robust MPC techniques have been proposed to stabilize the uncertain system

for all possible realization of the disturbance ϑ(t) ∈ D. These include approaches

based on nominal prediction [24, 22, 25] and those based on min-max or worst-case

techniques [26, 27].

The nominal based approach in [22] uses global Lipschitz constants to compute
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worst-case upper bound on the distance between a solution of the actual uncertain

model and the nominal model. These bounds are then used to redefine the terminal

region and constraints in a way that guarantees robust feasibility of the closed-loop

system. The controller proposed in [25] is based on the concept of reachable sets. The

approach uses a local procedure to approximate the sets that contain the predicted

evolution of the uncertain system for all possible uncertainties. Then, a dual mode

MPC strategy is proposed to robustly stabilize the system. The methods based on

nominal prediction have similar computational complexity with standard NMPC but

exhibit a higher level of conservatism.

The min-max approach modifies the online optimal problem (2.2) by minimizing

the worst case value of the objective function, where the worst case is taken over

ϑ ∈ D. In general, when MPC incorporates explicit model uncertainty, the result-

ing online computation will likely grow significantly. Min-max or worst case MPC

approaches can be overly conservative especially when applied in open loop. This

is because the algorithm tries to find a single control sequence that works well in

open loop for all admissible disturbance realizations. A well embraced method for

reducing conservatism in open loop min-max scheme and improve performance is to

introduce some form of feedback in the prediction [16, 26]. This can be achieved by

parameterizing the control sequence in terms of the system’s state. Unfortunately,

such optimization with respect to closed-loop strategies is intractable (in most cases)

since the problem size grows exponentially with the size of the problem data.

In general, robust MPC is designed to meet control specifications for the “worst

case” uncertainty. This approach may not always achieve optimal performance, in

particular, if the worst case scenario rarely exists. Other approaches, such as adaptive

control may yield a better performance.
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Adaptive Model Predictive Control

Adaptive MPC is an attractive way to handle static uncertainties that can be ex-

pressed in the form of constant unknown model parameters. While a few results are

available for linear adaptive MPC [28,29], only a small amount of progress has been

made in developing adaptive NMPC schemes.

Consider the parameter-affine nonlinear system of the form

ẋ = f(x, u, θ) , f(x, u) + g(x, u)θ (2.4)

, f(x) + g1(x)u+ g2(x)θ (2.5)

The result in [30], implements a certainty equivalence nominal-model MPC feed-

back to stabilize (2.4) subject to an input constraint u ∈ U. Assuming the availability

of the state vector ẋ, the identifier guarantees parameter convergence when an exci-

tation condition is satisfied. It is only by assumption that the true system trajectory

remains bounded during the identification phase. Moreover, there is no mechanism to

enhance the satisfaction of the PE condition and thereby decrease the identification

period.

In [31], an input-to-state stable control Lyapunov function (iss-clf) was used to

develop a MPC scheme that provides robust stabilization for (2.5) in the absence

of a parameter estimation algorithm, and ensures asymptotic stability of the closed-

loop with parameter adaptation. However, the work only deals with unconstrained

nonlinear systems.

In general, the design of adaptive nonlinear MPC schemes is very challenging be-

cause the “separation principle assumption” widely employed in linear control theory

is not applicable to a general class of nonlinear systems, in particular in the presence

of constraints. Moreover, it is difficult to guarantee state constraints satisfaction in

the presence of an adaptive mechanism. A true adaptive nonlinear MPC algorithm
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must address the issue of robustness to model uncertainty while updating the system’s

parameters.

Recent work [32] has focused on the use of adaptation to improve upon the perfor-

mance of robust MPC for constrained nonlinear systems. A set-valued description of

the parametric uncertainty is directly adapted online to reduce the conservativeness

of the robust MPC solutions, especially with respect to the design of the terminal

penalty and constraints. The parameterization of the feedback MPC policy in terms

of the uncertainty set and the underlying min-max feedback MPC used in the study

make the controller’s computation very challenging. The result can be viewed as a

conceptual result that focus on performance improvement rather than implementa-

tion. The idea of coupling set-based identification with robust control calculations was

extended in [33] to a less computationally complex robust-MPC framework. While

the full performance of the min-max framework could not be recovered, the work

demonstrates that the approach is amenable to any robust-MPC design.

2.3 Integrated Real-Time Optimization

and Control

In the conventional layered optimization-control strategy, an upper (or supervisory)

real-time optimization (RTO) layer computes optimal operating values and a lower

layer (or control) implements them. The RTO is based on a steady state plant

model and it is only executed when the plant is stabilized. The control problem is

solved apart from the optimization problem at different frequencies and using different

models. Since the two layers may not be dealing exactly with the same information,

there may be some conflict and the predicted optimal operational point is often sub-

optimal.

The integration of RTO and control for an optimal plant operation is still an open
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research problem. There have been attempts in the literature to address the integra-

tion task in a systematic way. The only results are focused on specific applications.

No theoretical foundation such as stability and performance analysis of the integrated

scheme exists. The proposed techniques can be classified into two main classes, based

on the frequency of RTO execution and the type of model employed.

1. Single level strategy, integration of steady-state RTO and Linear

MPC In this approach, the economic optimization and control problems are

solved simultaneously in a single algorithm. model-based predictive control is

formulated to perform both functions by adding an economic objective term to

standard MPC objective function [5, 6]. The resulting problem involves solv-

ing a nonlinear objective function subject to dynamic and steady-state con-

straints. Implementation of the extended controller relies on extensive tuning

of the weighting factors for stability and performance. Extensive simulations

are needed to select appropriate values for the weighting factors [6] unlike in

linear MPC where robust tuning techniques are available. The one-layer ap-

proach could respond to changes in the plant optimal conditions faster than

the two-layer approach. However, the method is only applicable to plants that

have relatively short settling time and can be effectively described with a linear

model.

2. Two level strategy, integration of dynamic RTO and nonlinear MPC

This method attempts to account for dynamic nonlinear behaviour of produc-

tion plants. It involves an upper level dynamic economic optimization and a

lower level nonlinear MPC [3, 4, 34]. The RTO problem need not be solved at

each sample time, but based on disturbance dynamics or plant condition. A

technique based on disturbance sensitivity analysis is embedded into the two

level strategy to trigger the dynamic RTO computation when persistent dis-

turbances have been detected that have high sensitivities [3, 4]. This approach
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considers dynamical models in the RTO and recomputes feasible set-points only

if economic benefits are possible. Since the performance of the approach de-

pends on the interaction between the two layers, the scheme may still suffer

some disadvantages due to the different dynamical models used in the two lay-

ers approach.

2.4 Extremum Seeking Control

Extremum seeking (also known as peak seeking or self optimizing) control is a class

of adaptive control that deals with regulation to unknown set points. The control

algorithm finds the operating set-points that maximize or minimize a performance

function. The pioneering work in ESC was documented in 1922 [35] and several

applications of ESC have been reported since then [36,37,38,39,40,41,42]. However,

it was not until the early 2000 that solid theoretical foundations for the stability and

performance of ESC for a given scheme were established [8,9,43]. The main difference

between the existing ESC algorithms lies in the formulation of the problem. The

existing methods can be broadly classified into model-free and model-based methods.

2.4.1 Model-free Methods

In this class of ESC, the objective function is available for online measurement but has

an unknown structure. The function is described in terms of unknown parameter(s)

and it is assumed that there exists a control law that is capable of stabilizing the

system over a range of the parameter(s). The most popular schemes under this

category are the methods based on perturbation.

Perturbation method was introduced in [35], and a number of perturbation based

techniques and applications are available in the literature [36,38,44]. Since the idea of

extremum control is to stay at the optimum of a given objective function, this class of
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ESC uses an excitation signal to obtain information about the gradient of the function

given the state of a process. A basic form of the extremum seeking scheme [44] is

shown in Figure 2.1. A known perturbation signal is added to the input of the

controlled system to induce a cyclic response in the performance function. Then, the

functional signal response is passed through filter(s) to design an online update law,

which determines the sign of the gradient (derivative of the function with respect to

the parameter) and the parameter estimate is adjusted in the proper direction. A

successful application of the scheme is based on an appropriate choice of the filter

parameters, the perturbation signal parameters and the adaptation gain.
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Figure 2.1: A basic model-free extremum seeking scheme

The stability and convergence properties of the perturbation method were pre-

sented in [9]. The problem is separated by time scales, assuming that the controlled

system (the plant dynamics and the stabilizing controller) is fast with respect to

the peak seeking loop (filters and the periodic perturbation). The stability analy-

sis adopts the methods of averaging and singular perturbation. It is shown that the

plant output (performance index) converges to a neighborhood of the extremum when

the initial plant output error is sufficiently small. An extension of the algorithm to

multivariable parameter space was developed in [45] and a generalization of the basic
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scheme to slope seeking is presented in [46]. Instead of seeking a point of zero slope

as in extremum seeking, the technique seeks a reference slope and allows the system

to operate at a point of arbitrary slope.

Another perturbation method was developed and applied to formation flight in

[40]. Similar to [38], a perturbation signal is introduced into the loop to facilitate

the gradient estimation. The difference is that a modified Kalman filter is used in

the peak seeking loop instead of classical frequency domain filters and the actual

gradient of the performance function is estimated instead of the direction towards

the extremum.

From the above discussion, it is noticed that the knowledge of the system model

and the structure of the performance function is not required to develop the feedback

scheme. Hence, the design can be regarded as a model-free adaptive control method.

However, the assumption that the plant comes complete with a robust tracking control

law is restrictive. In most cases, especially for nonlinear systems, a good knowledge

of the system model may be required to design such a robust controller. In fact, the

two applications mentioned above used the nonlinear dynamical model in developing

the control law. A natural question one may ask is: why couldn’t the same model or

knowledge of the model be used in the ESC design if it is available?

2.4.2 Model-based Methods

If a good parametric model of the performance function is found and its parameters

are identified, it is possible to perform far more efficient optimization than would

be possible with the knowledge of only a gradient estimate. Some researchers have

embraced this idea and developed ESC algorithms for nonlinear systems in which the

performance function may not be directly measurable for feedback but it has to be a

known function of the system’s state parameterized by unknown parameters [8].

The performance index is assumed to be smooth and convex for all admissible
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range of parameters and an update law is used to determine the parameters of the

surface online. Once the parameters are identified, the location of the extremum

on the surface is known which makes the method very fast compared with the non-

parametric methods.
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Figure 2.2: A basic model-based extremum seeking scheme

The overall scheme is presented in Figure 2.2. Unlike the techniques reviewed in

Section 2.4.1 where the plant is assumed to come complete with a robust stabilizable

control law, a feedback control algorithm that is capable of simultaneously seeking

the extremum and tracking the dictated setpoint is developed. Lyapunov based tech-

niques are used in the design of the optimum seeking scheme. The resulting controller

is able to drive the systems states to a neighborhood of the desired optimum by re-

quiring a satisfaction of a persistence of excitation (PE) condition. This class of ESC

has been successfully applied to the maximization of production rate in a continu-

ous stirred tank bioreactor [42]. A variant of the Lyapunov based extremum seeking

framework is reported in [47] and an extension of the scheme to constrained nonlinear

systems is presented in [48].
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Other articles about optimum searching using the structure of the performance

index include [49,50]. The approach presented in [50] approximates the performance

index by an assumed function with a finite number of parameters. Specifically a

quadratic function or an exponential of a quadratic form is assumed to fit the opti-

mized function. A stable extremum seeking controller is designed based on the affine

nature of the gradient and without assuming the time scale separation between the

system dynamic and the gradient search.

2.5 Closed-loop Identification and Control (CLIC)

The efficiency of any ESC scheme depends on the convergence properties of the adap-

tive algorithm utilized. Convergence of the system’s output response as well as that

of the estimated parameters to their true values are essential. One approach to tackle

the problem of parameter convergence in model-based ESC is to develop a technique

that is simultaneously capable of identifying the system’s model parameters and at

the same time tracking the desired reference value. In this section, issues related to

persistence of excitation in identification are discussed and control systems that have

the elements of duality (identification and control) are reviewed.

2.5.1 Background

Consider an input-output data sequence {u(k)} and {y(k)}. The objective of system

identification is to find the best model to fit the data. If we consider the deterministic

autoregressive exogenous (DARX) model structure

y(k) =

n∑

i=1

aiy(k − i) +

m∑

i=1

biu(k − i) + w(k) (2.6)
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where y(k) is the output, u(k) is the input, ai and bi are constant unknown parameters

while w(k) = w + ǫ(k), w is a constant disturbance and ǫ is a zero mean white noise

with variance σ2
ǫ . If we let

θ = [a1 . . . an b1 . . . bm w]T

and

φ(k − 1) = [y(k − 1) . . . y(k − n) u(k − 1) . . . u(k −m) 1]T

then we can write equation (2.6) in the standard regression form as

y(k) = φ(k − 1)T θ + ǫ(k), k = 1, . . . , N (2.7)

or in vector form as

Y = ΦT θ + ǫ (2.8)

where Y is the vector of output measurements, Φ is the matrix containing past outputs

and inputs, θ is the unknown constant parameter vector and ǫ is the error vector.

Equation (2.8) can be solved in a least-squares sense. The solution of the various

least-squares algorithms requires the inverse of the matrix ΦΦT . For example, a

least squares estimate of θ that minimizes the cost function V (θ) = 1
2
ǫT ǫ is given by

θ̂ = (ΦΦT )−1ΦY . The accuracy of the parameter estimate can be quantified by its

covariance estimate

P = E{(θ − θ̂)(θ − θ̂)T} =
(
ΦΦT

)−1
σ2

ǫ (2.9)

where θ̂ is an estimate of the parameter. Looking closely at equation (2.9), it is

essential that the information matrix ΦΦT be non-singular and it is desirable that
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the matrix be large enough, since the parameter estimate covariance is inversely

proportional to it. This leads to the idea of persistence of excitation (PE). A unique

solution of (2.8) is guaranteed if the information matrix ΦΦT is invertible and bounded

[51].

2.5.2 Closed-loop Identification and Control Strategies

CLIC algorithms are designed to cautiously achieve the control goal and at the same

time improve parameter estimation. One of the early techniques for CLIC is termed

adaptive dual control (ADC). In this method, a measure of estimation accuracy is

transmitted online from the estimator to the control design algorithm [52]. The formal

solution to the proposed optimal ADC problem involves solving stochastic dynamic

programming equations, that are computationally prohibitive due to the growing

dimension of the underlying space [53]. To avert this problem, sub-optimal dual con-

trollers have been developed based on the approximation or reformulation of the prob-

lem. While the approximation techniques still inherit some level of complexity and

computational disadvantages, the methods of reformulation provides a more compu-

tationally feasible approach. The reformulated ADC algorithms are mainly based on

the simultaneous or sequential minimization of a two-part cost function [54,55,56,53].

The function minimized is of the form

J EDC
k = J c

k + λk J a
k (2.10)

where λk ≥ 0 is a time dependent weighting factor. The first part J c
k is a measure of

control losses while the second part J a
k is a measure of parameter uncertainty. The

uncertainty measures suggested in the literature include the the determinant of the

parameter covariance matrix [53] and innovation or prediction error cost, that reflects

the need to gather as much information as possible about the unknown parameters
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[56].

In a similar approach [57], the control is chosen to minimize a one-step ahead

output variance subject to the constraint that the trace of the information matrix

be positive. An improved dual adaptive technique termed bicriterial design method

was presented in [54, 55]. In this scheme, the cost function (2.10) is split in to two,

J c
k and J a

k , and minimized sequentially. The resulting technique provided an intu-

itive and easy way of selecting the magnitude of the excitation as a function of the

uncertainty measure. There is no doubt that these adaptive dual control techniques

would improve the adaptation and may even result in parameter convergence. How-

ever, convergence to their true values is not guaranteed if the control systems do not

ensure the invertibility of the information matrix, which is a sufficient condition for

parameter convergence.

Another CLIC approach is iterative feedback control, that emerged in the nineties

to bridge the gap between system identification and robust control design for lin-

ear systems. The basic idea of the feedback control is to iteratively use operational

data to re-design a controller in order to improve closed-loop performance. The de-

sign techniques can be viewed either as iterative model-based or model-free controller

redesign. The model-based design approach [58] involves successive model and con-

troller iteration. The system is observed under fixed feedback for a period of time,

after which identification and control redesign is performed by minimizing a perfor-

mance criterion that accounts for both the identification and control objectives. Since

the controller is fixed during the identification experiment, a persistently exciting ex-

ternal signal is injected to the loop to guarantee closed-loop identifiability. In the

model-free method, the iterative identification and control scheme is reformulated as

a parameter optimization problem, in which the controller parameter is estimated

directly, thereby eliminating the identification step. The optimal controller param-

eter is obtained by minimizing a control performance criterion via a gradient based
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scheme. At each iteration, an estimate of the gradient of the criterion is computed

using information from closed-loop experiments with the most recent controller in the

loop. A comprehensive overview of this approach termed iterative feedback tuning

can be found in [59].

To handle system constraints during closed-loop identification, a technique that

combines least squares parameter estimation and linear model predictive control was

introduced in [60]. The framework termed “model predictive control and identifi-

cation” (MPCI) is based on a finite horizon optimization problem that minimizes

a quadratic objective function subject to standard linear MPC constraints and PE

constraint. The main distinguishing feature between MPCI and MPC is that the

online optimization is performed, at each time step, with respect to process inputs

that satisfy a PE constraint formulated in terms of the process inputs. The imple-

mentation of the algorithm follows the typical MPC fashion. The feasibility of the

online optimization problem ensures the dual action of the controller. Even though

the work is focused on linear systems, the online computation involved in the solution

of the algorithm remains a concern due to the non-convexity of the PE constraint [61].

The advantage of this simultaneous MPC and identification method in comparison to

other CLIC techniques is that input and output constraints are handled explicitly and

the direct inclusion of the PE constraint results in a closed-loop identification with

a minimum loss of regulation performance. An extension of the work to nonlinear

system would require a PE condition that is formulated in terms of only the process

input or desired reference setpoint.

2.5.3 Persistence of Excitation Requirement for CLIC

In both linear and nonlinear adaptive systems, parameter convergence is related to

the satisfaction of persistence of excitation condition, which can be defined in the

continuous time as follows.
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Definition 2.2 [62, 63]: A vector function φ : R+ → Rnθ is said to be persistently

exciting if there are positive constants c1, c2, and T0 such that

c1I ≥
∫ t+T0

t

φ(τ)φ(τ)Tdτ ≥ c2I, ∀ t ≥ 0 (2.11)

Although the matrix φ(τ)φ(τ)T may be singular at every instant τ , the PE condition

requires that φ span the entire nθ− dimensional space as τ varies from t to T0, that

is, the integral of the matrix φ(τ)φ(τ)T should attain full rank over any interval of

some length T0. Though this condition is difficult to check because of its dependency

on closed-loop signals, this shortcoming has been remedied for linear systems.

In adaptive linear systems, the PE condition was converted to sufficient richness

(SR) condition on the reference input signal. Necessary and sufficient conditions for

parameter convergence are then developed in terms of the reference signal. A popular

result implies that exponential convergence is achieved whenever the reference signal

“contains enough frequencies”, i.e., whenever the spectral density of the signal is

nonzero in at least nθ points, where nθ is the number of unknown parameters in

the adaptive scheme. Otherwise, convergence to a characterizable subspace of the

parameter space is achieved [64].

Despite the fact that the theory of parameter convergence for linear systems is

well established, very few results are available for nonlinear systems. This is mainly

because the familiar tools in linear adaptive control cannot be directly extended

to nonlinear systems. In most of the available results, stability and performance

properties are proved by assuming that a vector function, which depends on closed-

loop signals is persistently exciting. However, the means of verifying this PE condition

a priori for a given nonlinear system remains an open problem, in general.

The first attempts to relate a closed-loop PE condition to a SR condition on

the external reference signal for nonlinear adaptive control systems are presented
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in [65, 66]. Though the papers did not provide a generic answer as in linear case,

they have some interesting results. In [65], a procedure is provided for determining

a priori whether or not a specific reference signal is sufficiently rich for a specific

output feedback nonlinear system, and hence whether or not parameter estimates

will converge. A similar result was obtained in [66] for strict feedback systems. For

the strict feedback case, the procedure only involves checking the linear independence

of the rows of an appropriately defined constant real matrix. Exponential parameter

convergence is guaranteed when the matrix is full rank and a partial convergence

result is established when the rows of the matrix are linearly dependent. Neither of the

techniques developed are directly applicable to ESC problems because the reference

signal in this class of problem is not well known in advance. Nevertheless, the main

result in [66, 65] is that the presence of nonlinearities in the plant usually reduces

the SR condition requirement on the reference signal and thus enhances parameter

convergence.

2.5.4 Excitation Signal Design

The accuracy of an identified model, depends on the choice of input signal. In most

cases, the input signal is required to be persistently exciting. The optimal identifi-

cation signals have been recognized to be either white noise, pseudo-random binary

sequences or multi-sine signals. Nevertheless, it is intuitively clear that excitation at

some frequencies is likely to be more useful than excitation at other frequencies.

Different optimization criteria have been proposed for generating persistently ex-

citing inputs. In the early work on identification, a matrix of input and output

measurements called the Fisher information matrix was defined and a D-optimality

criterion which consists in maximizing the logarithm of the determinant of this matrix

is used. However, this information criteria does not always accurately measure the

amount of information that can be extracted from a system [67]. A criterion based
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on the maximization of the smallest eigenvalue of the average information matrix was

proposed in [68]. The selection of this criteria was motivated from adaptive control

literature, where the rate of parameter convergence in a number of the adaptive esti-

mation schemes is bounded from below by the smallest eigenvalue of the information

matrix determined by the regressor vector [69]. Maximizing the smallest eigenvalue

will produce a reasonable convergence rate for the adaptive algorithm. Using a first

order linear system example, [68] compared the input signal that maximizes the de-

terminant of the information matrix, the minimum eigenvalue and the inverse of the

matrix condition number. It was shown that the determinant based criterion leads

to a rather poor input design. The main reason for its popular use is probably the

simplicity of computation of the associated optimal input. However, the findings

that are based on a simple example, must be carefully extrapolated to more general

situations.

Perturbation signals have been used in adaptive control to enforce PE condition on

the reference input and thereby ensure parameter convergence. The downside of this

is that a constant PE deteriorates the tracking of the reference input leading to poor

control performance. A common approach is to introduce such PE signal and remove

it when the parameters are assumed to have converged. In some cases the dither

signal (often a multi-sine signal) is modulated with an exponential function to ensure

that the perturbation signal dies out gradually. However, there is no formal guideline

for selecting the exponential parameter that dictates the rate of disappearance of

the dither signal. Furthermore, if the system’s unknown parameters change due to

disturbances or any other reasons, convergence may not be guaranteed except when

the excitation is manually re-activated.

To address the above shortcomings, the concept of intelligent excitation signal

design was developed in [70] for model reference adaptive control of linear systems

and extended to feedback linearizable systems in [71]. The proposed design attenuates
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the PE signal as parameter convergence is achieved and re-activates it only when

required. The intelligent excitation algorithms adjust the excitation magnitude on-

line to meet the conflicting objectives of control and identification by exploring the

relationship between parameter estimation error and the state variable errors.
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Chapter 3

Integration of RTO and Linear

Output Feedback MPC

3.1 Introduction

As discussed in Section 2.3, the theoretical issues related to the integration of RTO

and control for an optimal plant operation has not been well dealt with. This chapter

focuses on the economic optimization and control of uncertain linear systems. Even

though most processes are nonlinear, linear process models are developed and used

in the control of chemical processes and research has shown that this model is often

adequate for control of some nonlinear systems. The result has been published [72]

under the title “Adaptive Output Feedback Extremum Seeking Receding Horizon

Control of Linear Systems”.

The formulation consists of two-phase optimization problems that are solved at

every sample time. Assuming that a suitable functional expression for the plant profit

is available, which in some applications, may depend on unknown plant parameters,

the first phase (RTO) takes the current value of the parameter estimates and calcu-

lates the optimal value which maximizes the economic objective. The second phase
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(MPC) solves the dynamic finite horizon optimal control problem that regulates the

output to the desired target value computed by the RTO. A basic representation of

the proposed scheme is given in Figure 3.1. The design achieves dynamic tracking of

the unknown optimum and ensures both transient and asymptotic performance.
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Parameter
Estimator

 
Plant

Set point
update law

(RTO)

MPC

ISS-CLF
Design

Extremum Seeking
Controller

Terminal
Constraint

Input Output

Estimated
state & parameters

ISS control
Lyapunov function

Figure 3.1: Basic structure of the proposed extremum seeking scheme

3.2 Problem Description

Consider an objective (profit) function of the form

yp = p(y, θp) (3.1)

where θp ∈ Rp is a parameter vector that satisfies

θp ∈ Θp =

{

θp ∈ Rp

∣
∣
∣
∣

∂2p(y, θp)

∂y2
≤ c0I < 0, y ∈ R

}

(3.2)
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The objective function depends on the output of the linear plant

y(s) =
bms

m + · · ·+ b1s+ b0
sn + an−1sn−1 + · · ·+ a1s+ a0

u(s) (3.3)

where the ai ’s and bi ’s are unknown constants.

The condition given in (3.2) ensures that the performance function p(y, θp) is

strictly concave, which means that the objective function yp achieves its maximum at

a unique point y∗. This study is carried out under the following basic assumptions.

Assumption 3.1 The plant is minimum phase, the relative degree ρ, an upper bound

for the plant order n and the high frequency gain are known.

Assumption 3.2 The unknown parameter θp ∈ Rp in (3.1) consists of some of the

constants a = [an−1 . . . a0]
T and b̄ = [bm−1 . . . b0]

T .

The control objective is to design a controller that finds and tracks the optimum value

of the system’s state. Such optimal operating conditions must yield the maximum

value of the uncertain objective function (3.1).

Remark 3.3 The convexity assumption is necessary to ensure that the optimum of

the performance function is obtained. The function may not satisfy this assumption

on a global basis but it can be approximated by some convex functions when the process

is sufficiently close to the optimum. The assumptions about the plant are the same

as in the traditional adaptive control. The minimum phase assumption is required for

the design of the output feedback controller.

31



3.3 Design Procedure

Let us re-write (3.3) in the observer canonical form

ẋ = Ax+







0(ρ−1)×1

b






u− ya (3.4)

y = εT
1 x

where εi is a row vector of appropriate dimension with ith entry of one and zero

elsewhere.

A =
















0 1 · · · 0

...
...

0 · · · · · · 1

0 · · · · · · 0
















b =












bm

...

b0












a =












an−1

...

a0












or

ẋ = Ax+ g(y, u)Tθm (3.5)

y = εT
1 x

g(y, u)T =













0(ρ−1)×(m+1)

Im+1






u, −Iny







θm =







b

a







(m+n+1)×1
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3.3.1 State Estimation

Following the procedure in [73], the following state estimation filters are employed for

the system.

ζ̇ = A0ζ + Ly (3.6)

Ω̇T = A0Ω
T + g(y, u)T (3.7)

where the vector L = [l1, . . . , ln]T is chosen so that the matrix

A0 = A− LεT
1 (3.8)

is Hurwitz. The state estimate is defined as

x̂ = ζ + ΩT θm (3.9)

and the dynamics of the state estimation error e = x− x̂ becomes

ė = Ax+ g(y, u)Tθm −
[
A0ζ + Ly + A0Ω

T θm + g(y, u)Tθm

]

= A0

[
x− (ζ + ΩT θm)

]
= A0e (3.10)

This implies that e vanishes exponentially.

To lower the order of the Ω-filter dynamics, we can exploit the structure of the

matrix g(y, u) in (3.7). If we denote the first m+ 1 columns of ΩT by υm, . . . , υ0 and

the remaining n columns by Ξ, then the dynamics of the Ω-filter are governed by

ΩT = [υm, . . . , υ1, υ0,Ξ]

υ̇j = A0υj + εn−ju j = 0, . . . , m

Ξ̇ = A0Ξ − Iy
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Moreover, due to the special structure of A0, the filter can be implemented according

to [73] as follows.

η̇ = A0η + εny (output filter) (3.11a)

λ̇ = A0λ+ εnu (input filter) (3.11b)

Ξ = −
[
A0

n−1η, . . . , A0η, η
]

(3.11c)

ζ = −A0
nη (3.11d)

υj = −A0
jλ j = 0, . . . , m (3.11e)

ΩT = [υm, . . . , υ1, υ0,Ξ] (3.11f)

3.3.2 ISS Controller Design via Backstepping

The existence of an iss control Lyapunov function ensures that the plant (3.4) is

input-to-state stabilizable with respect to parameter estimation error. Such a control

Lyapuov function (CLF) will be used to develop a terminal constraint that guarantees

the performance of the proposed extremum seeking receding horizon control (ESRHC)

algorithm.

The iss controller design begins by considering the first equation in (3.4),

ẏ = x2 − an−1y = x2 − yεT
1 a (3.12)

Replacing x2 by its estimate

x̂2 = ζ2 + ΩT
(2)θm + e2 (3.13)

= ζ2 + bmυm,2 +
[
0, υm−1,2, . . . , υ0,2,Ξ(2)

]
θm + e2 (3.14)
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results in

ẏ = ζ2 + bmυm,2 + φTθ + e2 (3.15)

where the regressor vector, φ, and the unknown parameter θ are defined as

φ =
[
υm−1,2, . . . , υ0,2,Ξ(2) − yεT

1

]T
(3.16)

θ = [bm−1, . . . , b0, a1n−1 . . . , a10]
T . (3.17)

Let us choose υm,2 as the ‘virtual control’ because both υm,2 and the unmeasured state

x2 are separated by only ρ−1 integrators from the actual control u. Considering (3.15)

and (3.11) for j = m, the design system chosen to replace (3.4) is

ẏ = ζ2 + bmυm,2 + φT θ + e2 (3.18a)

υ̇m,2 = υm,3 − l2υm,1 (3.18b)

... (3.18c)

υ̇m,ρ−1 = υm,ρ − lρ−1υm,1 (3.18d)

υ̇m,ρ = υm,ρ+1 − lρυm,1 + u (3.18e)

Given a constant setpoint, yr, to be tracked, our goal is to achieve input to state

stability (iss) of the tracking error

z1 = y − yr

with respect to the parameter estimation error θ̃. The dynamics of the tracking error

are given as

ż1 = bmυm,2 + ζ2 + φT θ + e2.
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Let

zi = bmυm,i − αi−1, for i = 2, . . . , ρ. (3.19)

For z2 = bmυm,2 − α1, we choose

α1 = −c1z1 − g1z1 − ζ2 − φT θ̂ − k1φ
Tφz1, c1 > 0, g1 > 0

to obtain

ż1 = −c1z1 − g1z1 + e2 + φT θ̃ − k1φ
Tφz1 + z2 (3.20)

which will be asymptotically stabilizing if θ̃, e2 and z2 were zero. Consider a Lyapunov

function

V1 =
1

2
z2
1 ,

taking the time derivative of V1 along (3.20) results in

V̇1 = −c1z2
1 − g1z

2
1 + e2z1 + φT θ̃z1 − k1φ

Tφz2
1 + z1z2. (3.21)

Using the fact that

−g1z
2
1 + e2z1 ≤

1

4g1
e22 and φT θ̃z1 − k1φ

Tφz2
1 ≤ 1

4k1
‖θ̃‖2,

equation (3.21) becomes

V̇1 ≤ −c1z2
1 +

1

4g1
e22 +

1

4k1
‖θ̃‖2 + z1z2. (3.22)

Note that α1 is a function of y, yr, η, θ̂, υm−1,2, . . . , υ0,2 and in view of (3.11), υi,j can
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be expressed as

υi,j = [∗, . . . , ∗, 1] λ̄i+j,

where λ̄k , [λ1, . . . , λk]
T and λk , 0 for k > n. It is therefore concluded that

α1 = ϕ
(

y, yr, η, θ̂, λ̄m+1

)

. Also, as it will be seen later, αi = ϕ
(

y, yr, η, θ̂, λ̄m+i

)

.

Remark 3.4 In the proposed ESRHC development and implementation, the unknown

plant parameter vector θ is replaced by its estimated value θ̂ at every time step. This

is assumed to be time invariant over the prediction horizon. Since the iss-clf is used

as a terminal constraint to guarantee performance of the receding horizon controller,

it is sufficient to consider θ̂ = θ̄, with
˙̂
θ = 0 in the iss-controller design.

Step 2: Differentiating (3.19) for i = 2 along the second equation in (3.18), we obtain

ż2 = bmυm,3 − β2 −
∂α1

∂y

(

φT
1 θ̃p + φT

2 θ̃2 + e2

)

= z3 + α2 − β2 −
∂α1

∂y

(

φT
1 θ̃p + φT

2 θ̃2 + e2

)

from (3.19)

where β2 is a function of available signals given by

β2 = bml2υm,1 +
∂α1

∂y

(

φT
1 θ̂p + φT

2 θ̂2 + ζ2 + bmυm,2

)

+
∂α1

∂η
η̇+

m+1∑

j=1

∂α1

∂λj
(−kjλ1 + λj+1) .

Choosing V2 = V1 + 1
2
z2
2 and

α2 = −c2z2−g2(
∂α1

∂y
)2z2+β2−z1−k21(

∂α1

∂y
)2‖φ‖2z2−k22(

∂α1

∂y
)2‖φ2‖2z2, c2 > 0, g2 > 0

results in

V̇2 ≤ −c1z2
1 +

1

4g1
e22 +

1

4k11
‖θ̃p‖2 +

1

4k12
‖θ̃2‖2

− c2z
2
2 +

1

4g2
e22 +

1

4k21
‖θ̃p‖2 +

1

4k22
‖θ̃2‖2 + z2z3.
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Steps 3 . . . ρ− 1. For i = 3 . . . ρ− 1

zi = bmυm,i − αi−1,

żi = bmυm,i+1 − βi −
∂αi−1

∂y

(

φT θ̃ + e2

)

= zi+1 + αi − βi −
∂αi−1

∂y

(

φT θ̃ + e2

)

,

βi = bmliυm,1 +
∂αi−1

∂y

(

φT θ̂ + ζ2 + bmυm,2

)

+
∂α1

∂η
η̇ +

m+i−1∑

j=1

∂αi−1

∂λj

(−kjλ1 + λj+1) ,

Vi = Vi−1 +
1

2
z2

i ,

αi = −cizi − gi(
∂αi−1

∂y
)2zi + βi − zi−1 − ki(

∂αi−1

∂y
)2‖φ‖2zi, ci > 0, gi > 0

V̇i ≤
ρ−1
∑

l=1

−clz2
l +

1

4gl
e22 + φT θ̃z1 − k1φ

Tφz2
1 −

ρ−1
∑

j=2

∂αj−1

∂y
zjφ

T θ̃ −
ρ−1
∑

j=2

[
∂αj−1

∂y
zj

]2

kj‖φ‖2,

≤
i∑

l=1

−clz2
l +

1

4gl

e22 +
1

4kl

‖θ̃‖2 + zizi+1.

step ρ. Now for i = ρ, define zρ, żρ, βρ, αρ as in the previous step, zρ+1 = 0 and

Vρ =

ρ
∑

j=1

1

2
z2

j (3.23)

Designing the iss control law as

uiss =
1

bm
[αρ − bmυm,ρ+1] , (3.24)

and defining z = [z1, . . . , zρ]
T , C = ciI, for i = 1 . . . ρ, G =

∑ρ
l=1 gl and K =

∑ρ
l=1 kl,

we have

V iss =
1

2
zT z, (3.25)

V̇ iss ≤ −zTCz +
1

4G
e22 + φT θ̃z1 − k1φ

Tφz2
1

−
ρ
∑

j=2

∂αj−1

∂y
zjφ

T θ̃ −
ρ
∑

j=2

[
∂αj−1

∂y
zj

]2

kj‖φ‖2, (3.26)
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≤ −zTCz +
1

4G
e22 +

1

4K
‖θ̃‖2 (3.27)

This implies that the error dynamic z is bounded whenever θ̃ and e2 are bounded.

Hence, (3.25) is an iss-Lyapunov function candidate for the extremum seeking problem

under consideration. Since z1 and yr are bounded, y is also bounded. This follows

from (3.11) that η is bounded. Following the argument presented in [73], it can be

shown that λ is bounded which implies the boundedness of x.

3.4 ESRHC Formulation and Analysis

3.4.1 Formulation

The formulation consists of two-phase design procedure as described below.

First Phase (RTO)

At every time step t, the maximum value of the objective (profit) function (3.1) is

obtained via an online setpoint update law as follows.

Consider a Lyapunov function candidate

Vsp =
1

2

(

∂p(r, θ̂p)

∂r

)2

(3.28)

where r denotes an optimal setpoint for the output y. Taking the time derivative of

Vsp, we have

V̇sp =
∂p

∂r

[

∂2p

∂r2
ṙ +

∂2p

∂r∂θ̂p

˙̂
θp

]

.

Choosing the update law as

ṙ = −
(
∂2p

∂r2

)−1
[

kr
∂p

∂r
+

∂2p

∂r∂θ̂p

˙̂
θp

]

, kr > 0 (3.29)
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leads to

V̇sp ≤ −kr

(
∂p

∂r

)2

. (3.30)

Equations (3.28) and (3.30) imply that r approaches the (θ̂p-dependent) optimal

setpoint y∗ exponentially.

To provide some richness condition on the setpoint, we append it with a bounded

dither signal d(t) and define an approximate setpoint

yr(t) = r(t) + d(t).

In general, d(t) is chosen to contain at least nθ (nθ=number of unknown parameters)

distinct frequencies, required for parameter convergence. Other specific details will

be given later.

Second Phase (MPC)

At this step, a finite horizon optimal control problem is solved subject to the system

dynamics and terminal state inequality constraints at every time step with the esti-

mated plant states x(t) as initial condition. The goal of this phase is to minimize a

given cost while ensuring that the system output y tracks the reference setpoint yr

dictated by the first phase.

To this end, let us re-write (3.4) as

ẋ = Ax+ ερbmu+ ḡ(y, u)Tθ (3.31)
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where

ḡ(y, u)T =













0ρ×m

Im






u, −Iyn







(3.32)

and define the cost

J =

∫ t+Tp

t

zT (τ)Cz(τ) + u(τ)TRu(τ) dτ + zT (t+ Tp)Pz(t+ Tp) (3.33)

where P and R are positive definite weighting matrices, Tp is the length of the pre-

diction horizon and

yr = r + d(t), (3.34a)

z1 = x1 − yr, (3.34b)

zi = xi − αi−1, i = 2 . . . ρ, (3.34c)

α1 = −c1z1 − g1z1 + εT
m+1θ̄x1, (3.34d)

αi−1 = −(ci−1 + gi−1)zi−1 − zi−2 + α̇i−2 + εT
m+iθ̄x1. (3.34e)

The proposed ESRHC scheme is given by:

min
u

J(z, θ̄, up) (3.35a)

s.t ẋ = Ax+ ερbmu+ ḡ(x1, u)
T θ̄ (3.35b)

x(t) = x̂(t), θ̄ = θ̂(t) (3.35c)

V (t+ Tp) ≤ V iss(t+ Tp). (3.35d)

The function V is the value of the CLF resulting from the application of ESRHC

and V iss is the value of the CLF that results from the application of the iss controller.

Constraint (3.35d) guarantees that the states under the ESRHC are brought within
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the level set of the iss-controller at the end of the prediction horizon, thereby ensuring

that the state variables under the ESRHC remain bounded. By (3.35c) the optimiza-

tion problem is initialized by the estimated state, and the unknown parameters θ̄ in

(3.35a) and (3.35b) are replaced by the estimated values θ̂. The optimizer computes

the required control moves over the horizon. The input u(t) is implemented on the

plant at time t. An estimate of the unmeasured state x̂ and the unknown parame-

ters θ̂(t) are obtained via an observer and a parameter update law respectively. The

horizon is shifted forward and a new optimization problem is solved at the next time

step t+ δ with the new x = x̂(t+ δ) and θ̄ = θ̂(t+ δ). The control u(t+ δ) is applied

at time t+ δ and the process is repeated. In general, it is assumed that the time step

length δ can be chosen to be arbitrarily small.

3.4.2 Analysis

The stability and performance of the proposed scheme is demonstrated in the follow-

ing. Consider the function

W (z(t)) = zT (t+ Tp)P z(t+ Tp) +
1

2

∫ t+Tp

t

z(σ)TCz(σ)dσ (3.36)

where P = 1
2
I and z(.) is the error trajectory resulting from the ESRHC. This function

is positive definite and it is radially unbounded if the system’s CLF V = 1
2
zTP z is

positive definite and radially unbounded.

For τ ∈ [t, t+ δ], eq. (3.36) becomes

W (z(τ)) = zT (τ + Tp)Pz(τ + Tp) +
1

2

[
∫ t+Tp

τ

z(σ)TCz(σ)dσ +

∫ τ+Tp

t+Tp

z(σ)TCz(σ)dσ

]

(3.37)
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However, from (3.26), we have

V̇ iss ≤ −zTCz +
1

4G
e22 + φT θ̃z1 −

ρ
∑

j=2

∂αj−1

∂y
zjφ

T θ̃ (3.38)

which when integrated over [t+ Tp, τ + Tp] results in

1

2

∫ τ+Tp

t+Tp

z(σ)TCz(σ)dσ ≤ V (t+ Tp) − V (τ + Tp) +

∫ τ+Tp

t+Tp

Υ(σ)dσ

where

Υ = −1

2
zTCz +

1

4G
e22 + φT θ̃z1 −

ρ
∑

j=2

∂αj−1

∂y
zjφ

T θ̃

Hence, equation (3.37) becomes

W (z(τ)) ≤W (z(t)) +

∫ τ+Tp

t+Tp

Υ(σ)dσ

dividing both sides by τ − t and taking the lim sup as τ goes to t results in

Ẇ (z(t)) ≤ Υ(t+ Tp) (3.39)

Closed-loop Analysis

Re-write (3.31) as

ẋ = Ax+Bu(x)RHC − ya, x(t) = x(t) (3.40)

˙̂x = Ax̂+Bu(x̂)RHC − ya, x(t) = x̂(t) (3.41)
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where B = f1b̄+ ερbm,

f1 =







0ρ×m

Im







b̄ =












bm−1

...

b0












a =












an−1

...

a0












The state error dynamic x̃ = x− x̂ between (3.40) and (3.41) is

˙̃x(t) = Ax̃+Bu(x̃)RHC , x̃(t) = x(t) − x̂(t) (3.42)

and the solution of (3.42) for τ ∈ [t, t+ Tp] is

x̃(τ) = eA(τ−t)x̃(t) +

∫ τ

t

eA(τ−σ)Bu(x̃(σ))RHCdσ (3.43)

The solution uRHC resulting from the ESRHC scheme has been shown to be piecewise

affine [74], i.e.,

u(t) = kix(t) +mi (3.44)

for x(t) ∈ Ci , [x : His ≤ si] i = 1, . . . , s where
⋃s

i=1Ci is the set of states for which

a feasible solution to the finite horizon optimal control problem (second phase) exists.

Therefore,

u(x̃(t)) = kix̃(t) + ǫi (3.45)

If we let k̄ := maxi ‖ki‖, ǭ := maxi |ǫi|, Then (3.45) becomes

u(x̃(t)) ≤ k̄‖x̃‖(t) + ǭ. (3.46)
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When ‖x̃‖ ≥ 1, |u| ≤ (k̄ + ǭ)‖x̃‖. Also, when 0 ≤ ‖x̃‖ < 1, and ǭ sufficiently small,

there exists ν > 0 such that |u| ≤ (k̄ + ν)‖x̃‖. So, without loss of generality, it is

assumed that

|u(x̃(t))| ≤ L‖x̃(t)‖, L := max
(
k̄ + ǭ, k̄ + ν

)

Then, using Bellman Gronwall Lemma, (3.43) results in

‖x̃(τ)‖ ≤e(τ−t)‖x̃(t)‖ +

∫ τ

t

e(τ−σ)̟‖x̃(σ)‖dσ ≤ ̺‖x̃(t)‖ (3.47)

where ̟ = L‖B‖ and ̺ = exp
(
−̟ +̟e(τ−t)

)
.

Parameter Estimation

We define the predicted state, x̂a as

x̂a = ζ + ΩT θ̂m

Considering (3.6) and (3.7), the predicted state dynamic is given as

˙̂xa = A0ζ + Ly + A0Ω
T θ̂m + g(y, u)T θ̂m (3.48)

Noting that g(y, u)Tθm = ḡ(y, u)Tθ+ ερbmu and bm is assumed known, the prediction

error ea = x− x̂a dynamic results in

ėa = ḡ(y, u)T θ̃ + A0ea. (3.49)

Consider a Lyapunov function

V1(t) =W (t) +
1

G
eT (t)P0 e(t) +

1

2
eT

a (t)Q0 ea(t) +
1

2
θ̃T (t)Γ−1θ̃(t) (3.50)
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where Γ = ΓT > 0, Q0 and P0 are real symmetric positive definite matrices that

satisfy P0A0 + AT
0 P0 = −̺2I and Q0A0 + AT

0Q0 = −I respectively. Taking the time

derivative of V1 along the solutions of (3.10) and (3.49) we have

V̇1(t) ≤Υ(t+ Tp) −
̺2

G
e(t)T e(t) − ˙̂

θT (t)Γ−1θ̃(t) − 1

2
eT

a (t)ea(t) + eT
a (t)Q0 ḡ(y, u)

T θ̃(t)

= − 1

2
zT (t+ Tp)C z(t+ Tp) +

1

4G
e22(t+ Tp) + υ(t+ Tp)θ̃(t+ Tp) −

̺2

G
e(t)T e(t)

− ˙̂
θT (t)Γ−1θ̃(t) − 1

2
eT

a (t)ea(t) + eT
a (t)Q0 ḡ(y, u)

T θ̃(t) (3.51)

where

υ(t+ Tp) = φT (t+ Tp)z1(t+ Tp) −
ρ
∑

j=2

∂αj−1

∂y
(t+ Tp)φ

T (t+ Tp)zj(t+ Tp).

It is deduced from (3.47) that ‖e(t+Tp)‖ ≤ ̺‖e(t)‖ since it is initialized by the state

estimates obtained via (3.9) at the beginning of the prediction horizon i.e. x̃(t) = e(t).

It follows that

1

4G
e22(t+ Tp) ≤

̺2

4G
e22(t)

and since e22(t) ≤ eT (t)e(t),

̺2

4G
e22(t) −

̺2

G
e(t)T e(t) ≤ −3̺2

4G
e(t)T e(t).

Moreover, considering the fact that there is no adaptation along the prediction hori-

zon, we have θ̃(t + Tp) = θ̃(t). Collecting the terms in equation (3.51) with respect

to θ̃, we obtain

V̇1(t) ≤ −1

2
z(t+ Tp)

TCz(t+ Tp) −
3̺2

4G
e(t)T e(t) − 1

2
eT

a (t)ea(t) +
[

ψ − ˙̂
θT Γ−1

]

θ̃

(3.52)
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where ψ = eT
aQ0 ḡ(y, u)

T + υ(t+ Tp).

The parameter adaptation rule is selected to ensure that
[

ψ − ˙̂
θT Γ−1

]

θ̃ ≤ 0 and

that the parameter estimates remain in some given set. This is achieved by using a

standard parameter projection law. Refer to [73] for more details.

Defining Ψ = ΓψT , the update law is given by

˙̂
θ = Proj

{

θ̂,Ψ
}

(3.53)

=







Ψ, if ‖θ̂‖ < π or

(

‖θ̂‖ = π and ∇P(θ̂)Ψ ≤ 0

)

Ψ − Ψγ∇P(θ̂)∇P(θ̂)T

‖∇P(θ̂)‖2

γ

, otherwise

where P(θ̂) = θ̂T θ̂ − π2 ≤ 0, θ̂ is the vector of parameter estimates, γ is a positive

definite symmetric matrix.

The properties of the projection operator ensures that the parameters are bounded

and that

V̇1(t) ≤− 1

2
z(t+ Tp)

TCz(t+ Tp) −
3

4G
̺2e(t)T e(t) − eT

a (t)Kea(t) (3.54)

From (3.54), it is concluded that z, e, ea and θ̃ are uniformly bounded and that

z, e and ea converge to the origin asymptotically.

Parameter Convergence

From the previous sub-section, it is established that ea converges to zero, hence,
∫∞

0
ėa(σ)dσ = −ea(0) exists and is finite. Also, from (3.49), it is known that ėa

is a function of bounded signals y, u, θ̃ and ëa is bounded. Hence, ėa, is uniformly

continuous. By Barbalat’s lemma [73], it is concluded that ėa → 0 as t → ∞. This
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implies that

lim
t→∞

ḡ(y, u)T θ̃ = 0 or lim
t→∞

θ̃T ḡ(y, u)ḡ(y, u)T θ̃ = 0.

If ḡ(y, u)ḡ(y, u)T is positive definite, then the parameter error θ̃ converges to zero

asymptotically. However, this condition is not always true because ḡ(y, u)ḡ(y, u)T

can be singular at any given time. The integral of ḡ(y, u)ḡ(y, u)T for t → ∞ is

considered. It then follows that over any bounded interval of length 0 < T0 <∞ that

lim
t→∞

1

T0

∫ t+T0

t

(

θ̃(τ)T ḡ(τ)ḡ(τ)T θ̃(τ)
)

dτ = 0 (3.55)

In order to prove the convergence of θ̃ to zero, a condition on the richness of the

dither signal d(t) is required.

Definition 3.5 (Persistence of Excitation) The closed-loop dynamics exhibit per-

sistency of excitation (PE) if there exists constants T0 > 0, cPE > 0 and a sequence

{ti} with ti → ∞ as i→ ∞ such that the following is true

1

T0

∫ ti+T0

ti

ḡ(τ)ḡ(τ)Tdτ ≥ cPEI (3.56)

Lemma 3.6 Consider the adaptive system, eq.(3.4), with receding horizon controller

eqs.(3.35a)-(3.35d), the adaptive law (3.53), the state observer (3.9). If the dither

signal d(t) is chosen such that the PE condition (3.56) is satisfied, then the parameter

estimation error θ̃ converges to zero asymptotically.

The proof of this result is given in Section 3.7.

Theorem 3.7 Consider the objective function (3.1) subject to the system dynamics

(3.4), and satisfying the given assumptions. If the dither signal d(t) satisfies the per-

sistence of excitation condition (3.56), then the ESRHC (3.35a)-(3.35d), the state
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observer (3.9) and the parameter update law (3.53) solves the extremum seeking prob-

lem.

Proof:

It follows from the stability analysis that z1 , y − yr → 0 as t → ∞. If d(t) is

designed to satisfy the PE condition (3.56), then it is concluded by Lemma 3.6 that

limt→∞ θ̂ = θ. Hence y converges to a neighborhood of the optimal setpoint r∗ whose

size depends on d(t).

3.4.3 Transient Performance of the ESRHC

Corollary 3.8 The tracking error z of the closed-loop dynamical system is bounded

by

‖z‖p ≤ 2
√

γV1(0), p = 2 or ∞, γ =
1

λmin(C)

Proof: L2 Performance:

‖z‖2
2 =

∫ Tp

0

zT (τ)z(τ)dτ +

∫ ∞

Tp

zT (τ)z(τ)dτ

From (3.54) we know that z(t+Tp)
T z(t+Tp) ≤ −2γV̇1. Since V1 is non-increasing,

∫ ∞

Tp

zT (τ)z(τ)dτ ≤ 2γ [V1(Tp) − V1(∞)] ≤ 2γV1(0) (3.57)

Also from (3.36), we have

∫ Tp

0

zT (τ)z(τ)dτ ≤ 2γ
[
W (z(0)) − zT (Tp)Pz(Tp)

]
(3.58)

Equations (3.57) and (3.58) lead to

‖z‖2
2 ≤ 2γ [W (z(0)) + V1(0)] (3.59)
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Noting from (3.50), that W (z(0)) ≤ V1(0) concludes the L2 norm proof. The proof

for L∞ performance follows from (3.50) and the fact that V1 is non-increasing.

Remark 3.9 From above, it is clear that the transient performance depends on θ̃,

e(0), ea(0), z(0), G, P0 and Γ. We can set z1(0) to zero by setting ŷr(0) = y(0) and

use the other tuning functions to systematically reduce the bounds.

3.4.4 Controller Implementation and Tuning

In this subsection, we provide a brief discussion of the design and tuning parameter

that are needed for the implementation of the proposed controller.

• Tuning parameters

There are some design parameters that must be selected by the user. These in-

clude the prediction horizon length Tp, control horizon length Tc, sampling time

and the parameter adaptation rate Γ. The choice of prediction and control

horizon length depend on the amount of time available for on-line computation.

When more time is available, the horizons can be extended. The sampling time

selected depends on the dynamics of the system considered. For example, a

plant with fast dynamics will require a small sampling time in order to capture

the evolution of the state and output variables. The parameter update rate

should be chosen large enough to provide some robustness to the estimation

routine. The rate of convergence of the state estimate is determined by the

choice of the vector L in equation (3.8) and it must be selected so that the

matrix A0 is Hurwitz.

• Choice of dither signal.
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In this study, the dither signal considered is of the form

d(t) =

N1∑

i=1

a1i sin(ω1it) exp(−α1t) +

N2∑

i=1

a2i cos(ω2it) exp(−α2t).

The amplitudes a1i, a2i were chosen as random numbers while the frequencies

ω1i, ω2i were selected as distinct random numbers. The number of the different

frequencies, N1 + N2 was chosen to be equal or greater than the number of

parameters to be estimated. The sinusoidal signal is modulated with an expo-

nential function to ensure that the perturbation signal dies out as t → ∞. A

sufficiently small value of α is required; in general, it is selected as α <<< τ ,

where τ is the process time constant. For most applications, the choice of the in-

put dither signal that provides sufficient excitation remains difficult to evaluate

a priori.

3.5 Simulation Examples

3.5.1 Example 1

To illustrate the procedure developed, consider a linear system represented by the

transfer function

G(s) =
1

s(s+ θ)

where θ is an unknown constant parameter. The control objective is to maximize the

objective function

yp = p(y, θ) = 1 − θy − y2.

It follows that the performance function reaches its maximum at y = y∗ = −θ/2 since

∂p(y,θ)
∂y

= −θ − 2y and ∂2p(y,θ)
∂y2 = −2.
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Following the design procedure, we re-write the plant in the state space form (3.4) as

ẋ1 = x2 − θx1

ẋ2 = u

y = x1

The filters are implemented as

η̇ = A0η + ε2y, Ξ = − [A0η] , υ = λ,

λ̇ = A0λ+ εnu, ζ = −A0
2η

A0 =







−l1 1

−l2 0







and the state observer as

x̂1 = −(l21 − l2 − θ̂l1)η1 + (l1 − θ̂)η2 + λ1

x̂2 = −(l2l1 − θ̂l2)η1 + l2η2 + λ2

Defining, z1 and z2 as in the design procedure,

V iss =
1

2
(z2

1 + z2
2) (3.60)

The predicted state is generated by

˙̂x1a = x̂2 − θ̂y +m1(x1 − x̂1a)

˙̂x2a = u+m2(x2 − x̂2a)
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and the adaptive laws are designed as

˙̂
θ =







ΓΨ, if ‖θ̂‖ < 10 or

‖θ̂‖ = 10 and 2θ̂Ψ ≤ 0

0, otherwise

Ψ = Γ

[

φz1 −
∂α1

∂y
φz1 − (x1 − x̂1a)y

]

φ = (l2η1 − y),
∂α1

∂y
= −c1 − d1 + θ̂.

The formulation of our optimization is as follows

min
u

J =

∫ t+Tp

t

zT (τ)z(τ) + u(τ)TRu(τ)dτ + zT (t+ Tp)z(t+ Tp)

subject to

ẋ1 = x2 − θ̄x1, x1(t) = y(t), θ̄ = θ̂(t)

ẋ2 = u, x2(t) = x̂2(t)

V (t+ Tp) ≤ V iss(t+ Tp)

z1 = x1 − yr, z2 = x2 − α1

α1 = −c1z1 − g1z1 + θ̄x1

where the function V (.) = 1
2
(z2

1 + z2
2), the setpoint yr is obtained from the first

optimization step as yr = r+d(t) with r = −θ̂/2. The setpoint r can also be generated

from the dynamical equation ṙ = −1
2
(2r + θ̂ +

˙̂
θ).

The parameters used in the simulation are selected as l1 = l2 = m1 = m2 = 1,

c1 = c2 = 5, d1 = d2 = 0.1, Γ = 0.432, x1(0) = 0.1, x2(0) = 0.5, θ̂(0) = −0.2 and
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The dither signal is chosen to be d(t) = 0.1 sin(3t) exp(−0.2t). The exponential term

appearing in the dither signal ensures that the excitation signal d(t) disappears as t

increases. The prediction and control horizons length are chosen as Tp = Tc = 1 and

a sampling time of 0.2 is used for the simulation experiment.
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Figure 3.2: System’s trajectories under ESRHC. (a) state x1, (b) performance function yp,

(c) parameter estimate θ̂, (d) control input

Figure 3.2 shows the states, performance function, parameter estimate and control

input from the simulation. From the above discussion, it is clear that the optimum

occurs when the state x1 = 0.5 and x2 = −0.5. Figure 3.2(a) shows that the states

x1 and x2 converge to their optimum values. Also, the parameter estimate converges

to the actual parameter value of θ = −1. This suggests that the proposed control

action (d) provides sufficient excitation for the system. Moreover, it is seen that the

performance function in (b) achieves its maximum value of 1.25.
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3.5.2 Example 2 - Reactor Dynamics

Consider the following linearized model for a non-isothermal continuous stirred tank

reactor (CSTR) where a first order, irreversible exothermic reaction A → B is carried

out [75, 76]. The dynamic of the reactor is given as

ẋ = Ax+Bu (3.61)

y = [1 0]x

where x is a vector of the reactor temperature and concentration, and u is the coolant

flow rate. The matrix A and B are as follows:

A =












− g
V
− UA

V ρCp
+ (−∆Hrxn)E/(RT ∗2)

ρCp
k(T ∗)C∗

A
−∆Hrxnk(T ∗)

ρCp

− E
RT ∗2 k(T

∗)C∗
A − g

V
− k(T ∗)












B =







−2.1 × 105 T ∗−Tcin

V ρCp

0







The expression for the reaction rate is given by k(T ∗) = Koe
−(E/RT ∗), where Ko

is the kinetic constant of the reaction and E/R is the activation energy. We assume

that θp = k(T ∗) and θ2 = E/RT ∗ are not known and use the proposed scheme to

adaptively stabilize the system to the unknown setpoint (T ∗, C∗
A) that maximizes the

function

yp = −1

2
V θpC

∗2
A + γFCA0C

∗
A, θp > 0, γ = 0.9

This economic function is designed to ensure that CA stabilizes at a value that guar-

antees 90 percent conversion of reactant A.
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The specific parameters and operating conditions used for the simulation are F

= 1m3/min, V = 1m3, Tcin = 365K, CA0 = 2.0kmole/m3, Cp = 1cal/(g K), ρ =

106g/m3, -∆Hrxn = 130×106 cal/(kmole).

The true values of the unknown parameters are chosen as θ1 = 9min−1 and θ2 =

21.07. The coolant flow is restricted to 13 ≤ u ≤ 17 m3/min. The initial values used

are CA(0) = 0.084 kmol/m3, T (0) = 385.27 K, θ̂1(0) = 12 min−1 and θ̂2(0) = 10 while

the target optimal values are C∗
A = 0.2 kmol/m3 and T ∗ = 395.27K. Other design

parameters used are prediction horizon length Tp = 0.8min, control horizon length Tc

= 0.5min, sampling time = 0.1min, estimation parameters l1 = 1, l2 = 0.5, Γ11 = 0.72,

Γ22 = 1.72 and perturbation signal d(t) = (0.5 sin 9t+ sin 7t) e−0.5t + 0.7 cos 6t e−0.3t.

Figure 3.3 represents the controlled reactor trajectories. The simulation result

shows that the adaptive ESRHC stabilizes the system states to the required steady-

state values and the economic function reaches the optimum in a reasonable time.

The parameter estimates θ̂1 and θ̂2 converge to the true values of 9 min−1 and 21.07

respectively. The control input also converges to the appropriate steady-state value

and satisfies the given bounds.

To access the robustness of the proposed ESRHC algorithm to model uncertainties,

the developed controller and estimators based on the linearized model are applied on

the original nonlinear reactor dynamics [75]:

V ρCp
dT

dt
= ρCpF (T0 − T ) − aF b+1

c

Fc + aF b
c

2ρcCpc

(T − Tcin) + (−∆Hrxn)V Koe
−(E/RT )CA

V
dCA

dt
= F (CA0 − CA) − V Koe

−(E/RT )CA (3.62)

The additional model parameters are Cpc = 1cal/(gK), ρc = 106g/m3, a = 1.678 ×

106(cal/min)/(K), b = 0.5 and Fc is the coolant flow rate u. In the simulation study,

the RHC uses the linear model (3.61) to predict system evolution and the first control

action among the optimal sequence generated is implemented on the nonlinear plant
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Figure 3.3: Reactor (linearized dynamics) closed-loop trajectories under the proposed ES-
RHC (a) temperature T [K], (b) concentration CA [kmol m−3], (c) performance
function yp [kmol2 m−3 min−1], (d) control input u [m3 min−1], (e) parameter

estimate θ̂1 [min−1], (g) parameter estimate θ̂2
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(3.62). The initial conditions and tuning parameters used in this study remain the

same except for the estimator parameters that are tuned to l1 = 10, l2 = 5, Γ11 =

0.046 and Γ22 = 0.29.

The simulation plots are shown in Figure 3.4. It can be seen that the controller

performs very well on the nonlinear system. The trajectories of the closed-loop non-

linear system states are smoother than that of the linear systems shown in Figure 3.3.

However, this is achieved at the expense of a more aggressive controller action.
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Figure 3.4: Reactor (nonlinear dynamics) closed-loop trajectories under the proposed ES-
RHC (a) temperature T [K], (b) concentration CA [kmol m−3], (c) performance
function yp [kmol2 m−3 min−1], (d) control input u [m3 min−1], (e) parameter

estimate θ̂1 [min−1], (f) parameter estimate θ̂2
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3.6 Conclusions

A method is proposed to solve a class of output feedback extremum seeking control

problems for linear uncertain plants. The challenging part of this application is that

in addition to the unknown parameters, only the system’s output is available for

measurement. An observer is employed to estimate the unavailable states and a pa-

rameter update law is implemented on the plant to provide estimates of the unknown

parameters. These estimates are used, at each iteration step, to update the unknown

states and parameters in the economic and control optimization schemes. The de-

sired target value is obtained at every time step via an online optimization procedure

and the model predictive controller is designed to track this setpoint. The practical

advantage of this two-phase approach, over a one-phase optimization scheme, is that

it allows for checks on the designed reference signal. Moreover, since we are dealing

with uncertain dynamical systems, closed-loop identifiability can be guaranteed by

designing a sufficiently exciting reference input signals. The receding horizon tech-

nique employs an iss-control Lyapunov function to ensure stability and performance.

It is shown that the performance function converges to a small neighborhood of the

optimum provided a PE condition is satisfied. Moreover, the transient performance of

the algorithm is analyzed by deriving bounds for the closed-loop tracking error. The

simulation results demonstrate the applicability of the proposed integrated scheme.

3.7 Proof of Parameter Convergence Result

Theorem 3.6

Proof: Let ‖zw‖2 = W (t). From eq.(3.54), it is concluded that (z, e, ea) → 0 as

t → ∞. If Lemma 3.6 is true, for every compact neighbourhood of (z, e, ea θ̃) = 0,

there must exist a finite-time from which the neighbourhood of the origin of the
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closed-loop system is positively invariant. Since (3.54) ensures V1 is non-increasing,

the level curves of V1 are rendered positively invariant. To prove the Lemma, it is

therefore sufficient to prove that (z, e, ea θ̃) will enter every level curve of V1.

The proof will proceed by contradiction, with the contradictory assumption that

∃ ǫV > 0 such that V1 ≥ ǫV , ∀t ≥ 0. That is

lim
t→∞

(

‖zw‖2 +
1

G
‖e‖2

P0
+

1

2
‖ea‖2 +

1

2
θ̃T Γ−1θ̃

)

≥ ǫV (3.63)

However from (3.54), it is clear that (z, e, ea) → 0, from which it can be ∃ t1 =

t∗zeea
(ǫV , k) < ∞ such that max(‖zw‖, ‖e‖P0, ‖ea‖) ≤

√
kǫV , ∀t ≥ t1, for any 0 <

k < 1
ϑ
, where ϑ = 3G+2

2G
> 1. It then follows from (3.63) that

‖θ̃‖ ≥
√

2(1 − ϑk)λmin{Γ} ǫV ∀ t ≥ t1 (3.64)

Moreover, from (3.55), it can be concluded that for any ǫ > 0 (independent of

ǫV ), ∃t2 = t∗
gθ̃

(ǫ) <∞ such that

1

T0

∫ t+T0

t

(

θ̃(τ)T ḡ(τ)ḡ(τ)T θ̃(τ)
)

dτ ≤ ǫ ∀ t ≥ t2 (3.65)

Substituting θ̃(τ) = θ̃t +
∫ τ

t

˙̃θ(σ)dσ in (3.65), for τ ∈ [t t + T0], where θ̃t = θ̃(t) is

constant over the interval of integration,

1

T0
θ̃t

∫ t+T0

t

ḡ(τ)ḡ(τ)Tdτ θ̃t +
2

T0
θ̃t

∫ t+T0

t

ḡ(τ)ḡ(τ)T

(∫ τ

t

˙̃
θdσ

)

dτ

+
1

T0

∫ t+T0

t

(∫ τ

t

˙̃
θdσ

)T

ḡ(τ)ḡ(τ)T

(∫ τ

t

˙̃
θdσ

)

dτ ≤ ǫ ∀ t ≥ t2 (3.66)

From (3.53) and the properties of the Projection algorithm, it can be deduced that

‖
∫ τ

t

˙̃θdσ‖ = ‖
∫ τ

t

Proj{ΓψT}dτ‖
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≤
√

λmax{Γ}
λmin{Γ}

‖
∫ τ

t

ΓΠχdτ‖

where

Π =

[

ḡ(y, u) φ ∂α1

∂y
φ · · · ∂αρ−1

∂y
φ

]

and χ =
[
eT

a zT
]T

since ‖z‖ ≤ ‖zw‖, then, ‖χ‖ ≤
√
kǫV and since Π is a function of uniformly bounded

signals, ∫ = [y, z, λ, η, θ̂], we have

sup
∫∈B∫

‖ΓΠ‖ = K <∞ (3.67)

where

B∫ = Byz ×Bηλ
× Bθ̂

Byz =
{

y ∈ R, z ∈ Rρ
∣
∣
∣ ‖z‖ ≤

√

V1(0)
}

Bηλ
=

{

η ∈ Rn, λ ∈ Rn

∣
∣
∣
∣
∣
‖e‖ ≤

√

GV1(0)

λmin (P0)

}

Bθ̂ =
{

θ̂ ∈ Rn+m, λ ∈ Rn
∣
∣
∣ ‖θ̃‖ ≤

√

2V1(0)λmax (Γ)
}

Hence,

‖
∫ τ

t

˙̃θdσ‖ ≤ T0M
√

kǫV ∀ t ≥ t1 (3.68)

M , K
(√

λmax{Γ}
λmin{Γ}

)

(3.69)

By the uniform boundedness of all closed-loop dynamics, it follows that there exists

a constant cPE <∞ such that the PE condition can be rewritten as

cPEI ≤ 1

T0

∫ ti+T0

ti

ḡ(τ)ḡ(τ)Tdτ ≤ cPEI (3.70)
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Furthermore, since ti → ∞ and i → ∞, we define the nonempty set i∗ , {i ∈

{1, 2, ...} | ti ≥ max(t1, t2)}. Substituting into (3.66), noting the semi-positive defi-

niteness of the third term on the LHS, yields

cPE‖θ̃(ti)‖2 − 2cPET0M ˙̃
θ

√

kǫV ‖θ̃(ti)‖ − ǫ ≤ 0 ∀ i ∈ i∗ (3.71)

from which it follows that

‖θ̃(ti)‖ ≤ cPE

cPE
T0M ˙̃θ

√

kǫV +
1

cPE

√

c2PET
2
0M

2
˙̃θ
kǫV + ǫcPE

∀ i ∈ i∗ (3.72)

The constants k > 0 and ǫ > 0 may be chosen arbitrarily small, independent of ǫV .

As (k, ǫ) → 0, (3.72) approaches ‖θ̃(ti)‖ = 0, which is a violation of (3.64).
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Chapter 4

Parameter Convergence in

Adaptive Extremum Seeking

Control

4.1 Introduction

One of the main challenges with extremum-seeking control (ESC) and most deter-

ministic adaptive control approach is the ability to recover the true unknown values

of the parameters. In most approaches, the convergence of parameters to their true

values can only be ensured if the closed-loop trajectories provide sufficient excitation

for the parameter estimation routine. In standard linear adaptive control approaches,

this problem is tractable [77] and can be solved satisfactorily. A dither signal can

be introduced momentarily in the control system to achieve the necessary excitation.

For nonlinear systems, the problem of determining appropriate excitation conditions

remains open. Although some limited persistence of excitation (PE) conditions have

been derived, they remain difficult to apply. Such conditions appear naturally in [8]

for the solutions of an adaptive extremum-seeking control problem. In fact, the ful-
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fillment of such conditions dictates the performance of the optimization routine.

The existing adaptive control techniques that address the problem of parameter

convergence in nonlinear systems [65, 66] cannot be applied directly to ESC because

of the uncertainty associated with the reference signals. This leads us to the quest

for a technique that could generate sufficiently rich optimal reference signals in real-

time. Rather than checking parameter convergence on a case-to-case basis [65, 66],

a method that guarantees convergence for (at least) a class of nonlinear systems is

desirable.

The work presented in this chapter [78] complements the previous works in adap-

tive or model-based ESC [8, 48, 72] by translating the PE condition, which depends

on the nonlinear closed-loop signals, into a sufficient richness (SR) condition on the

desired setpoint signals. However, since the desired optimal setpoint is uncertain in

this type of problem, the solution presented includes a technique for generating such

signal in closed-loop. The design guarantees parameter convergence with a minimum

loss of regulation performance.

4.2 Problem Description and Assumptions

Consider the following optimization problem

min
xp

p(xp, θ) (4.1)

subject to the system dynamics

ẋp = fp(x, u) + g(xp)θ (4.2)

ẋq = fq(x)
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where x = [xT
p xT

q ]T ∈ Rnx are the systems states, u ∈ Rnu are the control inputs.

The vector xp ∈ Rm represents the system states involved in the objective function,

θ represents unknown parameter vector assumed to be uniquely identifiable and to

lie in a known, convex set θ ∈ Θ ⊆ Rnθ . The mappings fp(x, u) : Rnx×nu → Rm,

g(xp) : Rm → Rm×nθ are C1 and g(xp) is bounded for bounded xp.

Assumption 4.1 The following assumptions are made about (4.1) and (4.2).

1. The function p is C2 in its arguments and ∂2p
∂x2

p
≥ c0I > 0, ∀(xp, θ) ∈ (Rm ×Θ).

2. The state xq ∈ Rnx−m belongs to a positively invariant set for any bounded xp.

Assumption 4.1.1 is a common assumption in any standard adaptive ESC litera-

ture. It requires the cost surface to be strictly convex in xp.

4.3 Setpoint and Controller Design

4.3.1 Setpoint Update Law

Considering the fact that the cost function contains unknown parameters θ, the de-

sired setpoint measurement cannot be obtained off-line. However, if the function

p(xp, θ) is not complicated, the optimal value can be determined as a function of θ

by solving for xp in ∂p/∂x = 0. When the analytical expression of xp is not available,

the desired setpoint may be obtained online using a Lyapunov method as follows.

Let xr
p ∈ Rm denote a reference setpoint for xp and θ̂ denote an estimate of the

unknown parameter θ. An online update law is designed such that xr
p(t) approaches

the optimum value x∗p(θ̂) exponentially. To this end, let

zr ,
∂p(xr

p, θ̂)

∂xr
p

(4.3)
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and consider an optimization Lyapunov function candidate

Vsp(zr) =
1

2
‖zr‖2 (4.4)

Taking the time derivative of Vsp, we have

V̇sp = zT
r żr =

∂p

∂xr
p

T
[

∂2p

∂xr
p∂x

r
p

ẋr
p +

∂2p

∂xr
p ∂θ̂

˙̂
θ

]

. (4.5)

Choosing the update law as

ẋr
p = −

(

∂2p

(∂xr
p)

2

)−1 [

kr
∂p

∂xr
p

T

+
∂2p

∂xr
p ∂θ̂

˙̂
θ

]

(4.6)

with kr > 0, the dynamic of the system becomes

żr = −krzr (4.7)

and (4.5) results in

V̇sp ≤ −kr‖zr‖2 (4.8)

Proposition 4.2 The optimal setpoint xr
p(t) generated by (4.6) is feasible and con-

verges to x∗p(θ̂) exponentially.

Proof: Assuming (for now, it will be shown later) that (θ̂,
˙̂
θ) are bounded. This

assumption coupled with Assumption 4.1.1 ensure that (4.6) exist and it is finite. It

follows from (4.8) that the origin zr = 0 is exponentially stable. Applying the inverse

function theorem, it can be seen that the mapping zr is a diffeomorphism. Hence it

concluded that xr
p(t) converges to θ̂-dependent optimal setpoint x∗p(θ̂) exponentially

fast.
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4.3.2 Sufficiently Rich Optimal Setpoint

Since parameter convergence is a vital issue in ESC design, we have to provide some

richness condition on the setpoint xr
p to ensure that θ̂ → θ as t → ∞. To achieve

this, the setpoint is appended with a bounded perturbation signal d(t) ∈ Rm. The

rich setpoint is given by

r(t) := xr
p(t) + d(t) (4.9)

where d(t) is a sufficiently smooth and uniformly bounded signal vector. In particular,

the signal is parameterized as

d(t) :=
~∑

k=1

ak(t) sin(ωkt) = A(t)ζ(t) (4.10)

where

A(t) =












a11 · · · a1~

...
...

am1 · · · am~












(4.11)

is the signal amplitude matrix and

ζ(t) = [sinω1t sinω2t . . . sinω~t]
T , ωi 6= ωj for i 6= j, (4.12)

is the corresponding sinusoidal function vector. A method for generating the coeffi-

cients A(t) is provided in Subsection 4.4.1. The design ensures that A(t) → A∗, the

optimal value that satisfies a PE condition, asymptotically.
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4.3.3 Adaptive Tracking Controller

Let the tracking and estimation error vectors be defined as zc = xp − r, θ̃ = θ − θ̂

respectively. Since the focus of this chapter is on the identification of the true cost

surface p(xp, θ), rather than designing a specific adaptive controller for (4.2), we make

the following assumption.

Assumption 4.3 An adaptive controller consisting of a control law u = κ1(.) and a

parameter update law
˙̂
θ = κ2(.) is available such that

lim
t→∞

zc → 0 ⇒ lim
t→∞

xp → x∗p(θ̂) + A∗ζ(t) , r∗ (4.13a)

lim
t→∞

g(r∗)θ̃(t) = 0 (4.13b)

lim
t→∞

θ̃(t) = θ̄, a constant vector. (4.13c)

In (4.13a), limt→∞ zc → 0 ⇒ limt→∞ xp → r∗ because xr
p(t) → x∗p(θ̂) exponentially

(proposition 4.2) and d(t) → A∗ζ(t) asymptotically (by assumption, for now).

An adaptive controller that satisfies (4.13) can be constructively designed de-

pending on the structure of the nonlinear function fp(x, u). For instance, adaptive

backstepping technique can be employed for systems in parametric feedback form.

For the direct case, where fp(x, u) is affine in control, i.e., fp(x, u) can be re-written

as fp1(x) + fp2(x)u and where fp2(x)
−1 exist for all x ∈ Rnx . An adaptive controller

that satisfies (4.13) can be constructed as follows:

Consider the Lyapunov function candidate

Vc :=
1

2
‖zc‖2 +

1

2
θ̃T Γ−1θ̃ (4.14)
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with Γ = ΓT > 0. Taking the time derivative of Vc along the trajectory of (4.2), we

have

V̇c =zT
c

(

fp1(x) + fp2(x)u+ g(xp)θ̂ − ṙ
)

− ˙̂
θT Γ−1θ̃ + zT

c g(xp)θ̃

Considering the control law

u = −fp2(x)
−1
(

fp1(x) + g(xp)θ̂ − ṙ + kczc

)

, (4.15)

with kc > 0 and the parameter update law

˙̂
θ = Γ g(xp)

T zc, (4.16)

it follows from (4.2) and (4.15) that

żc = g(xp)θ̃ − kczc, (4.17)

V̇c ≤ −kc‖zc‖2. (4.18)

This implies uniform boundedness of zc and θ̃ as well as global asymptotic convergence

of zc to zero. Moreover, it can be shown by Barbalat’s lemma [73] that limt→∞ żc = 0.

Since zc, żc → 0 in the limit as t→ ∞, we have xp → r∗ and (4.17) becomes

lim
t→∞

żc(t) = lim
t→∞

g(r∗)(t)θ̃(t) = 0. (4.19)

Also, (4.13c) can be shown by noting from (4.16) that θ̃(t) = θ̃(t0)−Γ
∫ t

t0
gT (xp(σ)) zc(σ)dσ.

Since g and zc are bounded signals and zc → 0, the integral term exist and it is finite.

Hence, limt→∞ θ̃(t) = θ̄.
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4.4 Parameter Convergence

By an argument similar to the one used in traditional adaptive control theory, a suf-

ficient condition for parameter convergence is that the regressor g(xp) be persistently

exciting. That is, there exists positive constants µ0 and T such that

∫ t+T0

t

g(τ)Tg(τ)dτ ≥ µ0I, ∀t ≥ 0. (4.20)

The PE condition (4.20) requires that g rotates sufficiently in space that the integral of

the matrix g(τ)Tg(τ) is uniformly positive definite over any interval of some length T0.

However, it is difficult to check that g satisfies the PE condition since the solution of

the closed-loop trajectories are not known in advance. In the following, an alternative

sufficient condition that addresses the above limitations and guarantees parameter

convergence is presented.

To this end, we examine the frequency content of the regressor matrix g(r∗(t)).

The procedure employed is similar to the one presented in [66]. The time-varying

signal g is decomposed into a constant matrix and a periodic part by computing the

trigonometric (or Fourier) series expansion for each nonlinearity vector in the signal.

Let

gT =

[

ψ1 ψ2 . . . ψm

]

, (4.21)

where ψi is the ith column of matrix g. Also, let ωi1, ωi2, · · · , ωiCi (0 ≤ ωi1 < ωi2 <

· · · < ωiCi) and νi1, νi2, · · · , νiSi (0 < νi1 < νi2 < · · · < νiSi) denote the distinct

frequencies appearing in the cosine terms and the sine terms of the Fourier series

expansion respectively. If we let

ξi(t) =

[

cosωi1t · · · cosωiCi
t sin νi1t · · · sin νiSit

]T
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,

[

ξi1(t) · · · ξiCi
(t) ξi(Ci+1)(t) · · · ξ(Ci+Si)(t)

]T

, i = 1, . . . , m. (4.22)

Then, each nonlinearity vector ψi defined in (4.21) can be expressed in the form

ψi = Υi ξi(t) =

Ci+Si∑

j=1

Υij ξij(t), i = 1, . . . , m (4.23)

where Υi are nθ × (Ci + Si) constant matrices whose elements are the real Fourier

coefficients of the corresponding signals, and Υij, j = 1, . . . , (Ci+Si) is the jth column

of Υi. This decomposition method allows one to judge the richness of the regressor

based on a constant matrix only. However, as pointed out in [66], the Fourier series

expansion employed in the decomposition may contain an infinite number of terms,

when the elements of (4.21) are not polynomial nonlinearities. In this case, the series

expansion may be truncated. Combining (4.13b) with equations (4.21) and (4.23),

we obtain

lim
t→∞

ξij(t) ΥT
ij θ̃(t) = 0, i = 1, . . . , m, j = 1, . . . , Ci + Si (4.24)

and since the scalar functions ξij are all of the form cosωt or sin νt, equation (4.24)

is equivalent to

lim
t→∞

ΥT
ij θ̃(t) = 0, i = 1, . . . , m, j = 1, . . . , Ci + Si. (4.25)

Moreover, defining

Υ1 = Υ11, Υ12, · · · Υ1(C1+S1)

Υ2 = Υ21, Υ22, · · · Υ2(C2+S2)

Υ3 = Υ31, Υ32, · · · Υ3(C3+S3)

etc,
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and

ΥT = [Υ1, Υ2, · · · , Υm]T

equation (4.25) can be written in a more compact form as

lim
t→∞

ΥT θ̃(t) = 0 or lim
t→∞

θ̃T (t) ΥΥT θ̃(t) = 0 (4.26)

The constant matrix Υ contains the setpoint x∗p and the elements of A∗ in its entries

(in the limit as t→ ∞). Therefore, if the nθ rows of Υ are linearly independent or if

W = ΥΥT is positive definite, then θ̃ = 0 is guaranteed. However, it is not possible to

verify this conditions a priori for a given dither signal because the matrix depends on

unknown reference setpoint (the θ-dependent solution of (4.1)). In the next section,

we show how to generate optimal size of some pre-selected sinusoids online.

4.4.1 Dither Signal Design

It has been shown that the presence of nonlinearities in a regressor vector increases the

degree of PE of a given reference signal for nonlinear systems with special structure

[65, 66]. However, for a general nonlinear system, this may not be the case, the

nonlinearities may detract or add to the excitation [79]. In this work, we propose

that the dither signal be chosen as a linear combination of sinusoids with at least

nθ distinct frequencies. Since such a choice with constant arbitrary amplitude may

not be optimal for nonlinear systems, a method for generating optimal coefficients of

the different basis functions (sinusoids) is provided. A quadratic objective function

is minimized subject to a constraint that optimizes the size of the selected frequency

contents in order to ensure positive definiteness of matrix W = ΥΥT . The condition

requires all the eigenvalues of W to be positive. This is true if and only if the

determinant of W (the product of the eigenvalues) is positive since it is a symmetric
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positive semidefinite matrix.

Let H ≤ (~×m) denotes the number of distinct elements in the dither amplitude

matrix A(t) and let a ∈ RH be a vector of these distinct coefficients. The opti-

mum amplitude of the dither signal is obtained from the solution of the following

constrained optimization problem:

min
a∈RH

aTQa (4.27a)

such that Wd = det(W) > 0 (4.27b)

with Q ≻ 0. The optimization problem is tackled using an infeasible interior point

technique [80]. Firstly, a slack variable ε is added so that (4.27) becomes

min
a∈RH, ε∈R

aTQa (4.28a)

such that Wd − ε = 0, ε > 0. (4.28b)

The constraints are then eliminated by augmenting the objective function with high

costs for violating them as follows:

min
a,ε

Pa = aTQa− 1

M1
log(σ − ε) +M2(Wd − ε)2, σ > 0 (4.29)

with M1, M2 > 0. By the logarithmic barrier term, the slack variable is required to

be greater than a design variable σ at all times. However, the equality constraint

(Wd − ε = 0) can be violated at any instant, its satisfaction is only achieved as the

optimum solution is approached. The solution of (4.29) can be shown to converge to

that of (4.27) in the limit as the positive constants M1, M2 → ∞.

Since we assume that system (4.2) is fundamentally identifiable at the defining

parameter values, feasibility of (4.27) (and hence (4.29)) is guaranteed by including

sufficiently large number of sinusoids in (4.10). The unconstrained optimization prob-
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lem (4.29) can be solved with gradient techniques. Let ā∗ = [a∗, ε∗] be the optimizer

of (4.29), an update law that ensures ā→ ā∗ as t→ ∞ is chosen as

˙̄a = Proj {−kāDzā, ā} , ā(0) = [a0, ε0] (4.30)

where Proj{.} is a standard projection algorithm [73] used to ensure that the vector

ā is bounded or remains in some given set. The vector zā = ∂Pā/∂ā is the gradient

function, kā > 0 is a design parameter and D is a positive definite matrix function.

Matrix D can be chosen as in steepest descent method where D = I (identity matrix)

or as in trust region where D =
(

∂2Pā/∂ā
2 + (̥ + κ)I

)−1

with ̥=Frobenius matrix

norm of ∂2Pā/∂ā
2 and κ > 0 is a small design constant parameter. The initial

conditions are to be selected such that ε0 > σ and some elements of a0 equals zero to

avoid excessive initial perturbation of the system.

Theorem 4.4 Consider the optimization problem (4.1) for system (4.2) and assum-

ing Assumptions 4.1 and 4.13 are satisfied. Then the update laws (4.6) and (4.30)

ensure that the system’s state xp(t) converge to an optimal neighborhood of x∗p(θ)-the

unique minimizer of (4.1).

Proof: It follows from (4.13a) that

limt→∞ ‖xp(t) − xr
p(t)‖ = limt→∞ ‖d(t)‖ and it is known from proposition (4.2) that

limt→∞ ‖xr
p(t) − x∗p(θ̂)‖ = 0. Moreover, (4.30) ensures limt→∞ a(t) = a∗ and hence

limt→∞ A(t) = A∗. Therefore, the only solution of (4.26) is limt→∞ θ̃(t) = 0, which

implies limt→∞ ‖x∗p(θ̂) − x∗p(θ)‖ = 0. Using the triangle inequality, we conclude that

lim
t→∞

‖xp(t) − x∗p(θ)‖2 ≤ ‖A∗ζ(t)‖2 ≤
√

~‖A∗‖2.
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4.5 Simulation Example

Consider two parallel isothermal stirred-tank reactors [48] in which reagent A forms

product B and waste-product C

A
1−→ B

2A
2−→ C

Material balances for the reactors give

dAi

dt
= AinF

in
i

Vi

− Ai
F out

i

Vi

− ki1Ai − 2ki2A
2
i ,

dBi

dt
= −Bi

F out
i

Vi

+ ki1Ai,

dCi

dt
= −Ci

F out
i

Vi

+ ki2A
2
i ,

where Ai, Bi, Ci denote concentrations in reactor i, kij are the reaction kinetic con-

stants, which are only nominally known. The inlet flows F in
i are the control inputs,

while the outlet flows F out
i are governed by PI controllers which regulate reactor

volume to V 0
i .

Denoting xp = [A1, A2]
T , and θ = [k11, k12, k21, k22]

T , the economic steady state

cost function to be optimized is given by

p(xp, θ) =

2∑

i=1

[(pi1 + PA − PB)ki1AiV
0
i + (pi2 + 2PA)ki2A

2
iV

0
i ],

where PA, PB denote component prices, pij is the net operating cost of reaction j in

reactor i. The function p(xp, θ) represents the net expense of operating the process
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at steady state. The dynamic of the system can be expressed in the form (4.2) as

ẋp = −







xp1kV 1(xq1−V 0
1 +xq3)

xq1

xp2kV 2(xq2−V 0
2 +xq4)

xq2







︸ ︷︷ ︸

fp1

+







Ain

xq1
0

0 Ain

xq2







︸ ︷︷ ︸

fp2

u−







xp1 2x2
p1 0 0

0 0 xp2 2x2
p2







︸ ︷︷ ︸

g

θ,

where xq1, xq2 are the two tank volumes and xq3, xq4 are the PI integrators.

Following the design procedure, the optimizing controller, parameter estimates

and the setpoint signal xr
p are generated via equations (4.15), (4.16) and (4.6) re-

spectively. For the simulation, the dither signal is selected as d1(t) = d2(t) =

a1(t) sin(ω1t) + a2(t) sin(ω2t), ω1 = 0.3 and ω2 = 0.18. The matrix Υ is obtained

via the method presented in Section 4.4. In this case, gT has two columns. Each of

the columns is first decomposed into ψi = Υi ξi(t), i = 1, 2 where

Υ1 =
















x∗p1
0 0 0 0 a1 a2

Υ21
1 −a2

1 −a2
2 2a1a2 −2a1a2 4a1x

∗
p1

4a2x
∗
p1

0 0 0 0 0 0 0

0 0 0 0 0 0 0
















,

Υ2 =
















0 0 0 0 0 0 0

0 0 0 0 0 0 0

x∗p2
0 0 0 0 a1 a2

Υ41
2 −a2

1 −a2
2 2a1a2 −2a1a2 4a1x

∗
p2

4a2x
∗
p2
















,

Υ21
1 = 2x∗2p1

+ a2
1 + a2

2, Υ41
2 = 2x∗2p2

+ a2
1 + a2

2 and
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ξ1 = ξ2 =[ 1, cosω1t, cosω2t, cos(ω1 − ω2)t, cos(ω1 + ω2)t, sinω1t, sinω2t ]
T .

The matrix ΥT = [Υ1 Υ2]
T and W = ΥΥT . The optimal value of the dither amplitude

that ensures the positive definiteness of W is obtained via (4.30). In the simulation,

the setpoint x∗p is replaced with its estimate xr
p at each time t. The results of the

simulation are presented in Figure 4.1.

Figure 4.1(a) shows that the estimated cost p(xr
p, θ̂) and the true cost p(xr

p, θ)

converge to the unknown optimal p∗(x∗p, θ). Fig. 4.1(b) shows that the setpoint signal

converges to the optimum value x∗p(θ) while the state xp oscillates about the optimum.

The parameter estimates converge to the true values as shown in fig. 4.1(c-d) and the

control input, fig. 4.1(e), is implementable. The trajectories of the dither amplitude

and the determinant are shown in fig. 4.1(f) for completeness. The figure showed that

a(t) converges to the required optimum (vertical-axis labelling on the left) and that

the determinant Wd remains positive (vertical-axis labelling on the right).

4.6 Conclusions

In this chapter, a persistence of excitation condition is developed for extremum seek-

ing control of a class of nonlinear systems. An optimization-based method is then

developed for generating sufficiently rich optimum set-points that satisfy this con-

dition online. The proposed design method guarantees parameter convergence and,

at the same time, ensures small steady-state error in the cost function. The result

shows that the size of of the error is proportional to the optimal size A∗ and number

of sinusoids ~ used to perturb the system. However, it is intuitively clear that as the

number of distinct sinusoids ~ increases, the norm of A∗ required to achieve the same

level of excitation reduces.
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Figure 4.1: Reactor closed-loop trajectories. (a) cost function values, (b) reference setpoint
and state, (c, d) unknown parameters and estimates for reactors 1 and 2 respec-
tively, (e) control inputs, (f) dither signal amplitude and determinant of matrix
W.
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Chapter 5

Finite-time Parameter Estimation

in Adaptive Control

5.1 Introduction

There are two major approaches to online parameter identification of nonlinear sys-

tems. The first is the identification of parameters as a part of state observer while

the second deals with parameter identification as a part of controller. In the first

approach, the observer is designed to provide state derivatives information and the

parameters are estimated via estimation methods such as least squares method [81]

and dynamic inversion [82]. The second trend of parameter identification is much

more widespread, as it allows identification of systems with unstable dynamics. Al-

gorithms in this area include parameter identification methods based on variable

structure theory [83, 84] and those based on the notion of passivity [85].

In the conventional adaptive control algorithms, the focus is on the tracking of

a given reference trajectory and in most cases parameter estimation errors are not

guaranteed to converge to zero due to a lack of excitation [77]. Parameter convergence

is an important issue as it enhances the overall stability and robustness properties of

80



the closed-loop adaptive systems [65]. Moreover, there are control problems whereby

the reference trajectory is not known a priori but depends on the unknown parameters

of the system dynamics. For example, in adaptive extremum seeking control problems,

the desired target is the operating setpoint that optimizes an uncertain cost function

[42, 39].

Assuming the satisfaction of appropriate excitation conditions, asymptotic and

exponential parameter convergence results are available for both linear and nonlinear

systems. Some lower bounds which depends (nonlinearly) on the adaptation gain and

the level of excitation in the system have been provided for some specific control and

estimation algorithms [86, 87, 62]. However, it is not always easy to characterize the

convergence rate.

Since the performance of any adaptive extremum seeking control is dictated by the

efficiency of its parameter adaptation procedure. This chapter presents a parameter

estimation scheme that allows exact reconstruction of the unknown parameters in

finite-time provided a given persistence of excitation (PE) condition is satisfied. The

true parameter estimate is recovered at any time instant the excitation condition

is satisfied. This condition requires the integral of a filtered regressor matrix to be

invertible. The finite-time (FT) identification procedure assumes the state of the

system x(.) is accessible for measurement but does not require the measurement or

computation of the velocity state vector ẋ(.). The robustness of the estimation routine

to bounded unknown disturbances or modeling errors is also examined. It is shown

that the parameter estimation error can be rendered arbitrarily small for a sufficiently

large filter gain.

A common approach to ensuring a PE condition in adaptive control is to introduce

a perturbation signal as the reference input or to add it to the target setpoint or

trajectory. The downside of this approach is that a constant PE deteriorates the

desired tracking or regulation performance. Aside from the recent results on intelligent
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excitation signal design [71,70], the standard approach has been to introduce such PE

signal and remove it when the parameters are assumed to have converged. The fact

that one has perfect knowledge of the convergence time in the proposed framework

allows for a direct and immediate removal of the added PE signal. The results in this

chapter have been published in [88].

5.2 Problem Description and Assumptions

The system considered is the following nonlinear parameter affine system

ẋ = f(x, u) + g(x, u)θ (5.1)

where x ∈ Rnx is the state and u ∈ Rnu is the control input. The vector θ ∈ Rnθ

is the unknown parameter vector whose entries may represent physically meaningful

unknown model parameters or could be associated with any finite set of universal

basis functions. It is assumed that θ is uniquely identifiable and lie within an ini-

tially known compact set Θ0. The nx-dimensional vector f(x, u) and the (nx × nθ)-

dimensional matrix g(x, u) are bounded and continuous in their arguments. System

(5.1) encompasses the special class of linear systems,

f(x, u) = A0x+B0u

g(x, u) = [A1x+B1u, A2x+B2u, . . . Anθ
x+Bnθ

u],

where Ai and Bi for i = 0 . . . nθ are known matrices possibly time varying.

Assumption 5.1 The following assumptions are made about system (5.1).

1. The state of the system x(.) is assumed to be accessible for measurement.

2. There is a known bounded control law u = α(.) and a bounded parameter update
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law
˙̂
θ that achieves a primary control objective.

The control objective can be to (robustly) stabilize the plant and/or to force the

output to track a reference signal. Depending on the structure of the system (5.1),

adaptive control design methods are available in the literature [73, 89].

For any given bounded control and parameter update law, the aim of this chapter

is to provide the true estimates of the plant parameters in finite-time while preserving

the properties of the controlled closed-loop system.

5.3 Finite-time Parameter Identification

Let x̂ denote the state predictor for (5.1), the dynamics of the state predictor is

designed as

˙̂x = f(x, u) + g(x, u)θ̂ + kw(t)e+ w
˙̂
θ, (5.2)

where θ̂ is a parameter estimate generated via any update law
˙̂
θ, kw > 0 is a design

matrix, e = x− x̂ is the prediction error and w is the output of the filter

ẇ = g(x, u) − kw, w(t0) = 0. (5.3)

Denoting the parameter estimation error as θ̃ = θ − θ̂, it follows from (5.1) and

(5.2) that

ė = g(x, u)θ̃ − kw e− w
˙̂
θ. (5.4)

The use of the filter matrix w in the above development provides direct information

about parameter estimation error θ̃ without requiring a knowledge of the velocity
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vector ẋ. This is achieved by defining the auxiliary variable

η = e− wθ̃ (5.5)

with η, in view of (5.3, 5.4), generated from

η̇ = −kw η, η(t0) = e(t0). (5.6)

Based on the dynamics (5.2), (5.3) and (5.6), the main result is given by the following

theorem.

Theorem 5.2 Let Q ∈ Rnθ×nθ and C ∈ Rnθ be generated from the following dynam-

ics:

Q̇ = wTw, Q(t0) = 0 (5.7a)

Ċ = wT (wθ̂ + e− η), C(t0) = 0 (5.7b)

Suppose there exists a time tc and a constant c1 > 0 such that Q(tc) is invertible i.e.

Q(tc) =

∫ tc

t0

wT (τ)w(τ) dτ ≻ c1I, (5.8)

then

θ = Q(t)−1C(t) for all t ≥ tc. (5.9)

Proof: The result can be easily shown by noting that

Q(t) θ =

∫ t

t0

wT (τ)w(τ)
[

θ̂(τ) + θ̃(τ)
]

dτ. (5.10)
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Using the fact that wθ̃ = e− η, it follows from (5.10) that

θ = Q(t)−1

∫ t

t0

Ċ(τ) dτ = Q(t)−1C(t) (5.11)

and (5.11) holds for all t ≥ tc since Q(t) � Q(tc).

The result in theorem 5.2 is independent of the control u and parameter identifier

˙̂
θ structure used for the state prediction (eqn 5.2). Moreover, the result holds if a

nominal estimate θ0 of the unknown parameter (no parameter adaptation) is employed

in the estimation routine. In this case, θ̂ is replaced with θ0 and the last part of the

state predictor (5.2) is dropped (
˙̂
θ = 0).

Let

θc , Q(tc)
−1C(tc) (5.12)

The finite-time (FT) identifier is given by

θ̂c(t) =







θ̂(t), if t < tc

θc, if t ≥ tc.

(5.13)

The piecewise continuous function (5.13) can be approximated by a smooth approxi-

mation using the logistic functions

ψ1 ,
θ̂(t)
2

(

1 − tanh ν1(t− tc)
)

=
θ̂(t)

1 + exp2ν1(t−tc)
(5.14a)

ψ2 , θc

2

(

1 + tanh ν2(t− tc)
)

=
θc

1 + exp−2ν2(t−tc)
(5.14b)

θ̂c̃ = ψ1 + ψ2 (5.14c)

where larger ν1, ν2 correspond to a sharper transition at t = tc and lim(ν1, ν2)→∞ θ̂c̃ =
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θ̂c. An example of such approximation is depicted in Figure 5.1 where the function

z(t) =







6 + t0.3 if t < 5

4 otherwise

is approximated by (5.14) with ν1 = ν2 = 5.

0 2 4 6 8 10
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

z(
t)

t

Figure 5.1: Approximation of a piecewise continuous function. The function z(t) is given
by the full line. Its approximation is given by the dotted line

The invertibility condition (5.8) is equivalent to the standard persistence of exci-

tation (PE) condition required for parameter convergence in adaptive control. The

condition (5.8) is satisfied if the regressor matrix g is PE. To show this, consider the

filter dynamic (5.3), from which it follows that

w(t) =

∫ t

t0

exp−kw(t−τ) g(τ)dτ =
1

s+ kw

[g(t)]. (5.15)

Since g(t) is PE by assumption and the transfer function 1
s+kw

is stable, minimum

phase and strictly proper, we know that w(t) is PE [90]. Hence, there exists tc and
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a c1 for which (5.8) is satisfied. The superiority of the above design lies in the fact

that the true parameter value can be computed at any time instant tc the regressor

matrix becomes positive definite and subsequently stop the parameter adaptation

mechanism.

The procedure in theorem 7.3 involves solving matrix valued ordinary differential

equations (5.3, 5.7) and checking the invertibility of Q(t) online. For computational

considerations, the invertibility condition (5.8) can be efficiently tested by checking

the determinant of Q(t) online. Theoretically, the matrix is invertible at any time

det(Q(t)) becomes positive definite. The determinant of Q(t) (which is a polynomial

function) can be queried at pre-scheduled times or by propagating it online starting

from a zero initial condition. One way of doing this is to include a scalar differential

equation for the derivative of det(Q(t)) as follows [91]:

d

dt
det(Q) = Trace

(
Adjugate(Q)wTw

)
, det(Q(t0)) = 0 (5.16)

where Adjugate(Q), admittedly not a light numerical task, is also a polynomial func-

tion of the elements of Q.

5.3.1 Absence of PE

If the PE condition (5.8) is not satisfied, a given controller and the corresponding

parameter estimation scheme preserve the system established closed-loop properties.

When a bounded controller that is robust with respect to input (θ̃,
˙̂
θ) is known, it

can be shown that the state prediction error e tends to zero as t → ∞. An example

of such robust controller is an input-to-state stable (iss) controller [73].

Theorem 5.3 Suppose the design parameter kw in (5.2) is replaced with kw(t) =

kw1 + kw2(t), kw1 >
1
4
I and kw2(t) = 1

4
gγgT . Then the state predictor (5.2) and the
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parameter update law

˙̂
θ = γ(wT + gT ) e (5.17)

with γ = γT > 0 a design constant matrix, guarantee that

1.
(
e, η, θ̃

)
∈ L∞ and

(
e, η

)
→ 0 as t→ ∞.

2. limt→∞ θ̃(t) = θ̄, a constant.

Proof:

1. Consider a Lyapunov function

V =
1

2

(

eT e+ θ̃Tγ−1θ̃ + ηT η
)

. (5.18)

It follows from equations (5.4), (5.5), (5.6) and (5.17) that

V̇ = −eTkw1e− eT
(1

4
gγgT + wγwT + wγgT

)
e− θ̃TwTwθ̃ − θ̃TwTη − ηTkw(t)η

(5.19)

≤ −eTkw1e− λmin(γ)‖wTe+
1

2
gT e‖2 − ηTkw3η − ‖wθ̃ +

1

2
η‖2 (5.20)

≤ −(eTkw1 e+ ηTkw3 η). (5.21)

where kw3 = kw1 − 1
4
. This implies uniform boundedness of (η, e, θ̃) as well as

global asymptotic convergence of (η, e) to zero. Hence, it follows from (5.5) that

limt→∞ wθ̃ = 0.

2. This can be shown by noting from (5.17) that θ̃(t) = θ̃(t0)−γ
∫ t

t0
(wT +gT ) e dσ.

Since g(.) and e are bounded signals and e→ 0, the integral term exists and it

is finite.
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5.4 Robustness Property

In this section, the robustness of the finite-time identifier to unknown bounded dis-

turbances or modeling errors is demonstrated. Consider a perturbation of (5.1):

ẋ = f(x, u) + g(x, u)θ + ϑ(t, x, θ) (5.22)

where ϑ(.) is a disturbance or modeling error term that satisfies ‖ϑ(t)‖ ≤ Mϑ(t) <∞

If the PE condition (5.8) is satisfied and the disturbance term is known, the true

unknown parameter vector is given by

θc
ϑ , θ = Q(t)−1

∫ t

t0

wT (τ)
[
w(τ)θ̂(τ) + e(τ) − ηϑ(τ)] dτ, for all t ≥ tc, (5.23)

with e = x− x̂ and the signals x̂, w, ηϑ = e− wθ generated from (5.2), (5.3) and

η̇ϑ = −kwηϑ + ϑ(.), ηϑ(t0) = e(t0) (5.24)

respectively.

Since ϑ(.) is unknown, we provide a bound on the parameter identification error

θ̃c = θc
ϑ − θc when (5.6) is used instead of (5.24).

Considering (5.9) and (5.23), it follows that

θ̃c = Q(t)−1

∫ t

t0

wT (τ) (−ηϑ(τ) + η(τ)) dτ (5.25)

= −Q(t)−1

∫ t

t0

wT (τ)η̃(τ) dτ. (5.26)

where η̃ = ηϑ − η is the output of

˙̃η = −kwη̃ + ϑ(.), η̃(t0) = 0. (5.27)
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Since kw ≥ kw1 > 0, it follows that

‖η̃(t)‖ ≤ Mϑ

kw1

(5.28)

and hence

‖θ̃c(t)‖ ≤ ‖Q(t)−1‖
{
w̄Mϑ(t− t0)

kw1

}

, for all t ≥ tc. (5.29)

where w̄ = maxσ∈[t0, t] ‖wT (σ)‖.

This implies that the identification error can be rendered arbitrarily small by choosing

a sufficiently large filter gain kw1. In addition, if the disturbance term ϑ and the

system satisfies some given properties, then asymptotic convergence can be achieved

as stated in the following theorem.

Theorem 5.4 Suppose ϑ ∈ Lp, for p = 1 or 2 and limt→∞ λmin(Q) = ∞, then θ̃c → 0

asymptotically with time.

To proof this theorem, we need the following lemma

Lemma 5.5 [92]: Consider the system

ẋ(t) = Ax(t) + u(t) (5.30)

Suppose the equilibrium state xe = 0 of the homogeneous equation is exponentially

stable,

1. if u ∈  Lp for 1 < p <∞, then x ∈  Lp and

2. if u ∈  Lp for p = 1 or 2, then x→ 0 as t→ ∞.
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Proof of theorem 5.4. It follows from Lemma 5.5.2 that η̃ → 0 as t → ∞ and

therefore limt→∞

∫ t

t0
wT (τ)η̃(τ) dτ is finite. So

lim
t→∞

θ̃c = lim
t→∞

{

Q(t)−1

∫ t

t0

wT (τ)η̃(τ) dτ
}

= 0. (5.31)

5.5 Dither Signal Design

The problem of tracking a reference signal is usually considered in the study of pa-

rameter convergence and in most cases, the reference signal is required to provide

sufficient excitation for the closed-loop system. To this end, the reference signal

yr(t) ∈ Rr is appended with a bounded excitation signal d(t) as

yrd(t) = yr(t) + d(t) (5.32)

where the auxiliary signal d(t) is chosen as a linear combination of sinusoidal functions

with ~ distinct frequencies:

d(t) :=

~∑

k=1

ak(t) sin(ωkt) = A(t)ζ(t) (5.33)

where

A(t) =












a11 · · · a1~

...
...

ar1 · · · ar~












is the signal amplitude matrix and
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ζ(t) = [sinω1t . . . sinω~t]
T , ωi 6= ωj for i 6= j

is the corresponding sinusoidal function vector.

For this approach, it is sufficient to design the perturbation signal such that the

regressor matrix g is PE. There are very few results on the design of persistently

exciting (PE) input signals for nonlinear systems. By converting the closed-loop PE

condition to a sufficient richness (SR) condition on the reference signal, attempts have

been made to provide verifiable conditions for parameter convergence in some classes

of nonlinear systems [71, 78, 65, 66].

5.5.1 Dither Signal Removal

Let H ≤ (~ × r) denotes the number of distinct elements in the dither amplitude

matrix A(t) and let a ∈ RH be a vector of these distinct coefficients. The amplitude

of the excitation signal is specified as

a(t) =







a, if t < tc

0, otherwise

(5.34)

or approximated by

a(t) ≈ a

1 + exp2ν(t−tc)
(5.35)

where equality holds in the limit as ν → ∞.
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5.6 Simulation Examples

5.6.1 Example 1

We consider the following nonlinear system in parametric strict feedback form [66]:

ẋ1 = x2 + θ1x1

ẋ2 = x3 + θ2x1

ẋ3 = θ3x
3
1 + θ4x2 + θ5x3 + (1 + x2

1)u (5.36)

y = x1,

where θT = [θ1, . . . , θ5] are unknown parameters. Using an adaptive backstepping

design, the control and parameter update law presented in [66] were used for the

simulation. The pair stabilize the plant and ensure that the output y tracks a reference

signal yr(t) asymptotically. For simulation purposes, parameter values are set to

θT = [−1,−2, 1, 2, 3 ] as in [66] and the reference signal is yr = 1, which is sufficiently

rich of order one. The simulation results for zero initial conditions are shown in

Figure 5.2. Based on the convergence analysis procedure in [66], all the parameter

estimates cannot converge to their true values for this choice of constant reference. As

confirmed in Fig. 5.2, only θ1 and θ2 estimates are accurate. However, following the

proposed estimation technique and implementing the FT identifier (5.14), we obtain

the exact parameter estimates at t = 17sec. This example demonstrates that, with the

proposed estimation routine, it is possible to identify parameters using perturbation

or reference signals that would otherwise not provide sufficient excitation for standard

adaptation methods.
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Figure 5.2: Trajectories of parameter estimates. Solid(-) : FT estimates θ̂c̃;
dashed(- -) : standard estimates θ̂ [66]; dashdot(-.): actual value.
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5.6.2 Example 2

To corroborate the superiority of the developed procedure, we demonstrate the robust-

ness of the developed procedure by considering system (5.36) with added exogeneous

disturbances as follows:

ẋ1 = x2 + θ1x1 + [1 0]ϑ

ẋ2 = x3 + θ2x1 + [1 x1]ϑ

ẋ3 = θ3x
3
1 + θ4x2 + θ5x3 + (1 + x2

1)u+ [0 1]ϑ (5.37)

y = x1,

where ϑ = [0.1 sin(2πt/5), 0.2 cos(πt)]T and the tracking signal remains a constant

yr = 1.

The simulation result, Figure 5.3, shows convergence of the estimate vector to a

small neighbourhood of θ under finite-time identifier with filter gain kw = 1 while no

full parameter convergence is achieved with the standard identifier. The parameter

estimation error θ̃(t) is depicted in Figure 5.4 for different values of the filter gain

kw. The switching time for the simulation is selected as the time for which the

condition number of Q becomes less than 20. It is noted that the time at which

switching from standard adaptive estimate to FT estimate occurs increases as the

filter gain increases. The convergence performance improves as kw increases, however,

no significant improvement is observed as the gain is increased beyond 0.5.
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5.7 Conclusions

The work presented in this chapter transcends beyond characterizing the parameter

convergence rate. A method is presented for computing the exact parameter value at

a finite-time selected according to the observed excitation in the system. A smooth

transition from a standard estimate to the FT estimate is proposed. In the presence

of unknown bounded disturbances, the FT identifier converges to a neighbourhood

of the true value whose size is dictated by the choice of the filter gain. Moreover,

the procedure preserves the system’s established closed-loop properties whenever the

required PE condition is not satisfied.
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Chapter 6

Performance Improvement in

Adaptive Control

6.1 Introduction

The finite-time identification method developed in Chapter 5 has two distinguishing

features. First, the true parameter estimate is obtained at any time instant the

excitation condition is satisfied, and second, the procedure allows for a direct and

immediate removal of any perturbation signal injected in to the closed-loop system to

aid in parameter estimation. However, the drawback of the finite-time identification

algorithm is the requirement to check the invertibility of a matrix online and compute

the inverse matrix when appropriate.

To avoid these concerns and enhance the applicability of the FT method in prac-

tical situations, the procedure is hereby exploited to develop a novel adaptive com-

pensator that (almost) recovers the performance of the FT identifier. The compen-

sator guarantees exponential convergence of the parameter estimation error at a rate

dictated by the closed-loop system’s excitation. It was shown how the adaptive com-

pensator can be used to improve upon existing adaptive controllers. The modification
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proposed guarantees exponential stability of the parametric equilibrium provided the

given PE condition is satisfied. Otherwise, the original system’s closed-loop properties

are preserved.

6.2 Adaptive Compensation Design

Consider the nonlinear system 5.1 satisfying assumption 5.1 and the state predictor

˙̂x = f(x, u) + g(x, u) θ0 + kw(x− x̂) (6.1)

where kw > 0 and θ0 is the nominal initial estimate of θ. If we define the auxiliary

variable

η = x− x̂− w(θ − θ0) (6.2)

and select the filter dynamic as

ẇ = g(x, u) − kw w, w(t0) = 0 (6.3)

then η is generated by

η̇ = −kwη, η(t0) = e(t0). (6.4)

Based on (6.1) to (6.4), our novel adaptive compensation result is given in the

following theorem.

Theorem 6.1 Let Q and C be generated from the following dynamics:

Q̇ = wTw, Q(t0) = 0 (6.5a)

Ċ = wT (w θ0 + x− x̂− η), C(t0) = 0 (6.5b)
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and let tc be the time such that Q(tc) ≻ 0, then the adaptation law

˙̂
θ = Γ (C −Q θ̂), θ̂(t0) = θ0 (6.6)

with Γ = ΓT ≻ 0 guarantees that ‖θ̃‖ = ‖θ − θ̂‖ is non-increasing for t0 ≤ t ≤ tc and

converges to zero exponentially fast, starting from tc. Moreover, the convergence rate

is lower bounded by E(t) = λmin

(
ΓQ(t)

)
.

Proof: Consider a Lyapunov function

Vθ̃ =
1

2
θ̃T θ̃, (6.7)

it follows from (6.6) that

V̇θ̃(t) = − θ̃T (t) Γ
(

C(t) −Q(t)θ̂(t)
)

. (6.8)

Since wθ = w θ0 + x− x̂− η (from (6.2)), then

C(t) =

∫ t

t0

Ċ(τ) dτ =

∫ t

t0

wT (τ)w(τ) dτ θ = Q(t) θ (6.9)

and equation (6.8) becomes

V̇θ̃(t) = −θ̃T (t) ΓQ(t) θ̃(t) (6.10)

≤ −E(t)Vθ̃(t) (6.11)

This implies non-increase of ‖θ̃‖ for t ≥ t0 and the exponential claim follows from

the fact that ΓQ(t) = Γ
∫ t

t0
w(τ)Tw(τ)dτ is positive definite for all t ≥ tc. The
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convergence rate is shown by noting that

V̇θ̃(t) = −θ̃T (t) Γ

(

Q(tc) +

∫ t

tc

w(τ)T w(τ) dτ

)

θ̃(t), ∀t ≥ tc (6.12)

≤ − θ̃T (t) ΓQ(tc) θ̃(t) ≤ −E(tc)V (t) (6.13)

which implies

‖θ̃(t)‖ ≤ exp−E(tc)(t−t0) ‖θ̃(t0)‖, ∀t ≥ tc (6.14)

Both the FT identification (5.9) and the adaptive compensator (6.6) use the static

relationship developed between the unknown parameter θ and some measurable ma-

trix signals C, i.e, Qθ = C. However, instead of computing the parameter values at a

known finite-time by inverting matrix Q, the adaptive compensator is driven by the

estimation error C −Qθ̂ = Qθ̃.

6.3 Incorporating Adaptive Compensator for

Performance Improvement

It is assumed that the given control law u and stabilizing update law (herein denoted

as
˙̂
θs) result in closed-loop error system

Ż = AZ + ΦT θ̃s (6.15a)

˙̃θs = −ΓΦZ (6.15b)

where the matrix A is such that A+AT < −2 kA I < 0, Φ is a bounded matrix func-

tion of the regressor vectors, θ̃s = θ− θ̂s and Z = [z1, z2, . . . znx ]
T is a vector function
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of the tracking error with z1 = y− yr. This implies that the adaptive controller guar-

antees uniform boundedness of the estimation error θ̃s and asymptotic convergence

of the tracking error Z dynamics. Such adaptive controllers are very common in the

literature. Examples include linearized control laws [89] and controllers designed via

backstepping [73, 66].

Given the stabilizing adaptation law
˙̂
θs, we propose the following update law which

is a combination of the stabilizing update law (6.15b) and the adaptive compensator

(6.6)

˙̂
θ = Γ

(

ΦZ + C −Q θ̂
)

. (6.16)

Since C(t) = Q(t) θ, the resulting error equations becomes







Ż

˙̃θ







=







A ΦT

−ΓΦ −ΓQ













Z

θ̃






. (6.17)

Considering the Lyapunov function V = 1
2

(

zT z + θ̃T Γ−1θ̃
)

, and differentiating

along (6.17) we have

V̇ =
1

2
zT (A+ AT )z − θ̃TQθ̃ ≤ −kA z

T z − θ̃TQ θ̃ (6.18)

Hence θ̃ → 0 exponentially for t ≥ tc and the initial asymptotic convergence of Z is

strengthened to exponential convergence.

For feedback linearizable systems

ẋi = xi+1 1 ≤ i ≤ n− 1

ẋn = f1(x) + f2(x)u+ θT gn(x)

y = x1
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the PE condition Q(tc) ≻ 0 translates to a priori verifiable sufficient condition on the

reference setpoint. It requires the rows of the regressor vector gn(x) to be linearly

independent along a desired trajectory xr(t) on any finite interval t ∈ [t1, t2), t1 < t2 <

∞. This condition is less restrictive than the one given in [93] for the same class of

system. This is because the linear independence requirement herein is only required

over a finite interval and it can be satisfied by a non-periodic reference trajectory

while the asymptotic stability result in [93] relies on a T-periodic reference setpoint.

Moreover exponential, rather than asymptotic stability of the parametric equilibrium

is achieved.

6.4 Dither Signal Update

Perturbation signal is usually added to the desired reference setpoint or trajectory

to guarantee the convergence of system parameters to their true values. To reduce

the variability of the closed-loop system, the added PE signal must be systematically

removed in a way that sustains parameter convergence.

Suppose the dither signal d(t) is selected as a linear combination of sinusoidal

functions as detailed in Section 5.5. Let a0 be the vector of the selected dither

amplitude and let T > 0 be the first instant for which d(T ) = 0, the amplitude of the

excitation signal is updated as follows:

a(t) =







a0, t ∈ [0, T )

exp−γĒ T a(j − 1)T, t ∈ [jT, (j + 1)T ), j ≥ 1

(6.19)

where the gain γ > 0 is a design parameter, a(0) = a0 and
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E(0) = 0, E(τ) = λmin

(
Q(τ)

)

Ē = max
{
E(jT ), E((j − 1)T )

}
.

It follows from (6.19) that the reference setpoint will be subject to PE with con-

stant amplitude a0 if t ∈ [0, T ). After which the trajectory of a(t) will be dictated

by the filtered regressor matrix Q. The amplitude vector a(t) will start to decay

exponentially when Q(t) becomes positive definite. Note that parameter convergence

will be achieved regardless of the value of the gain γ selected as the only requirement

for convergence is Q(t) ≻ 0.

Remark 6.2 The other major approach used in traditional adaptive control is pa-

rameter estimation based design. A well designed estimation based adaptive control

method achieves modularity of the controller-identifier pair. For nonlinear systems,

the controller module must possess strong parametric robustness properties while the

identifier module must guarantee certain boundedness properties independent of the

control module. Assuming the existence of a bounded controller that is robust with

respect to (θ̃,
˙̂
θ), the adaptive compensator (6.6) serves as a suitable identifier for

modular adaptive control design.

6.5 Simulation Example

To demonstrate the effectiveness of the adaptive compensator, we consider the ex-

ample in Section 5.6 for both the nominal system (5.36) and the system under ad-

ditive disturbance (5.37). The simulation is performed for the same reference set-

point yr = 1, disturbance vector ϑ = [0.1 sin(2πt/5), 0.2 cos(πt)]T , parameter values

θ = [−1, −2, 1, 2, 3 ] and zero initial conditions.
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The adaptive controller presented in [66] is also used for the simulation. We modify

the given stabilizing update law by adding the adaptive compensator (6.6) to it. The

modification significantly improve upon the performance of the standard adaptation

mechanism as shown in Figures 6.1 and 6.2. All the parameters converged to their

values and we recover the performance of the finite-time identifier (5.14). Figures 6.3

and 6.4 depict the performance of the output and the input trajectories. While the

transient behaviour of the output and input trajectories is slightly improved for the

nominal adaptive system, a significant improvement is obtained for the system subject

to additive disturbances.

6.6 Conclusions

This Chapter demonstrates how the finite-time identification procedure can be used

to improve the overall performance (both transient and steady state) of adaptive

control systems in a very appealing manner. First, we develop an adaptive com-

pensator which guarantees exponential convergence of the estimation error provided

the integral of a filtered regressor matrix is positive definite. The approach does not

involve online checking of matrix invertibility and computation of matrix inverse nor

switching between parameter estimation methods. The convergence rate of the pa-

rameter estimator is directly proportional to the adaptation gain and a measure of

the system’s excitation. The adaptive compensator is then combined with existing

adaptive controllers to guarantee exponential stability of the closed-loop system. The

application reported in Section 6.3 is just an example, the adaptive compensator can

easily be incorporated into other adaptive control algorithms.
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Figure 6.1: Trajectories of parameter estimates. Solid(-) : compensated estimates;
dashdot(-.): FT estimates; dashed(- -) : standard estimates [66].
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Figure 6.2: Trajectories of parameter estimates under additive disturbances. Solid(-) :
compensated estimates; dashdot(-.): FT estimates; dashed(- -) : standard es-
timates [66].
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Figure 6.3: Trajectories of system’s output and input for different adaptation laws.
Solid(-) : compensated estimates; dashdot(-.): FT estimates;
dashed(- -) : standard estimates [66].
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ferent adaptation laws. Solid(-) : compensated estimates; dashdot(-.): FT
estimates; dashed(- -) : standard estimates [66].
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Chapter 7

Adaptive Model Predictive Control

for Constrained Nonlinear Systems

7.1 Introduction

Most physical systems possess parametric uncertainties or unmeasurable parameters.

Examples in chemical engineering include reaction rates, activation energies, fouling

factors, and microbial growth rates. Since parametric uncertainty may degrade the

performance of MPC, mechanisms to update the unknown or uncertain parameters

are desirable in application. One possibility would be to use state measurements

to update the model parameters off-line. A more attractive possibility is to apply

adaptive extensions of MPC in which parameter estimation and control are performed

online.

The literature contains very few results on the design of adaptive nonlinear MPC

[31, 30]. Existing design techniques are restricted to systems that are linear in the

unknown (constant) parameters and do not involve state constraints. Although MPC

exhibits some degree of robustness to uncertainties, in reality, the degree of robustness

provided by nominal models or certainty equivalent models may not be sufficient
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in practical applications. Parameter estimation error must be accounted for in the

computation of the control law.

This chapter is inspired by [32, 33]. While the focus in [32, 33] is on the use of

adaptation to reduce the conservatism of robust MPC controller, this study addresses

the problem of adaptive MPC and incorporates robust features to guarantee closed-

loop stability and constraint satisfaction. Simplicity is achieved here-in by generating

a parameter estimator for the unknown parameter vector and parameterizing the con-

trol policy in terms of these estimates rather than adapting a parameter uncertainty

set directly.

First, a min-max feedback nonlinear MPC scheme is combined with the adapta-

tion mechanism developed in Chapter 6. The parameter estimation routine employed

guarantees non-increase of the norm of the estimation error vector and provides ex-

ponential parameter convergence when an excitation condition is satisfied. The es-

timates are used to update the parameter uncertainty set, at every time step, in a

manner that guarantees non-expansion of the set leading to a gradual reduction in the

conservativeness or computational demands of the algorithms. The min-max formu-

lation explicitly accounts for the effect of future parameter estimation and automat-

ically injects some useful excitation into the closed-loop system to aid in parameter

identification.

Second, the technique is extended to a less computationally demanding robust

MPC algorithm. The nominal model rather than the unknown bounded system state

is controlled, subject to conditions that ensure that given constraints are satisfied

for all possible uncertainties. State prediction error bound is determined based on

assumed Lipschitz continuity of the model. Using a nominal model prediction, it is

impossible to predict the actual future behavior of the parameter estimation error

as was possible in the min-max framework. It is shown how the future model im-

provement over the prediction horizon can be considered by developing a worst-case
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upper bound on the future parameter estimation error. The conservativeness of the

algorithm reduces as the error bound decreases monotonically over time.

Finally, it is shown how the finite-time identifier developed in Chapter 5 can

be incorporated in the proposed adaptive MPC algorithms. The true value of the

uncertain parameter vector is recovered in a known finite-time when an excitation

condition is satisfied. Subsequently, the adaptive and robustness features of the MPC

is eliminated and the complexity of the resultant controller reduces to that of nominal

model predictive control.

7.2 Problem Description

The system considered is the following nonlinear parameter affine system

ẋ = f(x, u) + g(x, u)θ , F(x, u, θ) (7.1)

θ ∈ Rnθ is the unknown parameter vector whose entries may represent physically

meaningful unknown model parameters or could be associated with any finite set

of universal basis functions. It is assumed that θ is uniquely identifiable and lie

within an initially known compact set Θ0 , B(θ0, z0
θ), a ball described by an initial

nominal estimate θ0 and associated error bound z0
θ = sups∈Θ0 ‖s− θ0‖. The mapping

F : Rnx × Rnu × Rnθ → Rnx is assumed to be locally Lipschitz with respect to its

arguments. The state and the control input trajectories are assumed to be subject to

pointwise constraints x ∈ X ∈ Rnx and u ∈ U ∈ Rnu respectively. The objective of the

study is to (robustly) stabilize the plant by means of state feedback adaptive MPC.

Optimality of the resulting trajectories are measured with respect to the accumulation

of some stage cost L(x, u) ≥ 0. The cost is assumed to be continuous, L(0, 0) = 0,
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and L(x, u) ≥ µL(‖x, u‖), where µL is a K∞ function.1

7.3 Estimation of Uncertainty

7.3.1 Parameter Adaptation

Since parameter convergence is fundamental to the overall goal of this thesis work.

The estimation algorithm presented in Chapter 6 is used. The adaptive update law,

driven by the parameter estimation error θ̃ = θ − θ̂, remains active until parameter

convergence is achieved and results in faster convergence than any traditional update

laws that depends only on tracking or prediction error.

For ease of reference, the adaptive law is given by

˙̂
θ = Γ (C −Q θ̂), θ̂(t0) = θ0 (7.2)

where the adaptive gain Γ = ΓT ≻ 0 and

Q̇ = wTw, Q(t0) = 0 (7.3a)

Ċ = wT (w θ0 + x− x̂− η), C(t0) = 0 (7.3b)

˙̂x = f(x, u) + g(x, u) θ0 + kw(x− x̂), x̂(t0) = x(t0) (7.3c)

η = x− x̂− w(θ − θ0) (7.3d)

ẇ = g(x, u) − kw w, w(t0) = 0 (7.3e)

η̇ = −kwη, η(t0) = e(t0). (7.3f)

The vector x̂ is the adaptive predictor for (7.1), the constant kw > 0 is the filter gain,

θ0 is the nominal initial estimate of θ, w is a first order filter, η is an auxiliary variable

defined to provide a direct relationship between the parameter estimation error θ̃ and

1A continuous function µ : R+ → R+ is of class K∞ if µ(0) = 0, µ(.) is strictly increasing on R+

and is radially unbounded.
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the prediction error x − x̂. As shown in Section 6.2, the parameter estimation error

‖θ̃‖ is non-increasing for t ≤ tc and converges to zero exponentially for t ≥ tc where

tc is the time at which the matrix Q(tc) =
∫ tc

t0
wT (τ)w(τ) dτ > 0. This was achieved

by defining a Lyapunov function

Vθ̃ =
1

2
θ̃T θ̃ (7.4)

and using the fact that C(t) = Q(t) θ, to show

V̇θ̃(t) = −θ̃T (t) ΓQ(t) θ̃(t) ≤ −E(t)Vθ̃(t) (7.5)

where

E(t) = λmin (ΓQ(t)) .

7.3.2 Set Adaptation

The uncertainty set Θ , B(θ̂, zθ) is updated online by updating the parameter esti-

mate θ̂ and its associated error bound zθ = sups∈Θ ‖s− θ̂‖. The vector θ̂ is updated

via (7.2) while zθ is updated based on the observed system’s excitation contained in

E(t) according to the following algorithm.

Algorithm 7.1 Let E(σ) = λmin (ΓQ(σ)), beginning from time ti−1 = t0, the param-

eter and set adaptation is implemented iteratively as follows:

1. Initialize zθ(t0) = z0
θ , Θ(t0) = B(θ̂(t0), zθ(t0)), Ē = E(t0) = 0

2. Implement the following adaptation law over the interval τ ∈ [ti−1, ti)

żθ(τ) = −Ēzθ(τ) (7.6)
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3. At time ti, perform the updates

Ē =







E(ti), if E(ti) ≥ E(ti−1)

E(ti−1), otherwise

(7.7)

(

θ̂, Θ
)

=







(

θ̂(ti), Θ(ti)
)

, if zθ(ti) ≤ zθ(ti−1) − ‖θ̂(ti) − θ̂(ti−1)‖
(

θ̂(ti−1), Θ(ti−1)
)

, otherwise

(7.8)

4. Iterate back to step 2, incrementing i = i+ 1.

The advantage of updating zθ according to (7.6) is that contraction of zθ can be

triggered even when the actual parameter estimation error is zero. The uncertainty

set Θ when implemented according to algorithm 7.1 contracts in a strictly nested

fashion without excluding θ as shown in the following lemma.

Lemma 7.2 The evolution of Θ , B(θ̂, zθ) under (7.2), (7.6) and Algorithm 7.1 is

such that

i) Θ(t2) ⊆ Θ(t1), t0 ≤ t1 ≤ t2

ii) θ ∈ Θ(t0) ⇒ θ ∈ Θ(t), ∀t ≥ t0

Proof:

i) If Θ(ti+1) * Θ(ti), then

sup
s∈Θ(ti+1)

‖s− θ̂(ti)‖ ≥ zθ(ti). (7.9)
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However, it follows from triangle inequality and algorithm 7.1 that Θ, at update

times, obeys

sup
s∈Θ(ti+1)

‖s− θ̂(ti)‖ ≤ sup
s∈Θ(ti+1)

‖s− θ̂(ti+1)‖ + ‖θ̂(ti+1) − θ̂(ti)‖

≤ zθ(ti+1) + ‖θ̂(ti+1) − θ̂(ti)‖ ≤ zθ(ti),

which contradicts (7.9). Hence, Θ update guarantees Θ(ti+1) ⊆ Θ(ti) and the

strict contraction claim follows from the fact that Θ is held constant over update

intervals τ ∈ (ti, ti+1).

ii) The θ inclusion claim is proven by showing that

‖θ̃(t)‖ ≤ zθ(t), ∀t ≥ t0 (7.10)

which in turn establish that θ ∈ Θ(t0) ⇒ θ ∈ B(θ̂(t), zθ(t)), ∀t ≥ t0. We know

that ‖θ̃(t0)‖ ≤ zθ(t0) (by definition). It follows from (7.5) that

V̇θ̃(τ) = − θ̃T (τ) Γ

(

Q(ti) +

∫ τ

ti

w(σ)T w(σ)dσ)

)

θ̃(τ), τ ∈ [ti, ti+1)

≤ − θ̃T (τ) ΓQ(ti) θ̃(τ) ≤ −E(ti)Vθ̃(τ). (7.11)

and using (7.4), (7.6) and (7.11) we have ‖ ˙̃
θ(t)‖ ≤ żθ(t). Hence, by comparison

lemma ( [63], Lemma 3.4) we have (7.10).

7.4 Robust Adaptive MPC - A Min-max Approach

In this section, the concept of min-max robust MPC is employed to provide robustness

for the MPC controller during the adaptation phase. The resulting optimization
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problem can either be solved in open-loop or closed-loop. In the approach proposed,

we choose the least conservative option by performing optimization with respect to

closed-loop strategies. As in typical feedback-MPC fashion, the controller chooses

input u as a function of the current states. The formulation consists of maximizing a

cost function with respect to θ and minimizing over feedback control policies κ.

The receding horizon control law is defined by

u = κmpc(x, θ̂, zθ) , κ∗(0, x, θ̂, zθ) (7.12a)

κ∗ , arg min
κ(τ,xp,θ̂p,zθ

J(x, θ̂, zθ, κ) (7.12b)

where J(x, θ̂, zθ, κ) is the (worst-case) cost associated with the optimal control prob-

lem:

J(x, θ̂, zθ, κ) , max
θ∈Θ,B(θ̂,zθ)

∫ T

0

L(xp, up)dτ +W (xp(T ), θ̃p(T )) (7.13a)

s.t. ∀τ ∈ [0, T ]

ẋp = f(xp, up) + g(xp, up) θ, xp(0) = x (7.13b)

ẇp = gT (xp, up) − kwp, wp(0) = w (7.13c)

Q̇p = wp T

wp, Qp(0) = Q (7.13d)

˙̂
θp = ΓQp θ̃p, θ̃p = θ − θ̂p, θ̂p(0) = θ̂ (7.13e)

up(τ) , κ(τ, xp(τ), θ̂p(τ)) ∈ U (7.13f)

xp(τ) ∈ X, xp(T ) ∈ Xf (θ̃
p(T )) (7.13g)

In the formulation, the effect of future parameter adaptation is accounted for,

which results in less conservative worst-case predictions. Also, the conservativeness

of the terminal cost is reduced by parameterizing both W and Xf as functions of θ̃(T ).

Parameterizing the terminal penalty as a function of θ̃ ensures that the algorithm will

seek to reduce the parameter error in the process of optimizing the cost function J .
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This may require the algorithm to automatically inject some useful excitation into

the closed-loop system.

7.4.1 Implementation Algorithm

Algorithm 7.3 The min-max MPC algorithm performs as follows: At sampling in-

stant ti

1. Measure the current state of the plant x and obtain the current values of

matrices w and Q from (7.3e) and (7.3a) respectively

2. Update the parameter estimates θ̂ and the uncertainty set Θ(t) , B
(

θ̂(t), zθ(t)
)

using (7.2) and Algorithm 7.1.

3. Solve the optimization problem (7.12,7.13) and apply the resulting feedback

control law to the plant until the next sampling instant

4. Repeat the procedure from step 1 for the next sampling instant, incrementing

i = i+ 1.

An alternative to the Θ update (7.8) is to define the uncertainty set

Θ(t) ,
⋂

τ∈[t0, t]

B(θ̂(τ), zθ(τ)), (7.14)

and replace step 3 of Algorithm 7.3 with

2. Obtain the current value of parameter estimates θ̂ and uncertainty bound zθ

from equations (7.2) and (7.6). Then update the MPC quantities Θ and θ̂ as

Θ = Θ(ti) , Θ(ti−1)
⋂

B(θ̂(ti), zθ(ti)) (7.15a)

θ̂ = θ̄ (7.15b)

where θ̄ is any point in Θ.
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We note that the evolution of Θ when updated according to (7.15) satisfies the

main requirement for the MPC performance. The set contracts in a strictly nested

fashion without excluding θ. The set contraction follows by definition:

Θ(t2) = Θ(t1)
⋂

B
(

θ̂(t2), zθ(t1)
)

⊆ Θ(t1), ∀t2 ≥ t1. (7.16)

Moreover, since zθ is such that ‖θ̃(t)‖ ≤ zθ(t) ∀t ≥ t0, the θ inclusion claim follows

by noting that θ ∈ Θ(t0) ⇒ θ ∈ B(θ̂(t), zθ(t)), ∀t ≥ t0. Hence, θ ∈ Θ(tj) :=
⋂j

i=0 B
(

θ̂(ti), zθ(ti)
)

. The benefit of using (7.15) is that the size of the uncertainty

description Θ reduces faster over time but this is achieved at the expense of increased

online computation due to the additional task of calculating the intersection of sets.

In the remainder of this section, we drop the explicit constraint (7.13g) by using

the convention that if some of the constraints are not satisfied, then the value of J is

+∞ i.e.

L(x, u) =







L(x, u) <∞ if (x, u) ∈ X × U

+∞ otherwise

W (x, θ̃) =







W (x, θ̃) <∞ if x ∈ Xf (θ̃)

+∞ otherwise

7.4.2 Closed-loop Robust Stability

Robust stability is guaranteed if predicted state at terminal time belong to a robustly

invariant set for all possible uncertainties. Let Θ̃0 =
{

θ̃ : ‖θ̃‖ ≤ z0
θ)
}

, a sufficient con-

ditions for the robust MPC (7.12) to guarantee stabilization of the origin is outlined

below:

Criterion 7.4 The terminal penalty function W : Xf × Θ̃0 → [0, +∞] and the ter-
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minal constraint function Xf : Θ̃0 → X are such that for each (θ, θ̂, θ̃) ∈ (Θ0 × Θ0 ×

Θ̃0), there exists a feedback kf(., θ̂) : Xf → U satisfying

1. 0 ∈ Xf (θ̃) ⊆ X, Xf(θ̃) closed

2. kf(x, θ̂) ∈ U, ∀x ∈ Xf (θ̃)

3. W (x, θ̃) is continuous with respect to x ∈ Rnx

4. ∀x ∈ Xf (θ̃), Xf(θ̃) is strongly positively invariant under kf(x, θ̂) with respect

to the differential inclusion ẋ ∈ f(x, kf(x, θ̂)) + g(x, kf(x, θ̂))Θ

5. W (x(t+ δ), θ̃(t)) −W (x(t), θ̃(t)) ≤ −
∫ t+δ

t
L(x, kf(x, θ̂))dτ , ∀x ∈ Xf(θ̃).

In addition to criterion (7.4), the θ̃ dependence of W and Xf is required to satisfy

the following:

Criterion 7.5 For any θ̃1, θ̃2 ∈ Θ̃0 s.t. ‖θ̃2‖ ≤ ‖θ̃1‖,

1. W (x, θ̃2) ≤W (x, θ̃1), ∀x ∈ Xf(θ̃1)

2. Xf(θ̃2) ⊇ Xf(θ̃1)

Note that criterion (7.4) requires only the existence, not knowledge, of kf(x, θ̂) and

the stability condition requires the terminal penalty function W (x, θ̃) to be a robust-

CLF on the domain Xf(θ̃). Criterion (7.5) requires W to decrease and the domain

Xf to enlarge with decreased parametric uncertainty as expected.

Theorem 7.6 Let X0 , X0(Θ
0) ⊆ X denote the set of initial states with uncertainty

Θ0 for which (7.12) has a solution. Assuming criteria 7.4 and 7.5 are satisfied,

then the closed-loop system state x, given by (7.1,7.2,7.6,7.12), originating from any

x0 ∈ X0 feasibly approaches the origin as t→ +∞.

The proof of the theorem is given in Section 7.9.
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7.5 Robust Adaptive MPC - A Lipschitz-based

Approach

Due to the computational complexity associated with (feedback) min-max optimiza-

tion problem for nonlinear systems, it is (sometimes) more practical to use more

conservative but computationally efficient methods. Examples of such approaches

include Lipschitz-based methods [22,24] and those based on the concept of reachable

sets [25].

In this section, we present a Lipschitz-based method whereby the nominal model

rather than the unknown bounded system state is controlled, subject to conditions

that ensure that given constraints are satisfied for all possible uncertainties. State

prediction error bound is determined based on the Lipschitz continuity of the model.

A knowledge of appropriate Lipschitz bounds for the x-dependence of the dynamics

f(x, u) and g(x, u) are assumed as follows:

Assumption 7.7 A set of functions Lj : X × U → R+, j ∈ {f, g} are known which

satisfy

Lj(X, u) ≥ min
{

Lj

∣
∣
∣ sup

x1,x2∈X

(

‖j(x1, u) − j(x2, u)‖ − Lj‖x1 − x2‖
)

≤ 0
}

,

where for j ≡ g is interpreted as an induced norm since g(x, u) is a matrix.

7.5.1 Prediction of State Error Bound

In order to consider the effect of the uncertainty θ̃ in the controller synthesis, we have

to compute a bound on the difference between the nominal state trajectory and the

solution of the actual system. To this end, consider the actual system

ẋ = f(x, u) + g(x, u) θ, (7.18)
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and the nominal model controlled by the same input u

ẋp = f(xp, u) + g(xp, u) θ̂, (7.19)

it follows that

‖ẋ− ẋp‖ ≤ ‖f(x, u) − f(xp, u)‖ + ‖g(x, u)θ − g(xp, u)θ‖ + ‖g(xp, u)θ − g(xp, u)θp‖

≤ Lf‖x− xp‖ + Lg‖θ‖‖x− xp‖ + ‖g(xp, u)‖‖θ − θ̂‖.

Therefore, a worst-case deviation zp
x ≥ maxθ∈Θ ‖x− xp‖ can be generated from

żp
x = (Lf + LgΠ)zp

x + ‖g(xp, u)‖zθ, z
p
x(t0) = 0 (7.20)

where Π = zθ + ‖θ̂‖.

7.5.2 Lipschitz-based Finite Horizon optimal Control

Problem

The model predictive feedback is defined as

u = κmpc(x, θ̂, zθ) = u∗(0) (7.21a)

u∗(.) , arg min
up

[ 0,T ]

J(x, θ̂, zθ, u
p) (7.21b)

where J(x, θ̂, zθ, u
p) is given by the optimal control problem:

J(x, θ̂, zθ, u
p) =

∫ T

0

L(xp, up)dτ +W (xp(T ), zp
θ(T )) (7.22a)

s.t. ∀τ ∈ [0, T ]

ẋp = f(xp, up) + g(xp, up)θ̂, xp(0) = x (7.22b)

żp
x = (Lf + LgΠ)zp

x + ‖g(xp, up)‖zθ, z
p
x(0) = 0 (7.22c)
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Xp(τ) , B(xp(τ), zp
x(τ)) ⊆ X, up(τ) ∈ U (7.22d)

Xp(T ) ⊆ Xf (z
p
θ(T )) (7.22e)

In the proposed formulation, the parameter estimate θ̂ and the uncertainty radius

zθ which appears in (7.22b) and (7.22c) are updated at every sampling instant and

held constant over the prediction horizon. However, the effect of the future model

improvement along the prediction horizon is incorporated in the formulation by pa-

rameterizing the terminal expressions in (7.22a) and (7.22e) as a function of zθ(T ).

This enlarges the terminal domain and hence reduces the conservatism of the robust

MPC. Using a nominal model prediction, it is impossible to predict the actual future

behavior of the parameter estimation error as was possible in the min-max framework.

However, based upon the excitation of the real system at sampling instants ti, one

can generate an upper bound on the future parameter estimation error according to

Algorithm 7.1, equation (7.6), that is

zp
θ(τ) = exp−Ē(τ−ti) zθ(ti) τ ∈ [ti, ti + T ) (7.23)

where

Ē ≥ E(ti) = λmin (ΓQ(ti))

7.5.3 Implementation Algorithm

Algorithm 7.8 The Lipschitz-based MPC algorithm is implemented as follows: At

sampling instant ti

1. Measure the current state of the plant x = x(ti)

2. Update the parameter estimates θ̂ = θ̂(ti) and uncertainty bounds zθ = zθ(ti)

and zp
θ (T ) = zp

θ (ti + T ) via (7.2), (7.6) and (7.23) respectively.
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3. Solve the optimization problem (7.21,7.22) and apply the resulting feedback

control law to the plant until the next sampling instant

4. Repeat the procedure from step 1 for the next sampling instant, incrementing

i = i+ 1.

The conservatism of the Lipschitz-based approach is mainly due to the compu-

tation of the uncertainty cone B(xp, zp
x) around the nominal trajectory. The rate at

which the cone expands over the prediction horizon reduces at each sampling instant

as zθ reduces. When zθ is zero, the effect of parameter uncertainty on the state pre-

diction can be totally eliminated from the adaptive framework by replacing the error

dynamic (7.22c) with żp
x = 0 when zθ ≈ 0.

Theorem 7.9 Let X ′
0 , X ′

0(Θ
0) ⊆ X denote the set of initial states for which (7.21)

has a solution. Assuming Assumption 7.7 and criteria 7.4 and 7.5 are satisfied, then

the origin of the closed-loop system given by (7.1,7.2,7.6,7.21) is feasibly asymptoti-

cally stabilized from any x0 ∈ X ′
0.

The proof can be found in Section 7.9.

7.6 Incorporating Finite-time Identifier

The performance and computational demand of the adaptive MPC schemes developed

depend on the performance of the parameter and set adaptation mechanism employed.

An identification mechanism that provides faster convergence of θ̃ to zero (in a known

time) is beneficial. In this section, we employ the finite-time identifier, presented in

Chapter 5, in developing an adaptive predictive control structure that reduces to a

nominal MPC problem when exact parameter estimates are obtained.

124



Let the parameter estimate θ̂, matrices Q and C be generated from (7.2), (7.3a)

and (7.3b) respectively. Also, let tc be a time such that Q(tc) is invertible, the finite-

time identifier (FTI) is given by

θ̂c(t) =







θ̂(t), if t < tc

Q(tc)
−1C(tc), if t ≥ tc.

(7.24)

The revised algorithm based on the FTI is given in the following.

7.6.1 FTI-based Min-max Approach

Let the filter (7.13c) and excitation dynamics (7.13d) be replaced by

ẇp = β
(
gT (xp, up) − kwp

)
, wp(0) = w (7.25)

Q̇p = β(wp T

wp), Qp(0) = Q (7.26)

with β ∈ {0, 1} a design parameter. The proposed FTI based algorithm is as follows:

Algorithm 7.10 Finite-time min-max MPC algorithm: At sampling instant ti

1. Measure the current state of the plant x

2. Obtain the current value of matrices Q and C from (7.3a) and (7.3b) respec-

tively

3. If det(Q) = 0 or cond(Q) is not satisfactory update the parameter estimates θ̂

and the uncertainty set Θ(t) , B
(

θ̂(t), zθ(t)
)

according to Algorithm 7.1

Else if det(Q) > 0 and cond(Q) is satisfactory, set β = 0 and update

θ̂ = Q−1(ti)C(ti), zθ = 0

End
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4. Solve the optimization problem (7.12,7.13) and apply the resulting feedback con-

trol law to the plant until the next sampling instant

5. Increment i = i+ 1. If zθ > 0, repeat the procedure from step 1 for the next

sampling instant. Otherwise, repeat only steps 1 and 4 for the next sampling

instant.

Implementing the adaptive MPC controller according to Algorithm 7.10 guarantees

that the uncertainty ball Θ , B(θ̂, zθ) is contained in the previous one, that is,

Θ(ti) ⊆ Θ(ti−1). Hence, a successive reduction in the computational requirement of

(7.12) is ensured. Moreover, when the parameter estimate θc becomes available, the

uncertainty set Θ reduces to a single point with θ̃ = 0 and the predictive robust

control structure becomes that of a nominal MPC:

u = κmpc(x) , κ∗(0, x) (7.27a)

κ∗ , arg min
κ(·,·)

J(x, κ) ,

∫ T

0

L(xp, up)dτ +W (xp(T )) (7.27b)

s.t. ∀τ ∈ [0, T ]

ẋp = f(xp, up) + g(xp, up)θc, xp(0) = x (7.27c)

up(τ) , κ(τ, xp(τ)) ∈ U, xp(τ) ∈ X, xp(T ) ∈ Xf (7.27d)

7.6.2 FTI-based Lipshitz-bound Approach

For the Lipshitz based approach, the error bound dynamic (7.22c) is replaced by

żp
x = β(Lf + LgΠ)zp

x + ‖gp‖zθ, zp
x(0) = 0, (7.28)

with β ∈ {0, 1} and the controller is implemented according to the following algo-

rithm.
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Algorithm 7.11 Finite-time Lipschitz-based MPC algorithm: At sampling instant

ti

1. Measure the current state of the plant x

2. Obtain the current value of matrices Q and C from (7.3a) and (7.3b) respec-

tively

3. If det(Q) = 0 or cond(Q) is not satisfactory, set β = 1 and update the parame-

ter estimates θ̂ = θ̂(ti) and uncertainty bounds zθ = zθ(ti) and zp
θ(T ) = zp

θ(ti+T )

via (7.2), (7.6) and (7.23) respectively.

Else if det(Q) > 0 and cond(Q) is satisfactory, set β = 0 and update

θ̂ = Q−1(ti)C(ti), zθ = 0

End

4. Solve the optimization problem (7.21,7.22) and apply the resulting feedback

control law to the plant until the next sampling instant

5. Increment i = i+ 1. If zθ > 0, repeat the procedure from step 1 for the next

sampling instant. Otherwise, repeat only steps 1 and 4 for the next sampling

instant.

Implementing Algorithm (7.11) ensures that the size of the uncertainty cone

around the nominal state trajectory reduces as zθ shrinks and when exact param-

eter estimate vector θc is obtained, zp
x = 0, which implies that the problem becomes

that of a nominal MPC (7.27).

7.7 Simulation Example

Consider the regulation of a continuous stirred tank reactor where a first order, irre-

versible exothermic reaction A → B is carried out. Assuming constant liquid level,
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the reaction is described by the following dynamic model [94]:

ĊA =
q

V
(CAin − CA) − k0 exp

( −E
RTr

)

CA

Ṫr =
q

V
(Tin − Tr) −

∆H

ρ cp
k0 exp

( −E
RTr

)

CA +
UA

ρ cp V
(Tc − Tr)

The states CA and Tr are the concentrations of components A and the reactor tem-

perature respectively. The manipulated variable Tc is temperature of the coolant

stream.

It is assumed that reaction kinetic constant k0 and heat of reaction ∆H are only

nominally known and parameterized as k0 = θ1 × 1010 min−1 and ∆H k0 = −θ2 × 1015

J/molmin with the parameters satisfying 0.1 ≤ θ1 ≤ 10 and 0.1 ≤ θ2 ≤ 10. The

objective is to adaptively regulate the unstable equilibrium Ceq
A =0.5 mol/l, T eq

r =350

K, T eq
c =300 K while satisfying the constraints 0 ≤ CA ≤ 1, 280 ≤ Tr ≤ 370 and 280 ≤

Tc ≤ 370. The nominal operating conditions, which corresponds to the given unstable

equilibrium are taken from [94]: q=100 l/min, V=100 l, ρ=1000 g/l, cp =0.239 J/g

K, E/R = 8750 K, UA=5×104 J/min K, CAin =1 mol/l and Tin =350 K.

Defining x = [
CA−Ceq

A

0.5
, Tr−T eq

r

20
]′, u = Tc−T eq

c

20
, the stage cost L(x, u) was selected as

a quadratic function of its arguments:

L(x, u) = xT Qx x+ uT Ru u (7.29a)

Qx =







0.5 0

0 1.1429







Ru = 1.333. (7.29b)

The terminal penalty function used is a quadratic parameter-dependent Lyapunov

function W (x, θ) = xTP (θ)x for the linearized system. Denoting the closed-loop

system under a local robust stabilizing controller u = kf (θ) x as ẋ = Acl(θ)x. The

matrix P (θ) := P0 + θ1P1 + θ2P2 + . . . θnθPnθ was selected to satisfy the Lyapunov
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system of LMIs

P (θ) > 0

Acl(θ)
TP (θ) + P (θ)Acl(θ) < 0

for all admissible values of θ. Since θ lie between known extrema values, the task of

finding P (θ) reduces to solving a finite set of linear matrix inequalities by introducing

additional constraints [95]. For the initial nominal estimate θ0 = 5.05 and z0
θ = 4.95,

the matrix P (θ0) obtained is

P (θ0) =







0.6089 0.1134

0.1134 4.9122







(7.30)

and the corresponding terminal region is

Xf = {x : xTP (θ0) x ≤ 0.25}. (7.31)

For simulation purposes, the true values of the unknown parameters were chosen as

k0 = 7.2 × 1010min−1 and ∆H = - 5.0 × 104 J/mol which implies θ1 = 7.2 and θ2

= 3.6. The Lipschitz-based approach was used for the controller calculations and the

result was implemented according to Algorithm 7.8. Since the regressor matrix for

this reactor model is diagonal, we define uncertainty bound zθ for each parameter

estimate and adapt the pairs (θ̂1, zθ1) and (θ̂2, zθ2) separately.

The system was simulated from three different initial states (CA(0), Tr(0))=(0.3,

335), (0.6, 335) and (0.3, 363). The closed-loop trajectories are reported in Figures 7.1

to 7.4. The results demonstrate that the adaptive MPC regulates the system states to

the open loop unstable equilibrium values and satisfies the imposed state and input

constraints. The parameter estimates converge to the true values and the uncertainty

bound zθ reduces over time.
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Figure 7.1: Closed-loop reactor state trajectories
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Figure 7.2: Closed-loop reactor input profiles for states starting at different initial conditions
(CA(0), Tr(0)): (0.3, 335) is solid line, (0.6, 335) is dashed line and (0.3, 363)
is the dotted line
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Figure 7.3: Closed-loop parameter estimates profile for states starting at different initial
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(0.3, 363) is the dotted line
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7.8 Conclusions

In this chapter, we presented an adaptive MPC design technique for constrained non-

linear systems with parametric uncertainties. The system’s performance is improved

over time as the adaptive control updates the model online. The controller param-

eters is updated only when an improved parameter estimate is obtained. Robustly

stabilizing MPC schemes are incorporated to ensure robustness of the algorithm to

parameter estimation error during the adaptation phase. The two robust approaches,

min-max and Lipschitz-based method, presented provides a tradeoff between compu-

tational complexity and conservatism of the solutions. In both cases, the controller is

designed in such a way that the computational requirement/conservativeness of the

robust adaptive MPC reduces with reduction in parameter uncertainty. Moreover,

the complexity of the resultant controller reduces to that of nominal model predic-

tive control when a finite-time identifier is employed and an excitation condition is

satisfied.

7.9 Proofs of Main Results

7.9.1 Proof of Theorem 7.6

Feasibility : The closed-loop stability is based upon the feasibility of the control ac-

tion at each sample time. Assuming, at time t, that an optimal solution up
[0,T ] to the

optimization problem (7.12) exist and is found. Let Θp denote the estimated uncer-

tainty set at time t and Θv denote the set at time t + δ that would result with the

feedback implementation of u[t,t+δ] = up
[0,δ]. Also, let xp represents the worst case state

trajectory originating from xp(0) = x(t) and xv represents the trajectory originating

from xv(0) = x + δv under the same feasible control input uv
[δ,T ] = up

[δ,T ]. Moreover,

let Xa
Θb , {xa| ẋa ∈ F(xa, up,Θb) , f(xa, up) + g(xa, up)Θb}.
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Since the up
[0,T ] is optimal with respect to the worst case uncertainty scenario, it

suffice to say that up
[0,T ] drives any trajectory xp ∈ Xp

Θp into the terminal region Xp
f .

Since Θ is non-expanding over time, we have Θv ⊆ Θp implying xv ∈ Xp
Θv ⊆ Xp

Θp.

The terminal region Xp
f is strongly positively invariant for the nonlinear system (7.1)

under the feedback kf(., .), the input constraint is satisfied in Xp
f and Xv

f ⊇ Xp
f by

criteria 2.2, 2.4 and 3.2 respectively. Hence, the input u = [up
[δ,T ], kf [T,T+δ]] is a feasible

solution of (7.12) at time t+ δ and by induction, the optimization problem is feasible

for all t ≥ 0.

Stability : The stability of the closed-loop system is established by proving strict de-

crease of the optimal cost J∗(x, θ̂, zθ) , J(x, θ̂, zθ, κ
∗). Let the trajectories (xp, θ̂p, θ̃p, zp

θ)

and control up correspond to any worst case minimizing solution of J∗(x, θ̂, zθ).

If xp
[ 0,T ] were extended to τ ∈ [0, T + δ] by implementing the feedback u(τ) =

kf(x
p(τ), θ̂p(τ) ) on τ ∈ [T, T + δ], then criterion 7.4(5) guarantees the inequality

∫ T+δ

T

L(xp, kf(x
p, θ̂p) )dτ +W (xp

T+δ, θ̃
p
T ) −W (xp

T , θ̃
p
T ) ≤ 0 (7.32)

where in (7.32) and in the remainder of the proof, xp
σ , xp(σ), θ̃p

σ , θ̃p(σ), for

σ = T, T + δ.

The optimal cost J∗(x, θ̂, zθ)

=

∫ T

0

L(xp, up)dτ +W (xp
T , θ̃

p
T )

≥
∫ T

0

L(xp, up)dτ +W (xp
T , θ̃

p
T ) +

∫ T+δ

T

L(xp, kf(x
p, θ̂p) )dτ +W (xp

T+δ, θ̃
p
T ) −W (xp

T , θ̃
p
T )

(7.33)

≥
∫ δ

0

L(xp, up)dτ +

∫ T

δ

L(xp, up)dτ +

∫ T+δ

T

L(xp, kf(x
p, θ̂p) )dτ +W (xp

T+δ, θ̃
p
T+δ) (7.34)

≥
∫ δ

0

L(xp, up)dτ + J∗(x(δ), θ̂(δ), zθ(δ)) (7.35)
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Then, it follows from (7.35) that

J∗(x(δ), θ̂(δ), zθ(δ)) − J∗(x, θ̂, zθ) ≤ −
∫ δ

0

L(xp, up)dτ

≤ −
∫ δ

0

µL(‖x, u‖)dτ. (7.36)

where µL is a class K∞ function. Hence x(t) → 0 asymptotically.

Remark 7.12 In the above proof,

• (7.33) is obtained using inequality (7.32)

• (7.34) follows from criterion 7.5.1 and the fact that ‖θ̃‖ is non-increasing

• (7.35) follows by noting that the last 3 terms in (7.34) is a (potentially) subop-

timal cost on the interval [δ, T + δ] starting from the point (xp(δ), θ̂p(δ)) with

associated uncertainty set B(θ̂p(δ), zp
θ(δ)).

7.9.2 Proof of Theorem 7.9

Feasibility : Let up
[0,T ] denotes the initial optimal or feasible solution of (7.21) and let

let Xp , B(xp, zp
x) denotes the corresponding predicted ball of possible trajectories

that starts at (xp, zp
x, z

p
θ)|τ=0 = (x(t), 0, zθ(t)). Similarly, let Xv , B(xv, zv

x) denote

the resulting cone originating from (xv, zv
x, z

v
θ )|τ=δ = (x + δv, 0, zθ(t + δ)), under the

same feasible control input uv
[δ,T ] = up

[δ,T ].

At time τ = 0, it follows from (7.22b) and (7.22c) that żp
x provides an upper

bound on ‖ẋp − ẋ‖, for ẋ ∈ F(x, up,Θ). Thus the continuity of the trajectories xp(τ)

and zp
x(τ) ensures that for a small enough δ > 0, x + δv ∈ Xp(δ). Therefore, we

assume, without loss of generality, that xv(δ) ∈ Xp(δ). Since zv
x(δ) = 0, it follows

that Xv(δ) ⊆ Xp(δ) and ‖xp(δ) − xv(δ)‖ ≤ zp
x(δ) − zv

x(δ).

Next, we establish that the inclusion Xv(τ) ⊆ Xp(τ) holds for all τ ∈ [δ, T ] by

showing that ‖xp(τ) − xv(τ)‖ ≤ zp
x(τ) − zv

x(τ), ∀τ ∈ [δ, T ]. Defining the variable
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ez , zp
x − zv

x − ‖xp − xv‖, the dynamics of ez satisfy

ėz = żp
x − żv

x − ‖ẋp − ẋv‖

= (Lf + LgΠ)zp
x − (Lf + LgΠ)zv

x − ‖f(xp, u) − f(xv, u) + (g(xp, u) − g(xv, u))θ̂‖

≥ (Lf + LgΠ) (zp
x − zv

x) −
(

Lf + Lg ‖θ̂‖
)

‖xp−xv‖

≥ (Lf +LgΠ) ez,

from which the initial condition ez(δ) ≥ 0 guarantees that ez(τ) ≥ 0, ∀τ ∈ [δ, T ].

This implies that Xv(τ) ⊆ Xp(τ) ⊆ X and Xv(T ) ⊆ Xp(T ) ⊆ Xp
f . Moreover, from

the non-increase of the uncertainty bound zθ, we have zv
θ ≤ zp

θ which implies that

Xp
f ⊆ Xv

f . Therefore, the input u = [up
[δ,T ], kf [T,T+δ]] serves as a feasible solution for

(7.21) at time t+ δ and the feasibility result can be achieved by induction.

Stability : closed-loop stability is established by showing that the optimal value func-

tion is non-increasing. The proof is similar to that of theorem 7.6.
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Chapter 8

Robust Adaptive MPC for Systems

with Exogeneous Disturbances

8.1 Introduction

In general, modelling error consists of parametric and non-parametric uncertainties

and the system dynamics can be influenced by exogeneous disturbances as well. In

this chapter, we extend the adaptive MPC framework presented in Chapter 7 to

nonlinear systems with both constant parametric uncertainty and additive exogenous

disturbances.

Intuitively, an adaptive controller should lead to controller with better robustness

properties than their non-adaptive counterpart since they use more information on

the systems uncertainties. However, this is not generally the case. Under external

disturbance input, adaptive controllers can lead to inferior transient behaviour, in-

finite parameter drift and burstiness in the closed-loop system. To address these

problems, parameter projection [73] is used to ensure the estimate remains in a con-

vex set and the parameter estimates are updated only when an improved estimate

is obtained. The formulation provides robustness to parameter estimation error and
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bounded disturbances ϑ ∈ D. While the disturbance set D remains unchanged over

time, the parametric uncertainty set Θ is adapted in such a way that guarantees its

contraction.

8.2 Revised Problem Set-up

Consider the uncertain nonlinear system

ẋ = f(x, u) + g(x, u)θ + ϑ , F(x, u, θ, ϑ) (8.1)

where the disturbance ϑ ∈ D ⊂ Rnd is assumed to satisfy a known upper bound

‖ϑ(t)‖ ≤ Mϑ < ∞. The objective of the study is to (robustly) stabilize the plant to

some target set Ξ ⊂ Rnx while satisfying the pointwise constraints x ∈ X ∈ Rnx and

u ∈ U ∈ Rnu . The target set is a compact set, contains the origin and is robustly

invariant under no control.

8.3 Parameter and Uncertainty Set Estimation

8.3.1 Preamble

Consider the dynamical system (8.1) and assume we use the same adaptive compen-

sator (7.2) and (7.3). Since ϑ is not known, the true η dynamic is

η̇ϑ = −kwηϑ + ϑ, ηϑ(t0) = e(t0) (8.2)

which results in the estimation error η̃ = ηϑ − η and dynamic

˙̃η = −kwη̃ + ϑ, η̃(t0) = 0. (8.3)
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Considering the Lyapunov function

Vθ̃ =
1

2
θ̃T θ̃ (8.4)

Since wθ = w θ0 + x− x̂− η + η̃ in this case, we have

C(t) = Q(t) θ +

∫ t

t0

wT (σ)η̃(σ) dσ (8.5)

hence, it follows that

V̇θ̃(t) = −θ̃T (t) ΓQ(t) θ̃(t) − θ̃T (t) Γ

∫ t

t0

wT (σ)η̃(σ) dσ, (8.6)

which guarantees boundedness of the parameter estimation error. To compute zθ,

the upper bound on the estimation error that must depend on measurable signal, we

replace (8.6) with

V̇θ̃(t) ≤ −E(t)Vθ̃(t) + kd

√

Vθ̃(t)

∫ t

t0

‖wT (σ)‖dσ (8.7)

where

E(t) = λmin (ΓQ(t)) and kd = λmax(Γ)
Mϑ

kw

.

Though the adaptive compensator gives a stronger convergence result for systems

subject to uncertainties, its usefulness in developing robust adaptive MPC for systems

subject to disturbances is limited. Updating the uncertainty bound zθ based on (8.7)

would result in a very conservative design, mainly because of the integral in the

positive term. To obtain a tighter parameter estimation error bound, we present an

alternative update law that is based on the closed-loop system states and Mϑ.
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8.3.2 Parameter Adaptation

Let the estimator model for (8.1) be selected as

˙̂x = f(x, u) + g(x, u)θ̂ + kw e+ w
˙̂
θ, kw > 0 (8.8)

ẇ = g(x, u) − kw w, w(t0) = 0. (8.9)

resulting in state prediction error e = x − x̂ and auxiliary variable η = e − wθ̃

dynamics:

ė = g(x, u)θ̃ − kw e− w
˙̂
θ + ϑ e(t0) = x(t0) − x̂(t0) (8.10)

η̇ = −kw η + ϑ, η(t0) = e(t0). (8.11)

Since ϑ is not known, an estimate of η is generated from

˙̂η = −kw η̂, η̂(t0) = e(t0). (8.12)

with resulting estimation error η̃ = η − η̂ dynamics

˙̃η = −kw η̃ + ϑ, η̃(t0) = 0. (8.13)

Let Σ ∈ Rnθ×nθ be generated from

Σ̇ = wTw, Σ(t0) = α I ≻ 0, (8.14)

based on equations (8.8), (8.9) and (8.12), our preferred parameter update law is

given by

Σ̇−1 = −Σ−1wTwΣ−1, Σ−1(t0) =
1

α
I (8.15a)
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˙̂
θ = Proj

{

γ Σ−1wT (e− η̂), θ̂
}

, θ̂(t0) = θ0 ∈ Θ0 (8.15b)

where γ = γT > 0 and Proj{φ, θ̂} denotes a Lipschitz projection operator such that

− Proj{φ, θ̂}T θ̃ ≤ −φT θ̃, (8.16)

θ̂(t0) ∈ Θ0 ⇒ θ̂(t) ∈ Θ0
ǫ , ∀ t ≥ t0. (8.17)

where Θ0
ǫ , B(θ0, z0

θ + ǫ), ǫ > 0. More details on parameter projection can be found

in [73].

Lemma 8.1 The identifier (8.15) is such that the estimation error θ̃ = θ − θ̂ is

bounded. Moreover, if

ϑ ∈ L2 or

∫ ∞

t0

[

‖η̃‖2 − γ ‖e− η̂‖2
]

dτ < +∞ (8.18)

with γ = λmin (γ) and the strong condition

lim
t→∞

λmin

(
Σ
)

= ∞ (8.19)

is satisfied, then θ̃ converges to zero asymptotically.

Proof: Let Vθ̃ = θ̃T Σ θ̃, it follows from (8.15) and the relationship wθ̃ = e − η̂ − η̃

that

V̇θ̃ ≤ −2γ θ̃TwT (e− η̂) + θ̃TwTwθ̃

= −γ (e− η̂)T (e− η̂) + ‖η̃‖2, (8.20)

implying that θ̃ is bounded. Moreover, it follows from (8.20) that

Vθ̃(t) = Vθ̃(t0) +

∫ t

t0

V̇θ̃(τ)dτ (8.21)
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≤ Vθ̃(t0) − γ

∫ t

t0

‖e− η̂‖2 dτ +

∫ t

t0

‖η̃‖2 dτ (8.22)

Considering the dynamics of (8.13), if ϑ ∈ L2, then η̃ ∈ L2 (Lemma 5.5). Hence, the

right hand side of (8.22) is finite in view of (8.18), and by (8.19) we have

limt→∞ θ̃(t) = 0

8.3.3 Set Adaptation

An update law that measures the worst-case progress of the parameter identifier in

the presence of disturbance is given by:

zθ =

√

Vzθ

λmin(Σ)
(8.23a)

Vzθ(t0) = λmax

(

Σ(t0)
)

(z0
θ)

2 (8.23b)

V̇zθ = −γ (e− η̂)T (e− η̂) +
(Mϑ

kw

)2

. (8.23c)

Using the parameter estimator (8.15) and its error bound zθ (8.23), the uncertain ball

Θ , B(θ̂, zθ) is adapted online according to the following algorithm:

Algorithm 8.2 Beginning from time ti−1 = t0, the parameter and set adaptation is

implemented iteratively as follows:

1 Initialize zθ(ti−1) = z0
θ , θ̂(ti−1) = θ̂0 and Θ(ti−1) = B(θ̂(ti−1), zθ(ti−1)).

2 At time ti, using equations (8.15) and (8.23) perform the update

(

θ̂, Θ
)

=







(

θ̂(ti), Θ(ti)
)

, if zθ(ti) ≤ zθ(ti−1) − ‖θ̂(ti) − θ̂(ti−1)‖
(

θ̂(ti−1), Θ(ti−1)
)

, otherwise

(8.24)

3 Iterate back to step 2, incrementing i = i+ 1.
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The algorithm ensure that Θ is only updated when zθ value has decreased by an

amount which guarantees a contraction of the set. Moreover zθ evolution as given in

(8.23) ensures non-exclusion of θ as shown below.

Lemma 8.3 The evolution of Θ = B(θ̂, zθ) under (8.15), (8.23) and algorithm 8.2

is such that

i) Θ(t2) ⊆ Θ(t1), t0 ≤ t1 ≤ t2

ii) θ ∈ Θ(t0) ⇒ θ ∈ Θ(t), ∀t ≥ t0

Proof:

i) The proof of the first claim is the same as that of Lemma 7.2i)

ii) We know that Vθ̃(t0) ≤ Vzθ(t0) (by definition) and it follows from (8.20) and

(8.23c) that V̇θ̃(t) ≤ V̇zθ
(t). Hence, by the comparison lemma, we have

Vθ̃(t) ≤ Vzθ(t), ∀t ≥ t0. (8.25)

and since Vθ̃ = θ̃T Σ θ̃, it follows that

‖θ̃(t)‖2 ≤ Vzθ(t)

λmin(Σ(t))
= z2

θ(t), ∀t ≥ t0. (8.26)

Hence, if θ ∈ Θ(t0), then θ ∈ B(θ̂(t), zθ(t)), ∀t ≥ t0.

8.4 Robust Adaptive MPC

8.4.1 A Min-max Approach

The formulation of the min-max MPC consists of maximizing a cost function with

respect to θ ∈ Θ, ϑ ∈ D and minimizing over feedback control policies κ. The robust
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receding horizon control law is

u = κmpc(x, θ̂, zθ) , κ∗(0, x, θ̂, zθ) (8.27a)

κ∗ , arg min
κ(·,·,·,·)

J(x, θ̂, zθ, κ) (8.27b)

where

J(x, θ̂, zθ, κ) , max
θ∈Θ, ϑ∈D

∫ T

0

L(xp, up)dτ +W (xp(T ), θ̃p(T )) (8.28a)

s.t. ∀τ ∈ [0, T ]

ẋp = f(xp, up) + g(xp, up)θ + ϑ, xp(0) = x (8.28b)

ẇp = gT (xp, up) − kw w
p, wp(0) = w (8.28c)

(Σ̇−1)p = −(Σ−1)pwTw(Σ−1)p, (Σ−1)p(0) = Σ−1 (8.28d)

˙̂
θp = Proj

{

γ (Σ−1)pwT (e− η̂), θ̂
}

θ̃p = θ − θ̂p, θ̂p(0) = θ̂ (8.28e)

up(τ) , κ(τ, xp(τ), θ̂p(τ)) ∈ U (8.28f)

xp(τ) ∈ X, xp(T ) ∈ Xf (θ̃
p(T )) (8.28g)

The effect of future parameter adaptation is also accounted for in this formulation.

The conservativeness of the algorithm is reduced by parameterizing both W and Xf

as functions of θ̃(T ). While it is possible for the set Θ to contract upon θ over time,

the robustness feature due to ϑ ∈ D will still remain.

Algorithm 8.4 The MPC algorithm performs as follows: At sampling instant ti

1. Measure the current state of the plant x(t) and obtain the current value of

matrices w and Σ−1 from equations (8.9) and (8.15a) respectively

2. Obtain the current value of parameter estimates θ̂ and uncertainty bound zθ

from (8.15b) and (8.23) respectively

If zθ(ti) ≤ zθ(ti−1) − ‖θ̂(ti) − θ̂(ti−1)‖
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θ̂ = θ̂(ti), zθ = zθ(ti)

Else

θ̂ = θ̂(ti−1), zθ = zθ(ti−1)

End

3. Solve the optimization problem (8.27) and apply the resulting feedback control

law to the plant until the next sampling instant

4. Increment i = i + 1. Repeat the procedure from step 1 for the next sampling

instant.

8.4.2 Lipschitz-based Approach

Assuming a knowledge of the Lipschitz bounds for the x-dependence of the dynamics

f(x, u) and g(x, u) as given in Assumption 7.7 and let Π = zθ + ‖θ̂‖, a worst-case

deviation zp
x ≥ maxθ∈Θ ‖x− xp‖ can be generated from

żp
x = (Lf + LgΠ)zp

x + ‖g(xp, u)‖zθ +Mϑ, z
p
x(t0) = 0. (8.29)

Using this error bound, the robust Lipschitz-based MPC is given by

u = κmpc(x, θ̂, zθ) = u∗(0) (8.30a)

u∗(.) , arg min
up

[ 0,T ]

J(x, θ̂, zθ, u
p) (8.30b)

where

J(x, θ̂, zθ, u
p) =

∫ T

0

L(xp, up)dτ +W (xp(T ), zp
θ) (8.31a)

s.t. ∀τ ∈ [0, T ]

ẋp = f(xp, up) + g(xp, up)θ̂, xp(0) = x (8.31b)

żp
x = (Lf + LgΠ)zp

x + ‖gp‖zθ +Mϑ, z
p
x(0) = 0 (8.31c)
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Xp(τ) , B(xp(τ), zp
x(τ)) ⊆ X, up(τ) ∈ U (8.31d)

Xp(T ) ⊆ Xf (z
p
θ) (8.31e)

The effect of the disturbance is built into the uncertainty cone B(xp(τ), zp
x(τ)) via

(8.31c). Since the uncertainty bound is no more monotonically decreasing in this case,

the uncertainty radius zθ which appears in (8.31c) and in the terminal expressions of

(8.31a) and (8.31e) are held constant over the prediction horizon. However, the fact

that they are updated at sampling instants when zθ shrinks reduces the conservatism

of the robust MPC and enlarges the terminal domain that would otherwise have been

designed based on a large initial uncertainty zθ(t0).

Algorithm 8.5 The Lipschitz-based MPC algorithm performs as follows: At sam-

pling instant ti

1. Measure the current state of the plant x = x(ti)

2. Obtain the current value of the parameter estimates θ̂ and uncertainty bound

zθ from equations (8.15) and (8.23) respectively,

If zθ(ti) ≤ zθ(ti−1)

θ̂ = θ̂(ti), zθ = zθ(ti)

Else

θ̂ = θ̂(ti−1), zθ = zθ(ti−1)

End

3. Solve the optimization problem (8.30) and apply the resulting feedback control

law to the plant until the next sampling instant

4. Increment i:=i+1; repeat the procedure from step 1 for the next sampling

instant.
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8.5 Closed-loop Robust Stability

Robust stabilization to the target set Ξ is guaranteed by appropriate selection of the

design parameters W and Xf . The robust stability conditions require the satisfaction

of criteria 7.4 and 7.5, with criteria 7.4.4 strengthened to account for the effect of the

disturbance ϑ ∈ D. The criteria are given below for ease of reference.

Criterion 8.6 The terminal penalty function W : Xf × Θ̃0 → [0, +∞] and the ter-

minal constraint function Xf : Θ̃0 → X are such that for each (θ, θ̂, θ̃) ∈ (Θ0 × Θ0 ×

Θ̃0
ǫ), there exists a feedback kf(., θ̂) : Xf → U satisfying

1. 0 ∈ Xf (θ̃) ⊆ X, Xf(θ̃) closed

2. kf(x, θ̂) ∈ U, ∀x ∈ Xf (θ̃)

3. W (x, θ̃) is continuous with respect to x ∈ Rnx

4. ∀x ∈ Xf(θ̃)\Ξ, Xf (θ̃) is strongly positively invariant under kf(x, θ̂) with respect

to ẋ ∈ f(x, kf(x, θ̂)) + g(x, kf(x, θ̂))Θ + D

5. L(x, kf(x, θ̂)) + ∂W
∂x

F(x, kf(x, θ̂), θ, ϑ) ≤ 0, ∀x ∈ Xf(θ̃)\Ξ.

Criterion 8.7 For any θ̃1, θ̃2 ∈ Θ̃0 s.t. ‖θ̃2‖ ≤ ‖θ̃1‖,

1. W (x, θ̃2) ≤W (x, θ̃1), ∀x ∈ Xf(θ̃1)

2. Xf(θ̃2) ⊇ Xf(θ̃1)

The revised condition 8.6.5 require W to be a local robust CLF for the uncertain

system 8.1 with respect to θ ∈ Θ and ϑ ∈ D.
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8.5.1 Main Results

Theorem 8.8 Let Xd0 , Xd0(Θ
0) ⊆ X denote the set of initial states with uncer-

tainty Θ0 for which (8.27) has a solution. Assuming criteria 8.6 and 8.7 are satisfied,

then the closed-loop system state x, given by (8.1,8.15,8.23,8.27), originating from any

x0 ∈ Xd0 feasibly approaches the target set Ξ as t→ +∞.

Proof: The closed-loop stability is established by the feasibility of the control action

at each sample time and the strict decrease of the optimal cost J∗. The proof follows

from that of theorem 7.6 since the control law is optimal with respect to the worst

case uncertainty (θ, ϑ) ∈ (Θ, D) scenario and the terminal region Xp
f is strongly

positively invariant for (8.1) under the (local) feedback kf(., .).

Theorem 8.9 Let X ′
d0 , X ′

d0(Θ
0) ⊆ X denote the set of initial states for which

(8.30) has a solution. Assuming Assumption 7.7 and Criteria 8.6 and 8.7 are satis-

fied, then the origin of the closed-loop system given by (8.1,8.15,8.23,8.30) is feasibly

asymptotically stabilized from any x0 ∈ X ′
d0 to the target set Ξ.

The proof of the Lipschitz-based control law follows from that of theorem 7.9.

8.6 Simulation Example

To illustrate the effectiveness of the proposed design, we consider the regulation of

the CSTR in example 7.7, subject to an additional disturbance on the temperature

dynamic:

ĊA =
q

V
(CAin − CA) − k0 exp

( −E
RTr

)

CA

Ṫr =
q

V
(Tin − Tr) −

∆H

ρ cp
k0 exp

( −E
RTr

)

CA +
UA

ρ cp V
(Tc − Tr) + ϑ
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where ϑ(t) is an unknown function of time. We also assume that the reaction kinetic

constant k0 and ∆H are only nominally known. The operating conditions and system

constraints are as detailed in Section 7.7. The control objective is to robustly regulate

the reactor temperature and concentration to the (open loop) unstable equilibrium

Ceq
A =0.5 mol/l, T eq

r =350 K, T eq
c =300 K by manipulating the temperature of the

coolant stream Tc.

For simulation purposes, the disturbance is selected as a fluctuation of the inlet

temperate ϑ(t) = 0.01Tin sin(3t) and the true values of the unknown parameters

were also chosen as k0 = 7.2 × 1010min−1 and ∆H = - 5.0 × 104 J/mol. The

stage cost (7.29), terminal penalty (7.30) and terminal region (7.31) were used. The

Lipschitz-based approach was used for the controller calculations and the result was

implemented according to Algorithm 8.5. As depicted in Figures 8.1 to 8.3, the robust

adaptive MPC drives the system to a neighborhood of the equilibrium while satisfying

the imposed constraints and achieves parameter convergence. Figure 8.4 shows that

the uncertainty bound zθ also reduces over time, although at much more conservative

rate compared to Figure 7.4 obtained for systems with no disturbances.

8.7 Conclusions

The adaptive MPC design technique is extended to constrained nonlinear systems

with both parametric and time varying disturbances. The proposed robust controller

updates the plant model online when model improvement is guaranteed. The embed-

ded adaptation mechanism enables us to construct less conservative terminal design

parameters based upon subsets of the original parametric uncertainty. While the

introduced conservatism/computation complexity due to the parametric uncertainty

reduces over time, the portion due to the disturbance ϑ ∈ D remains active for all

time.
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Figure 8.1: Closed-loop reactor trajectories under additive disturbance ϑ(t)
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Figure 8.2: Closed-loop input profiles for states starting at different initial conditions
(CA(0), Tr(0)): (0.3, 335) is solid line, (0.6, 335) is dashed line and (0.3, 363)
is the dotted line

152



0 0.5 1 1.5 2 2.5 3
5

5.5

6

6.5

7

7.5

θ̂1

0 0.5 1 1.5 2 2.5 3
3.5

4

4.5

5

5.5

θ̂2

Time (min)

Figure 8.3: Closed-loop parameter estimates profile for states starting at different initial
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(0.3, 363) is the dotted line
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Figure 8.4: Closed-loop uncertainty bound trajectories for initial condition (CA, Tr) =
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Chapter 9

Integration of RTO and MPC for

Constrained Uncertain Nonlinear

Systems

In this chapter, we provide a formal design technique that integrates RTO and MPC

for constrained uncertain nonlinear systems. The framework considered assumes the

economic function is a known function of constrained system’s states, parameterized

by unknown parameters. The objective and constraint functions may explicitly de-

pend on time, which means that our proposed method is applicable to both dynamic

and steady state economic optimization. The control objective is to simultaneously

identify and regulate the system to the operating point that optimizes the economic

function. The control input may also be required to satisfy some constraints.

The method proposed solves the control and optimization problem at the same

frequency. This eliminates the ensuing interval of “no-feedback” that occurs between

economic optimization and thereby improving disturbance attenuation. The RTO

layer is tackled via a computational efficient approach. The constrained economic

optimization problem is converted to an unconstrained problem and Newton based
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optimization method is used to develop an update law for the optimum value. The

integrated design distinguishes between the extremum seeking and the adaptive track-

ing of the reference trajectory.

While many advances have been made in nonlinear systems for the stabilization of

one fixed operating point, few attempts have been made to address the stabilization

problem for time-varying or non-fixed setpoints. In [96], a stabilizing nonlinear MPC

algorithm was developed for asymptotically constant reference signals. By selecting

a prediction horizon that is longer than the time the reference setpoint is assumed to

have converged, the constant pre-programmed value is used to design the stabilizing

controller parameters, i.e, the terminal stability constraint Xf and terminal penalty

W . The result is limited to reference signals that converge to a-priori known constant

setpoint. The method proposed in [97], combines a pseudo-linearization technique

with a nonlinear MPC strategy to stabilize a family of (known and constant) setpoints.

The linearization technique was used to obtain a constant linearization family that is

independent of the setpoint value. Fixed controller parameters were then developed to

achieve stability for the whole setpoint family. While the method provides a possible

solution for tracking changing setpoints, such pseudo-linearization transformation and

feedback is in general difficult to obtain and involve cumbersome computation.

A major challenge of extremum seeking control is that the optimum reference set-

point is not known in advance. The cost function and the dynamical system depend

on unknown parameters and hence the optimal operating point can only be deter-

mined in real-time. The future behaviour of the setpoint trajectory, which is crucial

for calculating model predictive control law is unavailable. Therefore, a single ter-

minal penalty function and constraint set is insufficient to guarantee stability of the

reference trajectory. Our stability result anchors on the design of time-varying sta-

bility parameters that depend on the current state measurement, setpoint trajectory

and parameter estimation error.
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9.1 Problem Description

Consider a constrained optimization problem of the form

minx∈Rnx p(t, x, θ) (9.1a)

s.t. cj(x) ≤ 0 j = 1 . . .mc (9.1b)

with θ representing unknown parameters, assumed to be uniquely identifiable and

lie within an initially known convex set Θ0 , B(θ0, z0
θ). The functions p and cj are

assumed to be C2 in all of their arguments (with locally Lipschitz second derivatives),

uniformly for t ∈ [0, ∞). The constraint cj ≤ 0 must be satisfied along the system’s

state trajectory x(t).

Assumption 9.1 The following assumptions are made about (9.1).

1. There exists ε0 > 0 such that ∂2p
∂x2 ≥ ε0I and ∂2c

∂x2 ≥ 0 for all (t, x, θ) ∈ (R+ ×

Rnx × Θǫ), where Θǫ is an ǫ neighborhood of Θ.

2. The feasible set

X =
{
x ∈ Rnx | max

j
cj(x) ≤ 0

}
,

has a nonempty interior.

Assumption 9.1 states that the cost surface is strictly convex in x and X is a non-

empty convex set. Standard nonlinear optimization results guarantee the existence

of a unique minimizer x∗(t, x, θ) ∈ X to problem 9.1. In the case of non-convex

cost surface, only local attraction to an extremum could be guaranteed. The control
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objective is to stabilize the nonlinear system

ẋ = f(x, ξ, u) + g(x, ξ, u)θ , F(x, ξ, u, θ) (9.2a)

ξ̇ = fξ(x, ξ) (9.2b)

to the optimum operating point or trajectory given by the solution of (9.1) while

obeying the input constraint u ∈ U ∈ Rnu in addition to the state constraint x ∈ X ∈

Rnx . The dynamics of the state ξ is assumed to satisfy the following input to state

stability condition with respect to x.

Assumption 9.2 If x is bounded by a compact set Bx ⊆ X, then there exists a

compact set Bξ ⊆ Rnξ such that ξ ∈ Bξ is positively invariant under 9.2.

9.2 Extremum Seeking Setpoint Design

9.2.1 Constraint Removal

An interior point barrier function method is used to enforce the inequality constraint.

The state constraint is incorporated by augmenting the cost function p as follows:

pa(t, x, θ) , p(t, x, θ) − 1

ηc

mc∑

j=1

ln(−cj(x)) (9.3)

with ηc > 0, a fixed constant. The augmented cost function (9.3) is strictly convex

in x and the unconstrained minimization of pa therefore has a unique minimizer in

int{X} which converges to that of (9.1) in the limit as ηc → ∞ [98].
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9.2.2 Setpoint Update Law

Let xr ∈ Rnx denote a reference setpoint to be tracked by x and θ̂ denote an estimate

of the unknown parameter θ. A setpoint update law ẋr can be designed based on

newton’s method, such that xr(t) converges exponentially to the (unknown) θ̂ de-

pendent optimum value of (9.3). To this end, consider an optimization Lyapunov

function candidate

Vr =
1

2
‖∂pa

∂x
(t, xr, θ̂)‖2 ,

1

2
‖zr‖2 (9.4)

For the remainder of this section, omitted arguments of pa and its derivatives are

evaluated at (t, xr, θ̂). Differentiating (9.4) yields

V̇r =
∂pa

∂x

(
∂2pa

∂x∂t
+
∂2pa

∂x2
ẋr +

∂2pa

∂x∂θ
˙̂
θ

)

. (9.5)

Using the update law

ẋr = −
(
∂2pa

∂x2

)−1 [
∂2pa

∂x∂t
+
∂2pa

∂x∂θ
˙̂
θ + kr

∂pT
a

∂x

]

, fr(t, xr, θ̂) (9.6)

with kr > 0 and r(0)=r0∈ int {X} results in

V̇r≤−kr‖zr‖2, (9.7)

which implies that the gradient function zr converges exponentially to the origin.

Lemma 9.3 Suppose (θ, θ̂) is bounded, the optimal setpoint xr(t) generated by (9.6)

is feasible and converges to x∗pa(θ̂), the minimizer of (9.3) exponentially.

Proof: Feasibility follows from the boundedness of (θ, θ̂) and Assumption 9.1.1 while

convergence follows from (9.7) and the fact that zr is a diffeomorphism.
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9.3 One-layer Integration Approach

Since the true optimal setpoint depends on θ, the actual desired trajectory x∗r(t, θ) is

not available in advance. However, xr(t, θ̂) can be generated from the setpoint update

law (9.6) and the corresponding reference input ur(xr) can be computed on-line.

Assumption 9.4 xr(t, θ̂) is such that there exists ur(xr) satisfying

0 = f(xr, ur, θ̂) (9.8)

The design objective is to design a model predictive control law such that the true

plant state x tracks the reference trajectory xr(t, θ̂). Given the desired time varying

trajectory (xr, ur), an attractive approach is to transform the tracking problem for

a time-invariant system into a regulation problem for an associated time varying

control system in terms of the state error xe = x − xr and stabilize the xe = 0

state. The formulation requires the MPC controller to drive the tracking error xe

into the terminal set Xef
(θ̃) at the end of the horizon. Since the system’s dynamics

is uncertain, we use the finite-time identifier (7.24) for online parameter adaptation

and incorporate robust features in to the adaptive controller formulation to account

for the impact of the parameter estimation error θ̃ in the design.

9.3.1 Min-max Adaptive MPC

Feedback min-max robust MPC is employed to provide robustness for the MPC con-

troller during the adaptation phase. The controller maximizes a cost function with

respect to θ and minimizes it over feedback control policies κ.

The integrated controller is given as

u = κmpc(t, xe, θ̂) , κ∗(0, xe, θ̂) (9.9a)
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κ∗ , arg min
κ(·,·,·,·)

J(t, xe, θ̂, κ) (9.9b)

where J(t, xe, θ̂, κ) is the (worst-case) cost associated with the optimal control prob-

lem:

J(t, xe, θ̂, κ) , max
θ∈Θ

∫ T

0

L(τ, xp
e, u

p, ur)dτ +W ( τ, xp
e(T ), θ̃p(T ) ) (9.10a)

s.t. ∀τ ∈ [0, T ]

ẋp = f(xp, ξ, up) + g(xp, ξ, up) θ, xp(0) = x (9.10b)

ξ̇ = f(xp, ξ), ξp(0) = ξ (9.10c)

ẋp
r = fr(t, xr, θ), x

p
r(0) = xr (9.10d)

xp
e = xp − xp

r (9.10e)

ẇp = β(gT (xp, up) − kww
p), wp(0) = w (9.10f)

Q̇p = β(wp T

wp), Qp(0) = Q (9.10g)

˙̂
θp = ΓQp θ̃p, θ̃p = θ − θ̂p, θ̂p(0) = θ̂ (9.10h)

up(τ) , κ(τ, xp
e(τ), θ̂

p(τ)) ∈ U (9.10i)

xp
e(τ) ∈ Xe, xp

e(T ) ∈ Xef
(θ̃p(T )) (9.10j)

where Xe =
{
xp

e : xp ∈ X
}
, Xef

is the terminal constraint and β ∈ {0, 1}. The

effect of the future parameter adaptation is incorporated in the controller design

via (9.10a) and (9.10j), which results in less conservative worst-case predictions and

terminal conditions.

9.3.2 Implementation Algorithm

Algorithm 9.5 The finite-time min-max MPC algorithm performs as follows: At

sampling instant ti

1. Measure the current states of the plant x = x(ti), ξ = ξ(ti) and obtain the
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current value of the desired setpoint xr = xr(ti) via the update law (9.6)

2. Obtain the current value of matrices w, Q and C from (7.3e), (7.3a) and (7.3b)

respectively

3. If det(Q) = 0 or cond(Q) is not satisfactory update the parameter estimates θ̂

and the uncertainty set Θ(t) , B
(

θ̂(t), zθ(t)
)

according to Algorithm 7.1

Else if det(Q) > 0 and cond(Q) is satisfactory, set β = 0 and update

θ̂ = Q−1(ti)C(ti), zθ = 0

End

4. Solve the optimization problem (9.9,9.10) and apply the resulting feedback con-

trol law to the plant until the next sampling instant

5. Increment i = i+ 1. If zθ > 0, repeat the procedure from step 1 for the next

sampling instant. Otherwise, repeat only steps 1 and 4 for the next sampling

instant.

Since the algorithm is such that the uncertainty set Θ contracts over time, the

conservatism introduced by the robustness feature in terms of constraint satisfaction

and controller performance reduces over time and when Θ contracts upon θ, the

min-max adaptive framework becomes that of a nominal MPC. The drawback of the

finite-time identifier is attenuated in this application since the matrix invertibility

condition is checked only at sampling instants. The benefit of the identifier, however,

is that it allows an earlier and immediate elimination of the robustness feature.

9.3.3 Lipschitz-based Adaptive MPC

While the min-max approach provides the tightest uncertainty cone around the actual

system’s trajectory, its application is limited by the enormous computation required

to obtain the solution of the min-max MPC algorithm. To address this concern,
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the robust tracking problem is re-posed as the minimization of a nominal objective

function subject to “robust constraints”.

The model predictive feedback is defined as

u = κmpc(t, xe, θ̂, zθ) = u∗(0) (9.11a)

u∗(.) , arg min
up

[ 0,T ]

J(t, xe, θ̂, zθ, u
p, ur) (9.11b)

where J(t, xe, θ̂, zθ, u
p, ur) is given by the optimal control problem:

J(t, xe, θ̂, zθ, u
p, ur) =

∫ T

0

L(t, xp
e, u

p, ur)dτ +W (xp
e(T ), zp

θ(T )) (9.12a)

s.t. ∀τ ∈ [0, T ]

ẋp = f(xp, up) + g(xp, up)θ̂, xp(0) = x (9.12b)

ξ̇p = f(ξp, xp), ξp(0) = ξ (9.12c)

ẋp
r = fr(t, xr, θ̂), x

p
r(0) = xr (9.12d)

xp
e = xp − xr (9.12e)

żp
e = β(Lf + LgΠ)zp

e + ‖g(xp, ξp, up)‖zθ, z
p
x(0) = 0 (9.12f)

Xp
e (τ) , B(xp

e(τ), z
p
e (τ)) ⊆ Xe, up(τ) ∈ U (9.12g)

Xp
e (T ) ⊆ Xef

(zp
θ(T )) (9.12h)

Since the Lipschitz-based robust controller is implemented in open-loop, there is

no setpoint trajectory xr(θ̂) feedback during the inter-sample implementation. There-

fore, the worst-case deviation zp
e ≥ maxθ∈Θ ‖xe − xp

e‖ = maxθ∈Θ ‖x − xp‖. Hence zp
e

given in (9.12f) follows from (7.20), assuming an appropriate knowledge of Lipschitz

bounds as follows:

Assumption 9.6 A set of functions Lj : X × Rnξ × U → R+, j ∈ {f, g} are known

which satisfy
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Lj(X, ξ, u) ≥ min
{

Lj

∣
∣
∣ sup

x1,x2∈X

(

‖j(x1, ξ, u)− j(x2, ξ, u)‖−Lj‖x1 − x2‖
)

≤ 0
}

,

9.3.4 Implementation Algorithm

Algorithm 9.7 The finite-time Lipschitz based MPC algorithm performs as follows:

At sampling instant ti

1. Measure the current states of the plant x = x(ti), ξ = ξ(ti) and obtain the

current value of the desired setpoint xr = xr(ti) via the update law (9.6)

2. Obtain the current value of matrices w, Q and C from (7.3e), (7.3a) and (7.3b)

respectively

3. If det(Q) = 0 or cond(Q) is not satisfactory, set β = 1 and and update the

parameter estimates θ̂ = θ̂(ti) and uncertainty bounds zθ = zθ(ti) and zp
θ (T ) =

zp
θ(ti + T ) via (7.2), (7.6) and (7.23) respectively.

Else if det(Q) > 0 and cond(Q) is satisfactory, set β = 0 and update

θ̂ = Q−1(ti)C(ti), zθ = 0

End

4. Solve the optimization problem (9.11,9.12) and apply the resulting feedback

control law to the plant until the next sampling instant

5. Increment i = i+ 1. If zθ > 0, repeat the procedure from step 1 for the next

sampling instant. Otherwise, repeat only steps 1 and 4 for the next sampling

instant.

Implementing the adaptive MPC control law according to Algorithm 9.7 ensures

that the uncertainty bound zθ reduces over time and hence, the error margin zp
x

imposed on the predicted state also reduces over time and shrinks to zero when the

actual parameter estimate is constructed in finite-time.
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9.3.5 Robust Stability

Robust stability is guaranteed under the standard assumptions that Xef
⊆ Xe is an

invariant set, W is a local robust CLF for the resulting time varying system and

the decay rate of W is greater than the stage cost L within the terminal set Xef
in

conjunction with the requirement for W to decrease and Xf to enlarge with decreased

parametric uncertainty.

9.3.6 Enhancing Parameter Convergence

In min-max adaptive formulation, the terminal penalty is parameterized as a function

of θ̃. This ensures that the algorithm will seek to reduce the parameter error in the

process of optimizing the cost function and will automatically inject some excitation in

the closed-loop system, when necessary, to enhance parameter convergence. However,

this is not the case in the Lipschitz-based approach since the control calculation only

uses nominal model. To improve the quality of excitation in the closed-loop and

thereby achieve parameter convergence in a minimum time, the invertibility condition

(Lemma 5.2, condition (5.8)) can be incorporated in the robust optimization problem

by adding an excitation term to the cost function J . The proposed excitation cost is

JE =
β

1 + Ep
θ (T )

(9.14)

where

Ep
θ (τ) = λmin{Qp(τ)} or Ep

θ (τ) = νT Qp(τ) ν (9.15)

with ν ∈ Rnθ a unit vector. Note that any reduction in the cost function due to JE

implies an improvement in the rank of Qp. Though, the predicted regressor matrix

Qp differs from the actual matrix Q, a sufficient condition for Q > 0 is for Qp > zQ ≥

‖Q−Qp‖.
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9.4 Two-layer Integration Method

The integration task can also be posed as a two degree of freedom paradigm where

the problem is divided into two phases. The first phase deals with generating a state

trajectory that optimizes a given objective function while respecting the system’s

dynamics and constraints, and the second phase deals with the design of a controller

that would regulate the system around the trajectory. At each sampling instant, the

optimum solution to the economic optimization problem obtained via (9.6) is passed

down to the tracking controller for implementation. The approach can be viewed as

sampling and zero-hold implementation of the setpoint update law.

The MPC controller design follows that of (9.9) and (9.11). The only difference is

that rather than solving the setpoint differential equation (9.6) inside the MPC loop,

the measurement of xr obtained at sampling instants is used as the desired setpoint

to be tracked, that is, equations (9.10d) and (9.12d) are replaced by

ẋp
r = 0, xp

r(0) = xr. (9.16)

The adaptive controllers are implemented according to Algorithms 9.5 and 9.7.

9.5 Main Result

The integration result is provided in the following:

Theorem 9.8 Consider problem (9.1) subject to system dynamics (9.2), and satisfy-

ing Assumption 9.1. Let the controller be (9.9) or (9.11) with setpoint update law (9.6)

and parameter identifier (7.24). If the invertibility condition (equation 5.8) is satis-

fied, then for any ̺ > 0, there exists constant ηc such that limt→∞ ‖x(t)−x∗(t, θ)‖ ≤ ̺,

with x∗(t, θ) the unique minimizer of (9.1). In addition x ∈ X, u ∈ U for all t ≥ 0.
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Proof: We know from from triangle inequality that

‖x− x∗(θ)‖ ≤ ‖x− xr(θ̂)‖ + ‖xr(θ̂) − x∗pa(θ̂)‖ + ‖x∗pa(θ̂) − x∗(θ̂)‖ + ‖x∗(θ̂) − x∗(θ)‖

(9.17)

where x∗pa(θ̂) denotes the unique minimizer of the unconstrained problem (9.3) for θ ≡

θ̂. Since the MPC controllers guarantees asymptotic convergence of xe to the origin,

we have limt→∞ ‖x−xr(θ̂)‖ = 0. Also, it follows from Lemma 9.3, that ‖xr(θ̂)−x∗pa(θ̂)‖

converges exponentially to the origin. Moreover, it is well established that x∗pa(θ̂)

converges continuously to x∗(θ̂) as ηc → ∞ [98, Proposition 4.1.1]. Therefore there

exists a class K function 1 αc(·) such that

lim
t→∞

‖x∗pa(θ̂) − x∗(θ̂)‖ ≤ αc

(
1

ηc

)

. (9.18)

The finite-time identification procedure employed ensures that θ̂ = θ for all t ≥ tc,

with tc <∞ and thus limt→∞ ‖x∗(θ̂) − x∗(θ)‖ = 0.

Finally, we have

lim
t→∞

‖x(t) − x∗(t, θ)‖ ≤ αc

(
1

ηc

)

(9.19)

and the result follows for sufficiently large ηc. The constraint satisfaction claim follows

from the feasibility of the adaptive model predictive controllers.

1A continuous function µ : R+ → R+ is of class K if it is strictly increasing and µ(0) = 0.
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9.6 Simulation Example

Consider the parallel isothermal stirred-tank reactor in which reagent A forms product

B and waste-product C [48]. The reactors dynamics are given by

dAi

dt
= AinF

in
i

Vi
− Ai

F out
i

Vi
− ki1Ai − 2ki2A

2
i ,

dBi

dt
= −Bi

F out
i

Vi
+ ki1Ai,

dCi

dt
= −Ci

F out
i

Vi
+ ki2A

2
i ,

where Ai, Bi, Ci denote concentrations in reactor i, kij are the reaction kinetic con-

stants, which are only nominally known. The inlet flows F in
i are the control inputs,

while the outlet flows F out
i are governed by PI controllers which regulate reactor

volume to V 0
i .

The economic cost function is the net expense of operating the process at steady

state.

p(Ai, s, θ) =
2∑

i=1

[(pi1si + PA − PB)ki1AiV
0
i + (pi2si + 2PA)ki2A

2
iV

0
i ] (9.20)

where PA, PB denote component prices, pij is the net operating cost of reaction j in

reactor i. Disturbances s1, s2 reflect changes in the operating cost (utilities, etc) of

each reactor. The control objective is to robustly regulate the process to the optimal

operating point that optimizes the economic cost (9.20) while satisfying the following

state constraints 0 ≤ Ai ≤ 3, cv = A2
1V

0
1 + A2

2V
0
2 − 15 ≤ 0 and input constraint

0.01 ≤ F in
i ≤ 0.2. The reaction kinetics are assumed to satisfy 0.01 ≤ ki ≤ 0.2.

The two-layer approach was used for the simulation. The setpoint value available

at sampling instant is passed down to the MPC controller for implementation. The

robustness of the adaptive controller is guaranteed via the Lipschitz bound method.

The stage cost is selected as a quadratic cost L(xe, ue) = xT
e Qx xe + uT

e Ru ue, with
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Qx > 0 and Ru ≥ 0.

Terminal Penalty and Terminal Set Design

Let x = [A1, A2]
T , θ = [k11, k12, k21, k22]

T and u = [F in
1 , F

in
2 ]T , the dynamics of the

system can be expressed in the form:

ẋ = −







x1kV 1(ξ1−V 0
1 +ξ3)

ξ1

x2kV 2(ξ2−V 0
2 +ξ4)

ξ2







︸ ︷︷ ︸

fp1

+







Ain

ξ1
0

0 Ain

ξ2







︸ ︷︷ ︸

fp2

u−







x1 2x2
1 0 0

0 0 x2 2x2
2







︸ ︷︷ ︸

g

θ,

where ξ1, ξ2 are the two tank volumes and ξ3, ξ4 are the PI integrators. The system

parameters are V 0
1 = 0.9, V 0

2 = 1.5, kv1 = kv2 = 1, PA = 5, PB = 26, p11 = p21 = 3

and p12 = p22 = 1.

A Lyapunov function for the terminal penalty is defined as the input to state

stabilizing control Lyapunov function (iss-clf):

W (xe) =
1

2
xT

e xe (9.21)

Choosing a terminal controller

u = kf(xe) = −f−1
p2

(

− fp1 + k1xe + k2 g g
T xe

)

, (9.22)

with design constants k1, k2 > 0, the time derivative of (9.21) becomes

Ẇ (xe) = −k1 x
T
e xe − xT

e g θ − k2x
T
e g g

T xe (9.23)

≤ −k1‖xe‖2 +
1

4k2

‖θ‖2 (9.24)

Since the stability condition requires Ẇ (xe(T ))+L(T ) ≤ 0. We choose the weighting
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matrices of L as Q = 0.5I and R = 0. The terminal state region is selected as

Xef
= {xe : W (xe) ≤ αe} (9.25)

such that

kf (xe) ∈ U, Ẇ (T ) + L(T ) ≤ 0, ∀(θ, xe) ∈ (Θ, Xef
) (9.26)

Since the given constraints requires the reaction kinetic θ and concentration x to be

positive, it follows that

Ẇ + L = −(k1 − 0.5)‖xe‖2 − xT
e g θ − k2x

T
e g g

T xe ≤ 0 (9.27)

for all k1 > 0.5 and xe > 0. Moreover, for xe < 0, the constants k1 and k2 can always

be selected such that (9.27) is satisfied ∀ θ ∈ Θ. The task of computing the terminal

set is then reduced to finding the largest possible αe such that for kf(.) ∈ U for all

x ∈ Xef
.

The terminal cost (9.21) is used for this simulation and the terminal set is re-

computed at every sampling instant using the current setpoint value. The system was

simulated subject to a ramping measured economic disturbance in s2 from t = 6 to

10. The simulation results are presented in Figures 9.1 to 9.5. The phase trajectories

displayed in Figure 9.1 shows that the reactor states obeys the imposed constraints

while Figure 9.2 shows that the actual, unknown setpoint cost p(t, xr, θ) converges to

the optimal, unknown p∗(t, x∗, θ). Figure 9.3 confirms the effectiveness of the adaptive

MPC in tracking the desired setpoint while Figure 9.4 shows the convergence of the

parameter estimates to the true values. The controls action shown in Figure 9.5 is

implementable and satisfies the given constraints.
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Figure 9.1: Phase diagram and feasible state region

171



0 5 10 15
−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

pr
of

it 
fu

nc
tio

n

time

p*(t,x*,θ)
p(t,x

r
,θ)

Figure 9.2: Optimal and actual profit functions

0 5 10 15
0.5

1

1.5

2

2.5

3

3.5

time

st
at

es

x
x

r

reactor 1

reactor 2

Figure 9.3: Reference trajectories and closed-loop states

172



0 5 10 15
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

time

pa
ra

m
et

er
s

k
11

k
21

k
12

k
22

Figure 9.4: Unknown parameters and estimates
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Figure 9.5: Closed-loop system’s inputs
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9.7 Conclusions

This chapter provides a formal design technique for integrating RTO and MPC for

constrained nonlinear uncertain systems. The solution is based upon the tools and

strategies developed in the previous chapters. A single layer and two-layer approaches

are presented. The constrained RTO problem is solved by the use of interior point

barrier functions and Newton’s method. Adaptive nonlinear MPC based on min-max

framework and Lipschitz bounds proposed drive the system’s state to the minimizer

of the uncertain objective function.
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Chapter 10

Concluding Remarks

The integration of model predictive control (MPC) and real-time optimization (RTO)

for an optimal plant operation remains an open field of research. The achievable

economic benefit of the integrated module depends, to some extent, on the accuracy

of model updates. A better performance can be achieved if the model is updated

online as more information becomes available. One way to accomplish this is to pose

the problem as an adaptive extremum seeking control problem. This thesis presents

a formal scheme that integrates RTO and MPC by solving this class of optimization

problems.

10.1 Summary of Contribution

The integration task was addressed in Chapter 3 for linear uncertain systems with

only output measurement. The layered control approach was modified and employed

for designing the ESC. Lyapunov-based techniques are used to develop a scheme that

achieves the integrated task when it can be shown that a persistency of excitation

(PE) condition is satisfied. The satisfaction of such a condition ensures that the

closed-loop trajectories provide sufficient excitation for the identification of the true

cost that is to be optimized. For linear systems, there are established theories that
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provide guidelines for selecting or designing a perturbation input signal required to

achieve the necessary excitation. However, this is not the case for nonlinear systems.

The problem of determining appropriate excitation conditions for nonlinear sys-

tems with uncertain reference setpoint was addressed in Chapter 4. In contrast to

standard approaches that determine sufficient dither signals off-line, the method pro-

posed generates perturbation signals that satisfy the excitation condition in closed-

loop. The benefit of this approach is that parameter convergence is guaranteed with

minimal but sufficient level of perturbation.

In Chapter 5, a finite-time identification procedure that allows exact reconstruc-

tion of the unknown parameters in finite-time is developed provided a given excitation

condition is satisfied. To enhance the applicability of the finite-time (FT) procedure

in practical situations, a novel adaptive compensator that (almost) recovers the per-

formance of the FT identifier is proposed in Chapter 6. The compensator guaran-

tees exponential convergence of the parameter estimation error at a rate dictated

by the closed-loop system’s excitation. It is shown that the adaptive compensator

can be used to improve upon any existing adaptive controllers. The modification

provided guarantees exponential stability of the parametric equilibrium when the

excitation condition is satisfied. Otherwise, the algorithm preserves the original sys-

tem’s closed-loop properties. The identification techniques are well suited for most

adaptive mechanisms and do not require the availability of the velocity state vector.

It is demonstrated, via simulation examples, that the identification procedures guar-

antee parameter convergence in situation where existing methods, driven by tracking

or state prediction error, fail.

In general, perturbation signals are usually injected into closed-loop system to

provide the sufficient excitation necessary for parameter convergence. However, sus-

tained perturbation adversely affects the closed-loop performance of adaptive con-

trollers. The problem of removing auxiliary perturbation signals when convergence
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is achieved is addressed in both Chapters 5 and 6. While the result in Chapter 5

provides a direct solution to the problem, an algorithm is developed in Chapter 6 for

the dither signal removal.

Chapters 7 and 8 focus on the control of constrained uncertain nonlinear systems

using MPC. Since certainty equivalence approaches are not applicable to nonlinear

systems (in general), robust techniques are incorporated in the controller design to ac-

count for the transient impact of parameter estimation error. The benefits of incorpo-

rating the robustness feature include robust constraint satisfaction and the possibility

of obtaining optimal system’s excitation without injecting any auxiliary perturbation

signal. Another important benefit of the proposed controller framework is that it

allows for gradual reduction in the conservatism and numerical burden introduced by

the robust features as the model uncertainty reduces. Moreover, a constructive means

of recovering the underlying nominal MPC framework when parameters are identified

is provided. The MPC scheme is based on generalized stabilizing criteria, which can

be satisfied by a series of NMPC strategies such as Lyapunov based approaches and

contractive constraints methods. Chapter 8 provides an extension of the adaptive

MPC scheme to parametric nonlinear systems subject to additional time-varying dis-

turbances. To avoid the undesirable phenomena such as inferior transient behaviour

that plaques adaptive control of systems under external disturbances, a procedure is

developed to update the system’s model only when an improved estimate is obtained.

Chapter 9 employs the finite-time identification procedure and the adaptive MPC

strategy developed in Chapters 5 and 7 respectively to provide a formal integration

scheme for constrained uncertain nonlinear systems. A single-layer and two-layer

approaches are presented. The methods proposed solve the control and optimization

problem at the same frequency, thereby improving disturbance attenuation. The

main limitation of the approach is the numerical computations involved especially

with respect to the robust control calculations.
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10.2 Future Research Directions

While the theoretical development of the FT identification is relatively complete,

the result depends on the availability of full state measurement. The procedure in

Chapters 5 and 6 can be potentially extended to an output feedback problem and the

state estimation error can be treated as disturbances.

The theoretical issues related to the results in Chapters 7 to 9 have not yet been

exhausted. From the MPC part, one issue that needs to be further addressed is

the design of the stabilizing robust MPC parameters; the terminal cost and terminal

constraint set. For nonlinear uncertain systems, the design of robust CLF and more

importantly its corresponding invariant set remains an open research problem.

So far the approach has only been tested in simulation, future work could focus

on its application to physical problems. While the Lipschitz-based robust method

presents a minimal computational limitation, the min-max strategy offers less conser-

vative results. However, its application relies on the availability of efficient min-max

solvers.
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[17] R. Findeisen, L. Imsland, F. Allgöwer, and B. Foss, “State and output feedback
nonlinear model predictive control: An overview,” Europ. J. Contr., vol. 9(2-3),
pp. 190–207, 2003.

[18] F. A. Fontes, “A general framework to design stabilizing nonlinear model pre-
dictive controllers,” Systems and Control Letters, vol. 42, pp. 127–143, 2001.

[19] M. Cannon, “Efficient nonlinear model predictive control algorithms,” Annual
Reviews in Control, vol. 28, pp. 229–237, 2004.

[20] T. Ohtsuka, “A continuation/gmres method for fast computation of nonlinear
receding horizon control,” Automatica, vol. 40, no. 4, pp. 563–574, 2004.

[21] D. DeHaan and M. Guay, “A real-time framework for model-predictive control of
continuous-time nonlinear systems,” IEEE Transactions on Automatic Control,
vol. 52, no. 11, pp. 2047–2057, 2007.

[22] D. Marruedo, T. Alamo, and E. Camacho, “Input-to-state stable MPC for con-
strained discrete-time nonlinear systems with bounded additive uncertainties,”
in In Proc. of IEEE Conference on Decision and Control, 2002, pp. 4619–4624.

180



[23] P. Scokaert, J. Rawlings, and E. Meadows, “Discrete-time stability with pertur-
bations: Application to model predictive control,” Automatica, vol. 33, no. 3,
pp. 463–470, 1997.

[24] H. Michalska and D. Mayne, “Robust receding horizon control of constrained
nonlinear systems,” IEEE Transactions on Automatic Control, vol. 38, no. 11,
pp. 1623–1633, 1993.

[25] D. Limon, J. Bravo, T. Alamo, and E. Camacho, “Robust MPC of constrained
nonlinear systems based on interval arithmetic,” in IEE Proceedings on Control
Theory and Applications, vol. 152, May 2005, pp. 325 – 332.

[26] J. H. Lee and Z. Yu, “Worst-case formulations of model predictive control for
systems with bounded parameters,” Automatica, vol. 33, no. 5, pp. 763–781,
1997.

[27] L. Magni, H. Nijmeijer, and A. van der Schaft, “A receding horizon approach to
the nonlinear h∞ control problem,” Automatica, vol. 37, pp. 429–435, 2001.

[28] M. Shouche, H. Genceli, P. Vuthandam, and M. Nikolaou, “Simultaneous con-
strained model predictive control and identification of DARX processes,” Auto-
matica, vol. 34, no. 12, pp. 1521–1530, 1998.

[29] T.-H. K. Hiroaki Fukushima and T. Sugie, “Adaptive model predictive control
for a class of constrained linear systems based on the comparison model,” Auto-
matica, vol. 43, no. 2, pp. 301–308, 2007.

[30] D. Q. Mayne and H. Michalska, “Adaptive receding horizon control for con-
strained nonlinear systems,” in In Proc. of IEEE Conference on Decision and
Control, San Antonio, Texas, 1993, pp. 1286–1291.

[31] V. Adetola and M. Guay, “Adaptive receding horizon control of nonlinear sys-
tems,” in Proc. of IFAC Symposium on Nonlinear Control systems, Stuttgart,
2004, pp. 1055–1060.

[32] D. DeHaan and M. Guay, “Adaptive robust mpc: A minimally-conservative
approach,” in Proc. of American Control Conference, July 2007.

[33] D. DeHaan, V. Adetola, and M. Guay, “Adaptive robust mpc: An eye towards
computational simplicity,” in Proc. of IFAC Symposium on Nonlinear Control
systems, South Africa, 2007.

[34] X. Zhu, W. Hong, and S. Wang, “Implementation of advanced control for a heat-
integrated distillation column system,” in Industrial Electronics Society, 2004.
IECON 2004. 30th Annual Conference of IEEE, vol. 3, 2-6 Nov. 2004, pp. 2006–
2011Vol.3.
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