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The matrix exponential eAt plays a central role in linear system and control theory. This paper develops a method to compute
the accurate solution for the matrix exponential eAt with the assumption that the matrix A has an eigenvalue s1 = 0. The
examples show the effectiveness of the proposed method.
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1. Introduction
It is well known that matrix is widely used in many areas
(Dehghan & Hajarian, 2010, 2012; Hagiwara, 2011). For
example, Al Zhour and Kilicman discussed some different
matrix products for partitioned and non-partitioned matrices
and some useful connections of the matrix products (Zhour
& Kilicman, 2007). Ding and Chen defined a new oper-
ation – the block-matrix inner product – and presented a
least square-based and a gradient-based iterative solutions
of coupled matrix equations (Ding & Chen, 2005, 2006).
Ding studied the transformations and relationships between
some special matrices (Ding, 2010).

The solution eAtx(0) of the differential equation ẋ(t) =
Ax(t) plays an important role in linear system and con-
trol theory. It is well known that eAt can be defined by a
convergent power series eAt = ∑∞

i=0((At)i/i!). The infinite
series

∑∞
i=0((At)i/i!) makes researchers design accurate

controllers difficultly in theory and application, so it is
important to develop a frame work to get the accurate
solution of eAt .

In recent years, there exist many methods for com-
puting eAt (Ben Taher & Rachidi, 2002; Bernstein & So,
1993; Cheng & Yau, 1997; Moler & Loan, 2003; Skaflestad
& Wright, 2009; Wu, 2011; Zafer, 2008). Among these
methods, the explicit formulas can overcome the truncation
errors which are widely used (Ben Taher & Rachidi, 2002;
Bernstein & So, 1993; Cheng & Yau, 1997; Wu, 2011).
Based on the work in Bernstein and So (1993) and Wu
(2011), the objective of this paper is to propose a method
to compute the accurate solution of eAt , where the matrix A
satisfies An = ρ1An−1 + ρ2An−2. If the parameter ρ1 = 0 or
ρ2 = 0, the matrix is the same as the matrix in Wu (2011),
so our work is more widely used.

∗Corresponding author. Email: chenjing1981929@126.com

Briefly, this paper is organised as follows. Section 2
describes the main results. Section 3 provides two illus-
trative examples. Finally, concluding remarks are given in
Section 4.

2. The main results
Let us introduce some notations first. The symbol I stands
for an identity matrix of appropriate sizes, C denotes the
set of complex number and C

n×n denotes the set of n × n
complex matrix.

As is well known, eAt , A ∈ C
n×n, can be written as the

following convergent power series

eAt = I + t
1!A + t2

2!A2 + t3

3!A3 + · · ·

+ tn−2

(n − 2)!An−2 + tn−1

(n − 1)!An−1 + · · · . (1)

Bernstein gave explicit formulas for A2 = A, A2 =
ρIn and A3 = ρA in Bernstein and So (1993). Wu
gave explicit formulas for Ak+1 = ρAk , Ak+2 = ρ2Ak and
Ak+3 = ρ3Ak in Wu (2011). In this paper, we will pro-
pose a method for An = ρ1An−1 + ρ2An−2 + · · · + ρkAn−k ,
k < n.

First, let A ∈ C
n×n and An = An−1 + An−2, then An+1 =

2An−1 + An−2, An+2 = 3An−1 + 2An−2, . . . , An+k =
β1An−1 + β2An−2, and we conclude

eAt = I + t
1!A + t2

2!A2 + t3

3!A3 + · · · + a1(t)An−2

+ a2(t)An−1, (2)

© 2014 The Author(s). Published by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been
asserted.

mailto:chenjing1981929@126.com


Systems Science & Control Engineering: An Open Access Journal 3

where the parameters a1(t) and a2(t) be computed as

a1(t) = tn−2

(n − 2)! + tn

n! + tn+1

(n + 1)! + 2tn+2

(n + 2)!
+ 3tn+3

(n + 3)! + 5tn+4

(n + 4)! + · · · , (3)

a2(t) = tn−1

(n − 1)! + tn

n! + 2tn+1

(n + 1)! + 3tn+2

(n + 2)!
+ 5tn+3

(n + 3)! + 8tn+4

(n + 4)! + · · · . (4)

Equations (3) and (4) are infinite series, so it is difficult to
obtain the exact figures of a1(t) and a2(t). In this paper,
the solution is using the matrix theory to overcome the
difficulty.

In order to compute the parameters, some mathematical
preliminaries are required.

Lemma 1 A matrix⎡
⎢⎢⎢⎢⎢⎣

1 s1 s1
2 · · · s1

n−1

1 s2 s2
2 · · · s2

n−1

1 s3 s3
2 · · · s3

n−1

...
...

...
. . .

...
1 sn sn

2 · · · sn
n−1

⎤
⎥⎥⎥⎥⎥⎦ (5)

is called Vandermonde matrix, and∣∣∣∣∣∣∣∣∣∣∣

1 s1 s1
2 · · · s1

n−1

1 s2 s2
2 · · · s2

n−1

1 s3 s3
2 · · · s3

n−1

...
...

...
. . .

...
1 sn sn

2 · · · sn
n−1

∣∣∣∣∣∣∣∣∣∣∣
=

∏
1�j<i�n

(si − sj). (6)

Lemma 2 The matrix equation AX = 0, X ∈ R
n×1, has

only one solution X = 0, where 0 being a column vector
whose entries are all 0 and the matrix A satisfies

|A| =

∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

∣∣∣∣∣∣∣∣∣
�= 0. (7)

Lemma 3 The matrix A ∈ C
n×n, the characteristic poly-

nomial of A is f (λ), then

f (A) = An − αn−1An−1 − αn−2An−2 − · · · − α1I = 0.

Using Lemma 3, Equation (1) can also be simplified as

eAt = b0(t)I + b1(t)A + b2(t)A2 + · · · + bn−2(t)An−2

+ bn−1(t)An−1. (8)

Because the matrix A satisfies An = An−1 + An−2, we con-
clude that the matrix A has three different eigenvalues:

s1 = 0, s2 and s3, and the eigenvalue s1 = 0 of the matrix A
is an n − 2 eigenvalue. Comparing Equations (2) and (8),
we get

(b0(t) − 1)1 +
(

b1(t) − t
1!

)
si +

(
b2(t) − t2

2!
)

s2
i + · · ·

+ (bn−2(t) − a1(t))sn−2
i + (bn−1(t) − a2(t))sn−1

i = 0.
(9)

The matrix A has three eigenvalues, we built the matrix
equation as

⎡
⎢⎣

1 s1 s1
2 · · · s1

n−1

1 s2 s2
2 · · · s2

n−1

1 s3 s3
2 · · · s3

n−1

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0(t) − 1

b1(t) − t
1!

...
bn−2(t) − a1(t)
bn−1(t) − a2(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

(10)

where 3 < n, the above matrix equation has two or more
solutions, so we cannot obtain the exact figures of a1(t) and
a2(t) by bi(t), i = 0, 1, . . . , n − 1.

Substituting s1 = 0 into Equation (9) gets b0(t) = 1, and
after the derivation of s1 to Equation (9), we get

(
b1(t) − t

1!
)

+ 2
(

b2(t) − t2

2!
)

si + · · ·

+ (n − 2)(bn−2(t) − a1(t))sn−3
i

+ (n − 1)(bn−1(t) − a2(t))sn−2
i = 0 (11)

taking s1 = 0 into Equation (11) gets b1(t) = t/1! After
the 2, 3, . . . , n − 3 derivation of si to Equation (9),
we can get n − 4 equations. Taking s1 = 0 into these
equations gets b2(t) = t2/2!, b3(t) = t3/3!, . . . , bn−3(t) =
(tn−3/(n − 3)!). Finally, we get

(bn−2(t) − a1(t))sn−2
i + (bn−1(t) − a2(t))sn−1

i = 0. (12)

Taking s2 and s3 into Equation (12) gets

[
sn−2

2 s2
n−1

sn−2
3 s3

n−1

] [
cbn−2(t) − a1(t)
bn−1(t) − a2(t)

]
= 0. (13)

Because ∣∣∣∣∣s
n−2
2 s2

n−1

sn−2
3 s3

n−1

∣∣∣∣∣ �= 0, (14)

and based on Lemma 2, we can conclude that bn−2(t) =
a1(t) and bn−1(t) = a2(t).
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Theorem 1 Let A ∈ C
n×n and An = An−1 + An−2, then

we have

eAt = I + t
1!A + t2

2!A2 + · · · + tn−3

(n − 3)!An−3

+ bn−2(t)An−2 + bn−1(t)An−1, (15)

where bn−2(t) and bn−1(t) are computed by

[
bn−2(t)
bn−1(t)

]
=

[
sn−2

2 s2
n−1

sn−2
3 s3

n−1

]−1

⎡
⎢⎢⎢⎢⎢⎣

es2t −
n−3∑
i=0

tisi
2

i!

es3t −
n−3∑
i=0

tisi
3

i!

⎤
⎥⎥⎥⎥⎥⎦ , (16)

and s2 = (1 + √
5)/2, s3 = (1 − √

5)/2.

Proof Rewritten Equations (2) and (8)

eAt = I + t
1!A + t2

2!A2 + t3

3!A3 + · · · + a1(t)An−2

+ a2(t)An−1,

eAt = b0(t)I + b1(t)A + b2(t)A2 + · · · + bn−2(t)An−2

+ bn−1(t)An−1.

Because the parameters b0(t) = 1, b1(t) = t/1!, . . . , bn−3(t) =
(tn−3/(n − 3)!), a1(t) = bn−2(t) and a2(t) = bn−1(t), we
conclude

eAt = I + t
1!A + t2

2!A2 + t3

3!A3 + · · · + bn−2(t)An−2

+ bn−1(t)An−1.

The matrix A has three eigenvalues s1 = 0, s2 =
(1 + √

5)/2 and s3 = (1 − √
5)/2. Replacing A by si, i =

2, 3, we get

esi t = 1 + t
1! si + t2

2! s2
i + t3

3! s3
i + · · · + bn−2(t)sn−2

i

+ bn−1(t)sn−1
i . (17)

In order to compute the parameters bn−2(t) and bn−1(t), we
simplify Equation (17) as

esi t −
n−3∑
i=0

tisi
i

i! = bn−2(t)sn−2
i + bn−1(t)sn−1

i . (18)

Taking s2 and s3 in Equation (18) gets

[
bn−2(t)
bn−1(t)

]
=

[
sn−2

2 s2
n−1

sn−2
3 s3

n−1

]−1

⎡
⎢⎢⎢⎢⎣

es2t −
n−3∑
i=0

tisi
2

i!

es3t −
n−3∑
i=0

tisi
3

i!

⎤
⎥⎥⎥⎥⎦ . (19)

�

Theorem 2 Let A ∈ C
n×n and An = ρ1An−1 + ρ2An−2,

then we have

eAt = I + t
1!A + t2

2!A2 + · · · + tn−3

(n − 3)!An−3

+ bn−2(t)An−2 + bn−1(t)An−1, (20)

where bn−2(t) and bn−1(t) are computed by

[
bn−2(t)
bn−1(t)

]
=

[
sn−2

2 s2
n−1

sn−2
3 s3

n−1

]−1

⎡
⎢⎢⎢⎢⎣

es2t −
n−3∑
i=0

tisi
2

i!

es3t −
n−3∑
i=0

tisi
3

i!

⎤
⎥⎥⎥⎥⎦ , (21)

ρ1 and ρ2 satisfy ρ2
1 + 4ρ2 > 0, s2 = (ρ1 +

√
ρ2

1 + 4ρ2)/2

and s3 = (ρ1 −
√

ρ2
1 + 4ρ2)/2, when ρ1 and ρ2 sat-

isfy ρ2
1 + 4ρ2 < 0, s2 = (ρ1 +

√
−ρ2

1 − 4ρ2i)/2 and s3 =
(ρ1 −

√
−ρ2

1 − 4ρ2i)/2.

Remark 1 If ρ1 and ρ2 satisfy ρ2
1 + 4ρ2 = 0, then s2 = s3.

Taking s2 in Equation (9) gives

es2t −
n−3∑
i=0

tisi
2

i! = bn−2(t)sn−2
2 + bn−1(t)sn−1

2 , (22)

after the derivation of s2 to Equation (9), we get

tes2t −
n−3∑
i=1

itisi−1
2

i! = (n − 2)bn−2(t)sn−3
2

+ (n − 1)bn−1(t)sn−2
2 ,

then the parameters bn−2(t) and bn−1(t) are computed by

[
bn−2(t)
bn−1(t)

]
=

[
sn−2

2 s2
n−1

(n − 2)sn−3
2 (n − 1)sn−2

2

]−1

×

⎡
⎢⎢⎢⎢⎣

es2t −
n−3∑
i=0

tisi
2

i!

tes2t −
n−3∑
i=1

itisi−1
2

i!

⎤
⎥⎥⎥⎥⎦ . (23)

Theorem 3 Let A ∈ C
n×n and An = An−1 + An−2 +

An−3, then we have

eAt = I + t
1!A + t2

2!A2 + · · · + tn−4

(n − 4)!An−4

+ bn−3(t)An−3 + bn−2(t)An−2 + bn−1(t)An−1, (24)
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where bn−3(t), bn−2(t) and bn−1(t) are computed by

⎡
⎣bn−3(t)

bn−2(t)
bn−1(t)

⎤
⎦ =

⎡
⎣sn−3

2 sn−2
2 s2

n−1

sn−3
3 sn−2

3 s3
n−1

sn−3
4 sn−2

4 s4
n−1

⎤
⎦

−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

es2t −
n−4∑
i=0

tisi
2

i!

es3t −
n−4∑
i=0

tisi
3

i!

es4t −
n−4∑
i=0

tisi
4

i!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(25)

s2, s3 and s4 are the roots of s3 − s2 − s − 1 = 0.

Theorem 4 Let A ∈ C
n×n and An = ρ1An−1 + ρ2An−2 +

ρ3An−3, then we have

eAt = I + t
1!A + t2

2!A2 + · · · + tn−4

(n − 4)!An−4

+ bn−3(t)An−3 + bn−2(t)An−2 + bn−1(t)An−1, (26)

where bn−3(t), bn−2(t) and bn−1(t) are computed by

⎡
⎣bn−3(t)

bn−2(t)
bn−1(t)

⎤
⎦ =

⎡
⎣sn−3

2 sn−2
2 s2

n−1

sn−3
3 sn−2

3 s3
n−1

sn−3
4 sn−2

4 s4
n−1

⎤
⎦

−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

es2t −
n−4∑
i=0

tisi
2

i!

es3t −
n−4∑
i=0

tisi
3

i!

es4t −
n−4∑
i=0

tisi
4

i!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(27)

s2, s3 and s4 are the different roots of s3 − ρ1s2 − ρ2s −
ρ3 = 0.

Remark 2 If s2, s3 and s4 are not the different roots, we can
also compute the parameters bn−3(t), bn−2(t) and bn−1(t) by
using the method as in Remark 1.

Theorem 5 Let A ∈ C
n×n and An = ρ1An−1 + ρ2An−2 +

· · · + ρkAn−k , k < n, then we have

eAt = I + t
1!A + t2

2!A2 + · · · + tn−k−1

(n − k − 1)!An−k−1

+ bn−k(t)An−k + bn−k+1(t)An−k+1 + · · · + bn−1(t)An−1,
(28)

where bn−k(t), bn−k+1(t), . . . , bn−1(t) are computed by

⎡
⎢⎢⎢⎣

cbn−k(t)
bn−k+1(t)

...
bn−1(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

sn−k
2 sn−k+1

2 · · · s2
n−1

sn−3
3 sn−2

3 · · · s3
n−1

...
...

. . .
...

sn−k
k+1 sn−k+1

k+1 · · · s4
n−1

⎤
⎥⎥⎥⎦

−1

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

es2t −
n−k−1∑

i=0

tisi
2

i!

es3t −
n−k−1∑

i=0

tisi
3

i!
...

esk+1t −
n−k−1∑

i=0

tisi
k+1

i!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (29)

s2, s3, . . . , sk+1 are the different roots of sk − ρ1sk−1 −
ρ2sk−2 − · · · − ρk−1s − ρk = 0.

3. Examples
In this section, we will use some matrices to show the
effectiveness of the proposed method.

Example 1 Let

A =

⎡
⎢⎢⎣

0 2 0 0
0 0 0 0
0 0 2 0
1 0 0 −1

⎤
⎥⎥⎦ .

It satisfies that A4 = A3 + 2A2. For ρ1 = 1, ρ2 = 2 in
Theorem 2, we have

eAt = I 4 + tA + b2(t)A2 + b3(t)A3

= I 4 + tA +
(

1
12

e2t + 2
3

e−t + 0.5t − 0.75
)

A2

+
(

1
12

e2t − 1
3

e−t − 0.5t + 0.25
)

A3

=

⎡
⎢⎢⎣

1 2t 0 0
0 1 0 0
0 0 e2t 0

−e−t + 1 2e−t + 2t − 2 0 e−t

⎤
⎥⎥⎦ . (30)

Example 2 Let

A =

⎡
⎢⎢⎣

2 0 0 0
0 1 1 0
0 0 0 2
0 0 0 −1

⎤
⎥⎥⎦ .
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It satisfies that A4 = 2A3 + A2 − 2A. For ρ1 = 2, ρ2 = 1
and ρ3 = −2 in Theorem 4, we have

eAt = I 4 + b1(t)A + b2(t)A2 + b3(t)A3 (31)

= I 4 +
(

−1
6

e2t + et − 1
3

e−t − 0.5
)

A

+ (0.5et + 0.5e−t − 1)A2

+
(

1
6

e2t − 0.5et − 1
6

e−t + 0.5
)

A3

=

⎡
⎢⎢⎣

e2t 0 0 0
0 et et − 1 et + e−t − 2
0 0 1 −2e−t + 2
0 0 0 e−t

⎤
⎥⎥⎦ . (32)

4. Conclusions
One method to compute the accurate solution of eAt is
presented in this letter. The basic idea of this method is
using the matrix theory, the matrices satisfy the special
case An = ρ1An−1 + ρ2An−2 + · · · + ρkAn−k , k < n. Fur-
thermore, this method can be extended to the more gen-
eral case Ak = ρ1Ak−1 + ρ2Ak−2 + · · · + ρmAk−m, k < n,
m < k .
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